]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
dm thin: fix discard support for data devices
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm.h"
9
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #define DM_MSG_PREFIX   "thin"
19
20 /*
21  * Tunable constants
22  */
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 /*
30  * The block size of the device holding pool data must be
31  * between 64KB and 1GB.
32  */
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35
36 /*
37  * Device id is restricted to 24 bits.
38  */
39 #define MAX_DEV_ID ((1 << 24) - 1)
40
41 /*
42  * How do we handle breaking sharing of data blocks?
43  * =================================================
44  *
45  * We use a standard copy-on-write btree to store the mappings for the
46  * devices (note I'm talking about copy-on-write of the metadata here, not
47  * the data).  When you take an internal snapshot you clone the root node
48  * of the origin btree.  After this there is no concept of an origin or a
49  * snapshot.  They are just two device trees that happen to point to the
50  * same data blocks.
51  *
52  * When we get a write in we decide if it's to a shared data block using
53  * some timestamp magic.  If it is, we have to break sharing.
54  *
55  * Let's say we write to a shared block in what was the origin.  The
56  * steps are:
57  *
58  * i) plug io further to this physical block. (see bio_prison code).
59  *
60  * ii) quiesce any read io to that shared data block.  Obviously
61  * including all devices that share this block.  (see deferred_set code)
62  *
63  * iii) copy the data block to a newly allocate block.  This step can be
64  * missed out if the io covers the block. (schedule_copy).
65  *
66  * iv) insert the new mapping into the origin's btree
67  * (process_prepared_mapping).  This act of inserting breaks some
68  * sharing of btree nodes between the two devices.  Breaking sharing only
69  * effects the btree of that specific device.  Btrees for the other
70  * devices that share the block never change.  The btree for the origin
71  * device as it was after the last commit is untouched, ie. we're using
72  * persistent data structures in the functional programming sense.
73  *
74  * v) unplug io to this physical block, including the io that triggered
75  * the breaking of sharing.
76  *
77  * Steps (ii) and (iii) occur in parallel.
78  *
79  * The metadata _doesn't_ need to be committed before the io continues.  We
80  * get away with this because the io is always written to a _new_ block.
81  * If there's a crash, then:
82  *
83  * - The origin mapping will point to the old origin block (the shared
84  * one).  This will contain the data as it was before the io that triggered
85  * the breaking of sharing came in.
86  *
87  * - The snap mapping still points to the old block.  As it would after
88  * the commit.
89  *
90  * The downside of this scheme is the timestamp magic isn't perfect, and
91  * will continue to think that data block in the snapshot device is shared
92  * even after the write to the origin has broken sharing.  I suspect data
93  * blocks will typically be shared by many different devices, so we're
94  * breaking sharing n + 1 times, rather than n, where n is the number of
95  * devices that reference this data block.  At the moment I think the
96  * benefits far, far outweigh the disadvantages.
97  */
98
99 /*----------------------------------------------------------------*/
100
101 /*
102  * Sometimes we can't deal with a bio straight away.  We put them in prison
103  * where they can't cause any mischief.  Bios are put in a cell identified
104  * by a key, multiple bios can be in the same cell.  When the cell is
105  * subsequently unlocked the bios become available.
106  */
107 struct bio_prison;
108
109 struct cell_key {
110         int virtual;
111         dm_thin_id dev;
112         dm_block_t block;
113 };
114
115 struct dm_bio_prison_cell {
116         struct hlist_node list;
117         struct bio_prison *prison;
118         struct cell_key key;
119         struct bio *holder;
120         struct bio_list bios;
121 };
122
123 struct bio_prison {
124         spinlock_t lock;
125         mempool_t *cell_pool;
126
127         unsigned nr_buckets;
128         unsigned hash_mask;
129         struct hlist_head *cells;
130 };
131
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
133 {
134         uint32_t n = 128;
135
136         nr_cells /= 4;
137         nr_cells = min(nr_cells, 8192u);
138
139         while (n < nr_cells)
140                 n <<= 1;
141
142         return n;
143 }
144
145 static struct kmem_cache *_cell_cache;
146
147 /*
148  * @nr_cells should be the number of cells you want in use _concurrently_.
149  * Don't confuse it with the number of distinct keys.
150  */
151 static struct bio_prison *prison_create(unsigned nr_cells)
152 {
153         unsigned i;
154         uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155         size_t len = sizeof(struct bio_prison) +
156                 (sizeof(struct hlist_head) * nr_buckets);
157         struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
158
159         if (!prison)
160                 return NULL;
161
162         spin_lock_init(&prison->lock);
163         prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164         if (!prison->cell_pool) {
165                 kfree(prison);
166                 return NULL;
167         }
168
169         prison->nr_buckets = nr_buckets;
170         prison->hash_mask = nr_buckets - 1;
171         prison->cells = (struct hlist_head *) (prison + 1);
172         for (i = 0; i < nr_buckets; i++)
173                 INIT_HLIST_HEAD(prison->cells + i);
174
175         return prison;
176 }
177
178 static void prison_destroy(struct bio_prison *prison)
179 {
180         mempool_destroy(prison->cell_pool);
181         kfree(prison);
182 }
183
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 {
186         const unsigned long BIG_PRIME = 4294967291UL;
187         uint64_t hash = key->block * BIG_PRIME;
188
189         return (uint32_t) (hash & prison->hash_mask);
190 }
191
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 {
194                return (lhs->virtual == rhs->virtual) &&
195                        (lhs->dev == rhs->dev) &&
196                        (lhs->block == rhs->block);
197 }
198
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200                                                   struct cell_key *key)
201 {
202         struct dm_bio_prison_cell *cell;
203         struct hlist_node *tmp;
204
205         hlist_for_each_entry(cell, tmp, bucket, list)
206                 if (keys_equal(&cell->key, key))
207                         return cell;
208
209         return NULL;
210 }
211
212 /*
213  * This may block if a new cell needs allocating.  You must ensure that
214  * cells will be unlocked even if the calling thread is blocked.
215  *
216  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
217  */
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219                       struct bio *inmate, struct dm_bio_prison_cell **ref)
220 {
221         int r = 1;
222         unsigned long flags;
223         uint32_t hash = hash_key(prison, key);
224         struct dm_bio_prison_cell *cell, *cell2;
225
226         BUG_ON(hash > prison->nr_buckets);
227
228         spin_lock_irqsave(&prison->lock, flags);
229
230         cell = __search_bucket(prison->cells + hash, key);
231         if (cell) {
232                 bio_list_add(&cell->bios, inmate);
233                 goto out;
234         }
235
236         /*
237          * Allocate a new cell
238          */
239         spin_unlock_irqrestore(&prison->lock, flags);
240         cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241         spin_lock_irqsave(&prison->lock, flags);
242
243         /*
244          * We've been unlocked, so we have to double check that
245          * nobody else has inserted this cell in the meantime.
246          */
247         cell = __search_bucket(prison->cells + hash, key);
248         if (cell) {
249                 mempool_free(cell2, prison->cell_pool);
250                 bio_list_add(&cell->bios, inmate);
251                 goto out;
252         }
253
254         /*
255          * Use new cell.
256          */
257         cell = cell2;
258
259         cell->prison = prison;
260         memcpy(&cell->key, key, sizeof(cell->key));
261         cell->holder = inmate;
262         bio_list_init(&cell->bios);
263         hlist_add_head(&cell->list, prison->cells + hash);
264
265         r = 0;
266
267 out:
268         spin_unlock_irqrestore(&prison->lock, flags);
269
270         *ref = cell;
271
272         return r;
273 }
274
275 /*
276  * @inmates must have been initialised prior to this call
277  */
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
279 {
280         struct bio_prison *prison = cell->prison;
281
282         hlist_del(&cell->list);
283
284         if (inmates) {
285                 bio_list_add(inmates, cell->holder);
286                 bio_list_merge(inmates, &cell->bios);
287         }
288
289         mempool_free(cell, prison->cell_pool);
290 }
291
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
293 {
294         unsigned long flags;
295         struct bio_prison *prison = cell->prison;
296
297         spin_lock_irqsave(&prison->lock, flags);
298         __cell_release(cell, bios);
299         spin_unlock_irqrestore(&prison->lock, flags);
300 }
301
302 /*
303  * There are a couple of places where we put a bio into a cell briefly
304  * before taking it out again.  In these situations we know that no other
305  * bio may be in the cell.  This function releases the cell, and also does
306  * a sanity check.
307  */
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
309 {
310         BUG_ON(cell->holder != bio);
311         BUG_ON(!bio_list_empty(&cell->bios));
312
313         __cell_release(cell, NULL);
314 }
315
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
317 {
318         unsigned long flags;
319         struct bio_prison *prison = cell->prison;
320
321         spin_lock_irqsave(&prison->lock, flags);
322         __cell_release_singleton(cell, bio);
323         spin_unlock_irqrestore(&prison->lock, flags);
324 }
325
326 /*
327  * Sometimes we don't want the holder, just the additional bios.
328  */
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330                                      struct bio_list *inmates)
331 {
332         struct bio_prison *prison = cell->prison;
333
334         hlist_del(&cell->list);
335         bio_list_merge(inmates, &cell->bios);
336
337         mempool_free(cell, prison->cell_pool);
338 }
339
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341                                    struct bio_list *inmates)
342 {
343         unsigned long flags;
344         struct bio_prison *prison = cell->prison;
345
346         spin_lock_irqsave(&prison->lock, flags);
347         __cell_release_no_holder(cell, inmates);
348         spin_unlock_irqrestore(&prison->lock, flags);
349 }
350
351 static void cell_error(struct dm_bio_prison_cell *cell)
352 {
353         struct bio_prison *prison = cell->prison;
354         struct bio_list bios;
355         struct bio *bio;
356         unsigned long flags;
357
358         bio_list_init(&bios);
359
360         spin_lock_irqsave(&prison->lock, flags);
361         __cell_release(cell, &bios);
362         spin_unlock_irqrestore(&prison->lock, flags);
363
364         while ((bio = bio_list_pop(&bios)))
365                 bio_io_error(bio);
366 }
367
368 /*----------------------------------------------------------------*/
369
370 /*
371  * We use the deferred set to keep track of pending reads to shared blocks.
372  * We do this to ensure the new mapping caused by a write isn't performed
373  * until these prior reads have completed.  Otherwise the insertion of the
374  * new mapping could free the old block that the read bios are mapped to.
375  */
376
377 struct deferred_set;
378 struct deferred_entry {
379         struct deferred_set *ds;
380         unsigned count;
381         struct list_head work_items;
382 };
383
384 struct deferred_set {
385         spinlock_t lock;
386         unsigned current_entry;
387         unsigned sweeper;
388         struct deferred_entry entries[DEFERRED_SET_SIZE];
389 };
390
391 static void ds_init(struct deferred_set *ds)
392 {
393         int i;
394
395         spin_lock_init(&ds->lock);
396         ds->current_entry = 0;
397         ds->sweeper = 0;
398         for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399                 ds->entries[i].ds = ds;
400                 ds->entries[i].count = 0;
401                 INIT_LIST_HEAD(&ds->entries[i].work_items);
402         }
403 }
404
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
406 {
407         unsigned long flags;
408         struct deferred_entry *entry;
409
410         spin_lock_irqsave(&ds->lock, flags);
411         entry = ds->entries + ds->current_entry;
412         entry->count++;
413         spin_unlock_irqrestore(&ds->lock, flags);
414
415         return entry;
416 }
417
418 static unsigned ds_next(unsigned index)
419 {
420         return (index + 1) % DEFERRED_SET_SIZE;
421 }
422
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
424 {
425         while ((ds->sweeper != ds->current_entry) &&
426                !ds->entries[ds->sweeper].count) {
427                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428                 ds->sweeper = ds_next(ds->sweeper);
429         }
430
431         if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
433 }
434
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&entry->ds->lock, flags);
440         BUG_ON(!entry->count);
441         --entry->count;
442         __sweep(entry->ds, head);
443         spin_unlock_irqrestore(&entry->ds->lock, flags);
444 }
445
446 /*
447  * Returns 1 if deferred or 0 if no pending items to delay job.
448  */
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
450 {
451         int r = 1;
452         unsigned long flags;
453         unsigned next_entry;
454
455         spin_lock_irqsave(&ds->lock, flags);
456         if ((ds->sweeper == ds->current_entry) &&
457             !ds->entries[ds->current_entry].count)
458                 r = 0;
459         else {
460                 list_add(work, &ds->entries[ds->current_entry].work_items);
461                 next_entry = ds_next(ds->current_entry);
462                 if (!ds->entries[next_entry].count)
463                         ds->current_entry = next_entry;
464         }
465         spin_unlock_irqrestore(&ds->lock, flags);
466
467         return r;
468 }
469
470 /*----------------------------------------------------------------*/
471
472 /*
473  * Key building.
474  */
475 static void build_data_key(struct dm_thin_device *td,
476                            dm_block_t b, struct cell_key *key)
477 {
478         key->virtual = 0;
479         key->dev = dm_thin_dev_id(td);
480         key->block = b;
481 }
482
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484                               struct cell_key *key)
485 {
486         key->virtual = 1;
487         key->dev = dm_thin_dev_id(td);
488         key->block = b;
489 }
490
491 /*----------------------------------------------------------------*/
492
493 /*
494  * A pool device ties together a metadata device and a data device.  It
495  * also provides the interface for creating and destroying internal
496  * devices.
497  */
498 struct dm_thin_new_mapping;
499
500 /*
501  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
502  */
503 enum pool_mode {
504         PM_WRITE,               /* metadata may be changed */
505         PM_READ_ONLY,           /* metadata may not be changed */
506         PM_FAIL,                /* all I/O fails */
507 };
508
509 struct pool_features {
510         enum pool_mode mode;
511
512         bool zero_new_blocks:1;
513         bool discard_enabled:1;
514         bool discard_passdown:1;
515 };
516
517 struct thin_c;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
520
521 struct pool {
522         struct list_head list;
523         struct dm_target *ti;   /* Only set if a pool target is bound */
524
525         struct mapped_device *pool_md;
526         struct block_device *md_dev;
527         struct dm_pool_metadata *pmd;
528
529         dm_block_t low_water_blocks;
530         uint32_t sectors_per_block;
531         int sectors_per_block_shift;
532
533         struct pool_features pf;
534         unsigned low_water_triggered:1; /* A dm event has been sent */
535         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
536
537         struct bio_prison *prison;
538         struct dm_kcopyd_client *copier;
539
540         struct workqueue_struct *wq;
541         struct work_struct worker;
542         struct delayed_work waker;
543
544         unsigned long last_commit_jiffies;
545         unsigned ref_count;
546
547         spinlock_t lock;
548         struct bio_list deferred_bios;
549         struct bio_list deferred_flush_bios;
550         struct list_head prepared_mappings;
551         struct list_head prepared_discards;
552
553         struct bio_list retry_on_resume_list;
554
555         struct deferred_set shared_read_ds;
556         struct deferred_set all_io_ds;
557
558         struct dm_thin_new_mapping *next_mapping;
559         mempool_t *mapping_pool;
560         mempool_t *endio_hook_pool;
561
562         process_bio_fn process_bio;
563         process_bio_fn process_discard;
564
565         process_mapping_fn process_prepared_mapping;
566         process_mapping_fn process_prepared_discard;
567 };
568
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
571
572 /*
573  * Target context for a pool.
574  */
575 struct pool_c {
576         struct dm_target *ti;
577         struct pool *pool;
578         struct dm_dev *data_dev;
579         struct dm_dev *metadata_dev;
580         struct dm_target_callbacks callbacks;
581
582         dm_block_t low_water_blocks;
583         struct pool_features requested_pf; /* Features requested during table load */
584         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
585 };
586
587 /*
588  * Target context for a thin.
589  */
590 struct thin_c {
591         struct dm_dev *pool_dev;
592         struct dm_dev *origin_dev;
593         dm_thin_id dev_id;
594
595         struct pool *pool;
596         struct dm_thin_device *td;
597 };
598
599 /*----------------------------------------------------------------*/
600
601 /*
602  * A global list of pools that uses a struct mapped_device as a key.
603  */
604 static struct dm_thin_pool_table {
605         struct mutex mutex;
606         struct list_head pools;
607 } dm_thin_pool_table;
608
609 static void pool_table_init(void)
610 {
611         mutex_init(&dm_thin_pool_table.mutex);
612         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
613 }
614
615 static void __pool_table_insert(struct pool *pool)
616 {
617         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
618         list_add(&pool->list, &dm_thin_pool_table.pools);
619 }
620
621 static void __pool_table_remove(struct pool *pool)
622 {
623         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
624         list_del(&pool->list);
625 }
626
627 static struct pool *__pool_table_lookup(struct mapped_device *md)
628 {
629         struct pool *pool = NULL, *tmp;
630
631         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
632
633         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
634                 if (tmp->pool_md == md) {
635                         pool = tmp;
636                         break;
637                 }
638         }
639
640         return pool;
641 }
642
643 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
644 {
645         struct pool *pool = NULL, *tmp;
646
647         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
648
649         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
650                 if (tmp->md_dev == md_dev) {
651                         pool = tmp;
652                         break;
653                 }
654         }
655
656         return pool;
657 }
658
659 /*----------------------------------------------------------------*/
660
661 struct dm_thin_endio_hook {
662         struct thin_c *tc;
663         struct deferred_entry *shared_read_entry;
664         struct deferred_entry *all_io_entry;
665         struct dm_thin_new_mapping *overwrite_mapping;
666 };
667
668 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
669 {
670         struct bio *bio;
671         struct bio_list bios;
672
673         bio_list_init(&bios);
674         bio_list_merge(&bios, master);
675         bio_list_init(master);
676
677         while ((bio = bio_list_pop(&bios))) {
678                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
679
680                 if (h->tc == tc)
681                         bio_endio(bio, DM_ENDIO_REQUEUE);
682                 else
683                         bio_list_add(master, bio);
684         }
685 }
686
687 static void requeue_io(struct thin_c *tc)
688 {
689         struct pool *pool = tc->pool;
690         unsigned long flags;
691
692         spin_lock_irqsave(&pool->lock, flags);
693         __requeue_bio_list(tc, &pool->deferred_bios);
694         __requeue_bio_list(tc, &pool->retry_on_resume_list);
695         spin_unlock_irqrestore(&pool->lock, flags);
696 }
697
698 /*
699  * This section of code contains the logic for processing a thin device's IO.
700  * Much of the code depends on pool object resources (lists, workqueues, etc)
701  * but most is exclusively called from the thin target rather than the thin-pool
702  * target.
703  */
704
705 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
706 {
707         sector_t block_nr = bio->bi_sector;
708
709         if (tc->pool->sectors_per_block_shift < 0)
710                 (void) sector_div(block_nr, tc->pool->sectors_per_block);
711         else
712                 block_nr >>= tc->pool->sectors_per_block_shift;
713
714         return block_nr;
715 }
716
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719         struct pool *pool = tc->pool;
720         sector_t bi_sector = bio->bi_sector;
721
722         bio->bi_bdev = tc->pool_dev->bdev;
723         if (tc->pool->sectors_per_block_shift < 0)
724                 bio->bi_sector = (block * pool->sectors_per_block) +
725                                  sector_div(bi_sector, pool->sectors_per_block);
726         else
727                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
728                                 (bi_sector & (pool->sectors_per_block - 1));
729 }
730
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733         bio->bi_bdev = tc->origin_dev->bdev;
734 }
735
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
739                 dm_thin_changed_this_transaction(tc->td);
740 }
741
742 static void issue(struct thin_c *tc, struct bio *bio)
743 {
744         struct pool *pool = tc->pool;
745         unsigned long flags;
746
747         if (!bio_triggers_commit(tc, bio)) {
748                 generic_make_request(bio);
749                 return;
750         }
751
752         /*
753          * Complete bio with an error if earlier I/O caused changes to
754          * the metadata that can't be committed e.g, due to I/O errors
755          * on the metadata device.
756          */
757         if (dm_thin_aborted_changes(tc->td)) {
758                 bio_io_error(bio);
759                 return;
760         }
761
762         /*
763          * Batch together any bios that trigger commits and then issue a
764          * single commit for them in process_deferred_bios().
765          */
766         spin_lock_irqsave(&pool->lock, flags);
767         bio_list_add(&pool->deferred_flush_bios, bio);
768         spin_unlock_irqrestore(&pool->lock, flags);
769 }
770
771 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
772 {
773         remap_to_origin(tc, bio);
774         issue(tc, bio);
775 }
776
777 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
778                             dm_block_t block)
779 {
780         remap(tc, bio, block);
781         issue(tc, bio);
782 }
783
784 /*
785  * wake_worker() is used when new work is queued and when pool_resume is
786  * ready to continue deferred IO processing.
787  */
788 static void wake_worker(struct pool *pool)
789 {
790         queue_work(pool->wq, &pool->worker);
791 }
792
793 /*----------------------------------------------------------------*/
794
795 /*
796  * Bio endio functions.
797  */
798 struct dm_thin_new_mapping {
799         struct list_head list;
800
801         unsigned quiesced:1;
802         unsigned prepared:1;
803         unsigned pass_discard:1;
804
805         struct thin_c *tc;
806         dm_block_t virt_block;
807         dm_block_t data_block;
808         struct dm_bio_prison_cell *cell, *cell2;
809         int err;
810
811         /*
812          * If the bio covers the whole area of a block then we can avoid
813          * zeroing or copying.  Instead this bio is hooked.  The bio will
814          * still be in the cell, so care has to be taken to avoid issuing
815          * the bio twice.
816          */
817         struct bio *bio;
818         bio_end_io_t *saved_bi_end_io;
819 };
820
821 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
822 {
823         struct pool *pool = m->tc->pool;
824
825         if (m->quiesced && m->prepared) {
826                 list_add(&m->list, &pool->prepared_mappings);
827                 wake_worker(pool);
828         }
829 }
830
831 static void copy_complete(int read_err, unsigned long write_err, void *context)
832 {
833         unsigned long flags;
834         struct dm_thin_new_mapping *m = context;
835         struct pool *pool = m->tc->pool;
836
837         m->err = read_err || write_err ? -EIO : 0;
838
839         spin_lock_irqsave(&pool->lock, flags);
840         m->prepared = 1;
841         __maybe_add_mapping(m);
842         spin_unlock_irqrestore(&pool->lock, flags);
843 }
844
845 static void overwrite_endio(struct bio *bio, int err)
846 {
847         unsigned long flags;
848         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
849         struct dm_thin_new_mapping *m = h->overwrite_mapping;
850         struct pool *pool = m->tc->pool;
851
852         m->err = err;
853
854         spin_lock_irqsave(&pool->lock, flags);
855         m->prepared = 1;
856         __maybe_add_mapping(m);
857         spin_unlock_irqrestore(&pool->lock, flags);
858 }
859
860 /*----------------------------------------------------------------*/
861
862 /*
863  * Workqueue.
864  */
865
866 /*
867  * Prepared mapping jobs.
868  */
869
870 /*
871  * This sends the bios in the cell back to the deferred_bios list.
872  */
873 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
874                        dm_block_t data_block)
875 {
876         struct pool *pool = tc->pool;
877         unsigned long flags;
878
879         spin_lock_irqsave(&pool->lock, flags);
880         cell_release(cell, &pool->deferred_bios);
881         spin_unlock_irqrestore(&tc->pool->lock, flags);
882
883         wake_worker(pool);
884 }
885
886 /*
887  * Same as cell_defer above, except it omits one particular detainee,
888  * a write bio that covers the block and has already been processed.
889  */
890 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
891 {
892         struct bio_list bios;
893         struct pool *pool = tc->pool;
894         unsigned long flags;
895
896         bio_list_init(&bios);
897
898         spin_lock_irqsave(&pool->lock, flags);
899         cell_release_no_holder(cell, &pool->deferred_bios);
900         spin_unlock_irqrestore(&pool->lock, flags);
901
902         wake_worker(pool);
903 }
904
905 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
906 {
907         if (m->bio)
908                 m->bio->bi_end_io = m->saved_bi_end_io;
909         cell_error(m->cell);
910         list_del(&m->list);
911         mempool_free(m, m->tc->pool->mapping_pool);
912 }
913 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
914 {
915         struct thin_c *tc = m->tc;
916         struct bio *bio;
917         int r;
918
919         bio = m->bio;
920         if (bio)
921                 bio->bi_end_io = m->saved_bi_end_io;
922
923         if (m->err) {
924                 cell_error(m->cell);
925                 goto out;
926         }
927
928         /*
929          * Commit the prepared block into the mapping btree.
930          * Any I/O for this block arriving after this point will get
931          * remapped to it directly.
932          */
933         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
934         if (r) {
935                 DMERR("dm_thin_insert_block() failed");
936                 cell_error(m->cell);
937                 goto out;
938         }
939
940         /*
941          * Release any bios held while the block was being provisioned.
942          * If we are processing a write bio that completely covers the block,
943          * we already processed it so can ignore it now when processing
944          * the bios in the cell.
945          */
946         if (bio) {
947                 cell_defer_except(tc, m->cell);
948                 bio_endio(bio, 0);
949         } else
950                 cell_defer(tc, m->cell, m->data_block);
951
952 out:
953         list_del(&m->list);
954         mempool_free(m, tc->pool->mapping_pool);
955 }
956
957 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
958 {
959         struct thin_c *tc = m->tc;
960
961         bio_io_error(m->bio);
962         cell_defer_except(tc, m->cell);
963         cell_defer_except(tc, m->cell2);
964         mempool_free(m, tc->pool->mapping_pool);
965 }
966
967 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
968 {
969         struct thin_c *tc = m->tc;
970
971         if (m->pass_discard)
972                 remap_and_issue(tc, m->bio, m->data_block);
973         else
974                 bio_endio(m->bio, 0);
975
976         cell_defer_except(tc, m->cell);
977         cell_defer_except(tc, m->cell2);
978         mempool_free(m, tc->pool->mapping_pool);
979 }
980
981 static void process_prepared_discard(struct dm_thin_new_mapping *m)
982 {
983         int r;
984         struct thin_c *tc = m->tc;
985
986         r = dm_thin_remove_block(tc->td, m->virt_block);
987         if (r)
988                 DMERR("dm_thin_remove_block() failed");
989
990         process_prepared_discard_passdown(m);
991 }
992
993 static void process_prepared(struct pool *pool, struct list_head *head,
994                              process_mapping_fn *fn)
995 {
996         unsigned long flags;
997         struct list_head maps;
998         struct dm_thin_new_mapping *m, *tmp;
999
1000         INIT_LIST_HEAD(&maps);
1001         spin_lock_irqsave(&pool->lock, flags);
1002         list_splice_init(head, &maps);
1003         spin_unlock_irqrestore(&pool->lock, flags);
1004
1005         list_for_each_entry_safe(m, tmp, &maps, list)
1006                 (*fn)(m);
1007 }
1008
1009 /*
1010  * Deferred bio jobs.
1011  */
1012 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1013 {
1014         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1015 }
1016
1017 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1018 {
1019         return (bio_data_dir(bio) == WRITE) &&
1020                 io_overlaps_block(pool, bio);
1021 }
1022
1023 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1024                                bio_end_io_t *fn)
1025 {
1026         *save = bio->bi_end_io;
1027         bio->bi_end_io = fn;
1028 }
1029
1030 static int ensure_next_mapping(struct pool *pool)
1031 {
1032         if (pool->next_mapping)
1033                 return 0;
1034
1035         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1036
1037         return pool->next_mapping ? 0 : -ENOMEM;
1038 }
1039
1040 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1041 {
1042         struct dm_thin_new_mapping *r = pool->next_mapping;
1043
1044         BUG_ON(!pool->next_mapping);
1045
1046         pool->next_mapping = NULL;
1047
1048         return r;
1049 }
1050
1051 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1052                           struct dm_dev *origin, dm_block_t data_origin,
1053                           dm_block_t data_dest,
1054                           struct dm_bio_prison_cell *cell, struct bio *bio)
1055 {
1056         int r;
1057         struct pool *pool = tc->pool;
1058         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1059
1060         INIT_LIST_HEAD(&m->list);
1061         m->quiesced = 0;
1062         m->prepared = 0;
1063         m->tc = tc;
1064         m->virt_block = virt_block;
1065         m->data_block = data_dest;
1066         m->cell = cell;
1067         m->err = 0;
1068         m->bio = NULL;
1069
1070         if (!ds_add_work(&pool->shared_read_ds, &m->list))
1071                 m->quiesced = 1;
1072
1073         /*
1074          * IO to pool_dev remaps to the pool target's data_dev.
1075          *
1076          * If the whole block of data is being overwritten, we can issue the
1077          * bio immediately. Otherwise we use kcopyd to clone the data first.
1078          */
1079         if (io_overwrites_block(pool, bio)) {
1080                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1081
1082                 h->overwrite_mapping = m;
1083                 m->bio = bio;
1084                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1085                 remap_and_issue(tc, bio, data_dest);
1086         } else {
1087                 struct dm_io_region from, to;
1088
1089                 from.bdev = origin->bdev;
1090                 from.sector = data_origin * pool->sectors_per_block;
1091                 from.count = pool->sectors_per_block;
1092
1093                 to.bdev = tc->pool_dev->bdev;
1094                 to.sector = data_dest * pool->sectors_per_block;
1095                 to.count = pool->sectors_per_block;
1096
1097                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1098                                    0, copy_complete, m);
1099                 if (r < 0) {
1100                         mempool_free(m, pool->mapping_pool);
1101                         DMERR("dm_kcopyd_copy() failed");
1102                         cell_error(cell);
1103                 }
1104         }
1105 }
1106
1107 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1108                                    dm_block_t data_origin, dm_block_t data_dest,
1109                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1110 {
1111         schedule_copy(tc, virt_block, tc->pool_dev,
1112                       data_origin, data_dest, cell, bio);
1113 }
1114
1115 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1116                                    dm_block_t data_dest,
1117                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1118 {
1119         schedule_copy(tc, virt_block, tc->origin_dev,
1120                       virt_block, data_dest, cell, bio);
1121 }
1122
1123 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1124                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1125                           struct bio *bio)
1126 {
1127         struct pool *pool = tc->pool;
1128         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1129
1130         INIT_LIST_HEAD(&m->list);
1131         m->quiesced = 1;
1132         m->prepared = 0;
1133         m->tc = tc;
1134         m->virt_block = virt_block;
1135         m->data_block = data_block;
1136         m->cell = cell;
1137         m->err = 0;
1138         m->bio = NULL;
1139
1140         /*
1141          * If the whole block of data is being overwritten or we are not
1142          * zeroing pre-existing data, we can issue the bio immediately.
1143          * Otherwise we use kcopyd to zero the data first.
1144          */
1145         if (!pool->pf.zero_new_blocks)
1146                 process_prepared_mapping(m);
1147
1148         else if (io_overwrites_block(pool, bio)) {
1149                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1150
1151                 h->overwrite_mapping = m;
1152                 m->bio = bio;
1153                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1154                 remap_and_issue(tc, bio, data_block);
1155         } else {
1156                 int r;
1157                 struct dm_io_region to;
1158
1159                 to.bdev = tc->pool_dev->bdev;
1160                 to.sector = data_block * pool->sectors_per_block;
1161                 to.count = pool->sectors_per_block;
1162
1163                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1164                 if (r < 0) {
1165                         mempool_free(m, pool->mapping_pool);
1166                         DMERR("dm_kcopyd_zero() failed");
1167                         cell_error(cell);
1168                 }
1169         }
1170 }
1171
1172 static int commit(struct pool *pool)
1173 {
1174         int r;
1175
1176         r = dm_pool_commit_metadata(pool->pmd);
1177         if (r)
1178                 DMERR("commit failed, error = %d", r);
1179
1180         return r;
1181 }
1182
1183 /*
1184  * A non-zero return indicates read_only or fail_io mode.
1185  * Many callers don't care about the return value.
1186  */
1187 static int commit_or_fallback(struct pool *pool)
1188 {
1189         int r;
1190
1191         if (get_pool_mode(pool) != PM_WRITE)
1192                 return -EINVAL;
1193
1194         r = commit(pool);
1195         if (r)
1196                 set_pool_mode(pool, PM_READ_ONLY);
1197
1198         return r;
1199 }
1200
1201 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1202 {
1203         int r;
1204         dm_block_t free_blocks;
1205         unsigned long flags;
1206         struct pool *pool = tc->pool;
1207
1208         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1209         if (r)
1210                 return r;
1211
1212         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1213                 DMWARN("%s: reached low water mark, sending event.",
1214                        dm_device_name(pool->pool_md));
1215                 spin_lock_irqsave(&pool->lock, flags);
1216                 pool->low_water_triggered = 1;
1217                 spin_unlock_irqrestore(&pool->lock, flags);
1218                 dm_table_event(pool->ti->table);
1219         }
1220
1221         if (!free_blocks) {
1222                 if (pool->no_free_space)
1223                         return -ENOSPC;
1224                 else {
1225                         /*
1226                          * Try to commit to see if that will free up some
1227                          * more space.
1228                          */
1229                         (void) commit_or_fallback(pool);
1230
1231                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1232                         if (r)
1233                                 return r;
1234
1235                         /*
1236                          * If we still have no space we set a flag to avoid
1237                          * doing all this checking and return -ENOSPC.
1238                          */
1239                         if (!free_blocks) {
1240                                 DMWARN("%s: no free space available.",
1241                                        dm_device_name(pool->pool_md));
1242                                 spin_lock_irqsave(&pool->lock, flags);
1243                                 pool->no_free_space = 1;
1244                                 spin_unlock_irqrestore(&pool->lock, flags);
1245                                 return -ENOSPC;
1246                         }
1247                 }
1248         }
1249
1250         r = dm_pool_alloc_data_block(pool->pmd, result);
1251         if (r)
1252                 return r;
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * If we have run out of space, queue bios until the device is
1259  * resumed, presumably after having been reloaded with more space.
1260  */
1261 static void retry_on_resume(struct bio *bio)
1262 {
1263         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1264         struct thin_c *tc = h->tc;
1265         struct pool *pool = tc->pool;
1266         unsigned long flags;
1267
1268         spin_lock_irqsave(&pool->lock, flags);
1269         bio_list_add(&pool->retry_on_resume_list, bio);
1270         spin_unlock_irqrestore(&pool->lock, flags);
1271 }
1272
1273 static void no_space(struct dm_bio_prison_cell *cell)
1274 {
1275         struct bio *bio;
1276         struct bio_list bios;
1277
1278         bio_list_init(&bios);
1279         cell_release(cell, &bios);
1280
1281         while ((bio = bio_list_pop(&bios)))
1282                 retry_on_resume(bio);
1283 }
1284
1285 static void process_discard(struct thin_c *tc, struct bio *bio)
1286 {
1287         int r;
1288         unsigned long flags;
1289         struct pool *pool = tc->pool;
1290         struct dm_bio_prison_cell *cell, *cell2;
1291         struct cell_key key, key2;
1292         dm_block_t block = get_bio_block(tc, bio);
1293         struct dm_thin_lookup_result lookup_result;
1294         struct dm_thin_new_mapping *m;
1295
1296         build_virtual_key(tc->td, block, &key);
1297         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1298                 return;
1299
1300         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1301         switch (r) {
1302         case 0:
1303                 /*
1304                  * Check nobody is fiddling with this pool block.  This can
1305                  * happen if someone's in the process of breaking sharing
1306                  * on this block.
1307                  */
1308                 build_data_key(tc->td, lookup_result.block, &key2);
1309                 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1310                         cell_release_singleton(cell, bio);
1311                         break;
1312                 }
1313
1314                 if (io_overlaps_block(pool, bio)) {
1315                         /*
1316                          * IO may still be going to the destination block.  We must
1317                          * quiesce before we can do the removal.
1318                          */
1319                         m = get_next_mapping(pool);
1320                         m->tc = tc;
1321                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1322                         m->virt_block = block;
1323                         m->data_block = lookup_result.block;
1324                         m->cell = cell;
1325                         m->cell2 = cell2;
1326                         m->err = 0;
1327                         m->bio = bio;
1328
1329                         if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1330                                 spin_lock_irqsave(&pool->lock, flags);
1331                                 list_add(&m->list, &pool->prepared_discards);
1332                                 spin_unlock_irqrestore(&pool->lock, flags);
1333                                 wake_worker(pool);
1334                         }
1335                 } else {
1336                         /*
1337                          * The DM core makes sure that the discard doesn't span
1338                          * a block boundary.  So we submit the discard of a
1339                          * partial block appropriately.
1340                          */
1341                         cell_release_singleton(cell, bio);
1342                         cell_release_singleton(cell2, bio);
1343                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1344                                 remap_and_issue(tc, bio, lookup_result.block);
1345                         else
1346                                 bio_endio(bio, 0);
1347                 }
1348                 break;
1349
1350         case -ENODATA:
1351                 /*
1352                  * It isn't provisioned, just forget it.
1353                  */
1354                 cell_release_singleton(cell, bio);
1355                 bio_endio(bio, 0);
1356                 break;
1357
1358         default:
1359                 DMERR("discard: find block unexpectedly returned %d", r);
1360                 cell_release_singleton(cell, bio);
1361                 bio_io_error(bio);
1362                 break;
1363         }
1364 }
1365
1366 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1367                           struct cell_key *key,
1368                           struct dm_thin_lookup_result *lookup_result,
1369                           struct dm_bio_prison_cell *cell)
1370 {
1371         int r;
1372         dm_block_t data_block;
1373
1374         r = alloc_data_block(tc, &data_block);
1375         switch (r) {
1376         case 0:
1377                 schedule_internal_copy(tc, block, lookup_result->block,
1378                                        data_block, cell, bio);
1379                 break;
1380
1381         case -ENOSPC:
1382                 no_space(cell);
1383                 break;
1384
1385         default:
1386                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1387                 cell_error(cell);
1388                 break;
1389         }
1390 }
1391
1392 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1393                                dm_block_t block,
1394                                struct dm_thin_lookup_result *lookup_result)
1395 {
1396         struct dm_bio_prison_cell *cell;
1397         struct pool *pool = tc->pool;
1398         struct cell_key key;
1399
1400         /*
1401          * If cell is already occupied, then sharing is already in the process
1402          * of being broken so we have nothing further to do here.
1403          */
1404         build_data_key(tc->td, lookup_result->block, &key);
1405         if (bio_detain(pool->prison, &key, bio, &cell))
1406                 return;
1407
1408         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1409                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1410         else {
1411                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1412
1413                 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1414
1415                 cell_release_singleton(cell, bio);
1416                 remap_and_issue(tc, bio, lookup_result->block);
1417         }
1418 }
1419
1420 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1421                             struct dm_bio_prison_cell *cell)
1422 {
1423         int r;
1424         dm_block_t data_block;
1425
1426         /*
1427          * Remap empty bios (flushes) immediately, without provisioning.
1428          */
1429         if (!bio->bi_size) {
1430                 cell_release_singleton(cell, bio);
1431                 remap_and_issue(tc, bio, 0);
1432                 return;
1433         }
1434
1435         /*
1436          * Fill read bios with zeroes and complete them immediately.
1437          */
1438         if (bio_data_dir(bio) == READ) {
1439                 zero_fill_bio(bio);
1440                 cell_release_singleton(cell, bio);
1441                 bio_endio(bio, 0);
1442                 return;
1443         }
1444
1445         r = alloc_data_block(tc, &data_block);
1446         switch (r) {
1447         case 0:
1448                 if (tc->origin_dev)
1449                         schedule_external_copy(tc, block, data_block, cell, bio);
1450                 else
1451                         schedule_zero(tc, block, data_block, cell, bio);
1452                 break;
1453
1454         case -ENOSPC:
1455                 no_space(cell);
1456                 break;
1457
1458         default:
1459                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1460                 set_pool_mode(tc->pool, PM_READ_ONLY);
1461                 cell_error(cell);
1462                 break;
1463         }
1464 }
1465
1466 static void process_bio(struct thin_c *tc, struct bio *bio)
1467 {
1468         int r;
1469         dm_block_t block = get_bio_block(tc, bio);
1470         struct dm_bio_prison_cell *cell;
1471         struct cell_key key;
1472         struct dm_thin_lookup_result lookup_result;
1473
1474         /*
1475          * If cell is already occupied, then the block is already
1476          * being provisioned so we have nothing further to do here.
1477          */
1478         build_virtual_key(tc->td, block, &key);
1479         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1480                 return;
1481
1482         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1483         switch (r) {
1484         case 0:
1485                 /*
1486                  * We can release this cell now.  This thread is the only
1487                  * one that puts bios into a cell, and we know there were
1488                  * no preceding bios.
1489                  */
1490                 /*
1491                  * TODO: this will probably have to change when discard goes
1492                  * back in.
1493                  */
1494                 cell_release_singleton(cell, bio);
1495
1496                 if (lookup_result.shared)
1497                         process_shared_bio(tc, bio, block, &lookup_result);
1498                 else
1499                         remap_and_issue(tc, bio, lookup_result.block);
1500                 break;
1501
1502         case -ENODATA:
1503                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1504                         cell_release_singleton(cell, bio);
1505                         remap_to_origin_and_issue(tc, bio);
1506                 } else
1507                         provision_block(tc, bio, block, cell);
1508                 break;
1509
1510         default:
1511                 DMERR("dm_thin_find_block() failed, error = %d", r);
1512                 cell_release_singleton(cell, bio);
1513                 bio_io_error(bio);
1514                 break;
1515         }
1516 }
1517
1518 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1519 {
1520         int r;
1521         int rw = bio_data_dir(bio);
1522         dm_block_t block = get_bio_block(tc, bio);
1523         struct dm_thin_lookup_result lookup_result;
1524
1525         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1526         switch (r) {
1527         case 0:
1528                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1529                         bio_io_error(bio);
1530                 else
1531                         remap_and_issue(tc, bio, lookup_result.block);
1532                 break;
1533
1534         case -ENODATA:
1535                 if (rw != READ) {
1536                         bio_io_error(bio);
1537                         break;
1538                 }
1539
1540                 if (tc->origin_dev) {
1541                         remap_to_origin_and_issue(tc, bio);
1542                         break;
1543                 }
1544
1545                 zero_fill_bio(bio);
1546                 bio_endio(bio, 0);
1547                 break;
1548
1549         default:
1550                 DMERR("dm_thin_find_block() failed, error = %d", r);
1551                 bio_io_error(bio);
1552                 break;
1553         }
1554 }
1555
1556 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1557 {
1558         bio_io_error(bio);
1559 }
1560
1561 static int need_commit_due_to_time(struct pool *pool)
1562 {
1563         return jiffies < pool->last_commit_jiffies ||
1564                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1565 }
1566
1567 static void process_deferred_bios(struct pool *pool)
1568 {
1569         unsigned long flags;
1570         struct bio *bio;
1571         struct bio_list bios;
1572
1573         bio_list_init(&bios);
1574
1575         spin_lock_irqsave(&pool->lock, flags);
1576         bio_list_merge(&bios, &pool->deferred_bios);
1577         bio_list_init(&pool->deferred_bios);
1578         spin_unlock_irqrestore(&pool->lock, flags);
1579
1580         while ((bio = bio_list_pop(&bios))) {
1581                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1582                 struct thin_c *tc = h->tc;
1583
1584                 /*
1585                  * If we've got no free new_mapping structs, and processing
1586                  * this bio might require one, we pause until there are some
1587                  * prepared mappings to process.
1588                  */
1589                 if (ensure_next_mapping(pool)) {
1590                         spin_lock_irqsave(&pool->lock, flags);
1591                         bio_list_merge(&pool->deferred_bios, &bios);
1592                         spin_unlock_irqrestore(&pool->lock, flags);
1593
1594                         break;
1595                 }
1596
1597                 if (bio->bi_rw & REQ_DISCARD)
1598                         pool->process_discard(tc, bio);
1599                 else
1600                         pool->process_bio(tc, bio);
1601         }
1602
1603         /*
1604          * If there are any deferred flush bios, we must commit
1605          * the metadata before issuing them.
1606          */
1607         bio_list_init(&bios);
1608         spin_lock_irqsave(&pool->lock, flags);
1609         bio_list_merge(&bios, &pool->deferred_flush_bios);
1610         bio_list_init(&pool->deferred_flush_bios);
1611         spin_unlock_irqrestore(&pool->lock, flags);
1612
1613         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1614                 return;
1615
1616         if (commit_or_fallback(pool)) {
1617                 while ((bio = bio_list_pop(&bios)))
1618                         bio_io_error(bio);
1619                 return;
1620         }
1621         pool->last_commit_jiffies = jiffies;
1622
1623         while ((bio = bio_list_pop(&bios)))
1624                 generic_make_request(bio);
1625 }
1626
1627 static void do_worker(struct work_struct *ws)
1628 {
1629         struct pool *pool = container_of(ws, struct pool, worker);
1630
1631         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1632         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1633         process_deferred_bios(pool);
1634 }
1635
1636 /*
1637  * We want to commit periodically so that not too much
1638  * unwritten data builds up.
1639  */
1640 static void do_waker(struct work_struct *ws)
1641 {
1642         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1643         wake_worker(pool);
1644         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1645 }
1646
1647 /*----------------------------------------------------------------*/
1648
1649 static enum pool_mode get_pool_mode(struct pool *pool)
1650 {
1651         return pool->pf.mode;
1652 }
1653
1654 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1655 {
1656         int r;
1657
1658         pool->pf.mode = mode;
1659
1660         switch (mode) {
1661         case PM_FAIL:
1662                 DMERR("switching pool to failure mode");
1663                 pool->process_bio = process_bio_fail;
1664                 pool->process_discard = process_bio_fail;
1665                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1666                 pool->process_prepared_discard = process_prepared_discard_fail;
1667                 break;
1668
1669         case PM_READ_ONLY:
1670                 DMERR("switching pool to read-only mode");
1671                 r = dm_pool_abort_metadata(pool->pmd);
1672                 if (r) {
1673                         DMERR("aborting transaction failed");
1674                         set_pool_mode(pool, PM_FAIL);
1675                 } else {
1676                         dm_pool_metadata_read_only(pool->pmd);
1677                         pool->process_bio = process_bio_read_only;
1678                         pool->process_discard = process_discard;
1679                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1680                         pool->process_prepared_discard = process_prepared_discard_passdown;
1681                 }
1682                 break;
1683
1684         case PM_WRITE:
1685                 pool->process_bio = process_bio;
1686                 pool->process_discard = process_discard;
1687                 pool->process_prepared_mapping = process_prepared_mapping;
1688                 pool->process_prepared_discard = process_prepared_discard;
1689                 break;
1690         }
1691 }
1692
1693 /*----------------------------------------------------------------*/
1694
1695 /*
1696  * Mapping functions.
1697  */
1698
1699 /*
1700  * Called only while mapping a thin bio to hand it over to the workqueue.
1701  */
1702 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1703 {
1704         unsigned long flags;
1705         struct pool *pool = tc->pool;
1706
1707         spin_lock_irqsave(&pool->lock, flags);
1708         bio_list_add(&pool->deferred_bios, bio);
1709         spin_unlock_irqrestore(&pool->lock, flags);
1710
1711         wake_worker(pool);
1712 }
1713
1714 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1715 {
1716         struct pool *pool = tc->pool;
1717         struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1718
1719         h->tc = tc;
1720         h->shared_read_entry = NULL;
1721         h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1722         h->overwrite_mapping = NULL;
1723
1724         return h;
1725 }
1726
1727 /*
1728  * Non-blocking function called from the thin target's map function.
1729  */
1730 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1731                         union map_info *map_context)
1732 {
1733         int r;
1734         struct thin_c *tc = ti->private;
1735         dm_block_t block = get_bio_block(tc, bio);
1736         struct dm_thin_device *td = tc->td;
1737         struct dm_thin_lookup_result result;
1738
1739         map_context->ptr = thin_hook_bio(tc, bio);
1740
1741         if (get_pool_mode(tc->pool) == PM_FAIL) {
1742                 bio_io_error(bio);
1743                 return DM_MAPIO_SUBMITTED;
1744         }
1745
1746         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1747                 thin_defer_bio(tc, bio);
1748                 return DM_MAPIO_SUBMITTED;
1749         }
1750
1751         r = dm_thin_find_block(td, block, 0, &result);
1752
1753         /*
1754          * Note that we defer readahead too.
1755          */
1756         switch (r) {
1757         case 0:
1758                 if (unlikely(result.shared)) {
1759                         /*
1760                          * We have a race condition here between the
1761                          * result.shared value returned by the lookup and
1762                          * snapshot creation, which may cause new
1763                          * sharing.
1764                          *
1765                          * To avoid this always quiesce the origin before
1766                          * taking the snap.  You want to do this anyway to
1767                          * ensure a consistent application view
1768                          * (i.e. lockfs).
1769                          *
1770                          * More distant ancestors are irrelevant. The
1771                          * shared flag will be set in their case.
1772                          */
1773                         thin_defer_bio(tc, bio);
1774                         r = DM_MAPIO_SUBMITTED;
1775                 } else {
1776                         remap(tc, bio, result.block);
1777                         r = DM_MAPIO_REMAPPED;
1778                 }
1779                 break;
1780
1781         case -ENODATA:
1782                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1783                         /*
1784                          * This block isn't provisioned, and we have no way
1785                          * of doing so.  Just error it.
1786                          */
1787                         bio_io_error(bio);
1788                         r = DM_MAPIO_SUBMITTED;
1789                         break;
1790                 }
1791                 /* fall through */
1792
1793         case -EWOULDBLOCK:
1794                 /*
1795                  * In future, the failed dm_thin_find_block above could
1796                  * provide the hint to load the metadata into cache.
1797                  */
1798                 thin_defer_bio(tc, bio);
1799                 r = DM_MAPIO_SUBMITTED;
1800                 break;
1801
1802         default:
1803                 /*
1804                  * Must always call bio_io_error on failure.
1805                  * dm_thin_find_block can fail with -EINVAL if the
1806                  * pool is switched to fail-io mode.
1807                  */
1808                 bio_io_error(bio);
1809                 r = DM_MAPIO_SUBMITTED;
1810                 break;
1811         }
1812
1813         return r;
1814 }
1815
1816 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1817 {
1818         int r;
1819         unsigned long flags;
1820         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1821
1822         spin_lock_irqsave(&pt->pool->lock, flags);
1823         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1824         spin_unlock_irqrestore(&pt->pool->lock, flags);
1825
1826         if (!r) {
1827                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1828                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1829         }
1830
1831         return r;
1832 }
1833
1834 static void __requeue_bios(struct pool *pool)
1835 {
1836         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1837         bio_list_init(&pool->retry_on_resume_list);
1838 }
1839
1840 /*----------------------------------------------------------------
1841  * Binding of control targets to a pool object
1842  *--------------------------------------------------------------*/
1843 static bool data_dev_supports_discard(struct pool_c *pt)
1844 {
1845         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1846
1847         return q && blk_queue_discard(q);
1848 }
1849
1850 /*
1851  * If discard_passdown was enabled verify that the data device
1852  * supports discards.  Disable discard_passdown if not.
1853  */
1854 static void disable_passdown_if_not_supported(struct pool_c *pt)
1855 {
1856         struct pool *pool = pt->pool;
1857         struct block_device *data_bdev = pt->data_dev->bdev;
1858         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1859         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1860         const char *reason = NULL;
1861         char buf[BDEVNAME_SIZE];
1862
1863         if (!pt->adjusted_pf.discard_passdown)
1864                 return;
1865
1866         if (!data_dev_supports_discard(pt))
1867                 reason = "discard unsupported";
1868
1869         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1870                 reason = "max discard sectors smaller than a block";
1871
1872         else if (data_limits->discard_granularity > block_size)
1873                 reason = "discard granularity larger than a block";
1874
1875         else if (block_size & (data_limits->discard_granularity - 1))
1876                 reason = "discard granularity not a factor of block size";
1877
1878         if (reason) {
1879                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1880                 pt->adjusted_pf.discard_passdown = false;
1881         }
1882 }
1883
1884 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1885 {
1886         struct pool_c *pt = ti->private;
1887
1888         /*
1889          * We want to make sure that degraded pools are never upgraded.
1890          */
1891         enum pool_mode old_mode = pool->pf.mode;
1892         enum pool_mode new_mode = pt->adjusted_pf.mode;
1893
1894         if (old_mode > new_mode)
1895                 new_mode = old_mode;
1896
1897         pool->ti = ti;
1898         pool->low_water_blocks = pt->low_water_blocks;
1899         pool->pf = pt->adjusted_pf;
1900
1901         set_pool_mode(pool, new_mode);
1902
1903         return 0;
1904 }
1905
1906 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1907 {
1908         if (pool->ti == ti)
1909                 pool->ti = NULL;
1910 }
1911
1912 /*----------------------------------------------------------------
1913  * Pool creation
1914  *--------------------------------------------------------------*/
1915 /* Initialize pool features. */
1916 static void pool_features_init(struct pool_features *pf)
1917 {
1918         pf->mode = PM_WRITE;
1919         pf->zero_new_blocks = true;
1920         pf->discard_enabled = true;
1921         pf->discard_passdown = true;
1922 }
1923
1924 static void __pool_destroy(struct pool *pool)
1925 {
1926         __pool_table_remove(pool);
1927
1928         if (dm_pool_metadata_close(pool->pmd) < 0)
1929                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1930
1931         prison_destroy(pool->prison);
1932         dm_kcopyd_client_destroy(pool->copier);
1933
1934         if (pool->wq)
1935                 destroy_workqueue(pool->wq);
1936
1937         if (pool->next_mapping)
1938                 mempool_free(pool->next_mapping, pool->mapping_pool);
1939         mempool_destroy(pool->mapping_pool);
1940         mempool_destroy(pool->endio_hook_pool);
1941         kfree(pool);
1942 }
1943
1944 static struct kmem_cache *_new_mapping_cache;
1945 static struct kmem_cache *_endio_hook_cache;
1946
1947 static struct pool *pool_create(struct mapped_device *pool_md,
1948                                 struct block_device *metadata_dev,
1949                                 unsigned long block_size,
1950                                 int read_only, char **error)
1951 {
1952         int r;
1953         void *err_p;
1954         struct pool *pool;
1955         struct dm_pool_metadata *pmd;
1956         bool format_device = read_only ? false : true;
1957
1958         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1959         if (IS_ERR(pmd)) {
1960                 *error = "Error creating metadata object";
1961                 return (struct pool *)pmd;
1962         }
1963
1964         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1965         if (!pool) {
1966                 *error = "Error allocating memory for pool";
1967                 err_p = ERR_PTR(-ENOMEM);
1968                 goto bad_pool;
1969         }
1970
1971         pool->pmd = pmd;
1972         pool->sectors_per_block = block_size;
1973         if (block_size & (block_size - 1))
1974                 pool->sectors_per_block_shift = -1;
1975         else
1976                 pool->sectors_per_block_shift = __ffs(block_size);
1977         pool->low_water_blocks = 0;
1978         pool_features_init(&pool->pf);
1979         pool->prison = prison_create(PRISON_CELLS);
1980         if (!pool->prison) {
1981                 *error = "Error creating pool's bio prison";
1982                 err_p = ERR_PTR(-ENOMEM);
1983                 goto bad_prison;
1984         }
1985
1986         pool->copier = dm_kcopyd_client_create();
1987         if (IS_ERR(pool->copier)) {
1988                 r = PTR_ERR(pool->copier);
1989                 *error = "Error creating pool's kcopyd client";
1990                 err_p = ERR_PTR(r);
1991                 goto bad_kcopyd_client;
1992         }
1993
1994         /*
1995          * Create singlethreaded workqueue that will service all devices
1996          * that use this metadata.
1997          */
1998         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1999         if (!pool->wq) {
2000                 *error = "Error creating pool's workqueue";
2001                 err_p = ERR_PTR(-ENOMEM);
2002                 goto bad_wq;
2003         }
2004
2005         INIT_WORK(&pool->worker, do_worker);
2006         INIT_DELAYED_WORK(&pool->waker, do_waker);
2007         spin_lock_init(&pool->lock);
2008         bio_list_init(&pool->deferred_bios);
2009         bio_list_init(&pool->deferred_flush_bios);
2010         INIT_LIST_HEAD(&pool->prepared_mappings);
2011         INIT_LIST_HEAD(&pool->prepared_discards);
2012         pool->low_water_triggered = 0;
2013         pool->no_free_space = 0;
2014         bio_list_init(&pool->retry_on_resume_list);
2015         ds_init(&pool->shared_read_ds);
2016         ds_init(&pool->all_io_ds);
2017
2018         pool->next_mapping = NULL;
2019         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2020                                                       _new_mapping_cache);
2021         if (!pool->mapping_pool) {
2022                 *error = "Error creating pool's mapping mempool";
2023                 err_p = ERR_PTR(-ENOMEM);
2024                 goto bad_mapping_pool;
2025         }
2026
2027         pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2028                                                          _endio_hook_cache);
2029         if (!pool->endio_hook_pool) {
2030                 *error = "Error creating pool's endio_hook mempool";
2031                 err_p = ERR_PTR(-ENOMEM);
2032                 goto bad_endio_hook_pool;
2033         }
2034         pool->ref_count = 1;
2035         pool->last_commit_jiffies = jiffies;
2036         pool->pool_md = pool_md;
2037         pool->md_dev = metadata_dev;
2038         __pool_table_insert(pool);
2039
2040         return pool;
2041
2042 bad_endio_hook_pool:
2043         mempool_destroy(pool->mapping_pool);
2044 bad_mapping_pool:
2045         destroy_workqueue(pool->wq);
2046 bad_wq:
2047         dm_kcopyd_client_destroy(pool->copier);
2048 bad_kcopyd_client:
2049         prison_destroy(pool->prison);
2050 bad_prison:
2051         kfree(pool);
2052 bad_pool:
2053         if (dm_pool_metadata_close(pmd))
2054                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2055
2056         return err_p;
2057 }
2058
2059 static void __pool_inc(struct pool *pool)
2060 {
2061         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2062         pool->ref_count++;
2063 }
2064
2065 static void __pool_dec(struct pool *pool)
2066 {
2067         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2068         BUG_ON(!pool->ref_count);
2069         if (!--pool->ref_count)
2070                 __pool_destroy(pool);
2071 }
2072
2073 static struct pool *__pool_find(struct mapped_device *pool_md,
2074                                 struct block_device *metadata_dev,
2075                                 unsigned long block_size, int read_only,
2076                                 char **error, int *created)
2077 {
2078         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2079
2080         if (pool) {
2081                 if (pool->pool_md != pool_md) {
2082                         *error = "metadata device already in use by a pool";
2083                         return ERR_PTR(-EBUSY);
2084                 }
2085                 __pool_inc(pool);
2086
2087         } else {
2088                 pool = __pool_table_lookup(pool_md);
2089                 if (pool) {
2090                         if (pool->md_dev != metadata_dev) {
2091                                 *error = "different pool cannot replace a pool";
2092                                 return ERR_PTR(-EINVAL);
2093                         }
2094                         __pool_inc(pool);
2095
2096                 } else {
2097                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2098                         *created = 1;
2099                 }
2100         }
2101
2102         return pool;
2103 }
2104
2105 /*----------------------------------------------------------------
2106  * Pool target methods
2107  *--------------------------------------------------------------*/
2108 static void pool_dtr(struct dm_target *ti)
2109 {
2110         struct pool_c *pt = ti->private;
2111
2112         mutex_lock(&dm_thin_pool_table.mutex);
2113
2114         unbind_control_target(pt->pool, ti);
2115         __pool_dec(pt->pool);
2116         dm_put_device(ti, pt->metadata_dev);
2117         dm_put_device(ti, pt->data_dev);
2118         kfree(pt);
2119
2120         mutex_unlock(&dm_thin_pool_table.mutex);
2121 }
2122
2123 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2124                                struct dm_target *ti)
2125 {
2126         int r;
2127         unsigned argc;
2128         const char *arg_name;
2129
2130         static struct dm_arg _args[] = {
2131                 {0, 3, "Invalid number of pool feature arguments"},
2132         };
2133
2134         /*
2135          * No feature arguments supplied.
2136          */
2137         if (!as->argc)
2138                 return 0;
2139
2140         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2141         if (r)
2142                 return -EINVAL;
2143
2144         while (argc && !r) {
2145                 arg_name = dm_shift_arg(as);
2146                 argc--;
2147
2148                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2149                         pf->zero_new_blocks = false;
2150
2151                 else if (!strcasecmp(arg_name, "ignore_discard"))
2152                         pf->discard_enabled = false;
2153
2154                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2155                         pf->discard_passdown = false;
2156
2157                 else if (!strcasecmp(arg_name, "read_only"))
2158                         pf->mode = PM_READ_ONLY;
2159
2160                 else {
2161                         ti->error = "Unrecognised pool feature requested";
2162                         r = -EINVAL;
2163                         break;
2164                 }
2165         }
2166
2167         return r;
2168 }
2169
2170 /*
2171  * thin-pool <metadata dev> <data dev>
2172  *           <data block size (sectors)>
2173  *           <low water mark (blocks)>
2174  *           [<#feature args> [<arg>]*]
2175  *
2176  * Optional feature arguments are:
2177  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2178  *           ignore_discard: disable discard
2179  *           no_discard_passdown: don't pass discards down to the data device
2180  */
2181 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2182 {
2183         int r, pool_created = 0;
2184         struct pool_c *pt;
2185         struct pool *pool;
2186         struct pool_features pf;
2187         struct dm_arg_set as;
2188         struct dm_dev *data_dev;
2189         unsigned long block_size;
2190         dm_block_t low_water_blocks;
2191         struct dm_dev *metadata_dev;
2192         sector_t metadata_dev_size;
2193         char b[BDEVNAME_SIZE];
2194
2195         /*
2196          * FIXME Remove validation from scope of lock.
2197          */
2198         mutex_lock(&dm_thin_pool_table.mutex);
2199
2200         if (argc < 4) {
2201                 ti->error = "Invalid argument count";
2202                 r = -EINVAL;
2203                 goto out_unlock;
2204         }
2205         as.argc = argc;
2206         as.argv = argv;
2207
2208         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2209         if (r) {
2210                 ti->error = "Error opening metadata block device";
2211                 goto out_unlock;
2212         }
2213
2214         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2215         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2216                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2217                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2218
2219         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2220         if (r) {
2221                 ti->error = "Error getting data device";
2222                 goto out_metadata;
2223         }
2224
2225         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2226             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2227             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2228             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2229                 ti->error = "Invalid block size";
2230                 r = -EINVAL;
2231                 goto out;
2232         }
2233
2234         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2235                 ti->error = "Invalid low water mark";
2236                 r = -EINVAL;
2237                 goto out;
2238         }
2239
2240         /*
2241          * Set default pool features.
2242          */
2243         pool_features_init(&pf);
2244
2245         dm_consume_args(&as, 4);
2246         r = parse_pool_features(&as, &pf, ti);
2247         if (r)
2248                 goto out;
2249
2250         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2251         if (!pt) {
2252                 r = -ENOMEM;
2253                 goto out;
2254         }
2255
2256         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2257                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2258         if (IS_ERR(pool)) {
2259                 r = PTR_ERR(pool);
2260                 goto out_free_pt;
2261         }
2262
2263         /*
2264          * 'pool_created' reflects whether this is the first table load.
2265          * Top level discard support is not allowed to be changed after
2266          * initial load.  This would require a pool reload to trigger thin
2267          * device changes.
2268          */
2269         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2270                 ti->error = "Discard support cannot be disabled once enabled";
2271                 r = -EINVAL;
2272                 goto out_flags_changed;
2273         }
2274
2275         /*
2276          * The block layer requires discard_granularity to be a power of 2.
2277          */
2278         if (pf.discard_enabled && !is_power_of_2(block_size)) {
2279                 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2280                 r = -EINVAL;
2281                 goto out_flags_changed;
2282         }
2283
2284         pt->pool = pool;
2285         pt->ti = ti;
2286         pt->metadata_dev = metadata_dev;
2287         pt->data_dev = data_dev;
2288         pt->low_water_blocks = low_water_blocks;
2289         pt->adjusted_pf = pt->requested_pf = pf;
2290         ti->num_flush_requests = 1;
2291
2292         /*
2293          * Only need to enable discards if the pool should pass
2294          * them down to the data device.  The thin device's discard
2295          * processing will cause mappings to be removed from the btree.
2296          */
2297         if (pf.discard_enabled && pf.discard_passdown) {
2298                 ti->num_discard_requests = 1;
2299
2300                 /*
2301                  * Setting 'discards_supported' circumvents the normal
2302                  * stacking of discard limits (this keeps the pool and
2303                  * thin devices' discard limits consistent).
2304                  */
2305                 ti->discards_supported = true;
2306                 ti->discard_zeroes_data_unsupported = true;
2307         }
2308         ti->private = pt;
2309
2310         pt->callbacks.congested_fn = pool_is_congested;
2311         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2312
2313         mutex_unlock(&dm_thin_pool_table.mutex);
2314
2315         return 0;
2316
2317 out_flags_changed:
2318         __pool_dec(pool);
2319 out_free_pt:
2320         kfree(pt);
2321 out:
2322         dm_put_device(ti, data_dev);
2323 out_metadata:
2324         dm_put_device(ti, metadata_dev);
2325 out_unlock:
2326         mutex_unlock(&dm_thin_pool_table.mutex);
2327
2328         return r;
2329 }
2330
2331 static int pool_map(struct dm_target *ti, struct bio *bio,
2332                     union map_info *map_context)
2333 {
2334         int r;
2335         struct pool_c *pt = ti->private;
2336         struct pool *pool = pt->pool;
2337         unsigned long flags;
2338
2339         /*
2340          * As this is a singleton target, ti->begin is always zero.
2341          */
2342         spin_lock_irqsave(&pool->lock, flags);
2343         bio->bi_bdev = pt->data_dev->bdev;
2344         r = DM_MAPIO_REMAPPED;
2345         spin_unlock_irqrestore(&pool->lock, flags);
2346
2347         return r;
2348 }
2349
2350 /*
2351  * Retrieves the number of blocks of the data device from
2352  * the superblock and compares it to the actual device size,
2353  * thus resizing the data device in case it has grown.
2354  *
2355  * This both copes with opening preallocated data devices in the ctr
2356  * being followed by a resume
2357  * -and-
2358  * calling the resume method individually after userspace has
2359  * grown the data device in reaction to a table event.
2360  */
2361 static int pool_preresume(struct dm_target *ti)
2362 {
2363         int r;
2364         struct pool_c *pt = ti->private;
2365         struct pool *pool = pt->pool;
2366         sector_t data_size = ti->len;
2367         dm_block_t sb_data_size;
2368
2369         /*
2370          * Take control of the pool object.
2371          */
2372         r = bind_control_target(pool, ti);
2373         if (r)
2374                 return r;
2375
2376         (void) sector_div(data_size, pool->sectors_per_block);
2377
2378         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2379         if (r) {
2380                 DMERR("failed to retrieve data device size");
2381                 return r;
2382         }
2383
2384         if (data_size < sb_data_size) {
2385                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2386                       (unsigned long long)data_size, sb_data_size);
2387                 return -EINVAL;
2388
2389         } else if (data_size > sb_data_size) {
2390                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2391                 if (r) {
2392                         DMERR("failed to resize data device");
2393                         /* FIXME Stricter than necessary: Rollback transaction instead here */
2394                         set_pool_mode(pool, PM_READ_ONLY);
2395                         return r;
2396                 }
2397
2398                 (void) commit_or_fallback(pool);
2399         }
2400
2401         return 0;
2402 }
2403
2404 static void pool_resume(struct dm_target *ti)
2405 {
2406         struct pool_c *pt = ti->private;
2407         struct pool *pool = pt->pool;
2408         unsigned long flags;
2409
2410         spin_lock_irqsave(&pool->lock, flags);
2411         pool->low_water_triggered = 0;
2412         pool->no_free_space = 0;
2413         __requeue_bios(pool);
2414         spin_unlock_irqrestore(&pool->lock, flags);
2415
2416         do_waker(&pool->waker.work);
2417 }
2418
2419 static void pool_postsuspend(struct dm_target *ti)
2420 {
2421         struct pool_c *pt = ti->private;
2422         struct pool *pool = pt->pool;
2423
2424         cancel_delayed_work(&pool->waker);
2425         flush_workqueue(pool->wq);
2426         (void) commit_or_fallback(pool);
2427 }
2428
2429 static int check_arg_count(unsigned argc, unsigned args_required)
2430 {
2431         if (argc != args_required) {
2432                 DMWARN("Message received with %u arguments instead of %u.",
2433                        argc, args_required);
2434                 return -EINVAL;
2435         }
2436
2437         return 0;
2438 }
2439
2440 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2441 {
2442         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2443             *dev_id <= MAX_DEV_ID)
2444                 return 0;
2445
2446         if (warning)
2447                 DMWARN("Message received with invalid device id: %s", arg);
2448
2449         return -EINVAL;
2450 }
2451
2452 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2453 {
2454         dm_thin_id dev_id;
2455         int r;
2456
2457         r = check_arg_count(argc, 2);
2458         if (r)
2459                 return r;
2460
2461         r = read_dev_id(argv[1], &dev_id, 1);
2462         if (r)
2463                 return r;
2464
2465         r = dm_pool_create_thin(pool->pmd, dev_id);
2466         if (r) {
2467                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2468                        argv[1]);
2469                 return r;
2470         }
2471
2472         return 0;
2473 }
2474
2475 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2476 {
2477         dm_thin_id dev_id;
2478         dm_thin_id origin_dev_id;
2479         int r;
2480
2481         r = check_arg_count(argc, 3);
2482         if (r)
2483                 return r;
2484
2485         r = read_dev_id(argv[1], &dev_id, 1);
2486         if (r)
2487                 return r;
2488
2489         r = read_dev_id(argv[2], &origin_dev_id, 1);
2490         if (r)
2491                 return r;
2492
2493         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2494         if (r) {
2495                 DMWARN("Creation of new snapshot %s of device %s failed.",
2496                        argv[1], argv[2]);
2497                 return r;
2498         }
2499
2500         return 0;
2501 }
2502
2503 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2504 {
2505         dm_thin_id dev_id;
2506         int r;
2507
2508         r = check_arg_count(argc, 2);
2509         if (r)
2510                 return r;
2511
2512         r = read_dev_id(argv[1], &dev_id, 1);
2513         if (r)
2514                 return r;
2515
2516         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2517         if (r)
2518                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2519
2520         return r;
2521 }
2522
2523 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2524 {
2525         dm_thin_id old_id, new_id;
2526         int r;
2527
2528         r = check_arg_count(argc, 3);
2529         if (r)
2530                 return r;
2531
2532         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2533                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2534                 return -EINVAL;
2535         }
2536
2537         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2538                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2539                 return -EINVAL;
2540         }
2541
2542         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2543         if (r) {
2544                 DMWARN("Failed to change transaction id from %s to %s.",
2545                        argv[1], argv[2]);
2546                 return r;
2547         }
2548
2549         return 0;
2550 }
2551
2552 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2553 {
2554         int r;
2555
2556         r = check_arg_count(argc, 1);
2557         if (r)
2558                 return r;
2559
2560         (void) commit_or_fallback(pool);
2561
2562         r = dm_pool_reserve_metadata_snap(pool->pmd);
2563         if (r)
2564                 DMWARN("reserve_metadata_snap message failed.");
2565
2566         return r;
2567 }
2568
2569 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2570 {
2571         int r;
2572
2573         r = check_arg_count(argc, 1);
2574         if (r)
2575                 return r;
2576
2577         r = dm_pool_release_metadata_snap(pool->pmd);
2578         if (r)
2579                 DMWARN("release_metadata_snap message failed.");
2580
2581         return r;
2582 }
2583
2584 /*
2585  * Messages supported:
2586  *   create_thin        <dev_id>
2587  *   create_snap        <dev_id> <origin_id>
2588  *   delete             <dev_id>
2589  *   trim               <dev_id> <new_size_in_sectors>
2590  *   set_transaction_id <current_trans_id> <new_trans_id>
2591  *   reserve_metadata_snap
2592  *   release_metadata_snap
2593  */
2594 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2595 {
2596         int r = -EINVAL;
2597         struct pool_c *pt = ti->private;
2598         struct pool *pool = pt->pool;
2599
2600         if (!strcasecmp(argv[0], "create_thin"))
2601                 r = process_create_thin_mesg(argc, argv, pool);
2602
2603         else if (!strcasecmp(argv[0], "create_snap"))
2604                 r = process_create_snap_mesg(argc, argv, pool);
2605
2606         else if (!strcasecmp(argv[0], "delete"))
2607                 r = process_delete_mesg(argc, argv, pool);
2608
2609         else if (!strcasecmp(argv[0], "set_transaction_id"))
2610                 r = process_set_transaction_id_mesg(argc, argv, pool);
2611
2612         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2613                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2614
2615         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2616                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2617
2618         else
2619                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2620
2621         if (!r)
2622                 (void) commit_or_fallback(pool);
2623
2624         return r;
2625 }
2626
2627 static void emit_flags(struct pool_features *pf, char *result,
2628                        unsigned sz, unsigned maxlen)
2629 {
2630         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2631                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2632         DMEMIT("%u ", count);
2633
2634         if (!pf->zero_new_blocks)
2635                 DMEMIT("skip_block_zeroing ");
2636
2637         if (!pf->discard_enabled)
2638                 DMEMIT("ignore_discard ");
2639
2640         if (!pf->discard_passdown)
2641                 DMEMIT("no_discard_passdown ");
2642
2643         if (pf->mode == PM_READ_ONLY)
2644                 DMEMIT("read_only ");
2645 }
2646
2647 /*
2648  * Status line is:
2649  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2650  *    <used data sectors>/<total data sectors> <held metadata root>
2651  */
2652 static int pool_status(struct dm_target *ti, status_type_t type,
2653                        unsigned status_flags, char *result, unsigned maxlen)
2654 {
2655         int r;
2656         unsigned sz = 0;
2657         uint64_t transaction_id;
2658         dm_block_t nr_free_blocks_data;
2659         dm_block_t nr_free_blocks_metadata;
2660         dm_block_t nr_blocks_data;
2661         dm_block_t nr_blocks_metadata;
2662         dm_block_t held_root;
2663         char buf[BDEVNAME_SIZE];
2664         char buf2[BDEVNAME_SIZE];
2665         struct pool_c *pt = ti->private;
2666         struct pool *pool = pt->pool;
2667
2668         switch (type) {
2669         case STATUSTYPE_INFO:
2670                 if (get_pool_mode(pool) == PM_FAIL) {
2671                         DMEMIT("Fail");
2672                         break;
2673                 }
2674
2675                 /* Commit to ensure statistics aren't out-of-date */
2676                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2677                         (void) commit_or_fallback(pool);
2678
2679                 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2680                                                         &transaction_id);
2681                 if (r)
2682                         return r;
2683
2684                 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2685                                                           &nr_free_blocks_metadata);
2686                 if (r)
2687                         return r;
2688
2689                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2690                 if (r)
2691                         return r;
2692
2693                 r = dm_pool_get_free_block_count(pool->pmd,
2694                                                  &nr_free_blocks_data);
2695                 if (r)
2696                         return r;
2697
2698                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2699                 if (r)
2700                         return r;
2701
2702                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2703                 if (r)
2704                         return r;
2705
2706                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2707                        (unsigned long long)transaction_id,
2708                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2709                        (unsigned long long)nr_blocks_metadata,
2710                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2711                        (unsigned long long)nr_blocks_data);
2712
2713                 if (held_root)
2714                         DMEMIT("%llu ", held_root);
2715                 else
2716                         DMEMIT("- ");
2717
2718                 if (pool->pf.mode == PM_READ_ONLY)
2719                         DMEMIT("ro ");
2720                 else
2721                         DMEMIT("rw ");
2722
2723                 if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2724                         DMEMIT("discard_passdown");
2725                 else
2726                         DMEMIT("no_discard_passdown");
2727
2728                 break;
2729
2730         case STATUSTYPE_TABLE:
2731                 DMEMIT("%s %s %lu %llu ",
2732                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2733                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2734                        (unsigned long)pool->sectors_per_block,
2735                        (unsigned long long)pt->low_water_blocks);
2736                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2737                 break;
2738         }
2739
2740         return 0;
2741 }
2742
2743 static int pool_iterate_devices(struct dm_target *ti,
2744                                 iterate_devices_callout_fn fn, void *data)
2745 {
2746         struct pool_c *pt = ti->private;
2747
2748         return fn(ti, pt->data_dev, 0, ti->len, data);
2749 }
2750
2751 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2752                       struct bio_vec *biovec, int max_size)
2753 {
2754         struct pool_c *pt = ti->private;
2755         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2756
2757         if (!q->merge_bvec_fn)
2758                 return max_size;
2759
2760         bvm->bi_bdev = pt->data_dev->bdev;
2761
2762         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2763 }
2764
2765 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2766 {
2767         struct pool *pool = pt->pool;
2768         struct queue_limits *data_limits;
2769
2770         limits->max_discard_sectors = pool->sectors_per_block;
2771
2772         /*
2773          * discard_granularity is just a hint, and not enforced.
2774          */
2775         if (pt->adjusted_pf.discard_passdown) {
2776                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2777                 limits->discard_granularity = data_limits->discard_granularity;
2778         } else
2779                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2780 }
2781
2782 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2783 {
2784         struct pool_c *pt = ti->private;
2785         struct pool *pool = pt->pool;
2786
2787         blk_limits_io_min(limits, 0);
2788         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2789
2790         /*
2791          * pt->adjusted_pf is a staging area for the actual features to use.
2792          * They get transferred to the live pool in bind_control_target()
2793          * called from pool_preresume().
2794          */
2795         if (!pt->adjusted_pf.discard_enabled)
2796                 return;
2797
2798         disable_passdown_if_not_supported(pt);
2799
2800         set_discard_limits(pt, limits);
2801 }
2802
2803 static struct target_type pool_target = {
2804         .name = "thin-pool",
2805         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2806                     DM_TARGET_IMMUTABLE,
2807         .version = {1, 4, 0},
2808         .module = THIS_MODULE,
2809         .ctr = pool_ctr,
2810         .dtr = pool_dtr,
2811         .map = pool_map,
2812         .postsuspend = pool_postsuspend,
2813         .preresume = pool_preresume,
2814         .resume = pool_resume,
2815         .message = pool_message,
2816         .status = pool_status,
2817         .merge = pool_merge,
2818         .iterate_devices = pool_iterate_devices,
2819         .io_hints = pool_io_hints,
2820 };
2821
2822 /*----------------------------------------------------------------
2823  * Thin target methods
2824  *--------------------------------------------------------------*/
2825 static void thin_dtr(struct dm_target *ti)
2826 {
2827         struct thin_c *tc = ti->private;
2828
2829         mutex_lock(&dm_thin_pool_table.mutex);
2830
2831         __pool_dec(tc->pool);
2832         dm_pool_close_thin_device(tc->td);
2833         dm_put_device(ti, tc->pool_dev);
2834         if (tc->origin_dev)
2835                 dm_put_device(ti, tc->origin_dev);
2836         kfree(tc);
2837
2838         mutex_unlock(&dm_thin_pool_table.mutex);
2839 }
2840
2841 /*
2842  * Thin target parameters:
2843  *
2844  * <pool_dev> <dev_id> [origin_dev]
2845  *
2846  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2847  * dev_id: the internal device identifier
2848  * origin_dev: a device external to the pool that should act as the origin
2849  *
2850  * If the pool device has discards disabled, they get disabled for the thin
2851  * device as well.
2852  */
2853 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2854 {
2855         int r;
2856         struct thin_c *tc;
2857         struct dm_dev *pool_dev, *origin_dev;
2858         struct mapped_device *pool_md;
2859
2860         mutex_lock(&dm_thin_pool_table.mutex);
2861
2862         if (argc != 2 && argc != 3) {
2863                 ti->error = "Invalid argument count";
2864                 r = -EINVAL;
2865                 goto out_unlock;
2866         }
2867
2868         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2869         if (!tc) {
2870                 ti->error = "Out of memory";
2871                 r = -ENOMEM;
2872                 goto out_unlock;
2873         }
2874
2875         if (argc == 3) {
2876                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2877                 if (r) {
2878                         ti->error = "Error opening origin device";
2879                         goto bad_origin_dev;
2880                 }
2881                 tc->origin_dev = origin_dev;
2882         }
2883
2884         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2885         if (r) {
2886                 ti->error = "Error opening pool device";
2887                 goto bad_pool_dev;
2888         }
2889         tc->pool_dev = pool_dev;
2890
2891         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2892                 ti->error = "Invalid device id";
2893                 r = -EINVAL;
2894                 goto bad_common;
2895         }
2896
2897         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2898         if (!pool_md) {
2899                 ti->error = "Couldn't get pool mapped device";
2900                 r = -EINVAL;
2901                 goto bad_common;
2902         }
2903
2904         tc->pool = __pool_table_lookup(pool_md);
2905         if (!tc->pool) {
2906                 ti->error = "Couldn't find pool object";
2907                 r = -EINVAL;
2908                 goto bad_pool_lookup;
2909         }
2910         __pool_inc(tc->pool);
2911
2912         if (get_pool_mode(tc->pool) == PM_FAIL) {
2913                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2914                 goto bad_thin_open;
2915         }
2916
2917         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2918         if (r) {
2919                 ti->error = "Couldn't open thin internal device";
2920                 goto bad_thin_open;
2921         }
2922
2923         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2924         if (r)
2925                 goto bad_thin_open;
2926
2927         ti->num_flush_requests = 1;
2928         ti->flush_supported = true;
2929
2930         /* In case the pool supports discards, pass them on. */
2931         if (tc->pool->pf.discard_enabled) {
2932                 ti->discards_supported = true;
2933                 ti->num_discard_requests = 1;
2934                 ti->discard_zeroes_data_unsupported = true;
2935                 /* Discard requests must be split on a block boundary */
2936                 ti->split_discard_requests = true;
2937         }
2938
2939         dm_put(pool_md);
2940
2941         mutex_unlock(&dm_thin_pool_table.mutex);
2942
2943         return 0;
2944
2945 bad_thin_open:
2946         __pool_dec(tc->pool);
2947 bad_pool_lookup:
2948         dm_put(pool_md);
2949 bad_common:
2950         dm_put_device(ti, tc->pool_dev);
2951 bad_pool_dev:
2952         if (tc->origin_dev)
2953                 dm_put_device(ti, tc->origin_dev);
2954 bad_origin_dev:
2955         kfree(tc);
2956 out_unlock:
2957         mutex_unlock(&dm_thin_pool_table.mutex);
2958
2959         return r;
2960 }
2961
2962 static int thin_map(struct dm_target *ti, struct bio *bio,
2963                     union map_info *map_context)
2964 {
2965         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2966
2967         return thin_bio_map(ti, bio, map_context);
2968 }
2969
2970 static int thin_endio(struct dm_target *ti,
2971                       struct bio *bio, int err,
2972                       union map_info *map_context)
2973 {
2974         unsigned long flags;
2975         struct dm_thin_endio_hook *h = map_context->ptr;
2976         struct list_head work;
2977         struct dm_thin_new_mapping *m, *tmp;
2978         struct pool *pool = h->tc->pool;
2979
2980         if (h->shared_read_entry) {
2981                 INIT_LIST_HEAD(&work);
2982                 ds_dec(h->shared_read_entry, &work);
2983
2984                 spin_lock_irqsave(&pool->lock, flags);
2985                 list_for_each_entry_safe(m, tmp, &work, list) {
2986                         list_del(&m->list);
2987                         m->quiesced = 1;
2988                         __maybe_add_mapping(m);
2989                 }
2990                 spin_unlock_irqrestore(&pool->lock, flags);
2991         }
2992
2993         if (h->all_io_entry) {
2994                 INIT_LIST_HEAD(&work);
2995                 ds_dec(h->all_io_entry, &work);
2996                 spin_lock_irqsave(&pool->lock, flags);
2997                 list_for_each_entry_safe(m, tmp, &work, list)
2998                         list_add(&m->list, &pool->prepared_discards);
2999                 spin_unlock_irqrestore(&pool->lock, flags);
3000         }
3001
3002         mempool_free(h, pool->endio_hook_pool);
3003
3004         return 0;
3005 }
3006
3007 static void thin_postsuspend(struct dm_target *ti)
3008 {
3009         if (dm_noflush_suspending(ti))
3010                 requeue_io((struct thin_c *)ti->private);
3011 }
3012
3013 /*
3014  * <nr mapped sectors> <highest mapped sector>
3015  */
3016 static int thin_status(struct dm_target *ti, status_type_t type,
3017                        unsigned status_flags, char *result, unsigned maxlen)
3018 {
3019         int r;
3020         ssize_t sz = 0;
3021         dm_block_t mapped, highest;
3022         char buf[BDEVNAME_SIZE];
3023         struct thin_c *tc = ti->private;
3024
3025         if (get_pool_mode(tc->pool) == PM_FAIL) {
3026                 DMEMIT("Fail");
3027                 return 0;
3028         }
3029
3030         if (!tc->td)
3031                 DMEMIT("-");
3032         else {
3033                 switch (type) {
3034                 case STATUSTYPE_INFO:
3035                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3036                         if (r)
3037                                 return r;
3038
3039                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3040                         if (r < 0)
3041                                 return r;
3042
3043                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3044                         if (r)
3045                                 DMEMIT("%llu", ((highest + 1) *
3046                                                 tc->pool->sectors_per_block) - 1);
3047                         else
3048                                 DMEMIT("-");
3049                         break;
3050
3051                 case STATUSTYPE_TABLE:
3052                         DMEMIT("%s %lu",
3053                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3054                                (unsigned long) tc->dev_id);
3055                         if (tc->origin_dev)
3056                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3057                         break;
3058                 }
3059         }
3060
3061         return 0;
3062 }
3063
3064 static int thin_iterate_devices(struct dm_target *ti,
3065                                 iterate_devices_callout_fn fn, void *data)
3066 {
3067         sector_t blocks;
3068         struct thin_c *tc = ti->private;
3069         struct pool *pool = tc->pool;
3070
3071         /*
3072          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3073          * we follow a more convoluted path through to the pool's target.
3074          */
3075         if (!pool->ti)
3076                 return 0;       /* nothing is bound */
3077
3078         blocks = pool->ti->len;
3079         (void) sector_div(blocks, pool->sectors_per_block);
3080         if (blocks)
3081                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3082
3083         return 0;
3084 }
3085
3086 /*
3087  * A thin device always inherits its queue limits from its pool.
3088  */
3089 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3090 {
3091         struct thin_c *tc = ti->private;
3092
3093         *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
3094 }
3095
3096 static struct target_type thin_target = {
3097         .name = "thin",
3098         .version = {1, 4, 0},
3099         .module = THIS_MODULE,
3100         .ctr = thin_ctr,
3101         .dtr = thin_dtr,
3102         .map = thin_map,
3103         .end_io = thin_endio,
3104         .postsuspend = thin_postsuspend,
3105         .status = thin_status,
3106         .iterate_devices = thin_iterate_devices,
3107         .io_hints = thin_io_hints,
3108 };
3109
3110 /*----------------------------------------------------------------*/
3111
3112 static int __init dm_thin_init(void)
3113 {
3114         int r;
3115
3116         pool_table_init();
3117
3118         r = dm_register_target(&thin_target);
3119         if (r)
3120                 return r;
3121
3122         r = dm_register_target(&pool_target);
3123         if (r)
3124                 goto bad_pool_target;
3125
3126         r = -ENOMEM;
3127
3128         _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3129         if (!_cell_cache)
3130                 goto bad_cell_cache;
3131
3132         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3133         if (!_new_mapping_cache)
3134                 goto bad_new_mapping_cache;
3135
3136         _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3137         if (!_endio_hook_cache)
3138                 goto bad_endio_hook_cache;
3139
3140         return 0;
3141
3142 bad_endio_hook_cache:
3143         kmem_cache_destroy(_new_mapping_cache);
3144 bad_new_mapping_cache:
3145         kmem_cache_destroy(_cell_cache);
3146 bad_cell_cache:
3147         dm_unregister_target(&pool_target);
3148 bad_pool_target:
3149         dm_unregister_target(&thin_target);
3150
3151         return r;
3152 }
3153
3154 static void dm_thin_exit(void)
3155 {
3156         dm_unregister_target(&thin_target);
3157         dm_unregister_target(&pool_target);
3158
3159         kmem_cache_destroy(_cell_cache);
3160         kmem_cache_destroy(_new_mapping_cache);
3161         kmem_cache_destroy(_endio_hook_cache);
3162 }
3163
3164 module_init(dm_thin_init);
3165 module_exit(dm_thin_exit);
3166
3167 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3168 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3169 MODULE_LICENSE("GPL");