]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
Merge branch 'cluster' into for-next
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         if (mddev == NULL || mddev->pers == NULL
261             || !mddev->ready) {
262                 bio_io_error(bio);
263                 return;
264         }
265         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267                 return;
268         }
269         smp_rmb(); /* Ensure implications of  'active' are visible */
270         rcu_read_lock();
271         if (mddev->suspended) {
272                 DEFINE_WAIT(__wait);
273                 for (;;) {
274                         prepare_to_wait(&mddev->sb_wait, &__wait,
275                                         TASK_UNINTERRUPTIBLE);
276                         if (!mddev->suspended)
277                                 break;
278                         rcu_read_unlock();
279                         schedule();
280                         rcu_read_lock();
281                 }
282                 finish_wait(&mddev->sb_wait, &__wait);
283         }
284         atomic_inc(&mddev->active_io);
285         rcu_read_unlock();
286
287         /*
288          * save the sectors now since our bio can
289          * go away inside make_request
290          */
291         sectors = bio_sectors(bio);
292         mddev->pers->make_request(mddev, bio);
293
294         cpu = part_stat_lock();
295         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297         part_stat_unlock();
298
299         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300                 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311         BUG_ON(mddev->suspended);
312         mddev->suspended = 1;
313         synchronize_rcu();
314         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315         mddev->pers->quiesce(mddev, 1);
316
317         del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323         mddev->suspended = 0;
324         wake_up(&mddev->sb_wait);
325         mddev->pers->quiesce(mddev, 0);
326
327         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328         md_wakeup_thread(mddev->thread);
329         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335         struct md_personality *pers = mddev->pers;
336         int ret = 0;
337
338         rcu_read_lock();
339         if (mddev->suspended)
340                 ret = 1;
341         else if (pers && pers->congested)
342                 ret = pers->congested(mddev, bits);
343         rcu_read_unlock();
344         return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349         struct mddev *mddev = data;
350         return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354                              struct bvec_merge_data *bvm,
355                              struct bio_vec *biovec)
356 {
357         struct mddev *mddev = q->queuedata;
358         int ret;
359         rcu_read_lock();
360         if (mddev->suspended) {
361                 /* Must always allow one vec */
362                 if (bvm->bi_size == 0)
363                         ret = biovec->bv_len;
364                 else
365                         ret = 0;
366         } else {
367                 struct md_personality *pers = mddev->pers;
368                 if (pers && pers->mergeable_bvec)
369                         ret = pers->mergeable_bvec(mddev, bvm, biovec);
370                 else
371                         ret = biovec->bv_len;
372         }
373         rcu_read_unlock();
374         return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382         struct md_rdev *rdev = bio->bi_private;
383         struct mddev *mddev = rdev->mddev;
384
385         rdev_dec_pending(rdev, mddev);
386
387         if (atomic_dec_and_test(&mddev->flush_pending)) {
388                 /* The pre-request flush has finished */
389                 queue_work(md_wq, &mddev->flush_work);
390         }
391         bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399         struct md_rdev *rdev;
400
401         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402         atomic_set(&mddev->flush_pending, 1);
403         rcu_read_lock();
404         rdev_for_each_rcu(rdev, mddev)
405                 if (rdev->raid_disk >= 0 &&
406                     !test_bit(Faulty, &rdev->flags)) {
407                         /* Take two references, one is dropped
408                          * when request finishes, one after
409                          * we reclaim rcu_read_lock
410                          */
411                         struct bio *bi;
412                         atomic_inc(&rdev->nr_pending);
413                         atomic_inc(&rdev->nr_pending);
414                         rcu_read_unlock();
415                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416                         bi->bi_end_io = md_end_flush;
417                         bi->bi_private = rdev;
418                         bi->bi_bdev = rdev->bdev;
419                         atomic_inc(&mddev->flush_pending);
420                         submit_bio(WRITE_FLUSH, bi);
421                         rcu_read_lock();
422                         rdev_dec_pending(rdev, mddev);
423                 }
424         rcu_read_unlock();
425         if (atomic_dec_and_test(&mddev->flush_pending))
426                 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432         struct bio *bio = mddev->flush_bio;
433
434         if (bio->bi_iter.bi_size == 0)
435                 /* an empty barrier - all done */
436                 bio_endio(bio, 0);
437         else {
438                 bio->bi_rw &= ~REQ_FLUSH;
439                 mddev->pers->make_request(mddev, bio);
440         }
441
442         mddev->flush_bio = NULL;
443         wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448         spin_lock_irq(&mddev->lock);
449         wait_event_lock_irq(mddev->sb_wait,
450                             !mddev->flush_bio,
451                             mddev->lock);
452         mddev->flush_bio = bio;
453         spin_unlock_irq(&mddev->lock);
454
455         INIT_WORK(&mddev->flush_work, submit_flushes);
456         queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462         struct mddev *mddev = cb->data;
463         md_wakeup_thread(mddev->thread);
464         kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470         atomic_inc(&mddev->active);
471         return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478         struct bio_set *bs = NULL;
479
480         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481                 return;
482         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483             mddev->ctime == 0 && !mddev->hold_active) {
484                 /* Array is not configured at all, and not held active,
485                  * so destroy it */
486                 list_del_init(&mddev->all_mddevs);
487                 bs = mddev->bio_set;
488                 mddev->bio_set = NULL;
489                 if (mddev->gendisk) {
490                         /* We did a probe so need to clean up.  Call
491                          * queue_work inside the spinlock so that
492                          * flush_workqueue() after mddev_find will
493                          * succeed in waiting for the work to be done.
494                          */
495                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496                         queue_work(md_misc_wq, &mddev->del_work);
497                 } else
498                         kfree(mddev);
499         }
500         spin_unlock(&all_mddevs_lock);
501         if (bs)
502                 bioset_free(bs);
503 }
504
505 void mddev_init(struct mddev *mddev)
506 {
507         mutex_init(&mddev->open_mutex);
508         mutex_init(&mddev->reconfig_mutex);
509         mutex_init(&mddev->bitmap_info.mutex);
510         INIT_LIST_HEAD(&mddev->disks);
511         INIT_LIST_HEAD(&mddev->all_mddevs);
512         init_timer(&mddev->safemode_timer);
513         atomic_set(&mddev->active, 1);
514         atomic_set(&mddev->openers, 0);
515         atomic_set(&mddev->active_io, 0);
516         spin_lock_init(&mddev->lock);
517         atomic_set(&mddev->flush_pending, 0);
518         init_waitqueue_head(&mddev->sb_wait);
519         init_waitqueue_head(&mddev->recovery_wait);
520         mddev->reshape_position = MaxSector;
521         mddev->reshape_backwards = 0;
522         mddev->last_sync_action = "none";
523         mddev->resync_min = 0;
524         mddev->resync_max = MaxSector;
525         mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528
529 static struct mddev *mddev_find(dev_t unit)
530 {
531         struct mddev *mddev, *new = NULL;
532
533         if (unit && MAJOR(unit) != MD_MAJOR)
534                 unit &= ~((1<<MdpMinorShift)-1);
535
536  retry:
537         spin_lock(&all_mddevs_lock);
538
539         if (unit) {
540                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541                         if (mddev->unit == unit) {
542                                 mddev_get(mddev);
543                                 spin_unlock(&all_mddevs_lock);
544                                 kfree(new);
545                                 return mddev;
546                         }
547
548                 if (new) {
549                         list_add(&new->all_mddevs, &all_mddevs);
550                         spin_unlock(&all_mddevs_lock);
551                         new->hold_active = UNTIL_IOCTL;
552                         return new;
553                 }
554         } else if (new) {
555                 /* find an unused unit number */
556                 static int next_minor = 512;
557                 int start = next_minor;
558                 int is_free = 0;
559                 int dev = 0;
560                 while (!is_free) {
561                         dev = MKDEV(MD_MAJOR, next_minor);
562                         next_minor++;
563                         if (next_minor > MINORMASK)
564                                 next_minor = 0;
565                         if (next_minor == start) {
566                                 /* Oh dear, all in use. */
567                                 spin_unlock(&all_mddevs_lock);
568                                 kfree(new);
569                                 return NULL;
570                         }
571
572                         is_free = 1;
573                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574                                 if (mddev->unit == dev) {
575                                         is_free = 0;
576                                         break;
577                                 }
578                 }
579                 new->unit = dev;
580                 new->md_minor = MINOR(dev);
581                 new->hold_active = UNTIL_STOP;
582                 list_add(&new->all_mddevs, &all_mddevs);
583                 spin_unlock(&all_mddevs_lock);
584                 return new;
585         }
586         spin_unlock(&all_mddevs_lock);
587
588         new = kzalloc(sizeof(*new), GFP_KERNEL);
589         if (!new)
590                 return NULL;
591
592         new->unit = unit;
593         if (MAJOR(unit) == MD_MAJOR)
594                 new->md_minor = MINOR(unit);
595         else
596                 new->md_minor = MINOR(unit) >> MdpMinorShift;
597
598         mddev_init(new);
599
600         goto retry;
601 }
602
603 static struct attribute_group md_redundancy_group;
604
605 void mddev_unlock(struct mddev *mddev)
606 {
607         if (mddev->to_remove) {
608                 /* These cannot be removed under reconfig_mutex as
609                  * an access to the files will try to take reconfig_mutex
610                  * while holding the file unremovable, which leads to
611                  * a deadlock.
612                  * So hold set sysfs_active while the remove in happeing,
613                  * and anything else which might set ->to_remove or my
614                  * otherwise change the sysfs namespace will fail with
615                  * -EBUSY if sysfs_active is still set.
616                  * We set sysfs_active under reconfig_mutex and elsewhere
617                  * test it under the same mutex to ensure its correct value
618                  * is seen.
619                  */
620                 struct attribute_group *to_remove = mddev->to_remove;
621                 mddev->to_remove = NULL;
622                 mddev->sysfs_active = 1;
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625                 if (mddev->kobj.sd) {
626                         if (to_remove != &md_redundancy_group)
627                                 sysfs_remove_group(&mddev->kobj, to_remove);
628                         if (mddev->pers == NULL ||
629                             mddev->pers->sync_request == NULL) {
630                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631                                 if (mddev->sysfs_action)
632                                         sysfs_put(mddev->sysfs_action);
633                                 mddev->sysfs_action = NULL;
634                         }
635                 }
636                 mddev->sysfs_active = 0;
637         } else
638                 mutex_unlock(&mddev->reconfig_mutex);
639
640         /* As we've dropped the mutex we need a spinlock to
641          * make sure the thread doesn't disappear
642          */
643         spin_lock(&pers_lock);
644         md_wakeup_thread(mddev->thread);
645         spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651         struct md_rdev *rdev;
652
653         rdev_for_each_rcu(rdev, mddev)
654                 if (rdev->desc_nr == nr)
655                         return rdev;
656
657         return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663         struct md_rdev *rdev;
664
665         rdev_for_each(rdev, mddev)
666                 if (rdev->bdev->bd_dev == dev)
667                         return rdev;
668
669         return NULL;
670 }
671
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674         struct md_rdev *rdev;
675
676         rdev_for_each_rcu(rdev, mddev)
677                 if (rdev->bdev->bd_dev == dev)
678                         return rdev;
679
680         return NULL;
681 }
682
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685         struct md_personality *pers;
686         list_for_each_entry(pers, &pers_list, list) {
687                 if (level != LEVEL_NONE && pers->level == level)
688                         return pers;
689                 if (strcmp(pers->name, clevel)==0)
690                         return pers;
691         }
692         return NULL;
693 }
694
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699         return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704         rdev->sb_page = alloc_page(GFP_KERNEL);
705         if (!rdev->sb_page) {
706                 printk(KERN_ALERT "md: out of memory.\n");
707                 return -ENOMEM;
708         }
709
710         return 0;
711 }
712
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715         if (rdev->sb_page) {
716                 put_page(rdev->sb_page);
717                 rdev->sb_loaded = 0;
718                 rdev->sb_page = NULL;
719                 rdev->sb_start = 0;
720                 rdev->sectors = 0;
721         }
722         if (rdev->bb_page) {
723                 put_page(rdev->bb_page);
724                 rdev->bb_page = NULL;
725         }
726         kfree(rdev->badblocks.page);
727         rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730
731 static void super_written(struct bio *bio, int error)
732 {
733         struct md_rdev *rdev = bio->bi_private;
734         struct mddev *mddev = rdev->mddev;
735
736         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737                 printk("md: super_written gets error=%d, uptodate=%d\n",
738                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740                 md_error(mddev, rdev);
741         }
742
743         if (atomic_dec_and_test(&mddev->pending_writes))
744                 wake_up(&mddev->sb_wait);
745         bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749                    sector_t sector, int size, struct page *page)
750 {
751         /* write first size bytes of page to sector of rdev
752          * Increment mddev->pending_writes before returning
753          * and decrement it on completion, waking up sb_wait
754          * if zero is reached.
755          * If an error occurred, call md_error
756          */
757         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760         bio->bi_iter.bi_sector = sector;
761         bio_add_page(bio, page, size, 0);
762         bio->bi_private = rdev;
763         bio->bi_end_io = super_written;
764
765         atomic_inc(&mddev->pending_writes);
766         submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771         /* wait for all superblock writes that were scheduled to complete */
772         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776                  struct page *page, int rw, bool metadata_op)
777 {
778         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779         int ret;
780
781         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782                 rdev->meta_bdev : rdev->bdev;
783         if (metadata_op)
784                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785         else if (rdev->mddev->reshape_position != MaxSector &&
786                  (rdev->mddev->reshape_backwards ==
787                   (sector >= rdev->mddev->reshape_position)))
788                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789         else
790                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791         bio_add_page(bio, page, size, 0);
792         submit_bio_wait(rw, bio);
793
794         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795         bio_put(bio);
796         return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802         char b[BDEVNAME_SIZE];
803
804         if (rdev->sb_loaded)
805                 return 0;
806
807         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808                 goto fail;
809         rdev->sb_loaded = 1;
810         return 0;
811
812 fail:
813         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814                 bdevname(rdev->bdev,b));
815         return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820         return  sb1->set_uuid0 == sb2->set_uuid0 &&
821                 sb1->set_uuid1 == sb2->set_uuid1 &&
822                 sb1->set_uuid2 == sb2->set_uuid2 &&
823                 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828         int ret;
829         mdp_super_t *tmp1, *tmp2;
830
831         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834         if (!tmp1 || !tmp2) {
835                 ret = 0;
836                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837                 goto abort;
838         }
839
840         *tmp1 = *sb1;
841         *tmp2 = *sb2;
842
843         /*
844          * nr_disks is not constant
845          */
846         tmp1->nr_disks = 0;
847         tmp2->nr_disks = 0;
848
849         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851         kfree(tmp1);
852         kfree(tmp2);
853         return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858         csum = (csum & 0xffff) + (csum >> 16);
859         return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864         u64 newcsum = 0;
865         u32 *sb32 = (u32*)sb;
866         int i;
867         unsigned int disk_csum, csum;
868
869         disk_csum = sb->sb_csum;
870         sb->sb_csum = 0;
871
872         for (i = 0; i < MD_SB_BYTES/4 ; i++)
873                 newcsum += sb32[i];
874         csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877         /* This used to use csum_partial, which was wrong for several
878          * reasons including that different results are returned on
879          * different architectures.  It isn't critical that we get exactly
880          * the same return value as before (we always csum_fold before
881          * testing, and that removes any differences).  However as we
882          * know that csum_partial always returned a 16bit value on
883          * alphas, do a fold to maximise conformity to previous behaviour.
884          */
885         sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887         sb->sb_csum = disk_csum;
888 #endif
889         return csum;
890 }
891
892 /*
893  * Handle superblock details.
894  * We want to be able to handle multiple superblock formats
895  * so we have a common interface to them all, and an array of
896  * different handlers.
897  * We rely on user-space to write the initial superblock, and support
898  * reading and updating of superblocks.
899  * Interface methods are:
900  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901  *      loads and validates a superblock on dev.
902  *      if refdev != NULL, compare superblocks on both devices
903  *    Return:
904  *      0 - dev has a superblock that is compatible with refdev
905  *      1 - dev has a superblock that is compatible and newer than refdev
906  *          so dev should be used as the refdev in future
907  *     -EINVAL superblock incompatible or invalid
908  *     -othererror e.g. -EIO
909  *
910  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
911  *      Verify that dev is acceptable into mddev.
912  *       The first time, mddev->raid_disks will be 0, and data from
913  *       dev should be merged in.  Subsequent calls check that dev
914  *       is new enough.  Return 0 or -EINVAL
915  *
916  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
917  *     Update the superblock for rdev with data in mddev
918  *     This does not write to disc.
919  *
920  */
921
922 struct super_type  {
923         char                *name;
924         struct module       *owner;
925         int                 (*load_super)(struct md_rdev *rdev,
926                                           struct md_rdev *refdev,
927                                           int minor_version);
928         int                 (*validate_super)(struct mddev *mddev,
929                                               struct md_rdev *rdev);
930         void                (*sync_super)(struct mddev *mddev,
931                                           struct md_rdev *rdev);
932         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
933                                                 sector_t num_sectors);
934         int                 (*allow_new_offset)(struct md_rdev *rdev,
935                                                 unsigned long long new_offset);
936 };
937
938 /*
939  * Check that the given mddev has no bitmap.
940  *
941  * This function is called from the run method of all personalities that do not
942  * support bitmaps. It prints an error message and returns non-zero if mddev
943  * has a bitmap. Otherwise, it returns 0.
944  *
945  */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949                 return 0;
950         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951                 mdname(mddev), mddev->pers->name);
952         return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957  * load_super for 0.90.0
958  */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962         mdp_super_t *sb;
963         int ret;
964
965         /*
966          * Calculate the position of the superblock (512byte sectors),
967          * it's at the end of the disk.
968          *
969          * It also happens to be a multiple of 4Kb.
970          */
971         rdev->sb_start = calc_dev_sboffset(rdev);
972
973         ret = read_disk_sb(rdev, MD_SB_BYTES);
974         if (ret) return ret;
975
976         ret = -EINVAL;
977
978         bdevname(rdev->bdev, b);
979         sb = page_address(rdev->sb_page);
980
981         if (sb->md_magic != MD_SB_MAGIC) {
982                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983                        b);
984                 goto abort;
985         }
986
987         if (sb->major_version != 0 ||
988             sb->minor_version < 90 ||
989             sb->minor_version > 91) {
990                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991                         sb->major_version, sb->minor_version,
992                         b);
993                 goto abort;
994         }
995
996         if (sb->raid_disks <= 0)
997                 goto abort;
998
999         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001                         b);
1002                 goto abort;
1003         }
1004
1005         rdev->preferred_minor = sb->md_minor;
1006         rdev->data_offset = 0;
1007         rdev->new_data_offset = 0;
1008         rdev->sb_size = MD_SB_BYTES;
1009         rdev->badblocks.shift = -1;
1010
1011         if (sb->level == LEVEL_MULTIPATH)
1012                 rdev->desc_nr = -1;
1013         else
1014                 rdev->desc_nr = sb->this_disk.number;
1015
1016         if (!refdev) {
1017                 ret = 1;
1018         } else {
1019                 __u64 ev1, ev2;
1020                 mdp_super_t *refsb = page_address(refdev->sb_page);
1021                 if (!uuid_equal(refsb, sb)) {
1022                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023                                 b, bdevname(refdev->bdev,b2));
1024                         goto abort;
1025                 }
1026                 if (!sb_equal(refsb, sb)) {
1027                         printk(KERN_WARNING "md: %s has same UUID"
1028                                " but different superblock to %s\n",
1029                                b, bdevname(refdev->bdev, b2));
1030                         goto abort;
1031                 }
1032                 ev1 = md_event(sb);
1033                 ev2 = md_event(refsb);
1034                 if (ev1 > ev2)
1035                         ret = 1;
1036                 else
1037                         ret = 0;
1038         }
1039         rdev->sectors = rdev->sb_start;
1040         /* Limit to 4TB as metadata cannot record more than that.
1041          * (not needed for Linear and RAID0 as metadata doesn't
1042          * record this size)
1043          */
1044         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045                 rdev->sectors = (2ULL << 32) - 2;
1046
1047         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048                 /* "this cannot possibly happen" ... */
1049                 ret = -EINVAL;
1050
1051  abort:
1052         return ret;
1053 }
1054
1055 /*
1056  * validate_super for 0.90.0
1057  */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060         mdp_disk_t *desc;
1061         mdp_super_t *sb = page_address(rdev->sb_page);
1062         __u64 ev1 = md_event(sb);
1063
1064         rdev->raid_disk = -1;
1065         clear_bit(Faulty, &rdev->flags);
1066         clear_bit(In_sync, &rdev->flags);
1067         clear_bit(Bitmap_sync, &rdev->flags);
1068         clear_bit(WriteMostly, &rdev->flags);
1069
1070         if (mddev->raid_disks == 0) {
1071                 mddev->major_version = 0;
1072                 mddev->minor_version = sb->minor_version;
1073                 mddev->patch_version = sb->patch_version;
1074                 mddev->external = 0;
1075                 mddev->chunk_sectors = sb->chunk_size >> 9;
1076                 mddev->ctime = sb->ctime;
1077                 mddev->utime = sb->utime;
1078                 mddev->level = sb->level;
1079                 mddev->clevel[0] = 0;
1080                 mddev->layout = sb->layout;
1081                 mddev->raid_disks = sb->raid_disks;
1082                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083                 mddev->events = ev1;
1084                 mddev->bitmap_info.offset = 0;
1085                 mddev->bitmap_info.space = 0;
1086                 /* bitmap can use 60 K after the 4K superblocks */
1087                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089                 mddev->reshape_backwards = 0;
1090
1091                 if (mddev->minor_version >= 91) {
1092                         mddev->reshape_position = sb->reshape_position;
1093                         mddev->delta_disks = sb->delta_disks;
1094                         mddev->new_level = sb->new_level;
1095                         mddev->new_layout = sb->new_layout;
1096                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097                         if (mddev->delta_disks < 0)
1098                                 mddev->reshape_backwards = 1;
1099                 } else {
1100                         mddev->reshape_position = MaxSector;
1101                         mddev->delta_disks = 0;
1102                         mddev->new_level = mddev->level;
1103                         mddev->new_layout = mddev->layout;
1104                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1105                 }
1106
1107                 if (sb->state & (1<<MD_SB_CLEAN))
1108                         mddev->recovery_cp = MaxSector;
1109                 else {
1110                         if (sb->events_hi == sb->cp_events_hi &&
1111                                 sb->events_lo == sb->cp_events_lo) {
1112                                 mddev->recovery_cp = sb->recovery_cp;
1113                         } else
1114                                 mddev->recovery_cp = 0;
1115                 }
1116
1117                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122                 mddev->max_disks = MD_SB_DISKS;
1123
1124                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125                     mddev->bitmap_info.file == NULL) {
1126                         mddev->bitmap_info.offset =
1127                                 mddev->bitmap_info.default_offset;
1128                         mddev->bitmap_info.space =
1129                                 mddev->bitmap_info.default_space;
1130                 }
1131
1132         } else if (mddev->pers == NULL) {
1133                 /* Insist on good event counter while assembling, except
1134                  * for spares (which don't need an event count) */
1135                 ++ev1;
1136                 if (sb->disks[rdev->desc_nr].state & (
1137                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138                         if (ev1 < mddev->events)
1139                                 return -EINVAL;
1140         } else if (mddev->bitmap) {
1141                 /* if adding to array with a bitmap, then we can accept an
1142                  * older device ... but not too old.
1143                  */
1144                 if (ev1 < mddev->bitmap->events_cleared)
1145                         return 0;
1146                 if (ev1 < mddev->events)
1147                         set_bit(Bitmap_sync, &rdev->flags);
1148         } else {
1149                 if (ev1 < mddev->events)
1150                         /* just a hot-add of a new device, leave raid_disk at -1 */
1151                         return 0;
1152         }
1153
1154         if (mddev->level != LEVEL_MULTIPATH) {
1155                 desc = sb->disks + rdev->desc_nr;
1156
1157                 if (desc->state & (1<<MD_DISK_FAULTY))
1158                         set_bit(Faulty, &rdev->flags);
1159                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160                             desc->raid_disk < mddev->raid_disks */) {
1161                         set_bit(In_sync, &rdev->flags);
1162                         rdev->raid_disk = desc->raid_disk;
1163                         rdev->saved_raid_disk = desc->raid_disk;
1164                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165                         /* active but not in sync implies recovery up to
1166                          * reshape position.  We don't know exactly where
1167                          * that is, so set to zero for now */
1168                         if (mddev->minor_version >= 91) {
1169                                 rdev->recovery_offset = 0;
1170                                 rdev->raid_disk = desc->raid_disk;
1171                         }
1172                 }
1173                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174                         set_bit(WriteMostly, &rdev->flags);
1175         } else /* MULTIPATH are always insync */
1176                 set_bit(In_sync, &rdev->flags);
1177         return 0;
1178 }
1179
1180 /*
1181  * sync_super for 0.90.0
1182  */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185         mdp_super_t *sb;
1186         struct md_rdev *rdev2;
1187         int next_spare = mddev->raid_disks;
1188
1189         /* make rdev->sb match mddev data..
1190          *
1191          * 1/ zero out disks
1192          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193          * 3/ any empty disks < next_spare become removed
1194          *
1195          * disks[0] gets initialised to REMOVED because
1196          * we cannot be sure from other fields if it has
1197          * been initialised or not.
1198          */
1199         int i;
1200         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202         rdev->sb_size = MD_SB_BYTES;
1203
1204         sb = page_address(rdev->sb_page);
1205
1206         memset(sb, 0, sizeof(*sb));
1207
1208         sb->md_magic = MD_SB_MAGIC;
1209         sb->major_version = mddev->major_version;
1210         sb->patch_version = mddev->patch_version;
1211         sb->gvalid_words  = 0; /* ignored */
1212         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217         sb->ctime = mddev->ctime;
1218         sb->level = mddev->level;
1219         sb->size = mddev->dev_sectors / 2;
1220         sb->raid_disks = mddev->raid_disks;
1221         sb->md_minor = mddev->md_minor;
1222         sb->not_persistent = 0;
1223         sb->utime = mddev->utime;
1224         sb->state = 0;
1225         sb->events_hi = (mddev->events>>32);
1226         sb->events_lo = (u32)mddev->events;
1227
1228         if (mddev->reshape_position == MaxSector)
1229                 sb->minor_version = 90;
1230         else {
1231                 sb->minor_version = 91;
1232                 sb->reshape_position = mddev->reshape_position;
1233                 sb->new_level = mddev->new_level;
1234                 sb->delta_disks = mddev->delta_disks;
1235                 sb->new_layout = mddev->new_layout;
1236                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237         }
1238         mddev->minor_version = sb->minor_version;
1239         if (mddev->in_sync)
1240         {
1241                 sb->recovery_cp = mddev->recovery_cp;
1242                 sb->cp_events_hi = (mddev->events>>32);
1243                 sb->cp_events_lo = (u32)mddev->events;
1244                 if (mddev->recovery_cp == MaxSector)
1245                         sb->state = (1<< MD_SB_CLEAN);
1246         } else
1247                 sb->recovery_cp = 0;
1248
1249         sb->layout = mddev->layout;
1250         sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256         rdev_for_each(rdev2, mddev) {
1257                 mdp_disk_t *d;
1258                 int desc_nr;
1259                 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261                 if (rdev2->raid_disk >= 0 &&
1262                     sb->minor_version >= 91)
1263                         /* we have nowhere to store the recovery_offset,
1264                          * but if it is not below the reshape_position,
1265                          * we can piggy-back on that.
1266                          */
1267                         is_active = 1;
1268                 if (rdev2->raid_disk < 0 ||
1269                     test_bit(Faulty, &rdev2->flags))
1270                         is_active = 0;
1271                 if (is_active)
1272                         desc_nr = rdev2->raid_disk;
1273                 else
1274                         desc_nr = next_spare++;
1275                 rdev2->desc_nr = desc_nr;
1276                 d = &sb->disks[rdev2->desc_nr];
1277                 nr_disks++;
1278                 d->number = rdev2->desc_nr;
1279                 d->major = MAJOR(rdev2->bdev->bd_dev);
1280                 d->minor = MINOR(rdev2->bdev->bd_dev);
1281                 if (is_active)
1282                         d->raid_disk = rdev2->raid_disk;
1283                 else
1284                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1285                 if (test_bit(Faulty, &rdev2->flags))
1286                         d->state = (1<<MD_DISK_FAULTY);
1287                 else if (is_active) {
1288                         d->state = (1<<MD_DISK_ACTIVE);
1289                         if (test_bit(In_sync, &rdev2->flags))
1290                                 d->state |= (1<<MD_DISK_SYNC);
1291                         active++;
1292                         working++;
1293                 } else {
1294                         d->state = 0;
1295                         spare++;
1296                         working++;
1297                 }
1298                 if (test_bit(WriteMostly, &rdev2->flags))
1299                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300         }
1301         /* now set the "removed" and "faulty" bits on any missing devices */
1302         for (i=0 ; i < mddev->raid_disks ; i++) {
1303                 mdp_disk_t *d = &sb->disks[i];
1304                 if (d->state == 0 && d->number == 0) {
1305                         d->number = i;
1306                         d->raid_disk = i;
1307                         d->state = (1<<MD_DISK_REMOVED);
1308                         d->state |= (1<<MD_DISK_FAULTY);
1309                         failed++;
1310                 }
1311         }
1312         sb->nr_disks = nr_disks;
1313         sb->active_disks = active;
1314         sb->working_disks = working;
1315         sb->failed_disks = failed;
1316         sb->spare_disks = spare;
1317
1318         sb->this_disk = sb->disks[rdev->desc_nr];
1319         sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323  * rdev_size_change for 0.90.0
1324  */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329                 return 0; /* component must fit device */
1330         if (rdev->mddev->bitmap_info.offset)
1331                 return 0; /* can't move bitmap */
1332         rdev->sb_start = calc_dev_sboffset(rdev);
1333         if (!num_sectors || num_sectors > rdev->sb_start)
1334                 num_sectors = rdev->sb_start;
1335         /* Limit to 4TB as metadata cannot record more than that.
1336          * 4TB == 2^32 KB, or 2*2^32 sectors.
1337          */
1338         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339                 num_sectors = (2ULL << 32) - 2;
1340         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341                        rdev->sb_page);
1342         md_super_wait(rdev->mddev);
1343         return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349         /* non-zero offset changes not possible with v0.90 */
1350         return new_offset == 0;
1351 }
1352
1353 /*
1354  * version 1 superblock
1355  */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359         __le32 disk_csum;
1360         u32 csum;
1361         unsigned long long newcsum;
1362         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363         __le32 *isuper = (__le32*)sb;
1364
1365         disk_csum = sb->sb_csum;
1366         sb->sb_csum = 0;
1367         newcsum = 0;
1368         for (; size >= 4; size -= 4)
1369                 newcsum += le32_to_cpu(*isuper++);
1370
1371         if (size == 2)
1372                 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375         sb->sb_csum = disk_csum;
1376         return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380                             int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383         struct mdp_superblock_1 *sb;
1384         int ret;
1385         sector_t sb_start;
1386         sector_t sectors;
1387         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388         int bmask;
1389
1390         /*
1391          * Calculate the position of the superblock in 512byte sectors.
1392          * It is always aligned to a 4K boundary and
1393          * depeding on minor_version, it can be:
1394          * 0: At least 8K, but less than 12K, from end of device
1395          * 1: At start of device
1396          * 2: 4K from start of device.
1397          */
1398         switch(minor_version) {
1399         case 0:
1400                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401                 sb_start -= 8*2;
1402                 sb_start &= ~(sector_t)(4*2-1);
1403                 break;
1404         case 1:
1405                 sb_start = 0;
1406                 break;
1407         case 2:
1408                 sb_start = 8;
1409                 break;
1410         default:
1411                 return -EINVAL;
1412         }
1413         rdev->sb_start = sb_start;
1414
1415         /* superblock is rarely larger than 1K, but it can be larger,
1416          * and it is safe to read 4k, so we do that
1417          */
1418         ret = read_disk_sb(rdev, 4096);
1419         if (ret) return ret;
1420
1421         sb = page_address(rdev->sb_page);
1422
1423         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424             sb->major_version != cpu_to_le32(1) ||
1425             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428                 return -EINVAL;
1429
1430         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431                 printk("md: invalid superblock checksum on %s\n",
1432                         bdevname(rdev->bdev,b));
1433                 return -EINVAL;
1434         }
1435         if (le64_to_cpu(sb->data_size) < 10) {
1436                 printk("md: data_size too small on %s\n",
1437                        bdevname(rdev->bdev,b));
1438                 return -EINVAL;
1439         }
1440         if (sb->pad0 ||
1441             sb->pad3[0] ||
1442             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443                 /* Some padding is non-zero, might be a new feature */
1444                 return -EINVAL;
1445
1446         rdev->preferred_minor = 0xffff;
1447         rdev->data_offset = le64_to_cpu(sb->data_offset);
1448         rdev->new_data_offset = rdev->data_offset;
1449         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456         if (rdev->sb_size & bmask)
1457                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459         if (minor_version
1460             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461                 return -EINVAL;
1462         if (minor_version
1463             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464                 return -EINVAL;
1465
1466         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467                 rdev->desc_nr = -1;
1468         else
1469                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471         if (!rdev->bb_page) {
1472                 rdev->bb_page = alloc_page(GFP_KERNEL);
1473                 if (!rdev->bb_page)
1474                         return -ENOMEM;
1475         }
1476         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477             rdev->badblocks.count == 0) {
1478                 /* need to load the bad block list.
1479                  * Currently we limit it to one page.
1480                  */
1481                 s32 offset;
1482                 sector_t bb_sector;
1483                 u64 *bbp;
1484                 int i;
1485                 int sectors = le16_to_cpu(sb->bblog_size);
1486                 if (sectors > (PAGE_SIZE / 512))
1487                         return -EINVAL;
1488                 offset = le32_to_cpu(sb->bblog_offset);
1489                 if (offset == 0)
1490                         return -EINVAL;
1491                 bb_sector = (long long)offset;
1492                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493                                   rdev->bb_page, READ, true))
1494                         return -EIO;
1495                 bbp = (u64 *)page_address(rdev->bb_page);
1496                 rdev->badblocks.shift = sb->bblog_shift;
1497                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498                         u64 bb = le64_to_cpu(*bbp);
1499                         int count = bb & (0x3ff);
1500                         u64 sector = bb >> 10;
1501                         sector <<= sb->bblog_shift;
1502                         count <<= sb->bblog_shift;
1503                         if (bb + 1 == 0)
1504                                 break;
1505                         if (md_set_badblocks(&rdev->badblocks,
1506                                              sector, count, 1) == 0)
1507                                 return -EINVAL;
1508                 }
1509         } else if (sb->bblog_offset != 0)
1510                 rdev->badblocks.shift = 0;
1511
1512         if (!refdev) {
1513                 ret = 1;
1514         } else {
1515                 __u64 ev1, ev2;
1516                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519                     sb->level != refsb->level ||
1520                     sb->layout != refsb->layout ||
1521                     sb->chunksize != refsb->chunksize) {
1522                         printk(KERN_WARNING "md: %s has strangely different"
1523                                 " superblock to %s\n",
1524                                 bdevname(rdev->bdev,b),
1525                                 bdevname(refdev->bdev,b2));
1526                         return -EINVAL;
1527                 }
1528                 ev1 = le64_to_cpu(sb->events);
1529                 ev2 = le64_to_cpu(refsb->events);
1530
1531                 if (ev1 > ev2)
1532                         ret = 1;
1533                 else
1534                         ret = 0;
1535         }
1536         if (minor_version) {
1537                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538                 sectors -= rdev->data_offset;
1539         } else
1540                 sectors = rdev->sb_start;
1541         if (sectors < le64_to_cpu(sb->data_size))
1542                 return -EINVAL;
1543         rdev->sectors = le64_to_cpu(sb->data_size);
1544         return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550         __u64 ev1 = le64_to_cpu(sb->events);
1551
1552         rdev->raid_disk = -1;
1553         clear_bit(Faulty, &rdev->flags);
1554         clear_bit(In_sync, &rdev->flags);
1555         clear_bit(Bitmap_sync, &rdev->flags);
1556         clear_bit(WriteMostly, &rdev->flags);
1557
1558         if (mddev->raid_disks == 0) {
1559                 mddev->major_version = 1;
1560                 mddev->patch_version = 0;
1561                 mddev->external = 0;
1562                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565                 mddev->level = le32_to_cpu(sb->level);
1566                 mddev->clevel[0] = 0;
1567                 mddev->layout = le32_to_cpu(sb->layout);
1568                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569                 mddev->dev_sectors = le64_to_cpu(sb->size);
1570                 mddev->events = ev1;
1571                 mddev->bitmap_info.offset = 0;
1572                 mddev->bitmap_info.space = 0;
1573                 /* Default location for bitmap is 1K after superblock
1574                  * using 3K - total of 4K
1575                  */
1576                 mddev->bitmap_info.default_offset = 1024 >> 9;
1577                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578                 mddev->reshape_backwards = 0;
1579
1580                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581                 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583                 mddev->max_disks =  (4096-256)/2;
1584
1585                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586                     mddev->bitmap_info.file == NULL) {
1587                         mddev->bitmap_info.offset =
1588                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1589                         /* Metadata doesn't record how much space is available.
1590                          * For 1.0, we assume we can use up to the superblock
1591                          * if before, else to 4K beyond superblock.
1592                          * For others, assume no change is possible.
1593                          */
1594                         if (mddev->minor_version > 0)
1595                                 mddev->bitmap_info.space = 0;
1596                         else if (mddev->bitmap_info.offset > 0)
1597                                 mddev->bitmap_info.space =
1598                                         8 - mddev->bitmap_info.offset;
1599                         else
1600                                 mddev->bitmap_info.space =
1601                                         -mddev->bitmap_info.offset;
1602                 }
1603
1604                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607                         mddev->new_level = le32_to_cpu(sb->new_level);
1608                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1609                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610                         if (mddev->delta_disks < 0 ||
1611                             (mddev->delta_disks == 0 &&
1612                              (le32_to_cpu(sb->feature_map)
1613                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1614                                 mddev->reshape_backwards = 1;
1615                 } else {
1616                         mddev->reshape_position = MaxSector;
1617                         mddev->delta_disks = 0;
1618                         mddev->new_level = mddev->level;
1619                         mddev->new_layout = mddev->layout;
1620                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1621                 }
1622
1623         } else if (mddev->pers == NULL) {
1624                 /* Insist of good event counter while assembling, except for
1625                  * spares (which don't need an event count) */
1626                 ++ev1;
1627                 if (rdev->desc_nr >= 0 &&
1628                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630                         if (ev1 < mddev->events)
1631                                 return -EINVAL;
1632         } else if (mddev->bitmap) {
1633                 /* If adding to array with a bitmap, then we can accept an
1634                  * older device, but not too old.
1635                  */
1636                 if (ev1 < mddev->bitmap->events_cleared)
1637                         return 0;
1638                 if (ev1 < mddev->events)
1639                         set_bit(Bitmap_sync, &rdev->flags);
1640         } else {
1641                 if (ev1 < mddev->events)
1642                         /* just a hot-add of a new device, leave raid_disk at -1 */
1643                         return 0;
1644         }
1645         if (mddev->level != LEVEL_MULTIPATH) {
1646                 int role;
1647                 if (rdev->desc_nr < 0 ||
1648                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649                         role = 0xffff;
1650                         rdev->desc_nr = -1;
1651                 } else
1652                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653                 switch(role) {
1654                 case 0xffff: /* spare */
1655                         break;
1656                 case 0xfffe: /* faulty */
1657                         set_bit(Faulty, &rdev->flags);
1658                         break;
1659                 default:
1660                         rdev->saved_raid_disk = role;
1661                         if ((le32_to_cpu(sb->feature_map) &
1662                              MD_FEATURE_RECOVERY_OFFSET)) {
1663                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664                                 if (!(le32_to_cpu(sb->feature_map) &
1665                                       MD_FEATURE_RECOVERY_BITMAP))
1666                                         rdev->saved_raid_disk = -1;
1667                         } else
1668                                 set_bit(In_sync, &rdev->flags);
1669                         rdev->raid_disk = role;
1670                         break;
1671                 }
1672                 if (sb->devflags & WriteMostly1)
1673                         set_bit(WriteMostly, &rdev->flags);
1674                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675                         set_bit(Replacement, &rdev->flags);
1676         } else /* MULTIPATH are always insync */
1677                 set_bit(In_sync, &rdev->flags);
1678
1679         return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct mdp_superblock_1 *sb;
1685         struct md_rdev *rdev2;
1686         int max_dev, i;
1687         /* make rdev->sb match mddev and rdev data. */
1688
1689         sb = page_address(rdev->sb_page);
1690
1691         sb->feature_map = 0;
1692         sb->pad0 = 0;
1693         sb->recovery_offset = cpu_to_le64(0);
1694         memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696         sb->utime = cpu_to_le64((__u64)mddev->utime);
1697         sb->events = cpu_to_le64(mddev->events);
1698         if (mddev->in_sync)
1699                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700         else
1701                 sb->resync_offset = cpu_to_le64(0);
1702
1703         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706         sb->size = cpu_to_le64(mddev->dev_sectors);
1707         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708         sb->level = cpu_to_le32(mddev->level);
1709         sb->layout = cpu_to_le32(mddev->layout);
1710
1711         if (test_bit(WriteMostly, &rdev->flags))
1712                 sb->devflags |= WriteMostly1;
1713         else
1714                 sb->devflags &= ~WriteMostly1;
1715         sb->data_offset = cpu_to_le64(rdev->data_offset);
1716         sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721         }
1722
1723         if (rdev->raid_disk >= 0 &&
1724             !test_bit(In_sync, &rdev->flags)) {
1725                 sb->feature_map |=
1726                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727                 sb->recovery_offset =
1728                         cpu_to_le64(rdev->recovery_offset);
1729                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730                         sb->feature_map |=
1731                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732         }
1733         if (test_bit(Replacement, &rdev->flags))
1734                 sb->feature_map |=
1735                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737         if (mddev->reshape_position != MaxSector) {
1738                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742                 sb->new_level = cpu_to_le32(mddev->new_level);
1743                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744                 if (mddev->delta_disks == 0 &&
1745                     mddev->reshape_backwards)
1746                         sb->feature_map
1747                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748                 if (rdev->new_data_offset != rdev->data_offset) {
1749                         sb->feature_map
1750                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752                                                              - rdev->data_offset));
1753                 }
1754         }
1755
1756         if (rdev->badblocks.count == 0)
1757                 /* Nothing to do for bad blocks*/ ;
1758         else if (sb->bblog_offset == 0)
1759                 /* Cannot record bad blocks on this device */
1760                 md_error(mddev, rdev);
1761         else {
1762                 struct badblocks *bb = &rdev->badblocks;
1763                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764                 u64 *p = bb->page;
1765                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766                 if (bb->changed) {
1767                         unsigned seq;
1768
1769 retry:
1770                         seq = read_seqbegin(&bb->lock);
1771
1772                         memset(bbp, 0xff, PAGE_SIZE);
1773
1774                         for (i = 0 ; i < bb->count ; i++) {
1775                                 u64 internal_bb = p[i];
1776                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777                                                 | BB_LEN(internal_bb));
1778                                 bbp[i] = cpu_to_le64(store_bb);
1779                         }
1780                         bb->changed = 0;
1781                         if (read_seqretry(&bb->lock, seq))
1782                                 goto retry;
1783
1784                         bb->sector = (rdev->sb_start +
1785                                       (int)le32_to_cpu(sb->bblog_offset));
1786                         bb->size = le16_to_cpu(sb->bblog_size);
1787                 }
1788         }
1789
1790         max_dev = 0;
1791         rdev_for_each(rdev2, mddev)
1792                 if (rdev2->desc_nr+1 > max_dev)
1793                         max_dev = rdev2->desc_nr+1;
1794
1795         if (max_dev > le32_to_cpu(sb->max_dev)) {
1796                 int bmask;
1797                 sb->max_dev = cpu_to_le32(max_dev);
1798                 rdev->sb_size = max_dev * 2 + 256;
1799                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800                 if (rdev->sb_size & bmask)
1801                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802         } else
1803                 max_dev = le32_to_cpu(sb->max_dev);
1804
1805         for (i=0; i<max_dev;i++)
1806                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808         rdev_for_each(rdev2, mddev) {
1809                 i = rdev2->desc_nr;
1810                 if (test_bit(Faulty, &rdev2->flags))
1811                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812                 else if (test_bit(In_sync, &rdev2->flags))
1813                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814                 else if (rdev2->raid_disk >= 0)
1815                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816                 else
1817                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1818         }
1819
1820         sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826         struct mdp_superblock_1 *sb;
1827         sector_t max_sectors;
1828         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829                 return 0; /* component must fit device */
1830         if (rdev->data_offset != rdev->new_data_offset)
1831                 return 0; /* too confusing */
1832         if (rdev->sb_start < rdev->data_offset) {
1833                 /* minor versions 1 and 2; superblock before data */
1834                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835                 max_sectors -= rdev->data_offset;
1836                 if (!num_sectors || num_sectors > max_sectors)
1837                         num_sectors = max_sectors;
1838         } else if (rdev->mddev->bitmap_info.offset) {
1839                 /* minor version 0 with bitmap we can't move */
1840                 return 0;
1841         } else {
1842                 /* minor version 0; superblock after data */
1843                 sector_t sb_start;
1844                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845                 sb_start &= ~(sector_t)(4*2 - 1);
1846                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847                 if (!num_sectors || num_sectors > max_sectors)
1848                         num_sectors = max_sectors;
1849                 rdev->sb_start = sb_start;
1850         }
1851         sb = page_address(rdev->sb_page);
1852         sb->data_size = cpu_to_le64(num_sectors);
1853         sb->super_offset = rdev->sb_start;
1854         sb->sb_csum = calc_sb_1_csum(sb);
1855         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856                        rdev->sb_page);
1857         md_super_wait(rdev->mddev);
1858         return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864                          unsigned long long new_offset)
1865 {
1866         /* All necessary checks on new >= old have been done */
1867         struct bitmap *bitmap;
1868         if (new_offset >= rdev->data_offset)
1869                 return 1;
1870
1871         /* with 1.0 metadata, there is no metadata to tread on
1872          * so we can always move back */
1873         if (rdev->mddev->minor_version == 0)
1874                 return 1;
1875
1876         /* otherwise we must be sure not to step on
1877          * any metadata, so stay:
1878          * 36K beyond start of superblock
1879          * beyond end of badblocks
1880          * beyond write-intent bitmap
1881          */
1882         if (rdev->sb_start + (32+4)*2 > new_offset)
1883                 return 0;
1884         bitmap = rdev->mddev->bitmap;
1885         if (bitmap && !rdev->mddev->bitmap_info.file &&
1886             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888                 return 0;
1889         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890                 return 0;
1891
1892         return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896         [0] = {
1897                 .name   = "0.90.0",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_90_load,
1900                 .validate_super     = super_90_validate,
1901                 .sync_super         = super_90_sync,
1902                 .rdev_size_change   = super_90_rdev_size_change,
1903                 .allow_new_offset   = super_90_allow_new_offset,
1904         },
1905         [1] = {
1906                 .name   = "md-1",
1907                 .owner  = THIS_MODULE,
1908                 .load_super         = super_1_load,
1909                 .validate_super     = super_1_validate,
1910                 .sync_super         = super_1_sync,
1911                 .rdev_size_change   = super_1_rdev_size_change,
1912                 .allow_new_offset   = super_1_allow_new_offset,
1913         },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918         if (mddev->sync_super) {
1919                 mddev->sync_super(mddev, rdev);
1920                 return;
1921         }
1922
1923         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925         super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930         struct md_rdev *rdev, *rdev2;
1931
1932         rcu_read_lock();
1933         rdev_for_each_rcu(rdev, mddev1)
1934                 rdev_for_each_rcu(rdev2, mddev2)
1935                         if (rdev->bdev->bd_contains ==
1936                             rdev2->bdev->bd_contains) {
1937                                 rcu_read_unlock();
1938                                 return 1;
1939                         }
1940         rcu_read_unlock();
1941         return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947  * Try to register data integrity profile for an mddev
1948  *
1949  * This is called when an array is started and after a disk has been kicked
1950  * from the array. It only succeeds if all working and active component devices
1951  * are integrity capable with matching profiles.
1952  */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955         struct md_rdev *rdev, *reference = NULL;
1956
1957         if (list_empty(&mddev->disks))
1958                 return 0; /* nothing to do */
1959         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960                 return 0; /* shouldn't register, or already is */
1961         rdev_for_each(rdev, mddev) {
1962                 /* skip spares and non-functional disks */
1963                 if (test_bit(Faulty, &rdev->flags))
1964                         continue;
1965                 if (rdev->raid_disk < 0)
1966                         continue;
1967                 if (!reference) {
1968                         /* Use the first rdev as the reference */
1969                         reference = rdev;
1970                         continue;
1971                 }
1972                 /* does this rdev's profile match the reference profile? */
1973                 if (blk_integrity_compare(reference->bdev->bd_disk,
1974                                 rdev->bdev->bd_disk) < 0)
1975                         return -EINVAL;
1976         }
1977         if (!reference || !bdev_get_integrity(reference->bdev))
1978                 return 0;
1979         /*
1980          * All component devices are integrity capable and have matching
1981          * profiles, register the common profile for the md device.
1982          */
1983         if (blk_integrity_register(mddev->gendisk,
1984                         bdev_get_integrity(reference->bdev)) != 0) {
1985                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986                         mdname(mddev));
1987                 return -EINVAL;
1988         }
1989         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992                        mdname(mddev));
1993                 return -EINVAL;
1994         }
1995         return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002         struct blk_integrity *bi_rdev;
2003         struct blk_integrity *bi_mddev;
2004
2005         if (!mddev->gendisk)
2006                 return;
2007
2008         bi_rdev = bdev_get_integrity(rdev->bdev);
2009         bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011         if (!bi_mddev) /* nothing to do */
2012                 return;
2013         if (rdev->raid_disk < 0) /* skip spares */
2014                 return;
2015         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016                                              rdev->bdev->bd_disk) >= 0)
2017                 return;
2018         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019         blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025         char b[BDEVNAME_SIZE];
2026         struct kobject *ko;
2027         char *s;
2028         int err;
2029
2030         /* prevent duplicates */
2031         if (find_rdev(mddev, rdev->bdev->bd_dev))
2032                 return -EEXIST;
2033
2034         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2035         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2036                         rdev->sectors < mddev->dev_sectors)) {
2037                 if (mddev->pers) {
2038                         /* Cannot change size, so fail
2039                          * If mddev->level <= 0, then we don't care
2040                          * about aligning sizes (e.g. linear)
2041                          */
2042                         if (mddev->level > 0)
2043                                 return -ENOSPC;
2044                 } else
2045                         mddev->dev_sectors = rdev->sectors;
2046         }
2047
2048         /* Verify rdev->desc_nr is unique.
2049          * If it is -1, assign a free number, else
2050          * check number is not in use
2051          */
2052         rcu_read_lock();
2053         if (rdev->desc_nr < 0) {
2054                 int choice = 0;
2055                 if (mddev->pers)
2056                         choice = mddev->raid_disks;
2057                 while (md_find_rdev_nr_rcu(mddev, choice))
2058                         choice++;
2059                 rdev->desc_nr = choice;
2060         } else {
2061                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2062                         rcu_read_unlock();
2063                         return -EBUSY;
2064                 }
2065         }
2066         rcu_read_unlock();
2067         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2068                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2069                        mdname(mddev), mddev->max_disks);
2070                 return -EBUSY;
2071         }
2072         bdevname(rdev->bdev,b);
2073         while ( (s=strchr(b, '/')) != NULL)
2074                 *s = '!';
2075
2076         rdev->mddev = mddev;
2077         printk(KERN_INFO "md: bind<%s>\n", b);
2078
2079         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2080                 goto fail;
2081
2082         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2083         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2084                 /* failure here is OK */;
2085         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2086
2087         list_add_rcu(&rdev->same_set, &mddev->disks);
2088         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2089
2090         /* May as well allow recovery to be retried once */
2091         mddev->recovery_disabled++;
2092
2093         return 0;
2094
2095  fail:
2096         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2097                b, mdname(mddev));
2098         return err;
2099 }
2100
2101 static void md_delayed_delete(struct work_struct *ws)
2102 {
2103         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2104         kobject_del(&rdev->kobj);
2105         kobject_put(&rdev->kobj);
2106 }
2107
2108 static void unbind_rdev_from_array(struct md_rdev *rdev)
2109 {
2110         char b[BDEVNAME_SIZE];
2111
2112         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2113         list_del_rcu(&rdev->same_set);
2114         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2115         rdev->mddev = NULL;
2116         sysfs_remove_link(&rdev->kobj, "block");
2117         sysfs_put(rdev->sysfs_state);
2118         rdev->sysfs_state = NULL;
2119         rdev->badblocks.count = 0;
2120         /* We need to delay this, otherwise we can deadlock when
2121          * writing to 'remove' to "dev/state".  We also need
2122          * to delay it due to rcu usage.
2123          */
2124         synchronize_rcu();
2125         INIT_WORK(&rdev->del_work, md_delayed_delete);
2126         kobject_get(&rdev->kobj);
2127         queue_work(md_misc_wq, &rdev->del_work);
2128 }
2129
2130 /*
2131  * prevent the device from being mounted, repartitioned or
2132  * otherwise reused by a RAID array (or any other kernel
2133  * subsystem), by bd_claiming the device.
2134  */
2135 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2136 {
2137         int err = 0;
2138         struct block_device *bdev;
2139         char b[BDEVNAME_SIZE];
2140
2141         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2142                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2143         if (IS_ERR(bdev)) {
2144                 printk(KERN_ERR "md: could not open %s.\n",
2145                         __bdevname(dev, b));
2146                 return PTR_ERR(bdev);
2147         }
2148         rdev->bdev = bdev;
2149         return err;
2150 }
2151
2152 static void unlock_rdev(struct md_rdev *rdev)
2153 {
2154         struct block_device *bdev = rdev->bdev;
2155         rdev->bdev = NULL;
2156         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2157 }
2158
2159 void md_autodetect_dev(dev_t dev);
2160
2161 static void export_rdev(struct md_rdev *rdev)
2162 {
2163         char b[BDEVNAME_SIZE];
2164
2165         printk(KERN_INFO "md: export_rdev(%s)\n",
2166                 bdevname(rdev->bdev,b));
2167         md_rdev_clear(rdev);
2168 #ifndef MODULE
2169         if (test_bit(AutoDetected, &rdev->flags))
2170                 md_autodetect_dev(rdev->bdev->bd_dev);
2171 #endif
2172         unlock_rdev(rdev);
2173         kobject_put(&rdev->kobj);
2174 }
2175
2176 void md_kick_rdev_from_array(struct md_rdev *rdev)
2177 {
2178         unbind_rdev_from_array(rdev);
2179         export_rdev(rdev);
2180 }
2181 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2182
2183 static void export_array(struct mddev *mddev)
2184 {
2185         struct md_rdev *rdev;
2186
2187         while (!list_empty(&mddev->disks)) {
2188                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2189                                         same_set);
2190                 md_kick_rdev_from_array(rdev);
2191         }
2192         mddev->raid_disks = 0;
2193         mddev->major_version = 0;
2194 }
2195
2196 static void sync_sbs(struct mddev *mddev, int nospares)
2197 {
2198         /* Update each superblock (in-memory image), but
2199          * if we are allowed to, skip spares which already
2200          * have the right event counter, or have one earlier
2201          * (which would mean they aren't being marked as dirty
2202          * with the rest of the array)
2203          */
2204         struct md_rdev *rdev;
2205         rdev_for_each(rdev, mddev) {
2206                 if (rdev->sb_events == mddev->events ||
2207                     (nospares &&
2208                      rdev->raid_disk < 0 &&
2209                      rdev->sb_events+1 == mddev->events)) {
2210                         /* Don't update this superblock */
2211                         rdev->sb_loaded = 2;
2212                 } else {
2213                         sync_super(mddev, rdev);
2214                         rdev->sb_loaded = 1;
2215                 }
2216         }
2217 }
2218
2219 void md_update_sb(struct mddev *mddev, int force_change)
2220 {
2221         struct md_rdev *rdev;
2222         int sync_req;
2223         int nospares = 0;
2224         int any_badblocks_changed = 0;
2225
2226         if (mddev->ro) {
2227                 if (force_change)
2228                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2229                 return;
2230         }
2231 repeat:
2232         /* First make sure individual recovery_offsets are correct */
2233         rdev_for_each(rdev, mddev) {
2234                 if (rdev->raid_disk >= 0 &&
2235                     mddev->delta_disks >= 0 &&
2236                     !test_bit(In_sync, &rdev->flags) &&
2237                     mddev->curr_resync_completed > rdev->recovery_offset)
2238                                 rdev->recovery_offset = mddev->curr_resync_completed;
2239
2240         }
2241         if (!mddev->persistent) {
2242                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2243                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2244                 if (!mddev->external) {
2245                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2246                         rdev_for_each(rdev, mddev) {
2247                                 if (rdev->badblocks.changed) {
2248                                         rdev->badblocks.changed = 0;
2249                                         md_ack_all_badblocks(&rdev->badblocks);
2250                                         md_error(mddev, rdev);
2251                                 }
2252                                 clear_bit(Blocked, &rdev->flags);
2253                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2254                                 wake_up(&rdev->blocked_wait);
2255                         }
2256                 }
2257                 wake_up(&mddev->sb_wait);
2258                 return;
2259         }
2260
2261         spin_lock(&mddev->lock);
2262
2263         mddev->utime = get_seconds();
2264
2265         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2266                 force_change = 1;
2267         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2268                 /* just a clean<-> dirty transition, possibly leave spares alone,
2269                  * though if events isn't the right even/odd, we will have to do
2270                  * spares after all
2271                  */
2272                 nospares = 1;
2273         if (force_change)
2274                 nospares = 0;
2275         if (mddev->degraded)
2276                 /* If the array is degraded, then skipping spares is both
2277                  * dangerous and fairly pointless.
2278                  * Dangerous because a device that was removed from the array
2279                  * might have a event_count that still looks up-to-date,
2280                  * so it can be re-added without a resync.
2281                  * Pointless because if there are any spares to skip,
2282                  * then a recovery will happen and soon that array won't
2283                  * be degraded any more and the spare can go back to sleep then.
2284                  */
2285                 nospares = 0;
2286
2287         sync_req = mddev->in_sync;
2288
2289         /* If this is just a dirty<->clean transition, and the array is clean
2290          * and 'events' is odd, we can roll back to the previous clean state */
2291         if (nospares
2292             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2293             && mddev->can_decrease_events
2294             && mddev->events != 1) {
2295                 mddev->events--;
2296                 mddev->can_decrease_events = 0;
2297         } else {
2298                 /* otherwise we have to go forward and ... */
2299                 mddev->events ++;
2300                 mddev->can_decrease_events = nospares;
2301         }
2302
2303         /*
2304          * This 64-bit counter should never wrap.
2305          * Either we are in around ~1 trillion A.C., assuming
2306          * 1 reboot per second, or we have a bug...
2307          */
2308         WARN_ON(mddev->events == 0);
2309
2310         rdev_for_each(rdev, mddev) {
2311                 if (rdev->badblocks.changed)
2312                         any_badblocks_changed++;
2313                 if (test_bit(Faulty, &rdev->flags))
2314                         set_bit(FaultRecorded, &rdev->flags);
2315         }
2316
2317         sync_sbs(mddev, nospares);
2318         spin_unlock(&mddev->lock);
2319
2320         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2321                  mdname(mddev), mddev->in_sync);
2322
2323         bitmap_update_sb(mddev->bitmap);
2324         rdev_for_each(rdev, mddev) {
2325                 char b[BDEVNAME_SIZE];
2326
2327                 if (rdev->sb_loaded != 1)
2328                         continue; /* no noise on spare devices */
2329
2330                 if (!test_bit(Faulty, &rdev->flags)) {
2331                         md_super_write(mddev,rdev,
2332                                        rdev->sb_start, rdev->sb_size,
2333                                        rdev->sb_page);
2334                         pr_debug("md: (write) %s's sb offset: %llu\n",
2335                                  bdevname(rdev->bdev, b),
2336                                  (unsigned long long)rdev->sb_start);
2337                         rdev->sb_events = mddev->events;
2338                         if (rdev->badblocks.size) {
2339                                 md_super_write(mddev, rdev,
2340                                                rdev->badblocks.sector,
2341                                                rdev->badblocks.size << 9,
2342                                                rdev->bb_page);
2343                                 rdev->badblocks.size = 0;
2344                         }
2345
2346                 } else
2347                         pr_debug("md: %s (skipping faulty)\n",
2348                                  bdevname(rdev->bdev, b));
2349
2350                 if (mddev->level == LEVEL_MULTIPATH)
2351                         /* only need to write one superblock... */
2352                         break;
2353         }
2354         md_super_wait(mddev);
2355         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2356
2357         spin_lock(&mddev->lock);
2358         if (mddev->in_sync != sync_req ||
2359             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2360                 /* have to write it out again */
2361                 spin_unlock(&mddev->lock);
2362                 goto repeat;
2363         }
2364         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2365         spin_unlock(&mddev->lock);
2366         wake_up(&mddev->sb_wait);
2367         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2368                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2369
2370         rdev_for_each(rdev, mddev) {
2371                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2372                         clear_bit(Blocked, &rdev->flags);
2373
2374                 if (any_badblocks_changed)
2375                         md_ack_all_badblocks(&rdev->badblocks);
2376                 clear_bit(BlockedBadBlocks, &rdev->flags);
2377                 wake_up(&rdev->blocked_wait);
2378         }
2379 }
2380 EXPORT_SYMBOL(md_update_sb);
2381
2382 static int add_bound_rdev(struct md_rdev *rdev)
2383 {
2384         struct mddev *mddev = rdev->mddev;
2385         int err = 0;
2386
2387         if (!mddev->pers->hot_remove_disk) {
2388                 /* If there is hot_add_disk but no hot_remove_disk
2389                  * then added disks for geometry changes,
2390                  * and should be added immediately.
2391                  */
2392                 super_types[mddev->major_version].
2393                         validate_super(mddev, rdev);
2394                 err = mddev->pers->hot_add_disk(mddev, rdev);
2395                 if (err) {
2396                         unbind_rdev_from_array(rdev);
2397                         export_rdev(rdev);
2398                         return err;
2399                 }
2400         }
2401         sysfs_notify_dirent_safe(rdev->sysfs_state);
2402
2403         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2404         if (mddev->degraded)
2405                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2406         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2407         md_new_event(mddev);
2408         md_wakeup_thread(mddev->thread);
2409         return 0;
2410 }
2411
2412 /* words written to sysfs files may, or may not, be \n terminated.
2413  * We want to accept with case. For this we use cmd_match.
2414  */
2415 static int cmd_match(const char *cmd, const char *str)
2416 {
2417         /* See if cmd, written into a sysfs file, matches
2418          * str.  They must either be the same, or cmd can
2419          * have a trailing newline
2420          */
2421         while (*cmd && *str && *cmd == *str) {
2422                 cmd++;
2423                 str++;
2424         }
2425         if (*cmd == '\n')
2426                 cmd++;
2427         if (*str || *cmd)
2428                 return 0;
2429         return 1;
2430 }
2431
2432 struct rdev_sysfs_entry {
2433         struct attribute attr;
2434         ssize_t (*show)(struct md_rdev *, char *);
2435         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2436 };
2437
2438 static ssize_t
2439 state_show(struct md_rdev *rdev, char *page)
2440 {
2441         char *sep = "";
2442         size_t len = 0;
2443         unsigned long flags = ACCESS_ONCE(rdev->flags);
2444
2445         if (test_bit(Faulty, &flags) ||
2446             rdev->badblocks.unacked_exist) {
2447                 len+= sprintf(page+len, "%sfaulty",sep);
2448                 sep = ",";
2449         }
2450         if (test_bit(In_sync, &flags)) {
2451                 len += sprintf(page+len, "%sin_sync",sep);
2452                 sep = ",";
2453         }
2454         if (test_bit(WriteMostly, &flags)) {
2455                 len += sprintf(page+len, "%swrite_mostly",sep);
2456                 sep = ",";
2457         }
2458         if (test_bit(Blocked, &flags) ||
2459             (rdev->badblocks.unacked_exist
2460              && !test_bit(Faulty, &flags))) {
2461                 len += sprintf(page+len, "%sblocked", sep);
2462                 sep = ",";
2463         }
2464         if (!test_bit(Faulty, &flags) &&
2465             !test_bit(In_sync, &flags)) {
2466                 len += sprintf(page+len, "%sspare", sep);
2467                 sep = ",";
2468         }
2469         if (test_bit(WriteErrorSeen, &flags)) {
2470                 len += sprintf(page+len, "%swrite_error", sep);
2471                 sep = ",";
2472         }
2473         if (test_bit(WantReplacement, &flags)) {
2474                 len += sprintf(page+len, "%swant_replacement", sep);
2475                 sep = ",";
2476         }
2477         if (test_bit(Replacement, &flags)) {
2478                 len += sprintf(page+len, "%sreplacement", sep);
2479                 sep = ",";
2480         }
2481
2482         return len+sprintf(page+len, "\n");
2483 }
2484
2485 static ssize_t
2486 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2487 {
2488         /* can write
2489          *  faulty  - simulates an error
2490          *  remove  - disconnects the device
2491          *  writemostly - sets write_mostly
2492          *  -writemostly - clears write_mostly
2493          *  blocked - sets the Blocked flags
2494          *  -blocked - clears the Blocked and possibly simulates an error
2495          *  insync - sets Insync providing device isn't active
2496          *  -insync - clear Insync for a device with a slot assigned,
2497          *            so that it gets rebuilt based on bitmap
2498          *  write_error - sets WriteErrorSeen
2499          *  -write_error - clears WriteErrorSeen
2500          */
2501         int err = -EINVAL;
2502         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2503                 md_error(rdev->mddev, rdev);
2504                 if (test_bit(Faulty, &rdev->flags))
2505                         err = 0;
2506                 else
2507                         err = -EBUSY;
2508         } else if (cmd_match(buf, "remove")) {
2509                 if (rdev->raid_disk >= 0)
2510                         err = -EBUSY;
2511                 else {
2512                         struct mddev *mddev = rdev->mddev;
2513                         if (mddev_is_clustered(mddev))
2514                                 md_cluster_ops->remove_disk(mddev, rdev);
2515                         md_kick_rdev_from_array(rdev);
2516                         if (mddev_is_clustered(mddev))
2517                                 md_cluster_ops->metadata_update_start(mddev);
2518                         if (mddev->pers)
2519                                 md_update_sb(mddev, 1);
2520                         md_new_event(mddev);
2521                         if (mddev_is_clustered(mddev))
2522                                 md_cluster_ops->metadata_update_finish(mddev);
2523                         err = 0;
2524                 }
2525         } else if (cmd_match(buf, "writemostly")) {
2526                 set_bit(WriteMostly, &rdev->flags);
2527                 err = 0;
2528         } else if (cmd_match(buf, "-writemostly")) {
2529                 clear_bit(WriteMostly, &rdev->flags);
2530                 err = 0;
2531         } else if (cmd_match(buf, "blocked")) {
2532                 set_bit(Blocked, &rdev->flags);
2533                 err = 0;
2534         } else if (cmd_match(buf, "-blocked")) {
2535                 if (!test_bit(Faulty, &rdev->flags) &&
2536                     rdev->badblocks.unacked_exist) {
2537                         /* metadata handler doesn't understand badblocks,
2538                          * so we need to fail the device
2539                          */
2540                         md_error(rdev->mddev, rdev);
2541                 }
2542                 clear_bit(Blocked, &rdev->flags);
2543                 clear_bit(BlockedBadBlocks, &rdev->flags);
2544                 wake_up(&rdev->blocked_wait);
2545                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2546                 md_wakeup_thread(rdev->mddev->thread);
2547
2548                 err = 0;
2549         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2550                 set_bit(In_sync, &rdev->flags);
2551                 err = 0;
2552         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2553                 if (rdev->mddev->pers == NULL) {
2554                         clear_bit(In_sync, &rdev->flags);
2555                         rdev->saved_raid_disk = rdev->raid_disk;
2556                         rdev->raid_disk = -1;
2557                         err = 0;
2558                 }
2559         } else if (cmd_match(buf, "write_error")) {
2560                 set_bit(WriteErrorSeen, &rdev->flags);
2561                 err = 0;
2562         } else if (cmd_match(buf, "-write_error")) {
2563                 clear_bit(WriteErrorSeen, &rdev->flags);
2564                 err = 0;
2565         } else if (cmd_match(buf, "want_replacement")) {
2566                 /* Any non-spare device that is not a replacement can
2567                  * become want_replacement at any time, but we then need to
2568                  * check if recovery is needed.
2569                  */
2570                 if (rdev->raid_disk >= 0 &&
2571                     !test_bit(Replacement, &rdev->flags))
2572                         set_bit(WantReplacement, &rdev->flags);
2573                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2574                 md_wakeup_thread(rdev->mddev->thread);
2575                 err = 0;
2576         } else if (cmd_match(buf, "-want_replacement")) {
2577                 /* Clearing 'want_replacement' is always allowed.
2578                  * Once replacements starts it is too late though.
2579                  */
2580                 err = 0;
2581                 clear_bit(WantReplacement, &rdev->flags);
2582         } else if (cmd_match(buf, "replacement")) {
2583                 /* Can only set a device as a replacement when array has not
2584                  * yet been started.  Once running, replacement is automatic
2585                  * from spares, or by assigning 'slot'.
2586                  */
2587                 if (rdev->mddev->pers)
2588                         err = -EBUSY;
2589                 else {
2590                         set_bit(Replacement, &rdev->flags);
2591                         err = 0;
2592                 }
2593         } else if (cmd_match(buf, "-replacement")) {
2594                 /* Similarly, can only clear Replacement before start */
2595                 if (rdev->mddev->pers)
2596                         err = -EBUSY;
2597                 else {
2598                         clear_bit(Replacement, &rdev->flags);
2599                         err = 0;
2600                 }
2601         } else if (cmd_match(buf, "re-add")) {
2602                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2603                         /* clear_bit is performed _after_ all the devices
2604                          * have their local Faulty bit cleared. If any writes
2605                          * happen in the meantime in the local node, they
2606                          * will land in the local bitmap, which will be synced
2607                          * by this node eventually
2608                          */
2609                         if (!mddev_is_clustered(rdev->mddev) ||
2610                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2611                                 clear_bit(Faulty, &rdev->flags);
2612                                 err = add_bound_rdev(rdev);
2613                         }
2614                 } else
2615                         err = -EBUSY;
2616         }
2617         if (!err)
2618                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2619         return err ? err : len;
2620 }
2621 static struct rdev_sysfs_entry rdev_state =
2622 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2623
2624 static ssize_t
2625 errors_show(struct md_rdev *rdev, char *page)
2626 {
2627         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2628 }
2629
2630 static ssize_t
2631 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2632 {
2633         char *e;
2634         unsigned long n = simple_strtoul(buf, &e, 10);
2635         if (*buf && (*e == 0 || *e == '\n')) {
2636                 atomic_set(&rdev->corrected_errors, n);
2637                 return len;
2638         }
2639         return -EINVAL;
2640 }
2641 static struct rdev_sysfs_entry rdev_errors =
2642 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2643
2644 static ssize_t
2645 slot_show(struct md_rdev *rdev, char *page)
2646 {
2647         if (rdev->raid_disk < 0)
2648                 return sprintf(page, "none\n");
2649         else
2650                 return sprintf(page, "%d\n", rdev->raid_disk);
2651 }
2652
2653 static ssize_t
2654 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2655 {
2656         char *e;
2657         int err;
2658         int slot = simple_strtoul(buf, &e, 10);
2659         if (strncmp(buf, "none", 4)==0)
2660                 slot = -1;
2661         else if (e==buf || (*e && *e!= '\n'))
2662                 return -EINVAL;
2663         if (rdev->mddev->pers && slot == -1) {
2664                 /* Setting 'slot' on an active array requires also
2665                  * updating the 'rd%d' link, and communicating
2666                  * with the personality with ->hot_*_disk.
2667                  * For now we only support removing
2668                  * failed/spare devices.  This normally happens automatically,
2669                  * but not when the metadata is externally managed.
2670                  */
2671                 if (rdev->raid_disk == -1)
2672                         return -EEXIST;
2673                 /* personality does all needed checks */
2674                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2675                         return -EINVAL;
2676                 clear_bit(Blocked, &rdev->flags);
2677                 remove_and_add_spares(rdev->mddev, rdev);
2678                 if (rdev->raid_disk >= 0)
2679                         return -EBUSY;
2680                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2681                 md_wakeup_thread(rdev->mddev->thread);
2682         } else if (rdev->mddev->pers) {
2683                 /* Activating a spare .. or possibly reactivating
2684                  * if we ever get bitmaps working here.
2685                  */
2686
2687                 if (rdev->raid_disk != -1)
2688                         return -EBUSY;
2689
2690                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2691                         return -EBUSY;
2692
2693                 if (rdev->mddev->pers->hot_add_disk == NULL)
2694                         return -EINVAL;
2695
2696                 if (slot >= rdev->mddev->raid_disks &&
2697                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2698                         return -ENOSPC;
2699
2700                 rdev->raid_disk = slot;
2701                 if (test_bit(In_sync, &rdev->flags))
2702                         rdev->saved_raid_disk = slot;
2703                 else
2704                         rdev->saved_raid_disk = -1;
2705                 clear_bit(In_sync, &rdev->flags);
2706                 clear_bit(Bitmap_sync, &rdev->flags);
2707                 err = rdev->mddev->pers->
2708                         hot_add_disk(rdev->mddev, rdev);
2709                 if (err) {
2710                         rdev->raid_disk = -1;
2711                         return err;
2712                 } else
2713                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2714                 if (sysfs_link_rdev(rdev->mddev, rdev))
2715                         /* failure here is OK */;
2716                 /* don't wakeup anyone, leave that to userspace. */
2717         } else {
2718                 if (slot >= rdev->mddev->raid_disks &&
2719                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2720                         return -ENOSPC;
2721                 rdev->raid_disk = slot;
2722                 /* assume it is working */
2723                 clear_bit(Faulty, &rdev->flags);
2724                 clear_bit(WriteMostly, &rdev->flags);
2725                 set_bit(In_sync, &rdev->flags);
2726                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2727         }
2728         return len;
2729 }
2730
2731 static struct rdev_sysfs_entry rdev_slot =
2732 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2733
2734 static ssize_t
2735 offset_show(struct md_rdev *rdev, char *page)
2736 {
2737         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2738 }
2739
2740 static ssize_t
2741 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2742 {
2743         unsigned long long offset;
2744         if (kstrtoull(buf, 10, &offset) < 0)
2745                 return -EINVAL;
2746         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2747                 return -EBUSY;
2748         if (rdev->sectors && rdev->mddev->external)
2749                 /* Must set offset before size, so overlap checks
2750                  * can be sane */
2751                 return -EBUSY;
2752         rdev->data_offset = offset;
2753         rdev->new_data_offset = offset;
2754         return len;
2755 }
2756
2757 static struct rdev_sysfs_entry rdev_offset =
2758 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2759
2760 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2761 {
2762         return sprintf(page, "%llu\n",
2763                        (unsigned long long)rdev->new_data_offset);
2764 }
2765
2766 static ssize_t new_offset_store(struct md_rdev *rdev,
2767                                 const char *buf, size_t len)
2768 {
2769         unsigned long long new_offset;
2770         struct mddev *mddev = rdev->mddev;
2771
2772         if (kstrtoull(buf, 10, &new_offset) < 0)
2773                 return -EINVAL;
2774
2775         if (mddev->sync_thread ||
2776             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2777                 return -EBUSY;
2778         if (new_offset == rdev->data_offset)
2779                 /* reset is always permitted */
2780                 ;
2781         else if (new_offset > rdev->data_offset) {
2782                 /* must not push array size beyond rdev_sectors */
2783                 if (new_offset - rdev->data_offset
2784                     + mddev->dev_sectors > rdev->sectors)
2785                                 return -E2BIG;
2786         }
2787         /* Metadata worries about other space details. */
2788
2789         /* decreasing the offset is inconsistent with a backwards
2790          * reshape.
2791          */
2792         if (new_offset < rdev->data_offset &&
2793             mddev->reshape_backwards)
2794                 return -EINVAL;
2795         /* Increasing offset is inconsistent with forwards
2796          * reshape.  reshape_direction should be set to
2797          * 'backwards' first.
2798          */
2799         if (new_offset > rdev->data_offset &&
2800             !mddev->reshape_backwards)
2801                 return -EINVAL;
2802
2803         if (mddev->pers && mddev->persistent &&
2804             !super_types[mddev->major_version]
2805             .allow_new_offset(rdev, new_offset))
2806                 return -E2BIG;
2807         rdev->new_data_offset = new_offset;
2808         if (new_offset > rdev->data_offset)
2809                 mddev->reshape_backwards = 1;
2810         else if (new_offset < rdev->data_offset)
2811                 mddev->reshape_backwards = 0;
2812
2813         return len;
2814 }
2815 static struct rdev_sysfs_entry rdev_new_offset =
2816 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2817
2818 static ssize_t
2819 rdev_size_show(struct md_rdev *rdev, char *page)
2820 {
2821         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2822 }
2823
2824 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2825 {
2826         /* check if two start/length pairs overlap */
2827         if (s1+l1 <= s2)
2828                 return 0;
2829         if (s2+l2 <= s1)
2830                 return 0;
2831         return 1;
2832 }
2833
2834 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2835 {
2836         unsigned long long blocks;
2837         sector_t new;
2838
2839         if (kstrtoull(buf, 10, &blocks) < 0)
2840                 return -EINVAL;
2841
2842         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2843                 return -EINVAL; /* sector conversion overflow */
2844
2845         new = blocks * 2;
2846         if (new != blocks * 2)
2847                 return -EINVAL; /* unsigned long long to sector_t overflow */
2848
2849         *sectors = new;
2850         return 0;
2851 }
2852
2853 static ssize_t
2854 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2855 {
2856         struct mddev *my_mddev = rdev->mddev;
2857         sector_t oldsectors = rdev->sectors;
2858         sector_t sectors;
2859
2860         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2861                 return -EINVAL;
2862         if (rdev->data_offset != rdev->new_data_offset)
2863                 return -EINVAL; /* too confusing */
2864         if (my_mddev->pers && rdev->raid_disk >= 0) {
2865                 if (my_mddev->persistent) {
2866                         sectors = super_types[my_mddev->major_version].
2867                                 rdev_size_change(rdev, sectors);
2868                         if (!sectors)
2869                                 return -EBUSY;
2870                 } else if (!sectors)
2871                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2872                                 rdev->data_offset;
2873                 if (!my_mddev->pers->resize)
2874                         /* Cannot change size for RAID0 or Linear etc */
2875                         return -EINVAL;
2876         }
2877         if (sectors < my_mddev->dev_sectors)
2878                 return -EINVAL; /* component must fit device */
2879
2880         rdev->sectors = sectors;
2881         if (sectors > oldsectors && my_mddev->external) {
2882                 /* Need to check that all other rdevs with the same
2883                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2884                  * the rdev lists safely.
2885                  * This check does not provide a hard guarantee, it
2886                  * just helps avoid dangerous mistakes.
2887                  */
2888                 struct mddev *mddev;
2889                 int overlap = 0;
2890                 struct list_head *tmp;
2891
2892                 rcu_read_lock();
2893                 for_each_mddev(mddev, tmp) {
2894                         struct md_rdev *rdev2;
2895
2896                         rdev_for_each(rdev2, mddev)
2897                                 if (rdev->bdev == rdev2->bdev &&
2898                                     rdev != rdev2 &&
2899                                     overlaps(rdev->data_offset, rdev->sectors,
2900                                              rdev2->data_offset,
2901                                              rdev2->sectors)) {
2902                                         overlap = 1;
2903                                         break;
2904                                 }
2905                         if (overlap) {
2906                                 mddev_put(mddev);
2907                                 break;
2908                         }
2909                 }
2910                 rcu_read_unlock();
2911                 if (overlap) {
2912                         /* Someone else could have slipped in a size
2913                          * change here, but doing so is just silly.
2914                          * We put oldsectors back because we *know* it is
2915                          * safe, and trust userspace not to race with
2916                          * itself
2917                          */
2918                         rdev->sectors = oldsectors;
2919                         return -EBUSY;
2920                 }
2921         }
2922         return len;
2923 }
2924
2925 static struct rdev_sysfs_entry rdev_size =
2926 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2927
2928 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2929 {
2930         unsigned long long recovery_start = rdev->recovery_offset;
2931
2932         if (test_bit(In_sync, &rdev->flags) ||
2933             recovery_start == MaxSector)
2934                 return sprintf(page, "none\n");
2935
2936         return sprintf(page, "%llu\n", recovery_start);
2937 }
2938
2939 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2940 {
2941         unsigned long long recovery_start;
2942
2943         if (cmd_match(buf, "none"))
2944                 recovery_start = MaxSector;
2945         else if (kstrtoull(buf, 10, &recovery_start))
2946                 return -EINVAL;
2947
2948         if (rdev->mddev->pers &&
2949             rdev->raid_disk >= 0)
2950                 return -EBUSY;
2951
2952         rdev->recovery_offset = recovery_start;
2953         if (recovery_start == MaxSector)
2954                 set_bit(In_sync, &rdev->flags);
2955         else
2956                 clear_bit(In_sync, &rdev->flags);
2957         return len;
2958 }
2959
2960 static struct rdev_sysfs_entry rdev_recovery_start =
2961 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2962
2963 static ssize_t
2964 badblocks_show(struct badblocks *bb, char *page, int unack);
2965 static ssize_t
2966 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2967
2968 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2969 {
2970         return badblocks_show(&rdev->badblocks, page, 0);
2971 }
2972 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2973 {
2974         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2975         /* Maybe that ack was all we needed */
2976         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2977                 wake_up(&rdev->blocked_wait);
2978         return rv;
2979 }
2980 static struct rdev_sysfs_entry rdev_bad_blocks =
2981 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2982
2983 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2984 {
2985         return badblocks_show(&rdev->badblocks, page, 1);
2986 }
2987 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2988 {
2989         return badblocks_store(&rdev->badblocks, page, len, 1);
2990 }
2991 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2992 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2993
2994 static struct attribute *rdev_default_attrs[] = {
2995         &rdev_state.attr,
2996         &rdev_errors.attr,
2997         &rdev_slot.attr,
2998         &rdev_offset.attr,
2999         &rdev_new_offset.attr,
3000         &rdev_size.attr,
3001         &rdev_recovery_start.attr,
3002         &rdev_bad_blocks.attr,
3003         &rdev_unack_bad_blocks.attr,
3004         NULL,
3005 };
3006 static ssize_t
3007 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3008 {
3009         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3010         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3011
3012         if (!entry->show)
3013                 return -EIO;
3014         if (!rdev->mddev)
3015                 return -EBUSY;
3016         return entry->show(rdev, page);
3017 }
3018
3019 static ssize_t
3020 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3021               const char *page, size_t length)
3022 {
3023         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3024         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3025         ssize_t rv;
3026         struct mddev *mddev = rdev->mddev;
3027
3028         if (!entry->store)
3029                 return -EIO;
3030         if (!capable(CAP_SYS_ADMIN))
3031                 return -EACCES;
3032         rv = mddev ? mddev_lock(mddev): -EBUSY;
3033         if (!rv) {
3034                 if (rdev->mddev == NULL)
3035                         rv = -EBUSY;
3036                 else
3037                         rv = entry->store(rdev, page, length);
3038                 mddev_unlock(mddev);
3039         }
3040         return rv;
3041 }
3042
3043 static void rdev_free(struct kobject *ko)
3044 {
3045         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3046         kfree(rdev);
3047 }
3048 static const struct sysfs_ops rdev_sysfs_ops = {
3049         .show           = rdev_attr_show,
3050         .store          = rdev_attr_store,
3051 };
3052 static struct kobj_type rdev_ktype = {
3053         .release        = rdev_free,
3054         .sysfs_ops      = &rdev_sysfs_ops,
3055         .default_attrs  = rdev_default_attrs,
3056 };
3057
3058 int md_rdev_init(struct md_rdev *rdev)
3059 {
3060         rdev->desc_nr = -1;
3061         rdev->saved_raid_disk = -1;
3062         rdev->raid_disk = -1;
3063         rdev->flags = 0;
3064         rdev->data_offset = 0;
3065         rdev->new_data_offset = 0;
3066         rdev->sb_events = 0;
3067         rdev->last_read_error.tv_sec  = 0;
3068         rdev->last_read_error.tv_nsec = 0;
3069         rdev->sb_loaded = 0;
3070         rdev->bb_page = NULL;
3071         atomic_set(&rdev->nr_pending, 0);
3072         atomic_set(&rdev->read_errors, 0);
3073         atomic_set(&rdev->corrected_errors, 0);
3074
3075         INIT_LIST_HEAD(&rdev->same_set);
3076         init_waitqueue_head(&rdev->blocked_wait);
3077
3078         /* Add space to store bad block list.
3079          * This reserves the space even on arrays where it cannot
3080          * be used - I wonder if that matters
3081          */
3082         rdev->badblocks.count = 0;
3083         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3084         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3085         seqlock_init(&rdev->badblocks.lock);
3086         if (rdev->badblocks.page == NULL)
3087                 return -ENOMEM;
3088
3089         return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(md_rdev_init);
3092 /*
3093  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3094  *
3095  * mark the device faulty if:
3096  *
3097  *   - the device is nonexistent (zero size)
3098  *   - the device has no valid superblock
3099  *
3100  * a faulty rdev _never_ has rdev->sb set.
3101  */
3102 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3103 {
3104         char b[BDEVNAME_SIZE];
3105         int err;
3106         struct md_rdev *rdev;
3107         sector_t size;
3108
3109         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3110         if (!rdev) {
3111                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3112                 return ERR_PTR(-ENOMEM);
3113         }
3114
3115         err = md_rdev_init(rdev);
3116         if (err)
3117                 goto abort_free;
3118         err = alloc_disk_sb(rdev);
3119         if (err)
3120                 goto abort_free;
3121
3122         err = lock_rdev(rdev, newdev, super_format == -2);
3123         if (err)
3124                 goto abort_free;
3125
3126         kobject_init(&rdev->kobj, &rdev_ktype);
3127
3128         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3129         if (!size) {
3130                 printk(KERN_WARNING
3131                         "md: %s has zero or unknown size, marking faulty!\n",
3132                         bdevname(rdev->bdev,b));
3133                 err = -EINVAL;
3134                 goto abort_free;
3135         }
3136
3137         if (super_format >= 0) {
3138                 err = super_types[super_format].
3139                         load_super(rdev, NULL, super_minor);
3140                 if (err == -EINVAL) {
3141                         printk(KERN_WARNING
3142                                 "md: %s does not have a valid v%d.%d "
3143                                "superblock, not importing!\n",
3144                                 bdevname(rdev->bdev,b),
3145                                super_format, super_minor);
3146                         goto abort_free;
3147                 }
3148                 if (err < 0) {
3149                         printk(KERN_WARNING
3150                                 "md: could not read %s's sb, not importing!\n",
3151                                 bdevname(rdev->bdev,b));
3152                         goto abort_free;
3153                 }
3154         }
3155
3156         return rdev;
3157
3158 abort_free:
3159         if (rdev->bdev)
3160                 unlock_rdev(rdev);
3161         md_rdev_clear(rdev);
3162         kfree(rdev);
3163         return ERR_PTR(err);
3164 }
3165
3166 /*
3167  * Check a full RAID array for plausibility
3168  */
3169
3170 static void analyze_sbs(struct mddev *mddev)
3171 {
3172         int i;
3173         struct md_rdev *rdev, *freshest, *tmp;
3174         char b[BDEVNAME_SIZE];
3175
3176         freshest = NULL;
3177         rdev_for_each_safe(rdev, tmp, mddev)
3178                 switch (super_types[mddev->major_version].
3179                         load_super(rdev, freshest, mddev->minor_version)) {
3180                 case 1:
3181                         freshest = rdev;
3182                         break;
3183                 case 0:
3184                         break;
3185                 default:
3186                         printk( KERN_ERR \
3187                                 "md: fatal superblock inconsistency in %s"
3188                                 " -- removing from array\n",
3189                                 bdevname(rdev->bdev,b));
3190                         md_kick_rdev_from_array(rdev);
3191                 }
3192
3193         super_types[mddev->major_version].
3194                 validate_super(mddev, freshest);
3195
3196         i = 0;
3197         rdev_for_each_safe(rdev, tmp, mddev) {
3198                 if (mddev->max_disks &&
3199                     (rdev->desc_nr >= mddev->max_disks ||
3200                      i > mddev->max_disks)) {
3201                         printk(KERN_WARNING
3202                                "md: %s: %s: only %d devices permitted\n",
3203                                mdname(mddev), bdevname(rdev->bdev, b),
3204                                mddev->max_disks);
3205                         md_kick_rdev_from_array(rdev);
3206                         continue;
3207                 }
3208                 if (rdev != freshest) {
3209                         if (super_types[mddev->major_version].
3210                             validate_super(mddev, rdev)) {
3211                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3212                                         " from array!\n",
3213                                         bdevname(rdev->bdev,b));
3214                                 md_kick_rdev_from_array(rdev);
3215                                 continue;
3216                         }
3217                         /* No device should have a Candidate flag
3218                          * when reading devices
3219                          */
3220                         if (test_bit(Candidate, &rdev->flags)) {
3221                                 pr_info("md: kicking Cluster Candidate %s from array!\n",
3222                                         bdevname(rdev->bdev, b));
3223                                 md_kick_rdev_from_array(rdev);
3224                         }
3225                 }
3226                 if (mddev->level == LEVEL_MULTIPATH) {
3227                         rdev->desc_nr = i++;
3228                         rdev->raid_disk = rdev->desc_nr;
3229                         set_bit(In_sync, &rdev->flags);
3230                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3231                         rdev->raid_disk = -1;
3232                         clear_bit(In_sync, &rdev->flags);
3233                 }
3234         }
3235 }
3236
3237 /* Read a fixed-point number.
3238  * Numbers in sysfs attributes should be in "standard" units where
3239  * possible, so time should be in seconds.
3240  * However we internally use a a much smaller unit such as
3241  * milliseconds or jiffies.
3242  * This function takes a decimal number with a possible fractional
3243  * component, and produces an integer which is the result of
3244  * multiplying that number by 10^'scale'.
3245  * all without any floating-point arithmetic.
3246  */
3247 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3248 {
3249         unsigned long result = 0;
3250         long decimals = -1;
3251         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3252                 if (*cp == '.')
3253                         decimals = 0;
3254                 else if (decimals < scale) {
3255                         unsigned int value;
3256                         value = *cp - '0';
3257                         result = result * 10 + value;
3258                         if (decimals >= 0)
3259                                 decimals++;
3260                 }
3261                 cp++;
3262         }
3263         if (*cp == '\n')
3264                 cp++;
3265         if (*cp)
3266                 return -EINVAL;
3267         if (decimals < 0)
3268                 decimals = 0;
3269         while (decimals < scale) {
3270                 result *= 10;
3271                 decimals ++;
3272         }
3273         *res = result;
3274         return 0;
3275 }
3276
3277 static void md_safemode_timeout(unsigned long data);
3278
3279 static ssize_t
3280 safe_delay_show(struct mddev *mddev, char *page)
3281 {
3282         int msec = (mddev->safemode_delay*1000)/HZ;
3283         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3284 }
3285 static ssize_t
3286 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3287 {
3288         unsigned long msec;
3289
3290         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3291                 return -EINVAL;
3292         if (msec == 0)
3293                 mddev->safemode_delay = 0;
3294         else {
3295                 unsigned long old_delay = mddev->safemode_delay;
3296                 unsigned long new_delay = (msec*HZ)/1000;
3297
3298                 if (new_delay == 0)
3299                         new_delay = 1;
3300                 mddev->safemode_delay = new_delay;
3301                 if (new_delay < old_delay || old_delay == 0)
3302                         mod_timer(&mddev->safemode_timer, jiffies+1);
3303         }
3304         return len;
3305 }
3306 static struct md_sysfs_entry md_safe_delay =
3307 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3308
3309 static ssize_t
3310 level_show(struct mddev *mddev, char *page)
3311 {
3312         struct md_personality *p;
3313         int ret;
3314         spin_lock(&mddev->lock);
3315         p = mddev->pers;
3316         if (p)
3317                 ret = sprintf(page, "%s\n", p->name);
3318         else if (mddev->clevel[0])
3319                 ret = sprintf(page, "%s\n", mddev->clevel);
3320         else if (mddev->level != LEVEL_NONE)
3321                 ret = sprintf(page, "%d\n", mddev->level);
3322         else
3323                 ret = 0;
3324         spin_unlock(&mddev->lock);
3325         return ret;
3326 }
3327
3328 static ssize_t
3329 level_store(struct mddev *mddev, const char *buf, size_t len)
3330 {
3331         char clevel[16];
3332         ssize_t rv;
3333         size_t slen = len;
3334         struct md_personality *pers, *oldpers;
3335         long level;
3336         void *priv, *oldpriv;
3337         struct md_rdev *rdev;
3338
3339         if (slen == 0 || slen >= sizeof(clevel))
3340                 return -EINVAL;
3341
3342         rv = mddev_lock(mddev);
3343         if (rv)
3344                 return rv;
3345
3346         if (mddev->pers == NULL) {
3347                 strncpy(mddev->clevel, buf, slen);
3348                 if (mddev->clevel[slen-1] == '\n')
3349                         slen--;
3350                 mddev->clevel[slen] = 0;
3351                 mddev->level = LEVEL_NONE;
3352                 rv = len;
3353                 goto out_unlock;
3354         }
3355         rv = -EROFS;
3356         if (mddev->ro)
3357                 goto out_unlock;
3358
3359         /* request to change the personality.  Need to ensure:
3360          *  - array is not engaged in resync/recovery/reshape
3361          *  - old personality can be suspended
3362          *  - new personality will access other array.
3363          */
3364
3365         rv = -EBUSY;
3366         if (mddev->sync_thread ||
3367             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3368             mddev->reshape_position != MaxSector ||
3369             mddev->sysfs_active)
3370                 goto out_unlock;
3371
3372         rv = -EINVAL;
3373         if (!mddev->pers->quiesce) {
3374                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3375                        mdname(mddev), mddev->pers->name);
3376                 goto out_unlock;
3377         }
3378
3379         /* Now find the new personality */
3380         strncpy(clevel, buf, slen);
3381         if (clevel[slen-1] == '\n')
3382                 slen--;
3383         clevel[slen] = 0;
3384         if (kstrtol(clevel, 10, &level))
3385                 level = LEVEL_NONE;
3386
3387         if (request_module("md-%s", clevel) != 0)
3388                 request_module("md-level-%s", clevel);
3389         spin_lock(&pers_lock);
3390         pers = find_pers(level, clevel);
3391         if (!pers || !try_module_get(pers->owner)) {
3392                 spin_unlock(&pers_lock);
3393                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3394                 rv = -EINVAL;
3395                 goto out_unlock;
3396         }
3397         spin_unlock(&pers_lock);
3398
3399         if (pers == mddev->pers) {
3400                 /* Nothing to do! */
3401                 module_put(pers->owner);
3402                 rv = len;
3403                 goto out_unlock;
3404         }
3405         if (!pers->takeover) {
3406                 module_put(pers->owner);
3407                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3408                        mdname(mddev), clevel);
3409                 rv = -EINVAL;
3410                 goto out_unlock;
3411         }
3412
3413         rdev_for_each(rdev, mddev)
3414                 rdev->new_raid_disk = rdev->raid_disk;
3415
3416         /* ->takeover must set new_* and/or delta_disks
3417          * if it succeeds, and may set them when it fails.
3418          */
3419         priv = pers->takeover(mddev);
3420         if (IS_ERR(priv)) {
3421                 mddev->new_level = mddev->level;
3422                 mddev->new_layout = mddev->layout;
3423                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3424                 mddev->raid_disks -= mddev->delta_disks;
3425                 mddev->delta_disks = 0;
3426                 mddev->reshape_backwards = 0;
3427                 module_put(pers->owner);
3428                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3429                        mdname(mddev), clevel);
3430                 rv = PTR_ERR(priv);
3431                 goto out_unlock;
3432         }
3433
3434         /* Looks like we have a winner */
3435         mddev_suspend(mddev);
3436         mddev_detach(mddev);
3437
3438         spin_lock(&mddev->lock);
3439         oldpers = mddev->pers;
3440         oldpriv = mddev->private;
3441         mddev->pers = pers;
3442         mddev->private = priv;
3443         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3444         mddev->level = mddev->new_level;
3445         mddev->layout = mddev->new_layout;
3446         mddev->chunk_sectors = mddev->new_chunk_sectors;
3447         mddev->delta_disks = 0;
3448         mddev->reshape_backwards = 0;
3449         mddev->degraded = 0;
3450         spin_unlock(&mddev->lock);
3451
3452         if (oldpers->sync_request == NULL &&
3453             mddev->external) {
3454                 /* We are converting from a no-redundancy array
3455                  * to a redundancy array and metadata is managed
3456                  * externally so we need to be sure that writes
3457                  * won't block due to a need to transition
3458                  *      clean->dirty
3459                  * until external management is started.
3460                  */
3461                 mddev->in_sync = 0;
3462                 mddev->safemode_delay = 0;
3463                 mddev->safemode = 0;
3464         }
3465
3466         oldpers->free(mddev, oldpriv);
3467
3468         if (oldpers->sync_request == NULL &&
3469             pers->sync_request != NULL) {
3470                 /* need to add the md_redundancy_group */
3471                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3472                         printk(KERN_WARNING
3473                                "md: cannot register extra attributes for %s\n",
3474                                mdname(mddev));
3475                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3476         }
3477         if (oldpers->sync_request != NULL &&
3478             pers->sync_request == NULL) {
3479                 /* need to remove the md_redundancy_group */
3480                 if (mddev->to_remove == NULL)
3481                         mddev->to_remove = &md_redundancy_group;
3482         }
3483
3484         rdev_for_each(rdev, mddev) {
3485                 if (rdev->raid_disk < 0)
3486                         continue;
3487                 if (rdev->new_raid_disk >= mddev->raid_disks)
3488                         rdev->new_raid_disk = -1;
3489                 if (rdev->new_raid_disk == rdev->raid_disk)
3490                         continue;
3491                 sysfs_unlink_rdev(mddev, rdev);
3492         }
3493         rdev_for_each(rdev, mddev) {
3494                 if (rdev->raid_disk < 0)
3495                         continue;
3496                 if (rdev->new_raid_disk == rdev->raid_disk)
3497                         continue;
3498                 rdev->raid_disk = rdev->new_raid_disk;
3499                 if (rdev->raid_disk < 0)
3500                         clear_bit(In_sync, &rdev->flags);
3501                 else {
3502                         if (sysfs_link_rdev(mddev, rdev))
3503                                 printk(KERN_WARNING "md: cannot register rd%d"
3504                                        " for %s after level change\n",
3505                                        rdev->raid_disk, mdname(mddev));
3506                 }
3507         }
3508
3509         if (pers->sync_request == NULL) {
3510                 /* this is now an array without redundancy, so
3511                  * it must always be in_sync
3512                  */
3513                 mddev->in_sync = 1;
3514                 del_timer_sync(&mddev->safemode_timer);
3515         }
3516         blk_set_stacking_limits(&mddev->queue->limits);
3517         pers->run(mddev);
3518         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3519         mddev_resume(mddev);
3520         if (!mddev->thread)
3521                 md_update_sb(mddev, 1);
3522         sysfs_notify(&mddev->kobj, NULL, "level");
3523         md_new_event(mddev);
3524         rv = len;
3525 out_unlock:
3526         mddev_unlock(mddev);
3527         return rv;
3528 }
3529
3530 static struct md_sysfs_entry md_level =
3531 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3532
3533 static ssize_t
3534 layout_show(struct mddev *mddev, char *page)
3535 {
3536         /* just a number, not meaningful for all levels */
3537         if (mddev->reshape_position != MaxSector &&
3538             mddev->layout != mddev->new_layout)
3539                 return sprintf(page, "%d (%d)\n",
3540                                mddev->new_layout, mddev->layout);
3541         return sprintf(page, "%d\n", mddev->layout);
3542 }
3543
3544 static ssize_t
3545 layout_store(struct mddev *mddev, const char *buf, size_t len)
3546 {
3547         char *e;
3548         unsigned long n = simple_strtoul(buf, &e, 10);
3549         int err;
3550
3551         if (!*buf || (*e && *e != '\n'))
3552                 return -EINVAL;
3553         err = mddev_lock(mddev);
3554         if (err)
3555                 return err;
3556
3557         if (mddev->pers) {
3558                 if (mddev->pers->check_reshape == NULL)
3559                         err = -EBUSY;
3560                 else if (mddev->ro)
3561                         err = -EROFS;
3562                 else {
3563                         mddev->new_layout = n;
3564                         err = mddev->pers->check_reshape(mddev);
3565                         if (err)
3566                                 mddev->new_layout = mddev->layout;
3567                 }
3568         } else {
3569                 mddev->new_layout = n;
3570                 if (mddev->reshape_position == MaxSector)
3571                         mddev->layout = n;
3572         }
3573         mddev_unlock(mddev);
3574         return err ?: len;
3575 }
3576 static struct md_sysfs_entry md_layout =
3577 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3578
3579 static ssize_t
3580 raid_disks_show(struct mddev *mddev, char *page)
3581 {
3582         if (mddev->raid_disks == 0)
3583                 return 0;
3584         if (mddev->reshape_position != MaxSector &&
3585             mddev->delta_disks != 0)
3586                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3587                                mddev->raid_disks - mddev->delta_disks);
3588         return sprintf(page, "%d\n", mddev->raid_disks);
3589 }
3590
3591 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3592
3593 static ssize_t
3594 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596         char *e;
3597         int err;
3598         unsigned long n = simple_strtoul(buf, &e, 10);
3599
3600         if (!*buf || (*e && *e != '\n'))
3601                 return -EINVAL;
3602
3603         err = mddev_lock(mddev);
3604         if (err)
3605                 return err;
3606         if (mddev->pers)
3607                 err = update_raid_disks(mddev, n);
3608         else if (mddev->reshape_position != MaxSector) {
3609                 struct md_rdev *rdev;
3610                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3611
3612                 err = -EINVAL;
3613                 rdev_for_each(rdev, mddev) {
3614                         if (olddisks < n &&
3615                             rdev->data_offset < rdev->new_data_offset)
3616                                 goto out_unlock;
3617                         if (olddisks > n &&
3618                             rdev->data_offset > rdev->new_data_offset)
3619                                 goto out_unlock;
3620                 }
3621                 err = 0;
3622                 mddev->delta_disks = n - olddisks;
3623                 mddev->raid_disks = n;
3624                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3625         } else
3626                 mddev->raid_disks = n;
3627 out_unlock:
3628         mddev_unlock(mddev);
3629         return err ? err : len;
3630 }
3631 static struct md_sysfs_entry md_raid_disks =
3632 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3633
3634 static ssize_t
3635 chunk_size_show(struct mddev *mddev, char *page)
3636 {
3637         if (mddev->reshape_position != MaxSector &&
3638             mddev->chunk_sectors != mddev->new_chunk_sectors)
3639                 return sprintf(page, "%d (%d)\n",
3640                                mddev->new_chunk_sectors << 9,
3641                                mddev->chunk_sectors << 9);
3642         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3643 }
3644
3645 static ssize_t
3646 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648         int err;
3649         char *e;
3650         unsigned long n = simple_strtoul(buf, &e, 10);
3651
3652         if (!*buf || (*e && *e != '\n'))
3653                 return -EINVAL;
3654
3655         err = mddev_lock(mddev);
3656         if (err)
3657                 return err;
3658         if (mddev->pers) {
3659                 if (mddev->pers->check_reshape == NULL)
3660                         err = -EBUSY;
3661                 else if (mddev->ro)
3662                         err = -EROFS;
3663                 else {
3664                         mddev->new_chunk_sectors = n >> 9;
3665                         err = mddev->pers->check_reshape(mddev);
3666                         if (err)
3667                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3668                 }
3669         } else {
3670                 mddev->new_chunk_sectors = n >> 9;
3671                 if (mddev->reshape_position == MaxSector)
3672                         mddev->chunk_sectors = n >> 9;
3673         }
3674         mddev_unlock(mddev);
3675         return err ?: len;
3676 }
3677 static struct md_sysfs_entry md_chunk_size =
3678 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3679
3680 static ssize_t
3681 resync_start_show(struct mddev *mddev, char *page)
3682 {
3683         if (mddev->recovery_cp == MaxSector)
3684                 return sprintf(page, "none\n");
3685         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3686 }
3687
3688 static ssize_t
3689 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691         int err;
3692         char *e;
3693         unsigned long long n = simple_strtoull(buf, &e, 10);
3694
3695         err = mddev_lock(mddev);
3696         if (err)
3697                 return err;
3698         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3699                 err = -EBUSY;
3700         else if (cmd_match(buf, "none"))
3701                 n = MaxSector;
3702         else if (!*buf || (*e && *e != '\n'))
3703                 err = -EINVAL;
3704
3705         if (!err) {
3706                 mddev->recovery_cp = n;
3707                 if (mddev->pers)
3708                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3709         }
3710         mddev_unlock(mddev);
3711         return err ?: len;
3712 }
3713 static struct md_sysfs_entry md_resync_start =
3714 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3715                 resync_start_show, resync_start_store);
3716
3717 /*
3718  * The array state can be:
3719  *
3720  * clear
3721  *     No devices, no size, no level
3722  *     Equivalent to STOP_ARRAY ioctl
3723  * inactive
3724  *     May have some settings, but array is not active
3725  *        all IO results in error
3726  *     When written, doesn't tear down array, but just stops it
3727  * suspended (not supported yet)
3728  *     All IO requests will block. The array can be reconfigured.
3729  *     Writing this, if accepted, will block until array is quiescent
3730  * readonly
3731  *     no resync can happen.  no superblocks get written.
3732  *     write requests fail
3733  * read-auto
3734  *     like readonly, but behaves like 'clean' on a write request.
3735  *
3736  * clean - no pending writes, but otherwise active.
3737  *     When written to inactive array, starts without resync
3738  *     If a write request arrives then
3739  *       if metadata is known, mark 'dirty' and switch to 'active'.
3740  *       if not known, block and switch to write-pending
3741  *     If written to an active array that has pending writes, then fails.
3742  * active
3743  *     fully active: IO and resync can be happening.
3744  *     When written to inactive array, starts with resync
3745  *
3746  * write-pending
3747  *     clean, but writes are blocked waiting for 'active' to be written.
3748  *
3749  * active-idle
3750  *     like active, but no writes have been seen for a while (100msec).
3751  *
3752  */
3753 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3754                    write_pending, active_idle, bad_word};
3755 static char *array_states[] = {
3756         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3757         "write-pending", "active-idle", NULL };
3758
3759 static int match_word(const char *word, char **list)
3760 {
3761         int n;
3762         for (n=0; list[n]; n++)
3763                 if (cmd_match(word, list[n]))
3764                         break;
3765         return n;
3766 }
3767
3768 static ssize_t
3769 array_state_show(struct mddev *mddev, char *page)
3770 {
3771         enum array_state st = inactive;
3772
3773         if (mddev->pers)
3774                 switch(mddev->ro) {
3775                 case 1:
3776                         st = readonly;
3777                         break;
3778                 case 2:
3779                         st = read_auto;
3780                         break;
3781                 case 0:
3782                         if (mddev->in_sync)
3783                                 st = clean;
3784                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3785                                 st = write_pending;
3786                         else if (mddev->safemode)
3787                                 st = active_idle;
3788                         else
3789                                 st = active;
3790                 }
3791         else {
3792                 if (list_empty(&mddev->disks) &&
3793                     mddev->raid_disks == 0 &&
3794                     mddev->dev_sectors == 0)
3795                         st = clear;
3796                 else
3797                         st = inactive;
3798         }
3799         return sprintf(page, "%s\n", array_states[st]);
3800 }
3801
3802 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3803 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3804 static int do_md_run(struct mddev *mddev);
3805 static int restart_array(struct mddev *mddev);
3806
3807 static ssize_t
3808 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3809 {
3810         int err;
3811         enum array_state st = match_word(buf, array_states);
3812
3813         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3814                 /* don't take reconfig_mutex when toggling between
3815                  * clean and active
3816                  */
3817                 spin_lock(&mddev->lock);
3818                 if (st == active) {
3819                         restart_array(mddev);
3820                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821                         wake_up(&mddev->sb_wait);
3822                         err = 0;
3823                 } else /* st == clean */ {
3824                         restart_array(mddev);
3825                         if (atomic_read(&mddev->writes_pending) == 0) {
3826                                 if (mddev->in_sync == 0) {
3827                                         mddev->in_sync = 1;
3828                                         if (mddev->safemode == 1)
3829                                                 mddev->safemode = 0;
3830                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3831                                 }
3832                                 err = 0;
3833                         } else
3834                                 err = -EBUSY;
3835                 }
3836                 spin_unlock(&mddev->lock);
3837                 return err;
3838         }
3839         err = mddev_lock(mddev);
3840         if (err)
3841                 return err;
3842         err = -EINVAL;
3843         switch(st) {
3844         case bad_word:
3845                 break;
3846         case clear:
3847                 /* stopping an active array */
3848                 err = do_md_stop(mddev, 0, NULL);
3849                 break;
3850         case inactive:
3851                 /* stopping an active array */
3852                 if (mddev->pers)
3853                         err = do_md_stop(mddev, 2, NULL);
3854                 else
3855                         err = 0; /* already inactive */
3856                 break;
3857         case suspended:
3858                 break; /* not supported yet */
3859         case readonly:
3860                 if (mddev->pers)
3861                         err = md_set_readonly(mddev, NULL);
3862                 else {
3863                         mddev->ro = 1;
3864                         set_disk_ro(mddev->gendisk, 1);
3865                         err = do_md_run(mddev);
3866                 }
3867                 break;
3868         case read_auto:
3869                 if (mddev->pers) {
3870                         if (mddev->ro == 0)
3871                                 err = md_set_readonly(mddev, NULL);
3872                         else if (mddev->ro == 1)
3873                                 err = restart_array(mddev);
3874                         if (err == 0) {
3875                                 mddev->ro = 2;
3876                                 set_disk_ro(mddev->gendisk, 0);
3877                         }
3878                 } else {
3879                         mddev->ro = 2;
3880                         err = do_md_run(mddev);
3881                 }
3882                 break;
3883         case clean:
3884                 if (mddev->pers) {
3885                         restart_array(mddev);
3886                         spin_lock(&mddev->lock);
3887                         if (atomic_read(&mddev->writes_pending) == 0) {
3888                                 if (mddev->in_sync == 0) {
3889                                         mddev->in_sync = 1;
3890                                         if (mddev->safemode == 1)
3891                                                 mddev->safemode = 0;
3892                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3893                                 }
3894                                 err = 0;
3895                         } else
3896                                 err = -EBUSY;
3897                         spin_unlock(&mddev->lock);
3898                 } else
3899                         err = -EINVAL;
3900                 break;
3901         case active:
3902                 if (mddev->pers) {
3903                         restart_array(mddev);
3904                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3905                         wake_up(&mddev->sb_wait);
3906                         err = 0;
3907                 } else {
3908                         mddev->ro = 0;
3909                         set_disk_ro(mddev->gendisk, 0);
3910                         err = do_md_run(mddev);
3911                 }
3912                 break;
3913         case write_pending:
3914         case active_idle:
3915                 /* these cannot be set */
3916                 break;
3917         }
3918
3919         if (!err) {
3920                 if (mddev->hold_active == UNTIL_IOCTL)
3921                         mddev->hold_active = 0;
3922                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3923         }
3924         mddev_unlock(mddev);
3925         return err ?: len;
3926 }
3927 static struct md_sysfs_entry md_array_state =
3928 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3929
3930 static ssize_t
3931 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3932         return sprintf(page, "%d\n",
3933                        atomic_read(&mddev->max_corr_read_errors));
3934 }
3935
3936 static ssize_t
3937 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3938 {
3939         char *e;
3940         unsigned long n = simple_strtoul(buf, &e, 10);
3941
3942         if (*buf && (*e == 0 || *e == '\n')) {
3943                 atomic_set(&mddev->max_corr_read_errors, n);
3944                 return len;
3945         }
3946         return -EINVAL;
3947 }
3948
3949 static struct md_sysfs_entry max_corr_read_errors =
3950 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3951         max_corrected_read_errors_store);
3952
3953 static ssize_t
3954 null_show(struct mddev *mddev, char *page)
3955 {
3956         return -EINVAL;
3957 }
3958
3959 static ssize_t
3960 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3961 {
3962         /* buf must be %d:%d\n? giving major and minor numbers */
3963         /* The new device is added to the array.
3964          * If the array has a persistent superblock, we read the
3965          * superblock to initialise info and check validity.
3966          * Otherwise, only checking done is that in bind_rdev_to_array,
3967          * which mainly checks size.
3968          */
3969         char *e;
3970         int major = simple_strtoul(buf, &e, 10);
3971         int minor;
3972         dev_t dev;
3973         struct md_rdev *rdev;
3974         int err;
3975
3976         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3977                 return -EINVAL;
3978         minor = simple_strtoul(e+1, &e, 10);
3979         if (*e && *e != '\n')
3980                 return -EINVAL;
3981         dev = MKDEV(major, minor);
3982         if (major != MAJOR(dev) ||
3983             minor != MINOR(dev))
3984                 return -EOVERFLOW;
3985
3986         flush_workqueue(md_misc_wq);
3987
3988         err = mddev_lock(mddev);
3989         if (err)
3990                 return err;
3991         if (mddev->persistent) {
3992                 rdev = md_import_device(dev, mddev->major_version,
3993                                         mddev->minor_version);
3994                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3995                         struct md_rdev *rdev0
3996                                 = list_entry(mddev->disks.next,
3997                                              struct md_rdev, same_set);
3998                         err = super_types[mddev->major_version]
3999                                 .load_super(rdev, rdev0, mddev->minor_version);
4000                         if (err < 0)
4001                                 goto out;
4002                 }
4003         } else if (mddev->external)
4004                 rdev = md_import_device(dev, -2, -1);
4005         else
4006                 rdev = md_import_device(dev, -1, -1);
4007
4008         if (IS_ERR(rdev))
4009                 return PTR_ERR(rdev);
4010         err = bind_rdev_to_array(rdev, mddev);
4011  out:
4012         if (err)
4013                 export_rdev(rdev);
4014         mddev_unlock(mddev);
4015         return err ? err : len;
4016 }
4017
4018 static struct md_sysfs_entry md_new_device =
4019 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4020
4021 static ssize_t
4022 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4023 {
4024         char *end;
4025         unsigned long chunk, end_chunk;
4026         int err;
4027
4028         err = mddev_lock(mddev);
4029         if (err)
4030                 return err;
4031         if (!mddev->bitmap)
4032                 goto out;
4033         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4034         while (*buf) {
4035                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4036                 if (buf == end) break;
4037                 if (*end == '-') { /* range */
4038                         buf = end + 1;
4039                         end_chunk = simple_strtoul(buf, &end, 0);
4040                         if (buf == end) break;
4041                 }
4042                 if (*end && !isspace(*end)) break;
4043                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4044                 buf = skip_spaces(end);
4045         }
4046         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4047 out:
4048         mddev_unlock(mddev);
4049         return len;
4050 }
4051
4052 static struct md_sysfs_entry md_bitmap =
4053 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4054
4055 static ssize_t
4056 size_show(struct mddev *mddev, char *page)
4057 {
4058         return sprintf(page, "%llu\n",
4059                 (unsigned long long)mddev->dev_sectors / 2);
4060 }
4061
4062 static int update_size(struct mddev *mddev, sector_t num_sectors);
4063
4064 static ssize_t
4065 size_store(struct mddev *mddev, const char *buf, size_t len)
4066 {
4067         /* If array is inactive, we can reduce the component size, but
4068          * not increase it (except from 0).
4069          * If array is active, we can try an on-line resize
4070          */
4071         sector_t sectors;
4072         int err = strict_blocks_to_sectors(buf, &sectors);
4073
4074         if (err < 0)
4075                 return err;
4076         err = mddev_lock(mddev);
4077         if (err)
4078                 return err;
4079         if (mddev->pers) {
4080                 if (mddev_is_clustered(mddev))
4081                         md_cluster_ops->metadata_update_start(mddev);
4082                 err = update_size(mddev, sectors);
4083                 md_update_sb(mddev, 1);
4084                 if (mddev_is_clustered(mddev))
4085                         md_cluster_ops->metadata_update_finish(mddev);
4086         } else {
4087                 if (mddev->dev_sectors == 0 ||
4088                     mddev->dev_sectors > sectors)
4089                         mddev->dev_sectors = sectors;
4090                 else
4091                         err = -ENOSPC;
4092         }
4093         mddev_unlock(mddev);
4094         return err ? err : len;
4095 }
4096
4097 static struct md_sysfs_entry md_size =
4098 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4099
4100 /* Metadata version.
4101  * This is one of
4102  *   'none' for arrays with no metadata (good luck...)
4103  *   'external' for arrays with externally managed metadata,
4104  * or N.M for internally known formats
4105  */
4106 static ssize_t
4107 metadata_show(struct mddev *mddev, char *page)
4108 {
4109         if (mddev->persistent)
4110                 return sprintf(page, "%d.%d\n",
4111                                mddev->major_version, mddev->minor_version);
4112         else if (mddev->external)
4113                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4114         else
4115                 return sprintf(page, "none\n");
4116 }
4117
4118 static ssize_t
4119 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4120 {
4121         int major, minor;
4122         char *e;
4123         int err;
4124         /* Changing the details of 'external' metadata is
4125          * always permitted.  Otherwise there must be
4126          * no devices attached to the array.
4127          */
4128
4129         err = mddev_lock(mddev);
4130         if (err)
4131                 return err;
4132         err = -EBUSY;
4133         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4134                 ;
4135         else if (!list_empty(&mddev->disks))
4136                 goto out_unlock;
4137
4138         err = 0;
4139         if (cmd_match(buf, "none")) {
4140                 mddev->persistent = 0;
4141                 mddev->external = 0;
4142                 mddev->major_version = 0;
4143                 mddev->minor_version = 90;
4144                 goto out_unlock;
4145         }
4146         if (strncmp(buf, "external:", 9) == 0) {
4147                 size_t namelen = len-9;
4148                 if (namelen >= sizeof(mddev->metadata_type))
4149                         namelen = sizeof(mddev->metadata_type)-1;
4150                 strncpy(mddev->metadata_type, buf+9, namelen);
4151                 mddev->metadata_type[namelen] = 0;
4152                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4153                         mddev->metadata_type[--namelen] = 0;
4154                 mddev->persistent = 0;
4155                 mddev->external = 1;
4156                 mddev->major_version = 0;
4157                 mddev->minor_version = 90;
4158                 goto out_unlock;
4159         }
4160         major = simple_strtoul(buf, &e, 10);
4161         err = -EINVAL;
4162         if (e==buf || *e != '.')
4163                 goto out_unlock;
4164         buf = e+1;
4165         minor = simple_strtoul(buf, &e, 10);
4166         if (e==buf || (*e && *e != '\n') )
4167                 goto out_unlock;
4168         err = -ENOENT;
4169         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4170                 goto out_unlock;
4171         mddev->major_version = major;
4172         mddev->minor_version = minor;
4173         mddev->persistent = 1;
4174         mddev->external = 0;
4175         err = 0;
4176 out_unlock:
4177         mddev_unlock(mddev);
4178         return err ?: len;
4179 }
4180
4181 static struct md_sysfs_entry md_metadata =
4182 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4183
4184 static ssize_t
4185 action_show(struct mddev *mddev, char *page)
4186 {
4187         char *type = "idle";
4188         unsigned long recovery = mddev->recovery;
4189         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4190                 type = "frozen";
4191         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4192             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4193                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4194                         type = "reshape";
4195                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4196                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4197                                 type = "resync";
4198                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4199                                 type = "check";
4200                         else
4201                                 type = "repair";
4202                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4203                         type = "recover";
4204         }
4205         return sprintf(page, "%s\n", type);
4206 }
4207
4208 static ssize_t
4209 action_store(struct mddev *mddev, const char *page, size_t len)
4210 {
4211         if (!mddev->pers || !mddev->pers->sync_request)
4212                 return -EINVAL;
4213
4214         if (cmd_match(page, "frozen"))
4215                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4216         else
4217                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4218
4219         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4220                 flush_workqueue(md_misc_wq);
4221                 if (mddev->sync_thread) {
4222                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4223                         if (mddev_lock(mddev) == 0) {
4224                                 md_reap_sync_thread(mddev);
4225                                 mddev_unlock(mddev);
4226                         }
4227                 }
4228         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4229                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4230                 return -EBUSY;
4231         else if (cmd_match(page, "resync"))
4232                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4233         else if (cmd_match(page, "recover")) {
4234                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4235                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4236         } else if (cmd_match(page, "reshape")) {
4237                 int err;
4238                 if (mddev->pers->start_reshape == NULL)
4239                         return -EINVAL;
4240                 err = mddev_lock(mddev);
4241                 if (!err) {
4242                         err = mddev->pers->start_reshape(mddev);
4243                         mddev_unlock(mddev);
4244                 }
4245                 if (err)
4246                         return err;
4247                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4248         } else {
4249                 if (cmd_match(page, "check"))
4250                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4251                 else if (!cmd_match(page, "repair"))
4252                         return -EINVAL;
4253                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4254                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4255         }
4256         if (mddev->ro == 2) {
4257                 /* A write to sync_action is enough to justify
4258                  * canceling read-auto mode
4259                  */
4260                 mddev->ro = 0;
4261                 md_wakeup_thread(mddev->sync_thread);
4262         }
4263         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4264         md_wakeup_thread(mddev->thread);
4265         sysfs_notify_dirent_safe(mddev->sysfs_action);
4266         return len;
4267 }
4268
4269 static struct md_sysfs_entry md_scan_mode =
4270 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4271
4272 static ssize_t
4273 last_sync_action_show(struct mddev *mddev, char *page)
4274 {
4275         return sprintf(page, "%s\n", mddev->last_sync_action);
4276 }
4277
4278 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4279
4280 static ssize_t
4281 mismatch_cnt_show(struct mddev *mddev, char *page)
4282 {
4283         return sprintf(page, "%llu\n",
4284                        (unsigned long long)
4285                        atomic64_read(&mddev->resync_mismatches));
4286 }
4287
4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4289
4290 static ssize_t
4291 sync_min_show(struct mddev *mddev, char *page)
4292 {
4293         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4294                        mddev->sync_speed_min ? "local": "system");
4295 }
4296
4297 static ssize_t
4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300         int min;
4301         char *e;
4302         if (strncmp(buf, "system", 6)==0) {
4303                 mddev->sync_speed_min = 0;
4304                 return len;
4305         }
4306         min = simple_strtoul(buf, &e, 10);
4307         if (buf == e || (*e && *e != '\n') || min <= 0)
4308                 return -EINVAL;
4309         mddev->sync_speed_min = min;
4310         return len;
4311 }
4312
4313 static struct md_sysfs_entry md_sync_min =
4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4315
4316 static ssize_t
4317 sync_max_show(struct mddev *mddev, char *page)
4318 {
4319         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4320                        mddev->sync_speed_max ? "local": "system");
4321 }
4322
4323 static ssize_t
4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326         int max;
4327         char *e;
4328         if (strncmp(buf, "system", 6)==0) {
4329                 mddev->sync_speed_max = 0;
4330                 return len;
4331         }
4332         max = simple_strtoul(buf, &e, 10);
4333         if (buf == e || (*e && *e != '\n') || max <= 0)
4334                 return -EINVAL;
4335         mddev->sync_speed_max = max;
4336         return len;
4337 }
4338
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345         return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358         long n;
4359
4360         if (kstrtol(buf, 10, &n))
4361                 return -EINVAL;
4362
4363         if (n != 0 && n != 1)
4364                 return -EINVAL;
4365
4366         mddev->parallel_resync = n;
4367
4368         if (mddev->sync_thread)
4369                 wake_up(&resync_wait);
4370
4371         return len;
4372 }
4373
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377        sync_force_parallel_show, sync_force_parallel_store);
4378
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382         unsigned long resync, dt, db;
4383         if (mddev->curr_resync == 0)
4384                 return sprintf(page, "none\n");
4385         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386         dt = (jiffies - mddev->resync_mark) / HZ;
4387         if (!dt) dt++;
4388         db = resync - mddev->resync_mark_cnt;
4389         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397         unsigned long long max_sectors, resync;
4398
4399         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400                 return sprintf(page, "none\n");
4401
4402         if (mddev->curr_resync == 1 ||
4403             mddev->curr_resync == 2)
4404                 return sprintf(page, "delayed\n");
4405
4406         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4407             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4408                 max_sectors = mddev->resync_max_sectors;
4409         else
4410                 max_sectors = mddev->dev_sectors;
4411
4412         resync = mddev->curr_resync_completed;
4413         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4414 }
4415
4416 static struct md_sysfs_entry md_sync_completed =
4417         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4418
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422         return sprintf(page, "%llu\n",
4423                        (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428         unsigned long long min;
4429         int err;
4430         int chunk;
4431
4432         if (kstrtoull(buf, 10, &min))
4433                 return -EINVAL;
4434
4435         spin_lock(&mddev->lock);
4436         err = -EINVAL;
4437         if (min > mddev->resync_max)
4438                 goto out_unlock;
4439
4440         err = -EBUSY;
4441         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4442                 goto out_unlock;
4443
4444         /* Must be a multiple of chunk_size */
4445         chunk = mddev->chunk_sectors;
4446         if (chunk) {
4447                 sector_t temp = min;
4448
4449                 err = -EINVAL;
4450                 if (sector_div(temp, chunk))
4451                         goto out_unlock;
4452         }
4453         mddev->resync_min = min;
4454         err = 0;
4455
4456 out_unlock:
4457         spin_unlock(&mddev->lock);
4458         return err ?: len;
4459 }
4460
4461 static struct md_sysfs_entry md_min_sync =
4462 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4463
4464 static ssize_t
4465 max_sync_show(struct mddev *mddev, char *page)
4466 {
4467         if (mddev->resync_max == MaxSector)
4468                 return sprintf(page, "max\n");
4469         else
4470                 return sprintf(page, "%llu\n",
4471                                (unsigned long long)mddev->resync_max);
4472 }
4473 static ssize_t
4474 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4475 {
4476         int err;
4477         spin_lock(&mddev->lock);
4478         if (strncmp(buf, "max", 3) == 0)
4479                 mddev->resync_max = MaxSector;
4480         else {
4481                 unsigned long long max;
4482                 int chunk;
4483
4484                 err = -EINVAL;
4485                 if (kstrtoull(buf, 10, &max))
4486                         goto out_unlock;
4487                 if (max < mddev->resync_min)
4488                         goto out_unlock;
4489
4490                 err = -EBUSY;
4491                 if (max < mddev->resync_max &&
4492                     mddev->ro == 0 &&
4493                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4494                         goto out_unlock;
4495
4496                 /* Must be a multiple of chunk_size */
4497                 chunk = mddev->chunk_sectors;
4498                 if (chunk) {
4499                         sector_t temp = max;
4500
4501                         err = -EINVAL;
4502                         if (sector_div(temp, chunk))
4503                                 goto out_unlock;
4504                 }
4505                 mddev->resync_max = max;
4506         }
4507         wake_up(&mddev->recovery_wait);
4508         err = 0;
4509 out_unlock:
4510         spin_unlock(&mddev->lock);
4511         return err ?: len;
4512 }
4513
4514 static struct md_sysfs_entry md_max_sync =
4515 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4516
4517 static ssize_t
4518 suspend_lo_show(struct mddev *mddev, char *page)
4519 {
4520         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4521 }
4522
4523 static ssize_t
4524 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4525 {
4526         char *e;
4527         unsigned long long new = simple_strtoull(buf, &e, 10);
4528         unsigned long long old;
4529         int err;
4530
4531         if (buf == e || (*e && *e != '\n'))
4532                 return -EINVAL;
4533
4534         err = mddev_lock(mddev);
4535         if (err)
4536                 return err;
4537         err = -EINVAL;
4538         if (mddev->pers == NULL ||
4539             mddev->pers->quiesce == NULL)
4540                 goto unlock;
4541         old = mddev->suspend_lo;
4542         mddev->suspend_lo = new;
4543         if (new >= old)
4544                 /* Shrinking suspended region */
4545                 mddev->pers->quiesce(mddev, 2);
4546         else {
4547                 /* Expanding suspended region - need to wait */
4548                 mddev->pers->quiesce(mddev, 1);
4549                 mddev->pers->quiesce(mddev, 0);
4550         }
4551         err = 0;
4552 unlock:
4553         mddev_unlock(mddev);
4554         return err ?: len;
4555 }
4556 static struct md_sysfs_entry md_suspend_lo =
4557 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4558
4559 static ssize_t
4560 suspend_hi_show(struct mddev *mddev, char *page)
4561 {
4562         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4563 }
4564
4565 static ssize_t
4566 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568         char *e;
4569         unsigned long long new = simple_strtoull(buf, &e, 10);
4570         unsigned long long old;
4571         int err;
4572
4573         if (buf == e || (*e && *e != '\n'))
4574                 return -EINVAL;
4575
4576         err = mddev_lock(mddev);
4577         if (err)
4578                 return err;
4579         err = -EINVAL;
4580         if (mddev->pers == NULL ||
4581             mddev->pers->quiesce == NULL)
4582                 goto unlock;
4583         old = mddev->suspend_hi;
4584         mddev->suspend_hi = new;
4585         if (new <= old)
4586                 /* Shrinking suspended region */
4587                 mddev->pers->quiesce(mddev, 2);
4588         else {
4589                 /* Expanding suspended region - need to wait */
4590                 mddev->pers->quiesce(mddev, 1);
4591                 mddev->pers->quiesce(mddev, 0);
4592         }
4593         err = 0;
4594 unlock:
4595         mddev_unlock(mddev);
4596         return err ?: len;
4597 }
4598 static struct md_sysfs_entry md_suspend_hi =
4599 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4600
4601 static ssize_t
4602 reshape_position_show(struct mddev *mddev, char *page)
4603 {
4604         if (mddev->reshape_position != MaxSector)
4605                 return sprintf(page, "%llu\n",
4606                                (unsigned long long)mddev->reshape_position);
4607         strcpy(page, "none\n");
4608         return 5;
4609 }
4610
4611 static ssize_t
4612 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4613 {
4614         struct md_rdev *rdev;
4615         char *e;
4616         int err;
4617         unsigned long long new = simple_strtoull(buf, &e, 10);
4618
4619         if (buf == e || (*e && *e != '\n'))
4620                 return -EINVAL;
4621         err = mddev_lock(mddev);
4622         if (err)
4623                 return err;
4624         err = -EBUSY;
4625         if (mddev->pers)
4626                 goto unlock;
4627         mddev->reshape_position = new;
4628         mddev->delta_disks = 0;
4629         mddev->reshape_backwards = 0;
4630         mddev->new_level = mddev->level;
4631         mddev->new_layout = mddev->layout;
4632         mddev->new_chunk_sectors = mddev->chunk_sectors;
4633         rdev_for_each(rdev, mddev)
4634                 rdev->new_data_offset = rdev->data_offset;
4635         err = 0;
4636 unlock:
4637         mddev_unlock(mddev);
4638         return err ?: len;
4639 }
4640
4641 static struct md_sysfs_entry md_reshape_position =
4642 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4643        reshape_position_store);
4644
4645 static ssize_t
4646 reshape_direction_show(struct mddev *mddev, char *page)
4647 {
4648         return sprintf(page, "%s\n",
4649                        mddev->reshape_backwards ? "backwards" : "forwards");
4650 }
4651
4652 static ssize_t
4653 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4654 {
4655         int backwards = 0;
4656         int err;
4657
4658         if (cmd_match(buf, "forwards"))
4659                 backwards = 0;
4660         else if (cmd_match(buf, "backwards"))
4661                 backwards = 1;
4662         else
4663                 return -EINVAL;
4664         if (mddev->reshape_backwards == backwards)
4665                 return len;
4666
4667         err = mddev_lock(mddev);
4668         if (err)
4669                 return err;
4670         /* check if we are allowed to change */
4671         if (mddev->delta_disks)
4672                 err = -EBUSY;
4673         else if (mddev->persistent &&
4674             mddev->major_version == 0)
4675                 err =  -EINVAL;
4676         else
4677                 mddev->reshape_backwards = backwards;
4678         mddev_unlock(mddev);
4679         return err ?: len;
4680 }
4681
4682 static struct md_sysfs_entry md_reshape_direction =
4683 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4684        reshape_direction_store);
4685
4686 static ssize_t
4687 array_size_show(struct mddev *mddev, char *page)
4688 {
4689         if (mddev->external_size)
4690                 return sprintf(page, "%llu\n",
4691                                (unsigned long long)mddev->array_sectors/2);
4692         else
4693                 return sprintf(page, "default\n");
4694 }
4695
4696 static ssize_t
4697 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4698 {
4699         sector_t sectors;
4700         int err;
4701
4702         err = mddev_lock(mddev);
4703         if (err)
4704                 return err;
4705
4706         if (strncmp(buf, "default", 7) == 0) {
4707                 if (mddev->pers)
4708                         sectors = mddev->pers->size(mddev, 0, 0);
4709                 else
4710                         sectors = mddev->array_sectors;
4711
4712                 mddev->external_size = 0;
4713         } else {
4714                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4715                         err = -EINVAL;
4716                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4717                         err = -E2BIG;
4718                 else
4719                         mddev->external_size = 1;
4720         }
4721
4722         if (!err) {
4723                 mddev->array_sectors = sectors;
4724                 if (mddev->pers) {
4725                         set_capacity(mddev->gendisk, mddev->array_sectors);
4726                         revalidate_disk(mddev->gendisk);
4727                 }
4728         }
4729         mddev_unlock(mddev);
4730         return err ?: len;
4731 }
4732
4733 static struct md_sysfs_entry md_array_size =
4734 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4735        array_size_store);
4736
4737 static struct attribute *md_default_attrs[] = {
4738         &md_level.attr,
4739         &md_layout.attr,
4740         &md_raid_disks.attr,
4741         &md_chunk_size.attr,
4742         &md_size.attr,
4743         &md_resync_start.attr,
4744         &md_metadata.attr,
4745         &md_new_device.attr,
4746         &md_safe_delay.attr,
4747         &md_array_state.attr,
4748         &md_reshape_position.attr,
4749         &md_reshape_direction.attr,
4750         &md_array_size.attr,
4751         &max_corr_read_errors.attr,
4752         NULL,
4753 };
4754
4755 static struct attribute *md_redundancy_attrs[] = {
4756         &md_scan_mode.attr,
4757         &md_last_scan_mode.attr,
4758         &md_mismatches.attr,
4759         &md_sync_min.attr,
4760         &md_sync_max.attr,
4761         &md_sync_speed.attr,
4762         &md_sync_force_parallel.attr,
4763         &md_sync_completed.attr,
4764         &md_min_sync.attr,
4765         &md_max_sync.attr,
4766         &md_suspend_lo.attr,
4767         &md_suspend_hi.attr,
4768         &md_bitmap.attr,
4769         &md_degraded.attr,
4770         NULL,
4771 };
4772 static struct attribute_group md_redundancy_group = {
4773         .name = NULL,
4774         .attrs = md_redundancy_attrs,
4775 };
4776
4777 static ssize_t
4778 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4779 {
4780         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4781         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4782         ssize_t rv;
4783
4784         if (!entry->show)
4785                 return -EIO;
4786         spin_lock(&all_mddevs_lock);
4787         if (list_empty(&mddev->all_mddevs)) {
4788                 spin_unlock(&all_mddevs_lock);
4789                 return -EBUSY;
4790         }
4791         mddev_get(mddev);
4792         spin_unlock(&all_mddevs_lock);
4793
4794         rv = entry->show(mddev, page);
4795         mddev_put(mddev);
4796         return rv;
4797 }
4798
4799 static ssize_t
4800 md_attr_store(struct kobject *kobj, struct attribute *attr,
4801               const char *page, size_t length)
4802 {
4803         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4804         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4805         ssize_t rv;
4806
4807         if (!entry->store)
4808                 return -EIO;
4809         if (!capable(CAP_SYS_ADMIN))
4810                 return -EACCES;
4811         spin_lock(&all_mddevs_lock);
4812         if (list_empty(&mddev->all_mddevs)) {
4813                 spin_unlock(&all_mddevs_lock);
4814                 return -EBUSY;
4815         }
4816         mddev_get(mddev);
4817         spin_unlock(&all_mddevs_lock);
4818         rv = entry->store(mddev, page, length);
4819         mddev_put(mddev);
4820         return rv;
4821 }
4822
4823 static void md_free(struct kobject *ko)
4824 {
4825         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4826
4827         if (mddev->sysfs_state)
4828                 sysfs_put(mddev->sysfs_state);
4829
4830         if (mddev->gendisk) {
4831                 del_gendisk(mddev->gendisk);
4832                 put_disk(mddev->gendisk);
4833         }
4834         if (mddev->queue)
4835                 blk_cleanup_queue(mddev->queue);
4836
4837         kfree(mddev);
4838 }
4839
4840 static const struct sysfs_ops md_sysfs_ops = {
4841         .show   = md_attr_show,
4842         .store  = md_attr_store,
4843 };
4844 static struct kobj_type md_ktype = {
4845         .release        = md_free,
4846         .sysfs_ops      = &md_sysfs_ops,
4847         .default_attrs  = md_default_attrs,
4848 };
4849
4850 int mdp_major = 0;
4851
4852 static void mddev_delayed_delete(struct work_struct *ws)
4853 {
4854         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4855
4856         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4857         kobject_del(&mddev->kobj);
4858         kobject_put(&mddev->kobj);
4859 }
4860
4861 static int md_alloc(dev_t dev, char *name)
4862 {
4863         static DEFINE_MUTEX(disks_mutex);
4864         struct mddev *mddev = mddev_find(dev);
4865         struct gendisk *disk;
4866         int partitioned;
4867         int shift;
4868         int unit;
4869         int error;
4870
4871         if (!mddev)
4872                 return -ENODEV;
4873
4874         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4875         shift = partitioned ? MdpMinorShift : 0;
4876         unit = MINOR(mddev->unit) >> shift;
4877
4878         /* wait for any previous instance of this device to be
4879          * completely removed (mddev_delayed_delete).
4880          */
4881         flush_workqueue(md_misc_wq);
4882
4883         mutex_lock(&disks_mutex);
4884         error = -EEXIST;
4885         if (mddev->gendisk)
4886                 goto abort;
4887
4888         if (name) {
4889                 /* Need to ensure that 'name' is not a duplicate.
4890                  */
4891                 struct mddev *mddev2;
4892                 spin_lock(&all_mddevs_lock);
4893
4894                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4895                         if (mddev2->gendisk &&
4896                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4897                                 spin_unlock(&all_mddevs_lock);
4898                                 goto abort;
4899                         }
4900                 spin_unlock(&all_mddevs_lock);
4901         }
4902
4903         error = -ENOMEM;
4904         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4905         if (!mddev->queue)
4906                 goto abort;
4907         mddev->queue->queuedata = mddev;
4908
4909         blk_queue_make_request(mddev->queue, md_make_request);
4910         blk_set_stacking_limits(&mddev->queue->limits);
4911
4912         disk = alloc_disk(1 << shift);
4913         if (!disk) {
4914                 blk_cleanup_queue(mddev->queue);
4915                 mddev->queue = NULL;
4916                 goto abort;
4917         }
4918         disk->major = MAJOR(mddev->unit);
4919         disk->first_minor = unit << shift;
4920         if (name)
4921                 strcpy(disk->disk_name, name);
4922         else if (partitioned)
4923                 sprintf(disk->disk_name, "md_d%d", unit);
4924         else
4925                 sprintf(disk->disk_name, "md%d", unit);
4926         disk->fops = &md_fops;
4927         disk->private_data = mddev;
4928         disk->queue = mddev->queue;
4929         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4930         /* Allow extended partitions.  This makes the
4931          * 'mdp' device redundant, but we can't really
4932          * remove it now.
4933          */
4934         disk->flags |= GENHD_FL_EXT_DEVT;
4935         mddev->gendisk = disk;
4936         /* As soon as we call add_disk(), another thread could get
4937          * through to md_open, so make sure it doesn't get too far
4938          */
4939         mutex_lock(&mddev->open_mutex);
4940         add_disk(disk);
4941
4942         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4943                                      &disk_to_dev(disk)->kobj, "%s", "md");
4944         if (error) {
4945                 /* This isn't possible, but as kobject_init_and_add is marked
4946                  * __must_check, we must do something with the result
4947                  */
4948                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4949                        disk->disk_name);
4950                 error = 0;
4951         }
4952         if (mddev->kobj.sd &&
4953             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4954                 printk(KERN_DEBUG "pointless warning\n");
4955         mutex_unlock(&mddev->open_mutex);
4956  abort:
4957         mutex_unlock(&disks_mutex);
4958         if (!error && mddev->kobj.sd) {
4959                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4960                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4961         }
4962         mddev_put(mddev);
4963         return error;
4964 }
4965
4966 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4967 {
4968         md_alloc(dev, NULL);
4969         return NULL;
4970 }
4971
4972 static int add_named_array(const char *val, struct kernel_param *kp)
4973 {
4974         /* val must be "md_*" where * is not all digits.
4975          * We allocate an array with a large free minor number, and
4976          * set the name to val.  val must not already be an active name.
4977          */
4978         int len = strlen(val);
4979         char buf[DISK_NAME_LEN];
4980
4981         while (len && val[len-1] == '\n')
4982                 len--;
4983         if (len >= DISK_NAME_LEN)
4984                 return -E2BIG;
4985         strlcpy(buf, val, len+1);
4986         if (strncmp(buf, "md_", 3) != 0)
4987                 return -EINVAL;
4988         return md_alloc(0, buf);
4989 }
4990
4991 static void md_safemode_timeout(unsigned long data)
4992 {
4993         struct mddev *mddev = (struct mddev *) data;
4994
4995         if (!atomic_read(&mddev->writes_pending)) {
4996                 mddev->safemode = 1;
4997                 if (mddev->external)
4998                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4999         }
5000         md_wakeup_thread(mddev->thread);
5001 }
5002
5003 static int start_dirty_degraded;
5004
5005 int md_run(struct mddev *mddev)
5006 {
5007         int err;
5008         struct md_rdev *rdev;
5009         struct md_personality *pers;
5010
5011         if (list_empty(&mddev->disks))
5012                 /* cannot run an array with no devices.. */
5013                 return -EINVAL;
5014
5015         if (mddev->pers)
5016                 return -EBUSY;
5017         /* Cannot run until previous stop completes properly */
5018         if (mddev->sysfs_active)
5019                 return -EBUSY;
5020
5021         /*
5022          * Analyze all RAID superblock(s)
5023          */
5024         if (!mddev->raid_disks) {
5025                 if (!mddev->persistent)
5026                         return -EINVAL;
5027                 analyze_sbs(mddev);
5028         }
5029
5030         if (mddev->level != LEVEL_NONE)
5031                 request_module("md-level-%d", mddev->level);
5032         else if (mddev->clevel[0])
5033                 request_module("md-%s", mddev->clevel);
5034
5035         /*
5036          * Drop all container device buffers, from now on
5037          * the only valid external interface is through the md
5038          * device.
5039          */
5040         rdev_for_each(rdev, mddev) {
5041                 if (test_bit(Faulty, &rdev->flags))
5042                         continue;
5043                 sync_blockdev(rdev->bdev);
5044                 invalidate_bdev(rdev->bdev);
5045
5046                 /* perform some consistency tests on the device.
5047                  * We don't want the data to overlap the metadata,
5048                  * Internal Bitmap issues have been handled elsewhere.
5049                  */
5050                 if (rdev->meta_bdev) {
5051                         /* Nothing to check */;
5052                 } else if (rdev->data_offset < rdev->sb_start) {
5053                         if (mddev->dev_sectors &&
5054                             rdev->data_offset + mddev->dev_sectors
5055                             > rdev->sb_start) {
5056                                 printk("md: %s: data overlaps metadata\n",
5057                                        mdname(mddev));
5058                                 return -EINVAL;
5059                         }
5060                 } else {
5061                         if (rdev->sb_start + rdev->sb_size/512
5062                             > rdev->data_offset) {
5063                                 printk("md: %s: metadata overlaps data\n",
5064                                        mdname(mddev));
5065                                 return -EINVAL;
5066                         }
5067                 }
5068                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5069         }
5070
5071         if (mddev->bio_set == NULL)
5072                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5073
5074         spin_lock(&pers_lock);
5075         pers = find_pers(mddev->level, mddev->clevel);
5076         if (!pers || !try_module_get(pers->owner)) {
5077                 spin_unlock(&pers_lock);
5078                 if (mddev->level != LEVEL_NONE)
5079                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5080                                mddev->level);
5081                 else
5082                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5083                                mddev->clevel);
5084                 return -EINVAL;
5085         }
5086         spin_unlock(&pers_lock);
5087         if (mddev->level != pers->level) {
5088                 mddev->level = pers->level;
5089                 mddev->new_level = pers->level;
5090         }
5091         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5092
5093         if (mddev->reshape_position != MaxSector &&
5094             pers->start_reshape == NULL) {
5095                 /* This personality cannot handle reshaping... */
5096                 module_put(pers->owner);
5097                 return -EINVAL;
5098         }
5099
5100         if (pers->sync_request) {
5101                 /* Warn if this is a potentially silly
5102                  * configuration.
5103                  */
5104                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5105                 struct md_rdev *rdev2;
5106                 int warned = 0;
5107
5108                 rdev_for_each(rdev, mddev)
5109                         rdev_for_each(rdev2, mddev) {
5110                                 if (rdev < rdev2 &&
5111                                     rdev->bdev->bd_contains ==
5112                                     rdev2->bdev->bd_contains) {
5113                                         printk(KERN_WARNING
5114                                                "%s: WARNING: %s appears to be"
5115                                                " on the same physical disk as"
5116                                                " %s.\n",
5117                                                mdname(mddev),
5118                                                bdevname(rdev->bdev,b),
5119                                                bdevname(rdev2->bdev,b2));
5120                                         warned = 1;
5121                                 }
5122                         }
5123
5124                 if (warned)
5125                         printk(KERN_WARNING
5126                                "True protection against single-disk"
5127                                " failure might be compromised.\n");
5128         }
5129
5130         mddev->recovery = 0;
5131         /* may be over-ridden by personality */
5132         mddev->resync_max_sectors = mddev->dev_sectors;
5133
5134         mddev->ok_start_degraded = start_dirty_degraded;
5135
5136         if (start_readonly && mddev->ro == 0)
5137                 mddev->ro = 2; /* read-only, but switch on first write */
5138
5139         err = pers->run(mddev);
5140         if (err)
5141                 printk(KERN_ERR "md: pers->run() failed ...\n");
5142         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5143                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5144                           " but 'external_size' not in effect?\n", __func__);
5145                 printk(KERN_ERR
5146                        "md: invalid array_size %llu > default size %llu\n",
5147                        (unsigned long long)mddev->array_sectors / 2,
5148                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5149                 err = -EINVAL;
5150         }
5151         if (err == 0 && pers->sync_request &&
5152             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5153                 struct bitmap *bitmap;
5154
5155                 bitmap = bitmap_create(mddev, -1);
5156                 if (IS_ERR(bitmap)) {
5157                         err = PTR_ERR(bitmap);
5158                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5159                                mdname(mddev), err);
5160                 } else
5161                         mddev->bitmap = bitmap;
5162
5163         }
5164         if (err) {
5165                 mddev_detach(mddev);
5166                 if (mddev->private)
5167                         pers->free(mddev, mddev->private);
5168                 module_put(pers->owner);
5169                 bitmap_destroy(mddev);
5170                 return err;
5171         }
5172         if (mddev->queue) {
5173                 mddev->queue->backing_dev_info.congested_data = mddev;
5174                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5175                 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5176         }
5177         if (pers->sync_request) {
5178                 if (mddev->kobj.sd &&
5179                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5180                         printk(KERN_WARNING
5181                                "md: cannot register extra attributes for %s\n",
5182                                mdname(mddev));
5183                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5184         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5185                 mddev->ro = 0;
5186
5187         atomic_set(&mddev->writes_pending,0);
5188         atomic_set(&mddev->max_corr_read_errors,
5189                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5190         mddev->safemode = 0;
5191         mddev->safemode_timer.function = md_safemode_timeout;
5192         mddev->safemode_timer.data = (unsigned long) mddev;
5193         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5194         mddev->in_sync = 1;
5195         smp_wmb();
5196         spin_lock(&mddev->lock);
5197         mddev->pers = pers;
5198         mddev->ready = 1;
5199         spin_unlock(&mddev->lock);
5200         rdev_for_each(rdev, mddev)
5201                 if (rdev->raid_disk >= 0)
5202                         if (sysfs_link_rdev(mddev, rdev))
5203                                 /* failure here is OK */;
5204
5205         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5206
5207         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5208                 md_update_sb(mddev, 0);
5209
5210         md_new_event(mddev);
5211         sysfs_notify_dirent_safe(mddev->sysfs_state);
5212         sysfs_notify_dirent_safe(mddev->sysfs_action);
5213         sysfs_notify(&mddev->kobj, NULL, "degraded");
5214         return 0;
5215 }
5216 EXPORT_SYMBOL_GPL(md_run);
5217
5218 static int do_md_run(struct mddev *mddev)
5219 {
5220         int err;
5221
5222         err = md_run(mddev);
5223         if (err)
5224                 goto out;
5225         err = bitmap_load(mddev);
5226         if (err) {
5227                 bitmap_destroy(mddev);
5228                 goto out;
5229         }
5230
5231         md_wakeup_thread(mddev->thread);
5232         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5233
5234         set_capacity(mddev->gendisk, mddev->array_sectors);
5235         revalidate_disk(mddev->gendisk);
5236         mddev->changed = 1;
5237         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5238 out:
5239         return err;
5240 }
5241
5242 static int restart_array(struct mddev *mddev)
5243 {
5244         struct gendisk *disk = mddev->gendisk;
5245
5246         /* Complain if it has no devices */
5247         if (list_empty(&mddev->disks))
5248                 return -ENXIO;
5249         if (!mddev->pers)
5250                 return -EINVAL;
5251         if (!mddev->ro)
5252                 return -EBUSY;
5253         mddev->safemode = 0;
5254         mddev->ro = 0;
5255         set_disk_ro(disk, 0);
5256         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5257                 mdname(mddev));
5258         /* Kick recovery or resync if necessary */
5259         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5260         md_wakeup_thread(mddev->thread);
5261         md_wakeup_thread(mddev->sync_thread);
5262         sysfs_notify_dirent_safe(mddev->sysfs_state);
5263         return 0;
5264 }
5265
5266 static void md_clean(struct mddev *mddev)
5267 {
5268         mddev->array_sectors = 0;
5269         mddev->external_size = 0;
5270         mddev->dev_sectors = 0;
5271         mddev->raid_disks = 0;
5272         mddev->recovery_cp = 0;
5273         mddev->resync_min = 0;
5274         mddev->resync_max = MaxSector;
5275         mddev->reshape_position = MaxSector;
5276         mddev->external = 0;
5277         mddev->persistent = 0;
5278         mddev->level = LEVEL_NONE;
5279         mddev->clevel[0] = 0;
5280         mddev->flags = 0;
5281         mddev->ro = 0;
5282         mddev->metadata_type[0] = 0;
5283         mddev->chunk_sectors = 0;
5284         mddev->ctime = mddev->utime = 0;
5285         mddev->layout = 0;
5286         mddev->max_disks = 0;
5287         mddev->events = 0;
5288         mddev->can_decrease_events = 0;
5289         mddev->delta_disks = 0;
5290         mddev->reshape_backwards = 0;
5291         mddev->new_level = LEVEL_NONE;
5292         mddev->new_layout = 0;
5293         mddev->new_chunk_sectors = 0;
5294         mddev->curr_resync = 0;
5295         atomic64_set(&mddev->resync_mismatches, 0);
5296         mddev->suspend_lo = mddev->suspend_hi = 0;
5297         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5298         mddev->recovery = 0;
5299         mddev->in_sync = 0;
5300         mddev->changed = 0;
5301         mddev->degraded = 0;
5302         mddev->safemode = 0;
5303         mddev->merge_check_needed = 0;
5304         mddev->bitmap_info.offset = 0;
5305         mddev->bitmap_info.default_offset = 0;
5306         mddev->bitmap_info.default_space = 0;
5307         mddev->bitmap_info.chunksize = 0;
5308         mddev->bitmap_info.daemon_sleep = 0;
5309         mddev->bitmap_info.max_write_behind = 0;
5310 }
5311
5312 static void __md_stop_writes(struct mddev *mddev)
5313 {
5314         if (mddev_is_clustered(mddev))
5315                 md_cluster_ops->metadata_update_start(mddev);
5316         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317         flush_workqueue(md_misc_wq);
5318         if (mddev->sync_thread) {
5319                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5320                 md_reap_sync_thread(mddev);
5321         }
5322
5323         del_timer_sync(&mddev->safemode_timer);
5324
5325         bitmap_flush(mddev);
5326         md_super_wait(mddev);
5327
5328         if (mddev->ro == 0 &&
5329             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5330                 /* mark array as shutdown cleanly */
5331                 mddev->in_sync = 1;
5332                 md_update_sb(mddev, 1);
5333         }
5334         if (mddev_is_clustered(mddev))
5335                 md_cluster_ops->metadata_update_finish(mddev);
5336 }
5337
5338 void md_stop_writes(struct mddev *mddev)
5339 {
5340         mddev_lock_nointr(mddev);
5341         __md_stop_writes(mddev);
5342         mddev_unlock(mddev);
5343 }
5344 EXPORT_SYMBOL_GPL(md_stop_writes);
5345
5346 static void mddev_detach(struct mddev *mddev)
5347 {
5348         struct bitmap *bitmap = mddev->bitmap;
5349         /* wait for behind writes to complete */
5350         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5351                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5352                        mdname(mddev));
5353                 /* need to kick something here to make sure I/O goes? */
5354                 wait_event(bitmap->behind_wait,
5355                            atomic_read(&bitmap->behind_writes) == 0);
5356         }
5357         if (mddev->pers && mddev->pers->quiesce) {
5358                 mddev->pers->quiesce(mddev, 1);
5359                 mddev->pers->quiesce(mddev, 0);
5360         }
5361         md_unregister_thread(&mddev->thread);
5362         if (mddev->queue)
5363                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5364 }
5365
5366 static void __md_stop(struct mddev *mddev)
5367 {
5368         struct md_personality *pers = mddev->pers;
5369         mddev_detach(mddev);
5370         spin_lock(&mddev->lock);
5371         mddev->ready = 0;
5372         mddev->pers = NULL;
5373         spin_unlock(&mddev->lock);
5374         pers->free(mddev, mddev->private);
5375         if (pers->sync_request && mddev->to_remove == NULL)
5376                 mddev->to_remove = &md_redundancy_group;
5377         module_put(pers->owner);
5378         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5379 }
5380
5381 void md_stop(struct mddev *mddev)
5382 {
5383         /* stop the array and free an attached data structures.
5384          * This is called from dm-raid
5385          */
5386         __md_stop(mddev);
5387         bitmap_destroy(mddev);
5388         if (mddev->bio_set)
5389                 bioset_free(mddev->bio_set);
5390 }
5391
5392 EXPORT_SYMBOL_GPL(md_stop);
5393
5394 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5395 {
5396         int err = 0;
5397         int did_freeze = 0;
5398
5399         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5400                 did_freeze = 1;
5401                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5402                 md_wakeup_thread(mddev->thread);
5403         }
5404         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5405                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5406         if (mddev->sync_thread)
5407                 /* Thread might be blocked waiting for metadata update
5408                  * which will now never happen */
5409                 wake_up_process(mddev->sync_thread->tsk);
5410
5411         mddev_unlock(mddev);
5412         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5413                                           &mddev->recovery));
5414         mddev_lock_nointr(mddev);
5415
5416         mutex_lock(&mddev->open_mutex);
5417         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5418             mddev->sync_thread ||
5419             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5420             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5421                 printk("md: %s still in use.\n",mdname(mddev));
5422                 if (did_freeze) {
5423                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5424                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5425                         md_wakeup_thread(mddev->thread);
5426                 }
5427                 err = -EBUSY;
5428                 goto out;
5429         }
5430         if (mddev->pers) {
5431                 __md_stop_writes(mddev);
5432
5433                 err  = -ENXIO;
5434                 if (mddev->ro==1)
5435                         goto out;
5436                 mddev->ro = 1;
5437                 set_disk_ro(mddev->gendisk, 1);
5438                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5439                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5440                 md_wakeup_thread(mddev->thread);
5441                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5442                 err = 0;
5443         }
5444 out:
5445         mutex_unlock(&mddev->open_mutex);
5446         return err;
5447 }
5448
5449 /* mode:
5450  *   0 - completely stop and dis-assemble array
5451  *   2 - stop but do not disassemble array
5452  */
5453 static int do_md_stop(struct mddev *mddev, int mode,
5454                       struct block_device *bdev)
5455 {
5456         struct gendisk *disk = mddev->gendisk;
5457         struct md_rdev *rdev;
5458         int did_freeze = 0;
5459
5460         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5461                 did_freeze = 1;
5462                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5463                 md_wakeup_thread(mddev->thread);
5464         }
5465         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5466                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5467         if (mddev->sync_thread)
5468                 /* Thread might be blocked waiting for metadata update
5469                  * which will now never happen */
5470                 wake_up_process(mddev->sync_thread->tsk);
5471
5472         mddev_unlock(mddev);
5473         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5474                                  !test_bit(MD_RECOVERY_RUNNING,
5475                                            &mddev->recovery)));
5476         mddev_lock_nointr(mddev);
5477
5478         mutex_lock(&mddev->open_mutex);
5479         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5480             mddev->sysfs_active ||
5481             mddev->sync_thread ||
5482             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5483             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5484                 printk("md: %s still in use.\n",mdname(mddev));
5485                 mutex_unlock(&mddev->open_mutex);
5486                 if (did_freeze) {
5487                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5488                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5489                         md_wakeup_thread(mddev->thread);
5490                 }
5491                 return -EBUSY;
5492         }
5493         if (mddev->pers) {
5494                 if (mddev->ro)
5495                         set_disk_ro(disk, 0);
5496
5497                 __md_stop_writes(mddev);
5498                 __md_stop(mddev);
5499                 mddev->queue->merge_bvec_fn = NULL;
5500                 mddev->queue->backing_dev_info.congested_fn = NULL;
5501
5502                 /* tell userspace to handle 'inactive' */
5503                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5504
5505                 rdev_for_each(rdev, mddev)
5506                         if (rdev->raid_disk >= 0)
5507                                 sysfs_unlink_rdev(mddev, rdev);
5508
5509                 set_capacity(disk, 0);
5510                 mutex_unlock(&mddev->open_mutex);
5511                 mddev->changed = 1;
5512                 revalidate_disk(disk);
5513
5514                 if (mddev->ro)
5515                         mddev->ro = 0;
5516         } else
5517                 mutex_unlock(&mddev->open_mutex);
5518         /*
5519          * Free resources if final stop
5520          */
5521         if (mode == 0) {
5522                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5523
5524                 bitmap_destroy(mddev);
5525                 if (mddev->bitmap_info.file) {
5526                         struct file *f = mddev->bitmap_info.file;
5527                         spin_lock(&mddev->lock);
5528                         mddev->bitmap_info.file = NULL;
5529                         spin_unlock(&mddev->lock);
5530                         fput(f);
5531                 }
5532                 mddev->bitmap_info.offset = 0;
5533
5534                 export_array(mddev);
5535
5536                 md_clean(mddev);
5537                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5538                 if (mddev->hold_active == UNTIL_STOP)
5539                         mddev->hold_active = 0;
5540         }
5541         blk_integrity_unregister(disk);
5542         md_new_event(mddev);
5543         sysfs_notify_dirent_safe(mddev->sysfs_state);
5544         return 0;
5545 }
5546
5547 #ifndef MODULE
5548 static void autorun_array(struct mddev *mddev)
5549 {
5550         struct md_rdev *rdev;
5551         int err;
5552
5553         if (list_empty(&mddev->disks))
5554                 return;
5555
5556         printk(KERN_INFO "md: running: ");
5557
5558         rdev_for_each(rdev, mddev) {
5559                 char b[BDEVNAME_SIZE];
5560                 printk("<%s>", bdevname(rdev->bdev,b));
5561         }
5562         printk("\n");
5563
5564         err = do_md_run(mddev);
5565         if (err) {
5566                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5567                 do_md_stop(mddev, 0, NULL);
5568         }
5569 }
5570
5571 /*
5572  * lets try to run arrays based on all disks that have arrived
5573  * until now. (those are in pending_raid_disks)
5574  *
5575  * the method: pick the first pending disk, collect all disks with
5576  * the same UUID, remove all from the pending list and put them into
5577  * the 'same_array' list. Then order this list based on superblock
5578  * update time (freshest comes first), kick out 'old' disks and
5579  * compare superblocks. If everything's fine then run it.
5580  *
5581  * If "unit" is allocated, then bump its reference count
5582  */
5583 static void autorun_devices(int part)
5584 {
5585         struct md_rdev *rdev0, *rdev, *tmp;
5586         struct mddev *mddev;
5587         char b[BDEVNAME_SIZE];
5588
5589         printk(KERN_INFO "md: autorun ...\n");
5590         while (!list_empty(&pending_raid_disks)) {
5591                 int unit;
5592                 dev_t dev;
5593                 LIST_HEAD(candidates);
5594                 rdev0 = list_entry(pending_raid_disks.next,
5595                                          struct md_rdev, same_set);
5596
5597                 printk(KERN_INFO "md: considering %s ...\n",
5598                         bdevname(rdev0->bdev,b));
5599                 INIT_LIST_HEAD(&candidates);
5600                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5601                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5602                                 printk(KERN_INFO "md:  adding %s ...\n",
5603                                         bdevname(rdev->bdev,b));
5604                                 list_move(&rdev->same_set, &candidates);
5605                         }
5606                 /*
5607                  * now we have a set of devices, with all of them having
5608                  * mostly sane superblocks. It's time to allocate the
5609                  * mddev.
5610                  */
5611                 if (part) {
5612                         dev = MKDEV(mdp_major,
5613                                     rdev0->preferred_minor << MdpMinorShift);
5614                         unit = MINOR(dev) >> MdpMinorShift;
5615                 } else {
5616                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5617                         unit = MINOR(dev);
5618                 }
5619                 if (rdev0->preferred_minor != unit) {
5620                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5621                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5622                         break;
5623                 }
5624
5625                 md_probe(dev, NULL, NULL);
5626                 mddev = mddev_find(dev);
5627                 if (!mddev || !mddev->gendisk) {
5628                         if (mddev)
5629                                 mddev_put(mddev);
5630                         printk(KERN_ERR
5631                                 "md: cannot allocate memory for md drive.\n");
5632                         break;
5633                 }
5634                 if (mddev_lock(mddev))
5635                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5636                                mdname(mddev));
5637                 else if (mddev->raid_disks || mddev->major_version
5638                          || !list_empty(&mddev->disks)) {
5639                         printk(KERN_WARNING
5640                                 "md: %s already running, cannot run %s\n",
5641                                 mdname(mddev), bdevname(rdev0->bdev,b));
5642                         mddev_unlock(mddev);
5643                 } else {
5644                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5645                         mddev->persistent = 1;
5646                         rdev_for_each_list(rdev, tmp, &candidates) {
5647                                 list_del_init(&rdev->same_set);
5648                                 if (bind_rdev_to_array(rdev, mddev))
5649                                         export_rdev(rdev);
5650                         }
5651                         autorun_array(mddev);
5652                         mddev_unlock(mddev);
5653                 }
5654                 /* on success, candidates will be empty, on error
5655                  * it won't...
5656                  */
5657                 rdev_for_each_list(rdev, tmp, &candidates) {
5658                         list_del_init(&rdev->same_set);
5659                         export_rdev(rdev);
5660                 }
5661                 mddev_put(mddev);
5662         }
5663         printk(KERN_INFO "md: ... autorun DONE.\n");
5664 }
5665 #endif /* !MODULE */
5666
5667 static int get_version(void __user *arg)
5668 {
5669         mdu_version_t ver;
5670
5671         ver.major = MD_MAJOR_VERSION;
5672         ver.minor = MD_MINOR_VERSION;
5673         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5674
5675         if (copy_to_user(arg, &ver, sizeof(ver)))
5676                 return -EFAULT;
5677
5678         return 0;
5679 }
5680
5681 static int get_array_info(struct mddev *mddev, void __user *arg)
5682 {
5683         mdu_array_info_t info;
5684         int nr,working,insync,failed,spare;
5685         struct md_rdev *rdev;
5686
5687         nr = working = insync = failed = spare = 0;
5688         rcu_read_lock();
5689         rdev_for_each_rcu(rdev, mddev) {
5690                 nr++;
5691                 if (test_bit(Faulty, &rdev->flags))
5692                         failed++;
5693                 else {
5694                         working++;
5695                         if (test_bit(In_sync, &rdev->flags))
5696                                 insync++;
5697                         else
5698                                 spare++;
5699                 }
5700         }
5701         rcu_read_unlock();
5702
5703         info.major_version = mddev->major_version;
5704         info.minor_version = mddev->minor_version;
5705         info.patch_version = MD_PATCHLEVEL_VERSION;
5706         info.ctime         = mddev->ctime;
5707         info.level         = mddev->level;
5708         info.size          = mddev->dev_sectors / 2;
5709         if (info.size != mddev->dev_sectors / 2) /* overflow */
5710                 info.size = -1;
5711         info.nr_disks      = nr;
5712         info.raid_disks    = mddev->raid_disks;
5713         info.md_minor      = mddev->md_minor;
5714         info.not_persistent= !mddev->persistent;
5715
5716         info.utime         = mddev->utime;
5717         info.state         = 0;
5718         if (mddev->in_sync)
5719                 info.state = (1<<MD_SB_CLEAN);
5720         if (mddev->bitmap && mddev->bitmap_info.offset)
5721                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5722         if (mddev_is_clustered(mddev))
5723                 info.state |= (1<<MD_SB_CLUSTERED);
5724         info.active_disks  = insync;
5725         info.working_disks = working;
5726         info.failed_disks  = failed;
5727         info.spare_disks   = spare;
5728
5729         info.layout        = mddev->layout;
5730         info.chunk_size    = mddev->chunk_sectors << 9;
5731
5732         if (copy_to_user(arg, &info, sizeof(info)))
5733                 return -EFAULT;
5734
5735         return 0;
5736 }
5737
5738 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5739 {
5740         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5741         char *ptr;
5742         int err;
5743
5744         file = kmalloc(sizeof(*file), GFP_NOIO);
5745         if (!file)
5746                 return -ENOMEM;
5747
5748         err = 0;
5749         spin_lock(&mddev->lock);
5750         /* bitmap disabled, zero the first byte and copy out */
5751         if (!mddev->bitmap_info.file)
5752                 file->pathname[0] = '\0';
5753         else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5754                                file->pathname, sizeof(file->pathname))),
5755                  IS_ERR(ptr))
5756                 err = PTR_ERR(ptr);
5757         else
5758                 memmove(file->pathname, ptr,
5759                         sizeof(file->pathname)-(ptr-file->pathname));
5760         spin_unlock(&mddev->lock);
5761
5762         if (err == 0 &&
5763             copy_to_user(arg, file, sizeof(*file)))
5764                 err = -EFAULT;
5765
5766         kfree(file);
5767         return err;
5768 }
5769
5770 static int get_disk_info(struct mddev *mddev, void __user * arg)
5771 {
5772         mdu_disk_info_t info;
5773         struct md_rdev *rdev;
5774
5775         if (copy_from_user(&info, arg, sizeof(info)))
5776                 return -EFAULT;
5777
5778         rcu_read_lock();
5779         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5780         if (rdev) {
5781                 info.major = MAJOR(rdev->bdev->bd_dev);
5782                 info.minor = MINOR(rdev->bdev->bd_dev);
5783                 info.raid_disk = rdev->raid_disk;
5784                 info.state = 0;
5785                 if (test_bit(Faulty, &rdev->flags))
5786                         info.state |= (1<<MD_DISK_FAULTY);
5787                 else if (test_bit(In_sync, &rdev->flags)) {
5788                         info.state |= (1<<MD_DISK_ACTIVE);
5789                         info.state |= (1<<MD_DISK_SYNC);
5790                 }
5791                 if (test_bit(WriteMostly, &rdev->flags))
5792                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5793         } else {
5794                 info.major = info.minor = 0;
5795                 info.raid_disk = -1;
5796                 info.state = (1<<MD_DISK_REMOVED);
5797         }
5798         rcu_read_unlock();
5799
5800         if (copy_to_user(arg, &info, sizeof(info)))
5801                 return -EFAULT;
5802
5803         return 0;
5804 }
5805
5806 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5807 {
5808         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5809         struct md_rdev *rdev;
5810         dev_t dev = MKDEV(info->major,info->minor);
5811
5812         if (mddev_is_clustered(mddev) &&
5813                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5814                 pr_err("%s: Cannot add to clustered mddev.\n",
5815                                mdname(mddev));
5816                 return -EINVAL;
5817         }
5818
5819         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5820                 return -EOVERFLOW;
5821
5822         if (!mddev->raid_disks) {
5823                 int err;
5824                 /* expecting a device which has a superblock */
5825                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5826                 if (IS_ERR(rdev)) {
5827                         printk(KERN_WARNING
5828                                 "md: md_import_device returned %ld\n",
5829                                 PTR_ERR(rdev));
5830                         return PTR_ERR(rdev);
5831                 }
5832                 if (!list_empty(&mddev->disks)) {
5833                         struct md_rdev *rdev0
5834                                 = list_entry(mddev->disks.next,
5835                                              struct md_rdev, same_set);
5836                         err = super_types[mddev->major_version]
5837                                 .load_super(rdev, rdev0, mddev->minor_version);
5838                         if (err < 0) {
5839                                 printk(KERN_WARNING
5840                                         "md: %s has different UUID to %s\n",
5841                                         bdevname(rdev->bdev,b),
5842                                         bdevname(rdev0->bdev,b2));
5843                                 export_rdev(rdev);
5844                                 return -EINVAL;
5845                         }
5846                 }
5847                 err = bind_rdev_to_array(rdev, mddev);
5848                 if (err)
5849                         export_rdev(rdev);
5850                 return err;
5851         }
5852
5853         /*
5854          * add_new_disk can be used once the array is assembled
5855          * to add "hot spares".  They must already have a superblock
5856          * written
5857          */
5858         if (mddev->pers) {
5859                 int err;
5860                 if (!mddev->pers->hot_add_disk) {
5861                         printk(KERN_WARNING
5862                                 "%s: personality does not support diskops!\n",
5863                                mdname(mddev));
5864                         return -EINVAL;
5865                 }
5866                 if (mddev->persistent)
5867                         rdev = md_import_device(dev, mddev->major_version,
5868                                                 mddev->minor_version);
5869                 else
5870                         rdev = md_import_device(dev, -1, -1);
5871                 if (IS_ERR(rdev)) {
5872                         printk(KERN_WARNING
5873                                 "md: md_import_device returned %ld\n",
5874                                 PTR_ERR(rdev));
5875                         return PTR_ERR(rdev);
5876                 }
5877                 /* set saved_raid_disk if appropriate */
5878                 if (!mddev->persistent) {
5879                         if (info->state & (1<<MD_DISK_SYNC)  &&
5880                             info->raid_disk < mddev->raid_disks) {
5881                                 rdev->raid_disk = info->raid_disk;
5882                                 set_bit(In_sync, &rdev->flags);
5883                                 clear_bit(Bitmap_sync, &rdev->flags);
5884                         } else
5885                                 rdev->raid_disk = -1;
5886                         rdev->saved_raid_disk = rdev->raid_disk;
5887                 } else
5888                         super_types[mddev->major_version].
5889                                 validate_super(mddev, rdev);
5890                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5891                      rdev->raid_disk != info->raid_disk) {
5892                         /* This was a hot-add request, but events doesn't
5893                          * match, so reject it.
5894                          */
5895                         export_rdev(rdev);
5896                         return -EINVAL;
5897                 }
5898
5899                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5900                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5901                         set_bit(WriteMostly, &rdev->flags);
5902                 else
5903                         clear_bit(WriteMostly, &rdev->flags);
5904
5905                 /*
5906                  * check whether the device shows up in other nodes
5907                  */
5908                 if (mddev_is_clustered(mddev)) {
5909                         if (info->state & (1 << MD_DISK_CANDIDATE)) {
5910                                 /* Through --cluster-confirm */
5911                                 set_bit(Candidate, &rdev->flags);
5912                                 err = md_cluster_ops->new_disk_ack(mddev, true);
5913                                 if (err) {
5914                                         export_rdev(rdev);
5915                                         return err;
5916                                 }
5917                         } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5918                                 /* --add initiated by this node */
5919                                 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5920                                 if (err) {
5921                                         md_cluster_ops->add_new_disk_finish(mddev);
5922                                         export_rdev(rdev);
5923                                         return err;
5924                                 }
5925                         }
5926                 }
5927
5928                 rdev->raid_disk = -1;
5929                 err = bind_rdev_to_array(rdev, mddev);
5930                 if (err)
5931                         export_rdev(rdev);
5932                 else
5933                         err = add_bound_rdev(rdev);
5934                 if (mddev_is_clustered(mddev) &&
5935                                 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5936                         md_cluster_ops->add_new_disk_finish(mddev);
5937                 return err;
5938         }
5939
5940         /* otherwise, add_new_disk is only allowed
5941          * for major_version==0 superblocks
5942          */
5943         if (mddev->major_version != 0) {
5944                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5945                        mdname(mddev));
5946                 return -EINVAL;
5947         }
5948
5949         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5950                 int err;
5951                 rdev = md_import_device(dev, -1, 0);
5952                 if (IS_ERR(rdev)) {
5953                         printk(KERN_WARNING
5954                                 "md: error, md_import_device() returned %ld\n",
5955                                 PTR_ERR(rdev));
5956                         return PTR_ERR(rdev);
5957                 }
5958                 rdev->desc_nr = info->number;
5959                 if (info->raid_disk < mddev->raid_disks)
5960                         rdev->raid_disk = info->raid_disk;
5961                 else
5962                         rdev->raid_disk = -1;
5963
5964                 if (rdev->raid_disk < mddev->raid_disks)
5965                         if (info->state & (1<<MD_DISK_SYNC))
5966                                 set_bit(In_sync, &rdev->flags);
5967
5968                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5969                         set_bit(WriteMostly, &rdev->flags);
5970
5971                 if (!mddev->persistent) {
5972                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5973                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5974                 } else
5975                         rdev->sb_start = calc_dev_sboffset(rdev);
5976                 rdev->sectors = rdev->sb_start;
5977
5978                 err = bind_rdev_to_array(rdev, mddev);
5979                 if (err) {
5980                         export_rdev(rdev);
5981                         return err;
5982                 }
5983         }
5984
5985         return 0;
5986 }
5987
5988 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5989 {
5990         char b[BDEVNAME_SIZE];
5991         struct md_rdev *rdev;
5992
5993         rdev = find_rdev(mddev, dev);
5994         if (!rdev)
5995                 return -ENXIO;
5996
5997         if (mddev_is_clustered(mddev))
5998                 md_cluster_ops->metadata_update_start(mddev);
5999
6000         clear_bit(Blocked, &rdev->flags);
6001         remove_and_add_spares(mddev, rdev);
6002
6003         if (rdev->raid_disk >= 0)
6004                 goto busy;
6005
6006         if (mddev_is_clustered(mddev))
6007                 md_cluster_ops->remove_disk(mddev, rdev);
6008
6009         md_kick_rdev_from_array(rdev);
6010         md_update_sb(mddev, 1);
6011         md_new_event(mddev);
6012
6013         if (mddev_is_clustered(mddev))
6014                 md_cluster_ops->metadata_update_finish(mddev);
6015
6016         return 0;
6017 busy:
6018         if (mddev_is_clustered(mddev))
6019                 md_cluster_ops->metadata_update_cancel(mddev);
6020         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6021                 bdevname(rdev->bdev,b), mdname(mddev));
6022         return -EBUSY;
6023 }
6024
6025 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6026 {
6027         char b[BDEVNAME_SIZE];
6028         int err;
6029         struct md_rdev *rdev;
6030
6031         if (!mddev->pers)
6032                 return -ENODEV;
6033
6034         if (mddev->major_version != 0) {
6035                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6036                         " version-0 superblocks.\n",
6037                         mdname(mddev));
6038                 return -EINVAL;
6039         }
6040         if (!mddev->pers->hot_add_disk) {
6041                 printk(KERN_WARNING
6042                         "%s: personality does not support diskops!\n",
6043                         mdname(mddev));
6044                 return -EINVAL;
6045         }
6046
6047         rdev = md_import_device(dev, -1, 0);
6048         if (IS_ERR(rdev)) {
6049                 printk(KERN_WARNING
6050                         "md: error, md_import_device() returned %ld\n",
6051                         PTR_ERR(rdev));
6052                 return -EINVAL;
6053         }
6054
6055         if (mddev->persistent)
6056                 rdev->sb_start = calc_dev_sboffset(rdev);
6057         else
6058                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6059
6060         rdev->sectors = rdev->sb_start;
6061
6062         if (test_bit(Faulty, &rdev->flags)) {
6063                 printk(KERN_WARNING
6064                         "md: can not hot-add faulty %s disk to %s!\n",
6065                         bdevname(rdev->bdev,b), mdname(mddev));
6066                 err = -EINVAL;
6067                 goto abort_export;
6068         }
6069
6070         if (mddev_is_clustered(mddev))
6071                 md_cluster_ops->metadata_update_start(mddev);
6072         clear_bit(In_sync, &rdev->flags);
6073         rdev->desc_nr = -1;
6074         rdev->saved_raid_disk = -1;
6075         err = bind_rdev_to_array(rdev, mddev);
6076         if (err)
6077                 goto abort_clustered;
6078
6079         /*
6080          * The rest should better be atomic, we can have disk failures
6081          * noticed in interrupt contexts ...
6082          */
6083
6084         rdev->raid_disk = -1;
6085
6086         md_update_sb(mddev, 1);
6087
6088         if (mddev_is_clustered(mddev))
6089                 md_cluster_ops->metadata_update_finish(mddev);
6090         /*
6091          * Kick recovery, maybe this spare has to be added to the
6092          * array immediately.
6093          */
6094         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6095         md_wakeup_thread(mddev->thread);
6096         md_new_event(mddev);
6097         return 0;
6098
6099 abort_clustered:
6100         if (mddev_is_clustered(mddev))
6101                 md_cluster_ops->metadata_update_cancel(mddev);
6102 abort_export:
6103         export_rdev(rdev);
6104         return err;
6105 }
6106
6107 static int set_bitmap_file(struct mddev *mddev, int fd)
6108 {
6109         int err = 0;
6110
6111         if (mddev->pers) {
6112                 if (!mddev->pers->quiesce || !mddev->thread)
6113                         return -EBUSY;
6114                 if (mddev->recovery || mddev->sync_thread)
6115                         return -EBUSY;
6116                 /* we should be able to change the bitmap.. */
6117         }
6118
6119         if (fd >= 0) {
6120                 struct inode *inode;
6121                 struct file *f;
6122
6123                 if (mddev->bitmap || mddev->bitmap_info.file)
6124                         return -EEXIST; /* cannot add when bitmap is present */
6125                 f = fget(fd);
6126
6127                 if (f == NULL) {
6128                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6129                                mdname(mddev));
6130                         return -EBADF;
6131                 }
6132
6133                 inode = f->f_mapping->host;
6134                 if (!S_ISREG(inode->i_mode)) {
6135                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6136                                mdname(mddev));
6137                         err = -EBADF;
6138                 } else if (!(f->f_mode & FMODE_WRITE)) {
6139                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6140                                mdname(mddev));
6141                         err = -EBADF;
6142                 } else if (atomic_read(&inode->i_writecount) != 1) {
6143                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6144                                mdname(mddev));
6145                         err = -EBUSY;
6146                 }
6147                 if (err) {
6148                         fput(f);
6149                         return err;
6150                 }
6151                 mddev->bitmap_info.file = f;
6152                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6153         } else if (mddev->bitmap == NULL)
6154                 return -ENOENT; /* cannot remove what isn't there */
6155         err = 0;
6156         if (mddev->pers) {
6157                 mddev->pers->quiesce(mddev, 1);
6158                 if (fd >= 0) {
6159                         struct bitmap *bitmap;
6160
6161                         bitmap = bitmap_create(mddev, -1);
6162                         if (!IS_ERR(bitmap)) {
6163                                 mddev->bitmap = bitmap;
6164                                 err = bitmap_load(mddev);
6165                         } else
6166                                 err = PTR_ERR(bitmap);
6167                 }
6168                 if (fd < 0 || err) {
6169                         bitmap_destroy(mddev);
6170                         fd = -1; /* make sure to put the file */
6171                 }
6172                 mddev->pers->quiesce(mddev, 0);
6173         }
6174         if (fd < 0) {
6175                 struct file *f = mddev->bitmap_info.file;
6176                 if (f) {
6177                         spin_lock(&mddev->lock);
6178                         mddev->bitmap_info.file = NULL;
6179                         spin_unlock(&mddev->lock);
6180                         fput(f);
6181                 }
6182         }
6183
6184         return err;
6185 }
6186
6187 /*
6188  * set_array_info is used two different ways
6189  * The original usage is when creating a new array.
6190  * In this usage, raid_disks is > 0 and it together with
6191  *  level, size, not_persistent,layout,chunksize determine the
6192  *  shape of the array.
6193  *  This will always create an array with a type-0.90.0 superblock.
6194  * The newer usage is when assembling an array.
6195  *  In this case raid_disks will be 0, and the major_version field is
6196  *  use to determine which style super-blocks are to be found on the devices.
6197  *  The minor and patch _version numbers are also kept incase the
6198  *  super_block handler wishes to interpret them.
6199  */
6200 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6201 {
6202
6203         if (info->raid_disks == 0) {
6204                 /* just setting version number for superblock loading */
6205                 if (info->major_version < 0 ||
6206                     info->major_version >= ARRAY_SIZE(super_types) ||
6207                     super_types[info->major_version].name == NULL) {
6208                         /* maybe try to auto-load a module? */
6209                         printk(KERN_INFO
6210                                 "md: superblock version %d not known\n",
6211                                 info->major_version);
6212                         return -EINVAL;
6213                 }
6214                 mddev->major_version = info->major_version;
6215                 mddev->minor_version = info->minor_version;
6216                 mddev->patch_version = info->patch_version;
6217                 mddev->persistent = !info->not_persistent;
6218                 /* ensure mddev_put doesn't delete this now that there
6219                  * is some minimal configuration.
6220                  */
6221                 mddev->ctime         = get_seconds();
6222                 return 0;
6223         }
6224         mddev->major_version = MD_MAJOR_VERSION;
6225         mddev->minor_version = MD_MINOR_VERSION;
6226         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6227         mddev->ctime         = get_seconds();
6228
6229         mddev->level         = info->level;
6230         mddev->clevel[0]     = 0;
6231         mddev->dev_sectors   = 2 * (sector_t)info->size;
6232         mddev->raid_disks    = info->raid_disks;
6233         /* don't set md_minor, it is determined by which /dev/md* was
6234          * openned
6235          */
6236         if (info->state & (1<<MD_SB_CLEAN))
6237                 mddev->recovery_cp = MaxSector;
6238         else
6239                 mddev->recovery_cp = 0;
6240         mddev->persistent    = ! info->not_persistent;
6241         mddev->external      = 0;
6242
6243         mddev->layout        = info->layout;
6244         mddev->chunk_sectors = info->chunk_size >> 9;
6245
6246         mddev->max_disks     = MD_SB_DISKS;
6247
6248         if (mddev->persistent)
6249                 mddev->flags         = 0;
6250         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6251
6252         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6253         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6254         mddev->bitmap_info.offset = 0;
6255
6256         mddev->reshape_position = MaxSector;
6257
6258         /*
6259          * Generate a 128 bit UUID
6260          */
6261         get_random_bytes(mddev->uuid, 16);
6262
6263         mddev->new_level = mddev->level;
6264         mddev->new_chunk_sectors = mddev->chunk_sectors;
6265         mddev->new_layout = mddev->layout;
6266         mddev->delta_disks = 0;
6267         mddev->reshape_backwards = 0;
6268
6269         return 0;
6270 }
6271
6272 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6273 {
6274         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6275
6276         if (mddev->external_size)
6277                 return;
6278
6279         mddev->array_sectors = array_sectors;
6280 }
6281 EXPORT_SYMBOL(md_set_array_sectors);
6282
6283 static int update_size(struct mddev *mddev, sector_t num_sectors)
6284 {
6285         struct md_rdev *rdev;
6286         int rv;
6287         int fit = (num_sectors == 0);
6288
6289         if (mddev->pers->resize == NULL)
6290                 return -EINVAL;
6291         /* The "num_sectors" is the number of sectors of each device that
6292          * is used.  This can only make sense for arrays with redundancy.
6293          * linear and raid0 always use whatever space is available. We can only
6294          * consider changing this number if no resync or reconstruction is
6295          * happening, and if the new size is acceptable. It must fit before the
6296          * sb_start or, if that is <data_offset, it must fit before the size
6297          * of each device.  If num_sectors is zero, we find the largest size
6298          * that fits.
6299          */
6300         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6301             mddev->sync_thread)
6302                 return -EBUSY;
6303         if (mddev->ro)
6304                 return -EROFS;
6305
6306         rdev_for_each(rdev, mddev) {
6307                 sector_t avail = rdev->sectors;
6308
6309                 if (fit && (num_sectors == 0 || num_sectors > avail))
6310                         num_sectors = avail;
6311                 if (avail < num_sectors)
6312                         return -ENOSPC;
6313         }
6314         rv = mddev->pers->resize(mddev, num_sectors);
6315         if (!rv)
6316                 revalidate_disk(mddev->gendisk);
6317         return rv;
6318 }
6319
6320 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6321 {
6322         int rv;
6323         struct md_rdev *rdev;
6324         /* change the number of raid disks */
6325         if (mddev->pers->check_reshape == NULL)
6326                 return -EINVAL;
6327         if (mddev->ro)
6328                 return -EROFS;
6329         if (raid_disks <= 0 ||
6330             (mddev->max_disks && raid_disks >= mddev->max_disks))
6331                 return -EINVAL;
6332         if (mddev->sync_thread ||
6333             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6334             mddev->reshape_position != MaxSector)
6335                 return -EBUSY;
6336
6337         rdev_for_each(rdev, mddev) {
6338                 if (mddev->raid_disks < raid_disks &&
6339                     rdev->data_offset < rdev->new_data_offset)
6340                         return -EINVAL;
6341                 if (mddev->raid_disks > raid_disks &&
6342                     rdev->data_offset > rdev->new_data_offset)
6343                         return -EINVAL;
6344         }
6345
6346         mddev->delta_disks = raid_disks - mddev->raid_disks;
6347         if (mddev->delta_disks < 0)
6348                 mddev->reshape_backwards = 1;
6349         else if (mddev->delta_disks > 0)
6350                 mddev->reshape_backwards = 0;
6351
6352         rv = mddev->pers->check_reshape(mddev);
6353         if (rv < 0) {
6354                 mddev->delta_disks = 0;
6355                 mddev->reshape_backwards = 0;
6356         }
6357         return rv;
6358 }
6359
6360 /*
6361  * update_array_info is used to change the configuration of an
6362  * on-line array.
6363  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6364  * fields in the info are checked against the array.
6365  * Any differences that cannot be handled will cause an error.
6366  * Normally, only one change can be managed at a time.
6367  */
6368 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6369 {
6370         int rv = 0;
6371         int cnt = 0;
6372         int state = 0;
6373
6374         /* calculate expected state,ignoring low bits */
6375         if (mddev->bitmap && mddev->bitmap_info.offset)
6376                 state |= (1 << MD_SB_BITMAP_PRESENT);
6377
6378         if (mddev->major_version != info->major_version ||
6379             mddev->minor_version != info->minor_version ||
6380 /*          mddev->patch_version != info->patch_version || */
6381             mddev->ctime         != info->ctime         ||
6382             mddev->level         != info->level         ||
6383 /*          mddev->layout        != info->layout        || */
6384             !mddev->persistent   != info->not_persistent||
6385             mddev->chunk_sectors != info->chunk_size >> 9 ||
6386             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6387             ((state^info->state) & 0xfffffe00)
6388                 )
6389                 return -EINVAL;
6390         /* Check there is only one change */
6391         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6392                 cnt++;
6393         if (mddev->raid_disks != info->raid_disks)
6394                 cnt++;
6395         if (mddev->layout != info->layout)
6396                 cnt++;
6397         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6398                 cnt++;
6399         if (cnt == 0)
6400                 return 0;
6401         if (cnt > 1)
6402                 return -EINVAL;
6403
6404         if (mddev->layout != info->layout) {
6405                 /* Change layout
6406                  * we don't need to do anything at the md level, the
6407                  * personality will take care of it all.
6408                  */
6409                 if (mddev->pers->check_reshape == NULL)
6410                         return -EINVAL;
6411                 else {
6412                         mddev->new_layout = info->layout;
6413                         rv = mddev->pers->check_reshape(mddev);
6414                         if (rv)
6415                                 mddev->new_layout = mddev->layout;
6416                         return rv;
6417                 }
6418         }
6419         if (mddev_is_clustered(mddev))
6420                 md_cluster_ops->metadata_update_start(mddev);
6421         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6422                 rv = update_size(mddev, (sector_t)info->size * 2);
6423
6424         if (mddev->raid_disks    != info->raid_disks)
6425                 rv = update_raid_disks(mddev, info->raid_disks);
6426
6427         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6428                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6429                         rv = -EINVAL;
6430                         goto err;
6431                 }
6432                 if (mddev->recovery || mddev->sync_thread) {
6433                         rv = -EBUSY;
6434                         goto err;
6435                 }
6436                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6437                         struct bitmap *bitmap;
6438                         /* add the bitmap */
6439                         if (mddev->bitmap) {
6440                                 rv = -EEXIST;
6441                                 goto err;
6442                         }
6443                         if (mddev->bitmap_info.default_offset == 0) {
6444                                 rv = -EINVAL;
6445                                 goto err;
6446                         }
6447                         mddev->bitmap_info.offset =
6448                                 mddev->bitmap_info.default_offset;
6449                         mddev->bitmap_info.space =
6450                                 mddev->bitmap_info.default_space;
6451                         mddev->pers->quiesce(mddev, 1);
6452                         bitmap = bitmap_create(mddev, -1);
6453                         if (!IS_ERR(bitmap)) {
6454                                 mddev->bitmap = bitmap;
6455                                 rv = bitmap_load(mddev);
6456                         } else
6457                                 rv = PTR_ERR(bitmap);
6458                         if (rv)
6459                                 bitmap_destroy(mddev);
6460                         mddev->pers->quiesce(mddev, 0);
6461                 } else {
6462                         /* remove the bitmap */
6463                         if (!mddev->bitmap) {
6464                                 rv = -ENOENT;
6465                                 goto err;
6466                         }
6467                         if (mddev->bitmap->storage.file) {
6468                                 rv = -EINVAL;
6469                                 goto err;
6470                         }
6471                         mddev->pers->quiesce(mddev, 1);
6472                         bitmap_destroy(mddev);
6473                         mddev->pers->quiesce(mddev, 0);
6474                         mddev->bitmap_info.offset = 0;
6475                 }
6476         }
6477         md_update_sb(mddev, 1);
6478         if (mddev_is_clustered(mddev))
6479                 md_cluster_ops->metadata_update_finish(mddev);
6480         return rv;
6481 err:
6482         if (mddev_is_clustered(mddev))
6483                 md_cluster_ops->metadata_update_cancel(mddev);
6484         return rv;
6485 }
6486
6487 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6488 {
6489         struct md_rdev *rdev;
6490         int err = 0;
6491
6492         if (mddev->pers == NULL)
6493                 return -ENODEV;
6494
6495         rcu_read_lock();
6496         rdev = find_rdev_rcu(mddev, dev);
6497         if (!rdev)
6498                 err =  -ENODEV;
6499         else {
6500                 md_error(mddev, rdev);
6501                 if (!test_bit(Faulty, &rdev->flags))
6502                         err = -EBUSY;
6503         }
6504         rcu_read_unlock();
6505         return err;
6506 }
6507
6508 /*
6509  * We have a problem here : there is no easy way to give a CHS
6510  * virtual geometry. We currently pretend that we have a 2 heads
6511  * 4 sectors (with a BIG number of cylinders...). This drives
6512  * dosfs just mad... ;-)
6513  */
6514 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6515 {
6516         struct mddev *mddev = bdev->bd_disk->private_data;
6517
6518         geo->heads = 2;
6519         geo->sectors = 4;
6520         geo->cylinders = mddev->array_sectors / 8;
6521         return 0;
6522 }
6523
6524 static inline bool md_ioctl_valid(unsigned int cmd)
6525 {
6526         switch (cmd) {
6527         case ADD_NEW_DISK:
6528         case BLKROSET:
6529         case GET_ARRAY_INFO:
6530         case GET_BITMAP_FILE:
6531         case GET_DISK_INFO:
6532         case HOT_ADD_DISK:
6533         case HOT_REMOVE_DISK:
6534         case RAID_AUTORUN:
6535         case RAID_VERSION:
6536         case RESTART_ARRAY_RW:
6537         case RUN_ARRAY:
6538         case SET_ARRAY_INFO:
6539         case SET_BITMAP_FILE:
6540         case SET_DISK_FAULTY:
6541         case STOP_ARRAY:
6542         case STOP_ARRAY_RO:
6543         case CLUSTERED_DISK_NACK:
6544                 return true;
6545         default:
6546                 return false;
6547         }
6548 }
6549
6550 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6551                         unsigned int cmd, unsigned long arg)
6552 {
6553         int err = 0;
6554         void __user *argp = (void __user *)arg;
6555         struct mddev *mddev = NULL;
6556         int ro;
6557
6558         if (!md_ioctl_valid(cmd))
6559                 return -ENOTTY;
6560
6561         switch (cmd) {
6562         case RAID_VERSION:
6563         case GET_ARRAY_INFO:
6564         case GET_DISK_INFO:
6565                 break;
6566         default:
6567                 if (!capable(CAP_SYS_ADMIN))
6568                         return -EACCES;
6569         }
6570
6571         /*
6572          * Commands dealing with the RAID driver but not any
6573          * particular array:
6574          */
6575         switch (cmd) {
6576         case RAID_VERSION:
6577                 err = get_version(argp);
6578                 goto out;
6579
6580 #ifndef MODULE
6581         case RAID_AUTORUN:
6582                 err = 0;
6583                 autostart_arrays(arg);
6584                 goto out;
6585 #endif
6586         default:;
6587         }
6588
6589         /*
6590          * Commands creating/starting a new array:
6591          */
6592
6593         mddev = bdev->bd_disk->private_data;
6594
6595         if (!mddev) {
6596                 BUG();
6597                 goto out;
6598         }
6599
6600         /* Some actions do not requires the mutex */
6601         switch (cmd) {
6602         case GET_ARRAY_INFO:
6603                 if (!mddev->raid_disks && !mddev->external)
6604                         err = -ENODEV;
6605                 else
6606                         err = get_array_info(mddev, argp);
6607                 goto out;
6608
6609         case GET_DISK_INFO:
6610                 if (!mddev->raid_disks && !mddev->external)
6611                         err = -ENODEV;
6612                 else
6613                         err = get_disk_info(mddev, argp);
6614                 goto out;
6615
6616         case SET_DISK_FAULTY:
6617                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6618                 goto out;
6619
6620         case GET_BITMAP_FILE:
6621                 err = get_bitmap_file(mddev, argp);
6622                 goto out;
6623
6624         }
6625
6626         if (cmd == ADD_NEW_DISK)
6627                 /* need to ensure md_delayed_delete() has completed */
6628                 flush_workqueue(md_misc_wq);
6629
6630         if (cmd == HOT_REMOVE_DISK)
6631                 /* need to ensure recovery thread has run */
6632                 wait_event_interruptible_timeout(mddev->sb_wait,
6633                                                  !test_bit(MD_RECOVERY_NEEDED,
6634                                                            &mddev->flags),
6635                                                  msecs_to_jiffies(5000));
6636         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6637                 /* Need to flush page cache, and ensure no-one else opens
6638                  * and writes
6639                  */
6640                 mutex_lock(&mddev->open_mutex);
6641                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6642                         mutex_unlock(&mddev->open_mutex);
6643                         err = -EBUSY;
6644                         goto out;
6645                 }
6646                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6647                 mutex_unlock(&mddev->open_mutex);
6648                 sync_blockdev(bdev);
6649         }
6650         err = mddev_lock(mddev);
6651         if (err) {
6652                 printk(KERN_INFO
6653                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6654                         err, cmd);
6655                 goto out;
6656         }
6657
6658         if (cmd == SET_ARRAY_INFO) {
6659                 mdu_array_info_t info;
6660                 if (!arg)
6661                         memset(&info, 0, sizeof(info));
6662                 else if (copy_from_user(&info, argp, sizeof(info))) {
6663                         err = -EFAULT;
6664                         goto unlock;
6665                 }
6666                 if (mddev->pers) {
6667                         err = update_array_info(mddev, &info);
6668                         if (err) {
6669                                 printk(KERN_WARNING "md: couldn't update"
6670                                        " array info. %d\n", err);
6671                                 goto unlock;
6672                         }
6673                         goto unlock;
6674                 }
6675                 if (!list_empty(&mddev->disks)) {
6676                         printk(KERN_WARNING
6677                                "md: array %s already has disks!\n",
6678                                mdname(mddev));
6679                         err = -EBUSY;
6680                         goto unlock;
6681                 }
6682                 if (mddev->raid_disks) {
6683                         printk(KERN_WARNING
6684                                "md: array %s already initialised!\n",
6685                                mdname(mddev));
6686                         err = -EBUSY;
6687                         goto unlock;
6688                 }
6689                 err = set_array_info(mddev, &info);
6690                 if (err) {
6691                         printk(KERN_WARNING "md: couldn't set"
6692                                " array info. %d\n", err);
6693                         goto unlock;
6694                 }
6695                 goto unlock;
6696         }
6697
6698         /*
6699          * Commands querying/configuring an existing array:
6700          */
6701         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6702          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6703         if ((!mddev->raid_disks && !mddev->external)
6704             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6705             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6706             && cmd != GET_BITMAP_FILE) {
6707                 err = -ENODEV;
6708                 goto unlock;
6709         }
6710
6711         /*
6712          * Commands even a read-only array can execute:
6713          */
6714         switch (cmd) {
6715         case RESTART_ARRAY_RW:
6716                 err = restart_array(mddev);
6717                 goto unlock;
6718
6719         case STOP_ARRAY:
6720                 err = do_md_stop(mddev, 0, bdev);
6721                 goto unlock;
6722
6723         case STOP_ARRAY_RO:
6724                 err = md_set_readonly(mddev, bdev);
6725                 goto unlock;
6726
6727         case HOT_REMOVE_DISK:
6728                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6729                 goto unlock;
6730
6731         case ADD_NEW_DISK:
6732                 /* We can support ADD_NEW_DISK on read-only arrays
6733                  * on if we are re-adding a preexisting device.
6734                  * So require mddev->pers and MD_DISK_SYNC.
6735                  */
6736                 if (mddev->pers) {
6737                         mdu_disk_info_t info;
6738                         if (copy_from_user(&info, argp, sizeof(info)))
6739                                 err = -EFAULT;
6740                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6741                                 /* Need to clear read-only for this */
6742                                 break;
6743                         else
6744                                 err = add_new_disk(mddev, &info);
6745                         goto unlock;
6746                 }
6747                 break;
6748
6749         case BLKROSET:
6750                 if (get_user(ro, (int __user *)(arg))) {
6751                         err = -EFAULT;
6752                         goto unlock;
6753                 }
6754                 err = -EINVAL;
6755
6756                 /* if the bdev is going readonly the value of mddev->ro
6757                  * does not matter, no writes are coming
6758                  */
6759                 if (ro)
6760                         goto unlock;
6761
6762                 /* are we are already prepared for writes? */
6763                 if (mddev->ro != 1)
6764                         goto unlock;
6765
6766                 /* transitioning to readauto need only happen for
6767                  * arrays that call md_write_start
6768                  */
6769                 if (mddev->pers) {
6770                         err = restart_array(mddev);
6771                         if (err == 0) {
6772                                 mddev->ro = 2;
6773                                 set_disk_ro(mddev->gendisk, 0);
6774                         }
6775                 }
6776                 goto unlock;
6777         }
6778
6779         /*
6780          * The remaining ioctls are changing the state of the
6781          * superblock, so we do not allow them on read-only arrays.
6782          */
6783         if (mddev->ro && mddev->pers) {
6784                 if (mddev->ro == 2) {
6785                         mddev->ro = 0;
6786                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6787                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6788                         /* mddev_unlock will wake thread */
6789                         /* If a device failed while we were read-only, we
6790                          * need to make sure the metadata is updated now.
6791                          */
6792                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6793                                 mddev_unlock(mddev);
6794                                 wait_event(mddev->sb_wait,
6795                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6796                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6797                                 mddev_lock_nointr(mddev);
6798                         }
6799                 } else {
6800                         err = -EROFS;
6801                         goto unlock;
6802                 }
6803         }
6804
6805         switch (cmd) {
6806         case ADD_NEW_DISK:
6807         {
6808                 mdu_disk_info_t info;
6809                 if (copy_from_user(&info, argp, sizeof(info)))
6810                         err = -EFAULT;
6811                 else
6812                         err = add_new_disk(mddev, &info);
6813                 goto unlock;
6814         }
6815
6816         case CLUSTERED_DISK_NACK:
6817                 if (mddev_is_clustered(mddev))
6818                         md_cluster_ops->new_disk_ack(mddev, false);
6819                 else
6820                         err = -EINVAL;
6821                 goto unlock;
6822
6823         case HOT_ADD_DISK:
6824                 err = hot_add_disk(mddev, new_decode_dev(arg));
6825                 goto unlock;
6826
6827         case RUN_ARRAY:
6828                 err = do_md_run(mddev);
6829                 goto unlock;
6830
6831         case SET_BITMAP_FILE:
6832                 err = set_bitmap_file(mddev, (int)arg);
6833                 goto unlock;
6834
6835         default:
6836                 err = -EINVAL;
6837                 goto unlock;
6838         }
6839
6840 unlock:
6841         if (mddev->hold_active == UNTIL_IOCTL &&
6842             err != -EINVAL)
6843                 mddev->hold_active = 0;
6844         mddev_unlock(mddev);
6845 out:
6846         return err;
6847 }
6848 #ifdef CONFIG_COMPAT
6849 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6850                     unsigned int cmd, unsigned long arg)
6851 {
6852         switch (cmd) {
6853         case HOT_REMOVE_DISK:
6854         case HOT_ADD_DISK:
6855         case SET_DISK_FAULTY:
6856         case SET_BITMAP_FILE:
6857                 /* These take in integer arg, do not convert */
6858                 break;
6859         default:
6860                 arg = (unsigned long)compat_ptr(arg);
6861                 break;
6862         }
6863
6864         return md_ioctl(bdev, mode, cmd, arg);
6865 }
6866 #endif /* CONFIG_COMPAT */
6867
6868 static int md_open(struct block_device *bdev, fmode_t mode)
6869 {
6870         /*
6871          * Succeed if we can lock the mddev, which confirms that
6872          * it isn't being stopped right now.
6873          */
6874         struct mddev *mddev = mddev_find(bdev->bd_dev);
6875         int err;
6876
6877         if (!mddev)
6878                 return -ENODEV;
6879
6880         if (mddev->gendisk != bdev->bd_disk) {
6881                 /* we are racing with mddev_put which is discarding this
6882                  * bd_disk.
6883                  */
6884                 mddev_put(mddev);
6885                 /* Wait until bdev->bd_disk is definitely gone */
6886                 flush_workqueue(md_misc_wq);
6887                 /* Then retry the open from the top */
6888                 return -ERESTARTSYS;
6889         }
6890         BUG_ON(mddev != bdev->bd_disk->private_data);
6891
6892         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6893                 goto out;
6894
6895         err = 0;
6896         atomic_inc(&mddev->openers);
6897         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6898         mutex_unlock(&mddev->open_mutex);
6899
6900         check_disk_change(bdev);
6901  out:
6902         return err;
6903 }
6904
6905 static void md_release(struct gendisk *disk, fmode_t mode)
6906 {
6907         struct mddev *mddev = disk->private_data;
6908
6909         BUG_ON(!mddev);
6910         atomic_dec(&mddev->openers);
6911         mddev_put(mddev);
6912 }
6913
6914 static int md_media_changed(struct gendisk *disk)
6915 {
6916         struct mddev *mddev = disk->private_data;
6917
6918         return mddev->changed;
6919 }
6920
6921 static int md_revalidate(struct gendisk *disk)
6922 {
6923         struct mddev *mddev = disk->private_data;
6924
6925         mddev->changed = 0;
6926         return 0;
6927 }
6928 static const struct block_device_operations md_fops =
6929 {
6930         .owner          = THIS_MODULE,
6931         .open           = md_open,
6932         .release        = md_release,
6933         .ioctl          = md_ioctl,
6934 #ifdef CONFIG_COMPAT
6935         .compat_ioctl   = md_compat_ioctl,
6936 #endif
6937         .getgeo         = md_getgeo,
6938         .media_changed  = md_media_changed,
6939         .revalidate_disk= md_revalidate,
6940 };
6941
6942 static int md_thread(void *arg)
6943 {
6944         struct md_thread *thread = arg;
6945
6946         /*
6947          * md_thread is a 'system-thread', it's priority should be very
6948          * high. We avoid resource deadlocks individually in each
6949          * raid personality. (RAID5 does preallocation) We also use RR and
6950          * the very same RT priority as kswapd, thus we will never get
6951          * into a priority inversion deadlock.
6952          *
6953          * we definitely have to have equal or higher priority than
6954          * bdflush, otherwise bdflush will deadlock if there are too
6955          * many dirty RAID5 blocks.
6956          */
6957
6958         allow_signal(SIGKILL);
6959         while (!kthread_should_stop()) {
6960
6961                 /* We need to wait INTERRUPTIBLE so that
6962                  * we don't add to the load-average.
6963                  * That means we need to be sure no signals are
6964                  * pending
6965                  */
6966                 if (signal_pending(current))
6967                         flush_signals(current);
6968
6969                 wait_event_interruptible_timeout
6970                         (thread->wqueue,
6971                          test_bit(THREAD_WAKEUP, &thread->flags)
6972                          || kthread_should_stop(),
6973                          thread->timeout);
6974
6975                 clear_bit(THREAD_WAKEUP, &thread->flags);
6976                 if (!kthread_should_stop())
6977                         thread->run(thread);
6978         }
6979
6980         return 0;
6981 }
6982
6983 void md_wakeup_thread(struct md_thread *thread)
6984 {
6985         if (thread) {
6986                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6987                 set_bit(THREAD_WAKEUP, &thread->flags);
6988                 wake_up(&thread->wqueue);
6989         }
6990 }
6991 EXPORT_SYMBOL(md_wakeup_thread);
6992
6993 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6994                 struct mddev *mddev, const char *name)
6995 {
6996         struct md_thread *thread;
6997
6998         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6999         if (!thread)
7000                 return NULL;
7001
7002         init_waitqueue_head(&thread->wqueue);
7003
7004         thread->run = run;
7005         thread->mddev = mddev;
7006         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7007         thread->tsk = kthread_run(md_thread, thread,
7008                                   "%s_%s",
7009                                   mdname(thread->mddev),
7010                                   name);
7011         if (IS_ERR(thread->tsk)) {
7012                 kfree(thread);
7013                 return NULL;
7014         }
7015         return thread;
7016 }
7017 EXPORT_SYMBOL(md_register_thread);
7018
7019 void md_unregister_thread(struct md_thread **threadp)
7020 {
7021         struct md_thread *thread = *threadp;
7022         if (!thread)
7023                 return;
7024         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7025         /* Locking ensures that mddev_unlock does not wake_up a
7026          * non-existent thread
7027          */
7028         spin_lock(&pers_lock);
7029         *threadp = NULL;
7030         spin_unlock(&pers_lock);
7031
7032         kthread_stop(thread->tsk);
7033         kfree(thread);
7034 }
7035 EXPORT_SYMBOL(md_unregister_thread);
7036
7037 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7038 {
7039         if (!rdev || test_bit(Faulty, &rdev->flags))
7040                 return;
7041
7042         if (!mddev->pers || !mddev->pers->error_handler)
7043                 return;
7044         mddev->pers->error_handler(mddev,rdev);
7045         if (mddev->degraded)
7046                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7047         sysfs_notify_dirent_safe(rdev->sysfs_state);
7048         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7049         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7050         md_wakeup_thread(mddev->thread);
7051         if (mddev->event_work.func)
7052                 queue_work(md_misc_wq, &mddev->event_work);
7053         md_new_event_inintr(mddev);
7054 }
7055 EXPORT_SYMBOL(md_error);
7056
7057 /* seq_file implementation /proc/mdstat */
7058
7059 static void status_unused(struct seq_file *seq)
7060 {
7061         int i = 0;
7062         struct md_rdev *rdev;
7063
7064         seq_printf(seq, "unused devices: ");
7065
7066         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7067                 char b[BDEVNAME_SIZE];
7068                 i++;
7069                 seq_printf(seq, "%s ",
7070                               bdevname(rdev->bdev,b));
7071         }
7072         if (!i)
7073                 seq_printf(seq, "<none>");
7074
7075         seq_printf(seq, "\n");
7076 }
7077
7078 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7079 {
7080         sector_t max_sectors, resync, res;
7081         unsigned long dt, db;
7082         sector_t rt;
7083         int scale;
7084         unsigned int per_milli;
7085
7086         if (mddev->curr_resync <= 3)
7087                 resync = 0;
7088         else
7089                 resync = mddev->curr_resync
7090                         - atomic_read(&mddev->recovery_active);
7091
7092         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7093             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7094                 max_sectors = mddev->resync_max_sectors;
7095         else
7096                 max_sectors = mddev->dev_sectors;
7097
7098         WARN_ON(max_sectors == 0);
7099         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7100          * in a sector_t, and (max_sectors>>scale) will fit in a
7101          * u32, as those are the requirements for sector_div.
7102          * Thus 'scale' must be at least 10
7103          */
7104         scale = 10;
7105         if (sizeof(sector_t) > sizeof(unsigned long)) {
7106                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7107                         scale++;
7108         }
7109         res = (resync>>scale)*1000;
7110         sector_div(res, (u32)((max_sectors>>scale)+1));
7111
7112         per_milli = res;
7113         {
7114                 int i, x = per_milli/50, y = 20-x;
7115                 seq_printf(seq, "[");
7116                 for (i = 0; i < x; i++)
7117                         seq_printf(seq, "=");
7118                 seq_printf(seq, ">");
7119                 for (i = 0; i < y; i++)
7120                         seq_printf(seq, ".");
7121                 seq_printf(seq, "] ");
7122         }
7123         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7124                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7125                     "reshape" :
7126                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7127                      "check" :
7128                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7129                       "resync" : "recovery"))),
7130                    per_milli/10, per_milli % 10,
7131                    (unsigned long long) resync/2,
7132                    (unsigned long long) max_sectors/2);
7133
7134         /*
7135          * dt: time from mark until now
7136          * db: blocks written from mark until now
7137          * rt: remaining time
7138          *
7139          * rt is a sector_t, so could be 32bit or 64bit.
7140          * So we divide before multiply in case it is 32bit and close
7141          * to the limit.
7142          * We scale the divisor (db) by 32 to avoid losing precision
7143          * near the end of resync when the number of remaining sectors
7144          * is close to 'db'.
7145          * We then divide rt by 32 after multiplying by db to compensate.
7146          * The '+1' avoids division by zero if db is very small.
7147          */
7148         dt = ((jiffies - mddev->resync_mark) / HZ);
7149         if (!dt) dt++;
7150         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7151                 - mddev->resync_mark_cnt;
7152
7153         rt = max_sectors - resync;    /* number of remaining sectors */
7154         sector_div(rt, db/32+1);
7155         rt *= dt;
7156         rt >>= 5;
7157
7158         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7159                    ((unsigned long)rt % 60)/6);
7160
7161         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7162 }
7163
7164 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7165 {
7166         struct list_head *tmp;
7167         loff_t l = *pos;
7168         struct mddev *mddev;
7169
7170         if (l >= 0x10000)
7171                 return NULL;
7172         if (!l--)
7173                 /* header */
7174                 return (void*)1;
7175
7176         spin_lock(&all_mddevs_lock);
7177         list_for_each(tmp,&all_mddevs)
7178                 if (!l--) {
7179                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7180                         mddev_get(mddev);
7181                         spin_unlock(&all_mddevs_lock);
7182                         return mddev;
7183                 }
7184         spin_unlock(&all_mddevs_lock);
7185         if (!l--)
7186                 return (void*)2;/* tail */
7187         return NULL;
7188 }
7189
7190 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7191 {
7192         struct list_head *tmp;
7193         struct mddev *next_mddev, *mddev = v;
7194
7195         ++*pos;
7196         if (v == (void*)2)
7197                 return NULL;
7198
7199         spin_lock(&all_mddevs_lock);
7200         if (v == (void*)1)
7201                 tmp = all_mddevs.next;
7202         else
7203                 tmp = mddev->all_mddevs.next;
7204         if (tmp != &all_mddevs)
7205                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7206         else {
7207                 next_mddev = (void*)2;
7208                 *pos = 0x10000;
7209         }
7210         spin_unlock(&all_mddevs_lock);
7211
7212         if (v != (void*)1)
7213                 mddev_put(mddev);
7214         return next_mddev;
7215
7216 }
7217
7218 static void md_seq_stop(struct seq_file *seq, void *v)
7219 {
7220         struct mddev *mddev = v;
7221
7222         if (mddev && v != (void*)1 && v != (void*)2)
7223                 mddev_put(mddev);
7224 }
7225
7226 static int md_seq_show(struct seq_file *seq, void *v)
7227 {
7228         struct mddev *mddev = v;
7229         sector_t sectors;
7230         struct md_rdev *rdev;
7231
7232         if (v == (void*)1) {
7233                 struct md_personality *pers;
7234                 seq_printf(seq, "Personalities : ");
7235                 spin_lock(&pers_lock);
7236                 list_for_each_entry(pers, &pers_list, list)
7237                         seq_printf(seq, "[%s] ", pers->name);
7238
7239                 spin_unlock(&pers_lock);
7240                 seq_printf(seq, "\n");
7241                 seq->poll_event = atomic_read(&md_event_count);
7242                 return 0;
7243         }
7244         if (v == (void*)2) {
7245                 status_unused(seq);
7246                 return 0;
7247         }
7248
7249         spin_lock(&mddev->lock);
7250         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7251                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7252                                                 mddev->pers ? "" : "in");
7253                 if (mddev->pers) {
7254                         if (mddev->ro==1)
7255                                 seq_printf(seq, " (read-only)");
7256                         if (mddev->ro==2)
7257                                 seq_printf(seq, " (auto-read-only)");
7258                         seq_printf(seq, " %s", mddev->pers->name);
7259                 }
7260
7261                 sectors = 0;
7262                 rcu_read_lock();
7263                 rdev_for_each_rcu(rdev, mddev) {
7264                         char b[BDEVNAME_SIZE];
7265                         seq_printf(seq, " %s[%d]",
7266                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7267                         if (test_bit(WriteMostly, &rdev->flags))
7268                                 seq_printf(seq, "(W)");
7269                         if (test_bit(Faulty, &rdev->flags)) {
7270                                 seq_printf(seq, "(F)");
7271                                 continue;
7272                         }
7273                         if (rdev->raid_disk < 0)
7274                                 seq_printf(seq, "(S)"); /* spare */
7275                         if (test_bit(Replacement, &rdev->flags))
7276                                 seq_printf(seq, "(R)");
7277                         sectors += rdev->sectors;
7278                 }
7279                 rcu_read_unlock();
7280
7281                 if (!list_empty(&mddev->disks)) {
7282                         if (mddev->pers)
7283                                 seq_printf(seq, "\n      %llu blocks",
7284                                            (unsigned long long)
7285                                            mddev->array_sectors / 2);
7286                         else
7287                                 seq_printf(seq, "\n      %llu blocks",
7288                                            (unsigned long long)sectors / 2);
7289                 }
7290                 if (mddev->persistent) {
7291                         if (mddev->major_version != 0 ||
7292                             mddev->minor_version != 90) {
7293                                 seq_printf(seq," super %d.%d",
7294                                            mddev->major_version,
7295                                            mddev->minor_version);
7296                         }
7297                 } else if (mddev->external)
7298                         seq_printf(seq, " super external:%s",
7299                                    mddev->metadata_type);
7300                 else
7301                         seq_printf(seq, " super non-persistent");
7302
7303                 if (mddev->pers) {
7304                         mddev->pers->status(seq, mddev);
7305                         seq_printf(seq, "\n      ");
7306                         if (mddev->pers->sync_request) {
7307                                 if (mddev->curr_resync > 2) {
7308                                         status_resync(seq, mddev);
7309                                         seq_printf(seq, "\n      ");
7310                                 } else if (mddev->curr_resync >= 1)
7311                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7312                                 else if (mddev->recovery_cp < MaxSector)
7313                                         seq_printf(seq, "\tresync=PENDING\n      ");
7314                         }
7315                 } else
7316                         seq_printf(seq, "\n       ");
7317
7318                 bitmap_status(seq, mddev->bitmap);
7319
7320                 seq_printf(seq, "\n");
7321         }
7322         spin_unlock(&mddev->lock);
7323
7324         return 0;
7325 }
7326
7327 static const struct seq_operations md_seq_ops = {
7328         .start  = md_seq_start,
7329         .next   = md_seq_next,
7330         .stop   = md_seq_stop,
7331         .show   = md_seq_show,
7332 };
7333
7334 static int md_seq_open(struct inode *inode, struct file *file)
7335 {
7336         struct seq_file *seq;
7337         int error;
7338
7339         error = seq_open(file, &md_seq_ops);
7340         if (error)
7341                 return error;
7342
7343         seq = file->private_data;
7344         seq->poll_event = atomic_read(&md_event_count);
7345         return error;
7346 }
7347
7348 static int md_unloading;
7349 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7350 {
7351         struct seq_file *seq = filp->private_data;
7352         int mask;
7353
7354         if (md_unloading)
7355                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7356         poll_wait(filp, &md_event_waiters, wait);
7357
7358         /* always allow read */
7359         mask = POLLIN | POLLRDNORM;
7360
7361         if (seq->poll_event != atomic_read(&md_event_count))
7362                 mask |= POLLERR | POLLPRI;
7363         return mask;
7364 }
7365
7366 static const struct file_operations md_seq_fops = {
7367         .owner          = THIS_MODULE,
7368         .open           = md_seq_open,
7369         .read           = seq_read,
7370         .llseek         = seq_lseek,
7371         .release        = seq_release_private,
7372         .poll           = mdstat_poll,
7373 };
7374
7375 int register_md_personality(struct md_personality *p)
7376 {
7377         printk(KERN_INFO "md: %s personality registered for level %d\n",
7378                                                 p->name, p->level);
7379         spin_lock(&pers_lock);
7380         list_add_tail(&p->list, &pers_list);
7381         spin_unlock(&pers_lock);
7382         return 0;
7383 }
7384 EXPORT_SYMBOL(register_md_personality);
7385
7386 int unregister_md_personality(struct md_personality *p)
7387 {
7388         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7389         spin_lock(&pers_lock);
7390         list_del_init(&p->list);
7391         spin_unlock(&pers_lock);
7392         return 0;
7393 }
7394 EXPORT_SYMBOL(unregister_md_personality);
7395
7396 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7397 {
7398         if (md_cluster_ops != NULL)
7399                 return -EALREADY;
7400         spin_lock(&pers_lock);
7401         md_cluster_ops = ops;
7402         md_cluster_mod = module;
7403         spin_unlock(&pers_lock);
7404         return 0;
7405 }
7406 EXPORT_SYMBOL(register_md_cluster_operations);
7407
7408 int unregister_md_cluster_operations(void)
7409 {
7410         spin_lock(&pers_lock);
7411         md_cluster_ops = NULL;
7412         spin_unlock(&pers_lock);
7413         return 0;
7414 }
7415 EXPORT_SYMBOL(unregister_md_cluster_operations);
7416
7417 int md_setup_cluster(struct mddev *mddev, int nodes)
7418 {
7419         int err;
7420
7421         err = request_module("md-cluster");
7422         if (err) {
7423                 pr_err("md-cluster module not found.\n");
7424                 return err;
7425         }
7426
7427         spin_lock(&pers_lock);
7428         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7429                 spin_unlock(&pers_lock);
7430                 return -ENOENT;
7431         }
7432         spin_unlock(&pers_lock);
7433
7434         return md_cluster_ops->join(mddev, nodes);
7435 }
7436
7437 void md_cluster_stop(struct mddev *mddev)
7438 {
7439         if (!md_cluster_ops)
7440                 return;
7441         md_cluster_ops->leave(mddev);
7442         module_put(md_cluster_mod);
7443 }
7444
7445 static int is_mddev_idle(struct mddev *mddev, int init)
7446 {
7447         struct md_rdev *rdev;
7448         int idle;
7449         int curr_events;
7450
7451         idle = 1;
7452         rcu_read_lock();
7453         rdev_for_each_rcu(rdev, mddev) {
7454                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7455                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7456                               (int)part_stat_read(&disk->part0, sectors[1]) -
7457                               atomic_read(&disk->sync_io);
7458                 /* sync IO will cause sync_io to increase before the disk_stats
7459                  * as sync_io is counted when a request starts, and
7460                  * disk_stats is counted when it completes.
7461                  * So resync activity will cause curr_events to be smaller than
7462                  * when there was no such activity.
7463                  * non-sync IO will cause disk_stat to increase without
7464                  * increasing sync_io so curr_events will (eventually)
7465                  * be larger than it was before.  Once it becomes
7466                  * substantially larger, the test below will cause
7467                  * the array to appear non-idle, and resync will slow
7468                  * down.
7469                  * If there is a lot of outstanding resync activity when
7470                  * we set last_event to curr_events, then all that activity
7471                  * completing might cause the array to appear non-idle
7472                  * and resync will be slowed down even though there might
7473                  * not have been non-resync activity.  This will only
7474                  * happen once though.  'last_events' will soon reflect
7475                  * the state where there is little or no outstanding
7476                  * resync requests, and further resync activity will
7477                  * always make curr_events less than last_events.
7478                  *
7479                  */
7480                 if (init || curr_events - rdev->last_events > 64) {
7481                         rdev->last_events = curr_events;
7482                         idle = 0;
7483                 }
7484         }
7485         rcu_read_unlock();
7486         return idle;
7487 }
7488
7489 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7490 {
7491         /* another "blocks" (512byte) blocks have been synced */
7492         atomic_sub(blocks, &mddev->recovery_active);
7493         wake_up(&mddev->recovery_wait);
7494         if (!ok) {
7495                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7496                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7497                 md_wakeup_thread(mddev->thread);
7498                 // stop recovery, signal do_sync ....
7499         }
7500 }
7501 EXPORT_SYMBOL(md_done_sync);
7502
7503 /* md_write_start(mddev, bi)
7504  * If we need to update some array metadata (e.g. 'active' flag
7505  * in superblock) before writing, schedule a superblock update
7506  * and wait for it to complete.
7507  */
7508 void md_write_start(struct mddev *mddev, struct bio *bi)
7509 {
7510         int did_change = 0;
7511         if (bio_data_dir(bi) != WRITE)
7512                 return;
7513
7514         BUG_ON(mddev->ro == 1);
7515         if (mddev->ro == 2) {
7516                 /* need to switch to read/write */
7517                 mddev->ro = 0;
7518                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7519                 md_wakeup_thread(mddev->thread);
7520                 md_wakeup_thread(mddev->sync_thread);
7521                 did_change = 1;
7522         }
7523         atomic_inc(&mddev->writes_pending);
7524         if (mddev->safemode == 1)
7525                 mddev->safemode = 0;
7526         if (mddev->in_sync) {
7527                 spin_lock(&mddev->lock);
7528                 if (mddev->in_sync) {
7529                         mddev->in_sync = 0;
7530                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7531                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7532                         md_wakeup_thread(mddev->thread);
7533                         did_change = 1;
7534                 }
7535                 spin_unlock(&mddev->lock);
7536         }
7537         if (did_change)
7538                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7539         wait_event(mddev->sb_wait,
7540                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7541 }
7542 EXPORT_SYMBOL(md_write_start);
7543
7544 void md_write_end(struct mddev *mddev)
7545 {
7546         if (atomic_dec_and_test(&mddev->writes_pending)) {
7547                 if (mddev->safemode == 2)
7548                         md_wakeup_thread(mddev->thread);
7549                 else if (mddev->safemode_delay)
7550                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7551         }
7552 }
7553 EXPORT_SYMBOL(md_write_end);
7554
7555 /* md_allow_write(mddev)
7556  * Calling this ensures that the array is marked 'active' so that writes
7557  * may proceed without blocking.  It is important to call this before
7558  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7559  * Must be called with mddev_lock held.
7560  *
7561  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7562  * is dropped, so return -EAGAIN after notifying userspace.
7563  */
7564 int md_allow_write(struct mddev *mddev)
7565 {
7566         if (!mddev->pers)
7567                 return 0;
7568         if (mddev->ro)
7569                 return 0;
7570         if (!mddev->pers->sync_request)
7571                 return 0;
7572
7573         spin_lock(&mddev->lock);
7574         if (mddev->in_sync) {
7575                 mddev->in_sync = 0;
7576                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7577                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7578                 if (mddev->safemode_delay &&
7579                     mddev->safemode == 0)
7580                         mddev->safemode = 1;
7581                 spin_unlock(&mddev->lock);
7582                 if (mddev_is_clustered(mddev))
7583                         md_cluster_ops->metadata_update_start(mddev);
7584                 md_update_sb(mddev, 0);
7585                 if (mddev_is_clustered(mddev))
7586                         md_cluster_ops->metadata_update_finish(mddev);
7587                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7588         } else
7589                 spin_unlock(&mddev->lock);
7590
7591         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7592                 return -EAGAIN;
7593         else
7594                 return 0;
7595 }
7596 EXPORT_SYMBOL_GPL(md_allow_write);
7597
7598 #define SYNC_MARKS      10
7599 #define SYNC_MARK_STEP  (3*HZ)
7600 #define UPDATE_FREQUENCY (5*60*HZ)
7601 void md_do_sync(struct md_thread *thread)
7602 {
7603         struct mddev *mddev = thread->mddev;
7604         struct mddev *mddev2;
7605         unsigned int currspeed = 0,
7606                  window;
7607         sector_t max_sectors,j, io_sectors, recovery_done;
7608         unsigned long mark[SYNC_MARKS];
7609         unsigned long update_time;
7610         sector_t mark_cnt[SYNC_MARKS];
7611         int last_mark,m;
7612         struct list_head *tmp;
7613         sector_t last_check;
7614         int skipped = 0;
7615         struct md_rdev *rdev;
7616         char *desc, *action = NULL;
7617         struct blk_plug plug;
7618
7619         /* just incase thread restarts... */
7620         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7621                 return;
7622         if (mddev->ro) {/* never try to sync a read-only array */
7623                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7624                 return;
7625         }
7626
7627         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7628                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7629                         desc = "data-check";
7630                         action = "check";
7631                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7632                         desc = "requested-resync";
7633                         action = "repair";
7634                 } else
7635                         desc = "resync";
7636         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7637                 desc = "reshape";
7638         else
7639                 desc = "recovery";
7640
7641         mddev->last_sync_action = action ?: desc;
7642
7643         /* we overload curr_resync somewhat here.
7644          * 0 == not engaged in resync at all
7645          * 2 == checking that there is no conflict with another sync
7646          * 1 == like 2, but have yielded to allow conflicting resync to
7647          *              commense
7648          * other == active in resync - this many blocks
7649          *
7650          * Before starting a resync we must have set curr_resync to
7651          * 2, and then checked that every "conflicting" array has curr_resync
7652          * less than ours.  When we find one that is the same or higher
7653          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7654          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7655          * This will mean we have to start checking from the beginning again.
7656          *
7657          */
7658
7659         do {
7660                 mddev->curr_resync = 2;
7661
7662         try_again:
7663                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7664                         goto skip;
7665                 for_each_mddev(mddev2, tmp) {
7666                         if (mddev2 == mddev)
7667                                 continue;
7668                         if (!mddev->parallel_resync
7669                         &&  mddev2->curr_resync
7670                         &&  match_mddev_units(mddev, mddev2)) {
7671                                 DEFINE_WAIT(wq);
7672                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7673                                         /* arbitrarily yield */
7674                                         mddev->curr_resync = 1;
7675                                         wake_up(&resync_wait);
7676                                 }
7677                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7678                                         /* no need to wait here, we can wait the next
7679                                          * time 'round when curr_resync == 2
7680                                          */
7681                                         continue;
7682                                 /* We need to wait 'interruptible' so as not to
7683                                  * contribute to the load average, and not to
7684                                  * be caught by 'softlockup'
7685                                  */
7686                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7687                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7688                                     mddev2->curr_resync >= mddev->curr_resync) {
7689                                         printk(KERN_INFO "md: delaying %s of %s"
7690                                                " until %s has finished (they"
7691                                                " share one or more physical units)\n",
7692                                                desc, mdname(mddev), mdname(mddev2));
7693                                         mddev_put(mddev2);
7694                                         if (signal_pending(current))
7695                                                 flush_signals(current);
7696                                         schedule();
7697                                         finish_wait(&resync_wait, &wq);
7698                                         goto try_again;
7699                                 }
7700                                 finish_wait(&resync_wait, &wq);
7701                         }
7702                 }
7703         } while (mddev->curr_resync < 2);
7704
7705         j = 0;
7706         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7707                 /* resync follows the size requested by the personality,
7708                  * which defaults to physical size, but can be virtual size
7709                  */
7710                 max_sectors = mddev->resync_max_sectors;
7711                 atomic64_set(&mddev->resync_mismatches, 0);
7712                 /* we don't use the checkpoint if there's a bitmap */
7713                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7714                         j = mddev->resync_min;
7715                 else if (!mddev->bitmap)
7716                         j = mddev->recovery_cp;
7717
7718         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7719                 max_sectors = mddev->resync_max_sectors;
7720         else {
7721                 /* recovery follows the physical size of devices */
7722                 max_sectors = mddev->dev_sectors;
7723                 j = MaxSector;
7724                 rcu_read_lock();
7725                 rdev_for_each_rcu(rdev, mddev)
7726                         if (rdev->raid_disk >= 0 &&
7727                             !test_bit(Faulty, &rdev->flags) &&
7728                             !test_bit(In_sync, &rdev->flags) &&
7729                             rdev->recovery_offset < j)
7730                                 j = rdev->recovery_offset;
7731                 rcu_read_unlock();
7732
7733                 /* If there is a bitmap, we need to make sure all
7734                  * writes that started before we added a spare
7735                  * complete before we start doing a recovery.
7736                  * Otherwise the write might complete and (via
7737                  * bitmap_endwrite) set a bit in the bitmap after the
7738                  * recovery has checked that bit and skipped that
7739                  * region.
7740                  */
7741                 if (mddev->bitmap) {
7742                         mddev->pers->quiesce(mddev, 1);
7743                         mddev->pers->quiesce(mddev, 0);
7744                 }
7745         }
7746
7747         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7748         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7749                 " %d KB/sec/disk.\n", speed_min(mddev));
7750         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7751                "(but not more than %d KB/sec) for %s.\n",
7752                speed_max(mddev), desc);
7753
7754         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7755
7756         io_sectors = 0;
7757         for (m = 0; m < SYNC_MARKS; m++) {
7758                 mark[m] = jiffies;
7759                 mark_cnt[m] = io_sectors;
7760         }
7761         last_mark = 0;
7762         mddev->resync_mark = mark[last_mark];
7763         mddev->resync_mark_cnt = mark_cnt[last_mark];
7764
7765         /*
7766          * Tune reconstruction:
7767          */
7768         window = 32*(PAGE_SIZE/512);
7769         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7770                 window/2, (unsigned long long)max_sectors/2);
7771
7772         atomic_set(&mddev->recovery_active, 0);
7773         last_check = 0;
7774
7775         if (j>2) {
7776                 printk(KERN_INFO
7777                        "md: resuming %s of %s from checkpoint.\n",
7778                        desc, mdname(mddev));
7779                 mddev->curr_resync = j;
7780         } else
7781                 mddev->curr_resync = 3; /* no longer delayed */
7782         mddev->curr_resync_completed = j;
7783         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7784         md_new_event(mddev);
7785         update_time = jiffies;
7786
7787         if (mddev_is_clustered(mddev))
7788                 md_cluster_ops->resync_start(mddev, j, max_sectors);
7789
7790         blk_start_plug(&plug);
7791         while (j < max_sectors) {
7792                 sector_t sectors;
7793
7794                 skipped = 0;
7795
7796                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7797                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7798                       (mddev->curr_resync - mddev->curr_resync_completed)
7799                       > (max_sectors >> 4)) ||
7800                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7801                      (j - mddev->curr_resync_completed)*2
7802                      >= mddev->resync_max - mddev->curr_resync_completed
7803                             )) {
7804                         /* time to update curr_resync_completed */
7805                         wait_event(mddev->recovery_wait,
7806                                    atomic_read(&mddev->recovery_active) == 0);
7807                         mddev->curr_resync_completed = j;
7808                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7809                             j > mddev->recovery_cp)
7810                                 mddev->recovery_cp = j;
7811                         update_time = jiffies;
7812                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7813                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7814                 }
7815
7816                 while (j >= mddev->resync_max &&
7817                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7818                         /* As this condition is controlled by user-space,
7819                          * we can block indefinitely, so use '_interruptible'
7820                          * to avoid triggering warnings.
7821                          */
7822                         flush_signals(current); /* just in case */
7823                         wait_event_interruptible(mddev->recovery_wait,
7824                                                  mddev->resync_max > j
7825                                                  || test_bit(MD_RECOVERY_INTR,
7826                                                              &mddev->recovery));
7827                 }
7828
7829                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7830                         break;
7831
7832                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7833                                                   currspeed < speed_min(mddev));
7834                 if (sectors == 0) {
7835                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7836                         break;
7837                 }
7838
7839                 if (!skipped) { /* actual IO requested */
7840                         io_sectors += sectors;
7841                         atomic_add(sectors, &mddev->recovery_active);
7842                 }
7843
7844                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7845                         break;
7846
7847                 j += sectors;
7848                 if (j > 2)
7849                         mddev->curr_resync = j;
7850                 if (mddev_is_clustered(mddev))
7851                         md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7852                 mddev->curr_mark_cnt = io_sectors;
7853                 if (last_check == 0)
7854                         /* this is the earliest that rebuild will be
7855                          * visible in /proc/mdstat
7856                          */
7857                         md_new_event(mddev);
7858
7859                 if (last_check + window > io_sectors || j == max_sectors)
7860                         continue;
7861
7862                 last_check = io_sectors;
7863         repeat:
7864                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7865                         /* step marks */
7866                         int next = (last_mark+1) % SYNC_MARKS;
7867
7868                         mddev->resync_mark = mark[next];
7869                         mddev->resync_mark_cnt = mark_cnt[next];
7870                         mark[next] = jiffies;
7871                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7872                         last_mark = next;
7873                 }
7874
7875                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7876                         break;
7877
7878                 /*
7879                  * this loop exits only if either when we are slower than
7880                  * the 'hard' speed limit, or the system was IO-idle for
7881                  * a jiffy.
7882                  * the system might be non-idle CPU-wise, but we only care
7883                  * about not overloading the IO subsystem. (things like an
7884                  * e2fsck being done on the RAID array should execute fast)
7885                  */
7886                 cond_resched();
7887
7888                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7889                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7890                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7891
7892                 if (currspeed > speed_min(mddev)) {
7893                         if ((currspeed > speed_max(mddev)) ||
7894                                         !is_mddev_idle(mddev, 0)) {
7895                                 msleep(500);
7896                                 goto repeat;
7897                         }
7898                 }
7899         }
7900         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7901                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7902                ? "interrupted" : "done");
7903         /*
7904          * this also signals 'finished resyncing' to md_stop
7905          */
7906         blk_finish_plug(&plug);
7907         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7908
7909         /* tell personality that we are finished */
7910         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7911
7912         if (mddev_is_clustered(mddev))
7913                 md_cluster_ops->resync_finish(mddev);
7914
7915         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7916             mddev->curr_resync > 2) {
7917                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7918                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7919                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7920                                         printk(KERN_INFO
7921                                                "md: checkpointing %s of %s.\n",
7922                                                desc, mdname(mddev));
7923                                         if (test_bit(MD_RECOVERY_ERROR,
7924                                                 &mddev->recovery))
7925                                                 mddev->recovery_cp =
7926                                                         mddev->curr_resync_completed;
7927                                         else
7928                                                 mddev->recovery_cp =
7929                                                         mddev->curr_resync;
7930                                 }
7931                         } else
7932                                 mddev->recovery_cp = MaxSector;
7933                 } else {
7934                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7935                                 mddev->curr_resync = MaxSector;
7936                         rcu_read_lock();
7937                         rdev_for_each_rcu(rdev, mddev)
7938                                 if (rdev->raid_disk >= 0 &&
7939                                     mddev->delta_disks >= 0 &&
7940                                     !test_bit(Faulty, &rdev->flags) &&
7941                                     !test_bit(In_sync, &rdev->flags) &&
7942                                     rdev->recovery_offset < mddev->curr_resync)
7943                                         rdev->recovery_offset = mddev->curr_resync;
7944                         rcu_read_unlock();
7945                 }
7946         }
7947  skip:
7948         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7949
7950         spin_lock(&mddev->lock);
7951         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7952                 /* We completed so min/max setting can be forgotten if used. */
7953                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7954                         mddev->resync_min = 0;
7955                 mddev->resync_max = MaxSector;
7956         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7957                 mddev->resync_min = mddev->curr_resync_completed;
7958         mddev->curr_resync = 0;
7959         spin_unlock(&mddev->lock);
7960
7961         wake_up(&resync_wait);
7962         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7963         md_wakeup_thread(mddev->thread);
7964         return;
7965 }
7966 EXPORT_SYMBOL_GPL(md_do_sync);
7967
7968 static int remove_and_add_spares(struct mddev *mddev,
7969                                  struct md_rdev *this)
7970 {
7971         struct md_rdev *rdev;
7972         int spares = 0;
7973         int removed = 0;
7974
7975         rdev_for_each(rdev, mddev)
7976                 if ((this == NULL || rdev == this) &&
7977                     rdev->raid_disk >= 0 &&
7978                     !test_bit(Blocked, &rdev->flags) &&
7979                     (test_bit(Faulty, &rdev->flags) ||
7980                      ! test_bit(In_sync, &rdev->flags)) &&
7981                     atomic_read(&rdev->nr_pending)==0) {
7982                         if (mddev->pers->hot_remove_disk(
7983                                     mddev, rdev) == 0) {
7984                                 sysfs_unlink_rdev(mddev, rdev);
7985                                 rdev->raid_disk = -1;
7986                                 removed++;
7987                         }
7988                 }
7989         if (removed && mddev->kobj.sd)
7990                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7991
7992         if (this)
7993                 goto no_add;
7994
7995         rdev_for_each(rdev, mddev) {
7996                 if (rdev->raid_disk >= 0 &&
7997                     !test_bit(In_sync, &rdev->flags) &&
7998                     !test_bit(Faulty, &rdev->flags))
7999                         spares++;
8000                 if (rdev->raid_disk >= 0)
8001                         continue;
8002                 if (test_bit(Faulty, &rdev->flags))
8003                         continue;
8004                 if (mddev->ro &&
8005                     ! (rdev->saved_raid_disk >= 0 &&
8006                        !test_bit(Bitmap_sync, &rdev->flags)))
8007                         continue;
8008
8009                 if (rdev->saved_raid_disk < 0)
8010                         rdev->recovery_offset = 0;
8011                 if (mddev->pers->
8012                     hot_add_disk(mddev, rdev) == 0) {
8013                         if (sysfs_link_rdev(mddev, rdev))
8014                                 /* failure here is OK */;
8015                         spares++;
8016                         md_new_event(mddev);
8017                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8018                 }
8019         }
8020 no_add:
8021         if (removed)
8022                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8023         return spares;
8024 }
8025
8026 static void md_start_sync(struct work_struct *ws)
8027 {
8028         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8029
8030         mddev->sync_thread = md_register_thread(md_do_sync,
8031                                                 mddev,
8032                                                 "resync");
8033         if (!mddev->sync_thread) {
8034                 printk(KERN_ERR "%s: could not start resync"
8035                        " thread...\n",
8036                        mdname(mddev));
8037                 /* leave the spares where they are, it shouldn't hurt */
8038                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8039                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8040                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8041                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8042                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8043                 wake_up(&resync_wait);
8044                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8045                                        &mddev->recovery))
8046                         if (mddev->sysfs_action)
8047                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8048         } else
8049                 md_wakeup_thread(mddev->sync_thread);
8050         sysfs_notify_dirent_safe(mddev->sysfs_action);
8051         md_new_event(mddev);
8052 }
8053
8054 /*
8055  * This routine is regularly called by all per-raid-array threads to
8056  * deal with generic issues like resync and super-block update.
8057  * Raid personalities that don't have a thread (linear/raid0) do not
8058  * need this as they never do any recovery or update the superblock.
8059  *
8060  * It does not do any resync itself, but rather "forks" off other threads
8061  * to do that as needed.
8062  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8063  * "->recovery" and create a thread at ->sync_thread.
8064  * When the thread finishes it sets MD_RECOVERY_DONE
8065  * and wakeups up this thread which will reap the thread and finish up.
8066  * This thread also removes any faulty devices (with nr_pending == 0).
8067  *
8068  * The overall approach is:
8069  *  1/ if the superblock needs updating, update it.
8070  *  2/ If a recovery thread is running, don't do anything else.
8071  *  3/ If recovery has finished, clean up, possibly marking spares active.
8072  *  4/ If there are any faulty devices, remove them.
8073  *  5/ If array is degraded, try to add spares devices
8074  *  6/ If array has spares or is not in-sync, start a resync thread.
8075  */
8076 void md_check_recovery(struct mddev *mddev)
8077 {
8078         if (mddev->suspended)
8079                 return;
8080
8081         if (mddev->bitmap)
8082                 bitmap_daemon_work(mddev);
8083
8084         if (signal_pending(current)) {
8085                 if (mddev->pers->sync_request && !mddev->external) {
8086                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8087                                mdname(mddev));
8088                         mddev->safemode = 2;
8089                 }
8090                 flush_signals(current);
8091         }
8092
8093         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8094                 return;
8095         if ( ! (
8096                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8097                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8098                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8099                 (mddev->external == 0 && mddev->safemode == 1) ||
8100                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8101                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8102                 ))
8103                 return;
8104
8105         if (mddev_trylock(mddev)) {
8106                 int spares = 0;
8107
8108                 if (mddev->ro) {
8109                         /* On a read-only array we can:
8110                          * - remove failed devices
8111                          * - add already-in_sync devices if the array itself
8112                          *   is in-sync.
8113                          * As we only add devices that are already in-sync,
8114                          * we can activate the spares immediately.
8115                          */
8116                         remove_and_add_spares(mddev, NULL);
8117                         /* There is no thread, but we need to call
8118                          * ->spare_active and clear saved_raid_disk
8119                          */
8120                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8121                         md_reap_sync_thread(mddev);
8122                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8123                         goto unlock;
8124                 }
8125
8126                 if (!mddev->external) {
8127                         int did_change = 0;
8128                         spin_lock(&mddev->lock);
8129                         if (mddev->safemode &&
8130                             !atomic_read(&mddev->writes_pending) &&
8131                             !mddev->in_sync &&
8132                             mddev->recovery_cp == MaxSector) {
8133                                 mddev->in_sync = 1;
8134                                 did_change = 1;
8135                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8136                         }
8137                         if (mddev->safemode == 1)
8138                                 mddev->safemode = 0;
8139                         spin_unlock(&mddev->lock);
8140                         if (did_change)
8141                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8142                 }
8143
8144                 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8145                         if (mddev_is_clustered(mddev))
8146                                 md_cluster_ops->metadata_update_start(mddev);
8147                         md_update_sb(mddev, 0);
8148                         if (mddev_is_clustered(mddev))
8149                                 md_cluster_ops->metadata_update_finish(mddev);
8150                 }
8151
8152                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8153                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8154                         /* resync/recovery still happening */
8155                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8156                         goto unlock;
8157                 }
8158                 if (mddev->sync_thread) {
8159                         md_reap_sync_thread(mddev);
8160                         goto unlock;
8161                 }
8162                 /* Set RUNNING before clearing NEEDED to avoid
8163                  * any transients in the value of "sync_action".
8164                  */
8165                 mddev->curr_resync_completed = 0;
8166                 spin_lock(&mddev->lock);
8167                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8168                 spin_unlock(&mddev->lock);
8169                 /* Clear some bits that don't mean anything, but
8170                  * might be left set
8171                  */
8172                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8173                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8174
8175                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8176                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8177                         goto not_running;
8178                 /* no recovery is running.
8179                  * remove any failed drives, then
8180                  * add spares if possible.
8181                  * Spares are also removed and re-added, to allow
8182                  * the personality to fail the re-add.
8183                  */
8184
8185                 if (mddev->reshape_position != MaxSector) {
8186                         if (mddev->pers->check_reshape == NULL ||
8187                             mddev->pers->check_reshape(mddev) != 0)
8188                                 /* Cannot proceed */
8189                                 goto not_running;
8190                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8191                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8192                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8193                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8194                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8195                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8196                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8197                 } else if (mddev->recovery_cp < MaxSector) {
8198                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8199                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8200                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8201                         /* nothing to be done ... */
8202                         goto not_running;
8203
8204                 if (mddev->pers->sync_request) {
8205                         if (spares) {
8206                                 /* We are adding a device or devices to an array
8207                                  * which has the bitmap stored on all devices.
8208                                  * So make sure all bitmap pages get written
8209                                  */
8210                                 bitmap_write_all(mddev->bitmap);
8211                         }
8212                         INIT_WORK(&mddev->del_work, md_start_sync);
8213                         queue_work(md_misc_wq, &mddev->del_work);
8214                         goto unlock;
8215                 }
8216         not_running:
8217                 if (!mddev->sync_thread) {
8218                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8219                         wake_up(&resync_wait);
8220                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8221                                                &mddev->recovery))
8222                                 if (mddev->sysfs_action)
8223                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8224                 }
8225         unlock:
8226                 wake_up(&mddev->sb_wait);
8227                 mddev_unlock(mddev);
8228         }
8229 }
8230 EXPORT_SYMBOL(md_check_recovery);
8231
8232 void md_reap_sync_thread(struct mddev *mddev)
8233 {
8234         struct md_rdev *rdev;
8235
8236         /* resync has finished, collect result */
8237         md_unregister_thread(&mddev->sync_thread);
8238         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8239             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8240                 /* success...*/
8241                 /* activate any spares */
8242                 if (mddev->pers->spare_active(mddev)) {
8243                         sysfs_notify(&mddev->kobj, NULL,
8244                                      "degraded");
8245                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8246                 }
8247         }
8248         if (mddev_is_clustered(mddev))
8249                 md_cluster_ops->metadata_update_start(mddev);
8250         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8251             mddev->pers->finish_reshape)
8252                 mddev->pers->finish_reshape(mddev);
8253
8254         /* If array is no-longer degraded, then any saved_raid_disk
8255          * information must be scrapped.
8256          */
8257         if (!mddev->degraded)
8258                 rdev_for_each(rdev, mddev)
8259                         rdev->saved_raid_disk = -1;
8260
8261         md_update_sb(mddev, 1);
8262         if (mddev_is_clustered(mddev))
8263                 md_cluster_ops->metadata_update_finish(mddev);
8264         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8265         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8266         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8267         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8268         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8269         wake_up(&resync_wait);
8270         /* flag recovery needed just to double check */
8271         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8272         sysfs_notify_dirent_safe(mddev->sysfs_action);
8273         md_new_event(mddev);
8274         if (mddev->event_work.func)
8275                 queue_work(md_misc_wq, &mddev->event_work);
8276 }
8277 EXPORT_SYMBOL(md_reap_sync_thread);
8278
8279 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8280 {
8281         sysfs_notify_dirent_safe(rdev->sysfs_state);
8282         wait_event_timeout(rdev->blocked_wait,
8283                            !test_bit(Blocked, &rdev->flags) &&
8284                            !test_bit(BlockedBadBlocks, &rdev->flags),
8285                            msecs_to_jiffies(5000));
8286         rdev_dec_pending(rdev, mddev);
8287 }
8288 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8289
8290 void md_finish_reshape(struct mddev *mddev)
8291 {
8292         /* called be personality module when reshape completes. */
8293         struct md_rdev *rdev;
8294
8295         rdev_for_each(rdev, mddev) {
8296                 if (rdev->data_offset > rdev->new_data_offset)
8297                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8298                 else
8299                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8300                 rdev->data_offset = rdev->new_data_offset;
8301         }
8302 }
8303 EXPORT_SYMBOL(md_finish_reshape);
8304
8305 /* Bad block management.
8306  * We can record which blocks on each device are 'bad' and so just
8307  * fail those blocks, or that stripe, rather than the whole device.
8308  * Entries in the bad-block table are 64bits wide.  This comprises:
8309  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8310  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8311  *  A 'shift' can be set so that larger blocks are tracked and
8312  *  consequently larger devices can be covered.
8313  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8314  *
8315  * Locking of the bad-block table uses a seqlock so md_is_badblock
8316  * might need to retry if it is very unlucky.
8317  * We will sometimes want to check for bad blocks in a bi_end_io function,
8318  * so we use the write_seqlock_irq variant.
8319  *
8320  * When looking for a bad block we specify a range and want to
8321  * know if any block in the range is bad.  So we binary-search
8322  * to the last range that starts at-or-before the given endpoint,
8323  * (or "before the sector after the target range")
8324  * then see if it ends after the given start.
8325  * We return
8326  *  0 if there are no known bad blocks in the range
8327  *  1 if there are known bad block which are all acknowledged
8328  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8329  * plus the start/length of the first bad section we overlap.
8330  */
8331 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8332                    sector_t *first_bad, int *bad_sectors)
8333 {
8334         int hi;
8335         int lo;
8336         u64 *p = bb->page;
8337         int rv;
8338         sector_t target = s + sectors;
8339         unsigned seq;
8340
8341         if (bb->shift > 0) {
8342                 /* round the start down, and the end up */
8343                 s >>= bb->shift;
8344                 target += (1<<bb->shift) - 1;
8345                 target >>= bb->shift;
8346                 sectors = target - s;
8347         }
8348         /* 'target' is now the first block after the bad range */
8349
8350 retry:
8351         seq = read_seqbegin(&bb->lock);
8352         lo = 0;
8353         rv = 0;
8354         hi = bb->count;
8355
8356         /* Binary search between lo and hi for 'target'
8357          * i.e. for the last range that starts before 'target'
8358          */
8359         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8360          * are known not to be the last range before target.
8361          * VARIANT: hi-lo is the number of possible
8362          * ranges, and decreases until it reaches 1
8363          */
8364         while (hi - lo > 1) {
8365                 int mid = (lo + hi) / 2;
8366                 sector_t a = BB_OFFSET(p[mid]);
8367                 if (a < target)
8368                         /* This could still be the one, earlier ranges
8369                          * could not. */
8370                         lo = mid;
8371                 else
8372                         /* This and later ranges are definitely out. */
8373                         hi = mid;
8374         }
8375         /* 'lo' might be the last that started before target, but 'hi' isn't */
8376         if (hi > lo) {
8377                 /* need to check all range that end after 's' to see if
8378                  * any are unacknowledged.
8379                  */
8380                 while (lo >= 0 &&
8381                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8382                         if (BB_OFFSET(p[lo]) < target) {
8383                                 /* starts before the end, and finishes after
8384                                  * the start, so they must overlap
8385                                  */
8386                                 if (rv != -1 && BB_ACK(p[lo]))
8387                                         rv = 1;
8388                                 else
8389                                         rv = -1;
8390                                 *first_bad = BB_OFFSET(p[lo]);
8391                                 *bad_sectors = BB_LEN(p[lo]);
8392                         }
8393                         lo--;
8394                 }
8395         }
8396
8397         if (read_seqretry(&bb->lock, seq))
8398                 goto retry;
8399
8400         return rv;
8401 }
8402 EXPORT_SYMBOL_GPL(md_is_badblock);
8403
8404 /*
8405  * Add a range of bad blocks to the table.
8406  * This might extend the table, or might contract it
8407  * if two adjacent ranges can be merged.
8408  * We binary-search to find the 'insertion' point, then
8409  * decide how best to handle it.
8410  */
8411 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8412                             int acknowledged)
8413 {
8414         u64 *p;
8415         int lo, hi;
8416         int rv = 1;
8417         unsigned long flags;
8418
8419         if (bb->shift < 0)
8420                 /* badblocks are disabled */
8421                 return 0;
8422
8423         if (bb->shift) {
8424                 /* round the start down, and the end up */
8425                 sector_t next = s + sectors;
8426                 s >>= bb->shift;
8427                 next += (1<<bb->shift) - 1;
8428                 next >>= bb->shift;
8429                 sectors = next - s;
8430         }
8431
8432         write_seqlock_irqsave(&bb->lock, flags);
8433
8434         p = bb->page;
8435         lo = 0;
8436         hi = bb->count;
8437         /* Find the last range that starts at-or-before 's' */
8438         while (hi - lo > 1) {
8439                 int mid = (lo + hi) / 2;
8440                 sector_t a = BB_OFFSET(p[mid]);
8441                 if (a <= s)
8442                         lo = mid;
8443                 else
8444                         hi = mid;
8445         }
8446         if (hi > lo && BB_OFFSET(p[lo]) > s)
8447                 hi = lo;
8448
8449         if (hi > lo) {
8450                 /* we found a range that might merge with the start
8451                  * of our new range
8452                  */
8453                 sector_t a = BB_OFFSET(p[lo]);
8454                 sector_t e = a + BB_LEN(p[lo]);
8455                 int ack = BB_ACK(p[lo]);
8456                 if (e >= s) {
8457                         /* Yes, we can merge with a previous range */
8458                         if (s == a && s + sectors >= e)
8459                                 /* new range covers old */
8460                                 ack = acknowledged;
8461                         else
8462                                 ack = ack && acknowledged;
8463
8464                         if (e < s + sectors)
8465                                 e = s + sectors;
8466                         if (e - a <= BB_MAX_LEN) {
8467                                 p[lo] = BB_MAKE(a, e-a, ack);
8468                                 s = e;
8469                         } else {
8470                                 /* does not all fit in one range,
8471                                  * make p[lo] maximal
8472                                  */
8473                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8474                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8475                                 s = a + BB_MAX_LEN;
8476                         }
8477                         sectors = e - s;
8478                 }
8479         }
8480         if (sectors && hi < bb->count) {
8481                 /* 'hi' points to the first range that starts after 's'.
8482                  * Maybe we can merge with the start of that range */
8483                 sector_t a = BB_OFFSET(p[hi]);
8484                 sector_t e = a + BB_LEN(p[hi]);
8485                 int ack = BB_ACK(p[hi]);
8486                 if (a <= s + sectors) {
8487                         /* merging is possible */
8488                         if (e <= s + sectors) {
8489                                 /* full overlap */
8490                                 e = s + sectors;
8491                                 ack = acknowledged;
8492                         } else
8493                                 ack = ack && acknowledged;
8494
8495                         a = s;
8496                         if (e - a <= BB_MAX_LEN) {
8497                                 p[hi] = BB_MAKE(a, e-a, ack);
8498                                 s = e;
8499                         } else {
8500                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8501                                 s = a + BB_MAX_LEN;
8502                         }
8503                         sectors = e - s;
8504                         lo = hi;
8505                         hi++;
8506                 }
8507         }
8508         if (sectors == 0 && hi < bb->count) {
8509                 /* we might be able to combine lo and hi */
8510                 /* Note: 's' is at the end of 'lo' */
8511                 sector_t a = BB_OFFSET(p[hi]);
8512                 int lolen = BB_LEN(p[lo]);
8513                 int hilen = BB_LEN(p[hi]);
8514                 int newlen = lolen + hilen - (s - a);
8515                 if (s >= a && newlen < BB_MAX_LEN) {
8516                         /* yes, we can combine them */
8517                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8518                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8519                         memmove(p + hi, p + hi + 1,
8520                                 (bb->count - hi - 1) * 8);
8521                         bb->count--;
8522                 }
8523         }
8524         while (sectors) {
8525                 /* didn't merge (it all).
8526                  * Need to add a range just before 'hi' */
8527                 if (bb->count >= MD_MAX_BADBLOCKS) {
8528                         /* No room for more */
8529                         rv = 0;
8530                         break;
8531                 } else {
8532                         int this_sectors = sectors;
8533                         memmove(p + hi + 1, p + hi,
8534                                 (bb->count - hi) * 8);
8535                         bb->count++;
8536
8537                         if (this_sectors > BB_MAX_LEN)
8538                                 this_sectors = BB_MAX_LEN;
8539                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8540                         sectors -= this_sectors;
8541                         s += this_sectors;
8542                 }
8543         }
8544
8545         bb->changed = 1;
8546         if (!acknowledged)
8547                 bb->unacked_exist = 1;
8548         write_sequnlock_irqrestore(&bb->lock, flags);
8549
8550         return rv;
8551 }
8552
8553 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8554                        int is_new)
8555 {
8556         int rv;
8557         if (is_new)
8558                 s += rdev->new_data_offset;
8559         else
8560                 s += rdev->data_offset;
8561         rv = md_set_badblocks(&rdev->badblocks,
8562                               s, sectors, 0);
8563         if (rv) {
8564                 /* Make sure they get written out promptly */
8565                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8566                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8567                 md_wakeup_thread(rdev->mddev->thread);
8568         }
8569         return rv;
8570 }
8571 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8572
8573 /*
8574  * Remove a range of bad blocks from the table.
8575  * This may involve extending the table if we spilt a region,
8576  * but it must not fail.  So if the table becomes full, we just
8577  * drop the remove request.
8578  */
8579 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8580 {
8581         u64 *p;
8582         int lo, hi;
8583         sector_t target = s + sectors;
8584         int rv = 0;
8585
8586         if (bb->shift > 0) {
8587                 /* When clearing we round the start up and the end down.
8588                  * This should not matter as the shift should align with
8589                  * the block size and no rounding should ever be needed.
8590                  * However it is better the think a block is bad when it
8591                  * isn't than to think a block is not bad when it is.
8592                  */
8593                 s += (1<<bb->shift) - 1;
8594                 s >>= bb->shift;
8595                 target >>= bb->shift;
8596                 sectors = target - s;
8597         }
8598
8599         write_seqlock_irq(&bb->lock);
8600
8601         p = bb->page;
8602         lo = 0;
8603         hi = bb->count;
8604         /* Find the last range that starts before 'target' */
8605         while (hi - lo > 1) {
8606                 int mid = (lo + hi) / 2;
8607                 sector_t a = BB_OFFSET(p[mid]);
8608                 if (a < target)
8609                         lo = mid;
8610                 else
8611                         hi = mid;
8612         }
8613         if (hi > lo) {
8614                 /* p[lo] is the last range that could overlap the
8615                  * current range.  Earlier ranges could also overlap,
8616                  * but only this one can overlap the end of the range.
8617                  */
8618                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8619                         /* Partial overlap, leave the tail of this range */
8620                         int ack = BB_ACK(p[lo]);
8621                         sector_t a = BB_OFFSET(p[lo]);
8622                         sector_t end = a + BB_LEN(p[lo]);
8623
8624                         if (a < s) {
8625                                 /* we need to split this range */
8626                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8627                                         rv = -ENOSPC;
8628                                         goto out;
8629                                 }
8630                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8631                                 bb->count++;
8632                                 p[lo] = BB_MAKE(a, s-a, ack);
8633                                 lo++;
8634                         }
8635                         p[lo] = BB_MAKE(target, end - target, ack);
8636                         /* there is no longer an overlap */
8637                         hi = lo;
8638                         lo--;
8639                 }
8640                 while (lo >= 0 &&
8641                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8642                         /* This range does overlap */
8643                         if (BB_OFFSET(p[lo]) < s) {
8644                                 /* Keep the early parts of this range. */
8645                                 int ack = BB_ACK(p[lo]);
8646                                 sector_t start = BB_OFFSET(p[lo]);
8647                                 p[lo] = BB_MAKE(start, s - start, ack);
8648                                 /* now low doesn't overlap, so.. */
8649                                 break;
8650                         }
8651                         lo--;
8652                 }
8653                 /* 'lo' is strictly before, 'hi' is strictly after,
8654                  * anything between needs to be discarded
8655                  */
8656                 if (hi - lo > 1) {
8657                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8658                         bb->count -= (hi - lo - 1);
8659                 }
8660         }
8661
8662         bb->changed = 1;
8663 out:
8664         write_sequnlock_irq(&bb->lock);
8665         return rv;
8666 }
8667
8668 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8669                          int is_new)
8670 {
8671         if (is_new)
8672                 s += rdev->new_data_offset;
8673         else
8674                 s += rdev->data_offset;
8675         return md_clear_badblocks(&rdev->badblocks,
8676                                   s, sectors);
8677 }
8678 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8679
8680 /*
8681  * Acknowledge all bad blocks in a list.
8682  * This only succeeds if ->changed is clear.  It is used by
8683  * in-kernel metadata updates
8684  */
8685 void md_ack_all_badblocks(struct badblocks *bb)
8686 {
8687         if (bb->page == NULL || bb->changed)
8688                 /* no point even trying */
8689                 return;
8690         write_seqlock_irq(&bb->lock);
8691
8692         if (bb->changed == 0 && bb->unacked_exist) {
8693                 u64 *p = bb->page;
8694                 int i;
8695                 for (i = 0; i < bb->count ; i++) {
8696                         if (!BB_ACK(p[i])) {
8697                                 sector_t start = BB_OFFSET(p[i]);
8698                                 int len = BB_LEN(p[i]);
8699                                 p[i] = BB_MAKE(start, len, 1);
8700                         }
8701                 }
8702                 bb->unacked_exist = 0;
8703         }
8704         write_sequnlock_irq(&bb->lock);
8705 }
8706 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8707
8708 /* sysfs access to bad-blocks list.
8709  * We present two files.
8710  * 'bad-blocks' lists sector numbers and lengths of ranges that
8711  *    are recorded as bad.  The list is truncated to fit within
8712  *    the one-page limit of sysfs.
8713  *    Writing "sector length" to this file adds an acknowledged
8714  *    bad block list.
8715  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8716  *    been acknowledged.  Writing to this file adds bad blocks
8717  *    without acknowledging them.  This is largely for testing.
8718  */
8719
8720 static ssize_t
8721 badblocks_show(struct badblocks *bb, char *page, int unack)
8722 {
8723         size_t len;
8724         int i;
8725         u64 *p = bb->page;
8726         unsigned seq;
8727
8728         if (bb->shift < 0)
8729                 return 0;
8730
8731 retry:
8732         seq = read_seqbegin(&bb->lock);
8733
8734         len = 0;
8735         i = 0;
8736
8737         while (len < PAGE_SIZE && i < bb->count) {
8738                 sector_t s = BB_OFFSET(p[i]);
8739                 unsigned int length = BB_LEN(p[i]);
8740                 int ack = BB_ACK(p[i]);
8741                 i++;
8742
8743                 if (unack && ack)
8744                         continue;
8745
8746                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8747                                 (unsigned long long)s << bb->shift,
8748                                 length << bb->shift);
8749         }
8750         if (unack && len == 0)
8751                 bb->unacked_exist = 0;
8752
8753         if (read_seqretry(&bb->lock, seq))
8754                 goto retry;
8755
8756         return len;
8757 }
8758
8759 #define DO_DEBUG 1
8760
8761 static ssize_t
8762 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8763 {
8764         unsigned long long sector;
8765         int length;
8766         char newline;
8767 #ifdef DO_DEBUG
8768         /* Allow clearing via sysfs *only* for testing/debugging.
8769          * Normally only a successful write may clear a badblock
8770          */
8771         int clear = 0;
8772         if (page[0] == '-') {
8773                 clear = 1;
8774                 page++;
8775         }
8776 #endif /* DO_DEBUG */
8777
8778         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8779         case 3:
8780                 if (newline != '\n')
8781                         return -EINVAL;
8782         case 2:
8783                 if (length <= 0)
8784                         return -EINVAL;
8785                 break;
8786         default:
8787                 return -EINVAL;
8788         }
8789
8790 #ifdef DO_DEBUG
8791         if (clear) {
8792                 md_clear_badblocks(bb, sector, length);
8793                 return len;
8794         }
8795 #endif /* DO_DEBUG */
8796         if (md_set_badblocks(bb, sector, length, !unack))
8797                 return len;
8798         else
8799                 return -ENOSPC;
8800 }
8801
8802 static int md_notify_reboot(struct notifier_block *this,
8803                             unsigned long code, void *x)
8804 {
8805         struct list_head *tmp;
8806         struct mddev *mddev;
8807         int need_delay = 0;
8808
8809         for_each_mddev(mddev, tmp) {
8810                 if (mddev_trylock(mddev)) {
8811                         if (mddev->pers)
8812                                 __md_stop_writes(mddev);
8813                         if (mddev->persistent)
8814                                 mddev->safemode = 2;
8815                         mddev_unlock(mddev);
8816                 }
8817                 need_delay = 1;
8818         }
8819         /*
8820          * certain more exotic SCSI devices are known to be
8821          * volatile wrt too early system reboots. While the
8822          * right place to handle this issue is the given
8823          * driver, we do want to have a safe RAID driver ...
8824          */
8825         if (need_delay)
8826                 mdelay(1000*1);
8827
8828         return NOTIFY_DONE;
8829 }
8830
8831 static struct notifier_block md_notifier = {
8832         .notifier_call  = md_notify_reboot,
8833         .next           = NULL,
8834         .priority       = INT_MAX, /* before any real devices */
8835 };
8836
8837 static void md_geninit(void)
8838 {
8839         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8840
8841         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8842 }
8843
8844 static int __init md_init(void)
8845 {
8846         int ret = -ENOMEM;
8847
8848         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8849         if (!md_wq)
8850                 goto err_wq;
8851
8852         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8853         if (!md_misc_wq)
8854                 goto err_misc_wq;
8855
8856         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8857                 goto err_md;
8858
8859         if ((ret = register_blkdev(0, "mdp")) < 0)
8860                 goto err_mdp;
8861         mdp_major = ret;
8862
8863         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8864                             md_probe, NULL, NULL);
8865         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8866                             md_probe, NULL, NULL);
8867
8868         register_reboot_notifier(&md_notifier);
8869         raid_table_header = register_sysctl_table(raid_root_table);
8870
8871         md_geninit();
8872         return 0;
8873
8874 err_mdp:
8875         unregister_blkdev(MD_MAJOR, "md");
8876 err_md:
8877         destroy_workqueue(md_misc_wq);
8878 err_misc_wq:
8879         destroy_workqueue(md_wq);
8880 err_wq:
8881         return ret;
8882 }
8883
8884 void md_reload_sb(struct mddev *mddev)
8885 {
8886         struct md_rdev *rdev, *tmp;
8887
8888         rdev_for_each_safe(rdev, tmp, mddev) {
8889                 rdev->sb_loaded = 0;
8890                 ClearPageUptodate(rdev->sb_page);
8891         }
8892         mddev->raid_disks = 0;
8893         analyze_sbs(mddev);
8894         rdev_for_each_safe(rdev, tmp, mddev) {
8895                 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8896                 /* since we don't write to faulty devices, we figure out if the
8897                  *  disk is faulty by comparing events
8898                  */
8899                 if (mddev->events > sb->events)
8900                         set_bit(Faulty, &rdev->flags);
8901         }
8902
8903 }
8904 EXPORT_SYMBOL(md_reload_sb);
8905
8906 #ifndef MODULE
8907
8908 /*
8909  * Searches all registered partitions for autorun RAID arrays
8910  * at boot time.
8911  */
8912
8913 static LIST_HEAD(all_detected_devices);
8914 struct detected_devices_node {
8915         struct list_head list;
8916         dev_t dev;
8917 };
8918
8919 void md_autodetect_dev(dev_t dev)
8920 {
8921         struct detected_devices_node *node_detected_dev;
8922
8923         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8924         if (node_detected_dev) {
8925                 node_detected_dev->dev = dev;
8926                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8927         } else {
8928                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8929                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8930         }
8931 }
8932
8933 static void autostart_arrays(int part)
8934 {
8935         struct md_rdev *rdev;
8936         struct detected_devices_node *node_detected_dev;
8937         dev_t dev;
8938         int i_scanned, i_passed;
8939
8940         i_scanned = 0;
8941         i_passed = 0;
8942
8943         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8944
8945         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8946                 i_scanned++;
8947                 node_detected_dev = list_entry(all_detected_devices.next,
8948                                         struct detected_devices_node, list);
8949                 list_del(&node_detected_dev->list);
8950                 dev = node_detected_dev->dev;
8951                 kfree(node_detected_dev);
8952                 rdev = md_import_device(dev,0, 90);
8953                 if (IS_ERR(rdev))
8954                         continue;
8955
8956                 if (test_bit(Faulty, &rdev->flags))
8957                         continue;
8958
8959                 set_bit(AutoDetected, &rdev->flags);
8960                 list_add(&rdev->same_set, &pending_raid_disks);
8961                 i_passed++;
8962         }
8963
8964         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8965                                                 i_scanned, i_passed);
8966
8967         autorun_devices(part);
8968 }
8969
8970 #endif /* !MODULE */
8971
8972 static __exit void md_exit(void)
8973 {
8974         struct mddev *mddev;
8975         struct list_head *tmp;
8976         int delay = 1;
8977
8978         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8979         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8980
8981         unregister_blkdev(MD_MAJOR,"md");
8982         unregister_blkdev(mdp_major, "mdp");
8983         unregister_reboot_notifier(&md_notifier);
8984         unregister_sysctl_table(raid_table_header);
8985
8986         /* We cannot unload the modules while some process is
8987          * waiting for us in select() or poll() - wake them up
8988          */
8989         md_unloading = 1;
8990         while (waitqueue_active(&md_event_waiters)) {
8991                 /* not safe to leave yet */
8992                 wake_up(&md_event_waiters);
8993                 msleep(delay);
8994                 delay += delay;
8995         }
8996         remove_proc_entry("mdstat", NULL);
8997
8998         for_each_mddev(mddev, tmp) {
8999                 export_array(mddev);
9000                 mddev->hold_active = 0;
9001         }
9002         destroy_workqueue(md_misc_wq);
9003         destroy_workqueue(md_wq);
9004 }
9005
9006 subsys_initcall(md_init);
9007 module_exit(md_exit)
9008
9009 static int get_ro(char *buffer, struct kernel_param *kp)
9010 {
9011         return sprintf(buffer, "%d", start_readonly);
9012 }
9013 static int set_ro(const char *val, struct kernel_param *kp)
9014 {
9015         char *e;
9016         int num = simple_strtoul(val, &e, 10);
9017         if (*val && (*e == '\0' || *e == '\n')) {
9018                 start_readonly = num;
9019                 return 0;
9020         }
9021         return -EINVAL;
9022 }
9023
9024 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9025 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9026 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9027
9028 MODULE_LICENSE("GPL");
9029 MODULE_DESCRIPTION("MD RAID framework");
9030 MODULE_ALIAS("md");
9031 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);