]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
96ce36a1a764216f8768dacd828d802a50dc9d49
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         bool low_water_triggered:1;     /* A dm event has been sent */
167         bool no_free_space:1;           /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239         queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245                       struct dm_bio_prison_cell **cell_result)
246 {
247         int r;
248         struct dm_bio_prison_cell *cell_prealloc;
249
250         /*
251          * Allocate a cell from the prison's mempool.
252          * This might block but it can't fail.
253          */
254         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257         if (r)
258                 /*
259                  * We reused an old cell; we can get rid of
260                  * the new one.
261                  */
262                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264         return r;
265 }
266
267 static void cell_release(struct pool *pool,
268                          struct dm_bio_prison_cell *cell,
269                          struct bio_list *bios)
270 {
271         dm_cell_release(pool->prison, cell, bios);
272         dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276                                    struct dm_bio_prison_cell *cell,
277                                    struct bio_list *bios)
278 {
279         dm_cell_release_no_holder(pool->prison, cell, bios);
280         dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284                                          struct dm_bio_prison_cell *cell)
285 {
286         struct pool *pool = tc->pool;
287         unsigned long flags;
288
289         spin_lock_irqsave(&pool->lock, flags);
290         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291         spin_unlock_irqrestore(&pool->lock, flags);
292
293         wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297                        struct dm_bio_prison_cell *cell)
298 {
299         dm_cell_error(pool->prison, cell);
300         dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309         struct mutex mutex;
310         struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315         mutex_init(&dm_thin_pool_table.mutex);
316         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322         list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328         list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333         struct pool *pool = NULL, *tmp;
334
335         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338                 if (tmp->pool_md == md) {
339                         pool = tmp;
340                         break;
341                 }
342         }
343
344         return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349         struct pool *pool = NULL, *tmp;
350
351         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354                 if (tmp->md_dev == md_dev) {
355                         pool = tmp;
356                         break;
357                 }
358         }
359
360         return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366         struct thin_c *tc;
367         struct dm_deferred_entry *shared_read_entry;
368         struct dm_deferred_entry *all_io_entry;
369         struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374         struct bio *bio;
375         struct bio_list bios;
376
377         bio_list_init(&bios);
378         bio_list_merge(&bios, master);
379         bio_list_init(master);
380
381         while ((bio = bio_list_pop(&bios))) {
382                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384                 if (h->tc == tc)
385                         bio_endio(bio, DM_ENDIO_REQUEUE);
386                 else
387                         bio_list_add(master, bio);
388         }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393         struct pool *pool = tc->pool;
394         unsigned long flags;
395
396         spin_lock_irqsave(&pool->lock, flags);
397         __requeue_bio_list(tc, &pool->deferred_bios);
398         __requeue_bio_list(tc, &pool->retry_on_resume_list);
399         spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411         return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416         struct pool *pool = tc->pool;
417         sector_t block_nr = bio->bi_sector;
418
419         if (block_size_is_power_of_two(pool))
420                 block_nr >>= pool->sectors_per_block_shift;
421         else
422                 (void) sector_div(block_nr, pool->sectors_per_block);
423
424         return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429         struct pool *pool = tc->pool;
430         sector_t bi_sector = bio->bi_sector;
431
432         bio->bi_bdev = tc->pool_dev->bdev;
433         if (block_size_is_power_of_two(pool))
434                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
435                                 (bi_sector & (pool->sectors_per_block - 1));
436         else
437                 bio->bi_sector = (block * pool->sectors_per_block) +
438                                  sector_div(bi_sector, pool->sectors_per_block);
439 }
440
441 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
442 {
443         bio->bi_bdev = tc->origin_dev->bdev;
444 }
445
446 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
447 {
448         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
449                 dm_thin_changed_this_transaction(tc->td);
450 }
451
452 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
453 {
454         struct dm_thin_endio_hook *h;
455
456         if (bio->bi_rw & REQ_DISCARD)
457                 return;
458
459         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
460         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
461 }
462
463 static void issue(struct thin_c *tc, struct bio *bio)
464 {
465         struct pool *pool = tc->pool;
466         unsigned long flags;
467
468         if (!bio_triggers_commit(tc, bio)) {
469                 generic_make_request(bio);
470                 return;
471         }
472
473         /*
474          * Complete bio with an error if earlier I/O caused changes to
475          * the metadata that can't be committed e.g, due to I/O errors
476          * on the metadata device.
477          */
478         if (dm_thin_aborted_changes(tc->td)) {
479                 bio_io_error(bio);
480                 return;
481         }
482
483         /*
484          * Batch together any bios that trigger commits and then issue a
485          * single commit for them in process_deferred_bios().
486          */
487         spin_lock_irqsave(&pool->lock, flags);
488         bio_list_add(&pool->deferred_flush_bios, bio);
489         spin_unlock_irqrestore(&pool->lock, flags);
490 }
491
492 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
493 {
494         remap_to_origin(tc, bio);
495         issue(tc, bio);
496 }
497
498 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
499                             dm_block_t block)
500 {
501         remap(tc, bio, block);
502         issue(tc, bio);
503 }
504
505 /*----------------------------------------------------------------*/
506
507 /*
508  * Bio endio functions.
509  */
510 struct dm_thin_new_mapping {
511         struct list_head list;
512
513         bool quiesced:1;
514         bool prepared:1;
515         bool pass_discard:1;
516         bool definitely_not_shared:1;
517
518         int err;
519         struct thin_c *tc;
520         dm_block_t virt_block;
521         dm_block_t data_block;
522         struct dm_bio_prison_cell *cell, *cell2;
523
524         /*
525          * If the bio covers the whole area of a block then we can avoid
526          * zeroing or copying.  Instead this bio is hooked.  The bio will
527          * still be in the cell, so care has to be taken to avoid issuing
528          * the bio twice.
529          */
530         struct bio *bio;
531         bio_end_io_t *saved_bi_end_io;
532 };
533
534 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
535 {
536         struct pool *pool = m->tc->pool;
537
538         if (m->quiesced && m->prepared) {
539                 list_add_tail(&m->list, &pool->prepared_mappings);
540                 wake_worker(pool);
541         }
542 }
543
544 static void copy_complete(int read_err, unsigned long write_err, void *context)
545 {
546         unsigned long flags;
547         struct dm_thin_new_mapping *m = context;
548         struct pool *pool = m->tc->pool;
549
550         m->err = read_err || write_err ? -EIO : 0;
551
552         spin_lock_irqsave(&pool->lock, flags);
553         m->prepared = true;
554         __maybe_add_mapping(m);
555         spin_unlock_irqrestore(&pool->lock, flags);
556 }
557
558 static void overwrite_endio(struct bio *bio, int err)
559 {
560         unsigned long flags;
561         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
562         struct dm_thin_new_mapping *m = h->overwrite_mapping;
563         struct pool *pool = m->tc->pool;
564
565         m->err = err;
566
567         spin_lock_irqsave(&pool->lock, flags);
568         m->prepared = true;
569         __maybe_add_mapping(m);
570         spin_unlock_irqrestore(&pool->lock, flags);
571 }
572
573 /*----------------------------------------------------------------*/
574
575 /*
576  * Workqueue.
577  */
578
579 /*
580  * Prepared mapping jobs.
581  */
582
583 /*
584  * This sends the bios in the cell back to the deferred_bios list.
585  */
586 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
587 {
588         struct pool *pool = tc->pool;
589         unsigned long flags;
590
591         spin_lock_irqsave(&pool->lock, flags);
592         cell_release(pool, cell, &pool->deferred_bios);
593         spin_unlock_irqrestore(&tc->pool->lock, flags);
594
595         wake_worker(pool);
596 }
597
598 /*
599  * Same as cell_defer above, except it omits the original holder of the cell.
600  */
601 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
602 {
603         struct pool *pool = tc->pool;
604         unsigned long flags;
605
606         spin_lock_irqsave(&pool->lock, flags);
607         cell_release_no_holder(pool, cell, &pool->deferred_bios);
608         spin_unlock_irqrestore(&pool->lock, flags);
609
610         wake_worker(pool);
611 }
612
613 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
614 {
615         if (m->bio)
616                 m->bio->bi_end_io = m->saved_bi_end_io;
617         cell_error(m->tc->pool, m->cell);
618         list_del(&m->list);
619         mempool_free(m, m->tc->pool->mapping_pool);
620 }
621
622 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
623 {
624         struct thin_c *tc = m->tc;
625         struct pool *pool = tc->pool;
626         struct bio *bio;
627         int r;
628
629         bio = m->bio;
630         if (bio)
631                 bio->bi_end_io = m->saved_bi_end_io;
632
633         if (m->err) {
634                 cell_error(pool, m->cell);
635                 goto out;
636         }
637
638         /*
639          * Commit the prepared block into the mapping btree.
640          * Any I/O for this block arriving after this point will get
641          * remapped to it directly.
642          */
643         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
644         if (r) {
645                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
646                 cell_error(pool, m->cell);
647                 goto out;
648         }
649
650         /*
651          * Release any bios held while the block was being provisioned.
652          * If we are processing a write bio that completely covers the block,
653          * we already processed it so can ignore it now when processing
654          * the bios in the cell.
655          */
656         if (bio) {
657                 cell_defer_no_holder(tc, m->cell);
658                 bio_endio(bio, 0);
659         } else
660                 cell_defer(tc, m->cell);
661
662 out:
663         list_del(&m->list);
664         mempool_free(m, pool->mapping_pool);
665 }
666
667 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
668 {
669         struct thin_c *tc = m->tc;
670
671         bio_io_error(m->bio);
672         cell_defer_no_holder(tc, m->cell);
673         cell_defer_no_holder(tc, m->cell2);
674         mempool_free(m, tc->pool->mapping_pool);
675 }
676
677 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
678 {
679         struct thin_c *tc = m->tc;
680
681         inc_all_io_entry(tc->pool, m->bio);
682         cell_defer_no_holder(tc, m->cell);
683         cell_defer_no_holder(tc, m->cell2);
684
685         if (m->pass_discard)
686                 if (m->definitely_not_shared)
687                         remap_and_issue(tc, m->bio, m->data_block);
688                 else {
689                         bool used = false;
690                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
691                                 bio_endio(m->bio, 0);
692                         else
693                                 remap_and_issue(tc, m->bio, m->data_block);
694                 }
695         else
696                 bio_endio(m->bio, 0);
697
698         mempool_free(m, tc->pool->mapping_pool);
699 }
700
701 static void process_prepared_discard(struct dm_thin_new_mapping *m)
702 {
703         int r;
704         struct thin_c *tc = m->tc;
705
706         r = dm_thin_remove_block(tc->td, m->virt_block);
707         if (r)
708                 DMERR_LIMIT("dm_thin_remove_block() failed");
709
710         process_prepared_discard_passdown(m);
711 }
712
713 static void process_prepared(struct pool *pool, struct list_head *head,
714                              process_mapping_fn *fn)
715 {
716         unsigned long flags;
717         struct list_head maps;
718         struct dm_thin_new_mapping *m, *tmp;
719
720         INIT_LIST_HEAD(&maps);
721         spin_lock_irqsave(&pool->lock, flags);
722         list_splice_init(head, &maps);
723         spin_unlock_irqrestore(&pool->lock, flags);
724
725         list_for_each_entry_safe(m, tmp, &maps, list)
726                 (*fn)(m);
727 }
728
729 /*
730  * Deferred bio jobs.
731  */
732 static int io_overlaps_block(struct pool *pool, struct bio *bio)
733 {
734         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
735 }
736
737 static int io_overwrites_block(struct pool *pool, struct bio *bio)
738 {
739         return (bio_data_dir(bio) == WRITE) &&
740                 io_overlaps_block(pool, bio);
741 }
742
743 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
744                                bio_end_io_t *fn)
745 {
746         *save = bio->bi_end_io;
747         bio->bi_end_io = fn;
748 }
749
750 static int ensure_next_mapping(struct pool *pool)
751 {
752         if (pool->next_mapping)
753                 return 0;
754
755         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
756
757         return pool->next_mapping ? 0 : -ENOMEM;
758 }
759
760 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
761 {
762         struct dm_thin_new_mapping *m = pool->next_mapping;
763
764         BUG_ON(!pool->next_mapping);
765
766         memset(m, 0, sizeof(struct dm_thin_new_mapping));
767         INIT_LIST_HEAD(&m->list);
768         m->bio = NULL;
769
770         pool->next_mapping = NULL;
771
772         return m;
773 }
774
775 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
776                           struct dm_dev *origin, dm_block_t data_origin,
777                           dm_block_t data_dest,
778                           struct dm_bio_prison_cell *cell, struct bio *bio)
779 {
780         int r;
781         struct pool *pool = tc->pool;
782         struct dm_thin_new_mapping *m = get_next_mapping(pool);
783
784         m->tc = tc;
785         m->virt_block = virt_block;
786         m->data_block = data_dest;
787         m->cell = cell;
788
789         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
790                 m->quiesced = true;
791
792         /*
793          * IO to pool_dev remaps to the pool target's data_dev.
794          *
795          * If the whole block of data is being overwritten, we can issue the
796          * bio immediately. Otherwise we use kcopyd to clone the data first.
797          */
798         if (io_overwrites_block(pool, bio)) {
799                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
800
801                 h->overwrite_mapping = m;
802                 m->bio = bio;
803                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
804                 inc_all_io_entry(pool, bio);
805                 remap_and_issue(tc, bio, data_dest);
806         } else {
807                 struct dm_io_region from, to;
808
809                 from.bdev = origin->bdev;
810                 from.sector = data_origin * pool->sectors_per_block;
811                 from.count = pool->sectors_per_block;
812
813                 to.bdev = tc->pool_dev->bdev;
814                 to.sector = data_dest * pool->sectors_per_block;
815                 to.count = pool->sectors_per_block;
816
817                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
818                                    0, copy_complete, m);
819                 if (r < 0) {
820                         mempool_free(m, pool->mapping_pool);
821                         DMERR_LIMIT("dm_kcopyd_copy() failed");
822                         cell_error(pool, cell);
823                 }
824         }
825 }
826
827 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
828                                    dm_block_t data_origin, dm_block_t data_dest,
829                                    struct dm_bio_prison_cell *cell, struct bio *bio)
830 {
831         schedule_copy(tc, virt_block, tc->pool_dev,
832                       data_origin, data_dest, cell, bio);
833 }
834
835 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
836                                    dm_block_t data_dest,
837                                    struct dm_bio_prison_cell *cell, struct bio *bio)
838 {
839         schedule_copy(tc, virt_block, tc->origin_dev,
840                       virt_block, data_dest, cell, bio);
841 }
842
843 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
844                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
845                           struct bio *bio)
846 {
847         struct pool *pool = tc->pool;
848         struct dm_thin_new_mapping *m = get_next_mapping(pool);
849
850         m->quiesced = true;
851         m->prepared = false;
852         m->tc = tc;
853         m->virt_block = virt_block;
854         m->data_block = data_block;
855         m->cell = cell;
856
857         /*
858          * If the whole block of data is being overwritten or we are not
859          * zeroing pre-existing data, we can issue the bio immediately.
860          * Otherwise we use kcopyd to zero the data first.
861          */
862         if (!pool->pf.zero_new_blocks)
863                 process_prepared_mapping(m);
864
865         else if (io_overwrites_block(pool, bio)) {
866                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
867
868                 h->overwrite_mapping = m;
869                 m->bio = bio;
870                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
871                 inc_all_io_entry(pool, bio);
872                 remap_and_issue(tc, bio, data_block);
873         } else {
874                 int r;
875                 struct dm_io_region to;
876
877                 to.bdev = tc->pool_dev->bdev;
878                 to.sector = data_block * pool->sectors_per_block;
879                 to.count = pool->sectors_per_block;
880
881                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
882                 if (r < 0) {
883                         mempool_free(m, pool->mapping_pool);
884                         DMERR_LIMIT("dm_kcopyd_zero() failed");
885                         cell_error(pool, cell);
886                 }
887         }
888 }
889
890 /*
891  * A non-zero return indicates read_only or fail_io mode.
892  * Many callers don't care about the return value.
893  */
894 static int commit(struct pool *pool)
895 {
896         int r;
897
898         if (get_pool_mode(pool) != PM_WRITE)
899                 return -EINVAL;
900
901         r = dm_pool_commit_metadata(pool->pmd);
902         if (r)
903                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
904
905         return r;
906 }
907
908 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
909 {
910         unsigned long flags;
911
912         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
913                 DMWARN("%s: reached low water mark for data device: sending event.",
914                        dm_device_name(pool->pool_md));
915                 spin_lock_irqsave(&pool->lock, flags);
916                 pool->low_water_triggered = true;
917                 spin_unlock_irqrestore(&pool->lock, flags);
918                 dm_table_event(pool->ti->table);
919         }
920 }
921
922 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
923 {
924         int r;
925         dm_block_t free_blocks;
926         struct pool *pool = tc->pool;
927
928         if (get_pool_mode(pool) != PM_WRITE)
929                 return -EINVAL;
930
931         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
932         if (r) {
933                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
934                 return r;
935         }
936
937         check_low_water_mark(pool, free_blocks);
938
939         if (!free_blocks) {
940                 /*
941                  * Try to commit to see if that will free up some
942                  * more space.
943                  */
944                 r = commit(pool);
945                 if (r)
946                         return r;
947
948                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
949                 if (r) {
950                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
951                         return r;
952                 }
953
954                 if (!free_blocks) {
955                         out_of_data_space(pool);
956                         return -ENOSPC;
957                 }
958         }
959
960         r = dm_pool_alloc_data_block(pool->pmd, result);
961         if (r) {
962                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
963                 return r;
964         }
965
966         return 0;
967 }
968
969 /*
970  * If we have run out of space, queue bios until the device is
971  * resumed, presumably after having been reloaded with more space.
972  */
973 static void retry_on_resume(struct bio *bio)
974 {
975         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976         struct thin_c *tc = h->tc;
977         struct pool *pool = tc->pool;
978         unsigned long flags;
979
980         spin_lock_irqsave(&pool->lock, flags);
981         bio_list_add(&pool->retry_on_resume_list, bio);
982         spin_unlock_irqrestore(&pool->lock, flags);
983 }
984
985 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987         struct bio *bio;
988         struct bio_list bios;
989
990         bio_list_init(&bios);
991         cell_release(pool, cell, &bios);
992
993         while ((bio = bio_list_pop(&bios)))
994                 retry_on_resume(bio);
995 }
996
997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999         int r;
1000         unsigned long flags;
1001         struct pool *pool = tc->pool;
1002         struct dm_bio_prison_cell *cell, *cell2;
1003         struct dm_cell_key key, key2;
1004         dm_block_t block = get_bio_block(tc, bio);
1005         struct dm_thin_lookup_result lookup_result;
1006         struct dm_thin_new_mapping *m;
1007
1008         build_virtual_key(tc->td, block, &key);
1009         if (bio_detain(tc->pool, &key, bio, &cell))
1010                 return;
1011
1012         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013         switch (r) {
1014         case 0:
1015                 /*
1016                  * Check nobody is fiddling with this pool block.  This can
1017                  * happen if someone's in the process of breaking sharing
1018                  * on this block.
1019                  */
1020                 build_data_key(tc->td, lookup_result.block, &key2);
1021                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022                         cell_defer_no_holder(tc, cell);
1023                         break;
1024                 }
1025
1026                 if (io_overlaps_block(pool, bio)) {
1027                         /*
1028                          * IO may still be going to the destination block.  We must
1029                          * quiesce before we can do the removal.
1030                          */
1031                         m = get_next_mapping(pool);
1032                         m->tc = tc;
1033                         m->pass_discard = pool->pf.discard_passdown;
1034                         m->definitely_not_shared = !lookup_result.shared;
1035                         m->virt_block = block;
1036                         m->data_block = lookup_result.block;
1037                         m->cell = cell;
1038                         m->cell2 = cell2;
1039                         m->bio = bio;
1040
1041                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042                                 spin_lock_irqsave(&pool->lock, flags);
1043                                 list_add_tail(&m->list, &pool->prepared_discards);
1044                                 spin_unlock_irqrestore(&pool->lock, flags);
1045                                 wake_worker(pool);
1046                         }
1047                 } else {
1048                         inc_all_io_entry(pool, bio);
1049                         cell_defer_no_holder(tc, cell);
1050                         cell_defer_no_holder(tc, cell2);
1051
1052                         /*
1053                          * The DM core makes sure that the discard doesn't span
1054                          * a block boundary.  So we submit the discard of a
1055                          * partial block appropriately.
1056                          */
1057                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058                                 remap_and_issue(tc, bio, lookup_result.block);
1059                         else
1060                                 bio_endio(bio, 0);
1061                 }
1062                 break;
1063
1064         case -ENODATA:
1065                 /*
1066                  * It isn't provisioned, just forget it.
1067                  */
1068                 cell_defer_no_holder(tc, cell);
1069                 bio_endio(bio, 0);
1070                 break;
1071
1072         default:
1073                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074                             __func__, r);
1075                 cell_defer_no_holder(tc, cell);
1076                 bio_io_error(bio);
1077                 break;
1078         }
1079 }
1080
1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082                           struct dm_cell_key *key,
1083                           struct dm_thin_lookup_result *lookup_result,
1084                           struct dm_bio_prison_cell *cell)
1085 {
1086         int r;
1087         dm_block_t data_block;
1088         struct pool *pool = tc->pool;
1089
1090         r = alloc_data_block(tc, &data_block);
1091         switch (r) {
1092         case 0:
1093                 schedule_internal_copy(tc, block, lookup_result->block,
1094                                        data_block, cell, bio);
1095                 break;
1096
1097         case -ENOSPC:
1098                 retry_bios_on_resume(pool, cell);
1099                 break;
1100
1101         default:
1102                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1103                             __func__, r);
1104                 cell_error(pool, cell);
1105                 break;
1106         }
1107 }
1108
1109 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1110                                dm_block_t block,
1111                                struct dm_thin_lookup_result *lookup_result)
1112 {
1113         struct dm_bio_prison_cell *cell;
1114         struct pool *pool = tc->pool;
1115         struct dm_cell_key key;
1116
1117         /*
1118          * If cell is already occupied, then sharing is already in the process
1119          * of being broken so we have nothing further to do here.
1120          */
1121         build_data_key(tc->td, lookup_result->block, &key);
1122         if (bio_detain(pool, &key, bio, &cell))
1123                 return;
1124
1125         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1126                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1127         else {
1128                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1129
1130                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1131                 inc_all_io_entry(pool, bio);
1132                 cell_defer_no_holder(tc, cell);
1133
1134                 remap_and_issue(tc, bio, lookup_result->block);
1135         }
1136 }
1137
1138 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1139                             struct dm_bio_prison_cell *cell)
1140 {
1141         int r;
1142         dm_block_t data_block;
1143         struct pool *pool = tc->pool;
1144
1145         /*
1146          * Remap empty bios (flushes) immediately, without provisioning.
1147          */
1148         if (!bio->bi_size) {
1149                 inc_all_io_entry(pool, bio);
1150                 cell_defer_no_holder(tc, cell);
1151
1152                 remap_and_issue(tc, bio, 0);
1153                 return;
1154         }
1155
1156         /*
1157          * Fill read bios with zeroes and complete them immediately.
1158          */
1159         if (bio_data_dir(bio) == READ) {
1160                 zero_fill_bio(bio);
1161                 cell_defer_no_holder(tc, cell);
1162                 bio_endio(bio, 0);
1163                 return;
1164         }
1165
1166         r = alloc_data_block(tc, &data_block);
1167         switch (r) {
1168         case 0:
1169                 if (tc->origin_dev)
1170                         schedule_external_copy(tc, block, data_block, cell, bio);
1171                 else
1172                         schedule_zero(tc, block, data_block, cell, bio);
1173                 break;
1174
1175         case -ENOSPC:
1176                 retry_bios_on_resume(pool, cell);
1177                 break;
1178
1179         default:
1180                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1181                             __func__, r);
1182                 cell_error(pool, cell);
1183                 break;
1184         }
1185 }
1186
1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189         int r;
1190         struct pool *pool = tc->pool;
1191         dm_block_t block = get_bio_block(tc, bio);
1192         struct dm_bio_prison_cell *cell;
1193         struct dm_cell_key key;
1194         struct dm_thin_lookup_result lookup_result;
1195
1196         /*
1197          * If cell is already occupied, then the block is already
1198          * being provisioned so we have nothing further to do here.
1199          */
1200         build_virtual_key(tc->td, block, &key);
1201         if (bio_detain(pool, &key, bio, &cell))
1202                 return;
1203
1204         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205         switch (r) {
1206         case 0:
1207                 if (lookup_result.shared) {
1208                         process_shared_bio(tc, bio, block, &lookup_result);
1209                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210                 } else {
1211                         inc_all_io_entry(pool, bio);
1212                         cell_defer_no_holder(tc, cell);
1213
1214                         remap_and_issue(tc, bio, lookup_result.block);
1215                 }
1216                 break;
1217
1218         case -ENODATA:
1219                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220                         inc_all_io_entry(pool, bio);
1221                         cell_defer_no_holder(tc, cell);
1222
1223                         remap_to_origin_and_issue(tc, bio);
1224                 } else
1225                         provision_block(tc, bio, block, cell);
1226                 break;
1227
1228         default:
1229                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230                             __func__, r);
1231                 cell_defer_no_holder(tc, cell);
1232                 bio_io_error(bio);
1233                 break;
1234         }
1235 }
1236
1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239         int r;
1240         int rw = bio_data_dir(bio);
1241         dm_block_t block = get_bio_block(tc, bio);
1242         struct dm_thin_lookup_result lookup_result;
1243
1244         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245         switch (r) {
1246         case 0:
1247                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248                         bio_io_error(bio);
1249                 else {
1250                         inc_all_io_entry(tc->pool, bio);
1251                         remap_and_issue(tc, bio, lookup_result.block);
1252                 }
1253                 break;
1254
1255         case -ENODATA:
1256                 if (rw != READ) {
1257                         bio_io_error(bio);
1258                         break;
1259                 }
1260
1261                 if (tc->origin_dev) {
1262                         inc_all_io_entry(tc->pool, bio);
1263                         remap_to_origin_and_issue(tc, bio);
1264                         break;
1265                 }
1266
1267                 zero_fill_bio(bio);
1268                 bio_endio(bio, 0);
1269                 break;
1270
1271         default:
1272                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273                             __func__, r);
1274                 bio_io_error(bio);
1275                 break;
1276         }
1277 }
1278
1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281         bio_io_error(bio);
1282 }
1283
1284 /*
1285  * FIXME: should we also commit due to size of transaction, measured in
1286  * metadata blocks?
1287  */
1288 static int need_commit_due_to_time(struct pool *pool)
1289 {
1290         return jiffies < pool->last_commit_jiffies ||
1291                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1292 }
1293
1294 static void process_deferred_bios(struct pool *pool)
1295 {
1296         unsigned long flags;
1297         struct bio *bio;
1298         struct bio_list bios;
1299
1300         bio_list_init(&bios);
1301
1302         spin_lock_irqsave(&pool->lock, flags);
1303         bio_list_merge(&bios, &pool->deferred_bios);
1304         bio_list_init(&pool->deferred_bios);
1305         spin_unlock_irqrestore(&pool->lock, flags);
1306
1307         while ((bio = bio_list_pop(&bios))) {
1308                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1309                 struct thin_c *tc = h->tc;
1310
1311                 /*
1312                  * If we've got no free new_mapping structs, and processing
1313                  * this bio might require one, we pause until there are some
1314                  * prepared mappings to process.
1315                  */
1316                 if (ensure_next_mapping(pool)) {
1317                         spin_lock_irqsave(&pool->lock, flags);
1318                         bio_list_merge(&pool->deferred_bios, &bios);
1319                         spin_unlock_irqrestore(&pool->lock, flags);
1320
1321                         break;
1322                 }
1323
1324                 if (bio->bi_rw & REQ_DISCARD)
1325                         pool->process_discard(tc, bio);
1326                 else
1327                         pool->process_bio(tc, bio);
1328         }
1329
1330         /*
1331          * If there are any deferred flush bios, we must commit
1332          * the metadata before issuing them.
1333          */
1334         bio_list_init(&bios);
1335         spin_lock_irqsave(&pool->lock, flags);
1336         bio_list_merge(&bios, &pool->deferred_flush_bios);
1337         bio_list_init(&pool->deferred_flush_bios);
1338         spin_unlock_irqrestore(&pool->lock, flags);
1339
1340         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1341                 return;
1342
1343         if (commit(pool)) {
1344                 while ((bio = bio_list_pop(&bios)))
1345                         bio_io_error(bio);
1346                 return;
1347         }
1348         pool->last_commit_jiffies = jiffies;
1349
1350         while ((bio = bio_list_pop(&bios)))
1351                 generic_make_request(bio);
1352 }
1353
1354 static void do_worker(struct work_struct *ws)
1355 {
1356         struct pool *pool = container_of(ws, struct pool, worker);
1357
1358         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1359         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1360         process_deferred_bios(pool);
1361 }
1362
1363 /*
1364  * We want to commit periodically so that not too much
1365  * unwritten data builds up.
1366  */
1367 static void do_waker(struct work_struct *ws)
1368 {
1369         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1370         wake_worker(pool);
1371         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1372 }
1373
1374 /*----------------------------------------------------------------*/
1375
1376 static enum pool_mode get_pool_mode(struct pool *pool)
1377 {
1378         return pool->pf.mode;
1379 }
1380
1381 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1382 {
1383         int r;
1384
1385         pool->pf.mode = mode;
1386
1387         switch (mode) {
1388         case PM_FAIL:
1389                 DMERR("%s: switching pool to failure mode",
1390                       dm_device_name(pool->pool_md));
1391                 dm_pool_metadata_read_only(pool->pmd);
1392                 pool->process_bio = process_bio_fail;
1393                 pool->process_discard = process_bio_fail;
1394                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1395                 pool->process_prepared_discard = process_prepared_discard_fail;
1396                 break;
1397
1398         case PM_READ_ONLY:
1399                 DMERR("%s: switching pool to read-only mode",
1400                       dm_device_name(pool->pool_md));
1401                 r = dm_pool_abort_metadata(pool->pmd);
1402                 if (r) {
1403                         DMERR("%s: aborting transaction failed",
1404                               dm_device_name(pool->pool_md));
1405                         set_pool_mode(pool, PM_FAIL);
1406                 } else {
1407                         dm_pool_metadata_read_only(pool->pmd);
1408                         pool->process_bio = process_bio_read_only;
1409                         pool->process_discard = process_discard;
1410                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1411                         pool->process_prepared_discard = process_prepared_discard_passdown;
1412                 }
1413                 break;
1414
1415         case PM_WRITE:
1416                 dm_pool_metadata_read_write(pool->pmd);
1417                 pool->process_bio = process_bio;
1418                 pool->process_discard = process_discard;
1419                 pool->process_prepared_mapping = process_prepared_mapping;
1420                 pool->process_prepared_discard = process_prepared_discard;
1421                 break;
1422         }
1423 }
1424
1425 static void set_no_free_space(struct pool *pool)
1426 {
1427         unsigned long flags;
1428
1429         spin_lock_irqsave(&pool->lock, flags);
1430         pool->no_free_space = true;
1431         spin_unlock_irqrestore(&pool->lock, flags);
1432 }
1433
1434 /*
1435  * Rather than calling set_pool_mode directly, use these which describe the
1436  * reason for mode degradation.
1437  */
1438 static void out_of_data_space(struct pool *pool)
1439 {
1440         DMERR_LIMIT("%s: no free data space available.",
1441                     dm_device_name(pool->pool_md));
1442         set_no_free_space(pool);
1443         set_pool_mode(pool, PM_READ_ONLY);
1444 }
1445
1446 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1447 {
1448         dm_block_t free_blocks;
1449
1450         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1451                     dm_device_name(pool->pool_md), op, r);
1452
1453         if (r == -ENOSPC &&
1454             !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1455             !free_blocks) {
1456                 DMERR_LIMIT("%s: no free metadata space available.",
1457                             dm_device_name(pool->pool_md));
1458                 set_no_free_space(pool);
1459         }
1460
1461         set_pool_mode(pool, PM_READ_ONLY);
1462 }
1463
1464 /*----------------------------------------------------------------*/
1465
1466 /*
1467  * Mapping functions.
1468  */
1469
1470 /*
1471  * Called only while mapping a thin bio to hand it over to the workqueue.
1472  */
1473 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1474 {
1475         unsigned long flags;
1476         struct pool *pool = tc->pool;
1477
1478         spin_lock_irqsave(&pool->lock, flags);
1479         bio_list_add(&pool->deferred_bios, bio);
1480         spin_unlock_irqrestore(&pool->lock, flags);
1481
1482         wake_worker(pool);
1483 }
1484
1485 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1486 {
1487         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1488
1489         h->tc = tc;
1490         h->shared_read_entry = NULL;
1491         h->all_io_entry = NULL;
1492         h->overwrite_mapping = NULL;
1493 }
1494
1495 /*
1496  * Non-blocking function called from the thin target's map function.
1497  */
1498 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1499 {
1500         int r;
1501         struct thin_c *tc = ti->private;
1502         dm_block_t block = get_bio_block(tc, bio);
1503         struct dm_thin_device *td = tc->td;
1504         struct dm_thin_lookup_result result;
1505         struct dm_bio_prison_cell cell1, cell2;
1506         struct dm_bio_prison_cell *cell_result;
1507         struct dm_cell_key key;
1508
1509         thin_hook_bio(tc, bio);
1510
1511         if (get_pool_mode(tc->pool) == PM_FAIL) {
1512                 bio_io_error(bio);
1513                 return DM_MAPIO_SUBMITTED;
1514         }
1515
1516         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1517                 thin_defer_bio(tc, bio);
1518                 return DM_MAPIO_SUBMITTED;
1519         }
1520
1521         r = dm_thin_find_block(td, block, 0, &result);
1522
1523         /*
1524          * Note that we defer readahead too.
1525          */
1526         switch (r) {
1527         case 0:
1528                 if (unlikely(result.shared)) {
1529                         /*
1530                          * We have a race condition here between the
1531                          * result.shared value returned by the lookup and
1532                          * snapshot creation, which may cause new
1533                          * sharing.
1534                          *
1535                          * To avoid this always quiesce the origin before
1536                          * taking the snap.  You want to do this anyway to
1537                          * ensure a consistent application view
1538                          * (i.e. lockfs).
1539                          *
1540                          * More distant ancestors are irrelevant. The
1541                          * shared flag will be set in their case.
1542                          */
1543                         thin_defer_bio(tc, bio);
1544                         return DM_MAPIO_SUBMITTED;
1545                 }
1546
1547                 build_virtual_key(tc->td, block, &key);
1548                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1549                         return DM_MAPIO_SUBMITTED;
1550
1551                 build_data_key(tc->td, result.block, &key);
1552                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1553                         cell_defer_no_holder_no_free(tc, &cell1);
1554                         return DM_MAPIO_SUBMITTED;
1555                 }
1556
1557                 inc_all_io_entry(tc->pool, bio);
1558                 cell_defer_no_holder_no_free(tc, &cell2);
1559                 cell_defer_no_holder_no_free(tc, &cell1);
1560
1561                 remap(tc, bio, result.block);
1562                 return DM_MAPIO_REMAPPED;
1563
1564         case -ENODATA:
1565                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1566                         /*
1567                          * This block isn't provisioned, and we have no way
1568                          * of doing so.  Just error it.
1569                          */
1570                         bio_io_error(bio);
1571                         return DM_MAPIO_SUBMITTED;
1572                 }
1573                 /* fall through */
1574
1575         case -EWOULDBLOCK:
1576                 /*
1577                  * In future, the failed dm_thin_find_block above could
1578                  * provide the hint to load the metadata into cache.
1579                  */
1580                 thin_defer_bio(tc, bio);
1581                 return DM_MAPIO_SUBMITTED;
1582
1583         default:
1584                 /*
1585                  * Must always call bio_io_error on failure.
1586                  * dm_thin_find_block can fail with -EINVAL if the
1587                  * pool is switched to fail-io mode.
1588                  */
1589                 bio_io_error(bio);
1590                 return DM_MAPIO_SUBMITTED;
1591         }
1592 }
1593
1594 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1595 {
1596         int r;
1597         unsigned long flags;
1598         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1599
1600         spin_lock_irqsave(&pt->pool->lock, flags);
1601         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1602         spin_unlock_irqrestore(&pt->pool->lock, flags);
1603
1604         if (!r) {
1605                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1606                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1607         }
1608
1609         return r;
1610 }
1611
1612 static void __requeue_bios(struct pool *pool)
1613 {
1614         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1615         bio_list_init(&pool->retry_on_resume_list);
1616 }
1617
1618 /*----------------------------------------------------------------
1619  * Binding of control targets to a pool object
1620  *--------------------------------------------------------------*/
1621 static bool data_dev_supports_discard(struct pool_c *pt)
1622 {
1623         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1624
1625         return q && blk_queue_discard(q);
1626 }
1627
1628 static bool is_factor(sector_t block_size, uint32_t n)
1629 {
1630         return !sector_div(block_size, n);
1631 }
1632
1633 /*
1634  * If discard_passdown was enabled verify that the data device
1635  * supports discards.  Disable discard_passdown if not.
1636  */
1637 static void disable_passdown_if_not_supported(struct pool_c *pt)
1638 {
1639         struct pool *pool = pt->pool;
1640         struct block_device *data_bdev = pt->data_dev->bdev;
1641         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1642         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1643         const char *reason = NULL;
1644         char buf[BDEVNAME_SIZE];
1645
1646         if (!pt->adjusted_pf.discard_passdown)
1647                 return;
1648
1649         if (!data_dev_supports_discard(pt))
1650                 reason = "discard unsupported";
1651
1652         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1653                 reason = "max discard sectors smaller than a block";
1654
1655         else if (data_limits->discard_granularity > block_size)
1656                 reason = "discard granularity larger than a block";
1657
1658         else if (!is_factor(block_size, data_limits->discard_granularity))
1659                 reason = "discard granularity not a factor of block size";
1660
1661         if (reason) {
1662                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1663                 pt->adjusted_pf.discard_passdown = false;
1664         }
1665 }
1666
1667 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1668 {
1669         struct pool_c *pt = ti->private;
1670
1671         /*
1672          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1673          */
1674         enum pool_mode old_mode = pool->pf.mode;
1675         enum pool_mode new_mode = pt->adjusted_pf.mode;
1676
1677         /*
1678          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1679          * not going to recover without a thin_repair.  So we never let the
1680          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1681          * may have been due to a lack of metadata or data space, and may
1682          * now work (ie. if the underlying devices have been resized).
1683          */
1684         if (old_mode == PM_FAIL)
1685                 new_mode = old_mode;
1686
1687         pool->ti = ti;
1688         pool->low_water_blocks = pt->low_water_blocks;
1689         pool->pf = pt->adjusted_pf;
1690
1691         set_pool_mode(pool, new_mode);
1692
1693         return 0;
1694 }
1695
1696 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1697 {
1698         if (pool->ti == ti)
1699                 pool->ti = NULL;
1700 }
1701
1702 /*----------------------------------------------------------------
1703  * Pool creation
1704  *--------------------------------------------------------------*/
1705 /* Initialize pool features. */
1706 static void pool_features_init(struct pool_features *pf)
1707 {
1708         pf->mode = PM_WRITE;
1709         pf->zero_new_blocks = true;
1710         pf->discard_enabled = true;
1711         pf->discard_passdown = true;
1712 }
1713
1714 static void __pool_destroy(struct pool *pool)
1715 {
1716         __pool_table_remove(pool);
1717
1718         if (dm_pool_metadata_close(pool->pmd) < 0)
1719                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1720
1721         dm_bio_prison_destroy(pool->prison);
1722         dm_kcopyd_client_destroy(pool->copier);
1723
1724         if (pool->wq)
1725                 destroy_workqueue(pool->wq);
1726
1727         if (pool->next_mapping)
1728                 mempool_free(pool->next_mapping, pool->mapping_pool);
1729         mempool_destroy(pool->mapping_pool);
1730         dm_deferred_set_destroy(pool->shared_read_ds);
1731         dm_deferred_set_destroy(pool->all_io_ds);
1732         kfree(pool);
1733 }
1734
1735 static struct kmem_cache *_new_mapping_cache;
1736
1737 static struct pool *pool_create(struct mapped_device *pool_md,
1738                                 struct block_device *metadata_dev,
1739                                 unsigned long block_size,
1740                                 int read_only, char **error)
1741 {
1742         int r;
1743         void *err_p;
1744         struct pool *pool;
1745         struct dm_pool_metadata *pmd;
1746         bool format_device = read_only ? false : true;
1747
1748         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1749         if (IS_ERR(pmd)) {
1750                 *error = "Error creating metadata object";
1751                 return (struct pool *)pmd;
1752         }
1753
1754         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1755         if (!pool) {
1756                 *error = "Error allocating memory for pool";
1757                 err_p = ERR_PTR(-ENOMEM);
1758                 goto bad_pool;
1759         }
1760
1761         pool->pmd = pmd;
1762         pool->sectors_per_block = block_size;
1763         if (block_size & (block_size - 1))
1764                 pool->sectors_per_block_shift = -1;
1765         else
1766                 pool->sectors_per_block_shift = __ffs(block_size);
1767         pool->low_water_blocks = 0;
1768         pool_features_init(&pool->pf);
1769         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1770         if (!pool->prison) {
1771                 *error = "Error creating pool's bio prison";
1772                 err_p = ERR_PTR(-ENOMEM);
1773                 goto bad_prison;
1774         }
1775
1776         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1777         if (IS_ERR(pool->copier)) {
1778                 r = PTR_ERR(pool->copier);
1779                 *error = "Error creating pool's kcopyd client";
1780                 err_p = ERR_PTR(r);
1781                 goto bad_kcopyd_client;
1782         }
1783
1784         /*
1785          * Create singlethreaded workqueue that will service all devices
1786          * that use this metadata.
1787          */
1788         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1789         if (!pool->wq) {
1790                 *error = "Error creating pool's workqueue";
1791                 err_p = ERR_PTR(-ENOMEM);
1792                 goto bad_wq;
1793         }
1794
1795         INIT_WORK(&pool->worker, do_worker);
1796         INIT_DELAYED_WORK(&pool->waker, do_waker);
1797         spin_lock_init(&pool->lock);
1798         bio_list_init(&pool->deferred_bios);
1799         bio_list_init(&pool->deferred_flush_bios);
1800         INIT_LIST_HEAD(&pool->prepared_mappings);
1801         INIT_LIST_HEAD(&pool->prepared_discards);
1802         pool->low_water_triggered = false;
1803         pool->no_free_space = false;
1804         bio_list_init(&pool->retry_on_resume_list);
1805
1806         pool->shared_read_ds = dm_deferred_set_create();
1807         if (!pool->shared_read_ds) {
1808                 *error = "Error creating pool's shared read deferred set";
1809                 err_p = ERR_PTR(-ENOMEM);
1810                 goto bad_shared_read_ds;
1811         }
1812
1813         pool->all_io_ds = dm_deferred_set_create();
1814         if (!pool->all_io_ds) {
1815                 *error = "Error creating pool's all io deferred set";
1816                 err_p = ERR_PTR(-ENOMEM);
1817                 goto bad_all_io_ds;
1818         }
1819
1820         pool->next_mapping = NULL;
1821         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1822                                                       _new_mapping_cache);
1823         if (!pool->mapping_pool) {
1824                 *error = "Error creating pool's mapping mempool";
1825                 err_p = ERR_PTR(-ENOMEM);
1826                 goto bad_mapping_pool;
1827         }
1828
1829         pool->ref_count = 1;
1830         pool->last_commit_jiffies = jiffies;
1831         pool->pool_md = pool_md;
1832         pool->md_dev = metadata_dev;
1833         __pool_table_insert(pool);
1834
1835         return pool;
1836
1837 bad_mapping_pool:
1838         dm_deferred_set_destroy(pool->all_io_ds);
1839 bad_all_io_ds:
1840         dm_deferred_set_destroy(pool->shared_read_ds);
1841 bad_shared_read_ds:
1842         destroy_workqueue(pool->wq);
1843 bad_wq:
1844         dm_kcopyd_client_destroy(pool->copier);
1845 bad_kcopyd_client:
1846         dm_bio_prison_destroy(pool->prison);
1847 bad_prison:
1848         kfree(pool);
1849 bad_pool:
1850         if (dm_pool_metadata_close(pmd))
1851                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1852
1853         return err_p;
1854 }
1855
1856 static void __pool_inc(struct pool *pool)
1857 {
1858         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1859         pool->ref_count++;
1860 }
1861
1862 static void __pool_dec(struct pool *pool)
1863 {
1864         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1865         BUG_ON(!pool->ref_count);
1866         if (!--pool->ref_count)
1867                 __pool_destroy(pool);
1868 }
1869
1870 static struct pool *__pool_find(struct mapped_device *pool_md,
1871                                 struct block_device *metadata_dev,
1872                                 unsigned long block_size, int read_only,
1873                                 char **error, int *created)
1874 {
1875         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1876
1877         if (pool) {
1878                 if (pool->pool_md != pool_md) {
1879                         *error = "metadata device already in use by a pool";
1880                         return ERR_PTR(-EBUSY);
1881                 }
1882                 __pool_inc(pool);
1883
1884         } else {
1885                 pool = __pool_table_lookup(pool_md);
1886                 if (pool) {
1887                         if (pool->md_dev != metadata_dev) {
1888                                 *error = "different pool cannot replace a pool";
1889                                 return ERR_PTR(-EINVAL);
1890                         }
1891                         __pool_inc(pool);
1892
1893                 } else {
1894                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1895                         *created = 1;
1896                 }
1897         }
1898
1899         return pool;
1900 }
1901
1902 /*----------------------------------------------------------------
1903  * Pool target methods
1904  *--------------------------------------------------------------*/
1905 static void pool_dtr(struct dm_target *ti)
1906 {
1907         struct pool_c *pt = ti->private;
1908
1909         mutex_lock(&dm_thin_pool_table.mutex);
1910
1911         unbind_control_target(pt->pool, ti);
1912         __pool_dec(pt->pool);
1913         dm_put_device(ti, pt->metadata_dev);
1914         dm_put_device(ti, pt->data_dev);
1915         kfree(pt);
1916
1917         mutex_unlock(&dm_thin_pool_table.mutex);
1918 }
1919
1920 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1921                                struct dm_target *ti)
1922 {
1923         int r;
1924         unsigned argc;
1925         const char *arg_name;
1926
1927         static struct dm_arg _args[] = {
1928                 {0, 3, "Invalid number of pool feature arguments"},
1929         };
1930
1931         /*
1932          * No feature arguments supplied.
1933          */
1934         if (!as->argc)
1935                 return 0;
1936
1937         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1938         if (r)
1939                 return -EINVAL;
1940
1941         while (argc && !r) {
1942                 arg_name = dm_shift_arg(as);
1943                 argc--;
1944
1945                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1946                         pf->zero_new_blocks = false;
1947
1948                 else if (!strcasecmp(arg_name, "ignore_discard"))
1949                         pf->discard_enabled = false;
1950
1951                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1952                         pf->discard_passdown = false;
1953
1954                 else if (!strcasecmp(arg_name, "read_only"))
1955                         pf->mode = PM_READ_ONLY;
1956
1957                 else {
1958                         ti->error = "Unrecognised pool feature requested";
1959                         r = -EINVAL;
1960                         break;
1961                 }
1962         }
1963
1964         return r;
1965 }
1966
1967 static void metadata_low_callback(void *context)
1968 {
1969         struct pool *pool = context;
1970
1971         DMWARN("%s: reached low water mark for metadata device: sending event.",
1972                dm_device_name(pool->pool_md));
1973
1974         dm_table_event(pool->ti->table);
1975 }
1976
1977 static sector_t get_metadata_dev_size(struct block_device *bdev)
1978 {
1979         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1980         char buffer[BDEVNAME_SIZE];
1981
1982         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1983                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1984                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1985                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1986         }
1987
1988         return metadata_dev_size;
1989 }
1990
1991 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1992 {
1993         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1994
1995         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1996
1997         return metadata_dev_size;
1998 }
1999
2000 /*
2001  * When a metadata threshold is crossed a dm event is triggered, and
2002  * userland should respond by growing the metadata device.  We could let
2003  * userland set the threshold, like we do with the data threshold, but I'm
2004  * not sure they know enough to do this well.
2005  */
2006 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2007 {
2008         /*
2009          * 4M is ample for all ops with the possible exception of thin
2010          * device deletion which is harmless if it fails (just retry the
2011          * delete after you've grown the device).
2012          */
2013         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2014         return min((dm_block_t)1024ULL /* 4M */, quarter);
2015 }
2016
2017 /*
2018  * thin-pool <metadata dev> <data dev>
2019  *           <data block size (sectors)>
2020  *           <low water mark (blocks)>
2021  *           [<#feature args> [<arg>]*]
2022  *
2023  * Optional feature arguments are:
2024  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2025  *           ignore_discard: disable discard
2026  *           no_discard_passdown: don't pass discards down to the data device
2027  */
2028 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2029 {
2030         int r, pool_created = 0;
2031         struct pool_c *pt;
2032         struct pool *pool;
2033         struct pool_features pf;
2034         struct dm_arg_set as;
2035         struct dm_dev *data_dev;
2036         unsigned long block_size;
2037         dm_block_t low_water_blocks;
2038         struct dm_dev *metadata_dev;
2039         fmode_t metadata_mode;
2040
2041         /*
2042          * FIXME Remove validation from scope of lock.
2043          */
2044         mutex_lock(&dm_thin_pool_table.mutex);
2045
2046         if (argc < 4) {
2047                 ti->error = "Invalid argument count";
2048                 r = -EINVAL;
2049                 goto out_unlock;
2050         }
2051
2052         as.argc = argc;
2053         as.argv = argv;
2054
2055         /*
2056          * Set default pool features.
2057          */
2058         pool_features_init(&pf);
2059
2060         dm_consume_args(&as, 4);
2061         r = parse_pool_features(&as, &pf, ti);
2062         if (r)
2063                 goto out_unlock;
2064
2065         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2066         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2067         if (r) {
2068                 ti->error = "Error opening metadata block device";
2069                 goto out_unlock;
2070         }
2071
2072         /*
2073          * Run for the side-effect of possibly issuing a warning if the
2074          * device is too big.
2075          */
2076         (void) get_metadata_dev_size(metadata_dev->bdev);
2077
2078         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2079         if (r) {
2080                 ti->error = "Error getting data device";
2081                 goto out_metadata;
2082         }
2083
2084         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2085             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2086             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2087             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2088                 ti->error = "Invalid block size";
2089                 r = -EINVAL;
2090                 goto out;
2091         }
2092
2093         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2094                 ti->error = "Invalid low water mark";
2095                 r = -EINVAL;
2096                 goto out;
2097         }
2098
2099         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2100         if (!pt) {
2101                 r = -ENOMEM;
2102                 goto out;
2103         }
2104
2105         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2106                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2107         if (IS_ERR(pool)) {
2108                 r = PTR_ERR(pool);
2109                 goto out_free_pt;
2110         }
2111
2112         /*
2113          * 'pool_created' reflects whether this is the first table load.
2114          * Top level discard support is not allowed to be changed after
2115          * initial load.  This would require a pool reload to trigger thin
2116          * device changes.
2117          */
2118         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2119                 ti->error = "Discard support cannot be disabled once enabled";
2120                 r = -EINVAL;
2121                 goto out_flags_changed;
2122         }
2123
2124         pt->pool = pool;
2125         pt->ti = ti;
2126         pt->metadata_dev = metadata_dev;
2127         pt->data_dev = data_dev;
2128         pt->low_water_blocks = low_water_blocks;
2129         pt->adjusted_pf = pt->requested_pf = pf;
2130         ti->num_flush_bios = 1;
2131
2132         /*
2133          * Only need to enable discards if the pool should pass
2134          * them down to the data device.  The thin device's discard
2135          * processing will cause mappings to be removed from the btree.
2136          */
2137         ti->discard_zeroes_data_unsupported = true;
2138         if (pf.discard_enabled && pf.discard_passdown) {
2139                 ti->num_discard_bios = 1;
2140
2141                 /*
2142                  * Setting 'discards_supported' circumvents the normal
2143                  * stacking of discard limits (this keeps the pool and
2144                  * thin devices' discard limits consistent).
2145                  */
2146                 ti->discards_supported = true;
2147         }
2148         ti->private = pt;
2149
2150         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2151                                                 calc_metadata_threshold(pt),
2152                                                 metadata_low_callback,
2153                                                 pool);
2154         if (r)
2155                 goto out_free_pt;
2156
2157         pt->callbacks.congested_fn = pool_is_congested;
2158         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2159
2160         mutex_unlock(&dm_thin_pool_table.mutex);
2161
2162         return 0;
2163
2164 out_flags_changed:
2165         __pool_dec(pool);
2166 out_free_pt:
2167         kfree(pt);
2168 out:
2169         dm_put_device(ti, data_dev);
2170 out_metadata:
2171         dm_put_device(ti, metadata_dev);
2172 out_unlock:
2173         mutex_unlock(&dm_thin_pool_table.mutex);
2174
2175         return r;
2176 }
2177
2178 static int pool_map(struct dm_target *ti, struct bio *bio)
2179 {
2180         int r;
2181         struct pool_c *pt = ti->private;
2182         struct pool *pool = pt->pool;
2183         unsigned long flags;
2184
2185         /*
2186          * As this is a singleton target, ti->begin is always zero.
2187          */
2188         spin_lock_irqsave(&pool->lock, flags);
2189         bio->bi_bdev = pt->data_dev->bdev;
2190         r = DM_MAPIO_REMAPPED;
2191         spin_unlock_irqrestore(&pool->lock, flags);
2192
2193         return r;
2194 }
2195
2196 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2197 {
2198         int r;
2199         struct pool_c *pt = ti->private;
2200         struct pool *pool = pt->pool;
2201         sector_t data_size = ti->len;
2202         dm_block_t sb_data_size;
2203
2204         *need_commit = false;
2205
2206         (void) sector_div(data_size, pool->sectors_per_block);
2207
2208         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2209         if (r) {
2210                 DMERR("%s: failed to retrieve data device size",
2211                       dm_device_name(pool->pool_md));
2212                 return r;
2213         }
2214
2215         if (data_size < sb_data_size) {
2216                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2217                       dm_device_name(pool->pool_md),
2218                       (unsigned long long)data_size, sb_data_size);
2219                 return -EINVAL;
2220
2221         } else if (data_size > sb_data_size) {
2222                 if (sb_data_size)
2223                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2224                                dm_device_name(pool->pool_md),
2225                                sb_data_size, (unsigned long long)data_size);
2226                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2227                 if (r) {
2228                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2229                         return r;
2230                 }
2231
2232                 *need_commit = true;
2233         }
2234
2235         return 0;
2236 }
2237
2238 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2239 {
2240         int r;
2241         struct pool_c *pt = ti->private;
2242         struct pool *pool = pt->pool;
2243         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2244
2245         *need_commit = false;
2246
2247         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2248
2249         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2250         if (r) {
2251                 DMERR("%s: failed to retrieve metadata device size",
2252                       dm_device_name(pool->pool_md));
2253                 return r;
2254         }
2255
2256         if (metadata_dev_size < sb_metadata_dev_size) {
2257                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2258                       dm_device_name(pool->pool_md),
2259                       metadata_dev_size, sb_metadata_dev_size);
2260                 return -EINVAL;
2261
2262         } else if (metadata_dev_size > sb_metadata_dev_size) {
2263                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2264                        dm_device_name(pool->pool_md),
2265                        sb_metadata_dev_size, metadata_dev_size);
2266                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2267                 if (r) {
2268                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2269                         return r;
2270                 }
2271
2272                 *need_commit = true;
2273         }
2274
2275         return 0;
2276 }
2277
2278 /*
2279  * Retrieves the number of blocks of the data device from
2280  * the superblock and compares it to the actual device size,
2281  * thus resizing the data device in case it has grown.
2282  *
2283  * This both copes with opening preallocated data devices in the ctr
2284  * being followed by a resume
2285  * -and-
2286  * calling the resume method individually after userspace has
2287  * grown the data device in reaction to a table event.
2288  */
2289 static int pool_preresume(struct dm_target *ti)
2290 {
2291         int r;
2292         bool need_commit1, need_commit2;
2293         struct pool_c *pt = ti->private;
2294         struct pool *pool = pt->pool;
2295
2296         /*
2297          * Take control of the pool object.
2298          */
2299         r = bind_control_target(pool, ti);
2300         if (r)
2301                 return r;
2302
2303         r = maybe_resize_data_dev(ti, &need_commit1);
2304         if (r)
2305                 return r;
2306
2307         r = maybe_resize_metadata_dev(ti, &need_commit2);
2308         if (r)
2309                 return r;
2310
2311         if (need_commit1 || need_commit2)
2312                 (void) commit(pool);
2313
2314         return 0;
2315 }
2316
2317 static void pool_resume(struct dm_target *ti)
2318 {
2319         struct pool_c *pt = ti->private;
2320         struct pool *pool = pt->pool;
2321         unsigned long flags;
2322
2323         spin_lock_irqsave(&pool->lock, flags);
2324         pool->low_water_triggered = false;
2325         pool->no_free_space = false;
2326         __requeue_bios(pool);
2327         spin_unlock_irqrestore(&pool->lock, flags);
2328
2329         do_waker(&pool->waker.work);
2330 }
2331
2332 static void pool_postsuspend(struct dm_target *ti)
2333 {
2334         struct pool_c *pt = ti->private;
2335         struct pool *pool = pt->pool;
2336
2337         cancel_delayed_work(&pool->waker);
2338         flush_workqueue(pool->wq);
2339         (void) commit(pool);
2340 }
2341
2342 static int check_arg_count(unsigned argc, unsigned args_required)
2343 {
2344         if (argc != args_required) {
2345                 DMWARN("Message received with %u arguments instead of %u.",
2346                        argc, args_required);
2347                 return -EINVAL;
2348         }
2349
2350         return 0;
2351 }
2352
2353 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2354 {
2355         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2356             *dev_id <= MAX_DEV_ID)
2357                 return 0;
2358
2359         if (warning)
2360                 DMWARN("Message received with invalid device id: %s", arg);
2361
2362         return -EINVAL;
2363 }
2364
2365 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2366 {
2367         dm_thin_id dev_id;
2368         int r;
2369
2370         r = check_arg_count(argc, 2);
2371         if (r)
2372                 return r;
2373
2374         r = read_dev_id(argv[1], &dev_id, 1);
2375         if (r)
2376                 return r;
2377
2378         r = dm_pool_create_thin(pool->pmd, dev_id);
2379         if (r) {
2380                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2381                        argv[1]);
2382                 return r;
2383         }
2384
2385         return 0;
2386 }
2387
2388 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2389 {
2390         dm_thin_id dev_id;
2391         dm_thin_id origin_dev_id;
2392         int r;
2393
2394         r = check_arg_count(argc, 3);
2395         if (r)
2396                 return r;
2397
2398         r = read_dev_id(argv[1], &dev_id, 1);
2399         if (r)
2400                 return r;
2401
2402         r = read_dev_id(argv[2], &origin_dev_id, 1);
2403         if (r)
2404                 return r;
2405
2406         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2407         if (r) {
2408                 DMWARN("Creation of new snapshot %s of device %s failed.",
2409                        argv[1], argv[2]);
2410                 return r;
2411         }
2412
2413         return 0;
2414 }
2415
2416 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2417 {
2418         dm_thin_id dev_id;
2419         int r;
2420
2421         r = check_arg_count(argc, 2);
2422         if (r)
2423                 return r;
2424
2425         r = read_dev_id(argv[1], &dev_id, 1);
2426         if (r)
2427                 return r;
2428
2429         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2430         if (r)
2431                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2432
2433         return r;
2434 }
2435
2436 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2437 {
2438         dm_thin_id old_id, new_id;
2439         int r;
2440
2441         r = check_arg_count(argc, 3);
2442         if (r)
2443                 return r;
2444
2445         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2446                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2447                 return -EINVAL;
2448         }
2449
2450         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2451                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2452                 return -EINVAL;
2453         }
2454
2455         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2456         if (r) {
2457                 DMWARN("Failed to change transaction id from %s to %s.",
2458                        argv[1], argv[2]);
2459                 return r;
2460         }
2461
2462         return 0;
2463 }
2464
2465 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2466 {
2467         int r;
2468
2469         r = check_arg_count(argc, 1);
2470         if (r)
2471                 return r;
2472
2473         (void) commit(pool);
2474
2475         r = dm_pool_reserve_metadata_snap(pool->pmd);
2476         if (r)
2477                 DMWARN("reserve_metadata_snap message failed.");
2478
2479         return r;
2480 }
2481
2482 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2483 {
2484         int r;
2485
2486         r = check_arg_count(argc, 1);
2487         if (r)
2488                 return r;
2489
2490         r = dm_pool_release_metadata_snap(pool->pmd);
2491         if (r)
2492                 DMWARN("release_metadata_snap message failed.");
2493
2494         return r;
2495 }
2496
2497 /*
2498  * Messages supported:
2499  *   create_thin        <dev_id>
2500  *   create_snap        <dev_id> <origin_id>
2501  *   delete             <dev_id>
2502  *   trim               <dev_id> <new_size_in_sectors>
2503  *   set_transaction_id <current_trans_id> <new_trans_id>
2504  *   reserve_metadata_snap
2505  *   release_metadata_snap
2506  */
2507 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2508 {
2509         int r = -EINVAL;
2510         struct pool_c *pt = ti->private;
2511         struct pool *pool = pt->pool;
2512
2513         if (!strcasecmp(argv[0], "create_thin"))
2514                 r = process_create_thin_mesg(argc, argv, pool);
2515
2516         else if (!strcasecmp(argv[0], "create_snap"))
2517                 r = process_create_snap_mesg(argc, argv, pool);
2518
2519         else if (!strcasecmp(argv[0], "delete"))
2520                 r = process_delete_mesg(argc, argv, pool);
2521
2522         else if (!strcasecmp(argv[0], "set_transaction_id"))
2523                 r = process_set_transaction_id_mesg(argc, argv, pool);
2524
2525         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2526                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2527
2528         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2529                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2530
2531         else
2532                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2533
2534         if (!r)
2535                 (void) commit(pool);
2536
2537         return r;
2538 }
2539
2540 static void emit_flags(struct pool_features *pf, char *result,
2541                        unsigned sz, unsigned maxlen)
2542 {
2543         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2544                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2545         DMEMIT("%u ", count);
2546
2547         if (!pf->zero_new_blocks)
2548                 DMEMIT("skip_block_zeroing ");
2549
2550         if (!pf->discard_enabled)
2551                 DMEMIT("ignore_discard ");
2552
2553         if (!pf->discard_passdown)
2554                 DMEMIT("no_discard_passdown ");
2555
2556         if (pf->mode == PM_READ_ONLY)
2557                 DMEMIT("read_only ");
2558 }
2559
2560 /*
2561  * Status line is:
2562  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2563  *    <used data sectors>/<total data sectors> <held metadata root>
2564  */
2565 static void pool_status(struct dm_target *ti, status_type_t type,
2566                         unsigned status_flags, char *result, unsigned maxlen)
2567 {
2568         int r;
2569         unsigned sz = 0;
2570         uint64_t transaction_id;
2571         dm_block_t nr_free_blocks_data;
2572         dm_block_t nr_free_blocks_metadata;
2573         dm_block_t nr_blocks_data;
2574         dm_block_t nr_blocks_metadata;
2575         dm_block_t held_root;
2576         char buf[BDEVNAME_SIZE];
2577         char buf2[BDEVNAME_SIZE];
2578         struct pool_c *pt = ti->private;
2579         struct pool *pool = pt->pool;
2580
2581         switch (type) {
2582         case STATUSTYPE_INFO:
2583                 if (get_pool_mode(pool) == PM_FAIL) {
2584                         DMEMIT("Fail");
2585                         break;
2586                 }
2587
2588                 /* Commit to ensure statistics aren't out-of-date */
2589                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2590                         (void) commit(pool);
2591
2592                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2593                 if (r) {
2594                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2595                               dm_device_name(pool->pool_md), r);
2596                         goto err;
2597                 }
2598
2599                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2600                 if (r) {
2601                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2602                               dm_device_name(pool->pool_md), r);
2603                         goto err;
2604                 }
2605
2606                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2607                 if (r) {
2608                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2609                               dm_device_name(pool->pool_md), r);
2610                         goto err;
2611                 }
2612
2613                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2614                 if (r) {
2615                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2616                               dm_device_name(pool->pool_md), r);
2617                         goto err;
2618                 }
2619
2620                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2621                 if (r) {
2622                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2623                               dm_device_name(pool->pool_md), r);
2624                         goto err;
2625                 }
2626
2627                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2628                 if (r) {
2629                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2630                               dm_device_name(pool->pool_md), r);
2631                         goto err;
2632                 }
2633
2634                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2635                        (unsigned long long)transaction_id,
2636                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2637                        (unsigned long long)nr_blocks_metadata,
2638                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2639                        (unsigned long long)nr_blocks_data);
2640
2641                 if (held_root)
2642                         DMEMIT("%llu ", held_root);
2643                 else
2644                         DMEMIT("- ");
2645
2646                 if (pool->pf.mode == PM_READ_ONLY)
2647                         DMEMIT("ro ");
2648                 else
2649                         DMEMIT("rw ");
2650
2651                 if (!pool->pf.discard_enabled)
2652                         DMEMIT("ignore_discard");
2653                 else if (pool->pf.discard_passdown)
2654                         DMEMIT("discard_passdown");
2655                 else
2656                         DMEMIT("no_discard_passdown");
2657
2658                 break;
2659
2660         case STATUSTYPE_TABLE:
2661                 DMEMIT("%s %s %lu %llu ",
2662                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2663                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2664                        (unsigned long)pool->sectors_per_block,
2665                        (unsigned long long)pt->low_water_blocks);
2666                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2667                 break;
2668         }
2669         return;
2670
2671 err:
2672         DMEMIT("Error");
2673 }
2674
2675 static int pool_iterate_devices(struct dm_target *ti,
2676                                 iterate_devices_callout_fn fn, void *data)
2677 {
2678         struct pool_c *pt = ti->private;
2679
2680         return fn(ti, pt->data_dev, 0, ti->len, data);
2681 }
2682
2683 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2684                       struct bio_vec *biovec, int max_size)
2685 {
2686         struct pool_c *pt = ti->private;
2687         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2688
2689         if (!q->merge_bvec_fn)
2690                 return max_size;
2691
2692         bvm->bi_bdev = pt->data_dev->bdev;
2693
2694         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2695 }
2696
2697 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2698 {
2699         struct pool *pool = pt->pool;
2700         struct queue_limits *data_limits;
2701
2702         limits->max_discard_sectors = pool->sectors_per_block;
2703
2704         /*
2705          * discard_granularity is just a hint, and not enforced.
2706          */
2707         if (pt->adjusted_pf.discard_passdown) {
2708                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2709                 limits->discard_granularity = data_limits->discard_granularity;
2710         } else
2711                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2712 }
2713
2714 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2715 {
2716         struct pool_c *pt = ti->private;
2717         struct pool *pool = pt->pool;
2718         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2719
2720         /*
2721          * If the system-determined stacked limits are compatible with the
2722          * pool's blocksize (io_opt is a factor) do not override them.
2723          */
2724         if (io_opt_sectors < pool->sectors_per_block ||
2725             do_div(io_opt_sectors, pool->sectors_per_block)) {
2726                 blk_limits_io_min(limits, 0);
2727                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2728         }
2729
2730         /*
2731          * pt->adjusted_pf is a staging area for the actual features to use.
2732          * They get transferred to the live pool in bind_control_target()
2733          * called from pool_preresume().
2734          */
2735         if (!pt->adjusted_pf.discard_enabled) {
2736                 /*
2737                  * Must explicitly disallow stacking discard limits otherwise the
2738                  * block layer will stack them if pool's data device has support.
2739                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2740                  * user to see that, so make sure to set all discard limits to 0.
2741                  */
2742                 limits->discard_granularity = 0;
2743                 return;
2744         }
2745
2746         disable_passdown_if_not_supported(pt);
2747
2748         set_discard_limits(pt, limits);
2749 }
2750
2751 static struct target_type pool_target = {
2752         .name = "thin-pool",
2753         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2754                     DM_TARGET_IMMUTABLE,
2755         .version = {1, 9, 0},
2756         .module = THIS_MODULE,
2757         .ctr = pool_ctr,
2758         .dtr = pool_dtr,
2759         .map = pool_map,
2760         .postsuspend = pool_postsuspend,
2761         .preresume = pool_preresume,
2762         .resume = pool_resume,
2763         .message = pool_message,
2764         .status = pool_status,
2765         .merge = pool_merge,
2766         .iterate_devices = pool_iterate_devices,
2767         .io_hints = pool_io_hints,
2768 };
2769
2770 /*----------------------------------------------------------------
2771  * Thin target methods
2772  *--------------------------------------------------------------*/
2773 static void thin_dtr(struct dm_target *ti)
2774 {
2775         struct thin_c *tc = ti->private;
2776
2777         mutex_lock(&dm_thin_pool_table.mutex);
2778
2779         __pool_dec(tc->pool);
2780         dm_pool_close_thin_device(tc->td);
2781         dm_put_device(ti, tc->pool_dev);
2782         if (tc->origin_dev)
2783                 dm_put_device(ti, tc->origin_dev);
2784         kfree(tc);
2785
2786         mutex_unlock(&dm_thin_pool_table.mutex);
2787 }
2788
2789 /*
2790  * Thin target parameters:
2791  *
2792  * <pool_dev> <dev_id> [origin_dev]
2793  *
2794  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2795  * dev_id: the internal device identifier
2796  * origin_dev: a device external to the pool that should act as the origin
2797  *
2798  * If the pool device has discards disabled, they get disabled for the thin
2799  * device as well.
2800  */
2801 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2802 {
2803         int r;
2804         struct thin_c *tc;
2805         struct dm_dev *pool_dev, *origin_dev;
2806         struct mapped_device *pool_md;
2807
2808         mutex_lock(&dm_thin_pool_table.mutex);
2809
2810         if (argc != 2 && argc != 3) {
2811                 ti->error = "Invalid argument count";
2812                 r = -EINVAL;
2813                 goto out_unlock;
2814         }
2815
2816         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2817         if (!tc) {
2818                 ti->error = "Out of memory";
2819                 r = -ENOMEM;
2820                 goto out_unlock;
2821         }
2822
2823         if (argc == 3) {
2824                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2825                 if (r) {
2826                         ti->error = "Error opening origin device";
2827                         goto bad_origin_dev;
2828                 }
2829                 tc->origin_dev = origin_dev;
2830         }
2831
2832         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2833         if (r) {
2834                 ti->error = "Error opening pool device";
2835                 goto bad_pool_dev;
2836         }
2837         tc->pool_dev = pool_dev;
2838
2839         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2840                 ti->error = "Invalid device id";
2841                 r = -EINVAL;
2842                 goto bad_common;
2843         }
2844
2845         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2846         if (!pool_md) {
2847                 ti->error = "Couldn't get pool mapped device";
2848                 r = -EINVAL;
2849                 goto bad_common;
2850         }
2851
2852         tc->pool = __pool_table_lookup(pool_md);
2853         if (!tc->pool) {
2854                 ti->error = "Couldn't find pool object";
2855                 r = -EINVAL;
2856                 goto bad_pool_lookup;
2857         }
2858         __pool_inc(tc->pool);
2859
2860         if (get_pool_mode(tc->pool) == PM_FAIL) {
2861                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2862                 goto bad_thin_open;
2863         }
2864
2865         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2866         if (r) {
2867                 ti->error = "Couldn't open thin internal device";
2868                 goto bad_thin_open;
2869         }
2870
2871         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2872         if (r)
2873                 goto bad_thin_open;
2874
2875         ti->num_flush_bios = 1;
2876         ti->flush_supported = true;
2877         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2878
2879         /* In case the pool supports discards, pass them on. */
2880         ti->discard_zeroes_data_unsupported = true;
2881         if (tc->pool->pf.discard_enabled) {
2882                 ti->discards_supported = true;
2883                 ti->num_discard_bios = 1;
2884                 /* Discard bios must be split on a block boundary */
2885                 ti->split_discard_bios = true;
2886         }
2887
2888         dm_put(pool_md);
2889
2890         mutex_unlock(&dm_thin_pool_table.mutex);
2891
2892         return 0;
2893
2894 bad_thin_open:
2895         __pool_dec(tc->pool);
2896 bad_pool_lookup:
2897         dm_put(pool_md);
2898 bad_common:
2899         dm_put_device(ti, tc->pool_dev);
2900 bad_pool_dev:
2901         if (tc->origin_dev)
2902                 dm_put_device(ti, tc->origin_dev);
2903 bad_origin_dev:
2904         kfree(tc);
2905 out_unlock:
2906         mutex_unlock(&dm_thin_pool_table.mutex);
2907
2908         return r;
2909 }
2910
2911 static int thin_map(struct dm_target *ti, struct bio *bio)
2912 {
2913         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2914
2915         return thin_bio_map(ti, bio);
2916 }
2917
2918 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2919 {
2920         unsigned long flags;
2921         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2922         struct list_head work;
2923         struct dm_thin_new_mapping *m, *tmp;
2924         struct pool *pool = h->tc->pool;
2925
2926         if (h->shared_read_entry) {
2927                 INIT_LIST_HEAD(&work);
2928                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2929
2930                 spin_lock_irqsave(&pool->lock, flags);
2931                 list_for_each_entry_safe(m, tmp, &work, list) {
2932                         list_del(&m->list);
2933                         m->quiesced = true;
2934                         __maybe_add_mapping(m);
2935                 }
2936                 spin_unlock_irqrestore(&pool->lock, flags);
2937         }
2938
2939         if (h->all_io_entry) {
2940                 INIT_LIST_HEAD(&work);
2941                 dm_deferred_entry_dec(h->all_io_entry, &work);
2942                 if (!list_empty(&work)) {
2943                         spin_lock_irqsave(&pool->lock, flags);
2944                         list_for_each_entry_safe(m, tmp, &work, list)
2945                                 list_add_tail(&m->list, &pool->prepared_discards);
2946                         spin_unlock_irqrestore(&pool->lock, flags);
2947                         wake_worker(pool);
2948                 }
2949         }
2950
2951         return 0;
2952 }
2953
2954 static void thin_postsuspend(struct dm_target *ti)
2955 {
2956         if (dm_noflush_suspending(ti))
2957                 requeue_io((struct thin_c *)ti->private);
2958 }
2959
2960 /*
2961  * <nr mapped sectors> <highest mapped sector>
2962  */
2963 static void thin_status(struct dm_target *ti, status_type_t type,
2964                         unsigned status_flags, char *result, unsigned maxlen)
2965 {
2966         int r;
2967         ssize_t sz = 0;
2968         dm_block_t mapped, highest;
2969         char buf[BDEVNAME_SIZE];
2970         struct thin_c *tc = ti->private;
2971
2972         if (get_pool_mode(tc->pool) == PM_FAIL) {
2973                 DMEMIT("Fail");
2974                 return;
2975         }
2976
2977         if (!tc->td)
2978                 DMEMIT("-");
2979         else {
2980                 switch (type) {
2981                 case STATUSTYPE_INFO:
2982                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2983                         if (r) {
2984                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2985                                 goto err;
2986                         }
2987
2988                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2989                         if (r < 0) {
2990                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2991                                 goto err;
2992                         }
2993
2994                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2995                         if (r)
2996                                 DMEMIT("%llu", ((highest + 1) *
2997                                                 tc->pool->sectors_per_block) - 1);
2998                         else
2999                                 DMEMIT("-");
3000                         break;
3001
3002                 case STATUSTYPE_TABLE:
3003                         DMEMIT("%s %lu",
3004                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3005                                (unsigned long) tc->dev_id);
3006                         if (tc->origin_dev)
3007                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3008                         break;
3009                 }
3010         }
3011
3012         return;
3013
3014 err:
3015         DMEMIT("Error");
3016 }
3017
3018 static int thin_iterate_devices(struct dm_target *ti,
3019                                 iterate_devices_callout_fn fn, void *data)
3020 {
3021         sector_t blocks;
3022         struct thin_c *tc = ti->private;
3023         struct pool *pool = tc->pool;
3024
3025         /*
3026          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3027          * we follow a more convoluted path through to the pool's target.
3028          */
3029         if (!pool->ti)
3030                 return 0;       /* nothing is bound */
3031
3032         blocks = pool->ti->len;
3033         (void) sector_div(blocks, pool->sectors_per_block);
3034         if (blocks)
3035                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3036
3037         return 0;
3038 }
3039
3040 static struct target_type thin_target = {
3041         .name = "thin",
3042         .version = {1, 9, 0},
3043         .module = THIS_MODULE,
3044         .ctr = thin_ctr,
3045         .dtr = thin_dtr,
3046         .map = thin_map,
3047         .end_io = thin_endio,
3048         .postsuspend = thin_postsuspend,
3049         .status = thin_status,
3050         .iterate_devices = thin_iterate_devices,
3051 };
3052
3053 /*----------------------------------------------------------------*/
3054
3055 static int __init dm_thin_init(void)
3056 {
3057         int r;
3058
3059         pool_table_init();
3060
3061         r = dm_register_target(&thin_target);
3062         if (r)
3063                 return r;
3064
3065         r = dm_register_target(&pool_target);
3066         if (r)
3067                 goto bad_pool_target;
3068
3069         r = -ENOMEM;
3070
3071         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3072         if (!_new_mapping_cache)
3073                 goto bad_new_mapping_cache;
3074
3075         return 0;
3076
3077 bad_new_mapping_cache:
3078         dm_unregister_target(&pool_target);
3079 bad_pool_target:
3080         dm_unregister_target(&thin_target);
3081
3082         return r;
3083 }
3084
3085 static void dm_thin_exit(void)
3086 {
3087         dm_unregister_target(&thin_target);
3088         dm_unregister_target(&pool_target);
3089
3090         kmem_cache_destroy(_new_mapping_cache);
3091 }
3092
3093 module_init(dm_thin_init);
3094 module_exit(dm_thin_exit);
3095
3096 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3097 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3098 MODULE_LICENSE("GPL");