]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
dm thin: remap the bios in a cell immediately
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h>
15 #include <linux/list.h>
16 #include <linux/rculist.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/rbtree.h>
21
22 #define DM_MSG_PREFIX   "thin"
23
24 /*
25  * Tunable constants
26  */
27 #define ENDIO_HOOK_POOL_SIZE 1024
28 #define MAPPING_POOL_SIZE 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35                 "A percentage of time allocated for copy on write");
36
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113                            dm_block_t b, struct dm_cell_key *key)
114 {
115         key->virtual = 0;
116         key->dev = dm_thin_dev_id(td);
117         key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121                               struct dm_cell_key *key)
122 {
123         key->virtual = 1;
124         key->dev = dm_thin_dev_id(td);
125         key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 #define THROTTLE_THRESHOLD (1 * HZ)
131
132 struct throttle {
133         struct rw_semaphore lock;
134         unsigned long threshold;
135         bool throttle_applied;
136 };
137
138 static void throttle_init(struct throttle *t)
139 {
140         init_rwsem(&t->lock);
141         t->throttle_applied = false;
142 }
143
144 static void throttle_work_start(struct throttle *t)
145 {
146         t->threshold = jiffies + THROTTLE_THRESHOLD;
147 }
148
149 static void throttle_work_update(struct throttle *t)
150 {
151         if (!t->throttle_applied && jiffies > t->threshold) {
152                 down_write(&t->lock);
153                 t->throttle_applied = true;
154         }
155 }
156
157 static void throttle_work_complete(struct throttle *t)
158 {
159         if (t->throttle_applied) {
160                 t->throttle_applied = false;
161                 up_write(&t->lock);
162         }
163 }
164
165 static void throttle_lock(struct throttle *t)
166 {
167         down_read(&t->lock);
168 }
169
170 static void throttle_unlock(struct throttle *t)
171 {
172         up_read(&t->lock);
173 }
174
175 /*----------------------------------------------------------------*/
176
177 /*
178  * A pool device ties together a metadata device and a data device.  It
179  * also provides the interface for creating and destroying internal
180  * devices.
181  */
182 struct dm_thin_new_mapping;
183
184 /*
185  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
186  */
187 enum pool_mode {
188         PM_WRITE,               /* metadata may be changed */
189         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
190         PM_READ_ONLY,           /* metadata may not be changed */
191         PM_FAIL,                /* all I/O fails */
192 };
193
194 struct pool_features {
195         enum pool_mode mode;
196
197         bool zero_new_blocks:1;
198         bool discard_enabled:1;
199         bool discard_passdown:1;
200         bool error_if_no_space:1;
201 };
202
203 struct thin_c;
204 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
205 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
206 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
207
208 struct pool {
209         struct list_head list;
210         struct dm_target *ti;   /* Only set if a pool target is bound */
211
212         struct mapped_device *pool_md;
213         struct block_device *md_dev;
214         struct dm_pool_metadata *pmd;
215
216         dm_block_t low_water_blocks;
217         uint32_t sectors_per_block;
218         int sectors_per_block_shift;
219
220         struct pool_features pf;
221         bool low_water_triggered:1;     /* A dm event has been sent */
222
223         struct dm_bio_prison *prison;
224         struct dm_kcopyd_client *copier;
225
226         struct workqueue_struct *wq;
227         struct throttle throttle;
228         struct work_struct worker;
229         struct delayed_work waker;
230         struct delayed_work no_space_timeout;
231
232         unsigned long last_commit_jiffies;
233         unsigned ref_count;
234
235         spinlock_t lock;
236         struct bio_list deferred_flush_bios;
237         struct list_head prepared_mappings;
238         struct list_head prepared_discards;
239         struct list_head active_thins;
240
241         struct dm_deferred_set *shared_read_ds;
242         struct dm_deferred_set *all_io_ds;
243
244         struct dm_thin_new_mapping *next_mapping;
245         mempool_t *mapping_pool;
246
247         process_bio_fn process_bio;
248         process_bio_fn process_discard;
249
250         process_cell_fn process_cell;
251         process_cell_fn process_discard_cell;
252
253         process_mapping_fn process_prepared_mapping;
254         process_mapping_fn process_prepared_discard;
255 };
256
257 static enum pool_mode get_pool_mode(struct pool *pool);
258 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
259
260 /*
261  * Target context for a pool.
262  */
263 struct pool_c {
264         struct dm_target *ti;
265         struct pool *pool;
266         struct dm_dev *data_dev;
267         struct dm_dev *metadata_dev;
268         struct dm_target_callbacks callbacks;
269
270         dm_block_t low_water_blocks;
271         struct pool_features requested_pf; /* Features requested during table load */
272         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
273 };
274
275 /*
276  * Target context for a thin.
277  */
278 struct thin_c {
279         struct list_head list;
280         struct dm_dev *pool_dev;
281         struct dm_dev *origin_dev;
282         sector_t origin_size;
283         dm_thin_id dev_id;
284
285         struct pool *pool;
286         struct dm_thin_device *td;
287         bool requeue_mode:1;
288         spinlock_t lock;
289         struct list_head deferred_cells;
290         struct bio_list deferred_bio_list;
291         struct bio_list retry_on_resume_list;
292         struct rb_root sort_bio_list; /* sorted list of deferred bios */
293
294         /*
295          * Ensures the thin is not destroyed until the worker has finished
296          * iterating the active_thins list.
297          */
298         atomic_t refcount;
299         struct completion can_destroy;
300 };
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * wake_worker() is used when new work is queued and when pool_resume is
306  * ready to continue deferred IO processing.
307  */
308 static void wake_worker(struct pool *pool)
309 {
310         queue_work(pool->wq, &pool->worker);
311 }
312
313 /*----------------------------------------------------------------*/
314
315 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
316                       struct dm_bio_prison_cell **cell_result)
317 {
318         int r;
319         struct dm_bio_prison_cell *cell_prealloc;
320
321         /*
322          * Allocate a cell from the prison's mempool.
323          * This might block but it can't fail.
324          */
325         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
326
327         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
328         if (r)
329                 /*
330                  * We reused an old cell; we can get rid of
331                  * the new one.
332                  */
333                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
334
335         return r;
336 }
337
338 static void cell_release(struct pool *pool,
339                          struct dm_bio_prison_cell *cell,
340                          struct bio_list *bios)
341 {
342         dm_cell_release(pool->prison, cell, bios);
343         dm_bio_prison_free_cell(pool->prison, cell);
344 }
345
346 static void cell_visit_release(struct pool *pool,
347                                void (*fn)(void *, struct dm_bio_prison_cell *),
348                                void *context,
349                                struct dm_bio_prison_cell *cell)
350 {
351         dm_cell_visit_release(pool->prison, fn, context, cell);
352         dm_bio_prison_free_cell(pool->prison, cell);
353 }
354
355 static void cell_release_no_holder(struct pool *pool,
356                                    struct dm_bio_prison_cell *cell,
357                                    struct bio_list *bios)
358 {
359         dm_cell_release_no_holder(pool->prison, cell, bios);
360         dm_bio_prison_free_cell(pool->prison, cell);
361 }
362
363 static void cell_error_with_code(struct pool *pool,
364                                  struct dm_bio_prison_cell *cell, int error_code)
365 {
366         dm_cell_error(pool->prison, cell, error_code);
367         dm_bio_prison_free_cell(pool->prison, cell);
368 }
369
370 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
371 {
372         cell_error_with_code(pool, cell, -EIO);
373 }
374
375 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
376 {
377         cell_error_with_code(pool, cell, 0);
378 }
379
380 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
381 {
382         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
383 }
384
385 /*----------------------------------------------------------------*/
386
387 /*
388  * A global list of pools that uses a struct mapped_device as a key.
389  */
390 static struct dm_thin_pool_table {
391         struct mutex mutex;
392         struct list_head pools;
393 } dm_thin_pool_table;
394
395 static void pool_table_init(void)
396 {
397         mutex_init(&dm_thin_pool_table.mutex);
398         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
399 }
400
401 static void __pool_table_insert(struct pool *pool)
402 {
403         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
404         list_add(&pool->list, &dm_thin_pool_table.pools);
405 }
406
407 static void __pool_table_remove(struct pool *pool)
408 {
409         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
410         list_del(&pool->list);
411 }
412
413 static struct pool *__pool_table_lookup(struct mapped_device *md)
414 {
415         struct pool *pool = NULL, *tmp;
416
417         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
418
419         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
420                 if (tmp->pool_md == md) {
421                         pool = tmp;
422                         break;
423                 }
424         }
425
426         return pool;
427 }
428
429 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
430 {
431         struct pool *pool = NULL, *tmp;
432
433         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
434
435         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
436                 if (tmp->md_dev == md_dev) {
437                         pool = tmp;
438                         break;
439                 }
440         }
441
442         return pool;
443 }
444
445 /*----------------------------------------------------------------*/
446
447 struct dm_thin_endio_hook {
448         struct thin_c *tc;
449         struct dm_deferred_entry *shared_read_entry;
450         struct dm_deferred_entry *all_io_entry;
451         struct dm_thin_new_mapping *overwrite_mapping;
452         struct rb_node rb_node;
453 };
454
455 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
456 {
457         struct bio *bio;
458         struct bio_list bios;
459         unsigned long flags;
460
461         bio_list_init(&bios);
462
463         spin_lock_irqsave(&tc->lock, flags);
464         bio_list_merge(&bios, master);
465         bio_list_init(master);
466         spin_unlock_irqrestore(&tc->lock, flags);
467
468         while ((bio = bio_list_pop(&bios)))
469                 bio_endio(bio, DM_ENDIO_REQUEUE);
470 }
471
472 static void requeue_deferred_cells(struct thin_c *tc)
473 {
474         struct pool *pool = tc->pool;
475         unsigned long flags;
476         struct list_head cells;
477         struct dm_bio_prison_cell *cell, *tmp;
478
479         INIT_LIST_HEAD(&cells);
480
481         spin_lock_irqsave(&tc->lock, flags);
482         list_splice_init(&tc->deferred_cells, &cells);
483         spin_unlock_irqrestore(&tc->lock, flags);
484
485         list_for_each_entry_safe(cell, tmp, &cells, user_list)
486                 cell_requeue(pool, cell);
487 }
488
489 static void requeue_io(struct thin_c *tc)
490 {
491         requeue_bio_list(tc, &tc->deferred_bio_list);
492         requeue_bio_list(tc, &tc->retry_on_resume_list);
493         requeue_deferred_cells(tc);
494 }
495
496 static void error_thin_retry_list(struct thin_c *tc)
497 {
498         struct bio *bio;
499         unsigned long flags;
500         struct bio_list bios;
501
502         bio_list_init(&bios);
503
504         spin_lock_irqsave(&tc->lock, flags);
505         bio_list_merge(&bios, &tc->retry_on_resume_list);
506         bio_list_init(&tc->retry_on_resume_list);
507         spin_unlock_irqrestore(&tc->lock, flags);
508
509         while ((bio = bio_list_pop(&bios)))
510                 bio_io_error(bio);
511 }
512
513 static void error_retry_list(struct pool *pool)
514 {
515         struct thin_c *tc;
516
517         rcu_read_lock();
518         list_for_each_entry_rcu(tc, &pool->active_thins, list)
519                 error_thin_retry_list(tc);
520         rcu_read_unlock();
521 }
522
523 /*
524  * This section of code contains the logic for processing a thin device's IO.
525  * Much of the code depends on pool object resources (lists, workqueues, etc)
526  * but most is exclusively called from the thin target rather than the thin-pool
527  * target.
528  */
529
530 static bool block_size_is_power_of_two(struct pool *pool)
531 {
532         return pool->sectors_per_block_shift >= 0;
533 }
534
535 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
536 {
537         struct pool *pool = tc->pool;
538         sector_t block_nr = bio->bi_iter.bi_sector;
539
540         if (block_size_is_power_of_two(pool))
541                 block_nr >>= pool->sectors_per_block_shift;
542         else
543                 (void) sector_div(block_nr, pool->sectors_per_block);
544
545         return block_nr;
546 }
547
548 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
549 {
550         struct pool *pool = tc->pool;
551         sector_t bi_sector = bio->bi_iter.bi_sector;
552
553         bio->bi_bdev = tc->pool_dev->bdev;
554         if (block_size_is_power_of_two(pool))
555                 bio->bi_iter.bi_sector =
556                         (block << pool->sectors_per_block_shift) |
557                         (bi_sector & (pool->sectors_per_block - 1));
558         else
559                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
560                                  sector_div(bi_sector, pool->sectors_per_block);
561 }
562
563 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
564 {
565         bio->bi_bdev = tc->origin_dev->bdev;
566 }
567
568 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
569 {
570         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
571                 dm_thin_changed_this_transaction(tc->td);
572 }
573
574 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
575 {
576         struct dm_thin_endio_hook *h;
577
578         if (bio->bi_rw & REQ_DISCARD)
579                 return;
580
581         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
582         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
583 }
584
585 static void issue(struct thin_c *tc, struct bio *bio)
586 {
587         struct pool *pool = tc->pool;
588         unsigned long flags;
589
590         if (!bio_triggers_commit(tc, bio)) {
591                 generic_make_request(bio);
592                 return;
593         }
594
595         /*
596          * Complete bio with an error if earlier I/O caused changes to
597          * the metadata that can't be committed e.g, due to I/O errors
598          * on the metadata device.
599          */
600         if (dm_thin_aborted_changes(tc->td)) {
601                 bio_io_error(bio);
602                 return;
603         }
604
605         /*
606          * Batch together any bios that trigger commits and then issue a
607          * single commit for them in process_deferred_bios().
608          */
609         spin_lock_irqsave(&pool->lock, flags);
610         bio_list_add(&pool->deferred_flush_bios, bio);
611         spin_unlock_irqrestore(&pool->lock, flags);
612 }
613
614 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
615 {
616         remap_to_origin(tc, bio);
617         issue(tc, bio);
618 }
619
620 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
621                             dm_block_t block)
622 {
623         remap(tc, bio, block);
624         issue(tc, bio);
625 }
626
627 /*----------------------------------------------------------------*/
628
629 /*
630  * Bio endio functions.
631  */
632 struct dm_thin_new_mapping {
633         struct list_head list;
634
635         bool pass_discard:1;
636         bool definitely_not_shared:1;
637
638         /*
639          * Track quiescing, copying and zeroing preparation actions.  When this
640          * counter hits zero the block is prepared and can be inserted into the
641          * btree.
642          */
643         atomic_t prepare_actions;
644
645         int err;
646         struct thin_c *tc;
647         dm_block_t virt_block;
648         dm_block_t data_block;
649         struct dm_bio_prison_cell *cell, *cell2;
650
651         /*
652          * If the bio covers the whole area of a block then we can avoid
653          * zeroing or copying.  Instead this bio is hooked.  The bio will
654          * still be in the cell, so care has to be taken to avoid issuing
655          * the bio twice.
656          */
657         struct bio *bio;
658         bio_end_io_t *saved_bi_end_io;
659 };
660
661 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
662 {
663         struct pool *pool = m->tc->pool;
664
665         if (atomic_dec_and_test(&m->prepare_actions)) {
666                 list_add_tail(&m->list, &pool->prepared_mappings);
667                 wake_worker(pool);
668         }
669 }
670
671 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
672 {
673         unsigned long flags;
674         struct pool *pool = m->tc->pool;
675
676         spin_lock_irqsave(&pool->lock, flags);
677         __complete_mapping_preparation(m);
678         spin_unlock_irqrestore(&pool->lock, flags);
679 }
680
681 static void copy_complete(int read_err, unsigned long write_err, void *context)
682 {
683         struct dm_thin_new_mapping *m = context;
684
685         m->err = read_err || write_err ? -EIO : 0;
686         complete_mapping_preparation(m);
687 }
688
689 static void overwrite_endio(struct bio *bio, int err)
690 {
691         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
692         struct dm_thin_new_mapping *m = h->overwrite_mapping;
693
694         m->err = err;
695         complete_mapping_preparation(m);
696 }
697
698 /*----------------------------------------------------------------*/
699
700 /*
701  * Workqueue.
702  */
703
704 /*
705  * Prepared mapping jobs.
706  */
707
708 /*
709  * This sends the bios in the cell, except the original holder, back
710  * to the deferred_bios list.
711  */
712 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
713 {
714         struct pool *pool = tc->pool;
715         unsigned long flags;
716
717         spin_lock_irqsave(&tc->lock, flags);
718         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
719         spin_unlock_irqrestore(&tc->lock, flags);
720
721         wake_worker(pool);
722 }
723
724 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
725
726 struct remap_info {
727         struct thin_c *tc;
728         struct bio_list defer_bios;
729         struct bio_list issue_bios;
730 };
731
732 static void __inc_remap_and_issue_cell(void *context,
733                                        struct dm_bio_prison_cell *cell)
734 {
735         struct remap_info *info = context;
736         struct bio *bio;
737
738         while ((bio = bio_list_pop(&cell->bios))) {
739                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
740                         bio_list_add(&info->defer_bios, bio);
741                 else {
742                         inc_all_io_entry(info->tc->pool, bio);
743
744                         /*
745                          * We can't issue the bios with the bio prison lock
746                          * held, so we add them to a list to issue on
747                          * return from this function.
748                          */
749                         bio_list_add(&info->issue_bios, bio);
750                 }
751         }
752 }
753
754 static void inc_remap_and_issue_cell(struct thin_c *tc,
755                                      struct dm_bio_prison_cell *cell,
756                                      dm_block_t block)
757 {
758         struct bio *bio;
759         struct remap_info info;
760
761         info.tc = tc;
762         bio_list_init(&info.defer_bios);
763         bio_list_init(&info.issue_bios);
764
765         /*
766          * We have to be careful to inc any bios we're about to issue
767          * before the cell is released, and avoid a race with new bios
768          * being added to the cell.
769          */
770         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
771                            &info, cell);
772
773         while ((bio = bio_list_pop(&info.defer_bios)))
774                 thin_defer_bio(tc, bio);
775
776         while ((bio = bio_list_pop(&info.issue_bios)))
777                 remap_and_issue(info.tc, bio, block);
778 }
779
780 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
781 {
782         if (m->bio) {
783                 m->bio->bi_end_io = m->saved_bi_end_io;
784                 atomic_inc(&m->bio->bi_remaining);
785         }
786         cell_error(m->tc->pool, m->cell);
787         list_del(&m->list);
788         mempool_free(m, m->tc->pool->mapping_pool);
789 }
790
791 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
792 {
793         struct thin_c *tc = m->tc;
794         struct pool *pool = tc->pool;
795         struct bio *bio;
796         int r;
797
798         bio = m->bio;
799         if (bio) {
800                 bio->bi_end_io = m->saved_bi_end_io;
801                 atomic_inc(&bio->bi_remaining);
802         }
803
804         if (m->err) {
805                 cell_error(pool, m->cell);
806                 goto out;
807         }
808
809         /*
810          * Commit the prepared block into the mapping btree.
811          * Any I/O for this block arriving after this point will get
812          * remapped to it directly.
813          */
814         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
815         if (r) {
816                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
817                 cell_error(pool, m->cell);
818                 goto out;
819         }
820
821         /*
822          * Release any bios held while the block was being provisioned.
823          * If we are processing a write bio that completely covers the block,
824          * we already processed it so can ignore it now when processing
825          * the bios in the cell.
826          */
827         if (bio) {
828                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
829                 bio_endio(bio, 0);
830         } else {
831                 inc_all_io_entry(tc->pool, m->cell->holder);
832                 remap_and_issue(tc, m->cell->holder, m->data_block);
833                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
834         }
835
836 out:
837         list_del(&m->list);
838         mempool_free(m, pool->mapping_pool);
839 }
840
841 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
842 {
843         struct thin_c *tc = m->tc;
844
845         bio_io_error(m->bio);
846         cell_defer_no_holder(tc, m->cell);
847         cell_defer_no_holder(tc, m->cell2);
848         mempool_free(m, tc->pool->mapping_pool);
849 }
850
851 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
852 {
853         struct thin_c *tc = m->tc;
854
855         inc_all_io_entry(tc->pool, m->bio);
856         cell_defer_no_holder(tc, m->cell);
857         cell_defer_no_holder(tc, m->cell2);
858
859         if (m->pass_discard)
860                 if (m->definitely_not_shared)
861                         remap_and_issue(tc, m->bio, m->data_block);
862                 else {
863                         bool used = false;
864                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
865                                 bio_endio(m->bio, 0);
866                         else
867                                 remap_and_issue(tc, m->bio, m->data_block);
868                 }
869         else
870                 bio_endio(m->bio, 0);
871
872         mempool_free(m, tc->pool->mapping_pool);
873 }
874
875 static void process_prepared_discard(struct dm_thin_new_mapping *m)
876 {
877         int r;
878         struct thin_c *tc = m->tc;
879
880         r = dm_thin_remove_block(tc->td, m->virt_block);
881         if (r)
882                 DMERR_LIMIT("dm_thin_remove_block() failed");
883
884         process_prepared_discard_passdown(m);
885 }
886
887 static void process_prepared(struct pool *pool, struct list_head *head,
888                              process_mapping_fn *fn)
889 {
890         unsigned long flags;
891         struct list_head maps;
892         struct dm_thin_new_mapping *m, *tmp;
893
894         INIT_LIST_HEAD(&maps);
895         spin_lock_irqsave(&pool->lock, flags);
896         list_splice_init(head, &maps);
897         spin_unlock_irqrestore(&pool->lock, flags);
898
899         list_for_each_entry_safe(m, tmp, &maps, list)
900                 (*fn)(m);
901 }
902
903 /*
904  * Deferred bio jobs.
905  */
906 static int io_overlaps_block(struct pool *pool, struct bio *bio)
907 {
908         return bio->bi_iter.bi_size ==
909                 (pool->sectors_per_block << SECTOR_SHIFT);
910 }
911
912 static int io_overwrites_block(struct pool *pool, struct bio *bio)
913 {
914         return (bio_data_dir(bio) == WRITE) &&
915                 io_overlaps_block(pool, bio);
916 }
917
918 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
919                                bio_end_io_t *fn)
920 {
921         *save = bio->bi_end_io;
922         bio->bi_end_io = fn;
923 }
924
925 static int ensure_next_mapping(struct pool *pool)
926 {
927         if (pool->next_mapping)
928                 return 0;
929
930         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
931
932         return pool->next_mapping ? 0 : -ENOMEM;
933 }
934
935 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
936 {
937         struct dm_thin_new_mapping *m = pool->next_mapping;
938
939         BUG_ON(!pool->next_mapping);
940
941         memset(m, 0, sizeof(struct dm_thin_new_mapping));
942         INIT_LIST_HEAD(&m->list);
943         m->bio = NULL;
944
945         pool->next_mapping = NULL;
946
947         return m;
948 }
949
950 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
951                     sector_t begin, sector_t end)
952 {
953         int r;
954         struct dm_io_region to;
955
956         to.bdev = tc->pool_dev->bdev;
957         to.sector = begin;
958         to.count = end - begin;
959
960         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
961         if (r < 0) {
962                 DMERR_LIMIT("dm_kcopyd_zero() failed");
963                 copy_complete(1, 1, m);
964         }
965 }
966
967 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
968                                       dm_block_t data_block,
969                                       struct dm_thin_new_mapping *m)
970 {
971         struct pool *pool = tc->pool;
972         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
973
974         h->overwrite_mapping = m;
975         m->bio = bio;
976         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
977         inc_all_io_entry(pool, bio);
978         remap_and_issue(tc, bio, data_block);
979 }
980
981 /*
982  * A partial copy also needs to zero the uncopied region.
983  */
984 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
985                           struct dm_dev *origin, dm_block_t data_origin,
986                           dm_block_t data_dest,
987                           struct dm_bio_prison_cell *cell, struct bio *bio,
988                           sector_t len)
989 {
990         int r;
991         struct pool *pool = tc->pool;
992         struct dm_thin_new_mapping *m = get_next_mapping(pool);
993
994         m->tc = tc;
995         m->virt_block = virt_block;
996         m->data_block = data_dest;
997         m->cell = cell;
998
999         /*
1000          * quiesce action + copy action + an extra reference held for the
1001          * duration of this function (we may need to inc later for a
1002          * partial zero).
1003          */
1004         atomic_set(&m->prepare_actions, 3);
1005
1006         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1007                 complete_mapping_preparation(m); /* already quiesced */
1008
1009         /*
1010          * IO to pool_dev remaps to the pool target's data_dev.
1011          *
1012          * If the whole block of data is being overwritten, we can issue the
1013          * bio immediately. Otherwise we use kcopyd to clone the data first.
1014          */
1015         if (io_overwrites_block(pool, bio))
1016                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1017         else {
1018                 struct dm_io_region from, to;
1019
1020                 from.bdev = origin->bdev;
1021                 from.sector = data_origin * pool->sectors_per_block;
1022                 from.count = len;
1023
1024                 to.bdev = tc->pool_dev->bdev;
1025                 to.sector = data_dest * pool->sectors_per_block;
1026                 to.count = len;
1027
1028                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1029                                    0, copy_complete, m);
1030                 if (r < 0) {
1031                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1032                         copy_complete(1, 1, m);
1033
1034                         /*
1035                          * We allow the zero to be issued, to simplify the
1036                          * error path.  Otherwise we'd need to start
1037                          * worrying about decrementing the prepare_actions
1038                          * counter.
1039                          */
1040                 }
1041
1042                 /*
1043                  * Do we need to zero a tail region?
1044                  */
1045                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1046                         atomic_inc(&m->prepare_actions);
1047                         ll_zero(tc, m,
1048                                 data_dest * pool->sectors_per_block + len,
1049                                 (data_dest + 1) * pool->sectors_per_block);
1050                 }
1051         }
1052
1053         complete_mapping_preparation(m); /* drop our ref */
1054 }
1055
1056 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1057                                    dm_block_t data_origin, dm_block_t data_dest,
1058                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1059 {
1060         schedule_copy(tc, virt_block, tc->pool_dev,
1061                       data_origin, data_dest, cell, bio,
1062                       tc->pool->sectors_per_block);
1063 }
1064
1065 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1066                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1067                           struct bio *bio)
1068 {
1069         struct pool *pool = tc->pool;
1070         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1071
1072         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1073         m->tc = tc;
1074         m->virt_block = virt_block;
1075         m->data_block = data_block;
1076         m->cell = cell;
1077
1078         /*
1079          * If the whole block of data is being overwritten or we are not
1080          * zeroing pre-existing data, we can issue the bio immediately.
1081          * Otherwise we use kcopyd to zero the data first.
1082          */
1083         if (!pool->pf.zero_new_blocks)
1084                 process_prepared_mapping(m);
1085
1086         else if (io_overwrites_block(pool, bio))
1087                 remap_and_issue_overwrite(tc, bio, data_block, m);
1088
1089         else
1090                 ll_zero(tc, m,
1091                         data_block * pool->sectors_per_block,
1092                         (data_block + 1) * pool->sectors_per_block);
1093 }
1094
1095 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1096                                    dm_block_t data_dest,
1097                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1098 {
1099         struct pool *pool = tc->pool;
1100         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1101         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1102
1103         if (virt_block_end <= tc->origin_size)
1104                 schedule_copy(tc, virt_block, tc->origin_dev,
1105                               virt_block, data_dest, cell, bio,
1106                               pool->sectors_per_block);
1107
1108         else if (virt_block_begin < tc->origin_size)
1109                 schedule_copy(tc, virt_block, tc->origin_dev,
1110                               virt_block, data_dest, cell, bio,
1111                               tc->origin_size - virt_block_begin);
1112
1113         else
1114                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1115 }
1116
1117 /*
1118  * A non-zero return indicates read_only or fail_io mode.
1119  * Many callers don't care about the return value.
1120  */
1121 static int commit(struct pool *pool)
1122 {
1123         int r;
1124
1125         if (get_pool_mode(pool) >= PM_READ_ONLY)
1126                 return -EINVAL;
1127
1128         r = dm_pool_commit_metadata(pool->pmd);
1129         if (r)
1130                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1131
1132         return r;
1133 }
1134
1135 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1136 {
1137         unsigned long flags;
1138
1139         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1140                 DMWARN("%s: reached low water mark for data device: sending event.",
1141                        dm_device_name(pool->pool_md));
1142                 spin_lock_irqsave(&pool->lock, flags);
1143                 pool->low_water_triggered = true;
1144                 spin_unlock_irqrestore(&pool->lock, flags);
1145                 dm_table_event(pool->ti->table);
1146         }
1147 }
1148
1149 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1150
1151 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1152 {
1153         int r;
1154         dm_block_t free_blocks;
1155         struct pool *pool = tc->pool;
1156
1157         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1158                 return -EINVAL;
1159
1160         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1163                 return r;
1164         }
1165
1166         check_low_water_mark(pool, free_blocks);
1167
1168         if (!free_blocks) {
1169                 /*
1170                  * Try to commit to see if that will free up some
1171                  * more space.
1172                  */
1173                 r = commit(pool);
1174                 if (r)
1175                         return r;
1176
1177                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1178                 if (r) {
1179                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1180                         return r;
1181                 }
1182
1183                 if (!free_blocks) {
1184                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1185                         return -ENOSPC;
1186                 }
1187         }
1188
1189         r = dm_pool_alloc_data_block(pool->pmd, result);
1190         if (r) {
1191                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1192                 return r;
1193         }
1194
1195         return 0;
1196 }
1197
1198 /*
1199  * If we have run out of space, queue bios until the device is
1200  * resumed, presumably after having been reloaded with more space.
1201  */
1202 static void retry_on_resume(struct bio *bio)
1203 {
1204         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1205         struct thin_c *tc = h->tc;
1206         unsigned long flags;
1207
1208         spin_lock_irqsave(&tc->lock, flags);
1209         bio_list_add(&tc->retry_on_resume_list, bio);
1210         spin_unlock_irqrestore(&tc->lock, flags);
1211 }
1212
1213 static int should_error_unserviceable_bio(struct pool *pool)
1214 {
1215         enum pool_mode m = get_pool_mode(pool);
1216
1217         switch (m) {
1218         case PM_WRITE:
1219                 /* Shouldn't get here */
1220                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1221                 return -EIO;
1222
1223         case PM_OUT_OF_DATA_SPACE:
1224                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1225
1226         case PM_READ_ONLY:
1227         case PM_FAIL:
1228                 return -EIO;
1229         default:
1230                 /* Shouldn't get here */
1231                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1232                 return -EIO;
1233         }
1234 }
1235
1236 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1237 {
1238         int error = should_error_unserviceable_bio(pool);
1239
1240         if (error)
1241                 bio_endio(bio, error);
1242         else
1243                 retry_on_resume(bio);
1244 }
1245
1246 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1247 {
1248         struct bio *bio;
1249         struct bio_list bios;
1250         int error;
1251
1252         error = should_error_unserviceable_bio(pool);
1253         if (error) {
1254                 cell_error_with_code(pool, cell, error);
1255                 return;
1256         }
1257
1258         bio_list_init(&bios);
1259         cell_release(pool, cell, &bios);
1260
1261         error = should_error_unserviceable_bio(pool);
1262         if (error)
1263                 while ((bio = bio_list_pop(&bios)))
1264                         bio_endio(bio, error);
1265         else
1266                 while ((bio = bio_list_pop(&bios)))
1267                         retry_on_resume(bio);
1268 }
1269
1270 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1271 {
1272         int r;
1273         struct bio *bio = cell->holder;
1274         struct pool *pool = tc->pool;
1275         struct dm_bio_prison_cell *cell2;
1276         struct dm_cell_key key2;
1277         dm_block_t block = get_bio_block(tc, bio);
1278         struct dm_thin_lookup_result lookup_result;
1279         struct dm_thin_new_mapping *m;
1280
1281         if (tc->requeue_mode) {
1282                 cell_requeue(pool, cell);
1283                 return;
1284         }
1285
1286         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1287         switch (r) {
1288         case 0:
1289                 /*
1290                  * Check nobody is fiddling with this pool block.  This can
1291                  * happen if someone's in the process of breaking sharing
1292                  * on this block.
1293                  */
1294                 build_data_key(tc->td, lookup_result.block, &key2);
1295                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1296                         cell_defer_no_holder(tc, cell);
1297                         break;
1298                 }
1299
1300                 if (io_overlaps_block(pool, bio)) {
1301                         /*
1302                          * IO may still be going to the destination block.  We must
1303                          * quiesce before we can do the removal.
1304                          */
1305                         m = get_next_mapping(pool);
1306                         m->tc = tc;
1307                         m->pass_discard = pool->pf.discard_passdown;
1308                         m->definitely_not_shared = !lookup_result.shared;
1309                         m->virt_block = block;
1310                         m->data_block = lookup_result.block;
1311                         m->cell = cell;
1312                         m->cell2 = cell2;
1313                         m->bio = bio;
1314
1315                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1316                                 pool->process_prepared_discard(m);
1317
1318                 } else {
1319                         inc_all_io_entry(pool, bio);
1320                         cell_defer_no_holder(tc, cell);
1321                         cell_defer_no_holder(tc, cell2);
1322
1323                         /*
1324                          * The DM core makes sure that the discard doesn't span
1325                          * a block boundary.  So we submit the discard of a
1326                          * partial block appropriately.
1327                          */
1328                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1329                                 remap_and_issue(tc, bio, lookup_result.block);
1330                         else
1331                                 bio_endio(bio, 0);
1332                 }
1333                 break;
1334
1335         case -ENODATA:
1336                 /*
1337                  * It isn't provisioned, just forget it.
1338                  */
1339                 cell_defer_no_holder(tc, cell);
1340                 bio_endio(bio, 0);
1341                 break;
1342
1343         default:
1344                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1345                             __func__, r);
1346                 cell_defer_no_holder(tc, cell);
1347                 bio_io_error(bio);
1348                 break;
1349         }
1350 }
1351
1352 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1353 {
1354         struct dm_bio_prison_cell *cell;
1355         struct dm_cell_key key;
1356         dm_block_t block = get_bio_block(tc, bio);
1357
1358         build_virtual_key(tc->td, block, &key);
1359         if (bio_detain(tc->pool, &key, bio, &cell))
1360                 return;
1361
1362         process_discard_cell(tc, cell);
1363 }
1364
1365 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1366                           struct dm_cell_key *key,
1367                           struct dm_thin_lookup_result *lookup_result,
1368                           struct dm_bio_prison_cell *cell)
1369 {
1370         int r;
1371         dm_block_t data_block;
1372         struct pool *pool = tc->pool;
1373
1374         r = alloc_data_block(tc, &data_block);
1375         switch (r) {
1376         case 0:
1377                 schedule_internal_copy(tc, block, lookup_result->block,
1378                                        data_block, cell, bio);
1379                 break;
1380
1381         case -ENOSPC:
1382                 retry_bios_on_resume(pool, cell);
1383                 break;
1384
1385         default:
1386                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1387                             __func__, r);
1388                 cell_error(pool, cell);
1389                 break;
1390         }
1391 }
1392
1393 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1394                                dm_block_t block,
1395                                struct dm_thin_lookup_result *lookup_result)
1396 {
1397         struct dm_bio_prison_cell *cell;
1398         struct pool *pool = tc->pool;
1399         struct dm_cell_key key;
1400
1401         /*
1402          * If cell is already occupied, then sharing is already in the process
1403          * of being broken so we have nothing further to do here.
1404          */
1405         build_data_key(tc->td, lookup_result->block, &key);
1406         if (bio_detain(pool, &key, bio, &cell))
1407                 return;
1408
1409         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1410                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1411         else {
1412                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1413
1414                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1415                 inc_all_io_entry(pool, bio);
1416                 cell_defer_no_holder(tc, cell);
1417
1418                 remap_and_issue(tc, bio, lookup_result->block);
1419         }
1420 }
1421
1422 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1423                             struct dm_bio_prison_cell *cell)
1424 {
1425         int r;
1426         dm_block_t data_block;
1427         struct pool *pool = tc->pool;
1428
1429         /*
1430          * Remap empty bios (flushes) immediately, without provisioning.
1431          */
1432         if (!bio->bi_iter.bi_size) {
1433                 inc_all_io_entry(pool, bio);
1434                 cell_defer_no_holder(tc, cell);
1435
1436                 remap_and_issue(tc, bio, 0);
1437                 return;
1438         }
1439
1440         /*
1441          * Fill read bios with zeroes and complete them immediately.
1442          */
1443         if (bio_data_dir(bio) == READ) {
1444                 zero_fill_bio(bio);
1445                 cell_defer_no_holder(tc, cell);
1446                 bio_endio(bio, 0);
1447                 return;
1448         }
1449
1450         r = alloc_data_block(tc, &data_block);
1451         switch (r) {
1452         case 0:
1453                 if (tc->origin_dev)
1454                         schedule_external_copy(tc, block, data_block, cell, bio);
1455                 else
1456                         schedule_zero(tc, block, data_block, cell, bio);
1457                 break;
1458
1459         case -ENOSPC:
1460                 retry_bios_on_resume(pool, cell);
1461                 break;
1462
1463         default:
1464                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1465                             __func__, r);
1466                 cell_error(pool, cell);
1467                 break;
1468         }
1469 }
1470
1471 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1472 {
1473         int r;
1474         struct pool *pool = tc->pool;
1475         struct bio *bio = cell->holder;
1476         dm_block_t block = get_bio_block(tc, bio);
1477         struct dm_thin_lookup_result lookup_result;
1478
1479         if (tc->requeue_mode) {
1480                 cell_requeue(pool, cell);
1481                 return;
1482         }
1483
1484         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1485         switch (r) {
1486         case 0:
1487                 if (lookup_result.shared) {
1488                         process_shared_bio(tc, bio, block, &lookup_result);
1489                         // FIXME: we can't remap because we're waiting on a commit
1490                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1491                 } else {
1492                         inc_all_io_entry(pool, bio);
1493                         remap_and_issue(tc, bio, lookup_result.block);
1494                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1495                 }
1496                 break;
1497
1498         case -ENODATA:
1499                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1500                         inc_all_io_entry(pool, bio);
1501                         cell_defer_no_holder(tc, cell);
1502
1503                         if (bio_end_sector(bio) <= tc->origin_size)
1504                                 remap_to_origin_and_issue(tc, bio);
1505
1506                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1507                                 zero_fill_bio(bio);
1508                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1509                                 remap_to_origin_and_issue(tc, bio);
1510
1511                         } else {
1512                                 zero_fill_bio(bio);
1513                                 bio_endio(bio, 0);
1514                         }
1515                 } else
1516                         provision_block(tc, bio, block, cell);
1517                 break;
1518
1519         default:
1520                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1521                             __func__, r);
1522                 cell_defer_no_holder(tc, cell);
1523                 bio_io_error(bio);
1524                 break;
1525         }
1526 }
1527
1528 static void process_bio(struct thin_c *tc, struct bio *bio)
1529 {
1530         struct pool *pool = tc->pool;
1531         dm_block_t block = get_bio_block(tc, bio);
1532         struct dm_bio_prison_cell *cell;
1533         struct dm_cell_key key;
1534
1535         /*
1536          * If cell is already occupied, then the block is already
1537          * being provisioned so we have nothing further to do here.
1538          */
1539         build_virtual_key(tc->td, block, &key);
1540         if (bio_detain(pool, &key, bio, &cell))
1541                 return;
1542
1543         process_cell(tc, cell);
1544 }
1545
1546 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1547                                     struct dm_bio_prison_cell *cell)
1548 {
1549         int r;
1550         int rw = bio_data_dir(bio);
1551         dm_block_t block = get_bio_block(tc, bio);
1552         struct dm_thin_lookup_result lookup_result;
1553
1554         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1555         switch (r) {
1556         case 0:
1557                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1558                         handle_unserviceable_bio(tc->pool, bio);
1559                         if (cell)
1560                                 cell_defer_no_holder(tc, cell);
1561                 } else {
1562                         inc_all_io_entry(tc->pool, bio);
1563                         remap_and_issue(tc, bio, lookup_result.block);
1564                         if (cell)
1565                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1566                 }
1567                 break;
1568
1569         case -ENODATA:
1570                 if (cell)
1571                         cell_defer_no_holder(tc, cell);
1572                 if (rw != READ) {
1573                         handle_unserviceable_bio(tc->pool, bio);
1574                         break;
1575                 }
1576
1577                 if (tc->origin_dev) {
1578                         inc_all_io_entry(tc->pool, bio);
1579                         remap_to_origin_and_issue(tc, bio);
1580                         break;
1581                 }
1582
1583                 zero_fill_bio(bio);
1584                 bio_endio(bio, 0);
1585                 break;
1586
1587         default:
1588                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1589                             __func__, r);
1590                 if (cell)
1591                         cell_defer_no_holder(tc, cell);
1592                 bio_io_error(bio);
1593                 break;
1594         }
1595 }
1596
1597 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1598 {
1599         __process_bio_read_only(tc, bio, NULL);
1600 }
1601
1602 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1603 {
1604         __process_bio_read_only(tc, cell->holder, cell);
1605 }
1606
1607 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1608 {
1609         bio_endio(bio, 0);
1610 }
1611
1612 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1613 {
1614         bio_io_error(bio);
1615 }
1616
1617 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1618 {
1619         cell_success(tc->pool, cell);
1620 }
1621
1622 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1623 {
1624         cell_error(tc->pool, cell);
1625 }
1626
1627 /*
1628  * FIXME: should we also commit due to size of transaction, measured in
1629  * metadata blocks?
1630  */
1631 static int need_commit_due_to_time(struct pool *pool)
1632 {
1633         return jiffies < pool->last_commit_jiffies ||
1634                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1635 }
1636
1637 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1638 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1639
1640 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1641 {
1642         struct rb_node **rbp, *parent;
1643         struct dm_thin_endio_hook *pbd;
1644         sector_t bi_sector = bio->bi_iter.bi_sector;
1645
1646         rbp = &tc->sort_bio_list.rb_node;
1647         parent = NULL;
1648         while (*rbp) {
1649                 parent = *rbp;
1650                 pbd = thin_pbd(parent);
1651
1652                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1653                         rbp = &(*rbp)->rb_left;
1654                 else
1655                         rbp = &(*rbp)->rb_right;
1656         }
1657
1658         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1659         rb_link_node(&pbd->rb_node, parent, rbp);
1660         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1661 }
1662
1663 static void __extract_sorted_bios(struct thin_c *tc)
1664 {
1665         struct rb_node *node;
1666         struct dm_thin_endio_hook *pbd;
1667         struct bio *bio;
1668
1669         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1670                 pbd = thin_pbd(node);
1671                 bio = thin_bio(pbd);
1672
1673                 bio_list_add(&tc->deferred_bio_list, bio);
1674                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1675         }
1676
1677         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1678 }
1679
1680 static void __sort_thin_deferred_bios(struct thin_c *tc)
1681 {
1682         struct bio *bio;
1683         struct bio_list bios;
1684
1685         bio_list_init(&bios);
1686         bio_list_merge(&bios, &tc->deferred_bio_list);
1687         bio_list_init(&tc->deferred_bio_list);
1688
1689         /* Sort deferred_bio_list using rb-tree */
1690         while ((bio = bio_list_pop(&bios)))
1691                 __thin_bio_rb_add(tc, bio);
1692
1693         /*
1694          * Transfer the sorted bios in sort_bio_list back to
1695          * deferred_bio_list to allow lockless submission of
1696          * all bios.
1697          */
1698         __extract_sorted_bios(tc);
1699 }
1700
1701 static void process_thin_deferred_bios(struct thin_c *tc)
1702 {
1703         struct pool *pool = tc->pool;
1704         unsigned long flags;
1705         struct bio *bio;
1706         struct bio_list bios;
1707         struct blk_plug plug;
1708         unsigned count = 0;
1709
1710         if (tc->requeue_mode) {
1711                 requeue_bio_list(tc, &tc->deferred_bio_list);
1712                 return;
1713         }
1714
1715         bio_list_init(&bios);
1716
1717         spin_lock_irqsave(&tc->lock, flags);
1718
1719         if (bio_list_empty(&tc->deferred_bio_list)) {
1720                 spin_unlock_irqrestore(&tc->lock, flags);
1721                 return;
1722         }
1723
1724         __sort_thin_deferred_bios(tc);
1725
1726         bio_list_merge(&bios, &tc->deferred_bio_list);
1727         bio_list_init(&tc->deferred_bio_list);
1728
1729         spin_unlock_irqrestore(&tc->lock, flags);
1730
1731         blk_start_plug(&plug);
1732         while ((bio = bio_list_pop(&bios))) {
1733                 /*
1734                  * If we've got no free new_mapping structs, and processing
1735                  * this bio might require one, we pause until there are some
1736                  * prepared mappings to process.
1737                  */
1738                 if (ensure_next_mapping(pool)) {
1739                         spin_lock_irqsave(&tc->lock, flags);
1740                         bio_list_add(&tc->deferred_bio_list, bio);
1741                         bio_list_merge(&tc->deferred_bio_list, &bios);
1742                         spin_unlock_irqrestore(&tc->lock, flags);
1743                         break;
1744                 }
1745
1746                 if (bio->bi_rw & REQ_DISCARD)
1747                         pool->process_discard(tc, bio);
1748                 else
1749                         pool->process_bio(tc, bio);
1750
1751                 if ((count++ & 127) == 0) {
1752                         throttle_work_update(&pool->throttle);
1753                         dm_pool_issue_prefetches(pool->pmd);
1754                 }
1755         }
1756         blk_finish_plug(&plug);
1757 }
1758
1759 static void process_thin_deferred_cells(struct thin_c *tc)
1760 {
1761         struct pool *pool = tc->pool;
1762         unsigned long flags;
1763         struct list_head cells;
1764         struct dm_bio_prison_cell *cell, *tmp;
1765
1766         INIT_LIST_HEAD(&cells);
1767
1768         spin_lock_irqsave(&tc->lock, flags);
1769         list_splice_init(&tc->deferred_cells, &cells);
1770         spin_unlock_irqrestore(&tc->lock, flags);
1771
1772         if (list_empty(&cells))
1773                 return;
1774
1775         list_for_each_entry_safe(cell, tmp, &cells, user_list) {
1776                 BUG_ON(!cell->holder);
1777
1778                 /*
1779                  * If we've got no free new_mapping structs, and processing
1780                  * this bio might require one, we pause until there are some
1781                  * prepared mappings to process.
1782                  */
1783                 if (ensure_next_mapping(pool)) {
1784                         spin_lock_irqsave(&tc->lock, flags);
1785                         list_add(&cell->user_list, &tc->deferred_cells);
1786                         list_splice(&cells, &tc->deferred_cells);
1787                         spin_unlock_irqrestore(&tc->lock, flags);
1788                         break;
1789                 }
1790
1791                 if (cell->holder->bi_rw & REQ_DISCARD)
1792                         pool->process_discard_cell(tc, cell);
1793                 else
1794                         pool->process_cell(tc, cell);
1795         }
1796 }
1797
1798 static void thin_get(struct thin_c *tc);
1799 static void thin_put(struct thin_c *tc);
1800
1801 /*
1802  * We can't hold rcu_read_lock() around code that can block.  So we
1803  * find a thin with the rcu lock held; bump a refcount; then drop
1804  * the lock.
1805  */
1806 static struct thin_c *get_first_thin(struct pool *pool)
1807 {
1808         struct thin_c *tc = NULL;
1809
1810         rcu_read_lock();
1811         if (!list_empty(&pool->active_thins)) {
1812                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1813                 thin_get(tc);
1814         }
1815         rcu_read_unlock();
1816
1817         return tc;
1818 }
1819
1820 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1821 {
1822         struct thin_c *old_tc = tc;
1823
1824         rcu_read_lock();
1825         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1826                 thin_get(tc);
1827                 thin_put(old_tc);
1828                 rcu_read_unlock();
1829                 return tc;
1830         }
1831         thin_put(old_tc);
1832         rcu_read_unlock();
1833
1834         return NULL;
1835 }
1836
1837 static void process_deferred_bios(struct pool *pool)
1838 {
1839         unsigned long flags;
1840         struct bio *bio;
1841         struct bio_list bios;
1842         struct thin_c *tc;
1843
1844         tc = get_first_thin(pool);
1845         while (tc) {
1846                 process_thin_deferred_cells(tc);
1847                 process_thin_deferred_bios(tc);
1848                 tc = get_next_thin(pool, tc);
1849         }
1850
1851         /*
1852          * If there are any deferred flush bios, we must commit
1853          * the metadata before issuing them.
1854          */
1855         bio_list_init(&bios);
1856         spin_lock_irqsave(&pool->lock, flags);
1857         bio_list_merge(&bios, &pool->deferred_flush_bios);
1858         bio_list_init(&pool->deferred_flush_bios);
1859         spin_unlock_irqrestore(&pool->lock, flags);
1860
1861         if (bio_list_empty(&bios) &&
1862             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1863                 return;
1864
1865         if (commit(pool)) {
1866                 while ((bio = bio_list_pop(&bios)))
1867                         bio_io_error(bio);
1868                 return;
1869         }
1870         pool->last_commit_jiffies = jiffies;
1871
1872         while ((bio = bio_list_pop(&bios)))
1873                 generic_make_request(bio);
1874 }
1875
1876 static void do_worker(struct work_struct *ws)
1877 {
1878         struct pool *pool = container_of(ws, struct pool, worker);
1879
1880         throttle_work_start(&pool->throttle);
1881         dm_pool_issue_prefetches(pool->pmd);
1882         throttle_work_update(&pool->throttle);
1883         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1884         throttle_work_update(&pool->throttle);
1885         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1886         throttle_work_update(&pool->throttle);
1887         process_deferred_bios(pool);
1888         throttle_work_complete(&pool->throttle);
1889 }
1890
1891 /*
1892  * We want to commit periodically so that not too much
1893  * unwritten data builds up.
1894  */
1895 static void do_waker(struct work_struct *ws)
1896 {
1897         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1898         wake_worker(pool);
1899         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1900 }
1901
1902 /*
1903  * We're holding onto IO to allow userland time to react.  After the
1904  * timeout either the pool will have been resized (and thus back in
1905  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1906  */
1907 static void do_no_space_timeout(struct work_struct *ws)
1908 {
1909         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1910                                          no_space_timeout);
1911
1912         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1913                 set_pool_mode(pool, PM_READ_ONLY);
1914 }
1915
1916 /*----------------------------------------------------------------*/
1917
1918 struct pool_work {
1919         struct work_struct worker;
1920         struct completion complete;
1921 };
1922
1923 static struct pool_work *to_pool_work(struct work_struct *ws)
1924 {
1925         return container_of(ws, struct pool_work, worker);
1926 }
1927
1928 static void pool_work_complete(struct pool_work *pw)
1929 {
1930         complete(&pw->complete);
1931 }
1932
1933 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1934                            void (*fn)(struct work_struct *))
1935 {
1936         INIT_WORK_ONSTACK(&pw->worker, fn);
1937         init_completion(&pw->complete);
1938         queue_work(pool->wq, &pw->worker);
1939         wait_for_completion(&pw->complete);
1940 }
1941
1942 /*----------------------------------------------------------------*/
1943
1944 struct noflush_work {
1945         struct pool_work pw;
1946         struct thin_c *tc;
1947 };
1948
1949 static struct noflush_work *to_noflush(struct work_struct *ws)
1950 {
1951         return container_of(to_pool_work(ws), struct noflush_work, pw);
1952 }
1953
1954 static void do_noflush_start(struct work_struct *ws)
1955 {
1956         struct noflush_work *w = to_noflush(ws);
1957         w->tc->requeue_mode = true;
1958         requeue_io(w->tc);
1959         pool_work_complete(&w->pw);
1960 }
1961
1962 static void do_noflush_stop(struct work_struct *ws)
1963 {
1964         struct noflush_work *w = to_noflush(ws);
1965         w->tc->requeue_mode = false;
1966         pool_work_complete(&w->pw);
1967 }
1968
1969 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1970 {
1971         struct noflush_work w;
1972
1973         w.tc = tc;
1974         pool_work_wait(&w.pw, tc->pool, fn);
1975 }
1976
1977 /*----------------------------------------------------------------*/
1978
1979 static enum pool_mode get_pool_mode(struct pool *pool)
1980 {
1981         return pool->pf.mode;
1982 }
1983
1984 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1985 {
1986         dm_table_event(pool->ti->table);
1987         DMINFO("%s: switching pool to %s mode",
1988                dm_device_name(pool->pool_md), new_mode);
1989 }
1990
1991 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1992 {
1993         struct pool_c *pt = pool->ti->private;
1994         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1995         enum pool_mode old_mode = get_pool_mode(pool);
1996         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1997
1998         /*
1999          * Never allow the pool to transition to PM_WRITE mode if user
2000          * intervention is required to verify metadata and data consistency.
2001          */
2002         if (new_mode == PM_WRITE && needs_check) {
2003                 DMERR("%s: unable to switch pool to write mode until repaired.",
2004                       dm_device_name(pool->pool_md));
2005                 if (old_mode != new_mode)
2006                         new_mode = old_mode;
2007                 else
2008                         new_mode = PM_READ_ONLY;
2009         }
2010         /*
2011          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2012          * not going to recover without a thin_repair.  So we never let the
2013          * pool move out of the old mode.
2014          */
2015         if (old_mode == PM_FAIL)
2016                 new_mode = old_mode;
2017
2018         switch (new_mode) {
2019         case PM_FAIL:
2020                 if (old_mode != new_mode)
2021                         notify_of_pool_mode_change(pool, "failure");
2022                 dm_pool_metadata_read_only(pool->pmd);
2023                 pool->process_bio = process_bio_fail;
2024                 pool->process_discard = process_bio_fail;
2025                 pool->process_cell = process_cell_fail;
2026                 pool->process_discard_cell = process_cell_fail;
2027                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2028                 pool->process_prepared_discard = process_prepared_discard_fail;
2029
2030                 error_retry_list(pool);
2031                 break;
2032
2033         case PM_READ_ONLY:
2034                 if (old_mode != new_mode)
2035                         notify_of_pool_mode_change(pool, "read-only");
2036                 dm_pool_metadata_read_only(pool->pmd);
2037                 pool->process_bio = process_bio_read_only;
2038                 pool->process_discard = process_bio_success;
2039                 pool->process_cell = process_cell_read_only;
2040                 pool->process_discard_cell = process_cell_success;
2041                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2042                 pool->process_prepared_discard = process_prepared_discard_passdown;
2043
2044                 error_retry_list(pool);
2045                 break;
2046
2047         case PM_OUT_OF_DATA_SPACE:
2048                 /*
2049                  * Ideally we'd never hit this state; the low water mark
2050                  * would trigger userland to extend the pool before we
2051                  * completely run out of data space.  However, many small
2052                  * IOs to unprovisioned space can consume data space at an
2053                  * alarming rate.  Adjust your low water mark if you're
2054                  * frequently seeing this mode.
2055                  */
2056                 if (old_mode != new_mode)
2057                         notify_of_pool_mode_change(pool, "out-of-data-space");
2058                 pool->process_bio = process_bio_read_only;
2059                 pool->process_discard = process_discard_bio;
2060                 pool->process_cell = process_cell_read_only;
2061                 pool->process_discard_cell = process_discard_cell;
2062                 pool->process_prepared_mapping = process_prepared_mapping;
2063                 pool->process_prepared_discard = process_prepared_discard_passdown;
2064
2065                 if (!pool->pf.error_if_no_space && no_space_timeout)
2066                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2067                 break;
2068
2069         case PM_WRITE:
2070                 if (old_mode != new_mode)
2071                         notify_of_pool_mode_change(pool, "write");
2072                 dm_pool_metadata_read_write(pool->pmd);
2073                 pool->process_bio = process_bio;
2074                 pool->process_discard = process_discard_bio;
2075                 pool->process_cell = process_cell;
2076                 pool->process_discard_cell = process_discard_cell;
2077                 pool->process_prepared_mapping = process_prepared_mapping;
2078                 pool->process_prepared_discard = process_prepared_discard;
2079                 break;
2080         }
2081
2082         pool->pf.mode = new_mode;
2083         /*
2084          * The pool mode may have changed, sync it so bind_control_target()
2085          * doesn't cause an unexpected mode transition on resume.
2086          */
2087         pt->adjusted_pf.mode = new_mode;
2088 }
2089
2090 static void abort_transaction(struct pool *pool)
2091 {
2092         const char *dev_name = dm_device_name(pool->pool_md);
2093
2094         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2095         if (dm_pool_abort_metadata(pool->pmd)) {
2096                 DMERR("%s: failed to abort metadata transaction", dev_name);
2097                 set_pool_mode(pool, PM_FAIL);
2098         }
2099
2100         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2101                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2102                 set_pool_mode(pool, PM_FAIL);
2103         }
2104 }
2105
2106 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2107 {
2108         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2109                     dm_device_name(pool->pool_md), op, r);
2110
2111         abort_transaction(pool);
2112         set_pool_mode(pool, PM_READ_ONLY);
2113 }
2114
2115 /*----------------------------------------------------------------*/
2116
2117 /*
2118  * Mapping functions.
2119  */
2120
2121 /*
2122  * Called only while mapping a thin bio to hand it over to the workqueue.
2123  */
2124 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2125 {
2126         unsigned long flags;
2127         struct pool *pool = tc->pool;
2128
2129         spin_lock_irqsave(&tc->lock, flags);
2130         bio_list_add(&tc->deferred_bio_list, bio);
2131         spin_unlock_irqrestore(&tc->lock, flags);
2132
2133         wake_worker(pool);
2134 }
2135
2136 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2137 {
2138         struct pool *pool = tc->pool;
2139
2140         throttle_lock(&pool->throttle);
2141         thin_defer_bio(tc, bio);
2142         throttle_unlock(&pool->throttle);
2143 }
2144
2145 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2146 {
2147         unsigned long flags;
2148         struct pool *pool = tc->pool;
2149
2150         throttle_lock(&pool->throttle);
2151         spin_lock_irqsave(&tc->lock, flags);
2152         list_add_tail(&cell->user_list, &tc->deferred_cells);
2153         spin_unlock_irqrestore(&tc->lock, flags);
2154         throttle_unlock(&pool->throttle);
2155
2156         wake_worker(pool);
2157 }
2158
2159 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2160 {
2161         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2162
2163         h->tc = tc;
2164         h->shared_read_entry = NULL;
2165         h->all_io_entry = NULL;
2166         h->overwrite_mapping = NULL;
2167 }
2168
2169 /*
2170  * Non-blocking function called from the thin target's map function.
2171  */
2172 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2173 {
2174         int r;
2175         struct thin_c *tc = ti->private;
2176         dm_block_t block = get_bio_block(tc, bio);
2177         struct dm_thin_device *td = tc->td;
2178         struct dm_thin_lookup_result result;
2179         struct dm_bio_prison_cell *virt_cell, *data_cell;
2180         struct dm_cell_key key;
2181
2182         thin_hook_bio(tc, bio);
2183
2184         if (tc->requeue_mode) {
2185                 bio_endio(bio, DM_ENDIO_REQUEUE);
2186                 return DM_MAPIO_SUBMITTED;
2187         }
2188
2189         if (get_pool_mode(tc->pool) == PM_FAIL) {
2190                 bio_io_error(bio);
2191                 return DM_MAPIO_SUBMITTED;
2192         }
2193
2194         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2195                 thin_defer_bio_with_throttle(tc, bio);
2196                 return DM_MAPIO_SUBMITTED;
2197         }
2198
2199         /*
2200          * We must hold the virtual cell before doing the lookup, otherwise
2201          * there's a race with discard.
2202          */
2203         build_virtual_key(tc->td, block, &key);
2204         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2205                 return DM_MAPIO_SUBMITTED;
2206
2207         r = dm_thin_find_block(td, block, 0, &result);
2208
2209         /*
2210          * Note that we defer readahead too.
2211          */
2212         switch (r) {
2213         case 0:
2214                 if (unlikely(result.shared)) {
2215                         /*
2216                          * We have a race condition here between the
2217                          * result.shared value returned by the lookup and
2218                          * snapshot creation, which may cause new
2219                          * sharing.
2220                          *
2221                          * To avoid this always quiesce the origin before
2222                          * taking the snap.  You want to do this anyway to
2223                          * ensure a consistent application view
2224                          * (i.e. lockfs).
2225                          *
2226                          * More distant ancestors are irrelevant. The
2227                          * shared flag will be set in their case.
2228                          */
2229                         thin_defer_cell(tc, virt_cell);
2230                         return DM_MAPIO_SUBMITTED;
2231                 }
2232
2233                 build_data_key(tc->td, result.block, &key);
2234                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2235                         cell_defer_no_holder(tc, virt_cell);
2236                         return DM_MAPIO_SUBMITTED;
2237                 }
2238
2239                 inc_all_io_entry(tc->pool, bio);
2240                 cell_defer_no_holder(tc, data_cell);
2241                 cell_defer_no_holder(tc, virt_cell);
2242
2243                 remap(tc, bio, result.block);
2244                 return DM_MAPIO_REMAPPED;
2245
2246         case -ENODATA:
2247                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2248                         /*
2249                          * This block isn't provisioned, and we have no way
2250                          * of doing so.
2251                          */
2252                         handle_unserviceable_bio(tc->pool, bio);
2253                         cell_defer_no_holder(tc, virt_cell);
2254                         return DM_MAPIO_SUBMITTED;
2255                 }
2256                 /* fall through */
2257
2258         case -EWOULDBLOCK:
2259                 thin_defer_cell(tc, virt_cell);
2260                 return DM_MAPIO_SUBMITTED;
2261
2262         default:
2263                 /*
2264                  * Must always call bio_io_error on failure.
2265                  * dm_thin_find_block can fail with -EINVAL if the
2266                  * pool is switched to fail-io mode.
2267                  */
2268                 bio_io_error(bio);
2269                 cell_defer_no_holder(tc, virt_cell);
2270                 return DM_MAPIO_SUBMITTED;
2271         }
2272 }
2273
2274 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2275 {
2276         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2277         struct request_queue *q;
2278
2279         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2280                 return 1;
2281
2282         q = bdev_get_queue(pt->data_dev->bdev);
2283         return bdi_congested(&q->backing_dev_info, bdi_bits);
2284 }
2285
2286 static void requeue_bios(struct pool *pool)
2287 {
2288         unsigned long flags;
2289         struct thin_c *tc;
2290
2291         rcu_read_lock();
2292         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2293                 spin_lock_irqsave(&tc->lock, flags);
2294                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2295                 bio_list_init(&tc->retry_on_resume_list);
2296                 spin_unlock_irqrestore(&tc->lock, flags);
2297         }
2298         rcu_read_unlock();
2299 }
2300
2301 /*----------------------------------------------------------------
2302  * Binding of control targets to a pool object
2303  *--------------------------------------------------------------*/
2304 static bool data_dev_supports_discard(struct pool_c *pt)
2305 {
2306         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2307
2308         return q && blk_queue_discard(q);
2309 }
2310
2311 static bool is_factor(sector_t block_size, uint32_t n)
2312 {
2313         return !sector_div(block_size, n);
2314 }
2315
2316 /*
2317  * If discard_passdown was enabled verify that the data device
2318  * supports discards.  Disable discard_passdown if not.
2319  */
2320 static void disable_passdown_if_not_supported(struct pool_c *pt)
2321 {
2322         struct pool *pool = pt->pool;
2323         struct block_device *data_bdev = pt->data_dev->bdev;
2324         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2325         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2326         const char *reason = NULL;
2327         char buf[BDEVNAME_SIZE];
2328
2329         if (!pt->adjusted_pf.discard_passdown)
2330                 return;
2331
2332         if (!data_dev_supports_discard(pt))
2333                 reason = "discard unsupported";
2334
2335         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2336                 reason = "max discard sectors smaller than a block";
2337
2338         else if (data_limits->discard_granularity > block_size)
2339                 reason = "discard granularity larger than a block";
2340
2341         else if (!is_factor(block_size, data_limits->discard_granularity))
2342                 reason = "discard granularity not a factor of block size";
2343
2344         if (reason) {
2345                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2346                 pt->adjusted_pf.discard_passdown = false;
2347         }
2348 }
2349
2350 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2351 {
2352         struct pool_c *pt = ti->private;
2353
2354         /*
2355          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2356          */
2357         enum pool_mode old_mode = get_pool_mode(pool);
2358         enum pool_mode new_mode = pt->adjusted_pf.mode;
2359
2360         /*
2361          * Don't change the pool's mode until set_pool_mode() below.
2362          * Otherwise the pool's process_* function pointers may
2363          * not match the desired pool mode.
2364          */
2365         pt->adjusted_pf.mode = old_mode;
2366
2367         pool->ti = ti;
2368         pool->pf = pt->adjusted_pf;
2369         pool->low_water_blocks = pt->low_water_blocks;
2370
2371         set_pool_mode(pool, new_mode);
2372
2373         return 0;
2374 }
2375
2376 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2377 {
2378         if (pool->ti == ti)
2379                 pool->ti = NULL;
2380 }
2381
2382 /*----------------------------------------------------------------
2383  * Pool creation
2384  *--------------------------------------------------------------*/
2385 /* Initialize pool features. */
2386 static void pool_features_init(struct pool_features *pf)
2387 {
2388         pf->mode = PM_WRITE;
2389         pf->zero_new_blocks = true;
2390         pf->discard_enabled = true;
2391         pf->discard_passdown = true;
2392         pf->error_if_no_space = false;
2393 }
2394
2395 static void __pool_destroy(struct pool *pool)
2396 {
2397         __pool_table_remove(pool);
2398
2399         if (dm_pool_metadata_close(pool->pmd) < 0)
2400                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2401
2402         dm_bio_prison_destroy(pool->prison);
2403         dm_kcopyd_client_destroy(pool->copier);
2404
2405         if (pool->wq)
2406                 destroy_workqueue(pool->wq);
2407
2408         if (pool->next_mapping)
2409                 mempool_free(pool->next_mapping, pool->mapping_pool);
2410         mempool_destroy(pool->mapping_pool);
2411         dm_deferred_set_destroy(pool->shared_read_ds);
2412         dm_deferred_set_destroy(pool->all_io_ds);
2413         kfree(pool);
2414 }
2415
2416 static struct kmem_cache *_new_mapping_cache;
2417
2418 static struct pool *pool_create(struct mapped_device *pool_md,
2419                                 struct block_device *metadata_dev,
2420                                 unsigned long block_size,
2421                                 int read_only, char **error)
2422 {
2423         int r;
2424         void *err_p;
2425         struct pool *pool;
2426         struct dm_pool_metadata *pmd;
2427         bool format_device = read_only ? false : true;
2428
2429         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2430         if (IS_ERR(pmd)) {
2431                 *error = "Error creating metadata object";
2432                 return (struct pool *)pmd;
2433         }
2434
2435         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2436         if (!pool) {
2437                 *error = "Error allocating memory for pool";
2438                 err_p = ERR_PTR(-ENOMEM);
2439                 goto bad_pool;
2440         }
2441
2442         pool->pmd = pmd;
2443         pool->sectors_per_block = block_size;
2444         if (block_size & (block_size - 1))
2445                 pool->sectors_per_block_shift = -1;
2446         else
2447                 pool->sectors_per_block_shift = __ffs(block_size);
2448         pool->low_water_blocks = 0;
2449         pool_features_init(&pool->pf);
2450         pool->prison = dm_bio_prison_create();
2451         if (!pool->prison) {
2452                 *error = "Error creating pool's bio prison";
2453                 err_p = ERR_PTR(-ENOMEM);
2454                 goto bad_prison;
2455         }
2456
2457         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2458         if (IS_ERR(pool->copier)) {
2459                 r = PTR_ERR(pool->copier);
2460                 *error = "Error creating pool's kcopyd client";
2461                 err_p = ERR_PTR(r);
2462                 goto bad_kcopyd_client;
2463         }
2464
2465         /*
2466          * Create singlethreaded workqueue that will service all devices
2467          * that use this metadata.
2468          */
2469         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2470         if (!pool->wq) {
2471                 *error = "Error creating pool's workqueue";
2472                 err_p = ERR_PTR(-ENOMEM);
2473                 goto bad_wq;
2474         }
2475
2476         throttle_init(&pool->throttle);
2477         INIT_WORK(&pool->worker, do_worker);
2478         INIT_DELAYED_WORK(&pool->waker, do_waker);
2479         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2480         spin_lock_init(&pool->lock);
2481         bio_list_init(&pool->deferred_flush_bios);
2482         INIT_LIST_HEAD(&pool->prepared_mappings);
2483         INIT_LIST_HEAD(&pool->prepared_discards);
2484         INIT_LIST_HEAD(&pool->active_thins);
2485         pool->low_water_triggered = false;
2486
2487         pool->shared_read_ds = dm_deferred_set_create();
2488         if (!pool->shared_read_ds) {
2489                 *error = "Error creating pool's shared read deferred set";
2490                 err_p = ERR_PTR(-ENOMEM);
2491                 goto bad_shared_read_ds;
2492         }
2493
2494         pool->all_io_ds = dm_deferred_set_create();
2495         if (!pool->all_io_ds) {
2496                 *error = "Error creating pool's all io deferred set";
2497                 err_p = ERR_PTR(-ENOMEM);
2498                 goto bad_all_io_ds;
2499         }
2500
2501         pool->next_mapping = NULL;
2502         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2503                                                       _new_mapping_cache);
2504         if (!pool->mapping_pool) {
2505                 *error = "Error creating pool's mapping mempool";
2506                 err_p = ERR_PTR(-ENOMEM);
2507                 goto bad_mapping_pool;
2508         }
2509
2510         pool->ref_count = 1;
2511         pool->last_commit_jiffies = jiffies;
2512         pool->pool_md = pool_md;
2513         pool->md_dev = metadata_dev;
2514         __pool_table_insert(pool);
2515
2516         return pool;
2517
2518 bad_mapping_pool:
2519         dm_deferred_set_destroy(pool->all_io_ds);
2520 bad_all_io_ds:
2521         dm_deferred_set_destroy(pool->shared_read_ds);
2522 bad_shared_read_ds:
2523         destroy_workqueue(pool->wq);
2524 bad_wq:
2525         dm_kcopyd_client_destroy(pool->copier);
2526 bad_kcopyd_client:
2527         dm_bio_prison_destroy(pool->prison);
2528 bad_prison:
2529         kfree(pool);
2530 bad_pool:
2531         if (dm_pool_metadata_close(pmd))
2532                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2533
2534         return err_p;
2535 }
2536
2537 static void __pool_inc(struct pool *pool)
2538 {
2539         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2540         pool->ref_count++;
2541 }
2542
2543 static void __pool_dec(struct pool *pool)
2544 {
2545         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2546         BUG_ON(!pool->ref_count);
2547         if (!--pool->ref_count)
2548                 __pool_destroy(pool);
2549 }
2550
2551 static struct pool *__pool_find(struct mapped_device *pool_md,
2552                                 struct block_device *metadata_dev,
2553                                 unsigned long block_size, int read_only,
2554                                 char **error, int *created)
2555 {
2556         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2557
2558         if (pool) {
2559                 if (pool->pool_md != pool_md) {
2560                         *error = "metadata device already in use by a pool";
2561                         return ERR_PTR(-EBUSY);
2562                 }
2563                 __pool_inc(pool);
2564
2565         } else {
2566                 pool = __pool_table_lookup(pool_md);
2567                 if (pool) {
2568                         if (pool->md_dev != metadata_dev) {
2569                                 *error = "different pool cannot replace a pool";
2570                                 return ERR_PTR(-EINVAL);
2571                         }
2572                         __pool_inc(pool);
2573
2574                 } else {
2575                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2576                         *created = 1;
2577                 }
2578         }
2579
2580         return pool;
2581 }
2582
2583 /*----------------------------------------------------------------
2584  * Pool target methods
2585  *--------------------------------------------------------------*/
2586 static void pool_dtr(struct dm_target *ti)
2587 {
2588         struct pool_c *pt = ti->private;
2589
2590         mutex_lock(&dm_thin_pool_table.mutex);
2591
2592         unbind_control_target(pt->pool, ti);
2593         __pool_dec(pt->pool);
2594         dm_put_device(ti, pt->metadata_dev);
2595         dm_put_device(ti, pt->data_dev);
2596         kfree(pt);
2597
2598         mutex_unlock(&dm_thin_pool_table.mutex);
2599 }
2600
2601 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2602                                struct dm_target *ti)
2603 {
2604         int r;
2605         unsigned argc;
2606         const char *arg_name;
2607
2608         static struct dm_arg _args[] = {
2609                 {0, 4, "Invalid number of pool feature arguments"},
2610         };
2611
2612         /*
2613          * No feature arguments supplied.
2614          */
2615         if (!as->argc)
2616                 return 0;
2617
2618         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2619         if (r)
2620                 return -EINVAL;
2621
2622         while (argc && !r) {
2623                 arg_name = dm_shift_arg(as);
2624                 argc--;
2625
2626                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2627                         pf->zero_new_blocks = false;
2628
2629                 else if (!strcasecmp(arg_name, "ignore_discard"))
2630                         pf->discard_enabled = false;
2631
2632                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2633                         pf->discard_passdown = false;
2634
2635                 else if (!strcasecmp(arg_name, "read_only"))
2636                         pf->mode = PM_READ_ONLY;
2637
2638                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2639                         pf->error_if_no_space = true;
2640
2641                 else {
2642                         ti->error = "Unrecognised pool feature requested";
2643                         r = -EINVAL;
2644                         break;
2645                 }
2646         }
2647
2648         return r;
2649 }
2650
2651 static void metadata_low_callback(void *context)
2652 {
2653         struct pool *pool = context;
2654
2655         DMWARN("%s: reached low water mark for metadata device: sending event.",
2656                dm_device_name(pool->pool_md));
2657
2658         dm_table_event(pool->ti->table);
2659 }
2660
2661 static sector_t get_dev_size(struct block_device *bdev)
2662 {
2663         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2664 }
2665
2666 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2667 {
2668         sector_t metadata_dev_size = get_dev_size(bdev);
2669         char buffer[BDEVNAME_SIZE];
2670
2671         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2672                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2673                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2674 }
2675
2676 static sector_t get_metadata_dev_size(struct block_device *bdev)
2677 {
2678         sector_t metadata_dev_size = get_dev_size(bdev);
2679
2680         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2681                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2682
2683         return metadata_dev_size;
2684 }
2685
2686 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2687 {
2688         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2689
2690         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2691
2692         return metadata_dev_size;
2693 }
2694
2695 /*
2696  * When a metadata threshold is crossed a dm event is triggered, and
2697  * userland should respond by growing the metadata device.  We could let
2698  * userland set the threshold, like we do with the data threshold, but I'm
2699  * not sure they know enough to do this well.
2700  */
2701 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2702 {
2703         /*
2704          * 4M is ample for all ops with the possible exception of thin
2705          * device deletion which is harmless if it fails (just retry the
2706          * delete after you've grown the device).
2707          */
2708         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2709         return min((dm_block_t)1024ULL /* 4M */, quarter);
2710 }
2711
2712 /*
2713  * thin-pool <metadata dev> <data dev>
2714  *           <data block size (sectors)>
2715  *           <low water mark (blocks)>
2716  *           [<#feature args> [<arg>]*]
2717  *
2718  * Optional feature arguments are:
2719  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2720  *           ignore_discard: disable discard
2721  *           no_discard_passdown: don't pass discards down to the data device
2722  *           read_only: Don't allow any changes to be made to the pool metadata.
2723  *           error_if_no_space: error IOs, instead of queueing, if no space.
2724  */
2725 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2726 {
2727         int r, pool_created = 0;
2728         struct pool_c *pt;
2729         struct pool *pool;
2730         struct pool_features pf;
2731         struct dm_arg_set as;
2732         struct dm_dev *data_dev;
2733         unsigned long block_size;
2734         dm_block_t low_water_blocks;
2735         struct dm_dev *metadata_dev;
2736         fmode_t metadata_mode;
2737
2738         /*
2739          * FIXME Remove validation from scope of lock.
2740          */
2741         mutex_lock(&dm_thin_pool_table.mutex);
2742
2743         if (argc < 4) {
2744                 ti->error = "Invalid argument count";
2745                 r = -EINVAL;
2746                 goto out_unlock;
2747         }
2748
2749         as.argc = argc;
2750         as.argv = argv;
2751
2752         /*
2753          * Set default pool features.
2754          */
2755         pool_features_init(&pf);
2756
2757         dm_consume_args(&as, 4);
2758         r = parse_pool_features(&as, &pf, ti);
2759         if (r)
2760                 goto out_unlock;
2761
2762         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2763         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2764         if (r) {
2765                 ti->error = "Error opening metadata block device";
2766                 goto out_unlock;
2767         }
2768         warn_if_metadata_device_too_big(metadata_dev->bdev);
2769
2770         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2771         if (r) {
2772                 ti->error = "Error getting data device";
2773                 goto out_metadata;
2774         }
2775
2776         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2777             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2778             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2779             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2780                 ti->error = "Invalid block size";
2781                 r = -EINVAL;
2782                 goto out;
2783         }
2784
2785         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2786                 ti->error = "Invalid low water mark";
2787                 r = -EINVAL;
2788                 goto out;
2789         }
2790
2791         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2792         if (!pt) {
2793                 r = -ENOMEM;
2794                 goto out;
2795         }
2796
2797         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2798                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2799         if (IS_ERR(pool)) {
2800                 r = PTR_ERR(pool);
2801                 goto out_free_pt;
2802         }
2803
2804         /*
2805          * 'pool_created' reflects whether this is the first table load.
2806          * Top level discard support is not allowed to be changed after
2807          * initial load.  This would require a pool reload to trigger thin
2808          * device changes.
2809          */
2810         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2811                 ti->error = "Discard support cannot be disabled once enabled";
2812                 r = -EINVAL;
2813                 goto out_flags_changed;
2814         }
2815
2816         pt->pool = pool;
2817         pt->ti = ti;
2818         pt->metadata_dev = metadata_dev;
2819         pt->data_dev = data_dev;
2820         pt->low_water_blocks = low_water_blocks;
2821         pt->adjusted_pf = pt->requested_pf = pf;
2822         ti->num_flush_bios = 1;
2823
2824         /*
2825          * Only need to enable discards if the pool should pass
2826          * them down to the data device.  The thin device's discard
2827          * processing will cause mappings to be removed from the btree.
2828          */
2829         ti->discard_zeroes_data_unsupported = true;
2830         if (pf.discard_enabled && pf.discard_passdown) {
2831                 ti->num_discard_bios = 1;
2832
2833                 /*
2834                  * Setting 'discards_supported' circumvents the normal
2835                  * stacking of discard limits (this keeps the pool and
2836                  * thin devices' discard limits consistent).
2837                  */
2838                 ti->discards_supported = true;
2839         }
2840         ti->private = pt;
2841
2842         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2843                                                 calc_metadata_threshold(pt),
2844                                                 metadata_low_callback,
2845                                                 pool);
2846         if (r)
2847                 goto out_free_pt;
2848
2849         pt->callbacks.congested_fn = pool_is_congested;
2850         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2851
2852         mutex_unlock(&dm_thin_pool_table.mutex);
2853
2854         return 0;
2855
2856 out_flags_changed:
2857         __pool_dec(pool);
2858 out_free_pt:
2859         kfree(pt);
2860 out:
2861         dm_put_device(ti, data_dev);
2862 out_metadata:
2863         dm_put_device(ti, metadata_dev);
2864 out_unlock:
2865         mutex_unlock(&dm_thin_pool_table.mutex);
2866
2867         return r;
2868 }
2869
2870 static int pool_map(struct dm_target *ti, struct bio *bio)
2871 {
2872         int r;
2873         struct pool_c *pt = ti->private;
2874         struct pool *pool = pt->pool;
2875         unsigned long flags;
2876
2877         /*
2878          * As this is a singleton target, ti->begin is always zero.
2879          */
2880         spin_lock_irqsave(&pool->lock, flags);
2881         bio->bi_bdev = pt->data_dev->bdev;
2882         r = DM_MAPIO_REMAPPED;
2883         spin_unlock_irqrestore(&pool->lock, flags);
2884
2885         return r;
2886 }
2887
2888 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2889 {
2890         int r;
2891         struct pool_c *pt = ti->private;
2892         struct pool *pool = pt->pool;
2893         sector_t data_size = ti->len;
2894         dm_block_t sb_data_size;
2895
2896         *need_commit = false;
2897
2898         (void) sector_div(data_size, pool->sectors_per_block);
2899
2900         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2901         if (r) {
2902                 DMERR("%s: failed to retrieve data device size",
2903                       dm_device_name(pool->pool_md));
2904                 return r;
2905         }
2906
2907         if (data_size < sb_data_size) {
2908                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2909                       dm_device_name(pool->pool_md),
2910                       (unsigned long long)data_size, sb_data_size);
2911                 return -EINVAL;
2912
2913         } else if (data_size > sb_data_size) {
2914                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2915                         DMERR("%s: unable to grow the data device until repaired.",
2916                               dm_device_name(pool->pool_md));
2917                         return 0;
2918                 }
2919
2920                 if (sb_data_size)
2921                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2922                                dm_device_name(pool->pool_md),
2923                                sb_data_size, (unsigned long long)data_size);
2924                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2925                 if (r) {
2926                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2927                         return r;
2928                 }
2929
2930                 *need_commit = true;
2931         }
2932
2933         return 0;
2934 }
2935
2936 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2937 {
2938         int r;
2939         struct pool_c *pt = ti->private;
2940         struct pool *pool = pt->pool;
2941         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2942
2943         *need_commit = false;
2944
2945         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2946
2947         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2948         if (r) {
2949                 DMERR("%s: failed to retrieve metadata device size",
2950                       dm_device_name(pool->pool_md));
2951                 return r;
2952         }
2953
2954         if (metadata_dev_size < sb_metadata_dev_size) {
2955                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2956                       dm_device_name(pool->pool_md),
2957                       metadata_dev_size, sb_metadata_dev_size);
2958                 return -EINVAL;
2959
2960         } else if (metadata_dev_size > sb_metadata_dev_size) {
2961                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2962                         DMERR("%s: unable to grow the metadata device until repaired.",
2963                               dm_device_name(pool->pool_md));
2964                         return 0;
2965                 }
2966
2967                 warn_if_metadata_device_too_big(pool->md_dev);
2968                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2969                        dm_device_name(pool->pool_md),
2970                        sb_metadata_dev_size, metadata_dev_size);
2971                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2972                 if (r) {
2973                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2974                         return r;
2975                 }
2976
2977                 *need_commit = true;
2978         }
2979
2980         return 0;
2981 }
2982
2983 /*
2984  * Retrieves the number of blocks of the data device from
2985  * the superblock and compares it to the actual device size,
2986  * thus resizing the data device in case it has grown.
2987  *
2988  * This both copes with opening preallocated data devices in the ctr
2989  * being followed by a resume
2990  * -and-
2991  * calling the resume method individually after userspace has
2992  * grown the data device in reaction to a table event.
2993  */
2994 static int pool_preresume(struct dm_target *ti)
2995 {
2996         int r;
2997         bool need_commit1, need_commit2;
2998         struct pool_c *pt = ti->private;
2999         struct pool *pool = pt->pool;
3000
3001         /*
3002          * Take control of the pool object.
3003          */
3004         r = bind_control_target(pool, ti);
3005         if (r)
3006                 return r;
3007
3008         r = maybe_resize_data_dev(ti, &need_commit1);
3009         if (r)
3010                 return r;
3011
3012         r = maybe_resize_metadata_dev(ti, &need_commit2);
3013         if (r)
3014                 return r;
3015
3016         if (need_commit1 || need_commit2)
3017                 (void) commit(pool);
3018
3019         return 0;
3020 }
3021
3022 static void pool_resume(struct dm_target *ti)
3023 {
3024         struct pool_c *pt = ti->private;
3025         struct pool *pool = pt->pool;
3026         unsigned long flags;
3027
3028         spin_lock_irqsave(&pool->lock, flags);
3029         pool->low_water_triggered = false;
3030         spin_unlock_irqrestore(&pool->lock, flags);
3031         requeue_bios(pool);
3032
3033         do_waker(&pool->waker.work);
3034 }
3035
3036 static void pool_postsuspend(struct dm_target *ti)
3037 {
3038         struct pool_c *pt = ti->private;
3039         struct pool *pool = pt->pool;
3040
3041         cancel_delayed_work(&pool->waker);
3042         cancel_delayed_work(&pool->no_space_timeout);
3043         flush_workqueue(pool->wq);
3044         (void) commit(pool);
3045 }
3046
3047 static int check_arg_count(unsigned argc, unsigned args_required)
3048 {
3049         if (argc != args_required) {
3050                 DMWARN("Message received with %u arguments instead of %u.",
3051                        argc, args_required);
3052                 return -EINVAL;
3053         }
3054
3055         return 0;
3056 }
3057
3058 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3059 {
3060         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3061             *dev_id <= MAX_DEV_ID)
3062                 return 0;
3063
3064         if (warning)
3065                 DMWARN("Message received with invalid device id: %s", arg);
3066
3067         return -EINVAL;
3068 }
3069
3070 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3071 {
3072         dm_thin_id dev_id;
3073         int r;
3074
3075         r = check_arg_count(argc, 2);
3076         if (r)
3077                 return r;
3078
3079         r = read_dev_id(argv[1], &dev_id, 1);
3080         if (r)
3081                 return r;
3082
3083         r = dm_pool_create_thin(pool->pmd, dev_id);
3084         if (r) {
3085                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3086                        argv[1]);
3087                 return r;
3088         }
3089
3090         return 0;
3091 }
3092
3093 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3094 {
3095         dm_thin_id dev_id;
3096         dm_thin_id origin_dev_id;
3097         int r;
3098
3099         r = check_arg_count(argc, 3);
3100         if (r)
3101                 return r;
3102
3103         r = read_dev_id(argv[1], &dev_id, 1);
3104         if (r)
3105                 return r;
3106
3107         r = read_dev_id(argv[2], &origin_dev_id, 1);
3108         if (r)
3109                 return r;
3110
3111         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3112         if (r) {
3113                 DMWARN("Creation of new snapshot %s of device %s failed.",
3114                        argv[1], argv[2]);
3115                 return r;
3116         }
3117
3118         return 0;
3119 }
3120
3121 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3122 {
3123         dm_thin_id dev_id;
3124         int r;
3125
3126         r = check_arg_count(argc, 2);
3127         if (r)
3128                 return r;
3129
3130         r = read_dev_id(argv[1], &dev_id, 1);
3131         if (r)
3132                 return r;
3133
3134         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3135         if (r)
3136                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3137
3138         return r;
3139 }
3140
3141 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3142 {
3143         dm_thin_id old_id, new_id;
3144         int r;
3145
3146         r = check_arg_count(argc, 3);
3147         if (r)
3148                 return r;
3149
3150         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3151                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3152                 return -EINVAL;
3153         }
3154
3155         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3156                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3157                 return -EINVAL;
3158         }
3159
3160         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3161         if (r) {
3162                 DMWARN("Failed to change transaction id from %s to %s.",
3163                        argv[1], argv[2]);
3164                 return r;
3165         }
3166
3167         return 0;
3168 }
3169
3170 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3171 {
3172         int r;
3173
3174         r = check_arg_count(argc, 1);
3175         if (r)
3176                 return r;
3177
3178         (void) commit(pool);
3179
3180         r = dm_pool_reserve_metadata_snap(pool->pmd);
3181         if (r)
3182                 DMWARN("reserve_metadata_snap message failed.");
3183
3184         return r;
3185 }
3186
3187 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3188 {
3189         int r;
3190
3191         r = check_arg_count(argc, 1);
3192         if (r)
3193                 return r;
3194
3195         r = dm_pool_release_metadata_snap(pool->pmd);
3196         if (r)
3197                 DMWARN("release_metadata_snap message failed.");
3198
3199         return r;
3200 }
3201
3202 /*
3203  * Messages supported:
3204  *   create_thin        <dev_id>
3205  *   create_snap        <dev_id> <origin_id>
3206  *   delete             <dev_id>
3207  *   trim               <dev_id> <new_size_in_sectors>
3208  *   set_transaction_id <current_trans_id> <new_trans_id>
3209  *   reserve_metadata_snap
3210  *   release_metadata_snap
3211  */
3212 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3213 {
3214         int r = -EINVAL;
3215         struct pool_c *pt = ti->private;
3216         struct pool *pool = pt->pool;
3217
3218         if (!strcasecmp(argv[0], "create_thin"))
3219                 r = process_create_thin_mesg(argc, argv, pool);
3220
3221         else if (!strcasecmp(argv[0], "create_snap"))
3222                 r = process_create_snap_mesg(argc, argv, pool);
3223
3224         else if (!strcasecmp(argv[0], "delete"))
3225                 r = process_delete_mesg(argc, argv, pool);
3226
3227         else if (!strcasecmp(argv[0], "set_transaction_id"))
3228                 r = process_set_transaction_id_mesg(argc, argv, pool);
3229
3230         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3231                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3232
3233         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3234                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3235
3236         else
3237                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3238
3239         if (!r)
3240                 (void) commit(pool);
3241
3242         return r;
3243 }
3244
3245 static void emit_flags(struct pool_features *pf, char *result,
3246                        unsigned sz, unsigned maxlen)
3247 {
3248         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3249                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3250                 pf->error_if_no_space;
3251         DMEMIT("%u ", count);
3252
3253         if (!pf->zero_new_blocks)
3254                 DMEMIT("skip_block_zeroing ");
3255
3256         if (!pf->discard_enabled)
3257                 DMEMIT("ignore_discard ");
3258
3259         if (!pf->discard_passdown)
3260                 DMEMIT("no_discard_passdown ");
3261
3262         if (pf->mode == PM_READ_ONLY)
3263                 DMEMIT("read_only ");
3264
3265         if (pf->error_if_no_space)
3266                 DMEMIT("error_if_no_space ");
3267 }
3268
3269 /*
3270  * Status line is:
3271  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3272  *    <used data sectors>/<total data sectors> <held metadata root>
3273  */
3274 static void pool_status(struct dm_target *ti, status_type_t type,
3275                         unsigned status_flags, char *result, unsigned maxlen)
3276 {
3277         int r;
3278         unsigned sz = 0;
3279         uint64_t transaction_id;
3280         dm_block_t nr_free_blocks_data;
3281         dm_block_t nr_free_blocks_metadata;
3282         dm_block_t nr_blocks_data;
3283         dm_block_t nr_blocks_metadata;
3284         dm_block_t held_root;
3285         char buf[BDEVNAME_SIZE];
3286         char buf2[BDEVNAME_SIZE];
3287         struct pool_c *pt = ti->private;
3288         struct pool *pool = pt->pool;
3289
3290         switch (type) {
3291         case STATUSTYPE_INFO:
3292                 if (get_pool_mode(pool) == PM_FAIL) {
3293                         DMEMIT("Fail");
3294                         break;
3295                 }
3296
3297                 /* Commit to ensure statistics aren't out-of-date */
3298                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3299                         (void) commit(pool);
3300
3301                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3302                 if (r) {
3303                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3304                               dm_device_name(pool->pool_md), r);
3305                         goto err;
3306                 }
3307
3308                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3309                 if (r) {
3310                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3311                               dm_device_name(pool->pool_md), r);
3312                         goto err;
3313                 }
3314
3315                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3316                 if (r) {
3317                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3318                               dm_device_name(pool->pool_md), r);
3319                         goto err;
3320                 }
3321
3322                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3323                 if (r) {
3324                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3325                               dm_device_name(pool->pool_md), r);
3326                         goto err;
3327                 }
3328
3329                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3330                 if (r) {
3331                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3332                               dm_device_name(pool->pool_md), r);
3333                         goto err;
3334                 }
3335
3336                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3337                 if (r) {
3338                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3339                               dm_device_name(pool->pool_md), r);
3340                         goto err;
3341                 }
3342
3343                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3344                        (unsigned long long)transaction_id,
3345                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3346                        (unsigned long long)nr_blocks_metadata,
3347                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3348                        (unsigned long long)nr_blocks_data);
3349
3350                 if (held_root)
3351                         DMEMIT("%llu ", held_root);
3352                 else
3353                         DMEMIT("- ");
3354
3355                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3356                         DMEMIT("out_of_data_space ");
3357                 else if (pool->pf.mode == PM_READ_ONLY)
3358                         DMEMIT("ro ");
3359                 else
3360                         DMEMIT("rw ");
3361
3362                 if (!pool->pf.discard_enabled)
3363                         DMEMIT("ignore_discard ");
3364                 else if (pool->pf.discard_passdown)
3365                         DMEMIT("discard_passdown ");
3366                 else
3367                         DMEMIT("no_discard_passdown ");
3368
3369                 if (pool->pf.error_if_no_space)
3370                         DMEMIT("error_if_no_space ");
3371                 else
3372                         DMEMIT("queue_if_no_space ");
3373
3374                 break;
3375
3376         case STATUSTYPE_TABLE:
3377                 DMEMIT("%s %s %lu %llu ",
3378                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3379                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3380                        (unsigned long)pool->sectors_per_block,
3381                        (unsigned long long)pt->low_water_blocks);
3382                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3383                 break;
3384         }
3385         return;
3386
3387 err:
3388         DMEMIT("Error");
3389 }
3390
3391 static int pool_iterate_devices(struct dm_target *ti,
3392                                 iterate_devices_callout_fn fn, void *data)
3393 {
3394         struct pool_c *pt = ti->private;
3395
3396         return fn(ti, pt->data_dev, 0, ti->len, data);
3397 }
3398
3399 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3400                       struct bio_vec *biovec, int max_size)
3401 {
3402         struct pool_c *pt = ti->private;
3403         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3404
3405         if (!q->merge_bvec_fn)
3406                 return max_size;
3407
3408         bvm->bi_bdev = pt->data_dev->bdev;
3409
3410         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3411 }
3412
3413 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3414 {
3415         struct pool *pool = pt->pool;
3416         struct queue_limits *data_limits;
3417
3418         limits->max_discard_sectors = pool->sectors_per_block;
3419
3420         /*
3421          * discard_granularity is just a hint, and not enforced.
3422          */
3423         if (pt->adjusted_pf.discard_passdown) {
3424                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3425                 limits->discard_granularity = max(data_limits->discard_granularity,
3426                                                   pool->sectors_per_block << SECTOR_SHIFT);
3427         } else
3428                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3429 }
3430
3431 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3432 {
3433         struct pool_c *pt = ti->private;
3434         struct pool *pool = pt->pool;
3435         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3436
3437         /*
3438          * Adjust max_sectors_kb to highest possible power-of-2
3439          * factor of pool->sectors_per_block.
3440          */
3441         if (limits->max_hw_sectors & (limits->max_hw_sectors - 1))
3442                 limits->max_sectors = rounddown_pow_of_two(limits->max_hw_sectors);
3443         else
3444                 limits->max_sectors = limits->max_hw_sectors;
3445
3446         if (limits->max_sectors < pool->sectors_per_block) {
3447                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3448                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3449                                 limits->max_sectors--;
3450                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3451                 }
3452         } else if (block_size_is_power_of_two(pool)) {
3453                 /* max_sectors_kb is >= power-of-2 thinp blocksize */
3454                 while (!is_factor(limits->max_sectors, pool->sectors_per_block)) {
3455                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3456                                 limits->max_sectors--;
3457                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3458                 }
3459         }
3460
3461         /*
3462          * If the system-determined stacked limits are compatible with the
3463          * pool's blocksize (io_opt is a factor) do not override them.
3464          */
3465         if (io_opt_sectors < pool->sectors_per_block ||
3466             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3467                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3468                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3469                 else
3470                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3471                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3472         }
3473
3474         /*
3475          * pt->adjusted_pf is a staging area for the actual features to use.
3476          * They get transferred to the live pool in bind_control_target()
3477          * called from pool_preresume().
3478          */
3479         if (!pt->adjusted_pf.discard_enabled) {
3480                 /*
3481                  * Must explicitly disallow stacking discard limits otherwise the
3482                  * block layer will stack them if pool's data device has support.
3483                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3484                  * user to see that, so make sure to set all discard limits to 0.
3485                  */
3486                 limits->discard_granularity = 0;
3487                 return;
3488         }
3489
3490         disable_passdown_if_not_supported(pt);
3491
3492         set_discard_limits(pt, limits);
3493 }
3494
3495 static struct target_type pool_target = {
3496         .name = "thin-pool",
3497         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3498                     DM_TARGET_IMMUTABLE,
3499         .version = {1, 14, 0},
3500         .module = THIS_MODULE,
3501         .ctr = pool_ctr,
3502         .dtr = pool_dtr,
3503         .map = pool_map,
3504         .postsuspend = pool_postsuspend,
3505         .preresume = pool_preresume,
3506         .resume = pool_resume,
3507         .message = pool_message,
3508         .status = pool_status,
3509         .merge = pool_merge,
3510         .iterate_devices = pool_iterate_devices,
3511         .io_hints = pool_io_hints,
3512 };
3513
3514 /*----------------------------------------------------------------
3515  * Thin target methods
3516  *--------------------------------------------------------------*/
3517 static void thin_get(struct thin_c *tc)
3518 {
3519         atomic_inc(&tc->refcount);
3520 }
3521
3522 static void thin_put(struct thin_c *tc)
3523 {
3524         if (atomic_dec_and_test(&tc->refcount))
3525                 complete(&tc->can_destroy);
3526 }
3527
3528 static void thin_dtr(struct dm_target *ti)
3529 {
3530         struct thin_c *tc = ti->private;
3531         unsigned long flags;
3532
3533         thin_put(tc);
3534         wait_for_completion(&tc->can_destroy);
3535
3536         spin_lock_irqsave(&tc->pool->lock, flags);
3537         list_del_rcu(&tc->list);
3538         spin_unlock_irqrestore(&tc->pool->lock, flags);
3539         synchronize_rcu();
3540
3541         mutex_lock(&dm_thin_pool_table.mutex);
3542
3543         __pool_dec(tc->pool);
3544         dm_pool_close_thin_device(tc->td);
3545         dm_put_device(ti, tc->pool_dev);
3546         if (tc->origin_dev)
3547                 dm_put_device(ti, tc->origin_dev);
3548         kfree(tc);
3549
3550         mutex_unlock(&dm_thin_pool_table.mutex);
3551 }
3552
3553 /*
3554  * Thin target parameters:
3555  *
3556  * <pool_dev> <dev_id> [origin_dev]
3557  *
3558  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3559  * dev_id: the internal device identifier
3560  * origin_dev: a device external to the pool that should act as the origin
3561  *
3562  * If the pool device has discards disabled, they get disabled for the thin
3563  * device as well.
3564  */
3565 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3566 {
3567         int r;
3568         struct thin_c *tc;
3569         struct dm_dev *pool_dev, *origin_dev;
3570         struct mapped_device *pool_md;
3571         unsigned long flags;
3572
3573         mutex_lock(&dm_thin_pool_table.mutex);
3574
3575         if (argc != 2 && argc != 3) {
3576                 ti->error = "Invalid argument count";
3577                 r = -EINVAL;
3578                 goto out_unlock;
3579         }
3580
3581         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3582         if (!tc) {
3583                 ti->error = "Out of memory";
3584                 r = -ENOMEM;
3585                 goto out_unlock;
3586         }
3587         spin_lock_init(&tc->lock);
3588         INIT_LIST_HEAD(&tc->deferred_cells);
3589         bio_list_init(&tc->deferred_bio_list);
3590         bio_list_init(&tc->retry_on_resume_list);
3591         tc->sort_bio_list = RB_ROOT;
3592
3593         if (argc == 3) {
3594                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3595                 if (r) {
3596                         ti->error = "Error opening origin device";
3597                         goto bad_origin_dev;
3598                 }
3599                 tc->origin_dev = origin_dev;
3600         }
3601
3602         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3603         if (r) {
3604                 ti->error = "Error opening pool device";
3605                 goto bad_pool_dev;
3606         }
3607         tc->pool_dev = pool_dev;
3608
3609         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3610                 ti->error = "Invalid device id";
3611                 r = -EINVAL;
3612                 goto bad_common;
3613         }
3614
3615         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3616         if (!pool_md) {
3617                 ti->error = "Couldn't get pool mapped device";
3618                 r = -EINVAL;
3619                 goto bad_common;
3620         }
3621
3622         tc->pool = __pool_table_lookup(pool_md);
3623         if (!tc->pool) {
3624                 ti->error = "Couldn't find pool object";
3625                 r = -EINVAL;
3626                 goto bad_pool_lookup;
3627         }
3628         __pool_inc(tc->pool);
3629
3630         if (get_pool_mode(tc->pool) == PM_FAIL) {
3631                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3632                 r = -EINVAL;
3633                 goto bad_thin_open;
3634         }
3635
3636         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3637         if (r) {
3638                 ti->error = "Couldn't open thin internal device";
3639                 goto bad_thin_open;
3640         }
3641
3642         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3643         if (r)
3644                 goto bad_target_max_io_len;
3645
3646         ti->num_flush_bios = 1;
3647         ti->flush_supported = true;
3648         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3649
3650         /* In case the pool supports discards, pass them on. */
3651         ti->discard_zeroes_data_unsupported = true;
3652         if (tc->pool->pf.discard_enabled) {
3653                 ti->discards_supported = true;
3654                 ti->num_discard_bios = 1;
3655                 /* Discard bios must be split on a block boundary */
3656                 ti->split_discard_bios = true;
3657         }
3658
3659         dm_put(pool_md);
3660
3661         mutex_unlock(&dm_thin_pool_table.mutex);
3662
3663         atomic_set(&tc->refcount, 1);
3664         init_completion(&tc->can_destroy);
3665
3666         spin_lock_irqsave(&tc->pool->lock, flags);
3667         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3668         spin_unlock_irqrestore(&tc->pool->lock, flags);
3669         /*
3670          * This synchronize_rcu() call is needed here otherwise we risk a
3671          * wake_worker() call finding no bios to process (because the newly
3672          * added tc isn't yet visible).  So this reduces latency since we
3673          * aren't then dependent on the periodic commit to wake_worker().
3674          */
3675         synchronize_rcu();
3676
3677         return 0;
3678
3679 bad_target_max_io_len:
3680         dm_pool_close_thin_device(tc->td);
3681 bad_thin_open:
3682         __pool_dec(tc->pool);
3683 bad_pool_lookup:
3684         dm_put(pool_md);
3685 bad_common:
3686         dm_put_device(ti, tc->pool_dev);
3687 bad_pool_dev:
3688         if (tc->origin_dev)
3689                 dm_put_device(ti, tc->origin_dev);
3690 bad_origin_dev:
3691         kfree(tc);
3692 out_unlock:
3693         mutex_unlock(&dm_thin_pool_table.mutex);
3694
3695         return r;
3696 }
3697
3698 static int thin_map(struct dm_target *ti, struct bio *bio)
3699 {
3700         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3701
3702         return thin_bio_map(ti, bio);
3703 }
3704
3705 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3706 {
3707         unsigned long flags;
3708         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3709         struct list_head work;
3710         struct dm_thin_new_mapping *m, *tmp;
3711         struct pool *pool = h->tc->pool;
3712
3713         if (h->shared_read_entry) {
3714                 INIT_LIST_HEAD(&work);
3715                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3716
3717                 spin_lock_irqsave(&pool->lock, flags);
3718                 list_for_each_entry_safe(m, tmp, &work, list) {
3719                         list_del(&m->list);
3720                         __complete_mapping_preparation(m);
3721                 }
3722                 spin_unlock_irqrestore(&pool->lock, flags);
3723         }
3724
3725         if (h->all_io_entry) {
3726                 INIT_LIST_HEAD(&work);
3727                 dm_deferred_entry_dec(h->all_io_entry, &work);
3728                 if (!list_empty(&work)) {
3729                         spin_lock_irqsave(&pool->lock, flags);
3730                         list_for_each_entry_safe(m, tmp, &work, list)
3731                                 list_add_tail(&m->list, &pool->prepared_discards);
3732                         spin_unlock_irqrestore(&pool->lock, flags);
3733                         wake_worker(pool);
3734                 }
3735         }
3736
3737         return 0;
3738 }
3739
3740 static void thin_presuspend(struct dm_target *ti)
3741 {
3742         struct thin_c *tc = ti->private;
3743
3744         if (dm_noflush_suspending(ti))
3745                 noflush_work(tc, do_noflush_start);
3746 }
3747
3748 static void thin_postsuspend(struct dm_target *ti)
3749 {
3750         struct thin_c *tc = ti->private;
3751
3752         /*
3753          * The dm_noflush_suspending flag has been cleared by now, so
3754          * unfortunately we must always run this.
3755          */
3756         noflush_work(tc, do_noflush_stop);
3757 }
3758
3759 static int thin_preresume(struct dm_target *ti)
3760 {
3761         struct thin_c *tc = ti->private;
3762
3763         if (tc->origin_dev)
3764                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3765
3766         return 0;
3767 }
3768
3769 /*
3770  * <nr mapped sectors> <highest mapped sector>
3771  */
3772 static void thin_status(struct dm_target *ti, status_type_t type,
3773                         unsigned status_flags, char *result, unsigned maxlen)
3774 {
3775         int r;
3776         ssize_t sz = 0;
3777         dm_block_t mapped, highest;
3778         char buf[BDEVNAME_SIZE];
3779         struct thin_c *tc = ti->private;
3780
3781         if (get_pool_mode(tc->pool) == PM_FAIL) {
3782                 DMEMIT("Fail");
3783                 return;
3784         }
3785
3786         if (!tc->td)
3787                 DMEMIT("-");
3788         else {
3789                 switch (type) {
3790                 case STATUSTYPE_INFO:
3791                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3792                         if (r) {
3793                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3794                                 goto err;
3795                         }
3796
3797                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3798                         if (r < 0) {
3799                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3800                                 goto err;
3801                         }
3802
3803                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3804                         if (r)
3805                                 DMEMIT("%llu", ((highest + 1) *
3806                                                 tc->pool->sectors_per_block) - 1);
3807                         else
3808                                 DMEMIT("-");
3809                         break;
3810
3811                 case STATUSTYPE_TABLE:
3812                         DMEMIT("%s %lu",
3813                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3814                                (unsigned long) tc->dev_id);
3815                         if (tc->origin_dev)
3816                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3817                         break;
3818                 }
3819         }
3820
3821         return;
3822
3823 err:
3824         DMEMIT("Error");
3825 }
3826
3827 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3828                       struct bio_vec *biovec, int max_size)
3829 {
3830         struct thin_c *tc = ti->private;
3831         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
3832
3833         if (!q->merge_bvec_fn)
3834                 return max_size;
3835
3836         bvm->bi_bdev = tc->pool_dev->bdev;
3837         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
3838
3839         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3840 }
3841
3842 static int thin_iterate_devices(struct dm_target *ti,
3843                                 iterate_devices_callout_fn fn, void *data)
3844 {
3845         sector_t blocks;
3846         struct thin_c *tc = ti->private;
3847         struct pool *pool = tc->pool;
3848
3849         /*
3850          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3851          * we follow a more convoluted path through to the pool's target.
3852          */
3853         if (!pool->ti)
3854                 return 0;       /* nothing is bound */
3855
3856         blocks = pool->ti->len;
3857         (void) sector_div(blocks, pool->sectors_per_block);
3858         if (blocks)
3859                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3860
3861         return 0;
3862 }
3863
3864 static struct target_type thin_target = {
3865         .name = "thin",
3866         .version = {1, 14, 0},
3867         .module = THIS_MODULE,
3868         .ctr = thin_ctr,
3869         .dtr = thin_dtr,
3870         .map = thin_map,
3871         .end_io = thin_endio,
3872         .preresume = thin_preresume,
3873         .presuspend = thin_presuspend,
3874         .postsuspend = thin_postsuspend,
3875         .status = thin_status,
3876         .merge = thin_merge,
3877         .iterate_devices = thin_iterate_devices,
3878 };
3879
3880 /*----------------------------------------------------------------*/
3881
3882 static int __init dm_thin_init(void)
3883 {
3884         int r;
3885
3886         pool_table_init();
3887
3888         r = dm_register_target(&thin_target);
3889         if (r)
3890                 return r;
3891
3892         r = dm_register_target(&pool_target);
3893         if (r)
3894                 goto bad_pool_target;
3895
3896         r = -ENOMEM;
3897
3898         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3899         if (!_new_mapping_cache)
3900                 goto bad_new_mapping_cache;
3901
3902         return 0;
3903
3904 bad_new_mapping_cache:
3905         dm_unregister_target(&pool_target);
3906 bad_pool_target:
3907         dm_unregister_target(&thin_target);
3908
3909         return r;
3910 }
3911
3912 static void dm_thin_exit(void)
3913 {
3914         dm_unregister_target(&thin_target);
3915         dm_unregister_target(&pool_target);
3916
3917         kmem_cache_destroy(_new_mapping_cache);
3918 }
3919
3920 module_init(dm_thin_init);
3921 module_exit(dm_thin_exit);
3922
3923 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3924 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3925
3926 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3927 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3928 MODULE_LICENSE("GPL");