]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
dm thin: grab a virtual cell before looking up the mapping
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20
21 #define DM_MSG_PREFIX   "thin"
22
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35                 "A percentage of time allocated for copy on write");
36
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106
107 /*----------------------------------------------------------------*/
108
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113                            dm_block_t b, struct dm_cell_key *key)
114 {
115         key->virtual = 0;
116         key->dev = dm_thin_dev_id(td);
117         key->block = b;
118 }
119
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121                               struct dm_cell_key *key)
122 {
123         key->virtual = 1;
124         key->dev = dm_thin_dev_id(td);
125         key->block = b;
126 }
127
128 /*----------------------------------------------------------------*/
129
130 /*
131  * A pool device ties together a metadata device and a data device.  It
132  * also provides the interface for creating and destroying internal
133  * devices.
134  */
135 struct dm_thin_new_mapping;
136
137 /*
138  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
139  */
140 enum pool_mode {
141         PM_WRITE,               /* metadata may be changed */
142         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
143         PM_READ_ONLY,           /* metadata may not be changed */
144         PM_FAIL,                /* all I/O fails */
145 };
146
147 struct pool_features {
148         enum pool_mode mode;
149
150         bool zero_new_blocks:1;
151         bool discard_enabled:1;
152         bool discard_passdown:1;
153         bool error_if_no_space:1;
154 };
155
156 struct thin_c;
157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159
160 struct pool {
161         struct list_head list;
162         struct dm_target *ti;   /* Only set if a pool target is bound */
163
164         struct mapped_device *pool_md;
165         struct block_device *md_dev;
166         struct dm_pool_metadata *pmd;
167
168         dm_block_t low_water_blocks;
169         uint32_t sectors_per_block;
170         int sectors_per_block_shift;
171
172         struct pool_features pf;
173         bool low_water_triggered:1;     /* A dm event has been sent */
174
175         struct dm_bio_prison *prison;
176         struct dm_kcopyd_client *copier;
177
178         struct workqueue_struct *wq;
179         struct work_struct worker;
180         struct delayed_work waker;
181         struct delayed_work no_space_timeout;
182
183         unsigned long last_commit_jiffies;
184         unsigned ref_count;
185
186         spinlock_t lock;
187         struct bio_list deferred_flush_bios;
188         struct list_head prepared_mappings;
189         struct list_head prepared_discards;
190         struct list_head active_thins;
191
192         struct dm_deferred_set *shared_read_ds;
193         struct dm_deferred_set *all_io_ds;
194
195         struct dm_thin_new_mapping *next_mapping;
196         mempool_t *mapping_pool;
197
198         process_bio_fn process_bio;
199         process_bio_fn process_discard;
200
201         process_mapping_fn process_prepared_mapping;
202         process_mapping_fn process_prepared_discard;
203 };
204
205 static enum pool_mode get_pool_mode(struct pool *pool);
206 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207
208 /*
209  * Target context for a pool.
210  */
211 struct pool_c {
212         struct dm_target *ti;
213         struct pool *pool;
214         struct dm_dev *data_dev;
215         struct dm_dev *metadata_dev;
216         struct dm_target_callbacks callbacks;
217
218         dm_block_t low_water_blocks;
219         struct pool_features requested_pf; /* Features requested during table load */
220         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
221 };
222
223 /*
224  * Target context for a thin.
225  */
226 struct thin_c {
227         struct list_head list;
228         struct dm_dev *pool_dev;
229         struct dm_dev *origin_dev;
230         sector_t origin_size;
231         dm_thin_id dev_id;
232
233         struct pool *pool;
234         struct dm_thin_device *td;
235         bool requeue_mode:1;
236         spinlock_t lock;
237         struct bio_list deferred_bio_list;
238         struct bio_list retry_on_resume_list;
239         struct rb_root sort_bio_list; /* sorted list of deferred bios */
240
241         /*
242          * Ensures the thin is not destroyed until the worker has finished
243          * iterating the active_thins list.
244          */
245         atomic_t refcount;
246         struct completion can_destroy;
247 };
248
249 /*----------------------------------------------------------------*/
250
251 /*
252  * wake_worker() is used when new work is queued and when pool_resume is
253  * ready to continue deferred IO processing.
254  */
255 static void wake_worker(struct pool *pool)
256 {
257         queue_work(pool->wq, &pool->worker);
258 }
259
260 /*----------------------------------------------------------------*/
261
262 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
263                       struct dm_bio_prison_cell **cell_result)
264 {
265         int r;
266         struct dm_bio_prison_cell *cell_prealloc;
267
268         /*
269          * Allocate a cell from the prison's mempool.
270          * This might block but it can't fail.
271          */
272         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
273
274         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
275         if (r)
276                 /*
277                  * We reused an old cell; we can get rid of
278                  * the new one.
279                  */
280                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
281
282         return r;
283 }
284
285 static void cell_release(struct pool *pool,
286                          struct dm_bio_prison_cell *cell,
287                          struct bio_list *bios)
288 {
289         dm_cell_release(pool->prison, cell, bios);
290         dm_bio_prison_free_cell(pool->prison, cell);
291 }
292
293 static void cell_release_no_holder(struct pool *pool,
294                                    struct dm_bio_prison_cell *cell,
295                                    struct bio_list *bios)
296 {
297         dm_cell_release_no_holder(pool->prison, cell, bios);
298         dm_bio_prison_free_cell(pool->prison, cell);
299 }
300
301 static void cell_defer_no_holder_no_free(struct thin_c *tc,
302                                          struct dm_bio_prison_cell *cell)
303 {
304         struct pool *pool = tc->pool;
305         unsigned long flags;
306
307         spin_lock_irqsave(&tc->lock, flags);
308         dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
309         spin_unlock_irqrestore(&tc->lock, flags);
310
311         wake_worker(pool);
312 }
313
314 static void cell_error_with_code(struct pool *pool,
315                                  struct dm_bio_prison_cell *cell, int error_code)
316 {
317         dm_cell_error(pool->prison, cell, error_code);
318         dm_bio_prison_free_cell(pool->prison, cell);
319 }
320
321 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
322 {
323         cell_error_with_code(pool, cell, -EIO);
324 }
325
326 /*----------------------------------------------------------------*/
327
328 /*
329  * A global list of pools that uses a struct mapped_device as a key.
330  */
331 static struct dm_thin_pool_table {
332         struct mutex mutex;
333         struct list_head pools;
334 } dm_thin_pool_table;
335
336 static void pool_table_init(void)
337 {
338         mutex_init(&dm_thin_pool_table.mutex);
339         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
340 }
341
342 static void __pool_table_insert(struct pool *pool)
343 {
344         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345         list_add(&pool->list, &dm_thin_pool_table.pools);
346 }
347
348 static void __pool_table_remove(struct pool *pool)
349 {
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351         list_del(&pool->list);
352 }
353
354 static struct pool *__pool_table_lookup(struct mapped_device *md)
355 {
356         struct pool *pool = NULL, *tmp;
357
358         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
359
360         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
361                 if (tmp->pool_md == md) {
362                         pool = tmp;
363                         break;
364                 }
365         }
366
367         return pool;
368 }
369
370 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
371 {
372         struct pool *pool = NULL, *tmp;
373
374         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
375
376         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
377                 if (tmp->md_dev == md_dev) {
378                         pool = tmp;
379                         break;
380                 }
381         }
382
383         return pool;
384 }
385
386 /*----------------------------------------------------------------*/
387
388 struct dm_thin_endio_hook {
389         struct thin_c *tc;
390         struct dm_deferred_entry *shared_read_entry;
391         struct dm_deferred_entry *all_io_entry;
392         struct dm_thin_new_mapping *overwrite_mapping;
393         struct rb_node rb_node;
394 };
395
396 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
397 {
398         struct bio *bio;
399         struct bio_list bios;
400         unsigned long flags;
401
402         bio_list_init(&bios);
403
404         spin_lock_irqsave(&tc->lock, flags);
405         bio_list_merge(&bios, master);
406         bio_list_init(master);
407         spin_unlock_irqrestore(&tc->lock, flags);
408
409         while ((bio = bio_list_pop(&bios)))
410                 bio_endio(bio, DM_ENDIO_REQUEUE);
411 }
412
413 static void requeue_io(struct thin_c *tc)
414 {
415         requeue_bio_list(tc, &tc->deferred_bio_list);
416         requeue_bio_list(tc, &tc->retry_on_resume_list);
417 }
418
419 static void error_thin_retry_list(struct thin_c *tc)
420 {
421         struct bio *bio;
422         unsigned long flags;
423         struct bio_list bios;
424
425         bio_list_init(&bios);
426
427         spin_lock_irqsave(&tc->lock, flags);
428         bio_list_merge(&bios, &tc->retry_on_resume_list);
429         bio_list_init(&tc->retry_on_resume_list);
430         spin_unlock_irqrestore(&tc->lock, flags);
431
432         while ((bio = bio_list_pop(&bios)))
433                 bio_io_error(bio);
434 }
435
436 static void error_retry_list(struct pool *pool)
437 {
438         struct thin_c *tc;
439
440         rcu_read_lock();
441         list_for_each_entry_rcu(tc, &pool->active_thins, list)
442                 error_thin_retry_list(tc);
443         rcu_read_unlock();
444 }
445
446 /*
447  * This section of code contains the logic for processing a thin device's IO.
448  * Much of the code depends on pool object resources (lists, workqueues, etc)
449  * but most is exclusively called from the thin target rather than the thin-pool
450  * target.
451  */
452
453 static bool block_size_is_power_of_two(struct pool *pool)
454 {
455         return pool->sectors_per_block_shift >= 0;
456 }
457
458 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
459 {
460         struct pool *pool = tc->pool;
461         sector_t block_nr = bio->bi_iter.bi_sector;
462
463         if (block_size_is_power_of_two(pool))
464                 block_nr >>= pool->sectors_per_block_shift;
465         else
466                 (void) sector_div(block_nr, pool->sectors_per_block);
467
468         return block_nr;
469 }
470
471 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
472 {
473         struct pool *pool = tc->pool;
474         sector_t bi_sector = bio->bi_iter.bi_sector;
475
476         bio->bi_bdev = tc->pool_dev->bdev;
477         if (block_size_is_power_of_two(pool))
478                 bio->bi_iter.bi_sector =
479                         (block << pool->sectors_per_block_shift) |
480                         (bi_sector & (pool->sectors_per_block - 1));
481         else
482                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
483                                  sector_div(bi_sector, pool->sectors_per_block);
484 }
485
486 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
487 {
488         bio->bi_bdev = tc->origin_dev->bdev;
489 }
490
491 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
492 {
493         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
494                 dm_thin_changed_this_transaction(tc->td);
495 }
496
497 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
498 {
499         struct dm_thin_endio_hook *h;
500
501         if (bio->bi_rw & REQ_DISCARD)
502                 return;
503
504         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
505         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
506 }
507
508 static void issue(struct thin_c *tc, struct bio *bio)
509 {
510         struct pool *pool = tc->pool;
511         unsigned long flags;
512
513         if (!bio_triggers_commit(tc, bio)) {
514                 generic_make_request(bio);
515                 return;
516         }
517
518         /*
519          * Complete bio with an error if earlier I/O caused changes to
520          * the metadata that can't be committed e.g, due to I/O errors
521          * on the metadata device.
522          */
523         if (dm_thin_aborted_changes(tc->td)) {
524                 bio_io_error(bio);
525                 return;
526         }
527
528         /*
529          * Batch together any bios that trigger commits and then issue a
530          * single commit for them in process_deferred_bios().
531          */
532         spin_lock_irqsave(&pool->lock, flags);
533         bio_list_add(&pool->deferred_flush_bios, bio);
534         spin_unlock_irqrestore(&pool->lock, flags);
535 }
536
537 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
538 {
539         remap_to_origin(tc, bio);
540         issue(tc, bio);
541 }
542
543 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
544                             dm_block_t block)
545 {
546         remap(tc, bio, block);
547         issue(tc, bio);
548 }
549
550 /*----------------------------------------------------------------*/
551
552 /*
553  * Bio endio functions.
554  */
555 struct dm_thin_new_mapping {
556         struct list_head list;
557
558         bool pass_discard:1;
559         bool definitely_not_shared:1;
560
561         /*
562          * Track quiescing, copying and zeroing preparation actions.  When this
563          * counter hits zero the block is prepared and can be inserted into the
564          * btree.
565          */
566         atomic_t prepare_actions;
567
568         int err;
569         struct thin_c *tc;
570         dm_block_t virt_block;
571         dm_block_t data_block;
572         struct dm_bio_prison_cell *cell, *cell2;
573
574         /*
575          * If the bio covers the whole area of a block then we can avoid
576          * zeroing or copying.  Instead this bio is hooked.  The bio will
577          * still be in the cell, so care has to be taken to avoid issuing
578          * the bio twice.
579          */
580         struct bio *bio;
581         bio_end_io_t *saved_bi_end_io;
582 };
583
584 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
585 {
586         struct pool *pool = m->tc->pool;
587
588         if (atomic_dec_and_test(&m->prepare_actions)) {
589                 list_add_tail(&m->list, &pool->prepared_mappings);
590                 wake_worker(pool);
591         }
592 }
593
594 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
595 {
596         unsigned long flags;
597         struct pool *pool = m->tc->pool;
598
599         spin_lock_irqsave(&pool->lock, flags);
600         __complete_mapping_preparation(m);
601         spin_unlock_irqrestore(&pool->lock, flags);
602 }
603
604 static void copy_complete(int read_err, unsigned long write_err, void *context)
605 {
606         struct dm_thin_new_mapping *m = context;
607
608         m->err = read_err || write_err ? -EIO : 0;
609         complete_mapping_preparation(m);
610 }
611
612 static void overwrite_endio(struct bio *bio, int err)
613 {
614         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
615         struct dm_thin_new_mapping *m = h->overwrite_mapping;
616
617         m->err = err;
618         complete_mapping_preparation(m);
619 }
620
621 /*----------------------------------------------------------------*/
622
623 /*
624  * Workqueue.
625  */
626
627 /*
628  * Prepared mapping jobs.
629  */
630
631 /*
632  * This sends the bios in the cell back to the deferred_bios list.
633  */
634 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
635 {
636         struct pool *pool = tc->pool;
637         unsigned long flags;
638
639         spin_lock_irqsave(&tc->lock, flags);
640         cell_release(pool, cell, &tc->deferred_bio_list);
641         spin_unlock_irqrestore(&tc->lock, flags);
642
643         wake_worker(pool);
644 }
645
646 /*
647  * Same as cell_defer above, except it omits the original holder of the cell.
648  */
649 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
650 {
651         struct pool *pool = tc->pool;
652         unsigned long flags;
653
654         spin_lock_irqsave(&tc->lock, flags);
655         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
656         spin_unlock_irqrestore(&tc->lock, flags);
657
658         wake_worker(pool);
659 }
660
661 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
662 {
663         if (m->bio) {
664                 m->bio->bi_end_io = m->saved_bi_end_io;
665                 atomic_inc(&m->bio->bi_remaining);
666         }
667         cell_error(m->tc->pool, m->cell);
668         list_del(&m->list);
669         mempool_free(m, m->tc->pool->mapping_pool);
670 }
671
672 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675         struct pool *pool = tc->pool;
676         struct bio *bio;
677         int r;
678
679         bio = m->bio;
680         if (bio) {
681                 bio->bi_end_io = m->saved_bi_end_io;
682                 atomic_inc(&bio->bi_remaining);
683         }
684
685         if (m->err) {
686                 cell_error(pool, m->cell);
687                 goto out;
688         }
689
690         /*
691          * Commit the prepared block into the mapping btree.
692          * Any I/O for this block arriving after this point will get
693          * remapped to it directly.
694          */
695         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
696         if (r) {
697                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
698                 cell_error(pool, m->cell);
699                 goto out;
700         }
701
702         /*
703          * Release any bios held while the block was being provisioned.
704          * If we are processing a write bio that completely covers the block,
705          * we already processed it so can ignore it now when processing
706          * the bios in the cell.
707          */
708         if (bio) {
709                 cell_defer_no_holder(tc, m->cell);
710                 bio_endio(bio, 0);
711         } else
712                 cell_defer(tc, m->cell);
713
714 out:
715         list_del(&m->list);
716         mempool_free(m, pool->mapping_pool);
717 }
718
719 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
720 {
721         struct thin_c *tc = m->tc;
722
723         bio_io_error(m->bio);
724         cell_defer_no_holder(tc, m->cell);
725         cell_defer_no_holder(tc, m->cell2);
726         mempool_free(m, tc->pool->mapping_pool);
727 }
728
729 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
730 {
731         struct thin_c *tc = m->tc;
732
733         inc_all_io_entry(tc->pool, m->bio);
734         cell_defer_no_holder(tc, m->cell);
735         cell_defer_no_holder(tc, m->cell2);
736
737         if (m->pass_discard)
738                 if (m->definitely_not_shared)
739                         remap_and_issue(tc, m->bio, m->data_block);
740                 else {
741                         bool used = false;
742                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
743                                 bio_endio(m->bio, 0);
744                         else
745                                 remap_and_issue(tc, m->bio, m->data_block);
746                 }
747         else
748                 bio_endio(m->bio, 0);
749
750         mempool_free(m, tc->pool->mapping_pool);
751 }
752
753 static void process_prepared_discard(struct dm_thin_new_mapping *m)
754 {
755         int r;
756         struct thin_c *tc = m->tc;
757
758         r = dm_thin_remove_block(tc->td, m->virt_block);
759         if (r)
760                 DMERR_LIMIT("dm_thin_remove_block() failed");
761
762         process_prepared_discard_passdown(m);
763 }
764
765 static void process_prepared(struct pool *pool, struct list_head *head,
766                              process_mapping_fn *fn)
767 {
768         unsigned long flags;
769         struct list_head maps;
770         struct dm_thin_new_mapping *m, *tmp;
771
772         INIT_LIST_HEAD(&maps);
773         spin_lock_irqsave(&pool->lock, flags);
774         list_splice_init(head, &maps);
775         spin_unlock_irqrestore(&pool->lock, flags);
776
777         list_for_each_entry_safe(m, tmp, &maps, list)
778                 (*fn)(m);
779 }
780
781 /*
782  * Deferred bio jobs.
783  */
784 static int io_overlaps_block(struct pool *pool, struct bio *bio)
785 {
786         return bio->bi_iter.bi_size ==
787                 (pool->sectors_per_block << SECTOR_SHIFT);
788 }
789
790 static int io_overwrites_block(struct pool *pool, struct bio *bio)
791 {
792         return (bio_data_dir(bio) == WRITE) &&
793                 io_overlaps_block(pool, bio);
794 }
795
796 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
797                                bio_end_io_t *fn)
798 {
799         *save = bio->bi_end_io;
800         bio->bi_end_io = fn;
801 }
802
803 static int ensure_next_mapping(struct pool *pool)
804 {
805         if (pool->next_mapping)
806                 return 0;
807
808         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
809
810         return pool->next_mapping ? 0 : -ENOMEM;
811 }
812
813 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
814 {
815         struct dm_thin_new_mapping *m = pool->next_mapping;
816
817         BUG_ON(!pool->next_mapping);
818
819         memset(m, 0, sizeof(struct dm_thin_new_mapping));
820         INIT_LIST_HEAD(&m->list);
821         m->bio = NULL;
822
823         pool->next_mapping = NULL;
824
825         return m;
826 }
827
828 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
829                     sector_t begin, sector_t end)
830 {
831         int r;
832         struct dm_io_region to;
833
834         to.bdev = tc->pool_dev->bdev;
835         to.sector = begin;
836         to.count = end - begin;
837
838         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
839         if (r < 0) {
840                 DMERR_LIMIT("dm_kcopyd_zero() failed");
841                 copy_complete(1, 1, m);
842         }
843 }
844
845 /*
846  * A partial copy also needs to zero the uncopied region.
847  */
848 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
849                           struct dm_dev *origin, dm_block_t data_origin,
850                           dm_block_t data_dest,
851                           struct dm_bio_prison_cell *cell, struct bio *bio,
852                           sector_t len)
853 {
854         int r;
855         struct pool *pool = tc->pool;
856         struct dm_thin_new_mapping *m = get_next_mapping(pool);
857
858         m->tc = tc;
859         m->virt_block = virt_block;
860         m->data_block = data_dest;
861         m->cell = cell;
862
863         /*
864          * quiesce action + copy action + an extra reference held for the
865          * duration of this function (we may need to inc later for a
866          * partial zero).
867          */
868         atomic_set(&m->prepare_actions, 3);
869
870         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
871                 complete_mapping_preparation(m); /* already quiesced */
872
873         /*
874          * IO to pool_dev remaps to the pool target's data_dev.
875          *
876          * If the whole block of data is being overwritten, we can issue the
877          * bio immediately. Otherwise we use kcopyd to clone the data first.
878          */
879         if (io_overwrites_block(pool, bio)) {
880                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
881
882                 h->overwrite_mapping = m;
883                 m->bio = bio;
884                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
885                 inc_all_io_entry(pool, bio);
886                 remap_and_issue(tc, bio, data_dest);
887         } else {
888                 struct dm_io_region from, to;
889
890                 from.bdev = origin->bdev;
891                 from.sector = data_origin * pool->sectors_per_block;
892                 from.count = len;
893
894                 to.bdev = tc->pool_dev->bdev;
895                 to.sector = data_dest * pool->sectors_per_block;
896                 to.count = len;
897
898                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
899                                    0, copy_complete, m);
900                 if (r < 0) {
901                         DMERR_LIMIT("dm_kcopyd_copy() failed");
902                         copy_complete(1, 1, m);
903
904                         /*
905                          * We allow the zero to be issued, to simplify the
906                          * error path.  Otherwise we'd need to start
907                          * worrying about decrementing the prepare_actions
908                          * counter.
909                          */
910                 }
911
912                 /*
913                  * Do we need to zero a tail region?
914                  */
915                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
916                         atomic_inc(&m->prepare_actions);
917                         ll_zero(tc, m,
918                                 data_dest * pool->sectors_per_block + len,
919                                 (data_dest + 1) * pool->sectors_per_block);
920                 }
921         }
922
923         complete_mapping_preparation(m); /* drop our ref */
924 }
925
926 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
927                                    dm_block_t data_origin, dm_block_t data_dest,
928                                    struct dm_bio_prison_cell *cell, struct bio *bio)
929 {
930         schedule_copy(tc, virt_block, tc->pool_dev,
931                       data_origin, data_dest, cell, bio,
932                       tc->pool->sectors_per_block);
933 }
934
935 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
936                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
937                           struct bio *bio)
938 {
939         struct pool *pool = tc->pool;
940         struct dm_thin_new_mapping *m = get_next_mapping(pool);
941
942         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
943         m->tc = tc;
944         m->virt_block = virt_block;
945         m->data_block = data_block;
946         m->cell = cell;
947
948         /*
949          * If the whole block of data is being overwritten or we are not
950          * zeroing pre-existing data, we can issue the bio immediately.
951          * Otherwise we use kcopyd to zero the data first.
952          */
953         if (!pool->pf.zero_new_blocks)
954                 process_prepared_mapping(m);
955
956         else if (io_overwrites_block(pool, bio)) {
957                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
958
959                 h->overwrite_mapping = m;
960                 m->bio = bio;
961                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
962                 inc_all_io_entry(pool, bio);
963                 remap_and_issue(tc, bio, data_block);
964
965         } else
966                 ll_zero(tc, m,
967                         data_block * pool->sectors_per_block,
968                         (data_block + 1) * pool->sectors_per_block);
969 }
970
971 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
972                                    dm_block_t data_dest,
973                                    struct dm_bio_prison_cell *cell, struct bio *bio)
974 {
975         struct pool *pool = tc->pool;
976         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
977         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
978
979         if (virt_block_end <= tc->origin_size)
980                 schedule_copy(tc, virt_block, tc->origin_dev,
981                               virt_block, data_dest, cell, bio,
982                               pool->sectors_per_block);
983
984         else if (virt_block_begin < tc->origin_size)
985                 schedule_copy(tc, virt_block, tc->origin_dev,
986                               virt_block, data_dest, cell, bio,
987                               tc->origin_size - virt_block_begin);
988
989         else
990                 schedule_zero(tc, virt_block, data_dest, cell, bio);
991 }
992
993 /*
994  * A non-zero return indicates read_only or fail_io mode.
995  * Many callers don't care about the return value.
996  */
997 static int commit(struct pool *pool)
998 {
999         int r;
1000
1001         if (get_pool_mode(pool) >= PM_READ_ONLY)
1002                 return -EINVAL;
1003
1004         r = dm_pool_commit_metadata(pool->pmd);
1005         if (r)
1006                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1007
1008         return r;
1009 }
1010
1011 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1012 {
1013         unsigned long flags;
1014
1015         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1016                 DMWARN("%s: reached low water mark for data device: sending event.",
1017                        dm_device_name(pool->pool_md));
1018                 spin_lock_irqsave(&pool->lock, flags);
1019                 pool->low_water_triggered = true;
1020                 spin_unlock_irqrestore(&pool->lock, flags);
1021                 dm_table_event(pool->ti->table);
1022         }
1023 }
1024
1025 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1026
1027 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1028 {
1029         int r;
1030         dm_block_t free_blocks;
1031         struct pool *pool = tc->pool;
1032
1033         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1034                 return -EINVAL;
1035
1036         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1037         if (r) {
1038                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1039                 return r;
1040         }
1041
1042         check_low_water_mark(pool, free_blocks);
1043
1044         if (!free_blocks) {
1045                 /*
1046                  * Try to commit to see if that will free up some
1047                  * more space.
1048                  */
1049                 r = commit(pool);
1050                 if (r)
1051                         return r;
1052
1053                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1054                 if (r) {
1055                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1056                         return r;
1057                 }
1058
1059                 if (!free_blocks) {
1060                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1061                         return -ENOSPC;
1062                 }
1063         }
1064
1065         r = dm_pool_alloc_data_block(pool->pmd, result);
1066         if (r) {
1067                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1068                 return r;
1069         }
1070
1071         return 0;
1072 }
1073
1074 /*
1075  * If we have run out of space, queue bios until the device is
1076  * resumed, presumably after having been reloaded with more space.
1077  */
1078 static void retry_on_resume(struct bio *bio)
1079 {
1080         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1081         struct thin_c *tc = h->tc;
1082         unsigned long flags;
1083
1084         spin_lock_irqsave(&tc->lock, flags);
1085         bio_list_add(&tc->retry_on_resume_list, bio);
1086         spin_unlock_irqrestore(&tc->lock, flags);
1087 }
1088
1089 static int should_error_unserviceable_bio(struct pool *pool)
1090 {
1091         enum pool_mode m = get_pool_mode(pool);
1092
1093         switch (m) {
1094         case PM_WRITE:
1095                 /* Shouldn't get here */
1096                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1097                 return -EIO;
1098
1099         case PM_OUT_OF_DATA_SPACE:
1100                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1101
1102         case PM_READ_ONLY:
1103         case PM_FAIL:
1104                 return -EIO;
1105         default:
1106                 /* Shouldn't get here */
1107                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1108                 return -EIO;
1109         }
1110 }
1111
1112 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1113 {
1114         int error = should_error_unserviceable_bio(pool);
1115
1116         if (error)
1117                 bio_endio(bio, error);
1118         else
1119                 retry_on_resume(bio);
1120 }
1121
1122 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1123 {
1124         struct bio *bio;
1125         struct bio_list bios;
1126         int error;
1127
1128         error = should_error_unserviceable_bio(pool);
1129         if (error) {
1130                 cell_error_with_code(pool, cell, error);
1131                 return;
1132         }
1133
1134         bio_list_init(&bios);
1135         cell_release(pool, cell, &bios);
1136
1137         error = should_error_unserviceable_bio(pool);
1138         if (error)
1139                 while ((bio = bio_list_pop(&bios)))
1140                         bio_endio(bio, error);
1141         else
1142                 while ((bio = bio_list_pop(&bios)))
1143                         retry_on_resume(bio);
1144 }
1145
1146 static void process_discard(struct thin_c *tc, struct bio *bio)
1147 {
1148         int r;
1149         unsigned long flags;
1150         struct pool *pool = tc->pool;
1151         struct dm_bio_prison_cell *cell, *cell2;
1152         struct dm_cell_key key, key2;
1153         dm_block_t block = get_bio_block(tc, bio);
1154         struct dm_thin_lookup_result lookup_result;
1155         struct dm_thin_new_mapping *m;
1156
1157         build_virtual_key(tc->td, block, &key);
1158         if (bio_detain(tc->pool, &key, bio, &cell))
1159                 return;
1160
1161         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1162         switch (r) {
1163         case 0:
1164                 /*
1165                  * Check nobody is fiddling with this pool block.  This can
1166                  * happen if someone's in the process of breaking sharing
1167                  * on this block.
1168                  */
1169                 build_data_key(tc->td, lookup_result.block, &key2);
1170                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1171                         cell_defer_no_holder(tc, cell);
1172                         break;
1173                 }
1174
1175                 if (io_overlaps_block(pool, bio)) {
1176                         /*
1177                          * IO may still be going to the destination block.  We must
1178                          * quiesce before we can do the removal.
1179                          */
1180                         m = get_next_mapping(pool);
1181                         m->tc = tc;
1182                         m->pass_discard = pool->pf.discard_passdown;
1183                         m->definitely_not_shared = !lookup_result.shared;
1184                         m->virt_block = block;
1185                         m->data_block = lookup_result.block;
1186                         m->cell = cell;
1187                         m->cell2 = cell2;
1188                         m->bio = bio;
1189
1190                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1191                                 spin_lock_irqsave(&pool->lock, flags);
1192                                 list_add_tail(&m->list, &pool->prepared_discards);
1193                                 spin_unlock_irqrestore(&pool->lock, flags);
1194                                 wake_worker(pool);
1195                         }
1196                 } else {
1197                         inc_all_io_entry(pool, bio);
1198                         cell_defer_no_holder(tc, cell);
1199                         cell_defer_no_holder(tc, cell2);
1200
1201                         /*
1202                          * The DM core makes sure that the discard doesn't span
1203                          * a block boundary.  So we submit the discard of a
1204                          * partial block appropriately.
1205                          */
1206                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1207                                 remap_and_issue(tc, bio, lookup_result.block);
1208                         else
1209                                 bio_endio(bio, 0);
1210                 }
1211                 break;
1212
1213         case -ENODATA:
1214                 /*
1215                  * It isn't provisioned, just forget it.
1216                  */
1217                 cell_defer_no_holder(tc, cell);
1218                 bio_endio(bio, 0);
1219                 break;
1220
1221         default:
1222                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1223                             __func__, r);
1224                 cell_defer_no_holder(tc, cell);
1225                 bio_io_error(bio);
1226                 break;
1227         }
1228 }
1229
1230 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1231                           struct dm_cell_key *key,
1232                           struct dm_thin_lookup_result *lookup_result,
1233                           struct dm_bio_prison_cell *cell)
1234 {
1235         int r;
1236         dm_block_t data_block;
1237         struct pool *pool = tc->pool;
1238
1239         r = alloc_data_block(tc, &data_block);
1240         switch (r) {
1241         case 0:
1242                 schedule_internal_copy(tc, block, lookup_result->block,
1243                                        data_block, cell, bio);
1244                 break;
1245
1246         case -ENOSPC:
1247                 retry_bios_on_resume(pool, cell);
1248                 break;
1249
1250         default:
1251                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1252                             __func__, r);
1253                 cell_error(pool, cell);
1254                 break;
1255         }
1256 }
1257
1258 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1259                                dm_block_t block,
1260                                struct dm_thin_lookup_result *lookup_result)
1261 {
1262         struct dm_bio_prison_cell *cell;
1263         struct pool *pool = tc->pool;
1264         struct dm_cell_key key;
1265
1266         /*
1267          * If cell is already occupied, then sharing is already in the process
1268          * of being broken so we have nothing further to do here.
1269          */
1270         build_data_key(tc->td, lookup_result->block, &key);
1271         if (bio_detain(pool, &key, bio, &cell))
1272                 return;
1273
1274         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1275                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1276         else {
1277                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1278
1279                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1280                 inc_all_io_entry(pool, bio);
1281                 cell_defer_no_holder(tc, cell);
1282
1283                 remap_and_issue(tc, bio, lookup_result->block);
1284         }
1285 }
1286
1287 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1288                             struct dm_bio_prison_cell *cell)
1289 {
1290         int r;
1291         dm_block_t data_block;
1292         struct pool *pool = tc->pool;
1293
1294         /*
1295          * Remap empty bios (flushes) immediately, without provisioning.
1296          */
1297         if (!bio->bi_iter.bi_size) {
1298                 inc_all_io_entry(pool, bio);
1299                 cell_defer_no_holder(tc, cell);
1300
1301                 remap_and_issue(tc, bio, 0);
1302                 return;
1303         }
1304
1305         /*
1306          * Fill read bios with zeroes and complete them immediately.
1307          */
1308         if (bio_data_dir(bio) == READ) {
1309                 zero_fill_bio(bio);
1310                 cell_defer_no_holder(tc, cell);
1311                 bio_endio(bio, 0);
1312                 return;
1313         }
1314
1315         r = alloc_data_block(tc, &data_block);
1316         switch (r) {
1317         case 0:
1318                 if (tc->origin_dev)
1319                         schedule_external_copy(tc, block, data_block, cell, bio);
1320                 else
1321                         schedule_zero(tc, block, data_block, cell, bio);
1322                 break;
1323
1324         case -ENOSPC:
1325                 retry_bios_on_resume(pool, cell);
1326                 break;
1327
1328         default:
1329                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1330                             __func__, r);
1331                 cell_error(pool, cell);
1332                 break;
1333         }
1334 }
1335
1336 static void process_bio(struct thin_c *tc, struct bio *bio)
1337 {
1338         int r;
1339         struct pool *pool = tc->pool;
1340         dm_block_t block = get_bio_block(tc, bio);
1341         struct dm_bio_prison_cell *cell;
1342         struct dm_cell_key key;
1343         struct dm_thin_lookup_result lookup_result;
1344
1345         /*
1346          * If cell is already occupied, then the block is already
1347          * being provisioned so we have nothing further to do here.
1348          */
1349         build_virtual_key(tc->td, block, &key);
1350         if (bio_detain(pool, &key, bio, &cell))
1351                 return;
1352
1353         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1354         switch (r) {
1355         case 0:
1356                 if (lookup_result.shared) {
1357                         process_shared_bio(tc, bio, block, &lookup_result);
1358                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1359                 } else {
1360                         inc_all_io_entry(pool, bio);
1361                         cell_defer_no_holder(tc, cell);
1362
1363                         remap_and_issue(tc, bio, lookup_result.block);
1364                 }
1365                 break;
1366
1367         case -ENODATA:
1368                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1369                         inc_all_io_entry(pool, bio);
1370                         cell_defer_no_holder(tc, cell);
1371
1372                         if (bio_end_sector(bio) <= tc->origin_size)
1373                                 remap_to_origin_and_issue(tc, bio);
1374
1375                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1376                                 zero_fill_bio(bio);
1377                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1378                                 remap_to_origin_and_issue(tc, bio);
1379
1380                         } else {
1381                                 zero_fill_bio(bio);
1382                                 bio_endio(bio, 0);
1383                         }
1384                 } else
1385                         provision_block(tc, bio, block, cell);
1386                 break;
1387
1388         default:
1389                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1390                             __func__, r);
1391                 cell_defer_no_holder(tc, cell);
1392                 bio_io_error(bio);
1393                 break;
1394         }
1395 }
1396
1397 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1398 {
1399         int r;
1400         int rw = bio_data_dir(bio);
1401         dm_block_t block = get_bio_block(tc, bio);
1402         struct dm_thin_lookup_result lookup_result;
1403
1404         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1405         switch (r) {
1406         case 0:
1407                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1408                         handle_unserviceable_bio(tc->pool, bio);
1409                 else {
1410                         inc_all_io_entry(tc->pool, bio);
1411                         remap_and_issue(tc, bio, lookup_result.block);
1412                 }
1413                 break;
1414
1415         case -ENODATA:
1416                 if (rw != READ) {
1417                         handle_unserviceable_bio(tc->pool, bio);
1418                         break;
1419                 }
1420
1421                 if (tc->origin_dev) {
1422                         inc_all_io_entry(tc->pool, bio);
1423                         remap_to_origin_and_issue(tc, bio);
1424                         break;
1425                 }
1426
1427                 zero_fill_bio(bio);
1428                 bio_endio(bio, 0);
1429                 break;
1430
1431         default:
1432                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1433                             __func__, r);
1434                 bio_io_error(bio);
1435                 break;
1436         }
1437 }
1438
1439 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1440 {
1441         bio_endio(bio, 0);
1442 }
1443
1444 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1445 {
1446         bio_io_error(bio);
1447 }
1448
1449 /*
1450  * FIXME: should we also commit due to size of transaction, measured in
1451  * metadata blocks?
1452  */
1453 static int need_commit_due_to_time(struct pool *pool)
1454 {
1455         return jiffies < pool->last_commit_jiffies ||
1456                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1457 }
1458
1459 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1460 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1461
1462 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1463 {
1464         struct rb_node **rbp, *parent;
1465         struct dm_thin_endio_hook *pbd;
1466         sector_t bi_sector = bio->bi_iter.bi_sector;
1467
1468         rbp = &tc->sort_bio_list.rb_node;
1469         parent = NULL;
1470         while (*rbp) {
1471                 parent = *rbp;
1472                 pbd = thin_pbd(parent);
1473
1474                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1475                         rbp = &(*rbp)->rb_left;
1476                 else
1477                         rbp = &(*rbp)->rb_right;
1478         }
1479
1480         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1481         rb_link_node(&pbd->rb_node, parent, rbp);
1482         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1483 }
1484
1485 static void __extract_sorted_bios(struct thin_c *tc)
1486 {
1487         struct rb_node *node;
1488         struct dm_thin_endio_hook *pbd;
1489         struct bio *bio;
1490
1491         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1492                 pbd = thin_pbd(node);
1493                 bio = thin_bio(pbd);
1494
1495                 bio_list_add(&tc->deferred_bio_list, bio);
1496                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1497         }
1498
1499         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1500 }
1501
1502 static void __sort_thin_deferred_bios(struct thin_c *tc)
1503 {
1504         struct bio *bio;
1505         struct bio_list bios;
1506
1507         bio_list_init(&bios);
1508         bio_list_merge(&bios, &tc->deferred_bio_list);
1509         bio_list_init(&tc->deferred_bio_list);
1510
1511         /* Sort deferred_bio_list using rb-tree */
1512         while ((bio = bio_list_pop(&bios)))
1513                 __thin_bio_rb_add(tc, bio);
1514
1515         /*
1516          * Transfer the sorted bios in sort_bio_list back to
1517          * deferred_bio_list to allow lockless submission of
1518          * all bios.
1519          */
1520         __extract_sorted_bios(tc);
1521 }
1522
1523 static void process_thin_deferred_bios(struct thin_c *tc)
1524 {
1525         struct pool *pool = tc->pool;
1526         unsigned long flags;
1527         struct bio *bio;
1528         struct bio_list bios;
1529         struct blk_plug plug;
1530
1531         if (tc->requeue_mode) {
1532                 requeue_bio_list(tc, &tc->deferred_bio_list);
1533                 return;
1534         }
1535
1536         bio_list_init(&bios);
1537
1538         spin_lock_irqsave(&tc->lock, flags);
1539
1540         if (bio_list_empty(&tc->deferred_bio_list)) {
1541                 spin_unlock_irqrestore(&tc->lock, flags);
1542                 return;
1543         }
1544
1545         __sort_thin_deferred_bios(tc);
1546
1547         bio_list_merge(&bios, &tc->deferred_bio_list);
1548         bio_list_init(&tc->deferred_bio_list);
1549
1550         spin_unlock_irqrestore(&tc->lock, flags);
1551
1552         blk_start_plug(&plug);
1553         while ((bio = bio_list_pop(&bios))) {
1554                 /*
1555                  * If we've got no free new_mapping structs, and processing
1556                  * this bio might require one, we pause until there are some
1557                  * prepared mappings to process.
1558                  */
1559                 if (ensure_next_mapping(pool)) {
1560                         spin_lock_irqsave(&tc->lock, flags);
1561                         bio_list_add(&tc->deferred_bio_list, bio);
1562                         bio_list_merge(&tc->deferred_bio_list, &bios);
1563                         spin_unlock_irqrestore(&tc->lock, flags);
1564                         break;
1565                 }
1566
1567                 if (bio->bi_rw & REQ_DISCARD)
1568                         pool->process_discard(tc, bio);
1569                 else
1570                         pool->process_bio(tc, bio);
1571         }
1572         blk_finish_plug(&plug);
1573 }
1574
1575 static void thin_get(struct thin_c *tc);
1576 static void thin_put(struct thin_c *tc);
1577
1578 /*
1579  * We can't hold rcu_read_lock() around code that can block.  So we
1580  * find a thin with the rcu lock held; bump a refcount; then drop
1581  * the lock.
1582  */
1583 static struct thin_c *get_first_thin(struct pool *pool)
1584 {
1585         struct thin_c *tc = NULL;
1586
1587         rcu_read_lock();
1588         if (!list_empty(&pool->active_thins)) {
1589                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1590                 thin_get(tc);
1591         }
1592         rcu_read_unlock();
1593
1594         return tc;
1595 }
1596
1597 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1598 {
1599         struct thin_c *old_tc = tc;
1600
1601         rcu_read_lock();
1602         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1603                 thin_get(tc);
1604                 thin_put(old_tc);
1605                 rcu_read_unlock();
1606                 return tc;
1607         }
1608         thin_put(old_tc);
1609         rcu_read_unlock();
1610
1611         return NULL;
1612 }
1613
1614 static void process_deferred_bios(struct pool *pool)
1615 {
1616         unsigned long flags;
1617         struct bio *bio;
1618         struct bio_list bios;
1619         struct thin_c *tc;
1620
1621         tc = get_first_thin(pool);
1622         while (tc) {
1623                 process_thin_deferred_bios(tc);
1624                 tc = get_next_thin(pool, tc);
1625         }
1626
1627         /*
1628          * If there are any deferred flush bios, we must commit
1629          * the metadata before issuing them.
1630          */
1631         bio_list_init(&bios);
1632         spin_lock_irqsave(&pool->lock, flags);
1633         bio_list_merge(&bios, &pool->deferred_flush_bios);
1634         bio_list_init(&pool->deferred_flush_bios);
1635         spin_unlock_irqrestore(&pool->lock, flags);
1636
1637         if (bio_list_empty(&bios) &&
1638             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1639                 return;
1640
1641         if (commit(pool)) {
1642                 while ((bio = bio_list_pop(&bios)))
1643                         bio_io_error(bio);
1644                 return;
1645         }
1646         pool->last_commit_jiffies = jiffies;
1647
1648         while ((bio = bio_list_pop(&bios)))
1649                 generic_make_request(bio);
1650 }
1651
1652 static void do_worker(struct work_struct *ws)
1653 {
1654         struct pool *pool = container_of(ws, struct pool, worker);
1655
1656         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1657         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1658         process_deferred_bios(pool);
1659 }
1660
1661 /*
1662  * We want to commit periodically so that not too much
1663  * unwritten data builds up.
1664  */
1665 static void do_waker(struct work_struct *ws)
1666 {
1667         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1668         wake_worker(pool);
1669         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1670 }
1671
1672 /*
1673  * We're holding onto IO to allow userland time to react.  After the
1674  * timeout either the pool will have been resized (and thus back in
1675  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1676  */
1677 static void do_no_space_timeout(struct work_struct *ws)
1678 {
1679         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1680                                          no_space_timeout);
1681
1682         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1683                 set_pool_mode(pool, PM_READ_ONLY);
1684 }
1685
1686 /*----------------------------------------------------------------*/
1687
1688 struct pool_work {
1689         struct work_struct worker;
1690         struct completion complete;
1691 };
1692
1693 static struct pool_work *to_pool_work(struct work_struct *ws)
1694 {
1695         return container_of(ws, struct pool_work, worker);
1696 }
1697
1698 static void pool_work_complete(struct pool_work *pw)
1699 {
1700         complete(&pw->complete);
1701 }
1702
1703 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1704                            void (*fn)(struct work_struct *))
1705 {
1706         INIT_WORK_ONSTACK(&pw->worker, fn);
1707         init_completion(&pw->complete);
1708         queue_work(pool->wq, &pw->worker);
1709         wait_for_completion(&pw->complete);
1710 }
1711
1712 /*----------------------------------------------------------------*/
1713
1714 struct noflush_work {
1715         struct pool_work pw;
1716         struct thin_c *tc;
1717 };
1718
1719 static struct noflush_work *to_noflush(struct work_struct *ws)
1720 {
1721         return container_of(to_pool_work(ws), struct noflush_work, pw);
1722 }
1723
1724 static void do_noflush_start(struct work_struct *ws)
1725 {
1726         struct noflush_work *w = to_noflush(ws);
1727         w->tc->requeue_mode = true;
1728         requeue_io(w->tc);
1729         pool_work_complete(&w->pw);
1730 }
1731
1732 static void do_noflush_stop(struct work_struct *ws)
1733 {
1734         struct noflush_work *w = to_noflush(ws);
1735         w->tc->requeue_mode = false;
1736         pool_work_complete(&w->pw);
1737 }
1738
1739 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1740 {
1741         struct noflush_work w;
1742
1743         w.tc = tc;
1744         pool_work_wait(&w.pw, tc->pool, fn);
1745 }
1746
1747 /*----------------------------------------------------------------*/
1748
1749 static enum pool_mode get_pool_mode(struct pool *pool)
1750 {
1751         return pool->pf.mode;
1752 }
1753
1754 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1755 {
1756         dm_table_event(pool->ti->table);
1757         DMINFO("%s: switching pool to %s mode",
1758                dm_device_name(pool->pool_md), new_mode);
1759 }
1760
1761 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1762 {
1763         struct pool_c *pt = pool->ti->private;
1764         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1765         enum pool_mode old_mode = get_pool_mode(pool);
1766         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1767
1768         /*
1769          * Never allow the pool to transition to PM_WRITE mode if user
1770          * intervention is required to verify metadata and data consistency.
1771          */
1772         if (new_mode == PM_WRITE && needs_check) {
1773                 DMERR("%s: unable to switch pool to write mode until repaired.",
1774                       dm_device_name(pool->pool_md));
1775                 if (old_mode != new_mode)
1776                         new_mode = old_mode;
1777                 else
1778                         new_mode = PM_READ_ONLY;
1779         }
1780         /*
1781          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1782          * not going to recover without a thin_repair.  So we never let the
1783          * pool move out of the old mode.
1784          */
1785         if (old_mode == PM_FAIL)
1786                 new_mode = old_mode;
1787
1788         switch (new_mode) {
1789         case PM_FAIL:
1790                 if (old_mode != new_mode)
1791                         notify_of_pool_mode_change(pool, "failure");
1792                 dm_pool_metadata_read_only(pool->pmd);
1793                 pool->process_bio = process_bio_fail;
1794                 pool->process_discard = process_bio_fail;
1795                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1796                 pool->process_prepared_discard = process_prepared_discard_fail;
1797
1798                 error_retry_list(pool);
1799                 break;
1800
1801         case PM_READ_ONLY:
1802                 if (old_mode != new_mode)
1803                         notify_of_pool_mode_change(pool, "read-only");
1804                 dm_pool_metadata_read_only(pool->pmd);
1805                 pool->process_bio = process_bio_read_only;
1806                 pool->process_discard = process_bio_success;
1807                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1808                 pool->process_prepared_discard = process_prepared_discard_passdown;
1809
1810                 error_retry_list(pool);
1811                 break;
1812
1813         case PM_OUT_OF_DATA_SPACE:
1814                 /*
1815                  * Ideally we'd never hit this state; the low water mark
1816                  * would trigger userland to extend the pool before we
1817                  * completely run out of data space.  However, many small
1818                  * IOs to unprovisioned space can consume data space at an
1819                  * alarming rate.  Adjust your low water mark if you're
1820                  * frequently seeing this mode.
1821                  */
1822                 if (old_mode != new_mode)
1823                         notify_of_pool_mode_change(pool, "out-of-data-space");
1824                 pool->process_bio = process_bio_read_only;
1825                 pool->process_discard = process_discard;
1826                 pool->process_prepared_mapping = process_prepared_mapping;
1827                 pool->process_prepared_discard = process_prepared_discard_passdown;
1828
1829                 if (!pool->pf.error_if_no_space && no_space_timeout)
1830                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1831                 break;
1832
1833         case PM_WRITE:
1834                 if (old_mode != new_mode)
1835                         notify_of_pool_mode_change(pool, "write");
1836                 dm_pool_metadata_read_write(pool->pmd);
1837                 pool->process_bio = process_bio;
1838                 pool->process_discard = process_discard;
1839                 pool->process_prepared_mapping = process_prepared_mapping;
1840                 pool->process_prepared_discard = process_prepared_discard;
1841                 break;
1842         }
1843
1844         pool->pf.mode = new_mode;
1845         /*
1846          * The pool mode may have changed, sync it so bind_control_target()
1847          * doesn't cause an unexpected mode transition on resume.
1848          */
1849         pt->adjusted_pf.mode = new_mode;
1850 }
1851
1852 static void abort_transaction(struct pool *pool)
1853 {
1854         const char *dev_name = dm_device_name(pool->pool_md);
1855
1856         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1857         if (dm_pool_abort_metadata(pool->pmd)) {
1858                 DMERR("%s: failed to abort metadata transaction", dev_name);
1859                 set_pool_mode(pool, PM_FAIL);
1860         }
1861
1862         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1863                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1864                 set_pool_mode(pool, PM_FAIL);
1865         }
1866 }
1867
1868 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1869 {
1870         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1871                     dm_device_name(pool->pool_md), op, r);
1872
1873         abort_transaction(pool);
1874         set_pool_mode(pool, PM_READ_ONLY);
1875 }
1876
1877 /*----------------------------------------------------------------*/
1878
1879 /*
1880  * Mapping functions.
1881  */
1882
1883 /*
1884  * Called only while mapping a thin bio to hand it over to the workqueue.
1885  */
1886 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1887 {
1888         unsigned long flags;
1889         struct pool *pool = tc->pool;
1890
1891         spin_lock_irqsave(&tc->lock, flags);
1892         bio_list_add(&tc->deferred_bio_list, bio);
1893         spin_unlock_irqrestore(&tc->lock, flags);
1894
1895         wake_worker(pool);
1896 }
1897
1898 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1899 {
1900         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1901
1902         h->tc = tc;
1903         h->shared_read_entry = NULL;
1904         h->all_io_entry = NULL;
1905         h->overwrite_mapping = NULL;
1906 }
1907
1908 /*
1909  * Non-blocking function called from the thin target's map function.
1910  */
1911 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1912 {
1913         int r;
1914         struct thin_c *tc = ti->private;
1915         dm_block_t block = get_bio_block(tc, bio);
1916         struct dm_thin_device *td = tc->td;
1917         struct dm_thin_lookup_result result;
1918         struct dm_bio_prison_cell cell1, cell2;
1919         struct dm_bio_prison_cell *cell_result;
1920         struct dm_cell_key key;
1921
1922         thin_hook_bio(tc, bio);
1923
1924         if (tc->requeue_mode) {
1925                 bio_endio(bio, DM_ENDIO_REQUEUE);
1926                 return DM_MAPIO_SUBMITTED;
1927         }
1928
1929         if (get_pool_mode(tc->pool) == PM_FAIL) {
1930                 bio_io_error(bio);
1931                 return DM_MAPIO_SUBMITTED;
1932         }
1933
1934         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1935                 thin_defer_bio(tc, bio);
1936                 return DM_MAPIO_SUBMITTED;
1937         }
1938
1939         /*
1940          * We must hold the virtual cell before doing the lookup, otherwise
1941          * there's a race with discard.
1942          */
1943         build_virtual_key(tc->td, block, &key);
1944         if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1945                 return DM_MAPIO_SUBMITTED;
1946
1947         r = dm_thin_find_block(td, block, 0, &result);
1948
1949         /*
1950          * Note that we defer readahead too.
1951          */
1952         switch (r) {
1953         case 0:
1954                 if (unlikely(result.shared)) {
1955                         /*
1956                          * We have a race condition here between the
1957                          * result.shared value returned by the lookup and
1958                          * snapshot creation, which may cause new
1959                          * sharing.
1960                          *
1961                          * To avoid this always quiesce the origin before
1962                          * taking the snap.  You want to do this anyway to
1963                          * ensure a consistent application view
1964                          * (i.e. lockfs).
1965                          *
1966                          * More distant ancestors are irrelevant. The
1967                          * shared flag will be set in their case.
1968                          */
1969                         thin_defer_bio(tc, bio);
1970                         cell_defer_no_holder_no_free(tc, &cell1);
1971                         return DM_MAPIO_SUBMITTED;
1972                 }
1973
1974                 build_data_key(tc->td, result.block, &key);
1975                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1976                         cell_defer_no_holder_no_free(tc, &cell1);
1977                         return DM_MAPIO_SUBMITTED;
1978                 }
1979
1980                 inc_all_io_entry(tc->pool, bio);
1981                 cell_defer_no_holder_no_free(tc, &cell2);
1982                 cell_defer_no_holder_no_free(tc, &cell1);
1983
1984                 remap(tc, bio, result.block);
1985                 return DM_MAPIO_REMAPPED;
1986
1987         case -ENODATA:
1988                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1989                         /*
1990                          * This block isn't provisioned, and we have no way
1991                          * of doing so.
1992                          */
1993                         handle_unserviceable_bio(tc->pool, bio);
1994                         cell_defer_no_holder_no_free(tc, &cell1);
1995                         return DM_MAPIO_SUBMITTED;
1996                 }
1997                 /* fall through */
1998
1999         case -EWOULDBLOCK:
2000                 /*
2001                  * In future, the failed dm_thin_find_block above could
2002                  * provide the hint to load the metadata into cache.
2003                  */
2004                 thin_defer_bio(tc, bio);
2005                 cell_defer_no_holder_no_free(tc, &cell1);
2006                 return DM_MAPIO_SUBMITTED;
2007
2008         default:
2009                 /*
2010                  * Must always call bio_io_error on failure.
2011                  * dm_thin_find_block can fail with -EINVAL if the
2012                  * pool is switched to fail-io mode.
2013                  */
2014                 bio_io_error(bio);
2015                 cell_defer_no_holder_no_free(tc, &cell1);
2016                 return DM_MAPIO_SUBMITTED;
2017         }
2018 }
2019
2020 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2021 {
2022         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2023         struct request_queue *q;
2024
2025         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2026                 return 1;
2027
2028         q = bdev_get_queue(pt->data_dev->bdev);
2029         return bdi_congested(&q->backing_dev_info, bdi_bits);
2030 }
2031
2032 static void requeue_bios(struct pool *pool)
2033 {
2034         unsigned long flags;
2035         struct thin_c *tc;
2036
2037         rcu_read_lock();
2038         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2039                 spin_lock_irqsave(&tc->lock, flags);
2040                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2041                 bio_list_init(&tc->retry_on_resume_list);
2042                 spin_unlock_irqrestore(&tc->lock, flags);
2043         }
2044         rcu_read_unlock();
2045 }
2046
2047 /*----------------------------------------------------------------
2048  * Binding of control targets to a pool object
2049  *--------------------------------------------------------------*/
2050 static bool data_dev_supports_discard(struct pool_c *pt)
2051 {
2052         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2053
2054         return q && blk_queue_discard(q);
2055 }
2056
2057 static bool is_factor(sector_t block_size, uint32_t n)
2058 {
2059         return !sector_div(block_size, n);
2060 }
2061
2062 /*
2063  * If discard_passdown was enabled verify that the data device
2064  * supports discards.  Disable discard_passdown if not.
2065  */
2066 static void disable_passdown_if_not_supported(struct pool_c *pt)
2067 {
2068         struct pool *pool = pt->pool;
2069         struct block_device *data_bdev = pt->data_dev->bdev;
2070         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2071         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2072         const char *reason = NULL;
2073         char buf[BDEVNAME_SIZE];
2074
2075         if (!pt->adjusted_pf.discard_passdown)
2076                 return;
2077
2078         if (!data_dev_supports_discard(pt))
2079                 reason = "discard unsupported";
2080
2081         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2082                 reason = "max discard sectors smaller than a block";
2083
2084         else if (data_limits->discard_granularity > block_size)
2085                 reason = "discard granularity larger than a block";
2086
2087         else if (!is_factor(block_size, data_limits->discard_granularity))
2088                 reason = "discard granularity not a factor of block size";
2089
2090         if (reason) {
2091                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2092                 pt->adjusted_pf.discard_passdown = false;
2093         }
2094 }
2095
2096 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2097 {
2098         struct pool_c *pt = ti->private;
2099
2100         /*
2101          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2102          */
2103         enum pool_mode old_mode = get_pool_mode(pool);
2104         enum pool_mode new_mode = pt->adjusted_pf.mode;
2105
2106         /*
2107          * Don't change the pool's mode until set_pool_mode() below.
2108          * Otherwise the pool's process_* function pointers may
2109          * not match the desired pool mode.
2110          */
2111         pt->adjusted_pf.mode = old_mode;
2112
2113         pool->ti = ti;
2114         pool->pf = pt->adjusted_pf;
2115         pool->low_water_blocks = pt->low_water_blocks;
2116
2117         set_pool_mode(pool, new_mode);
2118
2119         return 0;
2120 }
2121
2122 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2123 {
2124         if (pool->ti == ti)
2125                 pool->ti = NULL;
2126 }
2127
2128 /*----------------------------------------------------------------
2129  * Pool creation
2130  *--------------------------------------------------------------*/
2131 /* Initialize pool features. */
2132 static void pool_features_init(struct pool_features *pf)
2133 {
2134         pf->mode = PM_WRITE;
2135         pf->zero_new_blocks = true;
2136         pf->discard_enabled = true;
2137         pf->discard_passdown = true;
2138         pf->error_if_no_space = false;
2139 }
2140
2141 static void __pool_destroy(struct pool *pool)
2142 {
2143         __pool_table_remove(pool);
2144
2145         if (dm_pool_metadata_close(pool->pmd) < 0)
2146                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2147
2148         dm_bio_prison_destroy(pool->prison);
2149         dm_kcopyd_client_destroy(pool->copier);
2150
2151         if (pool->wq)
2152                 destroy_workqueue(pool->wq);
2153
2154         if (pool->next_mapping)
2155                 mempool_free(pool->next_mapping, pool->mapping_pool);
2156         mempool_destroy(pool->mapping_pool);
2157         dm_deferred_set_destroy(pool->shared_read_ds);
2158         dm_deferred_set_destroy(pool->all_io_ds);
2159         kfree(pool);
2160 }
2161
2162 static struct kmem_cache *_new_mapping_cache;
2163
2164 static struct pool *pool_create(struct mapped_device *pool_md,
2165                                 struct block_device *metadata_dev,
2166                                 unsigned long block_size,
2167                                 int read_only, char **error)
2168 {
2169         int r;
2170         void *err_p;
2171         struct pool *pool;
2172         struct dm_pool_metadata *pmd;
2173         bool format_device = read_only ? false : true;
2174
2175         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2176         if (IS_ERR(pmd)) {
2177                 *error = "Error creating metadata object";
2178                 return (struct pool *)pmd;
2179         }
2180
2181         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2182         if (!pool) {
2183                 *error = "Error allocating memory for pool";
2184                 err_p = ERR_PTR(-ENOMEM);
2185                 goto bad_pool;
2186         }
2187
2188         pool->pmd = pmd;
2189         pool->sectors_per_block = block_size;
2190         if (block_size & (block_size - 1))
2191                 pool->sectors_per_block_shift = -1;
2192         else
2193                 pool->sectors_per_block_shift = __ffs(block_size);
2194         pool->low_water_blocks = 0;
2195         pool_features_init(&pool->pf);
2196         pool->prison = dm_bio_prison_create(PRISON_CELLS);
2197         if (!pool->prison) {
2198                 *error = "Error creating pool's bio prison";
2199                 err_p = ERR_PTR(-ENOMEM);
2200                 goto bad_prison;
2201         }
2202
2203         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2204         if (IS_ERR(pool->copier)) {
2205                 r = PTR_ERR(pool->copier);
2206                 *error = "Error creating pool's kcopyd client";
2207                 err_p = ERR_PTR(r);
2208                 goto bad_kcopyd_client;
2209         }
2210
2211         /*
2212          * Create singlethreaded workqueue that will service all devices
2213          * that use this metadata.
2214          */
2215         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2216         if (!pool->wq) {
2217                 *error = "Error creating pool's workqueue";
2218                 err_p = ERR_PTR(-ENOMEM);
2219                 goto bad_wq;
2220         }
2221
2222         INIT_WORK(&pool->worker, do_worker);
2223         INIT_DELAYED_WORK(&pool->waker, do_waker);
2224         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2225         spin_lock_init(&pool->lock);
2226         bio_list_init(&pool->deferred_flush_bios);
2227         INIT_LIST_HEAD(&pool->prepared_mappings);
2228         INIT_LIST_HEAD(&pool->prepared_discards);
2229         INIT_LIST_HEAD(&pool->active_thins);
2230         pool->low_water_triggered = false;
2231
2232         pool->shared_read_ds = dm_deferred_set_create();
2233         if (!pool->shared_read_ds) {
2234                 *error = "Error creating pool's shared read deferred set";
2235                 err_p = ERR_PTR(-ENOMEM);
2236                 goto bad_shared_read_ds;
2237         }
2238
2239         pool->all_io_ds = dm_deferred_set_create();
2240         if (!pool->all_io_ds) {
2241                 *error = "Error creating pool's all io deferred set";
2242                 err_p = ERR_PTR(-ENOMEM);
2243                 goto bad_all_io_ds;
2244         }
2245
2246         pool->next_mapping = NULL;
2247         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2248                                                       _new_mapping_cache);
2249         if (!pool->mapping_pool) {
2250                 *error = "Error creating pool's mapping mempool";
2251                 err_p = ERR_PTR(-ENOMEM);
2252                 goto bad_mapping_pool;
2253         }
2254
2255         pool->ref_count = 1;
2256         pool->last_commit_jiffies = jiffies;
2257         pool->pool_md = pool_md;
2258         pool->md_dev = metadata_dev;
2259         __pool_table_insert(pool);
2260
2261         return pool;
2262
2263 bad_mapping_pool:
2264         dm_deferred_set_destroy(pool->all_io_ds);
2265 bad_all_io_ds:
2266         dm_deferred_set_destroy(pool->shared_read_ds);
2267 bad_shared_read_ds:
2268         destroy_workqueue(pool->wq);
2269 bad_wq:
2270         dm_kcopyd_client_destroy(pool->copier);
2271 bad_kcopyd_client:
2272         dm_bio_prison_destroy(pool->prison);
2273 bad_prison:
2274         kfree(pool);
2275 bad_pool:
2276         if (dm_pool_metadata_close(pmd))
2277                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2278
2279         return err_p;
2280 }
2281
2282 static void __pool_inc(struct pool *pool)
2283 {
2284         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2285         pool->ref_count++;
2286 }
2287
2288 static void __pool_dec(struct pool *pool)
2289 {
2290         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2291         BUG_ON(!pool->ref_count);
2292         if (!--pool->ref_count)
2293                 __pool_destroy(pool);
2294 }
2295
2296 static struct pool *__pool_find(struct mapped_device *pool_md,
2297                                 struct block_device *metadata_dev,
2298                                 unsigned long block_size, int read_only,
2299                                 char **error, int *created)
2300 {
2301         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2302
2303         if (pool) {
2304                 if (pool->pool_md != pool_md) {
2305                         *error = "metadata device already in use by a pool";
2306                         return ERR_PTR(-EBUSY);
2307                 }
2308                 __pool_inc(pool);
2309
2310         } else {
2311                 pool = __pool_table_lookup(pool_md);
2312                 if (pool) {
2313                         if (pool->md_dev != metadata_dev) {
2314                                 *error = "different pool cannot replace a pool";
2315                                 return ERR_PTR(-EINVAL);
2316                         }
2317                         __pool_inc(pool);
2318
2319                 } else {
2320                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2321                         *created = 1;
2322                 }
2323         }
2324
2325         return pool;
2326 }
2327
2328 /*----------------------------------------------------------------
2329  * Pool target methods
2330  *--------------------------------------------------------------*/
2331 static void pool_dtr(struct dm_target *ti)
2332 {
2333         struct pool_c *pt = ti->private;
2334
2335         mutex_lock(&dm_thin_pool_table.mutex);
2336
2337         unbind_control_target(pt->pool, ti);
2338         __pool_dec(pt->pool);
2339         dm_put_device(ti, pt->metadata_dev);
2340         dm_put_device(ti, pt->data_dev);
2341         kfree(pt);
2342
2343         mutex_unlock(&dm_thin_pool_table.mutex);
2344 }
2345
2346 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2347                                struct dm_target *ti)
2348 {
2349         int r;
2350         unsigned argc;
2351         const char *arg_name;
2352
2353         static struct dm_arg _args[] = {
2354                 {0, 4, "Invalid number of pool feature arguments"},
2355         };
2356
2357         /*
2358          * No feature arguments supplied.
2359          */
2360         if (!as->argc)
2361                 return 0;
2362
2363         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2364         if (r)
2365                 return -EINVAL;
2366
2367         while (argc && !r) {
2368                 arg_name = dm_shift_arg(as);
2369                 argc--;
2370
2371                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2372                         pf->zero_new_blocks = false;
2373
2374                 else if (!strcasecmp(arg_name, "ignore_discard"))
2375                         pf->discard_enabled = false;
2376
2377                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2378                         pf->discard_passdown = false;
2379
2380                 else if (!strcasecmp(arg_name, "read_only"))
2381                         pf->mode = PM_READ_ONLY;
2382
2383                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2384                         pf->error_if_no_space = true;
2385
2386                 else {
2387                         ti->error = "Unrecognised pool feature requested";
2388                         r = -EINVAL;
2389                         break;
2390                 }
2391         }
2392
2393         return r;
2394 }
2395
2396 static void metadata_low_callback(void *context)
2397 {
2398         struct pool *pool = context;
2399
2400         DMWARN("%s: reached low water mark for metadata device: sending event.",
2401                dm_device_name(pool->pool_md));
2402
2403         dm_table_event(pool->ti->table);
2404 }
2405
2406 static sector_t get_dev_size(struct block_device *bdev)
2407 {
2408         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2409 }
2410
2411 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2412 {
2413         sector_t metadata_dev_size = get_dev_size(bdev);
2414         char buffer[BDEVNAME_SIZE];
2415
2416         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2417                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2418                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2419 }
2420
2421 static sector_t get_metadata_dev_size(struct block_device *bdev)
2422 {
2423         sector_t metadata_dev_size = get_dev_size(bdev);
2424
2425         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2426                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2427
2428         return metadata_dev_size;
2429 }
2430
2431 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2432 {
2433         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2434
2435         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2436
2437         return metadata_dev_size;
2438 }
2439
2440 /*
2441  * When a metadata threshold is crossed a dm event is triggered, and
2442  * userland should respond by growing the metadata device.  We could let
2443  * userland set the threshold, like we do with the data threshold, but I'm
2444  * not sure they know enough to do this well.
2445  */
2446 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2447 {
2448         /*
2449          * 4M is ample for all ops with the possible exception of thin
2450          * device deletion which is harmless if it fails (just retry the
2451          * delete after you've grown the device).
2452          */
2453         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2454         return min((dm_block_t)1024ULL /* 4M */, quarter);
2455 }
2456
2457 /*
2458  * thin-pool <metadata dev> <data dev>
2459  *           <data block size (sectors)>
2460  *           <low water mark (blocks)>
2461  *           [<#feature args> [<arg>]*]
2462  *
2463  * Optional feature arguments are:
2464  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2465  *           ignore_discard: disable discard
2466  *           no_discard_passdown: don't pass discards down to the data device
2467  *           read_only: Don't allow any changes to be made to the pool metadata.
2468  *           error_if_no_space: error IOs, instead of queueing, if no space.
2469  */
2470 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2471 {
2472         int r, pool_created = 0;
2473         struct pool_c *pt;
2474         struct pool *pool;
2475         struct pool_features pf;
2476         struct dm_arg_set as;
2477         struct dm_dev *data_dev;
2478         unsigned long block_size;
2479         dm_block_t low_water_blocks;
2480         struct dm_dev *metadata_dev;
2481         fmode_t metadata_mode;
2482
2483         /*
2484          * FIXME Remove validation from scope of lock.
2485          */
2486         mutex_lock(&dm_thin_pool_table.mutex);
2487
2488         if (argc < 4) {
2489                 ti->error = "Invalid argument count";
2490                 r = -EINVAL;
2491                 goto out_unlock;
2492         }
2493
2494         as.argc = argc;
2495         as.argv = argv;
2496
2497         /*
2498          * Set default pool features.
2499          */
2500         pool_features_init(&pf);
2501
2502         dm_consume_args(&as, 4);
2503         r = parse_pool_features(&as, &pf, ti);
2504         if (r)
2505                 goto out_unlock;
2506
2507         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2508         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2509         if (r) {
2510                 ti->error = "Error opening metadata block device";
2511                 goto out_unlock;
2512         }
2513         warn_if_metadata_device_too_big(metadata_dev->bdev);
2514
2515         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2516         if (r) {
2517                 ti->error = "Error getting data device";
2518                 goto out_metadata;
2519         }
2520
2521         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2522             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2523             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2524             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2525                 ti->error = "Invalid block size";
2526                 r = -EINVAL;
2527                 goto out;
2528         }
2529
2530         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2531                 ti->error = "Invalid low water mark";
2532                 r = -EINVAL;
2533                 goto out;
2534         }
2535
2536         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2537         if (!pt) {
2538                 r = -ENOMEM;
2539                 goto out;
2540         }
2541
2542         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2543                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2544         if (IS_ERR(pool)) {
2545                 r = PTR_ERR(pool);
2546                 goto out_free_pt;
2547         }
2548
2549         /*
2550          * 'pool_created' reflects whether this is the first table load.
2551          * Top level discard support is not allowed to be changed after
2552          * initial load.  This would require a pool reload to trigger thin
2553          * device changes.
2554          */
2555         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2556                 ti->error = "Discard support cannot be disabled once enabled";
2557                 r = -EINVAL;
2558                 goto out_flags_changed;
2559         }
2560
2561         pt->pool = pool;
2562         pt->ti = ti;
2563         pt->metadata_dev = metadata_dev;
2564         pt->data_dev = data_dev;
2565         pt->low_water_blocks = low_water_blocks;
2566         pt->adjusted_pf = pt->requested_pf = pf;
2567         ti->num_flush_bios = 1;
2568
2569         /*
2570          * Only need to enable discards if the pool should pass
2571          * them down to the data device.  The thin device's discard
2572          * processing will cause mappings to be removed from the btree.
2573          */
2574         ti->discard_zeroes_data_unsupported = true;
2575         if (pf.discard_enabled && pf.discard_passdown) {
2576                 ti->num_discard_bios = 1;
2577
2578                 /*
2579                  * Setting 'discards_supported' circumvents the normal
2580                  * stacking of discard limits (this keeps the pool and
2581                  * thin devices' discard limits consistent).
2582                  */
2583                 ti->discards_supported = true;
2584         }
2585         ti->private = pt;
2586
2587         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2588                                                 calc_metadata_threshold(pt),
2589                                                 metadata_low_callback,
2590                                                 pool);
2591         if (r)
2592                 goto out_free_pt;
2593
2594         pt->callbacks.congested_fn = pool_is_congested;
2595         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2596
2597         mutex_unlock(&dm_thin_pool_table.mutex);
2598
2599         return 0;
2600
2601 out_flags_changed:
2602         __pool_dec(pool);
2603 out_free_pt:
2604         kfree(pt);
2605 out:
2606         dm_put_device(ti, data_dev);
2607 out_metadata:
2608         dm_put_device(ti, metadata_dev);
2609 out_unlock:
2610         mutex_unlock(&dm_thin_pool_table.mutex);
2611
2612         return r;
2613 }
2614
2615 static int pool_map(struct dm_target *ti, struct bio *bio)
2616 {
2617         int r;
2618         struct pool_c *pt = ti->private;
2619         struct pool *pool = pt->pool;
2620         unsigned long flags;
2621
2622         /*
2623          * As this is a singleton target, ti->begin is always zero.
2624          */
2625         spin_lock_irqsave(&pool->lock, flags);
2626         bio->bi_bdev = pt->data_dev->bdev;
2627         r = DM_MAPIO_REMAPPED;
2628         spin_unlock_irqrestore(&pool->lock, flags);
2629
2630         return r;
2631 }
2632
2633 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2634 {
2635         int r;
2636         struct pool_c *pt = ti->private;
2637         struct pool *pool = pt->pool;
2638         sector_t data_size = ti->len;
2639         dm_block_t sb_data_size;
2640
2641         *need_commit = false;
2642
2643         (void) sector_div(data_size, pool->sectors_per_block);
2644
2645         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2646         if (r) {
2647                 DMERR("%s: failed to retrieve data device size",
2648                       dm_device_name(pool->pool_md));
2649                 return r;
2650         }
2651
2652         if (data_size < sb_data_size) {
2653                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2654                       dm_device_name(pool->pool_md),
2655                       (unsigned long long)data_size, sb_data_size);
2656                 return -EINVAL;
2657
2658         } else if (data_size > sb_data_size) {
2659                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2660                         DMERR("%s: unable to grow the data device until repaired.",
2661                               dm_device_name(pool->pool_md));
2662                         return 0;
2663                 }
2664
2665                 if (sb_data_size)
2666                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2667                                dm_device_name(pool->pool_md),
2668                                sb_data_size, (unsigned long long)data_size);
2669                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2670                 if (r) {
2671                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2672                         return r;
2673                 }
2674
2675                 *need_commit = true;
2676         }
2677
2678         return 0;
2679 }
2680
2681 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2682 {
2683         int r;
2684         struct pool_c *pt = ti->private;
2685         struct pool *pool = pt->pool;
2686         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2687
2688         *need_commit = false;
2689
2690         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2691
2692         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2693         if (r) {
2694                 DMERR("%s: failed to retrieve metadata device size",
2695                       dm_device_name(pool->pool_md));
2696                 return r;
2697         }
2698
2699         if (metadata_dev_size < sb_metadata_dev_size) {
2700                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2701                       dm_device_name(pool->pool_md),
2702                       metadata_dev_size, sb_metadata_dev_size);
2703                 return -EINVAL;
2704
2705         } else if (metadata_dev_size > sb_metadata_dev_size) {
2706                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2707                         DMERR("%s: unable to grow the metadata device until repaired.",
2708                               dm_device_name(pool->pool_md));
2709                         return 0;
2710                 }
2711
2712                 warn_if_metadata_device_too_big(pool->md_dev);
2713                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2714                        dm_device_name(pool->pool_md),
2715                        sb_metadata_dev_size, metadata_dev_size);
2716                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2717                 if (r) {
2718                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2719                         return r;
2720                 }
2721
2722                 *need_commit = true;
2723         }
2724
2725         return 0;
2726 }
2727
2728 /*
2729  * Retrieves the number of blocks of the data device from
2730  * the superblock and compares it to the actual device size,
2731  * thus resizing the data device in case it has grown.
2732  *
2733  * This both copes with opening preallocated data devices in the ctr
2734  * being followed by a resume
2735  * -and-
2736  * calling the resume method individually after userspace has
2737  * grown the data device in reaction to a table event.
2738  */
2739 static int pool_preresume(struct dm_target *ti)
2740 {
2741         int r;
2742         bool need_commit1, need_commit2;
2743         struct pool_c *pt = ti->private;
2744         struct pool *pool = pt->pool;
2745
2746         /*
2747          * Take control of the pool object.
2748          */
2749         r = bind_control_target(pool, ti);
2750         if (r)
2751                 return r;
2752
2753         r = maybe_resize_data_dev(ti, &need_commit1);
2754         if (r)
2755                 return r;
2756
2757         r = maybe_resize_metadata_dev(ti, &need_commit2);
2758         if (r)
2759                 return r;
2760
2761         if (need_commit1 || need_commit2)
2762                 (void) commit(pool);
2763
2764         return 0;
2765 }
2766
2767 static void pool_resume(struct dm_target *ti)
2768 {
2769         struct pool_c *pt = ti->private;
2770         struct pool *pool = pt->pool;
2771         unsigned long flags;
2772
2773         spin_lock_irqsave(&pool->lock, flags);
2774         pool->low_water_triggered = false;
2775         spin_unlock_irqrestore(&pool->lock, flags);
2776         requeue_bios(pool);
2777
2778         do_waker(&pool->waker.work);
2779 }
2780
2781 static void pool_postsuspend(struct dm_target *ti)
2782 {
2783         struct pool_c *pt = ti->private;
2784         struct pool *pool = pt->pool;
2785
2786         cancel_delayed_work(&pool->waker);
2787         cancel_delayed_work(&pool->no_space_timeout);
2788         flush_workqueue(pool->wq);
2789         (void) commit(pool);
2790 }
2791
2792 static int check_arg_count(unsigned argc, unsigned args_required)
2793 {
2794         if (argc != args_required) {
2795                 DMWARN("Message received with %u arguments instead of %u.",
2796                        argc, args_required);
2797                 return -EINVAL;
2798         }
2799
2800         return 0;
2801 }
2802
2803 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2804 {
2805         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2806             *dev_id <= MAX_DEV_ID)
2807                 return 0;
2808
2809         if (warning)
2810                 DMWARN("Message received with invalid device id: %s", arg);
2811
2812         return -EINVAL;
2813 }
2814
2815 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2816 {
2817         dm_thin_id dev_id;
2818         int r;
2819
2820         r = check_arg_count(argc, 2);
2821         if (r)
2822                 return r;
2823
2824         r = read_dev_id(argv[1], &dev_id, 1);
2825         if (r)
2826                 return r;
2827
2828         r = dm_pool_create_thin(pool->pmd, dev_id);
2829         if (r) {
2830                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2831                        argv[1]);
2832                 return r;
2833         }
2834
2835         return 0;
2836 }
2837
2838 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2839 {
2840         dm_thin_id dev_id;
2841         dm_thin_id origin_dev_id;
2842         int r;
2843
2844         r = check_arg_count(argc, 3);
2845         if (r)
2846                 return r;
2847
2848         r = read_dev_id(argv[1], &dev_id, 1);
2849         if (r)
2850                 return r;
2851
2852         r = read_dev_id(argv[2], &origin_dev_id, 1);
2853         if (r)
2854                 return r;
2855
2856         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2857         if (r) {
2858                 DMWARN("Creation of new snapshot %s of device %s failed.",
2859                        argv[1], argv[2]);
2860                 return r;
2861         }
2862
2863         return 0;
2864 }
2865
2866 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2867 {
2868         dm_thin_id dev_id;
2869         int r;
2870
2871         r = check_arg_count(argc, 2);
2872         if (r)
2873                 return r;
2874
2875         r = read_dev_id(argv[1], &dev_id, 1);
2876         if (r)
2877                 return r;
2878
2879         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2880         if (r)
2881                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2882
2883         return r;
2884 }
2885
2886 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2887 {
2888         dm_thin_id old_id, new_id;
2889         int r;
2890
2891         r = check_arg_count(argc, 3);
2892         if (r)
2893                 return r;
2894
2895         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2896                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2897                 return -EINVAL;
2898         }
2899
2900         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2901                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2902                 return -EINVAL;
2903         }
2904
2905         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2906         if (r) {
2907                 DMWARN("Failed to change transaction id from %s to %s.",
2908                        argv[1], argv[2]);
2909                 return r;
2910         }
2911
2912         return 0;
2913 }
2914
2915 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2916 {
2917         int r;
2918
2919         r = check_arg_count(argc, 1);
2920         if (r)
2921                 return r;
2922
2923         (void) commit(pool);
2924
2925         r = dm_pool_reserve_metadata_snap(pool->pmd);
2926         if (r)
2927                 DMWARN("reserve_metadata_snap message failed.");
2928
2929         return r;
2930 }
2931
2932 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2933 {
2934         int r;
2935
2936         r = check_arg_count(argc, 1);
2937         if (r)
2938                 return r;
2939
2940         r = dm_pool_release_metadata_snap(pool->pmd);
2941         if (r)
2942                 DMWARN("release_metadata_snap message failed.");
2943
2944         return r;
2945 }
2946
2947 /*
2948  * Messages supported:
2949  *   create_thin        <dev_id>
2950  *   create_snap        <dev_id> <origin_id>
2951  *   delete             <dev_id>
2952  *   trim               <dev_id> <new_size_in_sectors>
2953  *   set_transaction_id <current_trans_id> <new_trans_id>
2954  *   reserve_metadata_snap
2955  *   release_metadata_snap
2956  */
2957 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2958 {
2959         int r = -EINVAL;
2960         struct pool_c *pt = ti->private;
2961         struct pool *pool = pt->pool;
2962
2963         if (!strcasecmp(argv[0], "create_thin"))
2964                 r = process_create_thin_mesg(argc, argv, pool);
2965
2966         else if (!strcasecmp(argv[0], "create_snap"))
2967                 r = process_create_snap_mesg(argc, argv, pool);
2968
2969         else if (!strcasecmp(argv[0], "delete"))
2970                 r = process_delete_mesg(argc, argv, pool);
2971
2972         else if (!strcasecmp(argv[0], "set_transaction_id"))
2973                 r = process_set_transaction_id_mesg(argc, argv, pool);
2974
2975         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2976                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2977
2978         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2979                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2980
2981         else
2982                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2983
2984         if (!r)
2985                 (void) commit(pool);
2986
2987         return r;
2988 }
2989
2990 static void emit_flags(struct pool_features *pf, char *result,
2991                        unsigned sz, unsigned maxlen)
2992 {
2993         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2994                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2995                 pf->error_if_no_space;
2996         DMEMIT("%u ", count);
2997
2998         if (!pf->zero_new_blocks)
2999                 DMEMIT("skip_block_zeroing ");
3000
3001         if (!pf->discard_enabled)
3002                 DMEMIT("ignore_discard ");
3003
3004         if (!pf->discard_passdown)
3005                 DMEMIT("no_discard_passdown ");
3006
3007         if (pf->mode == PM_READ_ONLY)
3008                 DMEMIT("read_only ");
3009
3010         if (pf->error_if_no_space)
3011                 DMEMIT("error_if_no_space ");
3012 }
3013
3014 /*
3015  * Status line is:
3016  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3017  *    <used data sectors>/<total data sectors> <held metadata root>
3018  */
3019 static void pool_status(struct dm_target *ti, status_type_t type,
3020                         unsigned status_flags, char *result, unsigned maxlen)
3021 {
3022         int r;
3023         unsigned sz = 0;
3024         uint64_t transaction_id;
3025         dm_block_t nr_free_blocks_data;
3026         dm_block_t nr_free_blocks_metadata;
3027         dm_block_t nr_blocks_data;
3028         dm_block_t nr_blocks_metadata;
3029         dm_block_t held_root;
3030         char buf[BDEVNAME_SIZE];
3031         char buf2[BDEVNAME_SIZE];
3032         struct pool_c *pt = ti->private;
3033         struct pool *pool = pt->pool;
3034
3035         switch (type) {
3036         case STATUSTYPE_INFO:
3037                 if (get_pool_mode(pool) == PM_FAIL) {
3038                         DMEMIT("Fail");
3039                         break;
3040                 }
3041
3042                 /* Commit to ensure statistics aren't out-of-date */
3043                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3044                         (void) commit(pool);
3045
3046                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3047                 if (r) {
3048                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3049                               dm_device_name(pool->pool_md), r);
3050                         goto err;
3051                 }
3052
3053                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3054                 if (r) {
3055                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3056                               dm_device_name(pool->pool_md), r);
3057                         goto err;
3058                 }
3059
3060                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3061                 if (r) {
3062                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3063                               dm_device_name(pool->pool_md), r);
3064                         goto err;
3065                 }
3066
3067                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3068                 if (r) {
3069                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3070                               dm_device_name(pool->pool_md), r);
3071                         goto err;
3072                 }
3073
3074                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3075                 if (r) {
3076                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3077                               dm_device_name(pool->pool_md), r);
3078                         goto err;
3079                 }
3080
3081                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3082                 if (r) {
3083                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3084                               dm_device_name(pool->pool_md), r);
3085                         goto err;
3086                 }
3087
3088                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3089                        (unsigned long long)transaction_id,
3090                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3091                        (unsigned long long)nr_blocks_metadata,
3092                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3093                        (unsigned long long)nr_blocks_data);
3094
3095                 if (held_root)
3096                         DMEMIT("%llu ", held_root);
3097                 else
3098                         DMEMIT("- ");
3099
3100                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3101                         DMEMIT("out_of_data_space ");
3102                 else if (pool->pf.mode == PM_READ_ONLY)
3103                         DMEMIT("ro ");
3104                 else
3105                         DMEMIT("rw ");
3106
3107                 if (!pool->pf.discard_enabled)
3108                         DMEMIT("ignore_discard ");
3109                 else if (pool->pf.discard_passdown)
3110                         DMEMIT("discard_passdown ");
3111                 else
3112                         DMEMIT("no_discard_passdown ");
3113
3114                 if (pool->pf.error_if_no_space)
3115                         DMEMIT("error_if_no_space ");
3116                 else
3117                         DMEMIT("queue_if_no_space ");
3118
3119                 break;
3120
3121         case STATUSTYPE_TABLE:
3122                 DMEMIT("%s %s %lu %llu ",
3123                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3124                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3125                        (unsigned long)pool->sectors_per_block,
3126                        (unsigned long long)pt->low_water_blocks);
3127                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3128                 break;
3129         }
3130         return;
3131
3132 err:
3133         DMEMIT("Error");
3134 }
3135
3136 static int pool_iterate_devices(struct dm_target *ti,
3137                                 iterate_devices_callout_fn fn, void *data)
3138 {
3139         struct pool_c *pt = ti->private;
3140
3141         return fn(ti, pt->data_dev, 0, ti->len, data);
3142 }
3143
3144 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3145                       struct bio_vec *biovec, int max_size)
3146 {
3147         struct pool_c *pt = ti->private;
3148         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3149
3150         if (!q->merge_bvec_fn)
3151                 return max_size;
3152
3153         bvm->bi_bdev = pt->data_dev->bdev;
3154
3155         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3156 }
3157
3158 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3159 {
3160         struct pool *pool = pt->pool;
3161         struct queue_limits *data_limits;
3162
3163         limits->max_discard_sectors = pool->sectors_per_block;
3164
3165         /*
3166          * discard_granularity is just a hint, and not enforced.
3167          */
3168         if (pt->adjusted_pf.discard_passdown) {
3169                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3170                 limits->discard_granularity = max(data_limits->discard_granularity,
3171                                                   pool->sectors_per_block << SECTOR_SHIFT);
3172         } else
3173                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3174 }
3175
3176 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3177 {
3178         struct pool_c *pt = ti->private;
3179         struct pool *pool = pt->pool;
3180         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3181
3182         /*
3183          * If the system-determined stacked limits are compatible with the
3184          * pool's blocksize (io_opt is a factor) do not override them.
3185          */
3186         if (io_opt_sectors < pool->sectors_per_block ||
3187             do_div(io_opt_sectors, pool->sectors_per_block)) {
3188                 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3189                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3190         }
3191
3192         /*
3193          * pt->adjusted_pf is a staging area for the actual features to use.
3194          * They get transferred to the live pool in bind_control_target()
3195          * called from pool_preresume().
3196          */
3197         if (!pt->adjusted_pf.discard_enabled) {
3198                 /*
3199                  * Must explicitly disallow stacking discard limits otherwise the
3200                  * block layer will stack them if pool's data device has support.
3201                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3202                  * user to see that, so make sure to set all discard limits to 0.
3203                  */
3204                 limits->discard_granularity = 0;
3205                 return;
3206         }
3207
3208         disable_passdown_if_not_supported(pt);
3209
3210         set_discard_limits(pt, limits);
3211 }
3212
3213 static struct target_type pool_target = {
3214         .name = "thin-pool",
3215         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3216                     DM_TARGET_IMMUTABLE,
3217         .version = {1, 13, 0},
3218         .module = THIS_MODULE,
3219         .ctr = pool_ctr,
3220         .dtr = pool_dtr,
3221         .map = pool_map,
3222         .postsuspend = pool_postsuspend,
3223         .preresume = pool_preresume,
3224         .resume = pool_resume,
3225         .message = pool_message,
3226         .status = pool_status,
3227         .merge = pool_merge,
3228         .iterate_devices = pool_iterate_devices,
3229         .io_hints = pool_io_hints,
3230 };
3231
3232 /*----------------------------------------------------------------
3233  * Thin target methods
3234  *--------------------------------------------------------------*/
3235 static void thin_get(struct thin_c *tc)
3236 {
3237         atomic_inc(&tc->refcount);
3238 }
3239
3240 static void thin_put(struct thin_c *tc)
3241 {
3242         if (atomic_dec_and_test(&tc->refcount))
3243                 complete(&tc->can_destroy);
3244 }
3245
3246 static void thin_dtr(struct dm_target *ti)
3247 {
3248         struct thin_c *tc = ti->private;
3249         unsigned long flags;
3250
3251         thin_put(tc);
3252         wait_for_completion(&tc->can_destroy);
3253
3254         spin_lock_irqsave(&tc->pool->lock, flags);
3255         list_del_rcu(&tc->list);
3256         spin_unlock_irqrestore(&tc->pool->lock, flags);
3257         synchronize_rcu();
3258
3259         mutex_lock(&dm_thin_pool_table.mutex);
3260
3261         __pool_dec(tc->pool);
3262         dm_pool_close_thin_device(tc->td);
3263         dm_put_device(ti, tc->pool_dev);
3264         if (tc->origin_dev)
3265                 dm_put_device(ti, tc->origin_dev);
3266         kfree(tc);
3267
3268         mutex_unlock(&dm_thin_pool_table.mutex);
3269 }
3270
3271 /*
3272  * Thin target parameters:
3273  *
3274  * <pool_dev> <dev_id> [origin_dev]
3275  *
3276  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3277  * dev_id: the internal device identifier
3278  * origin_dev: a device external to the pool that should act as the origin
3279  *
3280  * If the pool device has discards disabled, they get disabled for the thin
3281  * device as well.
3282  */
3283 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3284 {
3285         int r;
3286         struct thin_c *tc;
3287         struct dm_dev *pool_dev, *origin_dev;
3288         struct mapped_device *pool_md;
3289         unsigned long flags;
3290
3291         mutex_lock(&dm_thin_pool_table.mutex);
3292
3293         if (argc != 2 && argc != 3) {
3294                 ti->error = "Invalid argument count";
3295                 r = -EINVAL;
3296                 goto out_unlock;
3297         }
3298
3299         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3300         if (!tc) {
3301                 ti->error = "Out of memory";
3302                 r = -ENOMEM;
3303                 goto out_unlock;
3304         }
3305         spin_lock_init(&tc->lock);
3306         bio_list_init(&tc->deferred_bio_list);
3307         bio_list_init(&tc->retry_on_resume_list);
3308         tc->sort_bio_list = RB_ROOT;
3309
3310         if (argc == 3) {
3311                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3312                 if (r) {
3313                         ti->error = "Error opening origin device";
3314                         goto bad_origin_dev;
3315                 }
3316                 tc->origin_dev = origin_dev;
3317         }
3318
3319         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3320         if (r) {
3321                 ti->error = "Error opening pool device";
3322                 goto bad_pool_dev;
3323         }
3324         tc->pool_dev = pool_dev;
3325
3326         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3327                 ti->error = "Invalid device id";
3328                 r = -EINVAL;
3329                 goto bad_common;
3330         }
3331
3332         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3333         if (!pool_md) {
3334                 ti->error = "Couldn't get pool mapped device";
3335                 r = -EINVAL;
3336                 goto bad_common;
3337         }
3338
3339         tc->pool = __pool_table_lookup(pool_md);
3340         if (!tc->pool) {
3341                 ti->error = "Couldn't find pool object";
3342                 r = -EINVAL;
3343                 goto bad_pool_lookup;
3344         }
3345         __pool_inc(tc->pool);
3346
3347         if (get_pool_mode(tc->pool) == PM_FAIL) {
3348                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3349                 r = -EINVAL;
3350                 goto bad_thin_open;
3351         }
3352
3353         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3354         if (r) {
3355                 ti->error = "Couldn't open thin internal device";
3356                 goto bad_thin_open;
3357         }
3358
3359         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3360         if (r)
3361                 goto bad_target_max_io_len;
3362
3363         ti->num_flush_bios = 1;
3364         ti->flush_supported = true;
3365         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3366
3367         /* In case the pool supports discards, pass them on. */
3368         ti->discard_zeroes_data_unsupported = true;
3369         if (tc->pool->pf.discard_enabled) {
3370                 ti->discards_supported = true;
3371                 ti->num_discard_bios = 1;
3372                 /* Discard bios must be split on a block boundary */
3373                 ti->split_discard_bios = true;
3374         }
3375
3376         dm_put(pool_md);
3377
3378         mutex_unlock(&dm_thin_pool_table.mutex);
3379
3380         atomic_set(&tc->refcount, 1);
3381         init_completion(&tc->can_destroy);
3382
3383         spin_lock_irqsave(&tc->pool->lock, flags);
3384         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3385         spin_unlock_irqrestore(&tc->pool->lock, flags);
3386         /*
3387          * This synchronize_rcu() call is needed here otherwise we risk a
3388          * wake_worker() call finding no bios to process (because the newly
3389          * added tc isn't yet visible).  So this reduces latency since we
3390          * aren't then dependent on the periodic commit to wake_worker().
3391          */
3392         synchronize_rcu();
3393
3394         return 0;
3395
3396 bad_target_max_io_len:
3397         dm_pool_close_thin_device(tc->td);
3398 bad_thin_open:
3399         __pool_dec(tc->pool);
3400 bad_pool_lookup:
3401         dm_put(pool_md);
3402 bad_common:
3403         dm_put_device(ti, tc->pool_dev);
3404 bad_pool_dev:
3405         if (tc->origin_dev)
3406                 dm_put_device(ti, tc->origin_dev);
3407 bad_origin_dev:
3408         kfree(tc);
3409 out_unlock:
3410         mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412         return r;
3413 }
3414
3415 static int thin_map(struct dm_target *ti, struct bio *bio)
3416 {
3417         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3418
3419         return thin_bio_map(ti, bio);
3420 }
3421
3422 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3423 {
3424         unsigned long flags;
3425         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3426         struct list_head work;
3427         struct dm_thin_new_mapping *m, *tmp;
3428         struct pool *pool = h->tc->pool;
3429
3430         if (h->shared_read_entry) {
3431                 INIT_LIST_HEAD(&work);
3432                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3433
3434                 spin_lock_irqsave(&pool->lock, flags);
3435                 list_for_each_entry_safe(m, tmp, &work, list) {
3436                         list_del(&m->list);
3437                         __complete_mapping_preparation(m);
3438                 }
3439                 spin_unlock_irqrestore(&pool->lock, flags);
3440         }
3441
3442         if (h->all_io_entry) {
3443                 INIT_LIST_HEAD(&work);
3444                 dm_deferred_entry_dec(h->all_io_entry, &work);
3445                 if (!list_empty(&work)) {
3446                         spin_lock_irqsave(&pool->lock, flags);
3447                         list_for_each_entry_safe(m, tmp, &work, list)
3448                                 list_add_tail(&m->list, &pool->prepared_discards);
3449                         spin_unlock_irqrestore(&pool->lock, flags);
3450                         wake_worker(pool);
3451                 }
3452         }
3453
3454         return 0;
3455 }
3456
3457 static void thin_presuspend(struct dm_target *ti)
3458 {
3459         struct thin_c *tc = ti->private;
3460
3461         if (dm_noflush_suspending(ti))
3462                 noflush_work(tc, do_noflush_start);
3463 }
3464
3465 static void thin_postsuspend(struct dm_target *ti)
3466 {
3467         struct thin_c *tc = ti->private;
3468
3469         /*
3470          * The dm_noflush_suspending flag has been cleared by now, so
3471          * unfortunately we must always run this.
3472          */
3473         noflush_work(tc, do_noflush_stop);
3474 }
3475
3476 static int thin_preresume(struct dm_target *ti)
3477 {
3478         struct thin_c *tc = ti->private;
3479
3480         if (tc->origin_dev)
3481                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3482
3483         return 0;
3484 }
3485
3486 /*
3487  * <nr mapped sectors> <highest mapped sector>
3488  */
3489 static void thin_status(struct dm_target *ti, status_type_t type,
3490                         unsigned status_flags, char *result, unsigned maxlen)
3491 {
3492         int r;
3493         ssize_t sz = 0;
3494         dm_block_t mapped, highest;
3495         char buf[BDEVNAME_SIZE];
3496         struct thin_c *tc = ti->private;
3497
3498         if (get_pool_mode(tc->pool) == PM_FAIL) {
3499                 DMEMIT("Fail");
3500                 return;
3501         }
3502
3503         if (!tc->td)
3504                 DMEMIT("-");
3505         else {
3506                 switch (type) {
3507                 case STATUSTYPE_INFO:
3508                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3509                         if (r) {
3510                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3511                                 goto err;
3512                         }
3513
3514                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3515                         if (r < 0) {
3516                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3517                                 goto err;
3518                         }
3519
3520                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3521                         if (r)
3522                                 DMEMIT("%llu", ((highest + 1) *
3523                                                 tc->pool->sectors_per_block) - 1);
3524                         else
3525                                 DMEMIT("-");
3526                         break;
3527
3528                 case STATUSTYPE_TABLE:
3529                         DMEMIT("%s %lu",
3530                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3531                                (unsigned long) tc->dev_id);
3532                         if (tc->origin_dev)
3533                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3534                         break;
3535                 }
3536         }
3537
3538         return;
3539
3540 err:
3541         DMEMIT("Error");
3542 }
3543
3544 static int thin_iterate_devices(struct dm_target *ti,
3545                                 iterate_devices_callout_fn fn, void *data)
3546 {
3547         sector_t blocks;
3548         struct thin_c *tc = ti->private;
3549         struct pool *pool = tc->pool;
3550
3551         /*
3552          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3553          * we follow a more convoluted path through to the pool's target.
3554          */
3555         if (!pool->ti)
3556                 return 0;       /* nothing is bound */
3557
3558         blocks = pool->ti->len;
3559         (void) sector_div(blocks, pool->sectors_per_block);
3560         if (blocks)
3561                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3562
3563         return 0;
3564 }
3565
3566 static struct target_type thin_target = {
3567         .name = "thin",
3568         .version = {1, 13, 0},
3569         .module = THIS_MODULE,
3570         .ctr = thin_ctr,
3571         .dtr = thin_dtr,
3572         .map = thin_map,
3573         .end_io = thin_endio,
3574         .preresume = thin_preresume,
3575         .presuspend = thin_presuspend,
3576         .postsuspend = thin_postsuspend,
3577         .status = thin_status,
3578         .iterate_devices = thin_iterate_devices,
3579 };
3580
3581 /*----------------------------------------------------------------*/
3582
3583 static int __init dm_thin_init(void)
3584 {
3585         int r;
3586
3587         pool_table_init();
3588
3589         r = dm_register_target(&thin_target);
3590         if (r)
3591                 return r;
3592
3593         r = dm_register_target(&pool_target);
3594         if (r)
3595                 goto bad_pool_target;
3596
3597         r = -ENOMEM;
3598
3599         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3600         if (!_new_mapping_cache)
3601                 goto bad_new_mapping_cache;
3602
3603         return 0;
3604
3605 bad_new_mapping_cache:
3606         dm_unregister_target(&pool_target);
3607 bad_pool_target:
3608         dm_unregister_target(&thin_target);
3609
3610         return r;
3611 }
3612
3613 static void dm_thin_exit(void)
3614 {
3615         dm_unregister_target(&thin_target);
3616         dm_unregister_target(&pool_target);
3617
3618         kmem_cache_destroy(_new_mapping_cache);
3619 }
3620
3621 module_init(dm_thin_init);
3622 module_exit(dm_thin_exit);
3623
3624 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3625 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3626
3627 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3628 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3629 MODULE_LICENSE("GPL");