]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-verity.c
Merge branch 'overlayfs-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mszere...
[karo-tx-linux.git] / drivers / md / dm-verity.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-bufio.h"
18
19 #include <linux/module.h>
20 #include <linux/device-mapper.h>
21 #include <crypto/hash.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_IO_VEC_INLINE         16
26 #define DM_VERITY_MEMPOOL_SIZE          4
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_LEVELS            63
30
31 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
32
33 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
34
35 struct dm_verity {
36         struct dm_dev *data_dev;
37         struct dm_dev *hash_dev;
38         struct dm_target *ti;
39         struct dm_bufio_client *bufio;
40         char *alg_name;
41         struct crypto_shash *tfm;
42         u8 *root_digest;        /* digest of the root block */
43         u8 *salt;               /* salt: its size is salt_size */
44         unsigned salt_size;
45         sector_t data_start;    /* data offset in 512-byte sectors */
46         sector_t hash_start;    /* hash start in blocks */
47         sector_t data_blocks;   /* the number of data blocks */
48         sector_t hash_blocks;   /* the number of hash blocks */
49         unsigned char data_dev_block_bits;      /* log2(data blocksize) */
50         unsigned char hash_dev_block_bits;      /* log2(hash blocksize) */
51         unsigned char hash_per_block_bits;      /* log2(hashes in hash block) */
52         unsigned char levels;   /* the number of tree levels */
53         unsigned char version;
54         unsigned digest_size;   /* digest size for the current hash algorithm */
55         unsigned shash_descsize;/* the size of temporary space for crypto */
56         int hash_failed;        /* set to 1 if hash of any block failed */
57
58         mempool_t *vec_mempool; /* mempool of bio vector */
59
60         struct workqueue_struct *verify_wq;
61
62         /* starting blocks for each tree level. 0 is the lowest level. */
63         sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
64 };
65
66 struct dm_verity_io {
67         struct dm_verity *v;
68
69         /* original values of bio->bi_end_io and bio->bi_private */
70         bio_end_io_t *orig_bi_end_io;
71         void *orig_bi_private;
72
73         sector_t block;
74         unsigned n_blocks;
75
76         struct bvec_iter iter;
77
78         struct work_struct work;
79
80         /*
81          * Three variably-size fields follow this struct:
82          *
83          * u8 hash_desc[v->shash_descsize];
84          * u8 real_digest[v->digest_size];
85          * u8 want_digest[v->digest_size];
86          *
87          * To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
88          */
89 };
90
91 struct dm_verity_prefetch_work {
92         struct work_struct work;
93         struct dm_verity *v;
94         sector_t block;
95         unsigned n_blocks;
96 };
97
98 static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
99 {
100         return (struct shash_desc *)(io + 1);
101 }
102
103 static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
104 {
105         return (u8 *)(io + 1) + v->shash_descsize;
106 }
107
108 static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
109 {
110         return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
111 }
112
113 /*
114  * Auxiliary structure appended to each dm-bufio buffer. If the value
115  * hash_verified is nonzero, hash of the block has been verified.
116  *
117  * The variable hash_verified is set to 0 when allocating the buffer, then
118  * it can be changed to 1 and it is never reset to 0 again.
119  *
120  * There is no lock around this value, a race condition can at worst cause
121  * that multiple processes verify the hash of the same buffer simultaneously
122  * and write 1 to hash_verified simultaneously.
123  * This condition is harmless, so we don't need locking.
124  */
125 struct buffer_aux {
126         int hash_verified;
127 };
128
129 /*
130  * Initialize struct buffer_aux for a freshly created buffer.
131  */
132 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
133 {
134         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
135
136         aux->hash_verified = 0;
137 }
138
139 /*
140  * Translate input sector number to the sector number on the target device.
141  */
142 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
143 {
144         return v->data_start + dm_target_offset(v->ti, bi_sector);
145 }
146
147 /*
148  * Return hash position of a specified block at a specified tree level
149  * (0 is the lowest level).
150  * The lowest "hash_per_block_bits"-bits of the result denote hash position
151  * inside a hash block. The remaining bits denote location of the hash block.
152  */
153 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
154                                          int level)
155 {
156         return block >> (level * v->hash_per_block_bits);
157 }
158
159 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
160                                  sector_t *hash_block, unsigned *offset)
161 {
162         sector_t position = verity_position_at_level(v, block, level);
163         unsigned idx;
164
165         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
166
167         if (!offset)
168                 return;
169
170         idx = position & ((1 << v->hash_per_block_bits) - 1);
171         if (!v->version)
172                 *offset = idx * v->digest_size;
173         else
174                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
175 }
176
177 /*
178  * Verify hash of a metadata block pertaining to the specified data block
179  * ("block" argument) at a specified level ("level" argument).
180  *
181  * On successful return, io_want_digest(v, io) contains the hash value for
182  * a lower tree level or for the data block (if we're at the lowest leve).
183  *
184  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
185  * If "skip_unverified" is false, unverified buffer is hashed and verified
186  * against current value of io_want_digest(v, io).
187  */
188 static int verity_verify_level(struct dm_verity_io *io, sector_t block,
189                                int level, bool skip_unverified)
190 {
191         struct dm_verity *v = io->v;
192         struct dm_buffer *buf;
193         struct buffer_aux *aux;
194         u8 *data;
195         int r;
196         sector_t hash_block;
197         unsigned offset;
198
199         verity_hash_at_level(v, block, level, &hash_block, &offset);
200
201         data = dm_bufio_read(v->bufio, hash_block, &buf);
202         if (unlikely(IS_ERR(data)))
203                 return PTR_ERR(data);
204
205         aux = dm_bufio_get_aux_data(buf);
206
207         if (!aux->hash_verified) {
208                 struct shash_desc *desc;
209                 u8 *result;
210
211                 if (skip_unverified) {
212                         r = 1;
213                         goto release_ret_r;
214                 }
215
216                 desc = io_hash_desc(v, io);
217                 desc->tfm = v->tfm;
218                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
219                 r = crypto_shash_init(desc);
220                 if (r < 0) {
221                         DMERR("crypto_shash_init failed: %d", r);
222                         goto release_ret_r;
223                 }
224
225                 if (likely(v->version >= 1)) {
226                         r = crypto_shash_update(desc, v->salt, v->salt_size);
227                         if (r < 0) {
228                                 DMERR("crypto_shash_update failed: %d", r);
229                                 goto release_ret_r;
230                         }
231                 }
232
233                 r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
234                 if (r < 0) {
235                         DMERR("crypto_shash_update failed: %d", r);
236                         goto release_ret_r;
237                 }
238
239                 if (!v->version) {
240                         r = crypto_shash_update(desc, v->salt, v->salt_size);
241                         if (r < 0) {
242                                 DMERR("crypto_shash_update failed: %d", r);
243                                 goto release_ret_r;
244                         }
245                 }
246
247                 result = io_real_digest(v, io);
248                 r = crypto_shash_final(desc, result);
249                 if (r < 0) {
250                         DMERR("crypto_shash_final failed: %d", r);
251                         goto release_ret_r;
252                 }
253                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
254                         DMERR_LIMIT("metadata block %llu is corrupted",
255                                 (unsigned long long)hash_block);
256                         v->hash_failed = 1;
257                         r = -EIO;
258                         goto release_ret_r;
259                 } else
260                         aux->hash_verified = 1;
261         }
262
263         data += offset;
264
265         memcpy(io_want_digest(v, io), data, v->digest_size);
266
267         dm_bufio_release(buf);
268         return 0;
269
270 release_ret_r:
271         dm_bufio_release(buf);
272
273         return r;
274 }
275
276 /*
277  * Verify one "dm_verity_io" structure.
278  */
279 static int verity_verify_io(struct dm_verity_io *io)
280 {
281         struct dm_verity *v = io->v;
282         struct bio *bio = dm_bio_from_per_bio_data(io,
283                                                    v->ti->per_bio_data_size);
284         unsigned b;
285         int i;
286
287         for (b = 0; b < io->n_blocks; b++) {
288                 struct shash_desc *desc;
289                 u8 *result;
290                 int r;
291                 unsigned todo;
292
293                 if (likely(v->levels)) {
294                         /*
295                          * First, we try to get the requested hash for
296                          * the current block. If the hash block itself is
297                          * verified, zero is returned. If it isn't, this
298                          * function returns 0 and we fall back to whole
299                          * chain verification.
300                          */
301                         int r = verity_verify_level(io, io->block + b, 0, true);
302                         if (likely(!r))
303                                 goto test_block_hash;
304                         if (r < 0)
305                                 return r;
306                 }
307
308                 memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
309
310                 for (i = v->levels - 1; i >= 0; i--) {
311                         int r = verity_verify_level(io, io->block + b, i, false);
312                         if (unlikely(r))
313                                 return r;
314                 }
315
316 test_block_hash:
317                 desc = io_hash_desc(v, io);
318                 desc->tfm = v->tfm;
319                 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
320                 r = crypto_shash_init(desc);
321                 if (r < 0) {
322                         DMERR("crypto_shash_init failed: %d", r);
323                         return r;
324                 }
325
326                 if (likely(v->version >= 1)) {
327                         r = crypto_shash_update(desc, v->salt, v->salt_size);
328                         if (r < 0) {
329                                 DMERR("crypto_shash_update failed: %d", r);
330                                 return r;
331                         }
332                 }
333                 todo = 1 << v->data_dev_block_bits;
334                 do {
335                         u8 *page;
336                         unsigned len;
337                         struct bio_vec bv = bio_iter_iovec(bio, io->iter);
338
339                         page = kmap_atomic(bv.bv_page);
340                         len = bv.bv_len;
341                         if (likely(len >= todo))
342                                 len = todo;
343                         r = crypto_shash_update(desc, page + bv.bv_offset, len);
344                         kunmap_atomic(page);
345
346                         if (r < 0) {
347                                 DMERR("crypto_shash_update failed: %d", r);
348                                 return r;
349                         }
350
351                         bio_advance_iter(bio, &io->iter, len);
352                         todo -= len;
353                 } while (todo);
354
355                 if (!v->version) {
356                         r = crypto_shash_update(desc, v->salt, v->salt_size);
357                         if (r < 0) {
358                                 DMERR("crypto_shash_update failed: %d", r);
359                                 return r;
360                         }
361                 }
362
363                 result = io_real_digest(v, io);
364                 r = crypto_shash_final(desc, result);
365                 if (r < 0) {
366                         DMERR("crypto_shash_final failed: %d", r);
367                         return r;
368                 }
369                 if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
370                         DMERR_LIMIT("data block %llu is corrupted",
371                                 (unsigned long long)(io->block + b));
372                         v->hash_failed = 1;
373                         return -EIO;
374                 }
375         }
376
377         return 0;
378 }
379
380 /*
381  * End one "io" structure with a given error.
382  */
383 static void verity_finish_io(struct dm_verity_io *io, int error)
384 {
385         struct dm_verity *v = io->v;
386         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_bio_data_size);
387
388         bio->bi_end_io = io->orig_bi_end_io;
389         bio->bi_private = io->orig_bi_private;
390
391         bio_endio_nodec(bio, error);
392 }
393
394 static void verity_work(struct work_struct *w)
395 {
396         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
397
398         verity_finish_io(io, verity_verify_io(io));
399 }
400
401 static void verity_end_io(struct bio *bio, int error)
402 {
403         struct dm_verity_io *io = bio->bi_private;
404
405         if (error) {
406                 verity_finish_io(io, error);
407                 return;
408         }
409
410         INIT_WORK(&io->work, verity_work);
411         queue_work(io->v->verify_wq, &io->work);
412 }
413
414 /*
415  * Prefetch buffers for the specified io.
416  * The root buffer is not prefetched, it is assumed that it will be cached
417  * all the time.
418  */
419 static void verity_prefetch_io(struct work_struct *work)
420 {
421         struct dm_verity_prefetch_work *pw =
422                 container_of(work, struct dm_verity_prefetch_work, work);
423         struct dm_verity *v = pw->v;
424         int i;
425
426         for (i = v->levels - 2; i >= 0; i--) {
427                 sector_t hash_block_start;
428                 sector_t hash_block_end;
429                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
430                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
431                 if (!i) {
432                         unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
433
434                         cluster >>= v->data_dev_block_bits;
435                         if (unlikely(!cluster))
436                                 goto no_prefetch_cluster;
437
438                         if (unlikely(cluster & (cluster - 1)))
439                                 cluster = 1 << __fls(cluster);
440
441                         hash_block_start &= ~(sector_t)(cluster - 1);
442                         hash_block_end |= cluster - 1;
443                         if (unlikely(hash_block_end >= v->hash_blocks))
444                                 hash_block_end = v->hash_blocks - 1;
445                 }
446 no_prefetch_cluster:
447                 dm_bufio_prefetch(v->bufio, hash_block_start,
448                                   hash_block_end - hash_block_start + 1);
449         }
450
451         kfree(pw);
452 }
453
454 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
455 {
456         struct dm_verity_prefetch_work *pw;
457
458         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
459                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
460
461         if (!pw)
462                 return;
463
464         INIT_WORK(&pw->work, verity_prefetch_io);
465         pw->v = v;
466         pw->block = io->block;
467         pw->n_blocks = io->n_blocks;
468         queue_work(v->verify_wq, &pw->work);
469 }
470
471 /*
472  * Bio map function. It allocates dm_verity_io structure and bio vector and
473  * fills them. Then it issues prefetches and the I/O.
474  */
475 static int verity_map(struct dm_target *ti, struct bio *bio)
476 {
477         struct dm_verity *v = ti->private;
478         struct dm_verity_io *io;
479
480         bio->bi_bdev = v->data_dev->bdev;
481         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
482
483         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
484             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
485                 DMERR_LIMIT("unaligned io");
486                 return -EIO;
487         }
488
489         if (bio_end_sector(bio) >>
490             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
491                 DMERR_LIMIT("io out of range");
492                 return -EIO;
493         }
494
495         if (bio_data_dir(bio) == WRITE)
496                 return -EIO;
497
498         io = dm_per_bio_data(bio, ti->per_bio_data_size);
499         io->v = v;
500         io->orig_bi_end_io = bio->bi_end_io;
501         io->orig_bi_private = bio->bi_private;
502         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
503         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
504
505         bio->bi_end_io = verity_end_io;
506         bio->bi_private = io;
507         io->iter = bio->bi_iter;
508
509         verity_submit_prefetch(v, io);
510
511         generic_make_request(bio);
512
513         return DM_MAPIO_SUBMITTED;
514 }
515
516 /*
517  * Status: V (valid) or C (corruption found)
518  */
519 static void verity_status(struct dm_target *ti, status_type_t type,
520                           unsigned status_flags, char *result, unsigned maxlen)
521 {
522         struct dm_verity *v = ti->private;
523         unsigned sz = 0;
524         unsigned x;
525
526         switch (type) {
527         case STATUSTYPE_INFO:
528                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
529                 break;
530         case STATUSTYPE_TABLE:
531                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
532                         v->version,
533                         v->data_dev->name,
534                         v->hash_dev->name,
535                         1 << v->data_dev_block_bits,
536                         1 << v->hash_dev_block_bits,
537                         (unsigned long long)v->data_blocks,
538                         (unsigned long long)v->hash_start,
539                         v->alg_name
540                         );
541                 for (x = 0; x < v->digest_size; x++)
542                         DMEMIT("%02x", v->root_digest[x]);
543                 DMEMIT(" ");
544                 if (!v->salt_size)
545                         DMEMIT("-");
546                 else
547                         for (x = 0; x < v->salt_size; x++)
548                                 DMEMIT("%02x", v->salt[x]);
549                 break;
550         }
551 }
552
553 static int verity_ioctl(struct dm_target *ti, unsigned cmd,
554                         unsigned long arg)
555 {
556         struct dm_verity *v = ti->private;
557         int r = 0;
558
559         if (v->data_start ||
560             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
561                 r = scsi_verify_blk_ioctl(NULL, cmd);
562
563         return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
564                                      cmd, arg);
565 }
566
567 static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
568                         struct bio_vec *biovec, int max_size)
569 {
570         struct dm_verity *v = ti->private;
571         struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
572
573         if (!q->merge_bvec_fn)
574                 return max_size;
575
576         bvm->bi_bdev = v->data_dev->bdev;
577         bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
578
579         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
580 }
581
582 static int verity_iterate_devices(struct dm_target *ti,
583                                   iterate_devices_callout_fn fn, void *data)
584 {
585         struct dm_verity *v = ti->private;
586
587         return fn(ti, v->data_dev, v->data_start, ti->len, data);
588 }
589
590 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
591 {
592         struct dm_verity *v = ti->private;
593
594         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
595                 limits->logical_block_size = 1 << v->data_dev_block_bits;
596
597         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
598                 limits->physical_block_size = 1 << v->data_dev_block_bits;
599
600         blk_limits_io_min(limits, limits->logical_block_size);
601 }
602
603 static void verity_dtr(struct dm_target *ti)
604 {
605         struct dm_verity *v = ti->private;
606
607         if (v->verify_wq)
608                 destroy_workqueue(v->verify_wq);
609
610         if (v->vec_mempool)
611                 mempool_destroy(v->vec_mempool);
612
613         if (v->bufio)
614                 dm_bufio_client_destroy(v->bufio);
615
616         kfree(v->salt);
617         kfree(v->root_digest);
618
619         if (v->tfm)
620                 crypto_free_shash(v->tfm);
621
622         kfree(v->alg_name);
623
624         if (v->hash_dev)
625                 dm_put_device(ti, v->hash_dev);
626
627         if (v->data_dev)
628                 dm_put_device(ti, v->data_dev);
629
630         kfree(v);
631 }
632
633 /*
634  * Target parameters:
635  *      <version>       The current format is version 1.
636  *                      Vsn 0 is compatible with original Chromium OS releases.
637  *      <data device>
638  *      <hash device>
639  *      <data block size>
640  *      <hash block size>
641  *      <the number of data blocks>
642  *      <hash start block>
643  *      <algorithm>
644  *      <digest>
645  *      <salt>          Hex string or "-" if no salt.
646  */
647 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
648 {
649         struct dm_verity *v;
650         unsigned num;
651         unsigned long long num_ll;
652         int r;
653         int i;
654         sector_t hash_position;
655         char dummy;
656
657         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
658         if (!v) {
659                 ti->error = "Cannot allocate verity structure";
660                 return -ENOMEM;
661         }
662         ti->private = v;
663         v->ti = ti;
664
665         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
666                 ti->error = "Device must be readonly";
667                 r = -EINVAL;
668                 goto bad;
669         }
670
671         if (argc != 10) {
672                 ti->error = "Invalid argument count: exactly 10 arguments required";
673                 r = -EINVAL;
674                 goto bad;
675         }
676
677         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
678             num > 1) {
679                 ti->error = "Invalid version";
680                 r = -EINVAL;
681                 goto bad;
682         }
683         v->version = num;
684
685         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
686         if (r) {
687                 ti->error = "Data device lookup failed";
688                 goto bad;
689         }
690
691         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
692         if (r) {
693                 ti->error = "Data device lookup failed";
694                 goto bad;
695         }
696
697         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
698             !num || (num & (num - 1)) ||
699             num < bdev_logical_block_size(v->data_dev->bdev) ||
700             num > PAGE_SIZE) {
701                 ti->error = "Invalid data device block size";
702                 r = -EINVAL;
703                 goto bad;
704         }
705         v->data_dev_block_bits = __ffs(num);
706
707         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
708             !num || (num & (num - 1)) ||
709             num < bdev_logical_block_size(v->hash_dev->bdev) ||
710             num > INT_MAX) {
711                 ti->error = "Invalid hash device block size";
712                 r = -EINVAL;
713                 goto bad;
714         }
715         v->hash_dev_block_bits = __ffs(num);
716
717         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
718             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
719             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
720                 ti->error = "Invalid data blocks";
721                 r = -EINVAL;
722                 goto bad;
723         }
724         v->data_blocks = num_ll;
725
726         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
727                 ti->error = "Data device is too small";
728                 r = -EINVAL;
729                 goto bad;
730         }
731
732         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
733             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
734             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
735                 ti->error = "Invalid hash start";
736                 r = -EINVAL;
737                 goto bad;
738         }
739         v->hash_start = num_ll;
740
741         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
742         if (!v->alg_name) {
743                 ti->error = "Cannot allocate algorithm name";
744                 r = -ENOMEM;
745                 goto bad;
746         }
747
748         v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
749         if (IS_ERR(v->tfm)) {
750                 ti->error = "Cannot initialize hash function";
751                 r = PTR_ERR(v->tfm);
752                 v->tfm = NULL;
753                 goto bad;
754         }
755         v->digest_size = crypto_shash_digestsize(v->tfm);
756         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
757                 ti->error = "Digest size too big";
758                 r = -EINVAL;
759                 goto bad;
760         }
761         v->shash_descsize =
762                 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
763
764         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
765         if (!v->root_digest) {
766                 ti->error = "Cannot allocate root digest";
767                 r = -ENOMEM;
768                 goto bad;
769         }
770         if (strlen(argv[8]) != v->digest_size * 2 ||
771             hex2bin(v->root_digest, argv[8], v->digest_size)) {
772                 ti->error = "Invalid root digest";
773                 r = -EINVAL;
774                 goto bad;
775         }
776
777         if (strcmp(argv[9], "-")) {
778                 v->salt_size = strlen(argv[9]) / 2;
779                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
780                 if (!v->salt) {
781                         ti->error = "Cannot allocate salt";
782                         r = -ENOMEM;
783                         goto bad;
784                 }
785                 if (strlen(argv[9]) != v->salt_size * 2 ||
786                     hex2bin(v->salt, argv[9], v->salt_size)) {
787                         ti->error = "Invalid salt";
788                         r = -EINVAL;
789                         goto bad;
790                 }
791         }
792
793         v->hash_per_block_bits =
794                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
795
796         v->levels = 0;
797         if (v->data_blocks)
798                 while (v->hash_per_block_bits * v->levels < 64 &&
799                        (unsigned long long)(v->data_blocks - 1) >>
800                        (v->hash_per_block_bits * v->levels))
801                         v->levels++;
802
803         if (v->levels > DM_VERITY_MAX_LEVELS) {
804                 ti->error = "Too many tree levels";
805                 r = -E2BIG;
806                 goto bad;
807         }
808
809         hash_position = v->hash_start;
810         for (i = v->levels - 1; i >= 0; i--) {
811                 sector_t s;
812                 v->hash_level_block[i] = hash_position;
813                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
814                                         >> ((i + 1) * v->hash_per_block_bits);
815                 if (hash_position + s < hash_position) {
816                         ti->error = "Hash device offset overflow";
817                         r = -E2BIG;
818                         goto bad;
819                 }
820                 hash_position += s;
821         }
822         v->hash_blocks = hash_position;
823
824         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
825                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
826                 dm_bufio_alloc_callback, NULL);
827         if (IS_ERR(v->bufio)) {
828                 ti->error = "Cannot initialize dm-bufio";
829                 r = PTR_ERR(v->bufio);
830                 v->bufio = NULL;
831                 goto bad;
832         }
833
834         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
835                 ti->error = "Hash device is too small";
836                 r = -E2BIG;
837                 goto bad;
838         }
839
840         ti->per_bio_data_size = roundup(sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2, __alignof__(struct dm_verity_io));
841
842         v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
843                                         BIO_MAX_PAGES * sizeof(struct bio_vec));
844         if (!v->vec_mempool) {
845                 ti->error = "Cannot allocate vector mempool";
846                 r = -ENOMEM;
847                 goto bad;
848         }
849
850         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
851         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
852         if (!v->verify_wq) {
853                 ti->error = "Cannot allocate workqueue";
854                 r = -ENOMEM;
855                 goto bad;
856         }
857
858         return 0;
859
860 bad:
861         verity_dtr(ti);
862
863         return r;
864 }
865
866 static struct target_type verity_target = {
867         .name           = "verity",
868         .version        = {1, 2, 0},
869         .module         = THIS_MODULE,
870         .ctr            = verity_ctr,
871         .dtr            = verity_dtr,
872         .map            = verity_map,
873         .status         = verity_status,
874         .ioctl          = verity_ioctl,
875         .merge          = verity_merge,
876         .iterate_devices = verity_iterate_devices,
877         .io_hints       = verity_io_hints,
878 };
879
880 static int __init dm_verity_init(void)
881 {
882         int r;
883
884         r = dm_register_target(&verity_target);
885         if (r < 0)
886                 DMERR("register failed %d", r);
887
888         return r;
889 }
890
891 static void __exit dm_verity_exit(void)
892 {
893         dm_unregister_target(&verity_target);
894 }
895
896 module_init(dm_verity_init);
897 module_exit(dm_verity_exit);
898
899 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
900 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
901 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
902 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
903 MODULE_LICENSE("GPL");