]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/ipmmu-vmsa.c
Merge tag 'iommu-updates-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / iommu / ipmmu-vmsa.c
1 /*
2  * IPMMU VMSA
3  *
4  * Copyright (C) 2014 Renesas Electronics Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  */
10
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25
26 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
27 #include <asm/dma-iommu.h>
28 #include <asm/pgalloc.h>
29 #endif
30
31 #include "io-pgtable.h"
32
33 #define IPMMU_CTX_MAX 1
34
35 struct ipmmu_vmsa_device {
36         struct device *dev;
37         void __iomem *base;
38         struct list_head list;
39
40         unsigned int num_utlbs;
41         spinlock_t lock;                        /* Protects ctx and domains[] */
42         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
43         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
44
45         struct dma_iommu_mapping *mapping;
46 };
47
48 struct ipmmu_vmsa_domain {
49         struct ipmmu_vmsa_device *mmu;
50         struct iommu_domain io_domain;
51
52         struct io_pgtable_cfg cfg;
53         struct io_pgtable_ops *iop;
54
55         unsigned int context_id;
56         spinlock_t lock;                        /* Protects mappings */
57 };
58
59 struct ipmmu_vmsa_iommu_priv {
60         struct ipmmu_vmsa_device *mmu;
61         unsigned int *utlbs;
62         unsigned int num_utlbs;
63         struct device *dev;
64         struct list_head list;
65 };
66
67 static DEFINE_SPINLOCK(ipmmu_devices_lock);
68 static LIST_HEAD(ipmmu_devices);
69
70 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
71 {
72         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
73 }
74
75
76 static struct ipmmu_vmsa_iommu_priv *to_priv(struct device *dev)
77 {
78 #if defined(CONFIG_ARM)
79         return dev->archdata.iommu;
80 #else
81         return dev->iommu_fwspec->iommu_priv;
82 #endif
83 }
84 static void set_priv(struct device *dev, struct ipmmu_vmsa_iommu_priv *p)
85 {
86 #if defined(CONFIG_ARM)
87         dev->archdata.iommu = p;
88 #else
89         dev->iommu_fwspec->iommu_priv = p;
90 #endif
91 }
92
93 #define TLB_LOOP_TIMEOUT                100     /* 100us */
94
95 /* -----------------------------------------------------------------------------
96  * Registers Definition
97  */
98
99 #define IM_NS_ALIAS_OFFSET              0x800
100
101 #define IM_CTX_SIZE                     0x40
102
103 #define IMCTR                           0x0000
104 #define IMCTR_TRE                       (1 << 17)
105 #define IMCTR_AFE                       (1 << 16)
106 #define IMCTR_RTSEL_MASK                (3 << 4)
107 #define IMCTR_RTSEL_SHIFT               4
108 #define IMCTR_TREN                      (1 << 3)
109 #define IMCTR_INTEN                     (1 << 2)
110 #define IMCTR_FLUSH                     (1 << 1)
111 #define IMCTR_MMUEN                     (1 << 0)
112
113 #define IMCAAR                          0x0004
114
115 #define IMTTBCR                         0x0008
116 #define IMTTBCR_EAE                     (1 << 31)
117 #define IMTTBCR_PMB                     (1 << 30)
118 #define IMTTBCR_SH1_NON_SHAREABLE       (0 << 28)
119 #define IMTTBCR_SH1_OUTER_SHAREABLE     (2 << 28)
120 #define IMTTBCR_SH1_INNER_SHAREABLE     (3 << 28)
121 #define IMTTBCR_SH1_MASK                (3 << 28)
122 #define IMTTBCR_ORGN1_NC                (0 << 26)
123 #define IMTTBCR_ORGN1_WB_WA             (1 << 26)
124 #define IMTTBCR_ORGN1_WT                (2 << 26)
125 #define IMTTBCR_ORGN1_WB                (3 << 26)
126 #define IMTTBCR_ORGN1_MASK              (3 << 26)
127 #define IMTTBCR_IRGN1_NC                (0 << 24)
128 #define IMTTBCR_IRGN1_WB_WA             (1 << 24)
129 #define IMTTBCR_IRGN1_WT                (2 << 24)
130 #define IMTTBCR_IRGN1_WB                (3 << 24)
131 #define IMTTBCR_IRGN1_MASK              (3 << 24)
132 #define IMTTBCR_TSZ1_MASK               (7 << 16)
133 #define IMTTBCR_TSZ1_SHIFT              16
134 #define IMTTBCR_SH0_NON_SHAREABLE       (0 << 12)
135 #define IMTTBCR_SH0_OUTER_SHAREABLE     (2 << 12)
136 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)
137 #define IMTTBCR_SH0_MASK                (3 << 12)
138 #define IMTTBCR_ORGN0_NC                (0 << 10)
139 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)
140 #define IMTTBCR_ORGN0_WT                (2 << 10)
141 #define IMTTBCR_ORGN0_WB                (3 << 10)
142 #define IMTTBCR_ORGN0_MASK              (3 << 10)
143 #define IMTTBCR_IRGN0_NC                (0 << 8)
144 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)
145 #define IMTTBCR_IRGN0_WT                (2 << 8)
146 #define IMTTBCR_IRGN0_WB                (3 << 8)
147 #define IMTTBCR_IRGN0_MASK              (3 << 8)
148 #define IMTTBCR_SL0_LVL_2               (0 << 4)
149 #define IMTTBCR_SL0_LVL_1               (1 << 4)
150 #define IMTTBCR_TSZ0_MASK               (7 << 0)
151 #define IMTTBCR_TSZ0_SHIFT              O
152
153 #define IMBUSCR                         0x000c
154 #define IMBUSCR_DVM                     (1 << 2)
155 #define IMBUSCR_BUSSEL_SYS              (0 << 0)
156 #define IMBUSCR_BUSSEL_CCI              (1 << 0)
157 #define IMBUSCR_BUSSEL_IMCAAR           (2 << 0)
158 #define IMBUSCR_BUSSEL_CCI_IMCAAR       (3 << 0)
159 #define IMBUSCR_BUSSEL_MASK             (3 << 0)
160
161 #define IMTTLBR0                        0x0010
162 #define IMTTUBR0                        0x0014
163 #define IMTTLBR1                        0x0018
164 #define IMTTUBR1                        0x001c
165
166 #define IMSTR                           0x0020
167 #define IMSTR_ERRLVL_MASK               (3 << 12)
168 #define IMSTR_ERRLVL_SHIFT              12
169 #define IMSTR_ERRCODE_TLB_FORMAT        (1 << 8)
170 #define IMSTR_ERRCODE_ACCESS_PERM       (4 << 8)
171 #define IMSTR_ERRCODE_SECURE_ACCESS     (5 << 8)
172 #define IMSTR_ERRCODE_MASK              (7 << 8)
173 #define IMSTR_MHIT                      (1 << 4)
174 #define IMSTR_ABORT                     (1 << 2)
175 #define IMSTR_PF                        (1 << 1)
176 #define IMSTR_TF                        (1 << 0)
177
178 #define IMMAIR0                         0x0028
179 #define IMMAIR1                         0x002c
180 #define IMMAIR_ATTR_MASK                0xff
181 #define IMMAIR_ATTR_DEVICE              0x04
182 #define IMMAIR_ATTR_NC                  0x44
183 #define IMMAIR_ATTR_WBRWA               0xff
184 #define IMMAIR_ATTR_SHIFT(n)            ((n) << 3)
185 #define IMMAIR_ATTR_IDX_NC              0
186 #define IMMAIR_ATTR_IDX_WBRWA           1
187 #define IMMAIR_ATTR_IDX_DEV             2
188
189 #define IMEAR                           0x0030
190
191 #define IMPCTR                          0x0200
192 #define IMPSTR                          0x0208
193 #define IMPEAR                          0x020c
194 #define IMPMBA(n)                       (0x0280 + ((n) * 4))
195 #define IMPMBD(n)                       (0x02c0 + ((n) * 4))
196
197 #define IMUCTR(n)                       (0x0300 + ((n) * 16))
198 #define IMUCTR_FIXADDEN                 (1 << 31)
199 #define IMUCTR_FIXADD_MASK              (0xff << 16)
200 #define IMUCTR_FIXADD_SHIFT             16
201 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)
202 #define IMUCTR_TTSEL_PMB                (8 << 4)
203 #define IMUCTR_TTSEL_MASK               (15 << 4)
204 #define IMUCTR_FLUSH                    (1 << 1)
205 #define IMUCTR_MMUEN                    (1 << 0)
206
207 #define IMUASID(n)                      (0x0308 + ((n) * 16))
208 #define IMUASID_ASID8_MASK              (0xff << 8)
209 #define IMUASID_ASID8_SHIFT             8
210 #define IMUASID_ASID0_MASK              (0xff << 0)
211 #define IMUASID_ASID0_SHIFT             0
212
213 /* -----------------------------------------------------------------------------
214  * Read/Write Access
215  */
216
217 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
218 {
219         return ioread32(mmu->base + offset);
220 }
221
222 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
223                         u32 data)
224 {
225         iowrite32(data, mmu->base + offset);
226 }
227
228 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
229 {
230         return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
231 }
232
233 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
234                             u32 data)
235 {
236         ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
237 }
238
239 /* -----------------------------------------------------------------------------
240  * TLB and microTLB Management
241  */
242
243 /* Wait for any pending TLB invalidations to complete */
244 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
245 {
246         unsigned int count = 0;
247
248         while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
249                 cpu_relax();
250                 if (++count == TLB_LOOP_TIMEOUT) {
251                         dev_err_ratelimited(domain->mmu->dev,
252                         "TLB sync timed out -- MMU may be deadlocked\n");
253                         return;
254                 }
255                 udelay(1);
256         }
257 }
258
259 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
260 {
261         u32 reg;
262
263         reg = ipmmu_ctx_read(domain, IMCTR);
264         reg |= IMCTR_FLUSH;
265         ipmmu_ctx_write(domain, IMCTR, reg);
266
267         ipmmu_tlb_sync(domain);
268 }
269
270 /*
271  * Enable MMU translation for the microTLB.
272  */
273 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
274                               unsigned int utlb)
275 {
276         struct ipmmu_vmsa_device *mmu = domain->mmu;
277
278         /*
279          * TODO: Reference-count the microTLB as several bus masters can be
280          * connected to the same microTLB.
281          */
282
283         /* TODO: What should we set the ASID to ? */
284         ipmmu_write(mmu, IMUASID(utlb), 0);
285         /* TODO: Do we need to flush the microTLB ? */
286         ipmmu_write(mmu, IMUCTR(utlb),
287                     IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
288                     IMUCTR_MMUEN);
289 }
290
291 /*
292  * Disable MMU translation for the microTLB.
293  */
294 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
295                                unsigned int utlb)
296 {
297         struct ipmmu_vmsa_device *mmu = domain->mmu;
298
299         ipmmu_write(mmu, IMUCTR(utlb), 0);
300 }
301
302 static void ipmmu_tlb_flush_all(void *cookie)
303 {
304         struct ipmmu_vmsa_domain *domain = cookie;
305
306         ipmmu_tlb_invalidate(domain);
307 }
308
309 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
310                                 size_t granule, bool leaf, void *cookie)
311 {
312         /* The hardware doesn't support selective TLB flush. */
313 }
314
315 static struct iommu_gather_ops ipmmu_gather_ops = {
316         .tlb_flush_all = ipmmu_tlb_flush_all,
317         .tlb_add_flush = ipmmu_tlb_add_flush,
318         .tlb_sync = ipmmu_tlb_flush_all,
319 };
320
321 /* -----------------------------------------------------------------------------
322  * Domain/Context Management
323  */
324
325 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
326                                          struct ipmmu_vmsa_domain *domain)
327 {
328         unsigned long flags;
329         int ret;
330
331         spin_lock_irqsave(&mmu->lock, flags);
332
333         ret = find_first_zero_bit(mmu->ctx, IPMMU_CTX_MAX);
334         if (ret != IPMMU_CTX_MAX) {
335                 mmu->domains[ret] = domain;
336                 set_bit(ret, mmu->ctx);
337         }
338
339         spin_unlock_irqrestore(&mmu->lock, flags);
340
341         return ret;
342 }
343
344 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
345 {
346         u64 ttbr;
347         int ret;
348
349         /*
350          * Allocate the page table operations.
351          *
352          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
353          * access, Long-descriptor format" that the NStable bit being set in a
354          * table descriptor will result in the NStable and NS bits of all child
355          * entries being ignored and considered as being set. The IPMMU seems
356          * not to comply with this, as it generates a secure access page fault
357          * if any of the NStable and NS bits isn't set when running in
358          * non-secure mode.
359          */
360         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
361         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
362         domain->cfg.ias = 32;
363         domain->cfg.oas = 40;
364         domain->cfg.tlb = &ipmmu_gather_ops;
365         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
366         domain->io_domain.geometry.force_aperture = true;
367         /*
368          * TODO: Add support for coherent walk through CCI with DVM and remove
369          * cache handling. For now, delegate it to the io-pgtable code.
370          */
371         domain->cfg.iommu_dev = domain->mmu->dev;
372
373         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
374                                            domain);
375         if (!domain->iop)
376                 return -EINVAL;
377
378         /*
379          * Find an unused context.
380          */
381         ret = ipmmu_domain_allocate_context(domain->mmu, domain);
382         if (ret == IPMMU_CTX_MAX) {
383                 free_io_pgtable_ops(domain->iop);
384                 return -EBUSY;
385         }
386
387         domain->context_id = ret;
388
389         /* TTBR0 */
390         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
391         ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
392         ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
393
394         /*
395          * TTBCR
396          * We use long descriptors with inner-shareable WBWA tables and allocate
397          * the whole 32-bit VA space to TTBR0.
398          */
399         ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
400                         IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
401                         IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
402
403         /* MAIR0 */
404         ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
405
406         /* IMBUSCR */
407         ipmmu_ctx_write(domain, IMBUSCR,
408                         ipmmu_ctx_read(domain, IMBUSCR) &
409                         ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
410
411         /*
412          * IMSTR
413          * Clear all interrupt flags.
414          */
415         ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
416
417         /*
418          * IMCTR
419          * Enable the MMU and interrupt generation. The long-descriptor
420          * translation table format doesn't use TEX remapping. Don't enable AF
421          * software management as we have no use for it. Flush the TLB as
422          * required when modifying the context registers.
423          */
424         ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
425
426         return 0;
427 }
428
429 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
430                                       unsigned int context_id)
431 {
432         unsigned long flags;
433
434         spin_lock_irqsave(&mmu->lock, flags);
435
436         clear_bit(context_id, mmu->ctx);
437         mmu->domains[context_id] = NULL;
438
439         spin_unlock_irqrestore(&mmu->lock, flags);
440 }
441
442 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
443 {
444         /*
445          * Disable the context. Flush the TLB as required when modifying the
446          * context registers.
447          *
448          * TODO: Is TLB flush really needed ?
449          */
450         ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
451         ipmmu_tlb_sync(domain);
452         ipmmu_domain_free_context(domain->mmu, domain->context_id);
453 }
454
455 /* -----------------------------------------------------------------------------
456  * Fault Handling
457  */
458
459 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
460 {
461         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
462         struct ipmmu_vmsa_device *mmu = domain->mmu;
463         u32 status;
464         u32 iova;
465
466         status = ipmmu_ctx_read(domain, IMSTR);
467         if (!(status & err_mask))
468                 return IRQ_NONE;
469
470         iova = ipmmu_ctx_read(domain, IMEAR);
471
472         /*
473          * Clear the error status flags. Unlike traditional interrupt flag
474          * registers that must be cleared by writing 1, this status register
475          * seems to require 0. The error address register must be read before,
476          * otherwise its value will be 0.
477          */
478         ipmmu_ctx_write(domain, IMSTR, 0);
479
480         /* Log fatal errors. */
481         if (status & IMSTR_MHIT)
482                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
483                                     iova);
484         if (status & IMSTR_ABORT)
485                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
486                                     iova);
487
488         if (!(status & (IMSTR_PF | IMSTR_TF)))
489                 return IRQ_NONE;
490
491         /*
492          * Try to handle page faults and translation faults.
493          *
494          * TODO: We need to look up the faulty device based on the I/O VA. Use
495          * the IOMMU device for now.
496          */
497         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
498                 return IRQ_HANDLED;
499
500         dev_err_ratelimited(mmu->dev,
501                             "Unhandled fault: status 0x%08x iova 0x%08x\n",
502                             status, iova);
503
504         return IRQ_HANDLED;
505 }
506
507 static irqreturn_t ipmmu_irq(int irq, void *dev)
508 {
509         struct ipmmu_vmsa_device *mmu = dev;
510         irqreturn_t status = IRQ_NONE;
511         unsigned int i;
512         unsigned long flags;
513
514         spin_lock_irqsave(&mmu->lock, flags);
515
516         /*
517          * Check interrupts for all active contexts.
518          */
519         for (i = 0; i < IPMMU_CTX_MAX; i++) {
520                 if (!mmu->domains[i])
521                         continue;
522                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
523                         status = IRQ_HANDLED;
524         }
525
526         spin_unlock_irqrestore(&mmu->lock, flags);
527
528         return status;
529 }
530
531 /* -----------------------------------------------------------------------------
532  * IOMMU Operations
533  */
534
535 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
536 {
537         struct ipmmu_vmsa_domain *domain;
538
539         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
540         if (!domain)
541                 return NULL;
542
543         spin_lock_init(&domain->lock);
544
545         return &domain->io_domain;
546 }
547
548 static void ipmmu_domain_free(struct iommu_domain *io_domain)
549 {
550         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
551
552         /*
553          * Free the domain resources. We assume that all devices have already
554          * been detached.
555          */
556         ipmmu_domain_destroy_context(domain);
557         free_io_pgtable_ops(domain->iop);
558         kfree(domain);
559 }
560
561 static int ipmmu_attach_device(struct iommu_domain *io_domain,
562                                struct device *dev)
563 {
564         struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
565         struct ipmmu_vmsa_device *mmu = priv->mmu;
566         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
567         unsigned long flags;
568         unsigned int i;
569         int ret = 0;
570
571         if (!mmu) {
572                 dev_err(dev, "Cannot attach to IPMMU\n");
573                 return -ENXIO;
574         }
575
576         spin_lock_irqsave(&domain->lock, flags);
577
578         if (!domain->mmu) {
579                 /* The domain hasn't been used yet, initialize it. */
580                 domain->mmu = mmu;
581                 ret = ipmmu_domain_init_context(domain);
582         } else if (domain->mmu != mmu) {
583                 /*
584                  * Something is wrong, we can't attach two devices using
585                  * different IOMMUs to the same domain.
586                  */
587                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
588                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
589                 ret = -EINVAL;
590         } else
591                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
592
593         spin_unlock_irqrestore(&domain->lock, flags);
594
595         if (ret < 0)
596                 return ret;
597
598         for (i = 0; i < priv->num_utlbs; ++i)
599                 ipmmu_utlb_enable(domain, priv->utlbs[i]);
600
601         return 0;
602 }
603
604 static void ipmmu_detach_device(struct iommu_domain *io_domain,
605                                 struct device *dev)
606 {
607         struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
608         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
609         unsigned int i;
610
611         for (i = 0; i < priv->num_utlbs; ++i)
612                 ipmmu_utlb_disable(domain, priv->utlbs[i]);
613
614         /*
615          * TODO: Optimize by disabling the context when no device is attached.
616          */
617 }
618
619 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
620                      phys_addr_t paddr, size_t size, int prot)
621 {
622         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
623
624         if (!domain)
625                 return -ENODEV;
626
627         return domain->iop->map(domain->iop, iova, paddr, size, prot);
628 }
629
630 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
631                           size_t size)
632 {
633         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
634
635         return domain->iop->unmap(domain->iop, iova, size);
636 }
637
638 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
639                                       dma_addr_t iova)
640 {
641         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
642
643         /* TODO: Is locking needed ? */
644
645         return domain->iop->iova_to_phys(domain->iop, iova);
646 }
647
648 static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
649                             unsigned int *utlbs, unsigned int num_utlbs)
650 {
651         unsigned int i;
652
653         for (i = 0; i < num_utlbs; ++i) {
654                 struct of_phandle_args args;
655                 int ret;
656
657                 ret = of_parse_phandle_with_args(dev->of_node, "iommus",
658                                                  "#iommu-cells", i, &args);
659                 if (ret < 0)
660                         return ret;
661
662                 of_node_put(args.np);
663
664                 if (args.np != mmu->dev->of_node || args.args_count != 1)
665                         return -EINVAL;
666
667                 utlbs[i] = args.args[0];
668         }
669
670         return 0;
671 }
672
673 static int ipmmu_init_platform_device(struct device *dev)
674 {
675         struct ipmmu_vmsa_iommu_priv *priv;
676         struct ipmmu_vmsa_device *mmu;
677         unsigned int *utlbs;
678         unsigned int i;
679         int num_utlbs;
680         int ret = -ENODEV;
681
682         /* Find the master corresponding to the device. */
683
684         num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus",
685                                                "#iommu-cells");
686         if (num_utlbs < 0)
687                 return -ENODEV;
688
689         utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL);
690         if (!utlbs)
691                 return -ENOMEM;
692
693         spin_lock(&ipmmu_devices_lock);
694
695         list_for_each_entry(mmu, &ipmmu_devices, list) {
696                 ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs);
697                 if (!ret) {
698                         /*
699                          * TODO Take a reference to the MMU to protect
700                          * against device removal.
701                          */
702                         break;
703                 }
704         }
705
706         spin_unlock(&ipmmu_devices_lock);
707
708         if (ret < 0)
709                 goto error;
710
711         for (i = 0; i < num_utlbs; ++i) {
712                 if (utlbs[i] >= mmu->num_utlbs) {
713                         ret = -EINVAL;
714                         goto error;
715                 }
716         }
717
718         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
719         if (!priv) {
720                 ret = -ENOMEM;
721                 goto error;
722         }
723
724         priv->mmu = mmu;
725         priv->utlbs = utlbs;
726         priv->num_utlbs = num_utlbs;
727         priv->dev = dev;
728         set_priv(dev, priv);
729         return 0;
730
731 error:
732         kfree(utlbs);
733         return ret;
734 }
735
736 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
737
738 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
739 {
740         if (type != IOMMU_DOMAIN_UNMANAGED)
741                 return NULL;
742
743         return __ipmmu_domain_alloc(type);
744 }
745
746 static int ipmmu_add_device(struct device *dev)
747 {
748         struct ipmmu_vmsa_device *mmu = NULL;
749         struct iommu_group *group;
750         int ret;
751
752         if (to_priv(dev)) {
753                 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
754                          dev_name(dev));
755                 return -EINVAL;
756         }
757
758         /* Create a device group and add the device to it. */
759         group = iommu_group_alloc();
760         if (IS_ERR(group)) {
761                 dev_err(dev, "Failed to allocate IOMMU group\n");
762                 ret = PTR_ERR(group);
763                 goto error;
764         }
765
766         ret = iommu_group_add_device(group, dev);
767         iommu_group_put(group);
768
769         if (ret < 0) {
770                 dev_err(dev, "Failed to add device to IPMMU group\n");
771                 group = NULL;
772                 goto error;
773         }
774
775         ret = ipmmu_init_platform_device(dev);
776         if (ret < 0)
777                 goto error;
778
779         /*
780          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
781          * VAs. This will allocate a corresponding IOMMU domain.
782          *
783          * TODO:
784          * - Create one mapping per context (TLB).
785          * - Make the mapping size configurable ? We currently use a 2GB mapping
786          *   at a 1GB offset to ensure that NULL VAs will fault.
787          */
788         mmu = to_priv(dev)->mmu;
789         if (!mmu->mapping) {
790                 struct dma_iommu_mapping *mapping;
791
792                 mapping = arm_iommu_create_mapping(&platform_bus_type,
793                                                    SZ_1G, SZ_2G);
794                 if (IS_ERR(mapping)) {
795                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
796                         ret = PTR_ERR(mapping);
797                         goto error;
798                 }
799
800                 mmu->mapping = mapping;
801         }
802
803         /* Attach the ARM VA mapping to the device. */
804         ret = arm_iommu_attach_device(dev, mmu->mapping);
805         if (ret < 0) {
806                 dev_err(dev, "Failed to attach device to VA mapping\n");
807                 goto error;
808         }
809
810         return 0;
811
812 error:
813         if (mmu)
814                 arm_iommu_release_mapping(mmu->mapping);
815
816         if (!IS_ERR_OR_NULL(group))
817                 iommu_group_remove_device(dev);
818
819         kfree(to_priv(dev)->utlbs);
820         kfree(to_priv(dev));
821         set_priv(dev, NULL);
822
823         return ret;
824 }
825
826 static void ipmmu_remove_device(struct device *dev)
827 {
828         struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
829
830         arm_iommu_detach_device(dev);
831         iommu_group_remove_device(dev);
832
833         kfree(priv->utlbs);
834         kfree(priv);
835
836         set_priv(dev, NULL);
837 }
838
839 static const struct iommu_ops ipmmu_ops = {
840         .domain_alloc = ipmmu_domain_alloc,
841         .domain_free = ipmmu_domain_free,
842         .attach_dev = ipmmu_attach_device,
843         .detach_dev = ipmmu_detach_device,
844         .map = ipmmu_map,
845         .unmap = ipmmu_unmap,
846         .map_sg = default_iommu_map_sg,
847         .iova_to_phys = ipmmu_iova_to_phys,
848         .add_device = ipmmu_add_device,
849         .remove_device = ipmmu_remove_device,
850         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
851 };
852
853 #endif /* !CONFIG_ARM && CONFIG_IOMMU_DMA */
854
855 #ifdef CONFIG_IOMMU_DMA
856
857 static DEFINE_SPINLOCK(ipmmu_slave_devices_lock);
858 static LIST_HEAD(ipmmu_slave_devices);
859
860 static struct iommu_domain *ipmmu_domain_alloc_dma(unsigned type)
861 {
862         struct iommu_domain *io_domain = NULL;
863
864         switch (type) {
865         case IOMMU_DOMAIN_UNMANAGED:
866                 io_domain = __ipmmu_domain_alloc(type);
867                 break;
868
869         case IOMMU_DOMAIN_DMA:
870                 io_domain = __ipmmu_domain_alloc(type);
871                 if (io_domain)
872                         iommu_get_dma_cookie(io_domain);
873                 break;
874         }
875
876         return io_domain;
877 }
878
879 static void ipmmu_domain_free_dma(struct iommu_domain *io_domain)
880 {
881         switch (io_domain->type) {
882         case IOMMU_DOMAIN_DMA:
883                 iommu_put_dma_cookie(io_domain);
884                 /* fall-through */
885         default:
886                 ipmmu_domain_free(io_domain);
887                 break;
888         }
889 }
890
891 static int ipmmu_add_device_dma(struct device *dev)
892 {
893         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
894         struct iommu_group *group;
895
896         /*
897          * Only let through devices that have been verified in xlate()
898          * We may get called with dev->iommu_fwspec set to NULL.
899          */
900         if (!fwspec || !fwspec->iommu_priv)
901                 return -ENODEV;
902
903         group = iommu_group_get_for_dev(dev);
904         if (IS_ERR(group))
905                 return PTR_ERR(group);
906
907         spin_lock(&ipmmu_slave_devices_lock);
908         list_add(&to_priv(dev)->list, &ipmmu_slave_devices);
909         spin_unlock(&ipmmu_slave_devices_lock);
910         return 0;
911 }
912
913 static void ipmmu_remove_device_dma(struct device *dev)
914 {
915         struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
916
917         spin_lock(&ipmmu_slave_devices_lock);
918         list_del(&priv->list);
919         spin_unlock(&ipmmu_slave_devices_lock);
920
921         iommu_group_remove_device(dev);
922 }
923
924 static struct device *ipmmu_find_sibling_device(struct device *dev)
925 {
926         struct ipmmu_vmsa_iommu_priv *priv = to_priv(dev);
927         struct ipmmu_vmsa_iommu_priv *sibling_priv = NULL;
928         bool found = false;
929
930         spin_lock(&ipmmu_slave_devices_lock);
931
932         list_for_each_entry(sibling_priv, &ipmmu_slave_devices, list) {
933                 if (priv == sibling_priv)
934                         continue;
935                 if (sibling_priv->mmu == priv->mmu) {
936                         found = true;
937                         break;
938                 }
939         }
940
941         spin_unlock(&ipmmu_slave_devices_lock);
942
943         return found ? sibling_priv->dev : NULL;
944 }
945
946 static struct iommu_group *ipmmu_find_group_dma(struct device *dev)
947 {
948         struct iommu_group *group;
949         struct device *sibling;
950
951         sibling = ipmmu_find_sibling_device(dev);
952         if (sibling)
953                 group = iommu_group_get(sibling);
954         if (!sibling || IS_ERR(group))
955                 group = generic_device_group(dev);
956
957         return group;
958 }
959
960 static int ipmmu_of_xlate_dma(struct device *dev,
961                               struct of_phandle_args *spec)
962 {
963         /* If the IPMMU device is disabled in DT then return error
964          * to make sure the of_iommu code does not install ops
965          * even though the iommu device is disabled
966          */
967         if (!of_device_is_available(spec->np))
968                 return -ENODEV;
969
970         return ipmmu_init_platform_device(dev);
971 }
972
973 static const struct iommu_ops ipmmu_ops = {
974         .domain_alloc = ipmmu_domain_alloc_dma,
975         .domain_free = ipmmu_domain_free_dma,
976         .attach_dev = ipmmu_attach_device,
977         .detach_dev = ipmmu_detach_device,
978         .map = ipmmu_map,
979         .unmap = ipmmu_unmap,
980         .map_sg = default_iommu_map_sg,
981         .iova_to_phys = ipmmu_iova_to_phys,
982         .add_device = ipmmu_add_device_dma,
983         .remove_device = ipmmu_remove_device_dma,
984         .device_group = ipmmu_find_group_dma,
985         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
986         .of_xlate = ipmmu_of_xlate_dma,
987 };
988
989 #endif /* CONFIG_IOMMU_DMA */
990
991 /* -----------------------------------------------------------------------------
992  * Probe/remove and init
993  */
994
995 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
996 {
997         unsigned int i;
998
999         /* Disable all contexts. */
1000         for (i = 0; i < 4; ++i)
1001                 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1002 }
1003
1004 static int ipmmu_probe(struct platform_device *pdev)
1005 {
1006         struct ipmmu_vmsa_device *mmu;
1007         struct resource *res;
1008         int irq;
1009         int ret;
1010
1011         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1012         if (!mmu) {
1013                 dev_err(&pdev->dev, "cannot allocate device data\n");
1014                 return -ENOMEM;
1015         }
1016
1017         mmu->dev = &pdev->dev;
1018         mmu->num_utlbs = 32;
1019         spin_lock_init(&mmu->lock);
1020         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1021
1022         /* Map I/O memory and request IRQ. */
1023         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1024         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1025         if (IS_ERR(mmu->base))
1026                 return PTR_ERR(mmu->base);
1027
1028         /*
1029          * The IPMMU has two register banks, for secure and non-secure modes.
1030          * The bank mapped at the beginning of the IPMMU address space
1031          * corresponds to the running mode of the CPU. When running in secure
1032          * mode the non-secure register bank is also available at an offset.
1033          *
1034          * Secure mode operation isn't clearly documented and is thus currently
1035          * not implemented in the driver. Furthermore, preliminary tests of
1036          * non-secure operation with the main register bank were not successful.
1037          * Offset the registers base unconditionally to point to the non-secure
1038          * alias space for now.
1039          */
1040         mmu->base += IM_NS_ALIAS_OFFSET;
1041
1042         irq = platform_get_irq(pdev, 0);
1043         if (irq < 0) {
1044                 dev_err(&pdev->dev, "no IRQ found\n");
1045                 return irq;
1046         }
1047
1048         ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1049                                dev_name(&pdev->dev), mmu);
1050         if (ret < 0) {
1051                 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1052                 return ret;
1053         }
1054
1055         ipmmu_device_reset(mmu);
1056
1057         /*
1058          * We can't create the ARM mapping here as it requires the bus to have
1059          * an IOMMU, which only happens when bus_set_iommu() is called in
1060          * ipmmu_init() after the probe function returns.
1061          */
1062
1063         spin_lock(&ipmmu_devices_lock);
1064         list_add(&mmu->list, &ipmmu_devices);
1065         spin_unlock(&ipmmu_devices_lock);
1066
1067         platform_set_drvdata(pdev, mmu);
1068
1069         return 0;
1070 }
1071
1072 static int ipmmu_remove(struct platform_device *pdev)
1073 {
1074         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1075
1076         spin_lock(&ipmmu_devices_lock);
1077         list_del(&mmu->list);
1078         spin_unlock(&ipmmu_devices_lock);
1079
1080 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1081         arm_iommu_release_mapping(mmu->mapping);
1082 #endif
1083
1084         ipmmu_device_reset(mmu);
1085
1086         return 0;
1087 }
1088
1089 static const struct of_device_id ipmmu_of_ids[] = {
1090         { .compatible = "renesas,ipmmu-vmsa", },
1091         { }
1092 };
1093
1094 static struct platform_driver ipmmu_driver = {
1095         .driver = {
1096                 .name = "ipmmu-vmsa",
1097                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1098         },
1099         .probe = ipmmu_probe,
1100         .remove = ipmmu_remove,
1101 };
1102
1103 static int __init ipmmu_init(void)
1104 {
1105         int ret;
1106
1107         ret = platform_driver_register(&ipmmu_driver);
1108         if (ret < 0)
1109                 return ret;
1110
1111         if (!iommu_present(&platform_bus_type))
1112                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1113
1114         return 0;
1115 }
1116
1117 static void __exit ipmmu_exit(void)
1118 {
1119         return platform_driver_unregister(&ipmmu_driver);
1120 }
1121
1122 subsys_initcall(ipmmu_init);
1123 module_exit(ipmmu_exit);
1124
1125 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1126 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1127 MODULE_LICENSE("GPL v2");