]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-table.c
Merge branch 'overlayfs-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mszere...
[karo-tx-linux.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21
22 #define DM_MSG_PREFIX "table"
23
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28
29 struct dm_table {
30         struct mapped_device *md;
31         unsigned type;
32
33         /* btree table */
34         unsigned int depth;
35         unsigned int counts[MAX_DEPTH]; /* in nodes */
36         sector_t *index[MAX_DEPTH];
37
38         unsigned int num_targets;
39         unsigned int num_allocated;
40         sector_t *highs;
41         struct dm_target *targets;
42
43         struct target_type *immutable_target_type;
44         unsigned integrity_supported:1;
45         unsigned singleton:1;
46
47         /*
48          * Indicates the rw permissions for the new logical
49          * device.  This should be a combination of FMODE_READ
50          * and FMODE_WRITE.
51          */
52         fmode_t mode;
53
54         /* a list of devices used by this table */
55         struct list_head devices;
56
57         /* events get handed up using this callback */
58         void (*event_fn)(void *);
59         void *event_context;
60
61         struct dm_md_mempools *mempools;
62
63         struct list_head target_callbacks;
64 };
65
66 /*
67  * Similar to ceiling(log_size(n))
68  */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71         int result = 0;
72
73         while (n > 1) {
74                 n = dm_div_up(n, base);
75                 result++;
76         }
77
78         return result;
79 }
80
81 /*
82  * Calculate the index of the child node of the n'th node k'th key.
83  */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86         return (n * CHILDREN_PER_NODE) + k;
87 }
88
89 /*
90  * Return the n'th node of level l from table t.
91  */
92 static inline sector_t *get_node(struct dm_table *t,
93                                  unsigned int l, unsigned int n)
94 {
95         return t->index[l] + (n * KEYS_PER_NODE);
96 }
97
98 /*
99  * Return the highest key that you could lookup from the n'th
100  * node on level l of the btree.
101  */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104         for (; l < t->depth - 1; l++)
105                 n = get_child(n, CHILDREN_PER_NODE - 1);
106
107         if (n >= t->counts[l])
108                 return (sector_t) - 1;
109
110         return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112
113 /*
114  * Fills in a level of the btree based on the highs of the level
115  * below it.
116  */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119         unsigned int n, k;
120         sector_t *node;
121
122         for (n = 0U; n < t->counts[l]; n++) {
123                 node = get_node(t, l, n);
124
125                 for (k = 0U; k < KEYS_PER_NODE; k++)
126                         node[k] = high(t, l + 1, get_child(n, k));
127         }
128
129         return 0;
130 }
131
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134         unsigned long size;
135         void *addr;
136
137         /*
138          * Check that we're not going to overflow.
139          */
140         if (nmemb > (ULONG_MAX / elem_size))
141                 return NULL;
142
143         size = nmemb * elem_size;
144         addr = vzalloc(size);
145
146         return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149
150 /*
151  * highs, and targets are managed as dynamic arrays during a
152  * table load.
153  */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156         sector_t *n_highs;
157         struct dm_target *n_targets;
158
159         /*
160          * Allocate both the target array and offset array at once.
161          * Append an empty entry to catch sectors beyond the end of
162          * the device.
163          */
164         n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
165                                           sizeof(sector_t));
166         if (!n_highs)
167                 return -ENOMEM;
168
169         n_targets = (struct dm_target *) (n_highs + num);
170
171         memset(n_highs, -1, sizeof(*n_highs) * num);
172         vfree(t->highs);
173
174         t->num_allocated = num;
175         t->highs = n_highs;
176         t->targets = n_targets;
177
178         return 0;
179 }
180
181 int dm_table_create(struct dm_table **result, fmode_t mode,
182                     unsigned num_targets, struct mapped_device *md)
183 {
184         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
185
186         if (!t)
187                 return -ENOMEM;
188
189         INIT_LIST_HEAD(&t->devices);
190         INIT_LIST_HEAD(&t->target_callbacks);
191
192         if (!num_targets)
193                 num_targets = KEYS_PER_NODE;
194
195         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197         if (!num_targets) {
198                 kfree(t);
199                 return -ENOMEM;
200         }
201
202         if (alloc_targets(t, num_targets)) {
203                 kfree(t);
204                 return -ENOMEM;
205         }
206
207         t->mode = mode;
208         t->md = md;
209         *result = t;
210         return 0;
211 }
212
213 static void free_devices(struct list_head *devices, struct mapped_device *md)
214 {
215         struct list_head *tmp, *next;
216
217         list_for_each_safe(tmp, next, devices) {
218                 struct dm_dev_internal *dd =
219                     list_entry(tmp, struct dm_dev_internal, list);
220                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
221                        dm_device_name(md), dd->dm_dev->name);
222                 dm_put_table_device(md, dd->dm_dev);
223                 kfree(dd);
224         }
225 }
226
227 void dm_table_destroy(struct dm_table *t)
228 {
229         unsigned int i;
230
231         if (!t)
232                 return;
233
234         /* free the indexes */
235         if (t->depth >= 2)
236                 vfree(t->index[t->depth - 2]);
237
238         /* free the targets */
239         for (i = 0; i < t->num_targets; i++) {
240                 struct dm_target *tgt = t->targets + i;
241
242                 if (tgt->type->dtr)
243                         tgt->type->dtr(tgt);
244
245                 dm_put_target_type(tgt->type);
246         }
247
248         vfree(t->highs);
249
250         /* free the device list */
251         free_devices(&t->devices, t->md);
252
253         dm_free_md_mempools(t->mempools);
254
255         kfree(t);
256 }
257
258 /*
259  * See if we've already got a device in the list.
260  */
261 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
262 {
263         struct dm_dev_internal *dd;
264
265         list_for_each_entry (dd, l, list)
266                 if (dd->dm_dev->bdev->bd_dev == dev)
267                         return dd;
268
269         return NULL;
270 }
271
272 /*
273  * If possible, this checks an area of a destination device is invalid.
274  */
275 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
276                                   sector_t start, sector_t len, void *data)
277 {
278         struct request_queue *q;
279         struct queue_limits *limits = data;
280         struct block_device *bdev = dev->bdev;
281         sector_t dev_size =
282                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
283         unsigned short logical_block_size_sectors =
284                 limits->logical_block_size >> SECTOR_SHIFT;
285         char b[BDEVNAME_SIZE];
286
287         /*
288          * Some devices exist without request functions,
289          * such as loop devices not yet bound to backing files.
290          * Forbid the use of such devices.
291          */
292         q = bdev_get_queue(bdev);
293         if (!q || !q->make_request_fn) {
294                 DMWARN("%s: %s is not yet initialised: "
295                        "start=%llu, len=%llu, dev_size=%llu",
296                        dm_device_name(ti->table->md), bdevname(bdev, b),
297                        (unsigned long long)start,
298                        (unsigned long long)len,
299                        (unsigned long long)dev_size);
300                 return 1;
301         }
302
303         if (!dev_size)
304                 return 0;
305
306         if ((start >= dev_size) || (start + len > dev_size)) {
307                 DMWARN("%s: %s too small for target: "
308                        "start=%llu, len=%llu, dev_size=%llu",
309                        dm_device_name(ti->table->md), bdevname(bdev, b),
310                        (unsigned long long)start,
311                        (unsigned long long)len,
312                        (unsigned long long)dev_size);
313                 return 1;
314         }
315
316         if (logical_block_size_sectors <= 1)
317                 return 0;
318
319         if (start & (logical_block_size_sectors - 1)) {
320                 DMWARN("%s: start=%llu not aligned to h/w "
321                        "logical block size %u of %s",
322                        dm_device_name(ti->table->md),
323                        (unsigned long long)start,
324                        limits->logical_block_size, bdevname(bdev, b));
325                 return 1;
326         }
327
328         if (len & (logical_block_size_sectors - 1)) {
329                 DMWARN("%s: len=%llu not aligned to h/w "
330                        "logical block size %u of %s",
331                        dm_device_name(ti->table->md),
332                        (unsigned long long)len,
333                        limits->logical_block_size, bdevname(bdev, b));
334                 return 1;
335         }
336
337         return 0;
338 }
339
340 /*
341  * This upgrades the mode on an already open dm_dev, being
342  * careful to leave things as they were if we fail to reopen the
343  * device and not to touch the existing bdev field in case
344  * it is accessed concurrently inside dm_table_any_congested().
345  */
346 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
347                         struct mapped_device *md)
348 {
349         int r;
350         struct dm_dev *old_dev, *new_dev;
351
352         old_dev = dd->dm_dev;
353
354         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
355                                 dd->dm_dev->mode | new_mode, &new_dev);
356         if (r)
357                 return r;
358
359         dd->dm_dev = new_dev;
360         dm_put_table_device(md, old_dev);
361
362         return 0;
363 }
364
365 /*
366  * Add a device to the list, or just increment the usage count if
367  * it's already present.
368  */
369 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
370                   struct dm_dev **result)
371 {
372         int r;
373         dev_t uninitialized_var(dev);
374         struct dm_dev_internal *dd;
375         unsigned int major, minor;
376         struct dm_table *t = ti->table;
377         char dummy;
378
379         BUG_ON(!t);
380
381         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
382                 /* Extract the major/minor numbers */
383                 dev = MKDEV(major, minor);
384                 if (MAJOR(dev) != major || MINOR(dev) != minor)
385                         return -EOVERFLOW;
386         } else {
387                 /* convert the path to a device */
388                 struct block_device *bdev = lookup_bdev(path);
389
390                 if (IS_ERR(bdev))
391                         return PTR_ERR(bdev);
392                 dev = bdev->bd_dev;
393                 bdput(bdev);
394         }
395
396         dd = find_device(&t->devices, dev);
397         if (!dd) {
398                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
399                 if (!dd)
400                         return -ENOMEM;
401
402                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
403                         kfree(dd);
404                         return r;
405                 }
406
407                 atomic_set(&dd->count, 0);
408                 list_add(&dd->list, &t->devices);
409
410         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
411                 r = upgrade_mode(dd, mode, t->md);
412                 if (r)
413                         return r;
414         }
415         atomic_inc(&dd->count);
416
417         *result = dd->dm_dev;
418         return 0;
419 }
420 EXPORT_SYMBOL(dm_get_device);
421
422 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
423                                 sector_t start, sector_t len, void *data)
424 {
425         struct queue_limits *limits = data;
426         struct block_device *bdev = dev->bdev;
427         struct request_queue *q = bdev_get_queue(bdev);
428         char b[BDEVNAME_SIZE];
429
430         if (unlikely(!q)) {
431                 DMWARN("%s: Cannot set limits for nonexistent device %s",
432                        dm_device_name(ti->table->md), bdevname(bdev, b));
433                 return 0;
434         }
435
436         if (bdev_stack_limits(limits, bdev, start) < 0)
437                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
438                        "physical_block_size=%u, logical_block_size=%u, "
439                        "alignment_offset=%u, start=%llu",
440                        dm_device_name(ti->table->md), bdevname(bdev, b),
441                        q->limits.physical_block_size,
442                        q->limits.logical_block_size,
443                        q->limits.alignment_offset,
444                        (unsigned long long) start << SECTOR_SHIFT);
445
446         /*
447          * Check if merge fn is supported.
448          * If not we'll force DM to use PAGE_SIZE or
449          * smaller I/O, just to be safe.
450          */
451         if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
452                 blk_limits_max_hw_sectors(limits,
453                                           (unsigned int) (PAGE_SIZE >> 9));
454         return 0;
455 }
456
457 /*
458  * Decrement a device's use count and remove it if necessary.
459  */
460 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
461 {
462         int found = 0;
463         struct list_head *devices = &ti->table->devices;
464         struct dm_dev_internal *dd;
465
466         list_for_each_entry(dd, devices, list) {
467                 if (dd->dm_dev == d) {
468                         found = 1;
469                         break;
470                 }
471         }
472         if (!found) {
473                 DMWARN("%s: device %s not in table devices list",
474                        dm_device_name(ti->table->md), d->name);
475                 return;
476         }
477         if (atomic_dec_and_test(&dd->count)) {
478                 dm_put_table_device(ti->table->md, d);
479                 list_del(&dd->list);
480                 kfree(dd);
481         }
482 }
483 EXPORT_SYMBOL(dm_put_device);
484
485 /*
486  * Checks to see if the target joins onto the end of the table.
487  */
488 static int adjoin(struct dm_table *table, struct dm_target *ti)
489 {
490         struct dm_target *prev;
491
492         if (!table->num_targets)
493                 return !ti->begin;
494
495         prev = &table->targets[table->num_targets - 1];
496         return (ti->begin == (prev->begin + prev->len));
497 }
498
499 /*
500  * Used to dynamically allocate the arg array.
501  *
502  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
503  * process messages even if some device is suspended. These messages have a
504  * small fixed number of arguments.
505  *
506  * On the other hand, dm-switch needs to process bulk data using messages and
507  * excessive use of GFP_NOIO could cause trouble.
508  */
509 static char **realloc_argv(unsigned *array_size, char **old_argv)
510 {
511         char **argv;
512         unsigned new_size;
513         gfp_t gfp;
514
515         if (*array_size) {
516                 new_size = *array_size * 2;
517                 gfp = GFP_KERNEL;
518         } else {
519                 new_size = 8;
520                 gfp = GFP_NOIO;
521         }
522         argv = kmalloc(new_size * sizeof(*argv), gfp);
523         if (argv) {
524                 memcpy(argv, old_argv, *array_size * sizeof(*argv));
525                 *array_size = new_size;
526         }
527
528         kfree(old_argv);
529         return argv;
530 }
531
532 /*
533  * Destructively splits up the argument list to pass to ctr.
534  */
535 int dm_split_args(int *argc, char ***argvp, char *input)
536 {
537         char *start, *end = input, *out, **argv = NULL;
538         unsigned array_size = 0;
539
540         *argc = 0;
541
542         if (!input) {
543                 *argvp = NULL;
544                 return 0;
545         }
546
547         argv = realloc_argv(&array_size, argv);
548         if (!argv)
549                 return -ENOMEM;
550
551         while (1) {
552                 /* Skip whitespace */
553                 start = skip_spaces(end);
554
555                 if (!*start)
556                         break;  /* success, we hit the end */
557
558                 /* 'out' is used to remove any back-quotes */
559                 end = out = start;
560                 while (*end) {
561                         /* Everything apart from '\0' can be quoted */
562                         if (*end == '\\' && *(end + 1)) {
563                                 *out++ = *(end + 1);
564                                 end += 2;
565                                 continue;
566                         }
567
568                         if (isspace(*end))
569                                 break;  /* end of token */
570
571                         *out++ = *end++;
572                 }
573
574                 /* have we already filled the array ? */
575                 if ((*argc + 1) > array_size) {
576                         argv = realloc_argv(&array_size, argv);
577                         if (!argv)
578                                 return -ENOMEM;
579                 }
580
581                 /* we know this is whitespace */
582                 if (*end)
583                         end++;
584
585                 /* terminate the string and put it in the array */
586                 *out = '\0';
587                 argv[*argc] = start;
588                 (*argc)++;
589         }
590
591         *argvp = argv;
592         return 0;
593 }
594
595 /*
596  * Impose necessary and sufficient conditions on a devices's table such
597  * that any incoming bio which respects its logical_block_size can be
598  * processed successfully.  If it falls across the boundary between
599  * two or more targets, the size of each piece it gets split into must
600  * be compatible with the logical_block_size of the target processing it.
601  */
602 static int validate_hardware_logical_block_alignment(struct dm_table *table,
603                                                  struct queue_limits *limits)
604 {
605         /*
606          * This function uses arithmetic modulo the logical_block_size
607          * (in units of 512-byte sectors).
608          */
609         unsigned short device_logical_block_size_sects =
610                 limits->logical_block_size >> SECTOR_SHIFT;
611
612         /*
613          * Offset of the start of the next table entry, mod logical_block_size.
614          */
615         unsigned short next_target_start = 0;
616
617         /*
618          * Given an aligned bio that extends beyond the end of a
619          * target, how many sectors must the next target handle?
620          */
621         unsigned short remaining = 0;
622
623         struct dm_target *uninitialized_var(ti);
624         struct queue_limits ti_limits;
625         unsigned i = 0;
626
627         /*
628          * Check each entry in the table in turn.
629          */
630         while (i < dm_table_get_num_targets(table)) {
631                 ti = dm_table_get_target(table, i++);
632
633                 blk_set_stacking_limits(&ti_limits);
634
635                 /* combine all target devices' limits */
636                 if (ti->type->iterate_devices)
637                         ti->type->iterate_devices(ti, dm_set_device_limits,
638                                                   &ti_limits);
639
640                 /*
641                  * If the remaining sectors fall entirely within this
642                  * table entry are they compatible with its logical_block_size?
643                  */
644                 if (remaining < ti->len &&
645                     remaining & ((ti_limits.logical_block_size >>
646                                   SECTOR_SHIFT) - 1))
647                         break;  /* Error */
648
649                 next_target_start =
650                     (unsigned short) ((next_target_start + ti->len) &
651                                       (device_logical_block_size_sects - 1));
652                 remaining = next_target_start ?
653                     device_logical_block_size_sects - next_target_start : 0;
654         }
655
656         if (remaining) {
657                 DMWARN("%s: table line %u (start sect %llu len %llu) "
658                        "not aligned to h/w logical block size %u",
659                        dm_device_name(table->md), i,
660                        (unsigned long long) ti->begin,
661                        (unsigned long long) ti->len,
662                        limits->logical_block_size);
663                 return -EINVAL;
664         }
665
666         return 0;
667 }
668
669 int dm_table_add_target(struct dm_table *t, const char *type,
670                         sector_t start, sector_t len, char *params)
671 {
672         int r = -EINVAL, argc;
673         char **argv;
674         struct dm_target *tgt;
675
676         if (t->singleton) {
677                 DMERR("%s: target type %s must appear alone in table",
678                       dm_device_name(t->md), t->targets->type->name);
679                 return -EINVAL;
680         }
681
682         BUG_ON(t->num_targets >= t->num_allocated);
683
684         tgt = t->targets + t->num_targets;
685         memset(tgt, 0, sizeof(*tgt));
686
687         if (!len) {
688                 DMERR("%s: zero-length target", dm_device_name(t->md));
689                 return -EINVAL;
690         }
691
692         tgt->type = dm_get_target_type(type);
693         if (!tgt->type) {
694                 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
695                       type);
696                 return -EINVAL;
697         }
698
699         if (dm_target_needs_singleton(tgt->type)) {
700                 if (t->num_targets) {
701                         DMERR("%s: target type %s must appear alone in table",
702                               dm_device_name(t->md), type);
703                         return -EINVAL;
704                 }
705                 t->singleton = 1;
706         }
707
708         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
709                 DMERR("%s: target type %s may not be included in read-only tables",
710                       dm_device_name(t->md), type);
711                 return -EINVAL;
712         }
713
714         if (t->immutable_target_type) {
715                 if (t->immutable_target_type != tgt->type) {
716                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
717                               dm_device_name(t->md), t->immutable_target_type->name);
718                         return -EINVAL;
719                 }
720         } else if (dm_target_is_immutable(tgt->type)) {
721                 if (t->num_targets) {
722                         DMERR("%s: immutable target type %s cannot be mixed with other target types",
723                               dm_device_name(t->md), tgt->type->name);
724                         return -EINVAL;
725                 }
726                 t->immutable_target_type = tgt->type;
727         }
728
729         tgt->table = t;
730         tgt->begin = start;
731         tgt->len = len;
732         tgt->error = "Unknown error";
733
734         /*
735          * Does this target adjoin the previous one ?
736          */
737         if (!adjoin(t, tgt)) {
738                 tgt->error = "Gap in table";
739                 r = -EINVAL;
740                 goto bad;
741         }
742
743         r = dm_split_args(&argc, &argv, params);
744         if (r) {
745                 tgt->error = "couldn't split parameters (insufficient memory)";
746                 goto bad;
747         }
748
749         r = tgt->type->ctr(tgt, argc, argv);
750         kfree(argv);
751         if (r)
752                 goto bad;
753
754         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
755
756         if (!tgt->num_discard_bios && tgt->discards_supported)
757                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
758                        dm_device_name(t->md), type);
759
760         return 0;
761
762  bad:
763         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
764         dm_put_target_type(tgt->type);
765         return r;
766 }
767
768 /*
769  * Target argument parsing helpers.
770  */
771 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
772                              unsigned *value, char **error, unsigned grouped)
773 {
774         const char *arg_str = dm_shift_arg(arg_set);
775         char dummy;
776
777         if (!arg_str ||
778             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
779             (*value < arg->min) ||
780             (*value > arg->max) ||
781             (grouped && arg_set->argc < *value)) {
782                 *error = arg->error;
783                 return -EINVAL;
784         }
785
786         return 0;
787 }
788
789 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
790                 unsigned *value, char **error)
791 {
792         return validate_next_arg(arg, arg_set, value, error, 0);
793 }
794 EXPORT_SYMBOL(dm_read_arg);
795
796 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
797                       unsigned *value, char **error)
798 {
799         return validate_next_arg(arg, arg_set, value, error, 1);
800 }
801 EXPORT_SYMBOL(dm_read_arg_group);
802
803 const char *dm_shift_arg(struct dm_arg_set *as)
804 {
805         char *r;
806
807         if (as->argc) {
808                 as->argc--;
809                 r = *as->argv;
810                 as->argv++;
811                 return r;
812         }
813
814         return NULL;
815 }
816 EXPORT_SYMBOL(dm_shift_arg);
817
818 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
819 {
820         BUG_ON(as->argc < num_args);
821         as->argc -= num_args;
822         as->argv += num_args;
823 }
824 EXPORT_SYMBOL(dm_consume_args);
825
826 static int dm_table_set_type(struct dm_table *t)
827 {
828         unsigned i;
829         unsigned bio_based = 0, request_based = 0, hybrid = 0;
830         bool use_blk_mq = false;
831         struct dm_target *tgt;
832         struct dm_dev_internal *dd;
833         struct list_head *devices;
834         unsigned live_md_type = dm_get_md_type(t->md);
835
836         for (i = 0; i < t->num_targets; i++) {
837                 tgt = t->targets + i;
838                 if (dm_target_hybrid(tgt))
839                         hybrid = 1;
840                 else if (dm_target_request_based(tgt))
841                         request_based = 1;
842                 else
843                         bio_based = 1;
844
845                 if (bio_based && request_based) {
846                         DMWARN("Inconsistent table: different target types"
847                                " can't be mixed up");
848                         return -EINVAL;
849                 }
850         }
851
852         if (hybrid && !bio_based && !request_based) {
853                 /*
854                  * The targets can work either way.
855                  * Determine the type from the live device.
856                  * Default to bio-based if device is new.
857                  */
858                 if (live_md_type == DM_TYPE_REQUEST_BASED ||
859                     live_md_type == DM_TYPE_MQ_REQUEST_BASED)
860                         request_based = 1;
861                 else
862                         bio_based = 1;
863         }
864
865         if (bio_based) {
866                 /* We must use this table as bio-based */
867                 t->type = DM_TYPE_BIO_BASED;
868                 return 0;
869         }
870
871         BUG_ON(!request_based); /* No targets in this table */
872
873         /*
874          * Request-based dm supports only tables that have a single target now.
875          * To support multiple targets, request splitting support is needed,
876          * and that needs lots of changes in the block-layer.
877          * (e.g. request completion process for partial completion.)
878          */
879         if (t->num_targets > 1) {
880                 DMWARN("Request-based dm doesn't support multiple targets yet");
881                 return -EINVAL;
882         }
883
884         /* Non-request-stackable devices can't be used for request-based dm */
885         devices = dm_table_get_devices(t);
886         list_for_each_entry(dd, devices, list) {
887                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
888
889                 if (!blk_queue_stackable(q)) {
890                         DMERR("table load rejected: including"
891                               " non-request-stackable devices");
892                         return -EINVAL;
893                 }
894
895                 if (q->mq_ops)
896                         use_blk_mq = true;
897         }
898
899         if (use_blk_mq) {
900                 /* verify _all_ devices in the table are blk-mq devices */
901                 list_for_each_entry(dd, devices, list)
902                         if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
903                                 DMERR("table load rejected: not all devices"
904                                       " are blk-mq request-stackable");
905                                 return -EINVAL;
906                         }
907                 t->type = DM_TYPE_MQ_REQUEST_BASED;
908
909         } else if (hybrid && list_empty(devices) && live_md_type != DM_TYPE_NONE) {
910                 /* inherit live MD type */
911                 t->type = live_md_type;
912
913         } else
914                 t->type = DM_TYPE_REQUEST_BASED;
915
916         return 0;
917 }
918
919 unsigned dm_table_get_type(struct dm_table *t)
920 {
921         return t->type;
922 }
923
924 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
925 {
926         return t->immutable_target_type;
927 }
928
929 bool dm_table_request_based(struct dm_table *t)
930 {
931         unsigned table_type = dm_table_get_type(t);
932
933         return (table_type == DM_TYPE_REQUEST_BASED ||
934                 table_type == DM_TYPE_MQ_REQUEST_BASED);
935 }
936
937 bool dm_table_mq_request_based(struct dm_table *t)
938 {
939         return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
940 }
941
942 static int dm_table_alloc_md_mempools(struct dm_table *t)
943 {
944         unsigned type = dm_table_get_type(t);
945         unsigned per_bio_data_size = 0;
946         struct dm_target *tgt;
947         unsigned i;
948
949         if (unlikely(type == DM_TYPE_NONE)) {
950                 DMWARN("no table type is set, can't allocate mempools");
951                 return -EINVAL;
952         }
953
954         if (type == DM_TYPE_BIO_BASED)
955                 for (i = 0; i < t->num_targets; i++) {
956                         tgt = t->targets + i;
957                         per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
958                 }
959
960         t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
961         if (!t->mempools)
962                 return -ENOMEM;
963
964         return 0;
965 }
966
967 void dm_table_free_md_mempools(struct dm_table *t)
968 {
969         dm_free_md_mempools(t->mempools);
970         t->mempools = NULL;
971 }
972
973 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
974 {
975         return t->mempools;
976 }
977
978 static int setup_indexes(struct dm_table *t)
979 {
980         int i;
981         unsigned int total = 0;
982         sector_t *indexes;
983
984         /* allocate the space for *all* the indexes */
985         for (i = t->depth - 2; i >= 0; i--) {
986                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
987                 total += t->counts[i];
988         }
989
990         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
991         if (!indexes)
992                 return -ENOMEM;
993
994         /* set up internal nodes, bottom-up */
995         for (i = t->depth - 2; i >= 0; i--) {
996                 t->index[i] = indexes;
997                 indexes += (KEYS_PER_NODE * t->counts[i]);
998                 setup_btree_index(i, t);
999         }
1000
1001         return 0;
1002 }
1003
1004 /*
1005  * Builds the btree to index the map.
1006  */
1007 static int dm_table_build_index(struct dm_table *t)
1008 {
1009         int r = 0;
1010         unsigned int leaf_nodes;
1011
1012         /* how many indexes will the btree have ? */
1013         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1014         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1015
1016         /* leaf layer has already been set up */
1017         t->counts[t->depth - 1] = leaf_nodes;
1018         t->index[t->depth - 1] = t->highs;
1019
1020         if (t->depth >= 2)
1021                 r = setup_indexes(t);
1022
1023         return r;
1024 }
1025
1026 /*
1027  * Get a disk whose integrity profile reflects the table's profile.
1028  * If %match_all is true, all devices' profiles must match.
1029  * If %match_all is false, all devices must at least have an
1030  * allocated integrity profile; but uninitialized is ok.
1031  * Returns NULL if integrity support was inconsistent or unavailable.
1032  */
1033 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1034                                                     bool match_all)
1035 {
1036         struct list_head *devices = dm_table_get_devices(t);
1037         struct dm_dev_internal *dd = NULL;
1038         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1039
1040         list_for_each_entry(dd, devices, list) {
1041                 template_disk = dd->dm_dev->bdev->bd_disk;
1042                 if (!blk_get_integrity(template_disk))
1043                         goto no_integrity;
1044                 if (!match_all && !blk_integrity_is_initialized(template_disk))
1045                         continue; /* skip uninitialized profiles */
1046                 else if (prev_disk &&
1047                          blk_integrity_compare(prev_disk, template_disk) < 0)
1048                         goto no_integrity;
1049                 prev_disk = template_disk;
1050         }
1051
1052         return template_disk;
1053
1054 no_integrity:
1055         if (prev_disk)
1056                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1057                        dm_device_name(t->md),
1058                        prev_disk->disk_name,
1059                        template_disk->disk_name);
1060         return NULL;
1061 }
1062
1063 /*
1064  * Register the mapped device for blk_integrity support if
1065  * the underlying devices have an integrity profile.  But all devices
1066  * may not have matching profiles (checking all devices isn't reliable
1067  * during table load because this table may use other DM device(s) which
1068  * must be resumed before they will have an initialized integity profile).
1069  * Stacked DM devices force a 2 stage integrity profile validation:
1070  * 1 - during load, validate all initialized integrity profiles match
1071  * 2 - during resume, validate all integrity profiles match
1072  */
1073 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1074 {
1075         struct gendisk *template_disk = NULL;
1076
1077         template_disk = dm_table_get_integrity_disk(t, false);
1078         if (!template_disk)
1079                 return 0;
1080
1081         if (!blk_integrity_is_initialized(dm_disk(md))) {
1082                 t->integrity_supported = 1;
1083                 return blk_integrity_register(dm_disk(md), NULL);
1084         }
1085
1086         /*
1087          * If DM device already has an initalized integrity
1088          * profile the new profile should not conflict.
1089          */
1090         if (blk_integrity_is_initialized(template_disk) &&
1091             blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1092                 DMWARN("%s: conflict with existing integrity profile: "
1093                        "%s profile mismatch",
1094                        dm_device_name(t->md),
1095                        template_disk->disk_name);
1096                 return 1;
1097         }
1098
1099         /* Preserve existing initialized integrity profile */
1100         t->integrity_supported = 1;
1101         return 0;
1102 }
1103
1104 /*
1105  * Prepares the table for use by building the indices,
1106  * setting the type, and allocating mempools.
1107  */
1108 int dm_table_complete(struct dm_table *t)
1109 {
1110         int r;
1111
1112         r = dm_table_set_type(t);
1113         if (r) {
1114                 DMERR("unable to set table type");
1115                 return r;
1116         }
1117
1118         r = dm_table_build_index(t);
1119         if (r) {
1120                 DMERR("unable to build btrees");
1121                 return r;
1122         }
1123
1124         r = dm_table_prealloc_integrity(t, t->md);
1125         if (r) {
1126                 DMERR("could not register integrity profile.");
1127                 return r;
1128         }
1129
1130         r = dm_table_alloc_md_mempools(t);
1131         if (r)
1132                 DMERR("unable to allocate mempools");
1133
1134         return r;
1135 }
1136
1137 static DEFINE_MUTEX(_event_lock);
1138 void dm_table_event_callback(struct dm_table *t,
1139                              void (*fn)(void *), void *context)
1140 {
1141         mutex_lock(&_event_lock);
1142         t->event_fn = fn;
1143         t->event_context = context;
1144         mutex_unlock(&_event_lock);
1145 }
1146
1147 void dm_table_event(struct dm_table *t)
1148 {
1149         /*
1150          * You can no longer call dm_table_event() from interrupt
1151          * context, use a bottom half instead.
1152          */
1153         BUG_ON(in_interrupt());
1154
1155         mutex_lock(&_event_lock);
1156         if (t->event_fn)
1157                 t->event_fn(t->event_context);
1158         mutex_unlock(&_event_lock);
1159 }
1160 EXPORT_SYMBOL(dm_table_event);
1161
1162 sector_t dm_table_get_size(struct dm_table *t)
1163 {
1164         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1165 }
1166 EXPORT_SYMBOL(dm_table_get_size);
1167
1168 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1169 {
1170         if (index >= t->num_targets)
1171                 return NULL;
1172
1173         return t->targets + index;
1174 }
1175
1176 /*
1177  * Search the btree for the correct target.
1178  *
1179  * Caller should check returned pointer with dm_target_is_valid()
1180  * to trap I/O beyond end of device.
1181  */
1182 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1183 {
1184         unsigned int l, n = 0, k = 0;
1185         sector_t *node;
1186
1187         for (l = 0; l < t->depth; l++) {
1188                 n = get_child(n, k);
1189                 node = get_node(t, l, n);
1190
1191                 for (k = 0; k < KEYS_PER_NODE; k++)
1192                         if (node[k] >= sector)
1193                                 break;
1194         }
1195
1196         return &t->targets[(KEYS_PER_NODE * n) + k];
1197 }
1198
1199 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1200                         sector_t start, sector_t len, void *data)
1201 {
1202         unsigned *num_devices = data;
1203
1204         (*num_devices)++;
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * Check whether a table has no data devices attached using each
1211  * target's iterate_devices method.
1212  * Returns false if the result is unknown because a target doesn't
1213  * support iterate_devices.
1214  */
1215 bool dm_table_has_no_data_devices(struct dm_table *table)
1216 {
1217         struct dm_target *uninitialized_var(ti);
1218         unsigned i = 0, num_devices = 0;
1219
1220         while (i < dm_table_get_num_targets(table)) {
1221                 ti = dm_table_get_target(table, i++);
1222
1223                 if (!ti->type->iterate_devices)
1224                         return false;
1225
1226                 ti->type->iterate_devices(ti, count_device, &num_devices);
1227                 if (num_devices)
1228                         return false;
1229         }
1230
1231         return true;
1232 }
1233
1234 /*
1235  * Establish the new table's queue_limits and validate them.
1236  */
1237 int dm_calculate_queue_limits(struct dm_table *table,
1238                               struct queue_limits *limits)
1239 {
1240         struct dm_target *uninitialized_var(ti);
1241         struct queue_limits ti_limits;
1242         unsigned i = 0;
1243
1244         blk_set_stacking_limits(limits);
1245
1246         while (i < dm_table_get_num_targets(table)) {
1247                 blk_set_stacking_limits(&ti_limits);
1248
1249                 ti = dm_table_get_target(table, i++);
1250
1251                 if (!ti->type->iterate_devices)
1252                         goto combine_limits;
1253
1254                 /*
1255                  * Combine queue limits of all the devices this target uses.
1256                  */
1257                 ti->type->iterate_devices(ti, dm_set_device_limits,
1258                                           &ti_limits);
1259
1260                 /* Set I/O hints portion of queue limits */
1261                 if (ti->type->io_hints)
1262                         ti->type->io_hints(ti, &ti_limits);
1263
1264                 /*
1265                  * Check each device area is consistent with the target's
1266                  * overall queue limits.
1267                  */
1268                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1269                                               &ti_limits))
1270                         return -EINVAL;
1271
1272 combine_limits:
1273                 /*
1274                  * Merge this target's queue limits into the overall limits
1275                  * for the table.
1276                  */
1277                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1278                         DMWARN("%s: adding target device "
1279                                "(start sect %llu len %llu) "
1280                                "caused an alignment inconsistency",
1281                                dm_device_name(table->md),
1282                                (unsigned long long) ti->begin,
1283                                (unsigned long long) ti->len);
1284         }
1285
1286         return validate_hardware_logical_block_alignment(table, limits);
1287 }
1288
1289 /*
1290  * Set the integrity profile for this device if all devices used have
1291  * matching profiles.  We're quite deep in the resume path but still
1292  * don't know if all devices (particularly DM devices this device
1293  * may be stacked on) have matching profiles.  Even if the profiles
1294  * don't match we have no way to fail (to resume) at this point.
1295  */
1296 static void dm_table_set_integrity(struct dm_table *t)
1297 {
1298         struct gendisk *template_disk = NULL;
1299
1300         if (!blk_get_integrity(dm_disk(t->md)))
1301                 return;
1302
1303         template_disk = dm_table_get_integrity_disk(t, true);
1304         if (template_disk)
1305                 blk_integrity_register(dm_disk(t->md),
1306                                        blk_get_integrity(template_disk));
1307         else if (blk_integrity_is_initialized(dm_disk(t->md)))
1308                 DMWARN("%s: device no longer has a valid integrity profile",
1309                        dm_device_name(t->md));
1310         else
1311                 DMWARN("%s: unable to establish an integrity profile",
1312                        dm_device_name(t->md));
1313 }
1314
1315 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1316                                 sector_t start, sector_t len, void *data)
1317 {
1318         unsigned flush = (*(unsigned *)data);
1319         struct request_queue *q = bdev_get_queue(dev->bdev);
1320
1321         return q && (q->flush_flags & flush);
1322 }
1323
1324 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1325 {
1326         struct dm_target *ti;
1327         unsigned i = 0;
1328
1329         /*
1330          * Require at least one underlying device to support flushes.
1331          * t->devices includes internal dm devices such as mirror logs
1332          * so we need to use iterate_devices here, which targets
1333          * supporting flushes must provide.
1334          */
1335         while (i < dm_table_get_num_targets(t)) {
1336                 ti = dm_table_get_target(t, i++);
1337
1338                 if (!ti->num_flush_bios)
1339                         continue;
1340
1341                 if (ti->flush_supported)
1342                         return 1;
1343
1344                 if (ti->type->iterate_devices &&
1345                     ti->type->iterate_devices(ti, device_flush_capable, &flush))
1346                         return 1;
1347         }
1348
1349         return 0;
1350 }
1351
1352 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1353 {
1354         struct dm_target *ti;
1355         unsigned i = 0;
1356
1357         /* Ensure that all targets supports discard_zeroes_data. */
1358         while (i < dm_table_get_num_targets(t)) {
1359                 ti = dm_table_get_target(t, i++);
1360
1361                 if (ti->discard_zeroes_data_unsupported)
1362                         return 0;
1363         }
1364
1365         return 1;
1366 }
1367
1368 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1369                             sector_t start, sector_t len, void *data)
1370 {
1371         struct request_queue *q = bdev_get_queue(dev->bdev);
1372
1373         return q && blk_queue_nonrot(q);
1374 }
1375
1376 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1377                              sector_t start, sector_t len, void *data)
1378 {
1379         struct request_queue *q = bdev_get_queue(dev->bdev);
1380
1381         return q && !blk_queue_add_random(q);
1382 }
1383
1384 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1385                                    sector_t start, sector_t len, void *data)
1386 {
1387         struct request_queue *q = bdev_get_queue(dev->bdev);
1388
1389         return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1390 }
1391
1392 static int queue_supports_sg_gaps(struct dm_target *ti, struct dm_dev *dev,
1393                                   sector_t start, sector_t len, void *data)
1394 {
1395         struct request_queue *q = bdev_get_queue(dev->bdev);
1396
1397         return q && !test_bit(QUEUE_FLAG_SG_GAPS, &q->queue_flags);
1398 }
1399
1400 static bool dm_table_all_devices_attribute(struct dm_table *t,
1401                                            iterate_devices_callout_fn func)
1402 {
1403         struct dm_target *ti;
1404         unsigned i = 0;
1405
1406         while (i < dm_table_get_num_targets(t)) {
1407                 ti = dm_table_get_target(t, i++);
1408
1409                 if (!ti->type->iterate_devices ||
1410                     !ti->type->iterate_devices(ti, func, NULL))
1411                         return 0;
1412         }
1413
1414         return 1;
1415 }
1416
1417 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1418                                          sector_t start, sector_t len, void *data)
1419 {
1420         struct request_queue *q = bdev_get_queue(dev->bdev);
1421
1422         return q && !q->limits.max_write_same_sectors;
1423 }
1424
1425 static bool dm_table_supports_write_same(struct dm_table *t)
1426 {
1427         struct dm_target *ti;
1428         unsigned i = 0;
1429
1430         while (i < dm_table_get_num_targets(t)) {
1431                 ti = dm_table_get_target(t, i++);
1432
1433                 if (!ti->num_write_same_bios)
1434                         return false;
1435
1436                 if (!ti->type->iterate_devices ||
1437                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1438                         return false;
1439         }
1440
1441         return true;
1442 }
1443
1444 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1445                                   sector_t start, sector_t len, void *data)
1446 {
1447         struct request_queue *q = bdev_get_queue(dev->bdev);
1448
1449         return q && blk_queue_discard(q);
1450 }
1451
1452 static bool dm_table_supports_discards(struct dm_table *t)
1453 {
1454         struct dm_target *ti;
1455         unsigned i = 0;
1456
1457         /*
1458          * Unless any target used by the table set discards_supported,
1459          * require at least one underlying device to support discards.
1460          * t->devices includes internal dm devices such as mirror logs
1461          * so we need to use iterate_devices here, which targets
1462          * supporting discard selectively must provide.
1463          */
1464         while (i < dm_table_get_num_targets(t)) {
1465                 ti = dm_table_get_target(t, i++);
1466
1467                 if (!ti->num_discard_bios)
1468                         continue;
1469
1470                 if (ti->discards_supported)
1471                         return 1;
1472
1473                 if (ti->type->iterate_devices &&
1474                     ti->type->iterate_devices(ti, device_discard_capable, NULL))
1475                         return 1;
1476         }
1477
1478         return 0;
1479 }
1480
1481 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1482                                struct queue_limits *limits)
1483 {
1484         unsigned flush = 0;
1485
1486         /*
1487          * Copy table's limits to the DM device's request_queue
1488          */
1489         q->limits = *limits;
1490
1491         if (!dm_table_supports_discards(t))
1492                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1493         else
1494                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1495
1496         if (dm_table_supports_flush(t, REQ_FLUSH)) {
1497                 flush |= REQ_FLUSH;
1498                 if (dm_table_supports_flush(t, REQ_FUA))
1499                         flush |= REQ_FUA;
1500         }
1501         blk_queue_flush(q, flush);
1502
1503         if (!dm_table_discard_zeroes_data(t))
1504                 q->limits.discard_zeroes_data = 0;
1505
1506         /* Ensure that all underlying devices are non-rotational. */
1507         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1508                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1509         else
1510                 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1511
1512         if (!dm_table_supports_write_same(t))
1513                 q->limits.max_write_same_sectors = 0;
1514
1515         if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1516                 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1517         else
1518                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1519
1520         if (dm_table_all_devices_attribute(t, queue_supports_sg_gaps))
1521                 queue_flag_clear_unlocked(QUEUE_FLAG_SG_GAPS, q);
1522         else
1523                 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, q);
1524
1525         dm_table_set_integrity(t);
1526
1527         /*
1528          * Determine whether or not this queue's I/O timings contribute
1529          * to the entropy pool, Only request-based targets use this.
1530          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1531          * have it set.
1532          */
1533         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1534                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1535
1536         /*
1537          * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1538          * visible to other CPUs because, once the flag is set, incoming bios
1539          * are processed by request-based dm, which refers to the queue
1540          * settings.
1541          * Until the flag set, bios are passed to bio-based dm and queued to
1542          * md->deferred where queue settings are not needed yet.
1543          * Those bios are passed to request-based dm at the resume time.
1544          */
1545         smp_mb();
1546         if (dm_table_request_based(t))
1547                 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1548 }
1549
1550 unsigned int dm_table_get_num_targets(struct dm_table *t)
1551 {
1552         return t->num_targets;
1553 }
1554
1555 struct list_head *dm_table_get_devices(struct dm_table *t)
1556 {
1557         return &t->devices;
1558 }
1559
1560 fmode_t dm_table_get_mode(struct dm_table *t)
1561 {
1562         return t->mode;
1563 }
1564 EXPORT_SYMBOL(dm_table_get_mode);
1565
1566 enum suspend_mode {
1567         PRESUSPEND,
1568         PRESUSPEND_UNDO,
1569         POSTSUSPEND,
1570 };
1571
1572 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1573 {
1574         int i = t->num_targets;
1575         struct dm_target *ti = t->targets;
1576
1577         while (i--) {
1578                 switch (mode) {
1579                 case PRESUSPEND:
1580                         if (ti->type->presuspend)
1581                                 ti->type->presuspend(ti);
1582                         break;
1583                 case PRESUSPEND_UNDO:
1584                         if (ti->type->presuspend_undo)
1585                                 ti->type->presuspend_undo(ti);
1586                         break;
1587                 case POSTSUSPEND:
1588                         if (ti->type->postsuspend)
1589                                 ti->type->postsuspend(ti);
1590                         break;
1591                 }
1592                 ti++;
1593         }
1594 }
1595
1596 void dm_table_presuspend_targets(struct dm_table *t)
1597 {
1598         if (!t)
1599                 return;
1600
1601         suspend_targets(t, PRESUSPEND);
1602 }
1603
1604 void dm_table_presuspend_undo_targets(struct dm_table *t)
1605 {
1606         if (!t)
1607                 return;
1608
1609         suspend_targets(t, PRESUSPEND_UNDO);
1610 }
1611
1612 void dm_table_postsuspend_targets(struct dm_table *t)
1613 {
1614         if (!t)
1615                 return;
1616
1617         suspend_targets(t, POSTSUSPEND);
1618 }
1619
1620 int dm_table_resume_targets(struct dm_table *t)
1621 {
1622         int i, r = 0;
1623
1624         for (i = 0; i < t->num_targets; i++) {
1625                 struct dm_target *ti = t->targets + i;
1626
1627                 if (!ti->type->preresume)
1628                         continue;
1629
1630                 r = ti->type->preresume(ti);
1631                 if (r) {
1632                         DMERR("%s: %s: preresume failed, error = %d",
1633                               dm_device_name(t->md), ti->type->name, r);
1634                         return r;
1635                 }
1636         }
1637
1638         for (i = 0; i < t->num_targets; i++) {
1639                 struct dm_target *ti = t->targets + i;
1640
1641                 if (ti->type->resume)
1642                         ti->type->resume(ti);
1643         }
1644
1645         return 0;
1646 }
1647
1648 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1649 {
1650         list_add(&cb->list, &t->target_callbacks);
1651 }
1652 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1653
1654 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1655 {
1656         struct dm_dev_internal *dd;
1657         struct list_head *devices = dm_table_get_devices(t);
1658         struct dm_target_callbacks *cb;
1659         int r = 0;
1660
1661         list_for_each_entry(dd, devices, list) {
1662                 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1663                 char b[BDEVNAME_SIZE];
1664
1665                 if (likely(q))
1666                         r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1667                 else
1668                         DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1669                                      dm_device_name(t->md),
1670                                      bdevname(dd->dm_dev->bdev, b));
1671         }
1672
1673         list_for_each_entry(cb, &t->target_callbacks, list)
1674                 if (cb->congested_fn)
1675                         r |= cb->congested_fn(cb, bdi_bits);
1676
1677         return r;
1678 }
1679
1680 int dm_table_any_busy_target(struct dm_table *t)
1681 {
1682         unsigned i;
1683         struct dm_target *ti;
1684
1685         for (i = 0; i < t->num_targets; i++) {
1686                 ti = t->targets + i;
1687                 if (ti->type->busy && ti->type->busy(ti))
1688                         return 1;
1689         }
1690
1691         return 0;
1692 }
1693
1694 struct mapped_device *dm_table_get_md(struct dm_table *t)
1695 {
1696         return t->md;
1697 }
1698 EXPORT_SYMBOL(dm_table_get_md);
1699
1700 void dm_table_run_md_queue_async(struct dm_table *t)
1701 {
1702         struct mapped_device *md;
1703         struct request_queue *queue;
1704         unsigned long flags;
1705
1706         if (!dm_table_request_based(t))
1707                 return;
1708
1709         md = dm_table_get_md(t);
1710         queue = dm_get_md_queue(md);
1711         if (queue) {
1712                 spin_lock_irqsave(queue->queue_lock, flags);
1713                 blk_run_queue_async(queue);
1714                 spin_unlock_irqrestore(queue->queue_lock, flags);
1715         }
1716 }
1717 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1718