]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: unlock mddev_lock on an error path.
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         if (mddev == NULL || mddev->pers == NULL
261             || !mddev->ready) {
262                 bio_io_error(bio);
263                 return;
264         }
265         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267                 return;
268         }
269         smp_rmb(); /* Ensure implications of  'active' are visible */
270         rcu_read_lock();
271         if (mddev->suspended) {
272                 DEFINE_WAIT(__wait);
273                 for (;;) {
274                         prepare_to_wait(&mddev->sb_wait, &__wait,
275                                         TASK_UNINTERRUPTIBLE);
276                         if (!mddev->suspended)
277                                 break;
278                         rcu_read_unlock();
279                         schedule();
280                         rcu_read_lock();
281                 }
282                 finish_wait(&mddev->sb_wait, &__wait);
283         }
284         atomic_inc(&mddev->active_io);
285         rcu_read_unlock();
286
287         /*
288          * save the sectors now since our bio can
289          * go away inside make_request
290          */
291         sectors = bio_sectors(bio);
292         mddev->pers->make_request(mddev, bio);
293
294         cpu = part_stat_lock();
295         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297         part_stat_unlock();
298
299         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300                 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311         BUG_ON(mddev->suspended);
312         mddev->suspended = 1;
313         synchronize_rcu();
314         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315         mddev->pers->quiesce(mddev, 1);
316
317         del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323         mddev->suspended = 0;
324         wake_up(&mddev->sb_wait);
325         mddev->pers->quiesce(mddev, 0);
326
327         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328         md_wakeup_thread(mddev->thread);
329         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335         struct md_personality *pers = mddev->pers;
336         int ret = 0;
337
338         rcu_read_lock();
339         if (mddev->suspended)
340                 ret = 1;
341         else if (pers && pers->congested)
342                 ret = pers->congested(mddev, bits);
343         rcu_read_unlock();
344         return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349         struct mddev *mddev = data;
350         return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354                              struct bvec_merge_data *bvm,
355                              struct bio_vec *biovec)
356 {
357         struct mddev *mddev = q->queuedata;
358         int ret;
359         rcu_read_lock();
360         if (mddev->suspended) {
361                 /* Must always allow one vec */
362                 if (bvm->bi_size == 0)
363                         ret = biovec->bv_len;
364                 else
365                         ret = 0;
366         } else {
367                 struct md_personality *pers = mddev->pers;
368                 if (pers && pers->mergeable_bvec)
369                         ret = pers->mergeable_bvec(mddev, bvm, biovec);
370                 else
371                         ret = biovec->bv_len;
372         }
373         rcu_read_unlock();
374         return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382         struct md_rdev *rdev = bio->bi_private;
383         struct mddev *mddev = rdev->mddev;
384
385         rdev_dec_pending(rdev, mddev);
386
387         if (atomic_dec_and_test(&mddev->flush_pending)) {
388                 /* The pre-request flush has finished */
389                 queue_work(md_wq, &mddev->flush_work);
390         }
391         bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399         struct md_rdev *rdev;
400
401         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402         atomic_set(&mddev->flush_pending, 1);
403         rcu_read_lock();
404         rdev_for_each_rcu(rdev, mddev)
405                 if (rdev->raid_disk >= 0 &&
406                     !test_bit(Faulty, &rdev->flags)) {
407                         /* Take two references, one is dropped
408                          * when request finishes, one after
409                          * we reclaim rcu_read_lock
410                          */
411                         struct bio *bi;
412                         atomic_inc(&rdev->nr_pending);
413                         atomic_inc(&rdev->nr_pending);
414                         rcu_read_unlock();
415                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416                         bi->bi_end_io = md_end_flush;
417                         bi->bi_private = rdev;
418                         bi->bi_bdev = rdev->bdev;
419                         atomic_inc(&mddev->flush_pending);
420                         submit_bio(WRITE_FLUSH, bi);
421                         rcu_read_lock();
422                         rdev_dec_pending(rdev, mddev);
423                 }
424         rcu_read_unlock();
425         if (atomic_dec_and_test(&mddev->flush_pending))
426                 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432         struct bio *bio = mddev->flush_bio;
433
434         if (bio->bi_iter.bi_size == 0)
435                 /* an empty barrier - all done */
436                 bio_endio(bio, 0);
437         else {
438                 bio->bi_rw &= ~REQ_FLUSH;
439                 mddev->pers->make_request(mddev, bio);
440         }
441
442         mddev->flush_bio = NULL;
443         wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448         spin_lock_irq(&mddev->lock);
449         wait_event_lock_irq(mddev->sb_wait,
450                             !mddev->flush_bio,
451                             mddev->lock);
452         mddev->flush_bio = bio;
453         spin_unlock_irq(&mddev->lock);
454
455         INIT_WORK(&mddev->flush_work, submit_flushes);
456         queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462         struct mddev *mddev = cb->data;
463         md_wakeup_thread(mddev->thread);
464         kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470         atomic_inc(&mddev->active);
471         return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478         struct bio_set *bs = NULL;
479
480         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481                 return;
482         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483             mddev->ctime == 0 && !mddev->hold_active) {
484                 /* Array is not configured at all, and not held active,
485                  * so destroy it */
486                 list_del_init(&mddev->all_mddevs);
487                 bs = mddev->bio_set;
488                 mddev->bio_set = NULL;
489                 if (mddev->gendisk) {
490                         /* We did a probe so need to clean up.  Call
491                          * queue_work inside the spinlock so that
492                          * flush_workqueue() after mddev_find will
493                          * succeed in waiting for the work to be done.
494                          */
495                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496                         queue_work(md_misc_wq, &mddev->del_work);
497                 } else
498                         kfree(mddev);
499         }
500         spin_unlock(&all_mddevs_lock);
501         if (bs)
502                 bioset_free(bs);
503 }
504
505 void mddev_init(struct mddev *mddev)
506 {
507         mutex_init(&mddev->open_mutex);
508         mutex_init(&mddev->reconfig_mutex);
509         mutex_init(&mddev->bitmap_info.mutex);
510         INIT_LIST_HEAD(&mddev->disks);
511         INIT_LIST_HEAD(&mddev->all_mddevs);
512         init_timer(&mddev->safemode_timer);
513         atomic_set(&mddev->active, 1);
514         atomic_set(&mddev->openers, 0);
515         atomic_set(&mddev->active_io, 0);
516         spin_lock_init(&mddev->lock);
517         atomic_set(&mddev->flush_pending, 0);
518         init_waitqueue_head(&mddev->sb_wait);
519         init_waitqueue_head(&mddev->recovery_wait);
520         mddev->reshape_position = MaxSector;
521         mddev->reshape_backwards = 0;
522         mddev->last_sync_action = "none";
523         mddev->resync_min = 0;
524         mddev->resync_max = MaxSector;
525         mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528
529 static struct mddev *mddev_find(dev_t unit)
530 {
531         struct mddev *mddev, *new = NULL;
532
533         if (unit && MAJOR(unit) != MD_MAJOR)
534                 unit &= ~((1<<MdpMinorShift)-1);
535
536  retry:
537         spin_lock(&all_mddevs_lock);
538
539         if (unit) {
540                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541                         if (mddev->unit == unit) {
542                                 mddev_get(mddev);
543                                 spin_unlock(&all_mddevs_lock);
544                                 kfree(new);
545                                 return mddev;
546                         }
547
548                 if (new) {
549                         list_add(&new->all_mddevs, &all_mddevs);
550                         spin_unlock(&all_mddevs_lock);
551                         new->hold_active = UNTIL_IOCTL;
552                         return new;
553                 }
554         } else if (new) {
555                 /* find an unused unit number */
556                 static int next_minor = 512;
557                 int start = next_minor;
558                 int is_free = 0;
559                 int dev = 0;
560                 while (!is_free) {
561                         dev = MKDEV(MD_MAJOR, next_minor);
562                         next_minor++;
563                         if (next_minor > MINORMASK)
564                                 next_minor = 0;
565                         if (next_minor == start) {
566                                 /* Oh dear, all in use. */
567                                 spin_unlock(&all_mddevs_lock);
568                                 kfree(new);
569                                 return NULL;
570                         }
571
572                         is_free = 1;
573                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574                                 if (mddev->unit == dev) {
575                                         is_free = 0;
576                                         break;
577                                 }
578                 }
579                 new->unit = dev;
580                 new->md_minor = MINOR(dev);
581                 new->hold_active = UNTIL_STOP;
582                 list_add(&new->all_mddevs, &all_mddevs);
583                 spin_unlock(&all_mddevs_lock);
584                 return new;
585         }
586         spin_unlock(&all_mddevs_lock);
587
588         new = kzalloc(sizeof(*new), GFP_KERNEL);
589         if (!new)
590                 return NULL;
591
592         new->unit = unit;
593         if (MAJOR(unit) == MD_MAJOR)
594                 new->md_minor = MINOR(unit);
595         else
596                 new->md_minor = MINOR(unit) >> MdpMinorShift;
597
598         mddev_init(new);
599
600         goto retry;
601 }
602
603 static struct attribute_group md_redundancy_group;
604
605 void mddev_unlock(struct mddev *mddev)
606 {
607         if (mddev->to_remove) {
608                 /* These cannot be removed under reconfig_mutex as
609                  * an access to the files will try to take reconfig_mutex
610                  * while holding the file unremovable, which leads to
611                  * a deadlock.
612                  * So hold set sysfs_active while the remove in happeing,
613                  * and anything else which might set ->to_remove or my
614                  * otherwise change the sysfs namespace will fail with
615                  * -EBUSY if sysfs_active is still set.
616                  * We set sysfs_active under reconfig_mutex and elsewhere
617                  * test it under the same mutex to ensure its correct value
618                  * is seen.
619                  */
620                 struct attribute_group *to_remove = mddev->to_remove;
621                 mddev->to_remove = NULL;
622                 mddev->sysfs_active = 1;
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625                 if (mddev->kobj.sd) {
626                         if (to_remove != &md_redundancy_group)
627                                 sysfs_remove_group(&mddev->kobj, to_remove);
628                         if (mddev->pers == NULL ||
629                             mddev->pers->sync_request == NULL) {
630                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631                                 if (mddev->sysfs_action)
632                                         sysfs_put(mddev->sysfs_action);
633                                 mddev->sysfs_action = NULL;
634                         }
635                 }
636                 mddev->sysfs_active = 0;
637         } else
638                 mutex_unlock(&mddev->reconfig_mutex);
639
640         /* As we've dropped the mutex we need a spinlock to
641          * make sure the thread doesn't disappear
642          */
643         spin_lock(&pers_lock);
644         md_wakeup_thread(mddev->thread);
645         spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651         struct md_rdev *rdev;
652
653         rdev_for_each_rcu(rdev, mddev)
654                 if (rdev->desc_nr == nr)
655                         return rdev;
656
657         return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663         struct md_rdev *rdev;
664
665         rdev_for_each(rdev, mddev)
666                 if (rdev->bdev->bd_dev == dev)
667                         return rdev;
668
669         return NULL;
670 }
671
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674         struct md_rdev *rdev;
675
676         rdev_for_each_rcu(rdev, mddev)
677                 if (rdev->bdev->bd_dev == dev)
678                         return rdev;
679
680         return NULL;
681 }
682
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685         struct md_personality *pers;
686         list_for_each_entry(pers, &pers_list, list) {
687                 if (level != LEVEL_NONE && pers->level == level)
688                         return pers;
689                 if (strcmp(pers->name, clevel)==0)
690                         return pers;
691         }
692         return NULL;
693 }
694
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699         return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704         rdev->sb_page = alloc_page(GFP_KERNEL);
705         if (!rdev->sb_page) {
706                 printk(KERN_ALERT "md: out of memory.\n");
707                 return -ENOMEM;
708         }
709
710         return 0;
711 }
712
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715         if (rdev->sb_page) {
716                 put_page(rdev->sb_page);
717                 rdev->sb_loaded = 0;
718                 rdev->sb_page = NULL;
719                 rdev->sb_start = 0;
720                 rdev->sectors = 0;
721         }
722         if (rdev->bb_page) {
723                 put_page(rdev->bb_page);
724                 rdev->bb_page = NULL;
725         }
726         kfree(rdev->badblocks.page);
727         rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730
731 static void super_written(struct bio *bio, int error)
732 {
733         struct md_rdev *rdev = bio->bi_private;
734         struct mddev *mddev = rdev->mddev;
735
736         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737                 printk("md: super_written gets error=%d, uptodate=%d\n",
738                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740                 md_error(mddev, rdev);
741         }
742
743         if (atomic_dec_and_test(&mddev->pending_writes))
744                 wake_up(&mddev->sb_wait);
745         bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749                    sector_t sector, int size, struct page *page)
750 {
751         /* write first size bytes of page to sector of rdev
752          * Increment mddev->pending_writes before returning
753          * and decrement it on completion, waking up sb_wait
754          * if zero is reached.
755          * If an error occurred, call md_error
756          */
757         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760         bio->bi_iter.bi_sector = sector;
761         bio_add_page(bio, page, size, 0);
762         bio->bi_private = rdev;
763         bio->bi_end_io = super_written;
764
765         atomic_inc(&mddev->pending_writes);
766         submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771         /* wait for all superblock writes that were scheduled to complete */
772         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776                  struct page *page, int rw, bool metadata_op)
777 {
778         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779         int ret;
780
781         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782                 rdev->meta_bdev : rdev->bdev;
783         if (metadata_op)
784                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785         else if (rdev->mddev->reshape_position != MaxSector &&
786                  (rdev->mddev->reshape_backwards ==
787                   (sector >= rdev->mddev->reshape_position)))
788                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789         else
790                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791         bio_add_page(bio, page, size, 0);
792         submit_bio_wait(rw, bio);
793
794         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795         bio_put(bio);
796         return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802         char b[BDEVNAME_SIZE];
803
804         if (rdev->sb_loaded)
805                 return 0;
806
807         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808                 goto fail;
809         rdev->sb_loaded = 1;
810         return 0;
811
812 fail:
813         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814                 bdevname(rdev->bdev,b));
815         return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820         return  sb1->set_uuid0 == sb2->set_uuid0 &&
821                 sb1->set_uuid1 == sb2->set_uuid1 &&
822                 sb1->set_uuid2 == sb2->set_uuid2 &&
823                 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828         int ret;
829         mdp_super_t *tmp1, *tmp2;
830
831         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834         if (!tmp1 || !tmp2) {
835                 ret = 0;
836                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837                 goto abort;
838         }
839
840         *tmp1 = *sb1;
841         *tmp2 = *sb2;
842
843         /*
844          * nr_disks is not constant
845          */
846         tmp1->nr_disks = 0;
847         tmp2->nr_disks = 0;
848
849         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851         kfree(tmp1);
852         kfree(tmp2);
853         return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858         csum = (csum & 0xffff) + (csum >> 16);
859         return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864         u64 newcsum = 0;
865         u32 *sb32 = (u32*)sb;
866         int i;
867         unsigned int disk_csum, csum;
868
869         disk_csum = sb->sb_csum;
870         sb->sb_csum = 0;
871
872         for (i = 0; i < MD_SB_BYTES/4 ; i++)
873                 newcsum += sb32[i];
874         csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877         /* This used to use csum_partial, which was wrong for several
878          * reasons including that different results are returned on
879          * different architectures.  It isn't critical that we get exactly
880          * the same return value as before (we always csum_fold before
881          * testing, and that removes any differences).  However as we
882          * know that csum_partial always returned a 16bit value on
883          * alphas, do a fold to maximise conformity to previous behaviour.
884          */
885         sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887         sb->sb_csum = disk_csum;
888 #endif
889         return csum;
890 }
891
892 /*
893  * Handle superblock details.
894  * We want to be able to handle multiple superblock formats
895  * so we have a common interface to them all, and an array of
896  * different handlers.
897  * We rely on user-space to write the initial superblock, and support
898  * reading and updating of superblocks.
899  * Interface methods are:
900  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901  *      loads and validates a superblock on dev.
902  *      if refdev != NULL, compare superblocks on both devices
903  *    Return:
904  *      0 - dev has a superblock that is compatible with refdev
905  *      1 - dev has a superblock that is compatible and newer than refdev
906  *          so dev should be used as the refdev in future
907  *     -EINVAL superblock incompatible or invalid
908  *     -othererror e.g. -EIO
909  *
910  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
911  *      Verify that dev is acceptable into mddev.
912  *       The first time, mddev->raid_disks will be 0, and data from
913  *       dev should be merged in.  Subsequent calls check that dev
914  *       is new enough.  Return 0 or -EINVAL
915  *
916  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
917  *     Update the superblock for rdev with data in mddev
918  *     This does not write to disc.
919  *
920  */
921
922 struct super_type  {
923         char                *name;
924         struct module       *owner;
925         int                 (*load_super)(struct md_rdev *rdev,
926                                           struct md_rdev *refdev,
927                                           int minor_version);
928         int                 (*validate_super)(struct mddev *mddev,
929                                               struct md_rdev *rdev);
930         void                (*sync_super)(struct mddev *mddev,
931                                           struct md_rdev *rdev);
932         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
933                                                 sector_t num_sectors);
934         int                 (*allow_new_offset)(struct md_rdev *rdev,
935                                                 unsigned long long new_offset);
936 };
937
938 /*
939  * Check that the given mddev has no bitmap.
940  *
941  * This function is called from the run method of all personalities that do not
942  * support bitmaps. It prints an error message and returns non-zero if mddev
943  * has a bitmap. Otherwise, it returns 0.
944  *
945  */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949                 return 0;
950         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951                 mdname(mddev), mddev->pers->name);
952         return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957  * load_super for 0.90.0
958  */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962         mdp_super_t *sb;
963         int ret;
964
965         /*
966          * Calculate the position of the superblock (512byte sectors),
967          * it's at the end of the disk.
968          *
969          * It also happens to be a multiple of 4Kb.
970          */
971         rdev->sb_start = calc_dev_sboffset(rdev);
972
973         ret = read_disk_sb(rdev, MD_SB_BYTES);
974         if (ret) return ret;
975
976         ret = -EINVAL;
977
978         bdevname(rdev->bdev, b);
979         sb = page_address(rdev->sb_page);
980
981         if (sb->md_magic != MD_SB_MAGIC) {
982                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983                        b);
984                 goto abort;
985         }
986
987         if (sb->major_version != 0 ||
988             sb->minor_version < 90 ||
989             sb->minor_version > 91) {
990                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991                         sb->major_version, sb->minor_version,
992                         b);
993                 goto abort;
994         }
995
996         if (sb->raid_disks <= 0)
997                 goto abort;
998
999         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001                         b);
1002                 goto abort;
1003         }
1004
1005         rdev->preferred_minor = sb->md_minor;
1006         rdev->data_offset = 0;
1007         rdev->new_data_offset = 0;
1008         rdev->sb_size = MD_SB_BYTES;
1009         rdev->badblocks.shift = -1;
1010
1011         if (sb->level == LEVEL_MULTIPATH)
1012                 rdev->desc_nr = -1;
1013         else
1014                 rdev->desc_nr = sb->this_disk.number;
1015
1016         if (!refdev) {
1017                 ret = 1;
1018         } else {
1019                 __u64 ev1, ev2;
1020                 mdp_super_t *refsb = page_address(refdev->sb_page);
1021                 if (!uuid_equal(refsb, sb)) {
1022                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023                                 b, bdevname(refdev->bdev,b2));
1024                         goto abort;
1025                 }
1026                 if (!sb_equal(refsb, sb)) {
1027                         printk(KERN_WARNING "md: %s has same UUID"
1028                                " but different superblock to %s\n",
1029                                b, bdevname(refdev->bdev, b2));
1030                         goto abort;
1031                 }
1032                 ev1 = md_event(sb);
1033                 ev2 = md_event(refsb);
1034                 if (ev1 > ev2)
1035                         ret = 1;
1036                 else
1037                         ret = 0;
1038         }
1039         rdev->sectors = rdev->sb_start;
1040         /* Limit to 4TB as metadata cannot record more than that.
1041          * (not needed for Linear and RAID0 as metadata doesn't
1042          * record this size)
1043          */
1044         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045                 rdev->sectors = (2ULL << 32) - 2;
1046
1047         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048                 /* "this cannot possibly happen" ... */
1049                 ret = -EINVAL;
1050
1051  abort:
1052         return ret;
1053 }
1054
1055 /*
1056  * validate_super for 0.90.0
1057  */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060         mdp_disk_t *desc;
1061         mdp_super_t *sb = page_address(rdev->sb_page);
1062         __u64 ev1 = md_event(sb);
1063
1064         rdev->raid_disk = -1;
1065         clear_bit(Faulty, &rdev->flags);
1066         clear_bit(In_sync, &rdev->flags);
1067         clear_bit(Bitmap_sync, &rdev->flags);
1068         clear_bit(WriteMostly, &rdev->flags);
1069
1070         if (mddev->raid_disks == 0) {
1071                 mddev->major_version = 0;
1072                 mddev->minor_version = sb->minor_version;
1073                 mddev->patch_version = sb->patch_version;
1074                 mddev->external = 0;
1075                 mddev->chunk_sectors = sb->chunk_size >> 9;
1076                 mddev->ctime = sb->ctime;
1077                 mddev->utime = sb->utime;
1078                 mddev->level = sb->level;
1079                 mddev->clevel[0] = 0;
1080                 mddev->layout = sb->layout;
1081                 mddev->raid_disks = sb->raid_disks;
1082                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083                 mddev->events = ev1;
1084                 mddev->bitmap_info.offset = 0;
1085                 mddev->bitmap_info.space = 0;
1086                 /* bitmap can use 60 K after the 4K superblocks */
1087                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089                 mddev->reshape_backwards = 0;
1090
1091                 if (mddev->minor_version >= 91) {
1092                         mddev->reshape_position = sb->reshape_position;
1093                         mddev->delta_disks = sb->delta_disks;
1094                         mddev->new_level = sb->new_level;
1095                         mddev->new_layout = sb->new_layout;
1096                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097                         if (mddev->delta_disks < 0)
1098                                 mddev->reshape_backwards = 1;
1099                 } else {
1100                         mddev->reshape_position = MaxSector;
1101                         mddev->delta_disks = 0;
1102                         mddev->new_level = mddev->level;
1103                         mddev->new_layout = mddev->layout;
1104                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1105                 }
1106
1107                 if (sb->state & (1<<MD_SB_CLEAN))
1108                         mddev->recovery_cp = MaxSector;
1109                 else {
1110                         if (sb->events_hi == sb->cp_events_hi &&
1111                                 sb->events_lo == sb->cp_events_lo) {
1112                                 mddev->recovery_cp = sb->recovery_cp;
1113                         } else
1114                                 mddev->recovery_cp = 0;
1115                 }
1116
1117                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122                 mddev->max_disks = MD_SB_DISKS;
1123
1124                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125                     mddev->bitmap_info.file == NULL) {
1126                         mddev->bitmap_info.offset =
1127                                 mddev->bitmap_info.default_offset;
1128                         mddev->bitmap_info.space =
1129                                 mddev->bitmap_info.default_space;
1130                 }
1131
1132         } else if (mddev->pers == NULL) {
1133                 /* Insist on good event counter while assembling, except
1134                  * for spares (which don't need an event count) */
1135                 ++ev1;
1136                 if (sb->disks[rdev->desc_nr].state & (
1137                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138                         if (ev1 < mddev->events)
1139                                 return -EINVAL;
1140         } else if (mddev->bitmap) {
1141                 /* if adding to array with a bitmap, then we can accept an
1142                  * older device ... but not too old.
1143                  */
1144                 if (ev1 < mddev->bitmap->events_cleared)
1145                         return 0;
1146                 if (ev1 < mddev->events)
1147                         set_bit(Bitmap_sync, &rdev->flags);
1148         } else {
1149                 if (ev1 < mddev->events)
1150                         /* just a hot-add of a new device, leave raid_disk at -1 */
1151                         return 0;
1152         }
1153
1154         if (mddev->level != LEVEL_MULTIPATH) {
1155                 desc = sb->disks + rdev->desc_nr;
1156
1157                 if (desc->state & (1<<MD_DISK_FAULTY))
1158                         set_bit(Faulty, &rdev->flags);
1159                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160                             desc->raid_disk < mddev->raid_disks */) {
1161                         set_bit(In_sync, &rdev->flags);
1162                         rdev->raid_disk = desc->raid_disk;
1163                         rdev->saved_raid_disk = desc->raid_disk;
1164                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165                         /* active but not in sync implies recovery up to
1166                          * reshape position.  We don't know exactly where
1167                          * that is, so set to zero for now */
1168                         if (mddev->minor_version >= 91) {
1169                                 rdev->recovery_offset = 0;
1170                                 rdev->raid_disk = desc->raid_disk;
1171                         }
1172                 }
1173                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174                         set_bit(WriteMostly, &rdev->flags);
1175         } else /* MULTIPATH are always insync */
1176                 set_bit(In_sync, &rdev->flags);
1177         return 0;
1178 }
1179
1180 /*
1181  * sync_super for 0.90.0
1182  */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185         mdp_super_t *sb;
1186         struct md_rdev *rdev2;
1187         int next_spare = mddev->raid_disks;
1188
1189         /* make rdev->sb match mddev data..
1190          *
1191          * 1/ zero out disks
1192          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193          * 3/ any empty disks < next_spare become removed
1194          *
1195          * disks[0] gets initialised to REMOVED because
1196          * we cannot be sure from other fields if it has
1197          * been initialised or not.
1198          */
1199         int i;
1200         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202         rdev->sb_size = MD_SB_BYTES;
1203
1204         sb = page_address(rdev->sb_page);
1205
1206         memset(sb, 0, sizeof(*sb));
1207
1208         sb->md_magic = MD_SB_MAGIC;
1209         sb->major_version = mddev->major_version;
1210         sb->patch_version = mddev->patch_version;
1211         sb->gvalid_words  = 0; /* ignored */
1212         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217         sb->ctime = mddev->ctime;
1218         sb->level = mddev->level;
1219         sb->size = mddev->dev_sectors / 2;
1220         sb->raid_disks = mddev->raid_disks;
1221         sb->md_minor = mddev->md_minor;
1222         sb->not_persistent = 0;
1223         sb->utime = mddev->utime;
1224         sb->state = 0;
1225         sb->events_hi = (mddev->events>>32);
1226         sb->events_lo = (u32)mddev->events;
1227
1228         if (mddev->reshape_position == MaxSector)
1229                 sb->minor_version = 90;
1230         else {
1231                 sb->minor_version = 91;
1232                 sb->reshape_position = mddev->reshape_position;
1233                 sb->new_level = mddev->new_level;
1234                 sb->delta_disks = mddev->delta_disks;
1235                 sb->new_layout = mddev->new_layout;
1236                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237         }
1238         mddev->minor_version = sb->minor_version;
1239         if (mddev->in_sync)
1240         {
1241                 sb->recovery_cp = mddev->recovery_cp;
1242                 sb->cp_events_hi = (mddev->events>>32);
1243                 sb->cp_events_lo = (u32)mddev->events;
1244                 if (mddev->recovery_cp == MaxSector)
1245                         sb->state = (1<< MD_SB_CLEAN);
1246         } else
1247                 sb->recovery_cp = 0;
1248
1249         sb->layout = mddev->layout;
1250         sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256         rdev_for_each(rdev2, mddev) {
1257                 mdp_disk_t *d;
1258                 int desc_nr;
1259                 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261                 if (rdev2->raid_disk >= 0 &&
1262                     sb->minor_version >= 91)
1263                         /* we have nowhere to store the recovery_offset,
1264                          * but if it is not below the reshape_position,
1265                          * we can piggy-back on that.
1266                          */
1267                         is_active = 1;
1268                 if (rdev2->raid_disk < 0 ||
1269                     test_bit(Faulty, &rdev2->flags))
1270                         is_active = 0;
1271                 if (is_active)
1272                         desc_nr = rdev2->raid_disk;
1273                 else
1274                         desc_nr = next_spare++;
1275                 rdev2->desc_nr = desc_nr;
1276                 d = &sb->disks[rdev2->desc_nr];
1277                 nr_disks++;
1278                 d->number = rdev2->desc_nr;
1279                 d->major = MAJOR(rdev2->bdev->bd_dev);
1280                 d->minor = MINOR(rdev2->bdev->bd_dev);
1281                 if (is_active)
1282                         d->raid_disk = rdev2->raid_disk;
1283                 else
1284                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1285                 if (test_bit(Faulty, &rdev2->flags))
1286                         d->state = (1<<MD_DISK_FAULTY);
1287                 else if (is_active) {
1288                         d->state = (1<<MD_DISK_ACTIVE);
1289                         if (test_bit(In_sync, &rdev2->flags))
1290                                 d->state |= (1<<MD_DISK_SYNC);
1291                         active++;
1292                         working++;
1293                 } else {
1294                         d->state = 0;
1295                         spare++;
1296                         working++;
1297                 }
1298                 if (test_bit(WriteMostly, &rdev2->flags))
1299                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300         }
1301         /* now set the "removed" and "faulty" bits on any missing devices */
1302         for (i=0 ; i < mddev->raid_disks ; i++) {
1303                 mdp_disk_t *d = &sb->disks[i];
1304                 if (d->state == 0 && d->number == 0) {
1305                         d->number = i;
1306                         d->raid_disk = i;
1307                         d->state = (1<<MD_DISK_REMOVED);
1308                         d->state |= (1<<MD_DISK_FAULTY);
1309                         failed++;
1310                 }
1311         }
1312         sb->nr_disks = nr_disks;
1313         sb->active_disks = active;
1314         sb->working_disks = working;
1315         sb->failed_disks = failed;
1316         sb->spare_disks = spare;
1317
1318         sb->this_disk = sb->disks[rdev->desc_nr];
1319         sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323  * rdev_size_change for 0.90.0
1324  */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329                 return 0; /* component must fit device */
1330         if (rdev->mddev->bitmap_info.offset)
1331                 return 0; /* can't move bitmap */
1332         rdev->sb_start = calc_dev_sboffset(rdev);
1333         if (!num_sectors || num_sectors > rdev->sb_start)
1334                 num_sectors = rdev->sb_start;
1335         /* Limit to 4TB as metadata cannot record more than that.
1336          * 4TB == 2^32 KB, or 2*2^32 sectors.
1337          */
1338         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339                 num_sectors = (2ULL << 32) - 2;
1340         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341                        rdev->sb_page);
1342         md_super_wait(rdev->mddev);
1343         return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349         /* non-zero offset changes not possible with v0.90 */
1350         return new_offset == 0;
1351 }
1352
1353 /*
1354  * version 1 superblock
1355  */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359         __le32 disk_csum;
1360         u32 csum;
1361         unsigned long long newcsum;
1362         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363         __le32 *isuper = (__le32*)sb;
1364
1365         disk_csum = sb->sb_csum;
1366         sb->sb_csum = 0;
1367         newcsum = 0;
1368         for (; size >= 4; size -= 4)
1369                 newcsum += le32_to_cpu(*isuper++);
1370
1371         if (size == 2)
1372                 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375         sb->sb_csum = disk_csum;
1376         return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380                             int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383         struct mdp_superblock_1 *sb;
1384         int ret;
1385         sector_t sb_start;
1386         sector_t sectors;
1387         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388         int bmask;
1389
1390         /*
1391          * Calculate the position of the superblock in 512byte sectors.
1392          * It is always aligned to a 4K boundary and
1393          * depeding on minor_version, it can be:
1394          * 0: At least 8K, but less than 12K, from end of device
1395          * 1: At start of device
1396          * 2: 4K from start of device.
1397          */
1398         switch(minor_version) {
1399         case 0:
1400                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401                 sb_start -= 8*2;
1402                 sb_start &= ~(sector_t)(4*2-1);
1403                 break;
1404         case 1:
1405                 sb_start = 0;
1406                 break;
1407         case 2:
1408                 sb_start = 8;
1409                 break;
1410         default:
1411                 return -EINVAL;
1412         }
1413         rdev->sb_start = sb_start;
1414
1415         /* superblock is rarely larger than 1K, but it can be larger,
1416          * and it is safe to read 4k, so we do that
1417          */
1418         ret = read_disk_sb(rdev, 4096);
1419         if (ret) return ret;
1420
1421         sb = page_address(rdev->sb_page);
1422
1423         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424             sb->major_version != cpu_to_le32(1) ||
1425             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428                 return -EINVAL;
1429
1430         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431                 printk("md: invalid superblock checksum on %s\n",
1432                         bdevname(rdev->bdev,b));
1433                 return -EINVAL;
1434         }
1435         if (le64_to_cpu(sb->data_size) < 10) {
1436                 printk("md: data_size too small on %s\n",
1437                        bdevname(rdev->bdev,b));
1438                 return -EINVAL;
1439         }
1440         if (sb->pad0 ||
1441             sb->pad3[0] ||
1442             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443                 /* Some padding is non-zero, might be a new feature */
1444                 return -EINVAL;
1445
1446         rdev->preferred_minor = 0xffff;
1447         rdev->data_offset = le64_to_cpu(sb->data_offset);
1448         rdev->new_data_offset = rdev->data_offset;
1449         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456         if (rdev->sb_size & bmask)
1457                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459         if (minor_version
1460             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461                 return -EINVAL;
1462         if (minor_version
1463             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464                 return -EINVAL;
1465
1466         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467                 rdev->desc_nr = -1;
1468         else
1469                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471         if (!rdev->bb_page) {
1472                 rdev->bb_page = alloc_page(GFP_KERNEL);
1473                 if (!rdev->bb_page)
1474                         return -ENOMEM;
1475         }
1476         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477             rdev->badblocks.count == 0) {
1478                 /* need to load the bad block list.
1479                  * Currently we limit it to one page.
1480                  */
1481                 s32 offset;
1482                 sector_t bb_sector;
1483                 u64 *bbp;
1484                 int i;
1485                 int sectors = le16_to_cpu(sb->bblog_size);
1486                 if (sectors > (PAGE_SIZE / 512))
1487                         return -EINVAL;
1488                 offset = le32_to_cpu(sb->bblog_offset);
1489                 if (offset == 0)
1490                         return -EINVAL;
1491                 bb_sector = (long long)offset;
1492                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493                                   rdev->bb_page, READ, true))
1494                         return -EIO;
1495                 bbp = (u64 *)page_address(rdev->bb_page);
1496                 rdev->badblocks.shift = sb->bblog_shift;
1497                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498                         u64 bb = le64_to_cpu(*bbp);
1499                         int count = bb & (0x3ff);
1500                         u64 sector = bb >> 10;
1501                         sector <<= sb->bblog_shift;
1502                         count <<= sb->bblog_shift;
1503                         if (bb + 1 == 0)
1504                                 break;
1505                         if (md_set_badblocks(&rdev->badblocks,
1506                                              sector, count, 1) == 0)
1507                                 return -EINVAL;
1508                 }
1509         } else if (sb->bblog_offset != 0)
1510                 rdev->badblocks.shift = 0;
1511
1512         if (!refdev) {
1513                 ret = 1;
1514         } else {
1515                 __u64 ev1, ev2;
1516                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519                     sb->level != refsb->level ||
1520                     sb->layout != refsb->layout ||
1521                     sb->chunksize != refsb->chunksize) {
1522                         printk(KERN_WARNING "md: %s has strangely different"
1523                                 " superblock to %s\n",
1524                                 bdevname(rdev->bdev,b),
1525                                 bdevname(refdev->bdev,b2));
1526                         return -EINVAL;
1527                 }
1528                 ev1 = le64_to_cpu(sb->events);
1529                 ev2 = le64_to_cpu(refsb->events);
1530
1531                 if (ev1 > ev2)
1532                         ret = 1;
1533                 else
1534                         ret = 0;
1535         }
1536         if (minor_version) {
1537                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538                 sectors -= rdev->data_offset;
1539         } else
1540                 sectors = rdev->sb_start;
1541         if (sectors < le64_to_cpu(sb->data_size))
1542                 return -EINVAL;
1543         rdev->sectors = le64_to_cpu(sb->data_size);
1544         return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550         __u64 ev1 = le64_to_cpu(sb->events);
1551
1552         rdev->raid_disk = -1;
1553         clear_bit(Faulty, &rdev->flags);
1554         clear_bit(In_sync, &rdev->flags);
1555         clear_bit(Bitmap_sync, &rdev->flags);
1556         clear_bit(WriteMostly, &rdev->flags);
1557
1558         if (mddev->raid_disks == 0) {
1559                 mddev->major_version = 1;
1560                 mddev->patch_version = 0;
1561                 mddev->external = 0;
1562                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565                 mddev->level = le32_to_cpu(sb->level);
1566                 mddev->clevel[0] = 0;
1567                 mddev->layout = le32_to_cpu(sb->layout);
1568                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569                 mddev->dev_sectors = le64_to_cpu(sb->size);
1570                 mddev->events = ev1;
1571                 mddev->bitmap_info.offset = 0;
1572                 mddev->bitmap_info.space = 0;
1573                 /* Default location for bitmap is 1K after superblock
1574                  * using 3K - total of 4K
1575                  */
1576                 mddev->bitmap_info.default_offset = 1024 >> 9;
1577                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578                 mddev->reshape_backwards = 0;
1579
1580                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581                 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583                 mddev->max_disks =  (4096-256)/2;
1584
1585                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586                     mddev->bitmap_info.file == NULL) {
1587                         mddev->bitmap_info.offset =
1588                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1589                         /* Metadata doesn't record how much space is available.
1590                          * For 1.0, we assume we can use up to the superblock
1591                          * if before, else to 4K beyond superblock.
1592                          * For others, assume no change is possible.
1593                          */
1594                         if (mddev->minor_version > 0)
1595                                 mddev->bitmap_info.space = 0;
1596                         else if (mddev->bitmap_info.offset > 0)
1597                                 mddev->bitmap_info.space =
1598                                         8 - mddev->bitmap_info.offset;
1599                         else
1600                                 mddev->bitmap_info.space =
1601                                         -mddev->bitmap_info.offset;
1602                 }
1603
1604                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607                         mddev->new_level = le32_to_cpu(sb->new_level);
1608                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1609                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610                         if (mddev->delta_disks < 0 ||
1611                             (mddev->delta_disks == 0 &&
1612                              (le32_to_cpu(sb->feature_map)
1613                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1614                                 mddev->reshape_backwards = 1;
1615                 } else {
1616                         mddev->reshape_position = MaxSector;
1617                         mddev->delta_disks = 0;
1618                         mddev->new_level = mddev->level;
1619                         mddev->new_layout = mddev->layout;
1620                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1621                 }
1622
1623         } else if (mddev->pers == NULL) {
1624                 /* Insist of good event counter while assembling, except for
1625                  * spares (which don't need an event count) */
1626                 ++ev1;
1627                 if (rdev->desc_nr >= 0 &&
1628                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630                         if (ev1 < mddev->events)
1631                                 return -EINVAL;
1632         } else if (mddev->bitmap) {
1633                 /* If adding to array with a bitmap, then we can accept an
1634                  * older device, but not too old.
1635                  */
1636                 if (ev1 < mddev->bitmap->events_cleared)
1637                         return 0;
1638                 if (ev1 < mddev->events)
1639                         set_bit(Bitmap_sync, &rdev->flags);
1640         } else {
1641                 if (ev1 < mddev->events)
1642                         /* just a hot-add of a new device, leave raid_disk at -1 */
1643                         return 0;
1644         }
1645         if (mddev->level != LEVEL_MULTIPATH) {
1646                 int role;
1647                 if (rdev->desc_nr < 0 ||
1648                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649                         role = 0xffff;
1650                         rdev->desc_nr = -1;
1651                 } else
1652                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653                 switch(role) {
1654                 case 0xffff: /* spare */
1655                         break;
1656                 case 0xfffe: /* faulty */
1657                         set_bit(Faulty, &rdev->flags);
1658                         break;
1659                 default:
1660                         rdev->saved_raid_disk = role;
1661                         if ((le32_to_cpu(sb->feature_map) &
1662                              MD_FEATURE_RECOVERY_OFFSET)) {
1663                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664                                 if (!(le32_to_cpu(sb->feature_map) &
1665                                       MD_FEATURE_RECOVERY_BITMAP))
1666                                         rdev->saved_raid_disk = -1;
1667                         } else
1668                                 set_bit(In_sync, &rdev->flags);
1669                         rdev->raid_disk = role;
1670                         break;
1671                 }
1672                 if (sb->devflags & WriteMostly1)
1673                         set_bit(WriteMostly, &rdev->flags);
1674                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675                         set_bit(Replacement, &rdev->flags);
1676         } else /* MULTIPATH are always insync */
1677                 set_bit(In_sync, &rdev->flags);
1678
1679         return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct mdp_superblock_1 *sb;
1685         struct md_rdev *rdev2;
1686         int max_dev, i;
1687         /* make rdev->sb match mddev and rdev data. */
1688
1689         sb = page_address(rdev->sb_page);
1690
1691         sb->feature_map = 0;
1692         sb->pad0 = 0;
1693         sb->recovery_offset = cpu_to_le64(0);
1694         memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696         sb->utime = cpu_to_le64((__u64)mddev->utime);
1697         sb->events = cpu_to_le64(mddev->events);
1698         if (mddev->in_sync)
1699                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700         else
1701                 sb->resync_offset = cpu_to_le64(0);
1702
1703         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706         sb->size = cpu_to_le64(mddev->dev_sectors);
1707         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708         sb->level = cpu_to_le32(mddev->level);
1709         sb->layout = cpu_to_le32(mddev->layout);
1710
1711         if (test_bit(WriteMostly, &rdev->flags))
1712                 sb->devflags |= WriteMostly1;
1713         else
1714                 sb->devflags &= ~WriteMostly1;
1715         sb->data_offset = cpu_to_le64(rdev->data_offset);
1716         sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721         }
1722
1723         if (rdev->raid_disk >= 0 &&
1724             !test_bit(In_sync, &rdev->flags)) {
1725                 sb->feature_map |=
1726                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727                 sb->recovery_offset =
1728                         cpu_to_le64(rdev->recovery_offset);
1729                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730                         sb->feature_map |=
1731                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732         }
1733         if (test_bit(Replacement, &rdev->flags))
1734                 sb->feature_map |=
1735                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737         if (mddev->reshape_position != MaxSector) {
1738                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742                 sb->new_level = cpu_to_le32(mddev->new_level);
1743                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744                 if (mddev->delta_disks == 0 &&
1745                     mddev->reshape_backwards)
1746                         sb->feature_map
1747                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748                 if (rdev->new_data_offset != rdev->data_offset) {
1749                         sb->feature_map
1750                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752                                                              - rdev->data_offset));
1753                 }
1754         }
1755
1756         if (rdev->badblocks.count == 0)
1757                 /* Nothing to do for bad blocks*/ ;
1758         else if (sb->bblog_offset == 0)
1759                 /* Cannot record bad blocks on this device */
1760                 md_error(mddev, rdev);
1761         else {
1762                 struct badblocks *bb = &rdev->badblocks;
1763                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764                 u64 *p = bb->page;
1765                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766                 if (bb->changed) {
1767                         unsigned seq;
1768
1769 retry:
1770                         seq = read_seqbegin(&bb->lock);
1771
1772                         memset(bbp, 0xff, PAGE_SIZE);
1773
1774                         for (i = 0 ; i < bb->count ; i++) {
1775                                 u64 internal_bb = p[i];
1776                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777                                                 | BB_LEN(internal_bb));
1778                                 bbp[i] = cpu_to_le64(store_bb);
1779                         }
1780                         bb->changed = 0;
1781                         if (read_seqretry(&bb->lock, seq))
1782                                 goto retry;
1783
1784                         bb->sector = (rdev->sb_start +
1785                                       (int)le32_to_cpu(sb->bblog_offset));
1786                         bb->size = le16_to_cpu(sb->bblog_size);
1787                 }
1788         }
1789
1790         max_dev = 0;
1791         rdev_for_each(rdev2, mddev)
1792                 if (rdev2->desc_nr+1 > max_dev)
1793                         max_dev = rdev2->desc_nr+1;
1794
1795         if (max_dev > le32_to_cpu(sb->max_dev)) {
1796                 int bmask;
1797                 sb->max_dev = cpu_to_le32(max_dev);
1798                 rdev->sb_size = max_dev * 2 + 256;
1799                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800                 if (rdev->sb_size & bmask)
1801                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802         } else
1803                 max_dev = le32_to_cpu(sb->max_dev);
1804
1805         for (i=0; i<max_dev;i++)
1806                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808         rdev_for_each(rdev2, mddev) {
1809                 i = rdev2->desc_nr;
1810                 if (test_bit(Faulty, &rdev2->flags))
1811                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812                 else if (test_bit(In_sync, &rdev2->flags))
1813                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814                 else if (rdev2->raid_disk >= 0)
1815                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816                 else
1817                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1818         }
1819
1820         sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826         struct mdp_superblock_1 *sb;
1827         sector_t max_sectors;
1828         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829                 return 0; /* component must fit device */
1830         if (rdev->data_offset != rdev->new_data_offset)
1831                 return 0; /* too confusing */
1832         if (rdev->sb_start < rdev->data_offset) {
1833                 /* minor versions 1 and 2; superblock before data */
1834                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835                 max_sectors -= rdev->data_offset;
1836                 if (!num_sectors || num_sectors > max_sectors)
1837                         num_sectors = max_sectors;
1838         } else if (rdev->mddev->bitmap_info.offset) {
1839                 /* minor version 0 with bitmap we can't move */
1840                 return 0;
1841         } else {
1842                 /* minor version 0; superblock after data */
1843                 sector_t sb_start;
1844                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845                 sb_start &= ~(sector_t)(4*2 - 1);
1846                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847                 if (!num_sectors || num_sectors > max_sectors)
1848                         num_sectors = max_sectors;
1849                 rdev->sb_start = sb_start;
1850         }
1851         sb = page_address(rdev->sb_page);
1852         sb->data_size = cpu_to_le64(num_sectors);
1853         sb->super_offset = rdev->sb_start;
1854         sb->sb_csum = calc_sb_1_csum(sb);
1855         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856                        rdev->sb_page);
1857         md_super_wait(rdev->mddev);
1858         return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864                          unsigned long long new_offset)
1865 {
1866         /* All necessary checks on new >= old have been done */
1867         struct bitmap *bitmap;
1868         if (new_offset >= rdev->data_offset)
1869                 return 1;
1870
1871         /* with 1.0 metadata, there is no metadata to tread on
1872          * so we can always move back */
1873         if (rdev->mddev->minor_version == 0)
1874                 return 1;
1875
1876         /* otherwise we must be sure not to step on
1877          * any metadata, so stay:
1878          * 36K beyond start of superblock
1879          * beyond end of badblocks
1880          * beyond write-intent bitmap
1881          */
1882         if (rdev->sb_start + (32+4)*2 > new_offset)
1883                 return 0;
1884         bitmap = rdev->mddev->bitmap;
1885         if (bitmap && !rdev->mddev->bitmap_info.file &&
1886             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888                 return 0;
1889         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890                 return 0;
1891
1892         return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896         [0] = {
1897                 .name   = "0.90.0",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_90_load,
1900                 .validate_super     = super_90_validate,
1901                 .sync_super         = super_90_sync,
1902                 .rdev_size_change   = super_90_rdev_size_change,
1903                 .allow_new_offset   = super_90_allow_new_offset,
1904         },
1905         [1] = {
1906                 .name   = "md-1",
1907                 .owner  = THIS_MODULE,
1908                 .load_super         = super_1_load,
1909                 .validate_super     = super_1_validate,
1910                 .sync_super         = super_1_sync,
1911                 .rdev_size_change   = super_1_rdev_size_change,
1912                 .allow_new_offset   = super_1_allow_new_offset,
1913         },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918         if (mddev->sync_super) {
1919                 mddev->sync_super(mddev, rdev);
1920                 return;
1921         }
1922
1923         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925         super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930         struct md_rdev *rdev, *rdev2;
1931
1932         rcu_read_lock();
1933         rdev_for_each_rcu(rdev, mddev1)
1934                 rdev_for_each_rcu(rdev2, mddev2)
1935                         if (rdev->bdev->bd_contains ==
1936                             rdev2->bdev->bd_contains) {
1937                                 rcu_read_unlock();
1938                                 return 1;
1939                         }
1940         rcu_read_unlock();
1941         return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947  * Try to register data integrity profile for an mddev
1948  *
1949  * This is called when an array is started and after a disk has been kicked
1950  * from the array. It only succeeds if all working and active component devices
1951  * are integrity capable with matching profiles.
1952  */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955         struct md_rdev *rdev, *reference = NULL;
1956
1957         if (list_empty(&mddev->disks))
1958                 return 0; /* nothing to do */
1959         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960                 return 0; /* shouldn't register, or already is */
1961         rdev_for_each(rdev, mddev) {
1962                 /* skip spares and non-functional disks */
1963                 if (test_bit(Faulty, &rdev->flags))
1964                         continue;
1965                 if (rdev->raid_disk < 0)
1966                         continue;
1967                 if (!reference) {
1968                         /* Use the first rdev as the reference */
1969                         reference = rdev;
1970                         continue;
1971                 }
1972                 /* does this rdev's profile match the reference profile? */
1973                 if (blk_integrity_compare(reference->bdev->bd_disk,
1974                                 rdev->bdev->bd_disk) < 0)
1975                         return -EINVAL;
1976         }
1977         if (!reference || !bdev_get_integrity(reference->bdev))
1978                 return 0;
1979         /*
1980          * All component devices are integrity capable and have matching
1981          * profiles, register the common profile for the md device.
1982          */
1983         if (blk_integrity_register(mddev->gendisk,
1984                         bdev_get_integrity(reference->bdev)) != 0) {
1985                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986                         mdname(mddev));
1987                 return -EINVAL;
1988         }
1989         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992                        mdname(mddev));
1993                 return -EINVAL;
1994         }
1995         return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002         struct blk_integrity *bi_rdev;
2003         struct blk_integrity *bi_mddev;
2004
2005         if (!mddev->gendisk)
2006                 return;
2007
2008         bi_rdev = bdev_get_integrity(rdev->bdev);
2009         bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011         if (!bi_mddev) /* nothing to do */
2012                 return;
2013         if (rdev->raid_disk < 0) /* skip spares */
2014                 return;
2015         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016                                              rdev->bdev->bd_disk) >= 0)
2017                 return;
2018         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019         blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025         char b[BDEVNAME_SIZE];
2026         struct kobject *ko;
2027         char *s;
2028         int err;
2029
2030         /* prevent duplicates */
2031         if (find_rdev(mddev, rdev->bdev->bd_dev))
2032                 return -EEXIST;
2033
2034         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2035         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2036                         rdev->sectors < mddev->dev_sectors)) {
2037                 if (mddev->pers) {
2038                         /* Cannot change size, so fail
2039                          * If mddev->level <= 0, then we don't care
2040                          * about aligning sizes (e.g. linear)
2041                          */
2042                         if (mddev->level > 0)
2043                                 return -ENOSPC;
2044                 } else
2045                         mddev->dev_sectors = rdev->sectors;
2046         }
2047
2048         /* Verify rdev->desc_nr is unique.
2049          * If it is -1, assign a free number, else
2050          * check number is not in use
2051          */
2052         rcu_read_lock();
2053         if (rdev->desc_nr < 0) {
2054                 int choice = 0;
2055                 if (mddev->pers)
2056                         choice = mddev->raid_disks;
2057                 while (md_find_rdev_nr_rcu(mddev, choice))
2058                         choice++;
2059                 rdev->desc_nr = choice;
2060         } else {
2061                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2062                         rcu_read_unlock();
2063                         return -EBUSY;
2064                 }
2065         }
2066         rcu_read_unlock();
2067         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2068                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2069                        mdname(mddev), mddev->max_disks);
2070                 return -EBUSY;
2071         }
2072         bdevname(rdev->bdev,b);
2073         while ( (s=strchr(b, '/')) != NULL)
2074                 *s = '!';
2075
2076         rdev->mddev = mddev;
2077         printk(KERN_INFO "md: bind<%s>\n", b);
2078
2079         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2080                 goto fail;
2081
2082         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2083         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2084                 /* failure here is OK */;
2085         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2086
2087         list_add_rcu(&rdev->same_set, &mddev->disks);
2088         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2089
2090         /* May as well allow recovery to be retried once */
2091         mddev->recovery_disabled++;
2092
2093         return 0;
2094
2095  fail:
2096         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2097                b, mdname(mddev));
2098         return err;
2099 }
2100
2101 static void md_delayed_delete(struct work_struct *ws)
2102 {
2103         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2104         kobject_del(&rdev->kobj);
2105         kobject_put(&rdev->kobj);
2106 }
2107
2108 static void unbind_rdev_from_array(struct md_rdev *rdev)
2109 {
2110         char b[BDEVNAME_SIZE];
2111
2112         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2113         list_del_rcu(&rdev->same_set);
2114         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2115         rdev->mddev = NULL;
2116         sysfs_remove_link(&rdev->kobj, "block");
2117         sysfs_put(rdev->sysfs_state);
2118         rdev->sysfs_state = NULL;
2119         rdev->badblocks.count = 0;
2120         /* We need to delay this, otherwise we can deadlock when
2121          * writing to 'remove' to "dev/state".  We also need
2122          * to delay it due to rcu usage.
2123          */
2124         synchronize_rcu();
2125         INIT_WORK(&rdev->del_work, md_delayed_delete);
2126         kobject_get(&rdev->kobj);
2127         queue_work(md_misc_wq, &rdev->del_work);
2128 }
2129
2130 /*
2131  * prevent the device from being mounted, repartitioned or
2132  * otherwise reused by a RAID array (or any other kernel
2133  * subsystem), by bd_claiming the device.
2134  */
2135 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2136 {
2137         int err = 0;
2138         struct block_device *bdev;
2139         char b[BDEVNAME_SIZE];
2140
2141         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2142                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2143         if (IS_ERR(bdev)) {
2144                 printk(KERN_ERR "md: could not open %s.\n",
2145                         __bdevname(dev, b));
2146                 return PTR_ERR(bdev);
2147         }
2148         rdev->bdev = bdev;
2149         return err;
2150 }
2151
2152 static void unlock_rdev(struct md_rdev *rdev)
2153 {
2154         struct block_device *bdev = rdev->bdev;
2155         rdev->bdev = NULL;
2156         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2157 }
2158
2159 void md_autodetect_dev(dev_t dev);
2160
2161 static void export_rdev(struct md_rdev *rdev)
2162 {
2163         char b[BDEVNAME_SIZE];
2164
2165         printk(KERN_INFO "md: export_rdev(%s)\n",
2166                 bdevname(rdev->bdev,b));
2167         md_rdev_clear(rdev);
2168 #ifndef MODULE
2169         if (test_bit(AutoDetected, &rdev->flags))
2170                 md_autodetect_dev(rdev->bdev->bd_dev);
2171 #endif
2172         unlock_rdev(rdev);
2173         kobject_put(&rdev->kobj);
2174 }
2175
2176 void md_kick_rdev_from_array(struct md_rdev *rdev)
2177 {
2178         unbind_rdev_from_array(rdev);
2179         export_rdev(rdev);
2180 }
2181 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2182
2183 static void export_array(struct mddev *mddev)
2184 {
2185         struct md_rdev *rdev;
2186
2187         while (!list_empty(&mddev->disks)) {
2188                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2189                                         same_set);
2190                 md_kick_rdev_from_array(rdev);
2191         }
2192         mddev->raid_disks = 0;
2193         mddev->major_version = 0;
2194 }
2195
2196 static void sync_sbs(struct mddev *mddev, int nospares)
2197 {
2198         /* Update each superblock (in-memory image), but
2199          * if we are allowed to, skip spares which already
2200          * have the right event counter, or have one earlier
2201          * (which would mean they aren't being marked as dirty
2202          * with the rest of the array)
2203          */
2204         struct md_rdev *rdev;
2205         rdev_for_each(rdev, mddev) {
2206                 if (rdev->sb_events == mddev->events ||
2207                     (nospares &&
2208                      rdev->raid_disk < 0 &&
2209                      rdev->sb_events+1 == mddev->events)) {
2210                         /* Don't update this superblock */
2211                         rdev->sb_loaded = 2;
2212                 } else {
2213                         sync_super(mddev, rdev);
2214                         rdev->sb_loaded = 1;
2215                 }
2216         }
2217 }
2218
2219 void md_update_sb(struct mddev *mddev, int force_change)
2220 {
2221         struct md_rdev *rdev;
2222         int sync_req;
2223         int nospares = 0;
2224         int any_badblocks_changed = 0;
2225
2226         if (mddev->ro) {
2227                 if (force_change)
2228                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2229                 return;
2230         }
2231 repeat:
2232         /* First make sure individual recovery_offsets are correct */
2233         rdev_for_each(rdev, mddev) {
2234                 if (rdev->raid_disk >= 0 &&
2235                     mddev->delta_disks >= 0 &&
2236                     !test_bit(In_sync, &rdev->flags) &&
2237                     mddev->curr_resync_completed > rdev->recovery_offset)
2238                                 rdev->recovery_offset = mddev->curr_resync_completed;
2239
2240         }
2241         if (!mddev->persistent) {
2242                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2243                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2244                 if (!mddev->external) {
2245                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2246                         rdev_for_each(rdev, mddev) {
2247                                 if (rdev->badblocks.changed) {
2248                                         rdev->badblocks.changed = 0;
2249                                         md_ack_all_badblocks(&rdev->badblocks);
2250                                         md_error(mddev, rdev);
2251                                 }
2252                                 clear_bit(Blocked, &rdev->flags);
2253                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2254                                 wake_up(&rdev->blocked_wait);
2255                         }
2256                 }
2257                 wake_up(&mddev->sb_wait);
2258                 return;
2259         }
2260
2261         spin_lock(&mddev->lock);
2262
2263         mddev->utime = get_seconds();
2264
2265         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2266                 force_change = 1;
2267         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2268                 /* just a clean<-> dirty transition, possibly leave spares alone,
2269                  * though if events isn't the right even/odd, we will have to do
2270                  * spares after all
2271                  */
2272                 nospares = 1;
2273         if (force_change)
2274                 nospares = 0;
2275         if (mddev->degraded)
2276                 /* If the array is degraded, then skipping spares is both
2277                  * dangerous and fairly pointless.
2278                  * Dangerous because a device that was removed from the array
2279                  * might have a event_count that still looks up-to-date,
2280                  * so it can be re-added without a resync.
2281                  * Pointless because if there are any spares to skip,
2282                  * then a recovery will happen and soon that array won't
2283                  * be degraded any more and the spare can go back to sleep then.
2284                  */
2285                 nospares = 0;
2286
2287         sync_req = mddev->in_sync;
2288
2289         /* If this is just a dirty<->clean transition, and the array is clean
2290          * and 'events' is odd, we can roll back to the previous clean state */
2291         if (nospares
2292             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2293             && mddev->can_decrease_events
2294             && mddev->events != 1) {
2295                 mddev->events--;
2296                 mddev->can_decrease_events = 0;
2297         } else {
2298                 /* otherwise we have to go forward and ... */
2299                 mddev->events ++;
2300                 mddev->can_decrease_events = nospares;
2301         }
2302
2303         /*
2304          * This 64-bit counter should never wrap.
2305          * Either we are in around ~1 trillion A.C., assuming
2306          * 1 reboot per second, or we have a bug...
2307          */
2308         WARN_ON(mddev->events == 0);
2309
2310         rdev_for_each(rdev, mddev) {
2311                 if (rdev->badblocks.changed)
2312                         any_badblocks_changed++;
2313                 if (test_bit(Faulty, &rdev->flags))
2314                         set_bit(FaultRecorded, &rdev->flags);
2315         }
2316
2317         sync_sbs(mddev, nospares);
2318         spin_unlock(&mddev->lock);
2319
2320         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2321                  mdname(mddev), mddev->in_sync);
2322
2323         bitmap_update_sb(mddev->bitmap);
2324         rdev_for_each(rdev, mddev) {
2325                 char b[BDEVNAME_SIZE];
2326
2327                 if (rdev->sb_loaded != 1)
2328                         continue; /* no noise on spare devices */
2329
2330                 if (!test_bit(Faulty, &rdev->flags)) {
2331                         md_super_write(mddev,rdev,
2332                                        rdev->sb_start, rdev->sb_size,
2333                                        rdev->sb_page);
2334                         pr_debug("md: (write) %s's sb offset: %llu\n",
2335                                  bdevname(rdev->bdev, b),
2336                                  (unsigned long long)rdev->sb_start);
2337                         rdev->sb_events = mddev->events;
2338                         if (rdev->badblocks.size) {
2339                                 md_super_write(mddev, rdev,
2340                                                rdev->badblocks.sector,
2341                                                rdev->badblocks.size << 9,
2342                                                rdev->bb_page);
2343                                 rdev->badblocks.size = 0;
2344                         }
2345
2346                 } else
2347                         pr_debug("md: %s (skipping faulty)\n",
2348                                  bdevname(rdev->bdev, b));
2349
2350                 if (mddev->level == LEVEL_MULTIPATH)
2351                         /* only need to write one superblock... */
2352                         break;
2353         }
2354         md_super_wait(mddev);
2355         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2356
2357         spin_lock(&mddev->lock);
2358         if (mddev->in_sync != sync_req ||
2359             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2360                 /* have to write it out again */
2361                 spin_unlock(&mddev->lock);
2362                 goto repeat;
2363         }
2364         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2365         spin_unlock(&mddev->lock);
2366         wake_up(&mddev->sb_wait);
2367         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2368                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2369
2370         rdev_for_each(rdev, mddev) {
2371                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2372                         clear_bit(Blocked, &rdev->flags);
2373
2374                 if (any_badblocks_changed)
2375                         md_ack_all_badblocks(&rdev->badblocks);
2376                 clear_bit(BlockedBadBlocks, &rdev->flags);
2377                 wake_up(&rdev->blocked_wait);
2378         }
2379 }
2380 EXPORT_SYMBOL(md_update_sb);
2381
2382 static int add_bound_rdev(struct md_rdev *rdev)
2383 {
2384         struct mddev *mddev = rdev->mddev;
2385         int err = 0;
2386
2387         if (!mddev->pers->hot_remove_disk) {
2388                 /* If there is hot_add_disk but no hot_remove_disk
2389                  * then added disks for geometry changes,
2390                  * and should be added immediately.
2391                  */
2392                 super_types[mddev->major_version].
2393                         validate_super(mddev, rdev);
2394                 err = mddev->pers->hot_add_disk(mddev, rdev);
2395                 if (err) {
2396                         unbind_rdev_from_array(rdev);
2397                         export_rdev(rdev);
2398                         return err;
2399                 }
2400         }
2401         sysfs_notify_dirent_safe(rdev->sysfs_state);
2402
2403         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2404         if (mddev->degraded)
2405                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2406         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2407         md_new_event(mddev);
2408         md_wakeup_thread(mddev->thread);
2409         return 0;
2410 }
2411
2412 /* words written to sysfs files may, or may not, be \n terminated.
2413  * We want to accept with case. For this we use cmd_match.
2414  */
2415 static int cmd_match(const char *cmd, const char *str)
2416 {
2417         /* See if cmd, written into a sysfs file, matches
2418          * str.  They must either be the same, or cmd can
2419          * have a trailing newline
2420          */
2421         while (*cmd && *str && *cmd == *str) {
2422                 cmd++;
2423                 str++;
2424         }
2425         if (*cmd == '\n')
2426                 cmd++;
2427         if (*str || *cmd)
2428                 return 0;
2429         return 1;
2430 }
2431
2432 struct rdev_sysfs_entry {
2433         struct attribute attr;
2434         ssize_t (*show)(struct md_rdev *, char *);
2435         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2436 };
2437
2438 static ssize_t
2439 state_show(struct md_rdev *rdev, char *page)
2440 {
2441         char *sep = "";
2442         size_t len = 0;
2443         unsigned long flags = ACCESS_ONCE(rdev->flags);
2444
2445         if (test_bit(Faulty, &flags) ||
2446             rdev->badblocks.unacked_exist) {
2447                 len+= sprintf(page+len, "%sfaulty",sep);
2448                 sep = ",";
2449         }
2450         if (test_bit(In_sync, &flags)) {
2451                 len += sprintf(page+len, "%sin_sync",sep);
2452                 sep = ",";
2453         }
2454         if (test_bit(WriteMostly, &flags)) {
2455                 len += sprintf(page+len, "%swrite_mostly",sep);
2456                 sep = ",";
2457         }
2458         if (test_bit(Blocked, &flags) ||
2459             (rdev->badblocks.unacked_exist
2460              && !test_bit(Faulty, &flags))) {
2461                 len += sprintf(page+len, "%sblocked", sep);
2462                 sep = ",";
2463         }
2464         if (!test_bit(Faulty, &flags) &&
2465             !test_bit(In_sync, &flags)) {
2466                 len += sprintf(page+len, "%sspare", sep);
2467                 sep = ",";
2468         }
2469         if (test_bit(WriteErrorSeen, &flags)) {
2470                 len += sprintf(page+len, "%swrite_error", sep);
2471                 sep = ",";
2472         }
2473         if (test_bit(WantReplacement, &flags)) {
2474                 len += sprintf(page+len, "%swant_replacement", sep);
2475                 sep = ",";
2476         }
2477         if (test_bit(Replacement, &flags)) {
2478                 len += sprintf(page+len, "%sreplacement", sep);
2479                 sep = ",";
2480         }
2481
2482         return len+sprintf(page+len, "\n");
2483 }
2484
2485 static ssize_t
2486 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2487 {
2488         /* can write
2489          *  faulty  - simulates an error
2490          *  remove  - disconnects the device
2491          *  writemostly - sets write_mostly
2492          *  -writemostly - clears write_mostly
2493          *  blocked - sets the Blocked flags
2494          *  -blocked - clears the Blocked and possibly simulates an error
2495          *  insync - sets Insync providing device isn't active
2496          *  -insync - clear Insync for a device with a slot assigned,
2497          *            so that it gets rebuilt based on bitmap
2498          *  write_error - sets WriteErrorSeen
2499          *  -write_error - clears WriteErrorSeen
2500          */
2501         int err = -EINVAL;
2502         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2503                 md_error(rdev->mddev, rdev);
2504                 if (test_bit(Faulty, &rdev->flags))
2505                         err = 0;
2506                 else
2507                         err = -EBUSY;
2508         } else if (cmd_match(buf, "remove")) {
2509                 if (rdev->raid_disk >= 0)
2510                         err = -EBUSY;
2511                 else {
2512                         struct mddev *mddev = rdev->mddev;
2513                         if (mddev_is_clustered(mddev))
2514                                 md_cluster_ops->remove_disk(mddev, rdev);
2515                         md_kick_rdev_from_array(rdev);
2516                         if (mddev_is_clustered(mddev))
2517                                 md_cluster_ops->metadata_update_start(mddev);
2518                         if (mddev->pers)
2519                                 md_update_sb(mddev, 1);
2520                         md_new_event(mddev);
2521                         if (mddev_is_clustered(mddev))
2522                                 md_cluster_ops->metadata_update_finish(mddev);
2523                         err = 0;
2524                 }
2525         } else if (cmd_match(buf, "writemostly")) {
2526                 set_bit(WriteMostly, &rdev->flags);
2527                 err = 0;
2528         } else if (cmd_match(buf, "-writemostly")) {
2529                 clear_bit(WriteMostly, &rdev->flags);
2530                 err = 0;
2531         } else if (cmd_match(buf, "blocked")) {
2532                 set_bit(Blocked, &rdev->flags);
2533                 err = 0;
2534         } else if (cmd_match(buf, "-blocked")) {
2535                 if (!test_bit(Faulty, &rdev->flags) &&
2536                     rdev->badblocks.unacked_exist) {
2537                         /* metadata handler doesn't understand badblocks,
2538                          * so we need to fail the device
2539                          */
2540                         md_error(rdev->mddev, rdev);
2541                 }
2542                 clear_bit(Blocked, &rdev->flags);
2543                 clear_bit(BlockedBadBlocks, &rdev->flags);
2544                 wake_up(&rdev->blocked_wait);
2545                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2546                 md_wakeup_thread(rdev->mddev->thread);
2547
2548                 err = 0;
2549         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2550                 set_bit(In_sync, &rdev->flags);
2551                 err = 0;
2552         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2553                 if (rdev->mddev->pers == NULL) {
2554                         clear_bit(In_sync, &rdev->flags);
2555                         rdev->saved_raid_disk = rdev->raid_disk;
2556                         rdev->raid_disk = -1;
2557                         err = 0;
2558                 }
2559         } else if (cmd_match(buf, "write_error")) {
2560                 set_bit(WriteErrorSeen, &rdev->flags);
2561                 err = 0;
2562         } else if (cmd_match(buf, "-write_error")) {
2563                 clear_bit(WriteErrorSeen, &rdev->flags);
2564                 err = 0;
2565         } else if (cmd_match(buf, "want_replacement")) {
2566                 /* Any non-spare device that is not a replacement can
2567                  * become want_replacement at any time, but we then need to
2568                  * check if recovery is needed.
2569                  */
2570                 if (rdev->raid_disk >= 0 &&
2571                     !test_bit(Replacement, &rdev->flags))
2572                         set_bit(WantReplacement, &rdev->flags);
2573                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2574                 md_wakeup_thread(rdev->mddev->thread);
2575                 err = 0;
2576         } else if (cmd_match(buf, "-want_replacement")) {
2577                 /* Clearing 'want_replacement' is always allowed.
2578                  * Once replacements starts it is too late though.
2579                  */
2580                 err = 0;
2581                 clear_bit(WantReplacement, &rdev->flags);
2582         } else if (cmd_match(buf, "replacement")) {
2583                 /* Can only set a device as a replacement when array has not
2584                  * yet been started.  Once running, replacement is automatic
2585                  * from spares, or by assigning 'slot'.
2586                  */
2587                 if (rdev->mddev->pers)
2588                         err = -EBUSY;
2589                 else {
2590                         set_bit(Replacement, &rdev->flags);
2591                         err = 0;
2592                 }
2593         } else if (cmd_match(buf, "-replacement")) {
2594                 /* Similarly, can only clear Replacement before start */
2595                 if (rdev->mddev->pers)
2596                         err = -EBUSY;
2597                 else {
2598                         clear_bit(Replacement, &rdev->flags);
2599                         err = 0;
2600                 }
2601         } else if (cmd_match(buf, "re-add")) {
2602                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2603                         /* clear_bit is performed _after_ all the devices
2604                          * have their local Faulty bit cleared. If any writes
2605                          * happen in the meantime in the local node, they
2606                          * will land in the local bitmap, which will be synced
2607                          * by this node eventually
2608                          */
2609                         if (!mddev_is_clustered(rdev->mddev) ||
2610                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2611                                 clear_bit(Faulty, &rdev->flags);
2612                                 err = add_bound_rdev(rdev);
2613                         }
2614                 } else
2615                         err = -EBUSY;
2616         }
2617         if (!err)
2618                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2619         return err ? err : len;
2620 }
2621 static struct rdev_sysfs_entry rdev_state =
2622 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2623
2624 static ssize_t
2625 errors_show(struct md_rdev *rdev, char *page)
2626 {
2627         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2628 }
2629
2630 static ssize_t
2631 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2632 {
2633         unsigned int n;
2634         int rv;
2635
2636         rv = kstrtouint(buf, 10, &n);
2637         if (rv < 0)
2638                 return rv;
2639         atomic_set(&rdev->corrected_errors, n);
2640         return len;
2641 }
2642 static struct rdev_sysfs_entry rdev_errors =
2643 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2644
2645 static ssize_t
2646 slot_show(struct md_rdev *rdev, char *page)
2647 {
2648         if (rdev->raid_disk < 0)
2649                 return sprintf(page, "none\n");
2650         else
2651                 return sprintf(page, "%d\n", rdev->raid_disk);
2652 }
2653
2654 static ssize_t
2655 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2656 {
2657         int slot;
2658         int err;
2659
2660         if (strncmp(buf, "none", 4)==0)
2661                 slot = -1;
2662         else {
2663                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2664                 if (err < 0)
2665                         return err;
2666         }
2667         if (rdev->mddev->pers && slot == -1) {
2668                 /* Setting 'slot' on an active array requires also
2669                  * updating the 'rd%d' link, and communicating
2670                  * with the personality with ->hot_*_disk.
2671                  * For now we only support removing
2672                  * failed/spare devices.  This normally happens automatically,
2673                  * but not when the metadata is externally managed.
2674                  */
2675                 if (rdev->raid_disk == -1)
2676                         return -EEXIST;
2677                 /* personality does all needed checks */
2678                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2679                         return -EINVAL;
2680                 clear_bit(Blocked, &rdev->flags);
2681                 remove_and_add_spares(rdev->mddev, rdev);
2682                 if (rdev->raid_disk >= 0)
2683                         return -EBUSY;
2684                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2685                 md_wakeup_thread(rdev->mddev->thread);
2686         } else if (rdev->mddev->pers) {
2687                 /* Activating a spare .. or possibly reactivating
2688                  * if we ever get bitmaps working here.
2689                  */
2690
2691                 if (rdev->raid_disk != -1)
2692                         return -EBUSY;
2693
2694                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2695                         return -EBUSY;
2696
2697                 if (rdev->mddev->pers->hot_add_disk == NULL)
2698                         return -EINVAL;
2699
2700                 if (slot >= rdev->mddev->raid_disks &&
2701                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2702                         return -ENOSPC;
2703
2704                 rdev->raid_disk = slot;
2705                 if (test_bit(In_sync, &rdev->flags))
2706                         rdev->saved_raid_disk = slot;
2707                 else
2708                         rdev->saved_raid_disk = -1;
2709                 clear_bit(In_sync, &rdev->flags);
2710                 clear_bit(Bitmap_sync, &rdev->flags);
2711                 err = rdev->mddev->pers->
2712                         hot_add_disk(rdev->mddev, rdev);
2713                 if (err) {
2714                         rdev->raid_disk = -1;
2715                         return err;
2716                 } else
2717                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2718                 if (sysfs_link_rdev(rdev->mddev, rdev))
2719                         /* failure here is OK */;
2720                 /* don't wakeup anyone, leave that to userspace. */
2721         } else {
2722                 if (slot >= rdev->mddev->raid_disks &&
2723                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2724                         return -ENOSPC;
2725                 rdev->raid_disk = slot;
2726                 /* assume it is working */
2727                 clear_bit(Faulty, &rdev->flags);
2728                 clear_bit(WriteMostly, &rdev->flags);
2729                 set_bit(In_sync, &rdev->flags);
2730                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2731         }
2732         return len;
2733 }
2734
2735 static struct rdev_sysfs_entry rdev_slot =
2736 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2737
2738 static ssize_t
2739 offset_show(struct md_rdev *rdev, char *page)
2740 {
2741         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2742 }
2743
2744 static ssize_t
2745 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2746 {
2747         unsigned long long offset;
2748         if (kstrtoull(buf, 10, &offset) < 0)
2749                 return -EINVAL;
2750         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2751                 return -EBUSY;
2752         if (rdev->sectors && rdev->mddev->external)
2753                 /* Must set offset before size, so overlap checks
2754                  * can be sane */
2755                 return -EBUSY;
2756         rdev->data_offset = offset;
2757         rdev->new_data_offset = offset;
2758         return len;
2759 }
2760
2761 static struct rdev_sysfs_entry rdev_offset =
2762 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2763
2764 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2765 {
2766         return sprintf(page, "%llu\n",
2767                        (unsigned long long)rdev->new_data_offset);
2768 }
2769
2770 static ssize_t new_offset_store(struct md_rdev *rdev,
2771                                 const char *buf, size_t len)
2772 {
2773         unsigned long long new_offset;
2774         struct mddev *mddev = rdev->mddev;
2775
2776         if (kstrtoull(buf, 10, &new_offset) < 0)
2777                 return -EINVAL;
2778
2779         if (mddev->sync_thread ||
2780             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2781                 return -EBUSY;
2782         if (new_offset == rdev->data_offset)
2783                 /* reset is always permitted */
2784                 ;
2785         else if (new_offset > rdev->data_offset) {
2786                 /* must not push array size beyond rdev_sectors */
2787                 if (new_offset - rdev->data_offset
2788                     + mddev->dev_sectors > rdev->sectors)
2789                                 return -E2BIG;
2790         }
2791         /* Metadata worries about other space details. */
2792
2793         /* decreasing the offset is inconsistent with a backwards
2794          * reshape.
2795          */
2796         if (new_offset < rdev->data_offset &&
2797             mddev->reshape_backwards)
2798                 return -EINVAL;
2799         /* Increasing offset is inconsistent with forwards
2800          * reshape.  reshape_direction should be set to
2801          * 'backwards' first.
2802          */
2803         if (new_offset > rdev->data_offset &&
2804             !mddev->reshape_backwards)
2805                 return -EINVAL;
2806
2807         if (mddev->pers && mddev->persistent &&
2808             !super_types[mddev->major_version]
2809             .allow_new_offset(rdev, new_offset))
2810                 return -E2BIG;
2811         rdev->new_data_offset = new_offset;
2812         if (new_offset > rdev->data_offset)
2813                 mddev->reshape_backwards = 1;
2814         else if (new_offset < rdev->data_offset)
2815                 mddev->reshape_backwards = 0;
2816
2817         return len;
2818 }
2819 static struct rdev_sysfs_entry rdev_new_offset =
2820 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2821
2822 static ssize_t
2823 rdev_size_show(struct md_rdev *rdev, char *page)
2824 {
2825         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2826 }
2827
2828 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2829 {
2830         /* check if two start/length pairs overlap */
2831         if (s1+l1 <= s2)
2832                 return 0;
2833         if (s2+l2 <= s1)
2834                 return 0;
2835         return 1;
2836 }
2837
2838 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2839 {
2840         unsigned long long blocks;
2841         sector_t new;
2842
2843         if (kstrtoull(buf, 10, &blocks) < 0)
2844                 return -EINVAL;
2845
2846         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2847                 return -EINVAL; /* sector conversion overflow */
2848
2849         new = blocks * 2;
2850         if (new != blocks * 2)
2851                 return -EINVAL; /* unsigned long long to sector_t overflow */
2852
2853         *sectors = new;
2854         return 0;
2855 }
2856
2857 static ssize_t
2858 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2859 {
2860         struct mddev *my_mddev = rdev->mddev;
2861         sector_t oldsectors = rdev->sectors;
2862         sector_t sectors;
2863
2864         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2865                 return -EINVAL;
2866         if (rdev->data_offset != rdev->new_data_offset)
2867                 return -EINVAL; /* too confusing */
2868         if (my_mddev->pers && rdev->raid_disk >= 0) {
2869                 if (my_mddev->persistent) {
2870                         sectors = super_types[my_mddev->major_version].
2871                                 rdev_size_change(rdev, sectors);
2872                         if (!sectors)
2873                                 return -EBUSY;
2874                 } else if (!sectors)
2875                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2876                                 rdev->data_offset;
2877                 if (!my_mddev->pers->resize)
2878                         /* Cannot change size for RAID0 or Linear etc */
2879                         return -EINVAL;
2880         }
2881         if (sectors < my_mddev->dev_sectors)
2882                 return -EINVAL; /* component must fit device */
2883
2884         rdev->sectors = sectors;
2885         if (sectors > oldsectors && my_mddev->external) {
2886                 /* Need to check that all other rdevs with the same
2887                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2888                  * the rdev lists safely.
2889                  * This check does not provide a hard guarantee, it
2890                  * just helps avoid dangerous mistakes.
2891                  */
2892                 struct mddev *mddev;
2893                 int overlap = 0;
2894                 struct list_head *tmp;
2895
2896                 rcu_read_lock();
2897                 for_each_mddev(mddev, tmp) {
2898                         struct md_rdev *rdev2;
2899
2900                         rdev_for_each(rdev2, mddev)
2901                                 if (rdev->bdev == rdev2->bdev &&
2902                                     rdev != rdev2 &&
2903                                     overlaps(rdev->data_offset, rdev->sectors,
2904                                              rdev2->data_offset,
2905                                              rdev2->sectors)) {
2906                                         overlap = 1;
2907                                         break;
2908                                 }
2909                         if (overlap) {
2910                                 mddev_put(mddev);
2911                                 break;
2912                         }
2913                 }
2914                 rcu_read_unlock();
2915                 if (overlap) {
2916                         /* Someone else could have slipped in a size
2917                          * change here, but doing so is just silly.
2918                          * We put oldsectors back because we *know* it is
2919                          * safe, and trust userspace not to race with
2920                          * itself
2921                          */
2922                         rdev->sectors = oldsectors;
2923                         return -EBUSY;
2924                 }
2925         }
2926         return len;
2927 }
2928
2929 static struct rdev_sysfs_entry rdev_size =
2930 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2931
2932 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2933 {
2934         unsigned long long recovery_start = rdev->recovery_offset;
2935
2936         if (test_bit(In_sync, &rdev->flags) ||
2937             recovery_start == MaxSector)
2938                 return sprintf(page, "none\n");
2939
2940         return sprintf(page, "%llu\n", recovery_start);
2941 }
2942
2943 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2944 {
2945         unsigned long long recovery_start;
2946
2947         if (cmd_match(buf, "none"))
2948                 recovery_start = MaxSector;
2949         else if (kstrtoull(buf, 10, &recovery_start))
2950                 return -EINVAL;
2951
2952         if (rdev->mddev->pers &&
2953             rdev->raid_disk >= 0)
2954                 return -EBUSY;
2955
2956         rdev->recovery_offset = recovery_start;
2957         if (recovery_start == MaxSector)
2958                 set_bit(In_sync, &rdev->flags);
2959         else
2960                 clear_bit(In_sync, &rdev->flags);
2961         return len;
2962 }
2963
2964 static struct rdev_sysfs_entry rdev_recovery_start =
2965 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2966
2967 static ssize_t
2968 badblocks_show(struct badblocks *bb, char *page, int unack);
2969 static ssize_t
2970 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2971
2972 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2973 {
2974         return badblocks_show(&rdev->badblocks, page, 0);
2975 }
2976 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2977 {
2978         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2979         /* Maybe that ack was all we needed */
2980         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2981                 wake_up(&rdev->blocked_wait);
2982         return rv;
2983 }
2984 static struct rdev_sysfs_entry rdev_bad_blocks =
2985 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2986
2987 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2988 {
2989         return badblocks_show(&rdev->badblocks, page, 1);
2990 }
2991 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2992 {
2993         return badblocks_store(&rdev->badblocks, page, len, 1);
2994 }
2995 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2996 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2997
2998 static struct attribute *rdev_default_attrs[] = {
2999         &rdev_state.attr,
3000         &rdev_errors.attr,
3001         &rdev_slot.attr,
3002         &rdev_offset.attr,
3003         &rdev_new_offset.attr,
3004         &rdev_size.attr,
3005         &rdev_recovery_start.attr,
3006         &rdev_bad_blocks.attr,
3007         &rdev_unack_bad_blocks.attr,
3008         NULL,
3009 };
3010 static ssize_t
3011 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3012 {
3013         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3014         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3015
3016         if (!entry->show)
3017                 return -EIO;
3018         if (!rdev->mddev)
3019                 return -EBUSY;
3020         return entry->show(rdev, page);
3021 }
3022
3023 static ssize_t
3024 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3025               const char *page, size_t length)
3026 {
3027         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3028         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3029         ssize_t rv;
3030         struct mddev *mddev = rdev->mddev;
3031
3032         if (!entry->store)
3033                 return -EIO;
3034         if (!capable(CAP_SYS_ADMIN))
3035                 return -EACCES;
3036         rv = mddev ? mddev_lock(mddev): -EBUSY;
3037         if (!rv) {
3038                 if (rdev->mddev == NULL)
3039                         rv = -EBUSY;
3040                 else
3041                         rv = entry->store(rdev, page, length);
3042                 mddev_unlock(mddev);
3043         }
3044         return rv;
3045 }
3046
3047 static void rdev_free(struct kobject *ko)
3048 {
3049         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3050         kfree(rdev);
3051 }
3052 static const struct sysfs_ops rdev_sysfs_ops = {
3053         .show           = rdev_attr_show,
3054         .store          = rdev_attr_store,
3055 };
3056 static struct kobj_type rdev_ktype = {
3057         .release        = rdev_free,
3058         .sysfs_ops      = &rdev_sysfs_ops,
3059         .default_attrs  = rdev_default_attrs,
3060 };
3061
3062 int md_rdev_init(struct md_rdev *rdev)
3063 {
3064         rdev->desc_nr = -1;
3065         rdev->saved_raid_disk = -1;
3066         rdev->raid_disk = -1;
3067         rdev->flags = 0;
3068         rdev->data_offset = 0;
3069         rdev->new_data_offset = 0;
3070         rdev->sb_events = 0;
3071         rdev->last_read_error.tv_sec  = 0;
3072         rdev->last_read_error.tv_nsec = 0;
3073         rdev->sb_loaded = 0;
3074         rdev->bb_page = NULL;
3075         atomic_set(&rdev->nr_pending, 0);
3076         atomic_set(&rdev->read_errors, 0);
3077         atomic_set(&rdev->corrected_errors, 0);
3078
3079         INIT_LIST_HEAD(&rdev->same_set);
3080         init_waitqueue_head(&rdev->blocked_wait);
3081
3082         /* Add space to store bad block list.
3083          * This reserves the space even on arrays where it cannot
3084          * be used - I wonder if that matters
3085          */
3086         rdev->badblocks.count = 0;
3087         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3088         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3089         seqlock_init(&rdev->badblocks.lock);
3090         if (rdev->badblocks.page == NULL)
3091                 return -ENOMEM;
3092
3093         return 0;
3094 }
3095 EXPORT_SYMBOL_GPL(md_rdev_init);
3096 /*
3097  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3098  *
3099  * mark the device faulty if:
3100  *
3101  *   - the device is nonexistent (zero size)
3102  *   - the device has no valid superblock
3103  *
3104  * a faulty rdev _never_ has rdev->sb set.
3105  */
3106 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3107 {
3108         char b[BDEVNAME_SIZE];
3109         int err;
3110         struct md_rdev *rdev;
3111         sector_t size;
3112
3113         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3114         if (!rdev) {
3115                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3116                 return ERR_PTR(-ENOMEM);
3117         }
3118
3119         err = md_rdev_init(rdev);
3120         if (err)
3121                 goto abort_free;
3122         err = alloc_disk_sb(rdev);
3123         if (err)
3124                 goto abort_free;
3125
3126         err = lock_rdev(rdev, newdev, super_format == -2);
3127         if (err)
3128                 goto abort_free;
3129
3130         kobject_init(&rdev->kobj, &rdev_ktype);
3131
3132         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3133         if (!size) {
3134                 printk(KERN_WARNING
3135                         "md: %s has zero or unknown size, marking faulty!\n",
3136                         bdevname(rdev->bdev,b));
3137                 err = -EINVAL;
3138                 goto abort_free;
3139         }
3140
3141         if (super_format >= 0) {
3142                 err = super_types[super_format].
3143                         load_super(rdev, NULL, super_minor);
3144                 if (err == -EINVAL) {
3145                         printk(KERN_WARNING
3146                                 "md: %s does not have a valid v%d.%d "
3147                                "superblock, not importing!\n",
3148                                 bdevname(rdev->bdev,b),
3149                                super_format, super_minor);
3150                         goto abort_free;
3151                 }
3152                 if (err < 0) {
3153                         printk(KERN_WARNING
3154                                 "md: could not read %s's sb, not importing!\n",
3155                                 bdevname(rdev->bdev,b));
3156                         goto abort_free;
3157                 }
3158         }
3159
3160         return rdev;
3161
3162 abort_free:
3163         if (rdev->bdev)
3164                 unlock_rdev(rdev);
3165         md_rdev_clear(rdev);
3166         kfree(rdev);
3167         return ERR_PTR(err);
3168 }
3169
3170 /*
3171  * Check a full RAID array for plausibility
3172  */
3173
3174 static void analyze_sbs(struct mddev *mddev)
3175 {
3176         int i;
3177         struct md_rdev *rdev, *freshest, *tmp;
3178         char b[BDEVNAME_SIZE];
3179
3180         freshest = NULL;
3181         rdev_for_each_safe(rdev, tmp, mddev)
3182                 switch (super_types[mddev->major_version].
3183                         load_super(rdev, freshest, mddev->minor_version)) {
3184                 case 1:
3185                         freshest = rdev;
3186                         break;
3187                 case 0:
3188                         break;
3189                 default:
3190                         printk( KERN_ERR \
3191                                 "md: fatal superblock inconsistency in %s"
3192                                 " -- removing from array\n",
3193                                 bdevname(rdev->bdev,b));
3194                         md_kick_rdev_from_array(rdev);
3195                 }
3196
3197         super_types[mddev->major_version].
3198                 validate_super(mddev, freshest);
3199
3200         i = 0;
3201         rdev_for_each_safe(rdev, tmp, mddev) {
3202                 if (mddev->max_disks &&
3203                     (rdev->desc_nr >= mddev->max_disks ||
3204                      i > mddev->max_disks)) {
3205                         printk(KERN_WARNING
3206                                "md: %s: %s: only %d devices permitted\n",
3207                                mdname(mddev), bdevname(rdev->bdev, b),
3208                                mddev->max_disks);
3209                         md_kick_rdev_from_array(rdev);
3210                         continue;
3211                 }
3212                 if (rdev != freshest) {
3213                         if (super_types[mddev->major_version].
3214                             validate_super(mddev, rdev)) {
3215                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3216                                         " from array!\n",
3217                                         bdevname(rdev->bdev,b));
3218                                 md_kick_rdev_from_array(rdev);
3219                                 continue;
3220                         }
3221                         /* No device should have a Candidate flag
3222                          * when reading devices
3223                          */
3224                         if (test_bit(Candidate, &rdev->flags)) {
3225                                 pr_info("md: kicking Cluster Candidate %s from array!\n",
3226                                         bdevname(rdev->bdev, b));
3227                                 md_kick_rdev_from_array(rdev);
3228                         }
3229                 }
3230                 if (mddev->level == LEVEL_MULTIPATH) {
3231                         rdev->desc_nr = i++;
3232                         rdev->raid_disk = rdev->desc_nr;
3233                         set_bit(In_sync, &rdev->flags);
3234                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3235                         rdev->raid_disk = -1;
3236                         clear_bit(In_sync, &rdev->flags);
3237                 }
3238         }
3239 }
3240
3241 /* Read a fixed-point number.
3242  * Numbers in sysfs attributes should be in "standard" units where
3243  * possible, so time should be in seconds.
3244  * However we internally use a a much smaller unit such as
3245  * milliseconds or jiffies.
3246  * This function takes a decimal number with a possible fractional
3247  * component, and produces an integer which is the result of
3248  * multiplying that number by 10^'scale'.
3249  * all without any floating-point arithmetic.
3250  */
3251 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3252 {
3253         unsigned long result = 0;
3254         long decimals = -1;
3255         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3256                 if (*cp == '.')
3257                         decimals = 0;
3258                 else if (decimals < scale) {
3259                         unsigned int value;
3260                         value = *cp - '0';
3261                         result = result * 10 + value;
3262                         if (decimals >= 0)
3263                                 decimals++;
3264                 }
3265                 cp++;
3266         }
3267         if (*cp == '\n')
3268                 cp++;
3269         if (*cp)
3270                 return -EINVAL;
3271         if (decimals < 0)
3272                 decimals = 0;
3273         while (decimals < scale) {
3274                 result *= 10;
3275                 decimals ++;
3276         }
3277         *res = result;
3278         return 0;
3279 }
3280
3281 static void md_safemode_timeout(unsigned long data);
3282
3283 static ssize_t
3284 safe_delay_show(struct mddev *mddev, char *page)
3285 {
3286         int msec = (mddev->safemode_delay*1000)/HZ;
3287         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3288 }
3289 static ssize_t
3290 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3291 {
3292         unsigned long msec;
3293
3294         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3295                 return -EINVAL;
3296         if (msec == 0)
3297                 mddev->safemode_delay = 0;
3298         else {
3299                 unsigned long old_delay = mddev->safemode_delay;
3300                 unsigned long new_delay = (msec*HZ)/1000;
3301
3302                 if (new_delay == 0)
3303                         new_delay = 1;
3304                 mddev->safemode_delay = new_delay;
3305                 if (new_delay < old_delay || old_delay == 0)
3306                         mod_timer(&mddev->safemode_timer, jiffies+1);
3307         }
3308         return len;
3309 }
3310 static struct md_sysfs_entry md_safe_delay =
3311 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3312
3313 static ssize_t
3314 level_show(struct mddev *mddev, char *page)
3315 {
3316         struct md_personality *p;
3317         int ret;
3318         spin_lock(&mddev->lock);
3319         p = mddev->pers;
3320         if (p)
3321                 ret = sprintf(page, "%s\n", p->name);
3322         else if (mddev->clevel[0])
3323                 ret = sprintf(page, "%s\n", mddev->clevel);
3324         else if (mddev->level != LEVEL_NONE)
3325                 ret = sprintf(page, "%d\n", mddev->level);
3326         else
3327                 ret = 0;
3328         spin_unlock(&mddev->lock);
3329         return ret;
3330 }
3331
3332 static ssize_t
3333 level_store(struct mddev *mddev, const char *buf, size_t len)
3334 {
3335         char clevel[16];
3336         ssize_t rv;
3337         size_t slen = len;
3338         struct md_personality *pers, *oldpers;
3339         long level;
3340         void *priv, *oldpriv;
3341         struct md_rdev *rdev;
3342
3343         if (slen == 0 || slen >= sizeof(clevel))
3344                 return -EINVAL;
3345
3346         rv = mddev_lock(mddev);
3347         if (rv)
3348                 return rv;
3349
3350         if (mddev->pers == NULL) {
3351                 strncpy(mddev->clevel, buf, slen);
3352                 if (mddev->clevel[slen-1] == '\n')
3353                         slen--;
3354                 mddev->clevel[slen] = 0;
3355                 mddev->level = LEVEL_NONE;
3356                 rv = len;
3357                 goto out_unlock;
3358         }
3359         rv = -EROFS;
3360         if (mddev->ro)
3361                 goto out_unlock;
3362
3363         /* request to change the personality.  Need to ensure:
3364          *  - array is not engaged in resync/recovery/reshape
3365          *  - old personality can be suspended
3366          *  - new personality will access other array.
3367          */
3368
3369         rv = -EBUSY;
3370         if (mddev->sync_thread ||
3371             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3372             mddev->reshape_position != MaxSector ||
3373             mddev->sysfs_active)
3374                 goto out_unlock;
3375
3376         rv = -EINVAL;
3377         if (!mddev->pers->quiesce) {
3378                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3379                        mdname(mddev), mddev->pers->name);
3380                 goto out_unlock;
3381         }
3382
3383         /* Now find the new personality */
3384         strncpy(clevel, buf, slen);
3385         if (clevel[slen-1] == '\n')
3386                 slen--;
3387         clevel[slen] = 0;
3388         if (kstrtol(clevel, 10, &level))
3389                 level = LEVEL_NONE;
3390
3391         if (request_module("md-%s", clevel) != 0)
3392                 request_module("md-level-%s", clevel);
3393         spin_lock(&pers_lock);
3394         pers = find_pers(level, clevel);
3395         if (!pers || !try_module_get(pers->owner)) {
3396                 spin_unlock(&pers_lock);
3397                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3398                 rv = -EINVAL;
3399                 goto out_unlock;
3400         }
3401         spin_unlock(&pers_lock);
3402
3403         if (pers == mddev->pers) {
3404                 /* Nothing to do! */
3405                 module_put(pers->owner);
3406                 rv = len;
3407                 goto out_unlock;
3408         }
3409         if (!pers->takeover) {
3410                 module_put(pers->owner);
3411                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3412                        mdname(mddev), clevel);
3413                 rv = -EINVAL;
3414                 goto out_unlock;
3415         }
3416
3417         rdev_for_each(rdev, mddev)
3418                 rdev->new_raid_disk = rdev->raid_disk;
3419
3420         /* ->takeover must set new_* and/or delta_disks
3421          * if it succeeds, and may set them when it fails.
3422          */
3423         priv = pers->takeover(mddev);
3424         if (IS_ERR(priv)) {
3425                 mddev->new_level = mddev->level;
3426                 mddev->new_layout = mddev->layout;
3427                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3428                 mddev->raid_disks -= mddev->delta_disks;
3429                 mddev->delta_disks = 0;
3430                 mddev->reshape_backwards = 0;
3431                 module_put(pers->owner);
3432                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3433                        mdname(mddev), clevel);
3434                 rv = PTR_ERR(priv);
3435                 goto out_unlock;
3436         }
3437
3438         /* Looks like we have a winner */
3439         mddev_suspend(mddev);
3440         mddev_detach(mddev);
3441
3442         spin_lock(&mddev->lock);
3443         oldpers = mddev->pers;
3444         oldpriv = mddev->private;
3445         mddev->pers = pers;
3446         mddev->private = priv;
3447         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3448         mddev->level = mddev->new_level;
3449         mddev->layout = mddev->new_layout;
3450         mddev->chunk_sectors = mddev->new_chunk_sectors;
3451         mddev->delta_disks = 0;
3452         mddev->reshape_backwards = 0;
3453         mddev->degraded = 0;
3454         spin_unlock(&mddev->lock);
3455
3456         if (oldpers->sync_request == NULL &&
3457             mddev->external) {
3458                 /* We are converting from a no-redundancy array
3459                  * to a redundancy array and metadata is managed
3460                  * externally so we need to be sure that writes
3461                  * won't block due to a need to transition
3462                  *      clean->dirty
3463                  * until external management is started.
3464                  */
3465                 mddev->in_sync = 0;
3466                 mddev->safemode_delay = 0;
3467                 mddev->safemode = 0;
3468         }
3469
3470         oldpers->free(mddev, oldpriv);
3471
3472         if (oldpers->sync_request == NULL &&
3473             pers->sync_request != NULL) {
3474                 /* need to add the md_redundancy_group */
3475                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3476                         printk(KERN_WARNING
3477                                "md: cannot register extra attributes for %s\n",
3478                                mdname(mddev));
3479                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3480         }
3481         if (oldpers->sync_request != NULL &&
3482             pers->sync_request == NULL) {
3483                 /* need to remove the md_redundancy_group */
3484                 if (mddev->to_remove == NULL)
3485                         mddev->to_remove = &md_redundancy_group;
3486         }
3487
3488         rdev_for_each(rdev, mddev) {
3489                 if (rdev->raid_disk < 0)
3490                         continue;
3491                 if (rdev->new_raid_disk >= mddev->raid_disks)
3492                         rdev->new_raid_disk = -1;
3493                 if (rdev->new_raid_disk == rdev->raid_disk)
3494                         continue;
3495                 sysfs_unlink_rdev(mddev, rdev);
3496         }
3497         rdev_for_each(rdev, mddev) {
3498                 if (rdev->raid_disk < 0)
3499                         continue;
3500                 if (rdev->new_raid_disk == rdev->raid_disk)
3501                         continue;
3502                 rdev->raid_disk = rdev->new_raid_disk;
3503                 if (rdev->raid_disk < 0)
3504                         clear_bit(In_sync, &rdev->flags);
3505                 else {
3506                         if (sysfs_link_rdev(mddev, rdev))
3507                                 printk(KERN_WARNING "md: cannot register rd%d"
3508                                        " for %s after level change\n",
3509                                        rdev->raid_disk, mdname(mddev));
3510                 }
3511         }
3512
3513         if (pers->sync_request == NULL) {
3514                 /* this is now an array without redundancy, so
3515                  * it must always be in_sync
3516                  */
3517                 mddev->in_sync = 1;
3518                 del_timer_sync(&mddev->safemode_timer);
3519         }
3520         blk_set_stacking_limits(&mddev->queue->limits);
3521         pers->run(mddev);
3522         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3523         mddev_resume(mddev);
3524         if (!mddev->thread)
3525                 md_update_sb(mddev, 1);
3526         sysfs_notify(&mddev->kobj, NULL, "level");
3527         md_new_event(mddev);
3528         rv = len;
3529 out_unlock:
3530         mddev_unlock(mddev);
3531         return rv;
3532 }
3533
3534 static struct md_sysfs_entry md_level =
3535 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3536
3537 static ssize_t
3538 layout_show(struct mddev *mddev, char *page)
3539 {
3540         /* just a number, not meaningful for all levels */
3541         if (mddev->reshape_position != MaxSector &&
3542             mddev->layout != mddev->new_layout)
3543                 return sprintf(page, "%d (%d)\n",
3544                                mddev->new_layout, mddev->layout);
3545         return sprintf(page, "%d\n", mddev->layout);
3546 }
3547
3548 static ssize_t
3549 layout_store(struct mddev *mddev, const char *buf, size_t len)
3550 {
3551         unsigned int n;
3552         int err;
3553
3554         err = kstrtouint(buf, 10, &n);
3555         if (err < 0)
3556                 return err;
3557         err = mddev_lock(mddev);
3558         if (err)
3559                 return err;
3560
3561         if (mddev->pers) {
3562                 if (mddev->pers->check_reshape == NULL)
3563                         err = -EBUSY;
3564                 else if (mddev->ro)
3565                         err = -EROFS;
3566                 else {
3567                         mddev->new_layout = n;
3568                         err = mddev->pers->check_reshape(mddev);
3569                         if (err)
3570                                 mddev->new_layout = mddev->layout;
3571                 }
3572         } else {
3573                 mddev->new_layout = n;
3574                 if (mddev->reshape_position == MaxSector)
3575                         mddev->layout = n;
3576         }
3577         mddev_unlock(mddev);
3578         return err ?: len;
3579 }
3580 static struct md_sysfs_entry md_layout =
3581 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3582
3583 static ssize_t
3584 raid_disks_show(struct mddev *mddev, char *page)
3585 {
3586         if (mddev->raid_disks == 0)
3587                 return 0;
3588         if (mddev->reshape_position != MaxSector &&
3589             mddev->delta_disks != 0)
3590                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3591                                mddev->raid_disks - mddev->delta_disks);
3592         return sprintf(page, "%d\n", mddev->raid_disks);
3593 }
3594
3595 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3596
3597 static ssize_t
3598 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3599 {
3600         unsigned int n;
3601         int err;
3602
3603         err = kstrtouint(buf, 10, &n);
3604         if (err < 0)
3605                 return err;
3606
3607         err = mddev_lock(mddev);
3608         if (err)
3609                 return err;
3610         if (mddev->pers)
3611                 err = update_raid_disks(mddev, n);
3612         else if (mddev->reshape_position != MaxSector) {
3613                 struct md_rdev *rdev;
3614                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3615
3616                 err = -EINVAL;
3617                 rdev_for_each(rdev, mddev) {
3618                         if (olddisks < n &&
3619                             rdev->data_offset < rdev->new_data_offset)
3620                                 goto out_unlock;
3621                         if (olddisks > n &&
3622                             rdev->data_offset > rdev->new_data_offset)
3623                                 goto out_unlock;
3624                 }
3625                 err = 0;
3626                 mddev->delta_disks = n - olddisks;
3627                 mddev->raid_disks = n;
3628                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3629         } else
3630                 mddev->raid_disks = n;
3631 out_unlock:
3632         mddev_unlock(mddev);
3633         return err ? err : len;
3634 }
3635 static struct md_sysfs_entry md_raid_disks =
3636 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3637
3638 static ssize_t
3639 chunk_size_show(struct mddev *mddev, char *page)
3640 {
3641         if (mddev->reshape_position != MaxSector &&
3642             mddev->chunk_sectors != mddev->new_chunk_sectors)
3643                 return sprintf(page, "%d (%d)\n",
3644                                mddev->new_chunk_sectors << 9,
3645                                mddev->chunk_sectors << 9);
3646         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3647 }
3648
3649 static ssize_t
3650 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3651 {
3652         unsigned long n;
3653         int err;
3654
3655         err = kstrtoul(buf, 10, &n);
3656         if (err < 0)
3657                 return err;
3658
3659         err = mddev_lock(mddev);
3660         if (err)
3661                 return err;
3662         if (mddev->pers) {
3663                 if (mddev->pers->check_reshape == NULL)
3664                         err = -EBUSY;
3665                 else if (mddev->ro)
3666                         err = -EROFS;
3667                 else {
3668                         mddev->new_chunk_sectors = n >> 9;
3669                         err = mddev->pers->check_reshape(mddev);
3670                         if (err)
3671                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3672                 }
3673         } else {
3674                 mddev->new_chunk_sectors = n >> 9;
3675                 if (mddev->reshape_position == MaxSector)
3676                         mddev->chunk_sectors = n >> 9;
3677         }
3678         mddev_unlock(mddev);
3679         return err ?: len;
3680 }
3681 static struct md_sysfs_entry md_chunk_size =
3682 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3683
3684 static ssize_t
3685 resync_start_show(struct mddev *mddev, char *page)
3686 {
3687         if (mddev->recovery_cp == MaxSector)
3688                 return sprintf(page, "none\n");
3689         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3690 }
3691
3692 static ssize_t
3693 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3694 {
3695         unsigned long long n;
3696         int err;
3697
3698         if (cmd_match(buf, "none"))
3699                 n = MaxSector;
3700         else {
3701                 err = kstrtoull(buf, 10, &n);
3702                 if (err < 0)
3703                         return err;
3704                 if (n != (sector_t)n)
3705                         return -EINVAL;
3706         }
3707
3708         err = mddev_lock(mddev);
3709         if (err)
3710                 return err;
3711         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3712                 err = -EBUSY;
3713
3714         if (!err) {
3715                 mddev->recovery_cp = n;
3716                 if (mddev->pers)
3717                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3718         }
3719         mddev_unlock(mddev);
3720         return err ?: len;
3721 }
3722 static struct md_sysfs_entry md_resync_start =
3723 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3724                 resync_start_show, resync_start_store);
3725
3726 /*
3727  * The array state can be:
3728  *
3729  * clear
3730  *     No devices, no size, no level
3731  *     Equivalent to STOP_ARRAY ioctl
3732  * inactive
3733  *     May have some settings, but array is not active
3734  *        all IO results in error
3735  *     When written, doesn't tear down array, but just stops it
3736  * suspended (not supported yet)
3737  *     All IO requests will block. The array can be reconfigured.
3738  *     Writing this, if accepted, will block until array is quiescent
3739  * readonly
3740  *     no resync can happen.  no superblocks get written.
3741  *     write requests fail
3742  * read-auto
3743  *     like readonly, but behaves like 'clean' on a write request.
3744  *
3745  * clean - no pending writes, but otherwise active.
3746  *     When written to inactive array, starts without resync
3747  *     If a write request arrives then
3748  *       if metadata is known, mark 'dirty' and switch to 'active'.
3749  *       if not known, block and switch to write-pending
3750  *     If written to an active array that has pending writes, then fails.
3751  * active
3752  *     fully active: IO and resync can be happening.
3753  *     When written to inactive array, starts with resync
3754  *
3755  * write-pending
3756  *     clean, but writes are blocked waiting for 'active' to be written.
3757  *
3758  * active-idle
3759  *     like active, but no writes have been seen for a while (100msec).
3760  *
3761  */
3762 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3763                    write_pending, active_idle, bad_word};
3764 static char *array_states[] = {
3765         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3766         "write-pending", "active-idle", NULL };
3767
3768 static int match_word(const char *word, char **list)
3769 {
3770         int n;
3771         for (n=0; list[n]; n++)
3772                 if (cmd_match(word, list[n]))
3773                         break;
3774         return n;
3775 }
3776
3777 static ssize_t
3778 array_state_show(struct mddev *mddev, char *page)
3779 {
3780         enum array_state st = inactive;
3781
3782         if (mddev->pers)
3783                 switch(mddev->ro) {
3784                 case 1:
3785                         st = readonly;
3786                         break;
3787                 case 2:
3788                         st = read_auto;
3789                         break;
3790                 case 0:
3791                         if (mddev->in_sync)
3792                                 st = clean;
3793                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3794                                 st = write_pending;
3795                         else if (mddev->safemode)
3796                                 st = active_idle;
3797                         else
3798                                 st = active;
3799                 }
3800         else {
3801                 if (list_empty(&mddev->disks) &&
3802                     mddev->raid_disks == 0 &&
3803                     mddev->dev_sectors == 0)
3804                         st = clear;
3805                 else
3806                         st = inactive;
3807         }
3808         return sprintf(page, "%s\n", array_states[st]);
3809 }
3810
3811 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3812 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3813 static int do_md_run(struct mddev *mddev);
3814 static int restart_array(struct mddev *mddev);
3815
3816 static ssize_t
3817 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3818 {
3819         int err;
3820         enum array_state st = match_word(buf, array_states);
3821
3822         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3823                 /* don't take reconfig_mutex when toggling between
3824                  * clean and active
3825                  */
3826                 spin_lock(&mddev->lock);
3827                 if (st == active) {
3828                         restart_array(mddev);
3829                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3830                         wake_up(&mddev->sb_wait);
3831                         err = 0;
3832                 } else /* st == clean */ {
3833                         restart_array(mddev);
3834                         if (atomic_read(&mddev->writes_pending) == 0) {
3835                                 if (mddev->in_sync == 0) {
3836                                         mddev->in_sync = 1;
3837                                         if (mddev->safemode == 1)
3838                                                 mddev->safemode = 0;
3839                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3840                                 }
3841                                 err = 0;
3842                         } else
3843                                 err = -EBUSY;
3844                 }
3845                 spin_unlock(&mddev->lock);
3846                 return err ?: len;
3847         }
3848         err = mddev_lock(mddev);
3849         if (err)
3850                 return err;
3851         err = -EINVAL;
3852         switch(st) {
3853         case bad_word:
3854                 break;
3855         case clear:
3856                 /* stopping an active array */
3857                 err = do_md_stop(mddev, 0, NULL);
3858                 break;
3859         case inactive:
3860                 /* stopping an active array */
3861                 if (mddev->pers)
3862                         err = do_md_stop(mddev, 2, NULL);
3863                 else
3864                         err = 0; /* already inactive */
3865                 break;
3866         case suspended:
3867                 break; /* not supported yet */
3868         case readonly:
3869                 if (mddev->pers)
3870                         err = md_set_readonly(mddev, NULL);
3871                 else {
3872                         mddev->ro = 1;
3873                         set_disk_ro(mddev->gendisk, 1);
3874                         err = do_md_run(mddev);
3875                 }
3876                 break;
3877         case read_auto:
3878                 if (mddev->pers) {
3879                         if (mddev->ro == 0)
3880                                 err = md_set_readonly(mddev, NULL);
3881                         else if (mddev->ro == 1)
3882                                 err = restart_array(mddev);
3883                         if (err == 0) {
3884                                 mddev->ro = 2;
3885                                 set_disk_ro(mddev->gendisk, 0);
3886                         }
3887                 } else {
3888                         mddev->ro = 2;
3889                         err = do_md_run(mddev);
3890                 }
3891                 break;
3892         case clean:
3893                 if (mddev->pers) {
3894                         restart_array(mddev);
3895                         spin_lock(&mddev->lock);
3896                         if (atomic_read(&mddev->writes_pending) == 0) {
3897                                 if (mddev->in_sync == 0) {
3898                                         mddev->in_sync = 1;
3899                                         if (mddev->safemode == 1)
3900                                                 mddev->safemode = 0;
3901                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3902                                 }
3903                                 err = 0;
3904                         } else
3905                                 err = -EBUSY;
3906                         spin_unlock(&mddev->lock);
3907                 } else
3908                         err = -EINVAL;
3909                 break;
3910         case active:
3911                 if (mddev->pers) {
3912                         restart_array(mddev);
3913                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3914                         wake_up(&mddev->sb_wait);
3915                         err = 0;
3916                 } else {
3917                         mddev->ro = 0;
3918                         set_disk_ro(mddev->gendisk, 0);
3919                         err = do_md_run(mddev);
3920                 }
3921                 break;
3922         case write_pending:
3923         case active_idle:
3924                 /* these cannot be set */
3925                 break;
3926         }
3927
3928         if (!err) {
3929                 if (mddev->hold_active == UNTIL_IOCTL)
3930                         mddev->hold_active = 0;
3931                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3932         }
3933         mddev_unlock(mddev);
3934         return err ?: len;
3935 }
3936 static struct md_sysfs_entry md_array_state =
3937 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3938
3939 static ssize_t
3940 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3941         return sprintf(page, "%d\n",
3942                        atomic_read(&mddev->max_corr_read_errors));
3943 }
3944
3945 static ssize_t
3946 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3947 {
3948         unsigned int n;
3949         int rv;
3950
3951         rv = kstrtouint(buf, 10, &n);
3952         if (rv < 0)
3953                 return rv;
3954         atomic_set(&mddev->max_corr_read_errors, n);
3955         return len;
3956 }
3957
3958 static struct md_sysfs_entry max_corr_read_errors =
3959 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3960         max_corrected_read_errors_store);
3961
3962 static ssize_t
3963 null_show(struct mddev *mddev, char *page)
3964 {
3965         return -EINVAL;
3966 }
3967
3968 static ssize_t
3969 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3970 {
3971         /* buf must be %d:%d\n? giving major and minor numbers */
3972         /* The new device is added to the array.
3973          * If the array has a persistent superblock, we read the
3974          * superblock to initialise info and check validity.
3975          * Otherwise, only checking done is that in bind_rdev_to_array,
3976          * which mainly checks size.
3977          */
3978         char *e;
3979         int major = simple_strtoul(buf, &e, 10);
3980         int minor;
3981         dev_t dev;
3982         struct md_rdev *rdev;
3983         int err;
3984
3985         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3986                 return -EINVAL;
3987         minor = simple_strtoul(e+1, &e, 10);
3988         if (*e && *e != '\n')
3989                 return -EINVAL;
3990         dev = MKDEV(major, minor);
3991         if (major != MAJOR(dev) ||
3992             minor != MINOR(dev))
3993                 return -EOVERFLOW;
3994
3995         flush_workqueue(md_misc_wq);
3996
3997         err = mddev_lock(mddev);
3998         if (err)
3999                 return err;
4000         if (mddev->persistent) {
4001                 rdev = md_import_device(dev, mddev->major_version,
4002                                         mddev->minor_version);
4003                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4004                         struct md_rdev *rdev0
4005                                 = list_entry(mddev->disks.next,
4006                                              struct md_rdev, same_set);
4007                         err = super_types[mddev->major_version]
4008                                 .load_super(rdev, rdev0, mddev->minor_version);
4009                         if (err < 0)
4010                                 goto out;
4011                 }
4012         } else if (mddev->external)
4013                 rdev = md_import_device(dev, -2, -1);
4014         else
4015                 rdev = md_import_device(dev, -1, -1);
4016
4017         if (IS_ERR(rdev)) {
4018                 mddev_unlock(mddev);
4019                 return PTR_ERR(rdev);
4020         }
4021         err = bind_rdev_to_array(rdev, mddev);
4022  out:
4023         if (err)
4024                 export_rdev(rdev);
4025         mddev_unlock(mddev);
4026         return err ? err : len;
4027 }
4028
4029 static struct md_sysfs_entry md_new_device =
4030 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4031
4032 static ssize_t
4033 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4034 {
4035         char *end;
4036         unsigned long chunk, end_chunk;
4037         int err;
4038
4039         err = mddev_lock(mddev);
4040         if (err)
4041                 return err;
4042         if (!mddev->bitmap)
4043                 goto out;
4044         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4045         while (*buf) {
4046                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4047                 if (buf == end) break;
4048                 if (*end == '-') { /* range */
4049                         buf = end + 1;
4050                         end_chunk = simple_strtoul(buf, &end, 0);
4051                         if (buf == end) break;
4052                 }
4053                 if (*end && !isspace(*end)) break;
4054                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4055                 buf = skip_spaces(end);
4056         }
4057         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4058 out:
4059         mddev_unlock(mddev);
4060         return len;
4061 }
4062
4063 static struct md_sysfs_entry md_bitmap =
4064 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4065
4066 static ssize_t
4067 size_show(struct mddev *mddev, char *page)
4068 {
4069         return sprintf(page, "%llu\n",
4070                 (unsigned long long)mddev->dev_sectors / 2);
4071 }
4072
4073 static int update_size(struct mddev *mddev, sector_t num_sectors);
4074
4075 static ssize_t
4076 size_store(struct mddev *mddev, const char *buf, size_t len)
4077 {
4078         /* If array is inactive, we can reduce the component size, but
4079          * not increase it (except from 0).
4080          * If array is active, we can try an on-line resize
4081          */
4082         sector_t sectors;
4083         int err = strict_blocks_to_sectors(buf, &sectors);
4084
4085         if (err < 0)
4086                 return err;
4087         err = mddev_lock(mddev);
4088         if (err)
4089                 return err;
4090         if (mddev->pers) {
4091                 if (mddev_is_clustered(mddev))
4092                         md_cluster_ops->metadata_update_start(mddev);
4093                 err = update_size(mddev, sectors);
4094                 md_update_sb(mddev, 1);
4095                 if (mddev_is_clustered(mddev))
4096                         md_cluster_ops->metadata_update_finish(mddev);
4097         } else {
4098                 if (mddev->dev_sectors == 0 ||
4099                     mddev->dev_sectors > sectors)
4100                         mddev->dev_sectors = sectors;
4101                 else
4102                         err = -ENOSPC;
4103         }
4104         mddev_unlock(mddev);
4105         return err ? err : len;
4106 }
4107
4108 static struct md_sysfs_entry md_size =
4109 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4110
4111 /* Metadata version.
4112  * This is one of
4113  *   'none' for arrays with no metadata (good luck...)
4114  *   'external' for arrays with externally managed metadata,
4115  * or N.M for internally known formats
4116  */
4117 static ssize_t
4118 metadata_show(struct mddev *mddev, char *page)
4119 {
4120         if (mddev->persistent)
4121                 return sprintf(page, "%d.%d\n",
4122                                mddev->major_version, mddev->minor_version);
4123         else if (mddev->external)
4124                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4125         else
4126                 return sprintf(page, "none\n");
4127 }
4128
4129 static ssize_t
4130 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4131 {
4132         int major, minor;
4133         char *e;
4134         int err;
4135         /* Changing the details of 'external' metadata is
4136          * always permitted.  Otherwise there must be
4137          * no devices attached to the array.
4138          */
4139
4140         err = mddev_lock(mddev);
4141         if (err)
4142                 return err;
4143         err = -EBUSY;
4144         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4145                 ;
4146         else if (!list_empty(&mddev->disks))
4147                 goto out_unlock;
4148
4149         err = 0;
4150         if (cmd_match(buf, "none")) {
4151                 mddev->persistent = 0;
4152                 mddev->external = 0;
4153                 mddev->major_version = 0;
4154                 mddev->minor_version = 90;
4155                 goto out_unlock;
4156         }
4157         if (strncmp(buf, "external:", 9) == 0) {
4158                 size_t namelen = len-9;
4159                 if (namelen >= sizeof(mddev->metadata_type))
4160                         namelen = sizeof(mddev->metadata_type)-1;
4161                 strncpy(mddev->metadata_type, buf+9, namelen);
4162                 mddev->metadata_type[namelen] = 0;
4163                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4164                         mddev->metadata_type[--namelen] = 0;
4165                 mddev->persistent = 0;
4166                 mddev->external = 1;
4167                 mddev->major_version = 0;
4168                 mddev->minor_version = 90;
4169                 goto out_unlock;
4170         }
4171         major = simple_strtoul(buf, &e, 10);
4172         err = -EINVAL;
4173         if (e==buf || *e != '.')
4174                 goto out_unlock;
4175         buf = e+1;
4176         minor = simple_strtoul(buf, &e, 10);
4177         if (e==buf || (*e && *e != '\n') )
4178                 goto out_unlock;
4179         err = -ENOENT;
4180         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4181                 goto out_unlock;
4182         mddev->major_version = major;
4183         mddev->minor_version = minor;
4184         mddev->persistent = 1;
4185         mddev->external = 0;
4186         err = 0;
4187 out_unlock:
4188         mddev_unlock(mddev);
4189         return err ?: len;
4190 }
4191
4192 static struct md_sysfs_entry md_metadata =
4193 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4194
4195 static ssize_t
4196 action_show(struct mddev *mddev, char *page)
4197 {
4198         char *type = "idle";
4199         unsigned long recovery = mddev->recovery;
4200         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4201                 type = "frozen";
4202         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4203             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4204                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4205                         type = "reshape";
4206                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4207                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4208                                 type = "resync";
4209                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4210                                 type = "check";
4211                         else
4212                                 type = "repair";
4213                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4214                         type = "recover";
4215         }
4216         return sprintf(page, "%s\n", type);
4217 }
4218
4219 static ssize_t
4220 action_store(struct mddev *mddev, const char *page, size_t len)
4221 {
4222         if (!mddev->pers || !mddev->pers->sync_request)
4223                 return -EINVAL;
4224
4225
4226         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4227                 if (cmd_match(page, "frozen"))
4228                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229                 else
4230                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4232                     mddev_lock(mddev) == 0) {
4233                         flush_workqueue(md_misc_wq);
4234                         if (mddev->sync_thread) {
4235                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236                                 md_reap_sync_thread(mddev);
4237                         }
4238                         mddev_unlock(mddev);
4239                 }
4240         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4241                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4242                 return -EBUSY;
4243         else if (cmd_match(page, "resync"))
4244                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4245         else if (cmd_match(page, "recover")) {
4246                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4247                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4248         } else if (cmd_match(page, "reshape")) {
4249                 int err;
4250                 if (mddev->pers->start_reshape == NULL)
4251                         return -EINVAL;
4252                 err = mddev_lock(mddev);
4253                 if (!err) {
4254                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4255                         err = mddev->pers->start_reshape(mddev);
4256                         mddev_unlock(mddev);
4257                 }
4258                 if (err)
4259                         return err;
4260                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4261         } else {
4262                 if (cmd_match(page, "check"))
4263                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4264                 else if (!cmd_match(page, "repair"))
4265                         return -EINVAL;
4266                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4267                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269         }
4270         if (mddev->ro == 2) {
4271                 /* A write to sync_action is enough to justify
4272                  * canceling read-auto mode
4273                  */
4274                 mddev->ro = 0;
4275                 md_wakeup_thread(mddev->sync_thread);
4276         }
4277         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278         md_wakeup_thread(mddev->thread);
4279         sysfs_notify_dirent_safe(mddev->sysfs_action);
4280         return len;
4281 }
4282
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285
4286 static ssize_t
4287 last_sync_action_show(struct mddev *mddev, char *page)
4288 {
4289         return sprintf(page, "%s\n", mddev->last_sync_action);
4290 }
4291
4292 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4293
4294 static ssize_t
4295 mismatch_cnt_show(struct mddev *mddev, char *page)
4296 {
4297         return sprintf(page, "%llu\n",
4298                        (unsigned long long)
4299                        atomic64_read(&mddev->resync_mismatches));
4300 }
4301
4302 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4303
4304 static ssize_t
4305 sync_min_show(struct mddev *mddev, char *page)
4306 {
4307         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4308                        mddev->sync_speed_min ? "local": "system");
4309 }
4310
4311 static ssize_t
4312 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4313 {
4314         unsigned int min;
4315         int rv;
4316
4317         if (strncmp(buf, "system", 6)==0) {
4318                 min = 0;
4319         } else {
4320                 rv = kstrtouint(buf, 10, &min);
4321                 if (rv < 0)
4322                         return rv;
4323                 if (min == 0)
4324                         return -EINVAL;
4325         }
4326         mddev->sync_speed_min = min;
4327         return len;
4328 }
4329
4330 static struct md_sysfs_entry md_sync_min =
4331 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4332
4333 static ssize_t
4334 sync_max_show(struct mddev *mddev, char *page)
4335 {
4336         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4337                        mddev->sync_speed_max ? "local": "system");
4338 }
4339
4340 static ssize_t
4341 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4342 {
4343         unsigned int max;
4344         int rv;
4345
4346         if (strncmp(buf, "system", 6)==0) {
4347                 max = 0;
4348         } else {
4349                 rv = kstrtouint(buf, 10, &max);
4350                 if (rv < 0)
4351                         return rv;
4352                 if (max == 0)
4353                         return -EINVAL;
4354         }
4355         mddev->sync_speed_max = max;
4356         return len;
4357 }
4358
4359 static struct md_sysfs_entry md_sync_max =
4360 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4361
4362 static ssize_t
4363 degraded_show(struct mddev *mddev, char *page)
4364 {
4365         return sprintf(page, "%d\n", mddev->degraded);
4366 }
4367 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4368
4369 static ssize_t
4370 sync_force_parallel_show(struct mddev *mddev, char *page)
4371 {
4372         return sprintf(page, "%d\n", mddev->parallel_resync);
4373 }
4374
4375 static ssize_t
4376 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4377 {
4378         long n;
4379
4380         if (kstrtol(buf, 10, &n))
4381                 return -EINVAL;
4382
4383         if (n != 0 && n != 1)
4384                 return -EINVAL;
4385
4386         mddev->parallel_resync = n;
4387
4388         if (mddev->sync_thread)
4389                 wake_up(&resync_wait);
4390
4391         return len;
4392 }
4393
4394 /* force parallel resync, even with shared block devices */
4395 static struct md_sysfs_entry md_sync_force_parallel =
4396 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4397        sync_force_parallel_show, sync_force_parallel_store);
4398
4399 static ssize_t
4400 sync_speed_show(struct mddev *mddev, char *page)
4401 {
4402         unsigned long resync, dt, db;
4403         if (mddev->curr_resync == 0)
4404                 return sprintf(page, "none\n");
4405         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4406         dt = (jiffies - mddev->resync_mark) / HZ;
4407         if (!dt) dt++;
4408         db = resync - mddev->resync_mark_cnt;
4409         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4410 }
4411
4412 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4413
4414 static ssize_t
4415 sync_completed_show(struct mddev *mddev, char *page)
4416 {
4417         unsigned long long max_sectors, resync;
4418
4419         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4420                 return sprintf(page, "none\n");
4421
4422         if (mddev->curr_resync == 1 ||
4423             mddev->curr_resync == 2)
4424                 return sprintf(page, "delayed\n");
4425
4426         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4427             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4428                 max_sectors = mddev->resync_max_sectors;
4429         else
4430                 max_sectors = mddev->dev_sectors;
4431
4432         resync = mddev->curr_resync_completed;
4433         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4434 }
4435
4436 static struct md_sysfs_entry md_sync_completed =
4437         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4438
4439 static ssize_t
4440 min_sync_show(struct mddev *mddev, char *page)
4441 {
4442         return sprintf(page, "%llu\n",
4443                        (unsigned long long)mddev->resync_min);
4444 }
4445 static ssize_t
4446 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4447 {
4448         unsigned long long min;
4449         int err;
4450
4451         if (kstrtoull(buf, 10, &min))
4452                 return -EINVAL;
4453
4454         spin_lock(&mddev->lock);
4455         err = -EINVAL;
4456         if (min > mddev->resync_max)
4457                 goto out_unlock;
4458
4459         err = -EBUSY;
4460         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4461                 goto out_unlock;
4462
4463         /* Round down to multiple of 4K for safety */
4464         mddev->resync_min = round_down(min, 8);
4465         err = 0;
4466
4467 out_unlock:
4468         spin_unlock(&mddev->lock);
4469         return err ?: len;
4470 }
4471
4472 static struct md_sysfs_entry md_min_sync =
4473 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4474
4475 static ssize_t
4476 max_sync_show(struct mddev *mddev, char *page)
4477 {
4478         if (mddev->resync_max == MaxSector)
4479                 return sprintf(page, "max\n");
4480         else
4481                 return sprintf(page, "%llu\n",
4482                                (unsigned long long)mddev->resync_max);
4483 }
4484 static ssize_t
4485 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4486 {
4487         int err;
4488         spin_lock(&mddev->lock);
4489         if (strncmp(buf, "max", 3) == 0)
4490                 mddev->resync_max = MaxSector;
4491         else {
4492                 unsigned long long max;
4493                 int chunk;
4494
4495                 err = -EINVAL;
4496                 if (kstrtoull(buf, 10, &max))
4497                         goto out_unlock;
4498                 if (max < mddev->resync_min)
4499                         goto out_unlock;
4500
4501                 err = -EBUSY;
4502                 if (max < mddev->resync_max &&
4503                     mddev->ro == 0 &&
4504                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4505                         goto out_unlock;
4506
4507                 /* Must be a multiple of chunk_size */
4508                 chunk = mddev->chunk_sectors;
4509                 if (chunk) {
4510                         sector_t temp = max;
4511
4512                         err = -EINVAL;
4513                         if (sector_div(temp, chunk))
4514                                 goto out_unlock;
4515                 }
4516                 mddev->resync_max = max;
4517         }
4518         wake_up(&mddev->recovery_wait);
4519         err = 0;
4520 out_unlock:
4521         spin_unlock(&mddev->lock);
4522         return err ?: len;
4523 }
4524
4525 static struct md_sysfs_entry md_max_sync =
4526 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4527
4528 static ssize_t
4529 suspend_lo_show(struct mddev *mddev, char *page)
4530 {
4531         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4532 }
4533
4534 static ssize_t
4535 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4536 {
4537         unsigned long long old, new;
4538         int err;
4539
4540         err = kstrtoull(buf, 10, &new);
4541         if (err < 0)
4542                 return err;
4543         if (new != (sector_t)new)
4544                 return -EINVAL;
4545
4546         err = mddev_lock(mddev);
4547         if (err)
4548                 return err;
4549         err = -EINVAL;
4550         if (mddev->pers == NULL ||
4551             mddev->pers->quiesce == NULL)
4552                 goto unlock;
4553         old = mddev->suspend_lo;
4554         mddev->suspend_lo = new;
4555         if (new >= old)
4556                 /* Shrinking suspended region */
4557                 mddev->pers->quiesce(mddev, 2);
4558         else {
4559                 /* Expanding suspended region - need to wait */
4560                 mddev->pers->quiesce(mddev, 1);
4561                 mddev->pers->quiesce(mddev, 0);
4562         }
4563         err = 0;
4564 unlock:
4565         mddev_unlock(mddev);
4566         return err ?: len;
4567 }
4568 static struct md_sysfs_entry md_suspend_lo =
4569 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4570
4571 static ssize_t
4572 suspend_hi_show(struct mddev *mddev, char *page)
4573 {
4574         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4575 }
4576
4577 static ssize_t
4578 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4579 {
4580         unsigned long long old, new;
4581         int err;
4582
4583         err = kstrtoull(buf, 10, &new);
4584         if (err < 0)
4585                 return err;
4586         if (new != (sector_t)new)
4587                 return -EINVAL;
4588
4589         err = mddev_lock(mddev);
4590         if (err)
4591                 return err;
4592         err = -EINVAL;
4593         if (mddev->pers == NULL ||
4594             mddev->pers->quiesce == NULL)
4595                 goto unlock;
4596         old = mddev->suspend_hi;
4597         mddev->suspend_hi = new;
4598         if (new <= old)
4599                 /* Shrinking suspended region */
4600                 mddev->pers->quiesce(mddev, 2);
4601         else {
4602                 /* Expanding suspended region - need to wait */
4603                 mddev->pers->quiesce(mddev, 1);
4604                 mddev->pers->quiesce(mddev, 0);
4605         }
4606         err = 0;
4607 unlock:
4608         mddev_unlock(mddev);
4609         return err ?: len;
4610 }
4611 static struct md_sysfs_entry md_suspend_hi =
4612 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4613
4614 static ssize_t
4615 reshape_position_show(struct mddev *mddev, char *page)
4616 {
4617         if (mddev->reshape_position != MaxSector)
4618                 return sprintf(page, "%llu\n",
4619                                (unsigned long long)mddev->reshape_position);
4620         strcpy(page, "none\n");
4621         return 5;
4622 }
4623
4624 static ssize_t
4625 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4626 {
4627         struct md_rdev *rdev;
4628         unsigned long long new;
4629         int err;
4630
4631         err = kstrtoull(buf, 10, &new);
4632         if (err < 0)
4633                 return err;
4634         if (new != (sector_t)new)
4635                 return -EINVAL;
4636         err = mddev_lock(mddev);
4637         if (err)
4638                 return err;
4639         err = -EBUSY;
4640         if (mddev->pers)
4641                 goto unlock;
4642         mddev->reshape_position = new;
4643         mddev->delta_disks = 0;
4644         mddev->reshape_backwards = 0;
4645         mddev->new_level = mddev->level;
4646         mddev->new_layout = mddev->layout;
4647         mddev->new_chunk_sectors = mddev->chunk_sectors;
4648         rdev_for_each(rdev, mddev)
4649                 rdev->new_data_offset = rdev->data_offset;
4650         err = 0;
4651 unlock:
4652         mddev_unlock(mddev);
4653         return err ?: len;
4654 }
4655
4656 static struct md_sysfs_entry md_reshape_position =
4657 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4658        reshape_position_store);
4659
4660 static ssize_t
4661 reshape_direction_show(struct mddev *mddev, char *page)
4662 {
4663         return sprintf(page, "%s\n",
4664                        mddev->reshape_backwards ? "backwards" : "forwards");
4665 }
4666
4667 static ssize_t
4668 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4669 {
4670         int backwards = 0;
4671         int err;
4672
4673         if (cmd_match(buf, "forwards"))
4674                 backwards = 0;
4675         else if (cmd_match(buf, "backwards"))
4676                 backwards = 1;
4677         else
4678                 return -EINVAL;
4679         if (mddev->reshape_backwards == backwards)
4680                 return len;
4681
4682         err = mddev_lock(mddev);
4683         if (err)
4684                 return err;
4685         /* check if we are allowed to change */
4686         if (mddev->delta_disks)
4687                 err = -EBUSY;
4688         else if (mddev->persistent &&
4689             mddev->major_version == 0)
4690                 err =  -EINVAL;
4691         else
4692                 mddev->reshape_backwards = backwards;
4693         mddev_unlock(mddev);
4694         return err ?: len;
4695 }
4696
4697 static struct md_sysfs_entry md_reshape_direction =
4698 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4699        reshape_direction_store);
4700
4701 static ssize_t
4702 array_size_show(struct mddev *mddev, char *page)
4703 {
4704         if (mddev->external_size)
4705                 return sprintf(page, "%llu\n",
4706                                (unsigned long long)mddev->array_sectors/2);
4707         else
4708                 return sprintf(page, "default\n");
4709 }
4710
4711 static ssize_t
4712 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4713 {
4714         sector_t sectors;
4715         int err;
4716
4717         err = mddev_lock(mddev);
4718         if (err)
4719                 return err;
4720
4721         if (strncmp(buf, "default", 7) == 0) {
4722                 if (mddev->pers)
4723                         sectors = mddev->pers->size(mddev, 0, 0);
4724                 else
4725                         sectors = mddev->array_sectors;
4726
4727                 mddev->external_size = 0;
4728         } else {
4729                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4730                         err = -EINVAL;
4731                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4732                         err = -E2BIG;
4733                 else
4734                         mddev->external_size = 1;
4735         }
4736
4737         if (!err) {
4738                 mddev->array_sectors = sectors;
4739                 if (mddev->pers) {
4740                         set_capacity(mddev->gendisk, mddev->array_sectors);
4741                         revalidate_disk(mddev->gendisk);
4742                 }
4743         }
4744         mddev_unlock(mddev);
4745         return err ?: len;
4746 }
4747
4748 static struct md_sysfs_entry md_array_size =
4749 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4750        array_size_store);
4751
4752 static struct attribute *md_default_attrs[] = {
4753         &md_level.attr,
4754         &md_layout.attr,
4755         &md_raid_disks.attr,
4756         &md_chunk_size.attr,
4757         &md_size.attr,
4758         &md_resync_start.attr,
4759         &md_metadata.attr,
4760         &md_new_device.attr,
4761         &md_safe_delay.attr,
4762         &md_array_state.attr,
4763         &md_reshape_position.attr,
4764         &md_reshape_direction.attr,
4765         &md_array_size.attr,
4766         &max_corr_read_errors.attr,
4767         NULL,
4768 };
4769
4770 static struct attribute *md_redundancy_attrs[] = {
4771         &md_scan_mode.attr,
4772         &md_last_scan_mode.attr,
4773         &md_mismatches.attr,
4774         &md_sync_min.attr,
4775         &md_sync_max.attr,
4776         &md_sync_speed.attr,
4777         &md_sync_force_parallel.attr,
4778         &md_sync_completed.attr,
4779         &md_min_sync.attr,
4780         &md_max_sync.attr,
4781         &md_suspend_lo.attr,
4782         &md_suspend_hi.attr,
4783         &md_bitmap.attr,
4784         &md_degraded.attr,
4785         NULL,
4786 };
4787 static struct attribute_group md_redundancy_group = {
4788         .name = NULL,
4789         .attrs = md_redundancy_attrs,
4790 };
4791
4792 static ssize_t
4793 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4794 {
4795         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4796         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4797         ssize_t rv;
4798
4799         if (!entry->show)
4800                 return -EIO;
4801         spin_lock(&all_mddevs_lock);
4802         if (list_empty(&mddev->all_mddevs)) {
4803                 spin_unlock(&all_mddevs_lock);
4804                 return -EBUSY;
4805         }
4806         mddev_get(mddev);
4807         spin_unlock(&all_mddevs_lock);
4808
4809         rv = entry->show(mddev, page);
4810         mddev_put(mddev);
4811         return rv;
4812 }
4813
4814 static ssize_t
4815 md_attr_store(struct kobject *kobj, struct attribute *attr,
4816               const char *page, size_t length)
4817 {
4818         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4819         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4820         ssize_t rv;
4821
4822         if (!entry->store)
4823                 return -EIO;
4824         if (!capable(CAP_SYS_ADMIN))
4825                 return -EACCES;
4826         spin_lock(&all_mddevs_lock);
4827         if (list_empty(&mddev->all_mddevs)) {
4828                 spin_unlock(&all_mddevs_lock);
4829                 return -EBUSY;
4830         }
4831         mddev_get(mddev);
4832         spin_unlock(&all_mddevs_lock);
4833         rv = entry->store(mddev, page, length);
4834         mddev_put(mddev);
4835         return rv;
4836 }
4837
4838 static void md_free(struct kobject *ko)
4839 {
4840         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4841
4842         if (mddev->sysfs_state)
4843                 sysfs_put(mddev->sysfs_state);
4844
4845         if (mddev->queue)
4846                 blk_cleanup_queue(mddev->queue);
4847         if (mddev->gendisk) {
4848                 del_gendisk(mddev->gendisk);
4849                 put_disk(mddev->gendisk);
4850         }
4851
4852         kfree(mddev);
4853 }
4854
4855 static const struct sysfs_ops md_sysfs_ops = {
4856         .show   = md_attr_show,
4857         .store  = md_attr_store,
4858 };
4859 static struct kobj_type md_ktype = {
4860         .release        = md_free,
4861         .sysfs_ops      = &md_sysfs_ops,
4862         .default_attrs  = md_default_attrs,
4863 };
4864
4865 int mdp_major = 0;
4866
4867 static void mddev_delayed_delete(struct work_struct *ws)
4868 {
4869         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4870
4871         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4872         kobject_del(&mddev->kobj);
4873         kobject_put(&mddev->kobj);
4874 }
4875
4876 static int md_alloc(dev_t dev, char *name)
4877 {
4878         static DEFINE_MUTEX(disks_mutex);
4879         struct mddev *mddev = mddev_find(dev);
4880         struct gendisk *disk;
4881         int partitioned;
4882         int shift;
4883         int unit;
4884         int error;
4885
4886         if (!mddev)
4887                 return -ENODEV;
4888
4889         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4890         shift = partitioned ? MdpMinorShift : 0;
4891         unit = MINOR(mddev->unit) >> shift;
4892
4893         /* wait for any previous instance of this device to be
4894          * completely removed (mddev_delayed_delete).
4895          */
4896         flush_workqueue(md_misc_wq);
4897
4898         mutex_lock(&disks_mutex);
4899         error = -EEXIST;
4900         if (mddev->gendisk)
4901                 goto abort;
4902
4903         if (name) {
4904                 /* Need to ensure that 'name' is not a duplicate.
4905                  */
4906                 struct mddev *mddev2;
4907                 spin_lock(&all_mddevs_lock);
4908
4909                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4910                         if (mddev2->gendisk &&
4911                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4912                                 spin_unlock(&all_mddevs_lock);
4913                                 goto abort;
4914                         }
4915                 spin_unlock(&all_mddevs_lock);
4916         }
4917
4918         error = -ENOMEM;
4919         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4920         if (!mddev->queue)
4921                 goto abort;
4922         mddev->queue->queuedata = mddev;
4923
4924         blk_queue_make_request(mddev->queue, md_make_request);
4925         blk_set_stacking_limits(&mddev->queue->limits);
4926
4927         disk = alloc_disk(1 << shift);
4928         if (!disk) {
4929                 blk_cleanup_queue(mddev->queue);
4930                 mddev->queue = NULL;
4931                 goto abort;
4932         }
4933         disk->major = MAJOR(mddev->unit);
4934         disk->first_minor = unit << shift;
4935         if (name)
4936                 strcpy(disk->disk_name, name);
4937         else if (partitioned)
4938                 sprintf(disk->disk_name, "md_d%d", unit);
4939         else
4940                 sprintf(disk->disk_name, "md%d", unit);
4941         disk->fops = &md_fops;
4942         disk->private_data = mddev;
4943         disk->queue = mddev->queue;
4944         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4945         /* Allow extended partitions.  This makes the
4946          * 'mdp' device redundant, but we can't really
4947          * remove it now.
4948          */
4949         disk->flags |= GENHD_FL_EXT_DEVT;
4950         mddev->gendisk = disk;
4951         /* As soon as we call add_disk(), another thread could get
4952          * through to md_open, so make sure it doesn't get too far
4953          */
4954         mutex_lock(&mddev->open_mutex);
4955         add_disk(disk);
4956
4957         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4958                                      &disk_to_dev(disk)->kobj, "%s", "md");
4959         if (error) {
4960                 /* This isn't possible, but as kobject_init_and_add is marked
4961                  * __must_check, we must do something with the result
4962                  */
4963                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4964                        disk->disk_name);
4965                 error = 0;
4966         }
4967         if (mddev->kobj.sd &&
4968             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4969                 printk(KERN_DEBUG "pointless warning\n");
4970         mutex_unlock(&mddev->open_mutex);
4971  abort:
4972         mutex_unlock(&disks_mutex);
4973         if (!error && mddev->kobj.sd) {
4974                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4975                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4976         }
4977         mddev_put(mddev);
4978         return error;
4979 }
4980
4981 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4982 {
4983         md_alloc(dev, NULL);
4984         return NULL;
4985 }
4986
4987 static int add_named_array(const char *val, struct kernel_param *kp)
4988 {
4989         /* val must be "md_*" where * is not all digits.
4990          * We allocate an array with a large free minor number, and
4991          * set the name to val.  val must not already be an active name.
4992          */
4993         int len = strlen(val);
4994         char buf[DISK_NAME_LEN];
4995
4996         while (len && val[len-1] == '\n')
4997                 len--;
4998         if (len >= DISK_NAME_LEN)
4999                 return -E2BIG;
5000         strlcpy(buf, val, len+1);
5001         if (strncmp(buf, "md_", 3) != 0)
5002                 return -EINVAL;
5003         return md_alloc(0, buf);
5004 }
5005
5006 static void md_safemode_timeout(unsigned long data)
5007 {
5008         struct mddev *mddev = (struct mddev *) data;
5009
5010         if (!atomic_read(&mddev->writes_pending)) {
5011                 mddev->safemode = 1;
5012                 if (mddev->external)
5013                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5014         }
5015         md_wakeup_thread(mddev->thread);
5016 }
5017
5018 static int start_dirty_degraded;
5019
5020 int md_run(struct mddev *mddev)
5021 {
5022         int err;
5023         struct md_rdev *rdev;
5024         struct md_personality *pers;
5025
5026         if (list_empty(&mddev->disks))
5027                 /* cannot run an array with no devices.. */
5028                 return -EINVAL;
5029
5030         if (mddev->pers)
5031                 return -EBUSY;
5032         /* Cannot run until previous stop completes properly */
5033         if (mddev->sysfs_active)
5034                 return -EBUSY;
5035
5036         /*
5037          * Analyze all RAID superblock(s)
5038          */
5039         if (!mddev->raid_disks) {
5040                 if (!mddev->persistent)
5041                         return -EINVAL;
5042                 analyze_sbs(mddev);
5043         }
5044
5045         if (mddev->level != LEVEL_NONE)
5046                 request_module("md-level-%d", mddev->level);
5047         else if (mddev->clevel[0])
5048                 request_module("md-%s", mddev->clevel);
5049
5050         /*
5051          * Drop all container device buffers, from now on
5052          * the only valid external interface is through the md
5053          * device.
5054          */
5055         rdev_for_each(rdev, mddev) {
5056                 if (test_bit(Faulty, &rdev->flags))
5057                         continue;
5058                 sync_blockdev(rdev->bdev);
5059                 invalidate_bdev(rdev->bdev);
5060
5061                 /* perform some consistency tests on the device.
5062                  * We don't want the data to overlap the metadata,
5063                  * Internal Bitmap issues have been handled elsewhere.
5064                  */
5065                 if (rdev->meta_bdev) {
5066                         /* Nothing to check */;
5067                 } else if (rdev->data_offset < rdev->sb_start) {
5068                         if (mddev->dev_sectors &&
5069                             rdev->data_offset + mddev->dev_sectors
5070                             > rdev->sb_start) {
5071                                 printk("md: %s: data overlaps metadata\n",
5072                                        mdname(mddev));
5073                                 return -EINVAL;
5074                         }
5075                 } else {
5076                         if (rdev->sb_start + rdev->sb_size/512
5077                             > rdev->data_offset) {
5078                                 printk("md: %s: metadata overlaps data\n",
5079                                        mdname(mddev));
5080                                 return -EINVAL;
5081                         }
5082                 }
5083                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5084         }
5085
5086         if (mddev->bio_set == NULL)
5087                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5088
5089         spin_lock(&pers_lock);
5090         pers = find_pers(mddev->level, mddev->clevel);
5091         if (!pers || !try_module_get(pers->owner)) {
5092                 spin_unlock(&pers_lock);
5093                 if (mddev->level != LEVEL_NONE)
5094                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5095                                mddev->level);
5096                 else
5097                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5098                                mddev->clevel);
5099                 return -EINVAL;
5100         }
5101         spin_unlock(&pers_lock);
5102         if (mddev->level != pers->level) {
5103                 mddev->level = pers->level;
5104                 mddev->new_level = pers->level;
5105         }
5106         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5107
5108         if (mddev->reshape_position != MaxSector &&
5109             pers->start_reshape == NULL) {
5110                 /* This personality cannot handle reshaping... */
5111                 module_put(pers->owner);
5112                 return -EINVAL;
5113         }
5114
5115         if (pers->sync_request) {
5116                 /* Warn if this is a potentially silly
5117                  * configuration.
5118                  */
5119                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5120                 struct md_rdev *rdev2;
5121                 int warned = 0;
5122
5123                 rdev_for_each(rdev, mddev)
5124                         rdev_for_each(rdev2, mddev) {
5125                                 if (rdev < rdev2 &&
5126                                     rdev->bdev->bd_contains ==
5127                                     rdev2->bdev->bd_contains) {
5128                                         printk(KERN_WARNING
5129                                                "%s: WARNING: %s appears to be"
5130                                                " on the same physical disk as"
5131                                                " %s.\n",
5132                                                mdname(mddev),
5133                                                bdevname(rdev->bdev,b),
5134                                                bdevname(rdev2->bdev,b2));
5135                                         warned = 1;
5136                                 }
5137                         }
5138
5139                 if (warned)
5140                         printk(KERN_WARNING
5141                                "True protection against single-disk"
5142                                " failure might be compromised.\n");
5143         }
5144
5145         mddev->recovery = 0;
5146         /* may be over-ridden by personality */
5147         mddev->resync_max_sectors = mddev->dev_sectors;
5148
5149         mddev->ok_start_degraded = start_dirty_degraded;
5150
5151         if (start_readonly && mddev->ro == 0)
5152                 mddev->ro = 2; /* read-only, but switch on first write */
5153
5154         err = pers->run(mddev);
5155         if (err)
5156                 printk(KERN_ERR "md: pers->run() failed ...\n");
5157         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5158                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5159                           " but 'external_size' not in effect?\n", __func__);
5160                 printk(KERN_ERR
5161                        "md: invalid array_size %llu > default size %llu\n",
5162                        (unsigned long long)mddev->array_sectors / 2,
5163                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5164                 err = -EINVAL;
5165         }
5166         if (err == 0 && pers->sync_request &&
5167             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5168                 struct bitmap *bitmap;
5169
5170                 bitmap = bitmap_create(mddev, -1);
5171                 if (IS_ERR(bitmap)) {
5172                         err = PTR_ERR(bitmap);
5173                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5174                                mdname(mddev), err);
5175                 } else
5176                         mddev->bitmap = bitmap;
5177
5178         }
5179         if (err) {
5180                 mddev_detach(mddev);
5181                 if (mddev->private)
5182                         pers->free(mddev, mddev->private);
5183                 mddev->private = NULL;
5184                 module_put(pers->owner);
5185                 bitmap_destroy(mddev);
5186                 return err;
5187         }
5188         if (mddev->queue) {
5189                 mddev->queue->backing_dev_info.congested_data = mddev;
5190                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5191                 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5192         }
5193         if (pers->sync_request) {
5194                 if (mddev->kobj.sd &&
5195                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5196                         printk(KERN_WARNING
5197                                "md: cannot register extra attributes for %s\n",
5198                                mdname(mddev));
5199                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5200         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5201                 mddev->ro = 0;
5202
5203         atomic_set(&mddev->writes_pending,0);
5204         atomic_set(&mddev->max_corr_read_errors,
5205                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5206         mddev->safemode = 0;
5207         mddev->safemode_timer.function = md_safemode_timeout;
5208         mddev->safemode_timer.data = (unsigned long) mddev;
5209         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5210         mddev->in_sync = 1;
5211         smp_wmb();
5212         spin_lock(&mddev->lock);
5213         mddev->pers = pers;
5214         mddev->ready = 1;
5215         spin_unlock(&mddev->lock);
5216         rdev_for_each(rdev, mddev)
5217                 if (rdev->raid_disk >= 0)
5218                         if (sysfs_link_rdev(mddev, rdev))
5219                                 /* failure here is OK */;
5220
5221         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5222
5223         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5224                 md_update_sb(mddev, 0);
5225
5226         md_new_event(mddev);
5227         sysfs_notify_dirent_safe(mddev->sysfs_state);
5228         sysfs_notify_dirent_safe(mddev->sysfs_action);
5229         sysfs_notify(&mddev->kobj, NULL, "degraded");
5230         return 0;
5231 }
5232 EXPORT_SYMBOL_GPL(md_run);
5233
5234 static int do_md_run(struct mddev *mddev)
5235 {
5236         int err;
5237
5238         err = md_run(mddev);
5239         if (err)
5240                 goto out;
5241         err = bitmap_load(mddev);
5242         if (err) {
5243                 bitmap_destroy(mddev);
5244                 goto out;
5245         }
5246
5247         md_wakeup_thread(mddev->thread);
5248         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5249
5250         set_capacity(mddev->gendisk, mddev->array_sectors);
5251         revalidate_disk(mddev->gendisk);
5252         mddev->changed = 1;
5253         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5254 out:
5255         return err;
5256 }
5257
5258 static int restart_array(struct mddev *mddev)
5259 {
5260         struct gendisk *disk = mddev->gendisk;
5261
5262         /* Complain if it has no devices */
5263         if (list_empty(&mddev->disks))
5264                 return -ENXIO;
5265         if (!mddev->pers)
5266                 return -EINVAL;
5267         if (!mddev->ro)
5268                 return -EBUSY;
5269         mddev->safemode = 0;
5270         mddev->ro = 0;
5271         set_disk_ro(disk, 0);
5272         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5273                 mdname(mddev));
5274         /* Kick recovery or resync if necessary */
5275         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5276         md_wakeup_thread(mddev->thread);
5277         md_wakeup_thread(mddev->sync_thread);
5278         sysfs_notify_dirent_safe(mddev->sysfs_state);
5279         return 0;
5280 }
5281
5282 static void md_clean(struct mddev *mddev)
5283 {
5284         mddev->array_sectors = 0;
5285         mddev->external_size = 0;
5286         mddev->dev_sectors = 0;
5287         mddev->raid_disks = 0;
5288         mddev->recovery_cp = 0;
5289         mddev->resync_min = 0;
5290         mddev->resync_max = MaxSector;
5291         mddev->reshape_position = MaxSector;
5292         mddev->external = 0;
5293         mddev->persistent = 0;
5294         mddev->level = LEVEL_NONE;
5295         mddev->clevel[0] = 0;
5296         mddev->flags = 0;
5297         mddev->ro = 0;
5298         mddev->metadata_type[0] = 0;
5299         mddev->chunk_sectors = 0;
5300         mddev->ctime = mddev->utime = 0;
5301         mddev->layout = 0;
5302         mddev->max_disks = 0;
5303         mddev->events = 0;
5304         mddev->can_decrease_events = 0;
5305         mddev->delta_disks = 0;
5306         mddev->reshape_backwards = 0;
5307         mddev->new_level = LEVEL_NONE;
5308         mddev->new_layout = 0;
5309         mddev->new_chunk_sectors = 0;
5310         mddev->curr_resync = 0;
5311         atomic64_set(&mddev->resync_mismatches, 0);
5312         mddev->suspend_lo = mddev->suspend_hi = 0;
5313         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5314         mddev->recovery = 0;
5315         mddev->in_sync = 0;
5316         mddev->changed = 0;
5317         mddev->degraded = 0;
5318         mddev->safemode = 0;
5319         mddev->private = NULL;
5320         mddev->merge_check_needed = 0;
5321         mddev->bitmap_info.offset = 0;
5322         mddev->bitmap_info.default_offset = 0;
5323         mddev->bitmap_info.default_space = 0;
5324         mddev->bitmap_info.chunksize = 0;
5325         mddev->bitmap_info.daemon_sleep = 0;
5326         mddev->bitmap_info.max_write_behind = 0;
5327 }
5328
5329 static void __md_stop_writes(struct mddev *mddev)
5330 {
5331         if (mddev_is_clustered(mddev))
5332                 md_cluster_ops->metadata_update_start(mddev);
5333         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5334         flush_workqueue(md_misc_wq);
5335         if (mddev->sync_thread) {
5336                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5337                 md_reap_sync_thread(mddev);
5338         }
5339
5340         del_timer_sync(&mddev->safemode_timer);
5341
5342         bitmap_flush(mddev);
5343         md_super_wait(mddev);
5344
5345         if (mddev->ro == 0 &&
5346             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5347                 /* mark array as shutdown cleanly */
5348                 mddev->in_sync = 1;
5349                 md_update_sb(mddev, 1);
5350         }
5351         if (mddev_is_clustered(mddev))
5352                 md_cluster_ops->metadata_update_finish(mddev);
5353 }
5354
5355 void md_stop_writes(struct mddev *mddev)
5356 {
5357         mddev_lock_nointr(mddev);
5358         __md_stop_writes(mddev);
5359         mddev_unlock(mddev);
5360 }
5361 EXPORT_SYMBOL_GPL(md_stop_writes);
5362
5363 static void mddev_detach(struct mddev *mddev)
5364 {
5365         struct bitmap *bitmap = mddev->bitmap;
5366         /* wait for behind writes to complete */
5367         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5368                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5369                        mdname(mddev));
5370                 /* need to kick something here to make sure I/O goes? */
5371                 wait_event(bitmap->behind_wait,
5372                            atomic_read(&bitmap->behind_writes) == 0);
5373         }
5374         if (mddev->pers && mddev->pers->quiesce) {
5375                 mddev->pers->quiesce(mddev, 1);
5376                 mddev->pers->quiesce(mddev, 0);
5377         }
5378         md_unregister_thread(&mddev->thread);
5379         if (mddev->queue)
5380                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5381 }
5382
5383 static void __md_stop(struct mddev *mddev)
5384 {
5385         struct md_personality *pers = mddev->pers;
5386         mddev_detach(mddev);
5387         spin_lock(&mddev->lock);
5388         mddev->ready = 0;
5389         mddev->pers = NULL;
5390         spin_unlock(&mddev->lock);
5391         pers->free(mddev, mddev->private);
5392         mddev->private = NULL;
5393         if (pers->sync_request && mddev->to_remove == NULL)
5394                 mddev->to_remove = &md_redundancy_group;
5395         module_put(pers->owner);
5396         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5397 }
5398
5399 void md_stop(struct mddev *mddev)
5400 {
5401         /* stop the array and free an attached data structures.
5402          * This is called from dm-raid
5403          */
5404         __md_stop(mddev);
5405         bitmap_destroy(mddev);
5406         if (mddev->bio_set)
5407                 bioset_free(mddev->bio_set);
5408 }
5409
5410 EXPORT_SYMBOL_GPL(md_stop);
5411
5412 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5413 {
5414         int err = 0;
5415         int did_freeze = 0;
5416
5417         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5418                 did_freeze = 1;
5419                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5420                 md_wakeup_thread(mddev->thread);
5421         }
5422         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5423                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5424         if (mddev->sync_thread)
5425                 /* Thread might be blocked waiting for metadata update
5426                  * which will now never happen */
5427                 wake_up_process(mddev->sync_thread->tsk);
5428
5429         mddev_unlock(mddev);
5430         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5431                                           &mddev->recovery));
5432         mddev_lock_nointr(mddev);
5433
5434         mutex_lock(&mddev->open_mutex);
5435         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5436             mddev->sync_thread ||
5437             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5438             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5439                 printk("md: %s still in use.\n",mdname(mddev));
5440                 if (did_freeze) {
5441                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5442                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5443                         md_wakeup_thread(mddev->thread);
5444                 }
5445                 err = -EBUSY;
5446                 goto out;
5447         }
5448         if (mddev->pers) {
5449                 __md_stop_writes(mddev);
5450
5451                 err  = -ENXIO;
5452                 if (mddev->ro==1)
5453                         goto out;
5454                 mddev->ro = 1;
5455                 set_disk_ro(mddev->gendisk, 1);
5456                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5457                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5458                 md_wakeup_thread(mddev->thread);
5459                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5460                 err = 0;
5461         }
5462 out:
5463         mutex_unlock(&mddev->open_mutex);
5464         return err;
5465 }
5466
5467 /* mode:
5468  *   0 - completely stop and dis-assemble array
5469  *   2 - stop but do not disassemble array
5470  */
5471 static int do_md_stop(struct mddev *mddev, int mode,
5472                       struct block_device *bdev)
5473 {
5474         struct gendisk *disk = mddev->gendisk;
5475         struct md_rdev *rdev;
5476         int did_freeze = 0;
5477
5478         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5479                 did_freeze = 1;
5480                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5481                 md_wakeup_thread(mddev->thread);
5482         }
5483         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5484                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5485         if (mddev->sync_thread)
5486                 /* Thread might be blocked waiting for metadata update
5487                  * which will now never happen */
5488                 wake_up_process(mddev->sync_thread->tsk);
5489
5490         mddev_unlock(mddev);
5491         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5492                                  !test_bit(MD_RECOVERY_RUNNING,
5493                                            &mddev->recovery)));
5494         mddev_lock_nointr(mddev);
5495
5496         mutex_lock(&mddev->open_mutex);
5497         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5498             mddev->sysfs_active ||
5499             mddev->sync_thread ||
5500             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5501             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5502                 printk("md: %s still in use.\n",mdname(mddev));
5503                 mutex_unlock(&mddev->open_mutex);
5504                 if (did_freeze) {
5505                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5506                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5507                         md_wakeup_thread(mddev->thread);
5508                 }
5509                 return -EBUSY;
5510         }
5511         if (mddev->pers) {
5512                 if (mddev->ro)
5513                         set_disk_ro(disk, 0);
5514
5515                 __md_stop_writes(mddev);
5516                 __md_stop(mddev);
5517                 mddev->queue->merge_bvec_fn = NULL;
5518                 mddev->queue->backing_dev_info.congested_fn = NULL;
5519
5520                 /* tell userspace to handle 'inactive' */
5521                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5522
5523                 rdev_for_each(rdev, mddev)
5524                         if (rdev->raid_disk >= 0)
5525                                 sysfs_unlink_rdev(mddev, rdev);
5526
5527                 set_capacity(disk, 0);
5528                 mutex_unlock(&mddev->open_mutex);
5529                 mddev->changed = 1;
5530                 revalidate_disk(disk);
5531
5532                 if (mddev->ro)
5533                         mddev->ro = 0;
5534         } else
5535                 mutex_unlock(&mddev->open_mutex);
5536         /*
5537          * Free resources if final stop
5538          */
5539         if (mode == 0) {
5540                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5541
5542                 bitmap_destroy(mddev);
5543                 if (mddev->bitmap_info.file) {
5544                         struct file *f = mddev->bitmap_info.file;
5545                         spin_lock(&mddev->lock);
5546                         mddev->bitmap_info.file = NULL;
5547                         spin_unlock(&mddev->lock);
5548                         fput(f);
5549                 }
5550                 mddev->bitmap_info.offset = 0;
5551
5552                 export_array(mddev);
5553
5554                 md_clean(mddev);
5555                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5556                 if (mddev->hold_active == UNTIL_STOP)
5557                         mddev->hold_active = 0;
5558         }
5559         blk_integrity_unregister(disk);
5560         md_new_event(mddev);
5561         sysfs_notify_dirent_safe(mddev->sysfs_state);
5562         return 0;
5563 }
5564
5565 #ifndef MODULE
5566 static void autorun_array(struct mddev *mddev)
5567 {
5568         struct md_rdev *rdev;
5569         int err;
5570
5571         if (list_empty(&mddev->disks))
5572                 return;
5573
5574         printk(KERN_INFO "md: running: ");
5575
5576         rdev_for_each(rdev, mddev) {
5577                 char b[BDEVNAME_SIZE];
5578                 printk("<%s>", bdevname(rdev->bdev,b));
5579         }
5580         printk("\n");
5581
5582         err = do_md_run(mddev);
5583         if (err) {
5584                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5585                 do_md_stop(mddev, 0, NULL);
5586         }
5587 }
5588
5589 /*
5590  * lets try to run arrays based on all disks that have arrived
5591  * until now. (those are in pending_raid_disks)
5592  *
5593  * the method: pick the first pending disk, collect all disks with
5594  * the same UUID, remove all from the pending list and put them into
5595  * the 'same_array' list. Then order this list based on superblock
5596  * update time (freshest comes first), kick out 'old' disks and
5597  * compare superblocks. If everything's fine then run it.
5598  *
5599  * If "unit" is allocated, then bump its reference count
5600  */
5601 static void autorun_devices(int part)
5602 {
5603         struct md_rdev *rdev0, *rdev, *tmp;
5604         struct mddev *mddev;
5605         char b[BDEVNAME_SIZE];
5606
5607         printk(KERN_INFO "md: autorun ...\n");
5608         while (!list_empty(&pending_raid_disks)) {
5609                 int unit;
5610                 dev_t dev;
5611                 LIST_HEAD(candidates);
5612                 rdev0 = list_entry(pending_raid_disks.next,
5613                                          struct md_rdev, same_set);
5614
5615                 printk(KERN_INFO "md: considering %s ...\n",
5616                         bdevname(rdev0->bdev,b));
5617                 INIT_LIST_HEAD(&candidates);
5618                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5619                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5620                                 printk(KERN_INFO "md:  adding %s ...\n",
5621                                         bdevname(rdev->bdev,b));
5622                                 list_move(&rdev->same_set, &candidates);
5623                         }
5624                 /*
5625                  * now we have a set of devices, with all of them having
5626                  * mostly sane superblocks. It's time to allocate the
5627                  * mddev.
5628                  */
5629                 if (part) {
5630                         dev = MKDEV(mdp_major,
5631                                     rdev0->preferred_minor << MdpMinorShift);
5632                         unit = MINOR(dev) >> MdpMinorShift;
5633                 } else {
5634                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5635                         unit = MINOR(dev);
5636                 }
5637                 if (rdev0->preferred_minor != unit) {
5638                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5639                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5640                         break;
5641                 }
5642
5643                 md_probe(dev, NULL, NULL);
5644                 mddev = mddev_find(dev);
5645                 if (!mddev || !mddev->gendisk) {
5646                         if (mddev)
5647                                 mddev_put(mddev);
5648                         printk(KERN_ERR
5649                                 "md: cannot allocate memory for md drive.\n");
5650                         break;
5651                 }
5652                 if (mddev_lock(mddev))
5653                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5654                                mdname(mddev));
5655                 else if (mddev->raid_disks || mddev->major_version
5656                          || !list_empty(&mddev->disks)) {
5657                         printk(KERN_WARNING
5658                                 "md: %s already running, cannot run %s\n",
5659                                 mdname(mddev), bdevname(rdev0->bdev,b));
5660                         mddev_unlock(mddev);
5661                 } else {
5662                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5663                         mddev->persistent = 1;
5664                         rdev_for_each_list(rdev, tmp, &candidates) {
5665                                 list_del_init(&rdev->same_set);
5666                                 if (bind_rdev_to_array(rdev, mddev))
5667                                         export_rdev(rdev);
5668                         }
5669                         autorun_array(mddev);
5670                         mddev_unlock(mddev);
5671                 }
5672                 /* on success, candidates will be empty, on error
5673                  * it won't...
5674                  */
5675                 rdev_for_each_list(rdev, tmp, &candidates) {
5676                         list_del_init(&rdev->same_set);
5677                         export_rdev(rdev);
5678                 }
5679                 mddev_put(mddev);
5680         }
5681         printk(KERN_INFO "md: ... autorun DONE.\n");
5682 }
5683 #endif /* !MODULE */
5684
5685 static int get_version(void __user *arg)
5686 {
5687         mdu_version_t ver;
5688
5689         ver.major = MD_MAJOR_VERSION;
5690         ver.minor = MD_MINOR_VERSION;
5691         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5692
5693         if (copy_to_user(arg, &ver, sizeof(ver)))
5694                 return -EFAULT;
5695
5696         return 0;
5697 }
5698
5699 static int get_array_info(struct mddev *mddev, void __user *arg)
5700 {
5701         mdu_array_info_t info;
5702         int nr,working,insync,failed,spare;
5703         struct md_rdev *rdev;
5704
5705         nr = working = insync = failed = spare = 0;
5706         rcu_read_lock();
5707         rdev_for_each_rcu(rdev, mddev) {
5708                 nr++;
5709                 if (test_bit(Faulty, &rdev->flags))
5710                         failed++;
5711                 else {
5712                         working++;
5713                         if (test_bit(In_sync, &rdev->flags))
5714                                 insync++;
5715                         else
5716                                 spare++;
5717                 }
5718         }
5719         rcu_read_unlock();
5720
5721         info.major_version = mddev->major_version;
5722         info.minor_version = mddev->minor_version;
5723         info.patch_version = MD_PATCHLEVEL_VERSION;
5724         info.ctime         = mddev->ctime;
5725         info.level         = mddev->level;
5726         info.size          = mddev->dev_sectors / 2;
5727         if (info.size != mddev->dev_sectors / 2) /* overflow */
5728                 info.size = -1;
5729         info.nr_disks      = nr;
5730         info.raid_disks    = mddev->raid_disks;
5731         info.md_minor      = mddev->md_minor;
5732         info.not_persistent= !mddev->persistent;
5733
5734         info.utime         = mddev->utime;
5735         info.state         = 0;
5736         if (mddev->in_sync)
5737                 info.state = (1<<MD_SB_CLEAN);
5738         if (mddev->bitmap && mddev->bitmap_info.offset)
5739                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5740         if (mddev_is_clustered(mddev))
5741                 info.state |= (1<<MD_SB_CLUSTERED);
5742         info.active_disks  = insync;
5743         info.working_disks = working;
5744         info.failed_disks  = failed;
5745         info.spare_disks   = spare;
5746
5747         info.layout        = mddev->layout;
5748         info.chunk_size    = mddev->chunk_sectors << 9;
5749
5750         if (copy_to_user(arg, &info, sizeof(info)))
5751                 return -EFAULT;
5752
5753         return 0;
5754 }
5755
5756 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5757 {
5758         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5759         char *ptr;
5760         int err;
5761
5762         file = kmalloc(sizeof(*file), GFP_NOIO);
5763         if (!file)
5764                 return -ENOMEM;
5765
5766         err = 0;
5767         spin_lock(&mddev->lock);
5768         /* bitmap disabled, zero the first byte and copy out */
5769         if (!mddev->bitmap_info.file)
5770                 file->pathname[0] = '\0';
5771         else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5772                                file->pathname, sizeof(file->pathname))),
5773                  IS_ERR(ptr))
5774                 err = PTR_ERR(ptr);
5775         else
5776                 memmove(file->pathname, ptr,
5777                         sizeof(file->pathname)-(ptr-file->pathname));
5778         spin_unlock(&mddev->lock);
5779
5780         if (err == 0 &&
5781             copy_to_user(arg, file, sizeof(*file)))
5782                 err = -EFAULT;
5783
5784         kfree(file);
5785         return err;
5786 }
5787
5788 static int get_disk_info(struct mddev *mddev, void __user * arg)
5789 {
5790         mdu_disk_info_t info;
5791         struct md_rdev *rdev;
5792
5793         if (copy_from_user(&info, arg, sizeof(info)))
5794                 return -EFAULT;
5795
5796         rcu_read_lock();
5797         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5798         if (rdev) {
5799                 info.major = MAJOR(rdev->bdev->bd_dev);
5800                 info.minor = MINOR(rdev->bdev->bd_dev);
5801                 info.raid_disk = rdev->raid_disk;
5802                 info.state = 0;
5803                 if (test_bit(Faulty, &rdev->flags))
5804                         info.state |= (1<<MD_DISK_FAULTY);
5805                 else if (test_bit(In_sync, &rdev->flags)) {
5806                         info.state |= (1<<MD_DISK_ACTIVE);
5807                         info.state |= (1<<MD_DISK_SYNC);
5808                 }
5809                 if (test_bit(WriteMostly, &rdev->flags))
5810                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5811         } else {
5812                 info.major = info.minor = 0;
5813                 info.raid_disk = -1;
5814                 info.state = (1<<MD_DISK_REMOVED);
5815         }
5816         rcu_read_unlock();
5817
5818         if (copy_to_user(arg, &info, sizeof(info)))
5819                 return -EFAULT;
5820
5821         return 0;
5822 }
5823
5824 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5825 {
5826         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5827         struct md_rdev *rdev;
5828         dev_t dev = MKDEV(info->major,info->minor);
5829
5830         if (mddev_is_clustered(mddev) &&
5831                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5832                 pr_err("%s: Cannot add to clustered mddev.\n",
5833                                mdname(mddev));
5834                 return -EINVAL;
5835         }
5836
5837         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5838                 return -EOVERFLOW;
5839
5840         if (!mddev->raid_disks) {
5841                 int err;
5842                 /* expecting a device which has a superblock */
5843                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5844                 if (IS_ERR(rdev)) {
5845                         printk(KERN_WARNING
5846                                 "md: md_import_device returned %ld\n",
5847                                 PTR_ERR(rdev));
5848                         return PTR_ERR(rdev);
5849                 }
5850                 if (!list_empty(&mddev->disks)) {
5851                         struct md_rdev *rdev0
5852                                 = list_entry(mddev->disks.next,
5853                                              struct md_rdev, same_set);
5854                         err = super_types[mddev->major_version]
5855                                 .load_super(rdev, rdev0, mddev->minor_version);
5856                         if (err < 0) {
5857                                 printk(KERN_WARNING
5858                                         "md: %s has different UUID to %s\n",
5859                                         bdevname(rdev->bdev,b),
5860                                         bdevname(rdev0->bdev,b2));
5861                                 export_rdev(rdev);
5862                                 return -EINVAL;
5863                         }
5864                 }
5865                 err = bind_rdev_to_array(rdev, mddev);
5866                 if (err)
5867                         export_rdev(rdev);
5868                 return err;
5869         }
5870
5871         /*
5872          * add_new_disk can be used once the array is assembled
5873          * to add "hot spares".  They must already have a superblock
5874          * written
5875          */
5876         if (mddev->pers) {
5877                 int err;
5878                 if (!mddev->pers->hot_add_disk) {
5879                         printk(KERN_WARNING
5880                                 "%s: personality does not support diskops!\n",
5881                                mdname(mddev));
5882                         return -EINVAL;
5883                 }
5884                 if (mddev->persistent)
5885                         rdev = md_import_device(dev, mddev->major_version,
5886                                                 mddev->minor_version);
5887                 else
5888                         rdev = md_import_device(dev, -1, -1);
5889                 if (IS_ERR(rdev)) {
5890                         printk(KERN_WARNING
5891                                 "md: md_import_device returned %ld\n",
5892                                 PTR_ERR(rdev));
5893                         return PTR_ERR(rdev);
5894                 }
5895                 /* set saved_raid_disk if appropriate */
5896                 if (!mddev->persistent) {
5897                         if (info->state & (1<<MD_DISK_SYNC)  &&
5898                             info->raid_disk < mddev->raid_disks) {
5899                                 rdev->raid_disk = info->raid_disk;
5900                                 set_bit(In_sync, &rdev->flags);
5901                                 clear_bit(Bitmap_sync, &rdev->flags);
5902                         } else
5903                                 rdev->raid_disk = -1;
5904                         rdev->saved_raid_disk = rdev->raid_disk;
5905                 } else
5906                         super_types[mddev->major_version].
5907                                 validate_super(mddev, rdev);
5908                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5909                      rdev->raid_disk != info->raid_disk) {
5910                         /* This was a hot-add request, but events doesn't
5911                          * match, so reject it.
5912                          */
5913                         export_rdev(rdev);
5914                         return -EINVAL;
5915                 }
5916
5917                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5918                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5919                         set_bit(WriteMostly, &rdev->flags);
5920                 else
5921                         clear_bit(WriteMostly, &rdev->flags);
5922
5923                 /*
5924                  * check whether the device shows up in other nodes
5925                  */
5926                 if (mddev_is_clustered(mddev)) {
5927                         if (info->state & (1 << MD_DISK_CANDIDATE)) {
5928                                 /* Through --cluster-confirm */
5929                                 set_bit(Candidate, &rdev->flags);
5930                                 err = md_cluster_ops->new_disk_ack(mddev, true);
5931                                 if (err) {
5932                                         export_rdev(rdev);
5933                                         return err;
5934                                 }
5935                         } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5936                                 /* --add initiated by this node */
5937                                 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5938                                 if (err) {
5939                                         md_cluster_ops->add_new_disk_finish(mddev);
5940                                         export_rdev(rdev);
5941                                         return err;
5942                                 }
5943                         }
5944                 }
5945
5946                 rdev->raid_disk = -1;
5947                 err = bind_rdev_to_array(rdev, mddev);
5948                 if (err)
5949                         export_rdev(rdev);
5950                 else
5951                         err = add_bound_rdev(rdev);
5952                 if (mddev_is_clustered(mddev) &&
5953                                 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5954                         md_cluster_ops->add_new_disk_finish(mddev);
5955                 return err;
5956         }
5957
5958         /* otherwise, add_new_disk is only allowed
5959          * for major_version==0 superblocks
5960          */
5961         if (mddev->major_version != 0) {
5962                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5963                        mdname(mddev));
5964                 return -EINVAL;
5965         }
5966
5967         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5968                 int err;
5969                 rdev = md_import_device(dev, -1, 0);
5970                 if (IS_ERR(rdev)) {
5971                         printk(KERN_WARNING
5972                                 "md: error, md_import_device() returned %ld\n",
5973                                 PTR_ERR(rdev));
5974                         return PTR_ERR(rdev);
5975                 }
5976                 rdev->desc_nr = info->number;
5977                 if (info->raid_disk < mddev->raid_disks)
5978                         rdev->raid_disk = info->raid_disk;
5979                 else
5980                         rdev->raid_disk = -1;
5981
5982                 if (rdev->raid_disk < mddev->raid_disks)
5983                         if (info->state & (1<<MD_DISK_SYNC))
5984                                 set_bit(In_sync, &rdev->flags);
5985
5986                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5987                         set_bit(WriteMostly, &rdev->flags);
5988
5989                 if (!mddev->persistent) {
5990                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5991                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5992                 } else
5993                         rdev->sb_start = calc_dev_sboffset(rdev);
5994                 rdev->sectors = rdev->sb_start;
5995
5996                 err = bind_rdev_to_array(rdev, mddev);
5997                 if (err) {
5998                         export_rdev(rdev);
5999                         return err;
6000                 }
6001         }
6002
6003         return 0;
6004 }
6005
6006 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6007 {
6008         char b[BDEVNAME_SIZE];
6009         struct md_rdev *rdev;
6010
6011         rdev = find_rdev(mddev, dev);
6012         if (!rdev)
6013                 return -ENXIO;
6014
6015         if (mddev_is_clustered(mddev))
6016                 md_cluster_ops->metadata_update_start(mddev);
6017
6018         clear_bit(Blocked, &rdev->flags);
6019         remove_and_add_spares(mddev, rdev);
6020
6021         if (rdev->raid_disk >= 0)
6022                 goto busy;
6023
6024         if (mddev_is_clustered(mddev))
6025                 md_cluster_ops->remove_disk(mddev, rdev);
6026
6027         md_kick_rdev_from_array(rdev);
6028         md_update_sb(mddev, 1);
6029         md_new_event(mddev);
6030
6031         if (mddev_is_clustered(mddev))
6032                 md_cluster_ops->metadata_update_finish(mddev);
6033
6034         return 0;
6035 busy:
6036         if (mddev_is_clustered(mddev))
6037                 md_cluster_ops->metadata_update_cancel(mddev);
6038         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6039                 bdevname(rdev->bdev,b), mdname(mddev));
6040         return -EBUSY;
6041 }
6042
6043 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6044 {
6045         char b[BDEVNAME_SIZE];
6046         int err;
6047         struct md_rdev *rdev;
6048
6049         if (!mddev->pers)
6050                 return -ENODEV;
6051
6052         if (mddev->major_version != 0) {
6053                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6054                         " version-0 superblocks.\n",
6055                         mdname(mddev));
6056                 return -EINVAL;
6057         }
6058         if (!mddev->pers->hot_add_disk) {
6059                 printk(KERN_WARNING
6060                         "%s: personality does not support diskops!\n",
6061                         mdname(mddev));
6062                 return -EINVAL;
6063         }
6064
6065         rdev = md_import_device(dev, -1, 0);
6066         if (IS_ERR(rdev)) {
6067                 printk(KERN_WARNING
6068                         "md: error, md_import_device() returned %ld\n",
6069                         PTR_ERR(rdev));
6070                 return -EINVAL;
6071         }
6072
6073         if (mddev->persistent)
6074                 rdev->sb_start = calc_dev_sboffset(rdev);
6075         else
6076                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6077
6078         rdev->sectors = rdev->sb_start;
6079
6080         if (test_bit(Faulty, &rdev->flags)) {
6081                 printk(KERN_WARNING
6082                         "md: can not hot-add faulty %s disk to %s!\n",
6083                         bdevname(rdev->bdev,b), mdname(mddev));
6084                 err = -EINVAL;
6085                 goto abort_export;
6086         }
6087
6088         if (mddev_is_clustered(mddev))
6089                 md_cluster_ops->metadata_update_start(mddev);
6090         clear_bit(In_sync, &rdev->flags);
6091         rdev->desc_nr = -1;
6092         rdev->saved_raid_disk = -1;
6093         err = bind_rdev_to_array(rdev, mddev);
6094         if (err)
6095                 goto abort_clustered;
6096
6097         /*
6098          * The rest should better be atomic, we can have disk failures
6099          * noticed in interrupt contexts ...
6100          */
6101
6102         rdev->raid_disk = -1;
6103
6104         md_update_sb(mddev, 1);
6105
6106         if (mddev_is_clustered(mddev))
6107                 md_cluster_ops->metadata_update_finish(mddev);
6108         /*
6109          * Kick recovery, maybe this spare has to be added to the
6110          * array immediately.
6111          */
6112         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6113         md_wakeup_thread(mddev->thread);
6114         md_new_event(mddev);
6115         return 0;
6116
6117 abort_clustered:
6118         if (mddev_is_clustered(mddev))
6119                 md_cluster_ops->metadata_update_cancel(mddev);
6120 abort_export:
6121         export_rdev(rdev);
6122         return err;
6123 }
6124
6125 static int set_bitmap_file(struct mddev *mddev, int fd)
6126 {
6127         int err = 0;
6128
6129         if (mddev->pers) {
6130                 if (!mddev->pers->quiesce || !mddev->thread)
6131                         return -EBUSY;
6132                 if (mddev->recovery || mddev->sync_thread)
6133                         return -EBUSY;
6134                 /* we should be able to change the bitmap.. */
6135         }
6136
6137         if (fd >= 0) {
6138                 struct inode *inode;
6139                 struct file *f;
6140
6141                 if (mddev->bitmap || mddev->bitmap_info.file)
6142                         return -EEXIST; /* cannot add when bitmap is present */
6143                 f = fget(fd);
6144
6145                 if (f == NULL) {
6146                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6147                                mdname(mddev));
6148                         return -EBADF;
6149                 }
6150
6151                 inode = f->f_mapping->host;
6152                 if (!S_ISREG(inode->i_mode)) {
6153                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6154                                mdname(mddev));
6155                         err = -EBADF;
6156                 } else if (!(f->f_mode & FMODE_WRITE)) {
6157                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6158                                mdname(mddev));
6159                         err = -EBADF;
6160                 } else if (atomic_read(&inode->i_writecount) != 1) {
6161                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6162                                mdname(mddev));
6163                         err = -EBUSY;
6164                 }
6165                 if (err) {
6166                         fput(f);
6167                         return err;
6168                 }
6169                 mddev->bitmap_info.file = f;
6170                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6171         } else if (mddev->bitmap == NULL)
6172                 return -ENOENT; /* cannot remove what isn't there */
6173         err = 0;
6174         if (mddev->pers) {
6175                 mddev->pers->quiesce(mddev, 1);
6176                 if (fd >= 0) {
6177                         struct bitmap *bitmap;
6178
6179                         bitmap = bitmap_create(mddev, -1);
6180                         if (!IS_ERR(bitmap)) {
6181                                 mddev->bitmap = bitmap;
6182                                 err = bitmap_load(mddev);
6183                         } else
6184                                 err = PTR_ERR(bitmap);
6185                 }
6186                 if (fd < 0 || err) {
6187                         bitmap_destroy(mddev);
6188                         fd = -1; /* make sure to put the file */
6189                 }
6190                 mddev->pers->quiesce(mddev, 0);
6191         }
6192         if (fd < 0) {
6193                 struct file *f = mddev->bitmap_info.file;
6194                 if (f) {
6195                         spin_lock(&mddev->lock);
6196                         mddev->bitmap_info.file = NULL;
6197                         spin_unlock(&mddev->lock);
6198                         fput(f);
6199                 }
6200         }
6201
6202         return err;
6203 }
6204
6205 /*
6206  * set_array_info is used two different ways
6207  * The original usage is when creating a new array.
6208  * In this usage, raid_disks is > 0 and it together with
6209  *  level, size, not_persistent,layout,chunksize determine the
6210  *  shape of the array.
6211  *  This will always create an array with a type-0.90.0 superblock.
6212  * The newer usage is when assembling an array.
6213  *  In this case raid_disks will be 0, and the major_version field is
6214  *  use to determine which style super-blocks are to be found on the devices.
6215  *  The minor and patch _version numbers are also kept incase the
6216  *  super_block handler wishes to interpret them.
6217  */
6218 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6219 {
6220
6221         if (info->raid_disks == 0) {
6222                 /* just setting version number for superblock loading */
6223                 if (info->major_version < 0 ||
6224                     info->major_version >= ARRAY_SIZE(super_types) ||
6225                     super_types[info->major_version].name == NULL) {
6226                         /* maybe try to auto-load a module? */
6227                         printk(KERN_INFO
6228                                 "md: superblock version %d not known\n",
6229                                 info->major_version);
6230                         return -EINVAL;
6231                 }
6232                 mddev->major_version = info->major_version;
6233                 mddev->minor_version = info->minor_version;
6234                 mddev->patch_version = info->patch_version;
6235                 mddev->persistent = !info->not_persistent;
6236                 /* ensure mddev_put doesn't delete this now that there
6237                  * is some minimal configuration.
6238                  */
6239                 mddev->ctime         = get_seconds();
6240                 return 0;
6241         }
6242         mddev->major_version = MD_MAJOR_VERSION;
6243         mddev->minor_version = MD_MINOR_VERSION;
6244         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6245         mddev->ctime         = get_seconds();
6246
6247         mddev->level         = info->level;
6248         mddev->clevel[0]     = 0;
6249         mddev->dev_sectors   = 2 * (sector_t)info->size;
6250         mddev->raid_disks    = info->raid_disks;
6251         /* don't set md_minor, it is determined by which /dev/md* was
6252          * openned
6253          */
6254         if (info->state & (1<<MD_SB_CLEAN))
6255                 mddev->recovery_cp = MaxSector;
6256         else
6257                 mddev->recovery_cp = 0;
6258         mddev->persistent    = ! info->not_persistent;
6259         mddev->external      = 0;
6260
6261         mddev->layout        = info->layout;
6262         mddev->chunk_sectors = info->chunk_size >> 9;
6263
6264         mddev->max_disks     = MD_SB_DISKS;
6265
6266         if (mddev->persistent)
6267                 mddev->flags         = 0;
6268         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6269
6270         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6271         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6272         mddev->bitmap_info.offset = 0;
6273
6274         mddev->reshape_position = MaxSector;
6275
6276         /*
6277          * Generate a 128 bit UUID
6278          */
6279         get_random_bytes(mddev->uuid, 16);
6280
6281         mddev->new_level = mddev->level;
6282         mddev->new_chunk_sectors = mddev->chunk_sectors;
6283         mddev->new_layout = mddev->layout;
6284         mddev->delta_disks = 0;
6285         mddev->reshape_backwards = 0;
6286
6287         return 0;
6288 }
6289
6290 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6291 {
6292         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6293
6294         if (mddev->external_size)
6295                 return;
6296
6297         mddev->array_sectors = array_sectors;
6298 }
6299 EXPORT_SYMBOL(md_set_array_sectors);
6300
6301 static int update_size(struct mddev *mddev, sector_t num_sectors)
6302 {
6303         struct md_rdev *rdev;
6304         int rv;
6305         int fit = (num_sectors == 0);
6306
6307         if (mddev->pers->resize == NULL)
6308                 return -EINVAL;
6309         /* The "num_sectors" is the number of sectors of each device that
6310          * is used.  This can only make sense for arrays with redundancy.
6311          * linear and raid0 always use whatever space is available. We can only
6312          * consider changing this number if no resync or reconstruction is
6313          * happening, and if the new size is acceptable. It must fit before the
6314          * sb_start or, if that is <data_offset, it must fit before the size
6315          * of each device.  If num_sectors is zero, we find the largest size
6316          * that fits.
6317          */
6318         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6319             mddev->sync_thread)
6320                 return -EBUSY;
6321         if (mddev->ro)
6322                 return -EROFS;
6323
6324         rdev_for_each(rdev, mddev) {
6325                 sector_t avail = rdev->sectors;
6326
6327                 if (fit && (num_sectors == 0 || num_sectors > avail))
6328                         num_sectors = avail;
6329                 if (avail < num_sectors)
6330                         return -ENOSPC;
6331         }
6332         rv = mddev->pers->resize(mddev, num_sectors);
6333         if (!rv)
6334                 revalidate_disk(mddev->gendisk);
6335         return rv;
6336 }
6337
6338 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6339 {
6340         int rv;
6341         struct md_rdev *rdev;
6342         /* change the number of raid disks */
6343         if (mddev->pers->check_reshape == NULL)
6344                 return -EINVAL;
6345         if (mddev->ro)
6346                 return -EROFS;
6347         if (raid_disks <= 0 ||
6348             (mddev->max_disks && raid_disks >= mddev->max_disks))
6349                 return -EINVAL;
6350         if (mddev->sync_thread ||
6351             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6352             mddev->reshape_position != MaxSector)
6353                 return -EBUSY;
6354
6355         rdev_for_each(rdev, mddev) {
6356                 if (mddev->raid_disks < raid_disks &&
6357                     rdev->data_offset < rdev->new_data_offset)
6358                         return -EINVAL;
6359                 if (mddev->raid_disks > raid_disks &&
6360                     rdev->data_offset > rdev->new_data_offset)
6361                         return -EINVAL;
6362         }
6363
6364         mddev->delta_disks = raid_disks - mddev->raid_disks;
6365         if (mddev->delta_disks < 0)
6366                 mddev->reshape_backwards = 1;
6367         else if (mddev->delta_disks > 0)
6368                 mddev->reshape_backwards = 0;
6369
6370         rv = mddev->pers->check_reshape(mddev);
6371         if (rv < 0) {
6372                 mddev->delta_disks = 0;
6373                 mddev->reshape_backwards = 0;
6374         }
6375         return rv;
6376 }
6377
6378 /*
6379  * update_array_info is used to change the configuration of an
6380  * on-line array.
6381  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6382  * fields in the info are checked against the array.
6383  * Any differences that cannot be handled will cause an error.
6384  * Normally, only one change can be managed at a time.
6385  */
6386 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6387 {
6388         int rv = 0;
6389         int cnt = 0;
6390         int state = 0;
6391
6392         /* calculate expected state,ignoring low bits */
6393         if (mddev->bitmap && mddev->bitmap_info.offset)
6394                 state |= (1 << MD_SB_BITMAP_PRESENT);
6395
6396         if (mddev->major_version != info->major_version ||
6397             mddev->minor_version != info->minor_version ||
6398 /*          mddev->patch_version != info->patch_version || */
6399             mddev->ctime         != info->ctime         ||
6400             mddev->level         != info->level         ||
6401 /*          mddev->layout        != info->layout        || */
6402             mddev->persistent    != !info->not_persistent ||
6403             mddev->chunk_sectors != info->chunk_size >> 9 ||
6404             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6405             ((state^info->state) & 0xfffffe00)
6406                 )
6407                 return -EINVAL;
6408         /* Check there is only one change */
6409         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6410                 cnt++;
6411         if (mddev->raid_disks != info->raid_disks)
6412                 cnt++;
6413         if (mddev->layout != info->layout)
6414                 cnt++;
6415         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6416                 cnt++;
6417         if (cnt == 0)
6418                 return 0;
6419         if (cnt > 1)
6420                 return -EINVAL;
6421
6422         if (mddev->layout != info->layout) {
6423                 /* Change layout
6424                  * we don't need to do anything at the md level, the
6425                  * personality will take care of it all.
6426                  */
6427                 if (mddev->pers->check_reshape == NULL)
6428                         return -EINVAL;
6429                 else {
6430                         mddev->new_layout = info->layout;
6431                         rv = mddev->pers->check_reshape(mddev);
6432                         if (rv)
6433                                 mddev->new_layout = mddev->layout;
6434                         return rv;
6435                 }
6436         }
6437         if (mddev_is_clustered(mddev))
6438                 md_cluster_ops->metadata_update_start(mddev);
6439         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6440                 rv = update_size(mddev, (sector_t)info->size * 2);
6441
6442         if (mddev->raid_disks    != info->raid_disks)
6443                 rv = update_raid_disks(mddev, info->raid_disks);
6444
6445         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6446                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6447                         rv = -EINVAL;
6448                         goto err;
6449                 }
6450                 if (mddev->recovery || mddev->sync_thread) {
6451                         rv = -EBUSY;
6452                         goto err;
6453                 }
6454                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6455                         struct bitmap *bitmap;
6456                         /* add the bitmap */
6457                         if (mddev->bitmap) {
6458                                 rv = -EEXIST;
6459                                 goto err;
6460                         }
6461                         if (mddev->bitmap_info.default_offset == 0) {
6462                                 rv = -EINVAL;
6463                                 goto err;
6464                         }
6465                         mddev->bitmap_info.offset =
6466                                 mddev->bitmap_info.default_offset;
6467                         mddev->bitmap_info.space =
6468                                 mddev->bitmap_info.default_space;
6469                         mddev->pers->quiesce(mddev, 1);
6470                         bitmap = bitmap_create(mddev, -1);
6471                         if (!IS_ERR(bitmap)) {
6472                                 mddev->bitmap = bitmap;
6473                                 rv = bitmap_load(mddev);
6474                         } else
6475                                 rv = PTR_ERR(bitmap);
6476                         if (rv)
6477                                 bitmap_destroy(mddev);
6478                         mddev->pers->quiesce(mddev, 0);
6479                 } else {
6480                         /* remove the bitmap */
6481                         if (!mddev->bitmap) {
6482                                 rv = -ENOENT;
6483                                 goto err;
6484                         }
6485                         if (mddev->bitmap->storage.file) {
6486                                 rv = -EINVAL;
6487                                 goto err;
6488                         }
6489                         mddev->pers->quiesce(mddev, 1);
6490                         bitmap_destroy(mddev);
6491                         mddev->pers->quiesce(mddev, 0);
6492                         mddev->bitmap_info.offset = 0;
6493                 }
6494         }
6495         md_update_sb(mddev, 1);
6496         if (mddev_is_clustered(mddev))
6497                 md_cluster_ops->metadata_update_finish(mddev);
6498         return rv;
6499 err:
6500         if (mddev_is_clustered(mddev))
6501                 md_cluster_ops->metadata_update_cancel(mddev);
6502         return rv;
6503 }
6504
6505 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6506 {
6507         struct md_rdev *rdev;
6508         int err = 0;
6509
6510         if (mddev->pers == NULL)
6511                 return -ENODEV;
6512
6513         rcu_read_lock();
6514         rdev = find_rdev_rcu(mddev, dev);
6515         if (!rdev)
6516                 err =  -ENODEV;
6517         else {
6518                 md_error(mddev, rdev);
6519                 if (!test_bit(Faulty, &rdev->flags))
6520                         err = -EBUSY;
6521         }
6522         rcu_read_unlock();
6523         return err;
6524 }
6525
6526 /*
6527  * We have a problem here : there is no easy way to give a CHS
6528  * virtual geometry. We currently pretend that we have a 2 heads
6529  * 4 sectors (with a BIG number of cylinders...). This drives
6530  * dosfs just mad... ;-)
6531  */
6532 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6533 {
6534         struct mddev *mddev = bdev->bd_disk->private_data;
6535
6536         geo->heads = 2;
6537         geo->sectors = 4;
6538         geo->cylinders = mddev->array_sectors / 8;
6539         return 0;
6540 }
6541
6542 static inline bool md_ioctl_valid(unsigned int cmd)
6543 {
6544         switch (cmd) {
6545         case ADD_NEW_DISK:
6546         case BLKROSET:
6547         case GET_ARRAY_INFO:
6548         case GET_BITMAP_FILE:
6549         case GET_DISK_INFO:
6550         case HOT_ADD_DISK:
6551         case HOT_REMOVE_DISK:
6552         case RAID_AUTORUN:
6553         case RAID_VERSION:
6554         case RESTART_ARRAY_RW:
6555         case RUN_ARRAY:
6556         case SET_ARRAY_INFO:
6557         case SET_BITMAP_FILE:
6558         case SET_DISK_FAULTY:
6559         case STOP_ARRAY:
6560         case STOP_ARRAY_RO:
6561         case CLUSTERED_DISK_NACK:
6562                 return true;
6563         default:
6564                 return false;
6565         }
6566 }
6567
6568 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6569                         unsigned int cmd, unsigned long arg)
6570 {
6571         int err = 0;
6572         void __user *argp = (void __user *)arg;
6573         struct mddev *mddev = NULL;
6574         int ro;
6575
6576         if (!md_ioctl_valid(cmd))
6577                 return -ENOTTY;
6578
6579         switch (cmd) {
6580         case RAID_VERSION:
6581         case GET_ARRAY_INFO:
6582         case GET_DISK_INFO:
6583                 break;
6584         default:
6585                 if (!capable(CAP_SYS_ADMIN))
6586                         return -EACCES;
6587         }
6588
6589         /*
6590          * Commands dealing with the RAID driver but not any
6591          * particular array:
6592          */
6593         switch (cmd) {
6594         case RAID_VERSION:
6595                 err = get_version(argp);
6596                 goto out;
6597
6598 #ifndef MODULE
6599         case RAID_AUTORUN:
6600                 err = 0;
6601                 autostart_arrays(arg);
6602                 goto out;
6603 #endif
6604         default:;
6605         }
6606
6607         /*
6608          * Commands creating/starting a new array:
6609          */
6610
6611         mddev = bdev->bd_disk->private_data;
6612
6613         if (!mddev) {
6614                 BUG();
6615                 goto out;
6616         }
6617
6618         /* Some actions do not requires the mutex */
6619         switch (cmd) {
6620         case GET_ARRAY_INFO:
6621                 if (!mddev->raid_disks && !mddev->external)
6622                         err = -ENODEV;
6623                 else
6624                         err = get_array_info(mddev, argp);
6625                 goto out;
6626
6627         case GET_DISK_INFO:
6628                 if (!mddev->raid_disks && !mddev->external)
6629                         err = -ENODEV;
6630                 else
6631                         err = get_disk_info(mddev, argp);
6632                 goto out;
6633
6634         case SET_DISK_FAULTY:
6635                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6636                 goto out;
6637
6638         case GET_BITMAP_FILE:
6639                 err = get_bitmap_file(mddev, argp);
6640                 goto out;
6641
6642         }
6643
6644         if (cmd == ADD_NEW_DISK)
6645                 /* need to ensure md_delayed_delete() has completed */
6646                 flush_workqueue(md_misc_wq);
6647
6648         if (cmd == HOT_REMOVE_DISK)
6649                 /* need to ensure recovery thread has run */
6650                 wait_event_interruptible_timeout(mddev->sb_wait,
6651                                                  !test_bit(MD_RECOVERY_NEEDED,
6652                                                            &mddev->flags),
6653                                                  msecs_to_jiffies(5000));
6654         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6655                 /* Need to flush page cache, and ensure no-one else opens
6656                  * and writes
6657                  */
6658                 mutex_lock(&mddev->open_mutex);
6659                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6660                         mutex_unlock(&mddev->open_mutex);
6661                         err = -EBUSY;
6662                         goto out;
6663                 }
6664                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6665                 mutex_unlock(&mddev->open_mutex);
6666                 sync_blockdev(bdev);
6667         }
6668         err = mddev_lock(mddev);
6669         if (err) {
6670                 printk(KERN_INFO
6671                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6672                         err, cmd);
6673                 goto out;
6674         }
6675
6676         if (cmd == SET_ARRAY_INFO) {
6677                 mdu_array_info_t info;
6678                 if (!arg)
6679                         memset(&info, 0, sizeof(info));
6680                 else if (copy_from_user(&info, argp, sizeof(info))) {
6681                         err = -EFAULT;
6682                         goto unlock;
6683                 }
6684                 if (mddev->pers) {
6685                         err = update_array_info(mddev, &info);
6686                         if (err) {
6687                                 printk(KERN_WARNING "md: couldn't update"
6688                                        " array info. %d\n", err);
6689                                 goto unlock;
6690                         }
6691                         goto unlock;
6692                 }
6693                 if (!list_empty(&mddev->disks)) {
6694                         printk(KERN_WARNING
6695                                "md: array %s already has disks!\n",
6696                                mdname(mddev));
6697                         err = -EBUSY;
6698                         goto unlock;
6699                 }
6700                 if (mddev->raid_disks) {
6701                         printk(KERN_WARNING
6702                                "md: array %s already initialised!\n",
6703                                mdname(mddev));
6704                         err = -EBUSY;
6705                         goto unlock;
6706                 }
6707                 err = set_array_info(mddev, &info);
6708                 if (err) {
6709                         printk(KERN_WARNING "md: couldn't set"
6710                                " array info. %d\n", err);
6711                         goto unlock;
6712                 }
6713                 goto unlock;
6714         }
6715
6716         /*
6717          * Commands querying/configuring an existing array:
6718          */
6719         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6720          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6721         if ((!mddev->raid_disks && !mddev->external)
6722             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6723             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6724             && cmd != GET_BITMAP_FILE) {
6725                 err = -ENODEV;
6726                 goto unlock;
6727         }
6728
6729         /*
6730          * Commands even a read-only array can execute:
6731          */
6732         switch (cmd) {
6733         case RESTART_ARRAY_RW:
6734                 err = restart_array(mddev);
6735                 goto unlock;
6736
6737         case STOP_ARRAY:
6738                 err = do_md_stop(mddev, 0, bdev);
6739                 goto unlock;
6740
6741         case STOP_ARRAY_RO:
6742                 err = md_set_readonly(mddev, bdev);
6743                 goto unlock;
6744
6745         case HOT_REMOVE_DISK:
6746                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6747                 goto unlock;
6748
6749         case ADD_NEW_DISK:
6750                 /* We can support ADD_NEW_DISK on read-only arrays
6751                  * on if we are re-adding a preexisting device.
6752                  * So require mddev->pers and MD_DISK_SYNC.
6753                  */
6754                 if (mddev->pers) {
6755                         mdu_disk_info_t info;
6756                         if (copy_from_user(&info, argp, sizeof(info)))
6757                                 err = -EFAULT;
6758                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6759                                 /* Need to clear read-only for this */
6760                                 break;
6761                         else
6762                                 err = add_new_disk(mddev, &info);
6763                         goto unlock;
6764                 }
6765                 break;
6766
6767         case BLKROSET:
6768                 if (get_user(ro, (int __user *)(arg))) {
6769                         err = -EFAULT;
6770                         goto unlock;
6771                 }
6772                 err = -EINVAL;
6773
6774                 /* if the bdev is going readonly the value of mddev->ro
6775                  * does not matter, no writes are coming
6776                  */
6777                 if (ro)
6778                         goto unlock;
6779
6780                 /* are we are already prepared for writes? */
6781                 if (mddev->ro != 1)
6782                         goto unlock;
6783
6784                 /* transitioning to readauto need only happen for
6785                  * arrays that call md_write_start
6786                  */
6787                 if (mddev->pers) {
6788                         err = restart_array(mddev);
6789                         if (err == 0) {
6790                                 mddev->ro = 2;
6791                                 set_disk_ro(mddev->gendisk, 0);
6792                         }
6793                 }
6794                 goto unlock;
6795         }
6796
6797         /*
6798          * The remaining ioctls are changing the state of the
6799          * superblock, so we do not allow them on read-only arrays.
6800          */
6801         if (mddev->ro && mddev->pers) {
6802                 if (mddev->ro == 2) {
6803                         mddev->ro = 0;
6804                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6805                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6806                         /* mddev_unlock will wake thread */
6807                         /* If a device failed while we were read-only, we
6808                          * need to make sure the metadata is updated now.
6809                          */
6810                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6811                                 mddev_unlock(mddev);
6812                                 wait_event(mddev->sb_wait,
6813                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6814                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6815                                 mddev_lock_nointr(mddev);
6816                         }
6817                 } else {
6818                         err = -EROFS;
6819                         goto unlock;
6820                 }
6821         }
6822
6823         switch (cmd) {
6824         case ADD_NEW_DISK:
6825         {
6826                 mdu_disk_info_t info;
6827                 if (copy_from_user(&info, argp, sizeof(info)))
6828                         err = -EFAULT;
6829                 else
6830                         err = add_new_disk(mddev, &info);
6831                 goto unlock;
6832         }
6833
6834         case CLUSTERED_DISK_NACK:
6835                 if (mddev_is_clustered(mddev))
6836                         md_cluster_ops->new_disk_ack(mddev, false);
6837                 else
6838                         err = -EINVAL;
6839                 goto unlock;
6840
6841         case HOT_ADD_DISK:
6842                 err = hot_add_disk(mddev, new_decode_dev(arg));
6843                 goto unlock;
6844
6845         case RUN_ARRAY:
6846                 err = do_md_run(mddev);
6847                 goto unlock;
6848
6849         case SET_BITMAP_FILE:
6850                 err = set_bitmap_file(mddev, (int)arg);
6851                 goto unlock;
6852
6853         default:
6854                 err = -EINVAL;
6855                 goto unlock;
6856         }
6857
6858 unlock:
6859         if (mddev->hold_active == UNTIL_IOCTL &&
6860             err != -EINVAL)
6861                 mddev->hold_active = 0;
6862         mddev_unlock(mddev);
6863 out:
6864         return err;
6865 }
6866 #ifdef CONFIG_COMPAT
6867 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6868                     unsigned int cmd, unsigned long arg)
6869 {
6870         switch (cmd) {
6871         case HOT_REMOVE_DISK:
6872         case HOT_ADD_DISK:
6873         case SET_DISK_FAULTY:
6874         case SET_BITMAP_FILE:
6875                 /* These take in integer arg, do not convert */
6876                 break;
6877         default:
6878                 arg = (unsigned long)compat_ptr(arg);
6879                 break;
6880         }
6881
6882         return md_ioctl(bdev, mode, cmd, arg);
6883 }
6884 #endif /* CONFIG_COMPAT */
6885
6886 static int md_open(struct block_device *bdev, fmode_t mode)
6887 {
6888         /*
6889          * Succeed if we can lock the mddev, which confirms that
6890          * it isn't being stopped right now.
6891          */
6892         struct mddev *mddev = mddev_find(bdev->bd_dev);
6893         int err;
6894
6895         if (!mddev)
6896                 return -ENODEV;
6897
6898         if (mddev->gendisk != bdev->bd_disk) {
6899                 /* we are racing with mddev_put which is discarding this
6900                  * bd_disk.
6901                  */
6902                 mddev_put(mddev);
6903                 /* Wait until bdev->bd_disk is definitely gone */
6904                 flush_workqueue(md_misc_wq);
6905                 /* Then retry the open from the top */
6906                 return -ERESTARTSYS;
6907         }
6908         BUG_ON(mddev != bdev->bd_disk->private_data);
6909
6910         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6911                 goto out;
6912
6913         err = 0;
6914         atomic_inc(&mddev->openers);
6915         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6916         mutex_unlock(&mddev->open_mutex);
6917
6918         check_disk_change(bdev);
6919  out:
6920         return err;
6921 }
6922
6923 static void md_release(struct gendisk *disk, fmode_t mode)
6924 {
6925         struct mddev *mddev = disk->private_data;
6926
6927         BUG_ON(!mddev);
6928         atomic_dec(&mddev->openers);
6929         mddev_put(mddev);
6930 }
6931
6932 static int md_media_changed(struct gendisk *disk)
6933 {
6934         struct mddev *mddev = disk->private_data;
6935
6936         return mddev->changed;
6937 }
6938
6939 static int md_revalidate(struct gendisk *disk)
6940 {
6941         struct mddev *mddev = disk->private_data;
6942
6943         mddev->changed = 0;
6944         return 0;
6945 }
6946 static const struct block_device_operations md_fops =
6947 {
6948         .owner          = THIS_MODULE,
6949         .open           = md_open,
6950         .release        = md_release,
6951         .ioctl          = md_ioctl,
6952 #ifdef CONFIG_COMPAT
6953         .compat_ioctl   = md_compat_ioctl,
6954 #endif
6955         .getgeo         = md_getgeo,
6956         .media_changed  = md_media_changed,
6957         .revalidate_disk= md_revalidate,
6958 };
6959
6960 static int md_thread(void *arg)
6961 {
6962         struct md_thread *thread = arg;
6963
6964         /*
6965          * md_thread is a 'system-thread', it's priority should be very
6966          * high. We avoid resource deadlocks individually in each
6967          * raid personality. (RAID5 does preallocation) We also use RR and
6968          * the very same RT priority as kswapd, thus we will never get
6969          * into a priority inversion deadlock.
6970          *
6971          * we definitely have to have equal or higher priority than
6972          * bdflush, otherwise bdflush will deadlock if there are too
6973          * many dirty RAID5 blocks.
6974          */
6975
6976         allow_signal(SIGKILL);
6977         while (!kthread_should_stop()) {
6978
6979                 /* We need to wait INTERRUPTIBLE so that
6980                  * we don't add to the load-average.
6981                  * That means we need to be sure no signals are
6982                  * pending
6983                  */
6984                 if (signal_pending(current))
6985                         flush_signals(current);
6986
6987                 wait_event_interruptible_timeout
6988                         (thread->wqueue,
6989                          test_bit(THREAD_WAKEUP, &thread->flags)
6990                          || kthread_should_stop(),
6991                          thread->timeout);
6992
6993                 clear_bit(THREAD_WAKEUP, &thread->flags);
6994                 if (!kthread_should_stop())
6995                         thread->run(thread);
6996         }
6997
6998         return 0;
6999 }
7000
7001 void md_wakeup_thread(struct md_thread *thread)
7002 {
7003         if (thread) {
7004                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7005                 set_bit(THREAD_WAKEUP, &thread->flags);
7006                 wake_up(&thread->wqueue);
7007         }
7008 }
7009 EXPORT_SYMBOL(md_wakeup_thread);
7010
7011 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7012                 struct mddev *mddev, const char *name)
7013 {
7014         struct md_thread *thread;
7015
7016         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7017         if (!thread)
7018                 return NULL;
7019
7020         init_waitqueue_head(&thread->wqueue);
7021
7022         thread->run = run;
7023         thread->mddev = mddev;
7024         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7025         thread->tsk = kthread_run(md_thread, thread,
7026                                   "%s_%s",
7027                                   mdname(thread->mddev),
7028                                   name);
7029         if (IS_ERR(thread->tsk)) {
7030                 kfree(thread);
7031                 return NULL;
7032         }
7033         return thread;
7034 }
7035 EXPORT_SYMBOL(md_register_thread);
7036
7037 void md_unregister_thread(struct md_thread **threadp)
7038 {
7039         struct md_thread *thread = *threadp;
7040         if (!thread)
7041                 return;
7042         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7043         /* Locking ensures that mddev_unlock does not wake_up a
7044          * non-existent thread
7045          */
7046         spin_lock(&pers_lock);
7047         *threadp = NULL;
7048         spin_unlock(&pers_lock);
7049
7050         kthread_stop(thread->tsk);
7051         kfree(thread);
7052 }
7053 EXPORT_SYMBOL(md_unregister_thread);
7054
7055 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7056 {
7057         if (!rdev || test_bit(Faulty, &rdev->flags))
7058                 return;
7059
7060         if (!mddev->pers || !mddev->pers->error_handler)
7061                 return;
7062         mddev->pers->error_handler(mddev,rdev);
7063         if (mddev->degraded)
7064                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7065         sysfs_notify_dirent_safe(rdev->sysfs_state);
7066         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7067         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7068         md_wakeup_thread(mddev->thread);
7069         if (mddev->event_work.func)
7070                 queue_work(md_misc_wq, &mddev->event_work);
7071         md_new_event_inintr(mddev);
7072 }
7073 EXPORT_SYMBOL(md_error);
7074
7075 /* seq_file implementation /proc/mdstat */
7076
7077 static void status_unused(struct seq_file *seq)
7078 {
7079         int i = 0;
7080         struct md_rdev *rdev;
7081
7082         seq_printf(seq, "unused devices: ");
7083
7084         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7085                 char b[BDEVNAME_SIZE];
7086                 i++;
7087                 seq_printf(seq, "%s ",
7088                               bdevname(rdev->bdev,b));
7089         }
7090         if (!i)
7091                 seq_printf(seq, "<none>");
7092
7093         seq_printf(seq, "\n");
7094 }
7095
7096 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7097 {
7098         sector_t max_sectors, resync, res;
7099         unsigned long dt, db;
7100         sector_t rt;
7101         int scale;
7102         unsigned int per_milli;
7103
7104         if (mddev->curr_resync <= 3)
7105                 resync = 0;
7106         else
7107                 resync = mddev->curr_resync
7108                         - atomic_read(&mddev->recovery_active);
7109
7110         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7111             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7112                 max_sectors = mddev->resync_max_sectors;
7113         else
7114                 max_sectors = mddev->dev_sectors;
7115
7116         WARN_ON(max_sectors == 0);
7117         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7118          * in a sector_t, and (max_sectors>>scale) will fit in a
7119          * u32, as those are the requirements for sector_div.
7120          * Thus 'scale' must be at least 10
7121          */
7122         scale = 10;
7123         if (sizeof(sector_t) > sizeof(unsigned long)) {
7124                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7125                         scale++;
7126         }
7127         res = (resync>>scale)*1000;
7128         sector_div(res, (u32)((max_sectors>>scale)+1));
7129
7130         per_milli = res;
7131         {
7132                 int i, x = per_milli/50, y = 20-x;
7133                 seq_printf(seq, "[");
7134                 for (i = 0; i < x; i++)
7135                         seq_printf(seq, "=");
7136                 seq_printf(seq, ">");
7137                 for (i = 0; i < y; i++)
7138                         seq_printf(seq, ".");
7139                 seq_printf(seq, "] ");
7140         }
7141         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7142                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7143                     "reshape" :
7144                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7145                      "check" :
7146                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7147                       "resync" : "recovery"))),
7148                    per_milli/10, per_milli % 10,
7149                    (unsigned long long) resync/2,
7150                    (unsigned long long) max_sectors/2);
7151
7152         /*
7153          * dt: time from mark until now
7154          * db: blocks written from mark until now
7155          * rt: remaining time
7156          *
7157          * rt is a sector_t, so could be 32bit or 64bit.
7158          * So we divide before multiply in case it is 32bit and close
7159          * to the limit.
7160          * We scale the divisor (db) by 32 to avoid losing precision
7161          * near the end of resync when the number of remaining sectors
7162          * is close to 'db'.
7163          * We then divide rt by 32 after multiplying by db to compensate.
7164          * The '+1' avoids division by zero if db is very small.
7165          */
7166         dt = ((jiffies - mddev->resync_mark) / HZ);
7167         if (!dt) dt++;
7168         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7169                 - mddev->resync_mark_cnt;
7170
7171         rt = max_sectors - resync;    /* number of remaining sectors */
7172         sector_div(rt, db/32+1);
7173         rt *= dt;
7174         rt >>= 5;
7175
7176         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7177                    ((unsigned long)rt % 60)/6);
7178
7179         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7180 }
7181
7182 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7183 {
7184         struct list_head *tmp;
7185         loff_t l = *pos;
7186         struct mddev *mddev;
7187
7188         if (l >= 0x10000)
7189                 return NULL;
7190         if (!l--)
7191                 /* header */
7192                 return (void*)1;
7193
7194         spin_lock(&all_mddevs_lock);
7195         list_for_each(tmp,&all_mddevs)
7196                 if (!l--) {
7197                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7198                         mddev_get(mddev);
7199                         spin_unlock(&all_mddevs_lock);
7200                         return mddev;
7201                 }
7202         spin_unlock(&all_mddevs_lock);
7203         if (!l--)
7204                 return (void*)2;/* tail */
7205         return NULL;
7206 }
7207
7208 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7209 {
7210         struct list_head *tmp;
7211         struct mddev *next_mddev, *mddev = v;
7212
7213         ++*pos;
7214         if (v == (void*)2)
7215                 return NULL;
7216
7217         spin_lock(&all_mddevs_lock);
7218         if (v == (void*)1)
7219                 tmp = all_mddevs.next;
7220         else
7221                 tmp = mddev->all_mddevs.next;
7222         if (tmp != &all_mddevs)
7223                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7224         else {
7225                 next_mddev = (void*)2;
7226                 *pos = 0x10000;
7227         }
7228         spin_unlock(&all_mddevs_lock);
7229
7230         if (v != (void*)1)
7231                 mddev_put(mddev);
7232         return next_mddev;
7233
7234 }
7235
7236 static void md_seq_stop(struct seq_file *seq, void *v)
7237 {
7238         struct mddev *mddev = v;
7239
7240         if (mddev && v != (void*)1 && v != (void*)2)
7241                 mddev_put(mddev);
7242 }
7243
7244 static int md_seq_show(struct seq_file *seq, void *v)
7245 {
7246         struct mddev *mddev = v;
7247         sector_t sectors;
7248         struct md_rdev *rdev;
7249
7250         if (v == (void*)1) {
7251                 struct md_personality *pers;
7252                 seq_printf(seq, "Personalities : ");
7253                 spin_lock(&pers_lock);
7254                 list_for_each_entry(pers, &pers_list, list)
7255                         seq_printf(seq, "[%s] ", pers->name);
7256
7257                 spin_unlock(&pers_lock);
7258                 seq_printf(seq, "\n");
7259                 seq->poll_event = atomic_read(&md_event_count);
7260                 return 0;
7261         }
7262         if (v == (void*)2) {
7263                 status_unused(seq);
7264                 return 0;
7265         }
7266
7267         spin_lock(&mddev->lock);
7268         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7269                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7270                                                 mddev->pers ? "" : "in");
7271                 if (mddev->pers) {
7272                         if (mddev->ro==1)
7273                                 seq_printf(seq, " (read-only)");
7274                         if (mddev->ro==2)
7275                                 seq_printf(seq, " (auto-read-only)");
7276                         seq_printf(seq, " %s", mddev->pers->name);
7277                 }
7278
7279                 sectors = 0;
7280                 rcu_read_lock();
7281                 rdev_for_each_rcu(rdev, mddev) {
7282                         char b[BDEVNAME_SIZE];
7283                         seq_printf(seq, " %s[%d]",
7284                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7285                         if (test_bit(WriteMostly, &rdev->flags))
7286                                 seq_printf(seq, "(W)");
7287                         if (test_bit(Faulty, &rdev->flags)) {
7288                                 seq_printf(seq, "(F)");
7289                                 continue;
7290                         }
7291                         if (rdev->raid_disk < 0)
7292                                 seq_printf(seq, "(S)"); /* spare */
7293                         if (test_bit(Replacement, &rdev->flags))
7294                                 seq_printf(seq, "(R)");
7295                         sectors += rdev->sectors;
7296                 }
7297                 rcu_read_unlock();
7298
7299                 if (!list_empty(&mddev->disks)) {
7300                         if (mddev->pers)
7301                                 seq_printf(seq, "\n      %llu blocks",
7302                                            (unsigned long long)
7303                                            mddev->array_sectors / 2);
7304                         else
7305                                 seq_printf(seq, "\n      %llu blocks",
7306                                            (unsigned long long)sectors / 2);
7307                 }
7308                 if (mddev->persistent) {
7309                         if (mddev->major_version != 0 ||
7310                             mddev->minor_version != 90) {
7311                                 seq_printf(seq," super %d.%d",
7312                                            mddev->major_version,
7313                                            mddev->minor_version);
7314                         }
7315                 } else if (mddev->external)
7316                         seq_printf(seq, " super external:%s",
7317                                    mddev->metadata_type);
7318                 else
7319                         seq_printf(seq, " super non-persistent");
7320
7321                 if (mddev->pers) {
7322                         mddev->pers->status(seq, mddev);
7323                         seq_printf(seq, "\n      ");
7324                         if (mddev->pers->sync_request) {
7325                                 if (mddev->curr_resync > 2) {
7326                                         status_resync(seq, mddev);
7327                                         seq_printf(seq, "\n      ");
7328                                 } else if (mddev->curr_resync >= 1)
7329                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7330                                 else if (mddev->recovery_cp < MaxSector)
7331                                         seq_printf(seq, "\tresync=PENDING\n      ");
7332                         }
7333                 } else
7334                         seq_printf(seq, "\n       ");
7335
7336                 bitmap_status(seq, mddev->bitmap);
7337
7338                 seq_printf(seq, "\n");
7339         }
7340         spin_unlock(&mddev->lock);
7341
7342         return 0;
7343 }
7344
7345 static const struct seq_operations md_seq_ops = {
7346         .start  = md_seq_start,
7347         .next   = md_seq_next,
7348         .stop   = md_seq_stop,
7349         .show   = md_seq_show,
7350 };
7351
7352 static int md_seq_open(struct inode *inode, struct file *file)
7353 {
7354         struct seq_file *seq;
7355         int error;
7356
7357         error = seq_open(file, &md_seq_ops);
7358         if (error)
7359                 return error;
7360
7361         seq = file->private_data;
7362         seq->poll_event = atomic_read(&md_event_count);
7363         return error;
7364 }
7365
7366 static int md_unloading;
7367 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7368 {
7369         struct seq_file *seq = filp->private_data;
7370         int mask;
7371
7372         if (md_unloading)
7373                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7374         poll_wait(filp, &md_event_waiters, wait);
7375
7376         /* always allow read */
7377         mask = POLLIN | POLLRDNORM;
7378
7379         if (seq->poll_event != atomic_read(&md_event_count))
7380                 mask |= POLLERR | POLLPRI;
7381         return mask;
7382 }
7383
7384 static const struct file_operations md_seq_fops = {
7385         .owner          = THIS_MODULE,
7386         .open           = md_seq_open,
7387         .read           = seq_read,
7388         .llseek         = seq_lseek,
7389         .release        = seq_release_private,
7390         .poll           = mdstat_poll,
7391 };
7392
7393 int register_md_personality(struct md_personality *p)
7394 {
7395         printk(KERN_INFO "md: %s personality registered for level %d\n",
7396                                                 p->name, p->level);
7397         spin_lock(&pers_lock);
7398         list_add_tail(&p->list, &pers_list);
7399         spin_unlock(&pers_lock);
7400         return 0;
7401 }
7402 EXPORT_SYMBOL(register_md_personality);
7403
7404 int unregister_md_personality(struct md_personality *p)
7405 {
7406         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7407         spin_lock(&pers_lock);
7408         list_del_init(&p->list);
7409         spin_unlock(&pers_lock);
7410         return 0;
7411 }
7412 EXPORT_SYMBOL(unregister_md_personality);
7413
7414 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7415 {
7416         if (md_cluster_ops != NULL)
7417                 return -EALREADY;
7418         spin_lock(&pers_lock);
7419         md_cluster_ops = ops;
7420         md_cluster_mod = module;
7421         spin_unlock(&pers_lock);
7422         return 0;
7423 }
7424 EXPORT_SYMBOL(register_md_cluster_operations);
7425
7426 int unregister_md_cluster_operations(void)
7427 {
7428         spin_lock(&pers_lock);
7429         md_cluster_ops = NULL;
7430         spin_unlock(&pers_lock);
7431         return 0;
7432 }
7433 EXPORT_SYMBOL(unregister_md_cluster_operations);
7434
7435 int md_setup_cluster(struct mddev *mddev, int nodes)
7436 {
7437         int err;
7438
7439         err = request_module("md-cluster");
7440         if (err) {
7441                 pr_err("md-cluster module not found.\n");
7442                 return err;
7443         }
7444
7445         spin_lock(&pers_lock);
7446         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7447                 spin_unlock(&pers_lock);
7448                 return -ENOENT;
7449         }
7450         spin_unlock(&pers_lock);
7451
7452         return md_cluster_ops->join(mddev, nodes);
7453 }
7454
7455 void md_cluster_stop(struct mddev *mddev)
7456 {
7457         if (!md_cluster_ops)
7458                 return;
7459         md_cluster_ops->leave(mddev);
7460         module_put(md_cluster_mod);
7461 }
7462
7463 static int is_mddev_idle(struct mddev *mddev, int init)
7464 {
7465         struct md_rdev *rdev;
7466         int idle;
7467         int curr_events;
7468
7469         idle = 1;
7470         rcu_read_lock();
7471         rdev_for_each_rcu(rdev, mddev) {
7472                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7473                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7474                               (int)part_stat_read(&disk->part0, sectors[1]) -
7475                               atomic_read(&disk->sync_io);
7476                 /* sync IO will cause sync_io to increase before the disk_stats
7477                  * as sync_io is counted when a request starts, and
7478                  * disk_stats is counted when it completes.
7479                  * So resync activity will cause curr_events to be smaller than
7480                  * when there was no such activity.
7481                  * non-sync IO will cause disk_stat to increase without
7482                  * increasing sync_io so curr_events will (eventually)
7483                  * be larger than it was before.  Once it becomes
7484                  * substantially larger, the test below will cause
7485                  * the array to appear non-idle, and resync will slow
7486                  * down.
7487                  * If there is a lot of outstanding resync activity when
7488                  * we set last_event to curr_events, then all that activity
7489                  * completing might cause the array to appear non-idle
7490                  * and resync will be slowed down even though there might
7491                  * not have been non-resync activity.  This will only
7492                  * happen once though.  'last_events' will soon reflect
7493                  * the state where there is little or no outstanding
7494                  * resync requests, and further resync activity will
7495                  * always make curr_events less than last_events.
7496                  *
7497                  */
7498                 if (init || curr_events - rdev->last_events > 64) {
7499                         rdev->last_events = curr_events;
7500                         idle = 0;
7501                 }
7502         }
7503         rcu_read_unlock();
7504         return idle;
7505 }
7506
7507 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7508 {
7509         /* another "blocks" (512byte) blocks have been synced */
7510         atomic_sub(blocks, &mddev->recovery_active);
7511         wake_up(&mddev->recovery_wait);
7512         if (!ok) {
7513                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7514                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7515                 md_wakeup_thread(mddev->thread);
7516                 // stop recovery, signal do_sync ....
7517         }
7518 }
7519 EXPORT_SYMBOL(md_done_sync);
7520
7521 /* md_write_start(mddev, bi)
7522  * If we need to update some array metadata (e.g. 'active' flag
7523  * in superblock) before writing, schedule a superblock update
7524  * and wait for it to complete.
7525  */
7526 void md_write_start(struct mddev *mddev, struct bio *bi)
7527 {
7528         int did_change = 0;
7529         if (bio_data_dir(bi) != WRITE)
7530                 return;
7531
7532         BUG_ON(mddev->ro == 1);
7533         if (mddev->ro == 2) {
7534                 /* need to switch to read/write */
7535                 mddev->ro = 0;
7536                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7537                 md_wakeup_thread(mddev->thread);
7538                 md_wakeup_thread(mddev->sync_thread);
7539                 did_change = 1;
7540         }
7541         atomic_inc(&mddev->writes_pending);
7542         if (mddev->safemode == 1)
7543                 mddev->safemode = 0;
7544         if (mddev->in_sync) {
7545                 spin_lock(&mddev->lock);
7546                 if (mddev->in_sync) {
7547                         mddev->in_sync = 0;
7548                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7549                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7550                         md_wakeup_thread(mddev->thread);
7551                         did_change = 1;
7552                 }
7553                 spin_unlock(&mddev->lock);
7554         }
7555         if (did_change)
7556                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7557         wait_event(mddev->sb_wait,
7558                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7559 }
7560 EXPORT_SYMBOL(md_write_start);
7561
7562 void md_write_end(struct mddev *mddev)
7563 {
7564         if (atomic_dec_and_test(&mddev->writes_pending)) {
7565                 if (mddev->safemode == 2)
7566                         md_wakeup_thread(mddev->thread);
7567                 else if (mddev->safemode_delay)
7568                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7569         }
7570 }
7571 EXPORT_SYMBOL(md_write_end);
7572
7573 /* md_allow_write(mddev)
7574  * Calling this ensures that the array is marked 'active' so that writes
7575  * may proceed without blocking.  It is important to call this before
7576  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7577  * Must be called with mddev_lock held.
7578  *
7579  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7580  * is dropped, so return -EAGAIN after notifying userspace.
7581  */
7582 int md_allow_write(struct mddev *mddev)
7583 {
7584         if (!mddev->pers)
7585                 return 0;
7586         if (mddev->ro)
7587                 return 0;
7588         if (!mddev->pers->sync_request)
7589                 return 0;
7590
7591         spin_lock(&mddev->lock);
7592         if (mddev->in_sync) {
7593                 mddev->in_sync = 0;
7594                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7595                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7596                 if (mddev->safemode_delay &&
7597                     mddev->safemode == 0)
7598                         mddev->safemode = 1;
7599                 spin_unlock(&mddev->lock);
7600                 if (mddev_is_clustered(mddev))
7601                         md_cluster_ops->metadata_update_start(mddev);
7602                 md_update_sb(mddev, 0);
7603                 if (mddev_is_clustered(mddev))
7604                         md_cluster_ops->metadata_update_finish(mddev);
7605                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7606         } else
7607                 spin_unlock(&mddev->lock);
7608
7609         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7610                 return -EAGAIN;
7611         else
7612                 return 0;
7613 }
7614 EXPORT_SYMBOL_GPL(md_allow_write);
7615
7616 #define SYNC_MARKS      10
7617 #define SYNC_MARK_STEP  (3*HZ)
7618 #define UPDATE_FREQUENCY (5*60*HZ)
7619 void md_do_sync(struct md_thread *thread)
7620 {
7621         struct mddev *mddev = thread->mddev;
7622         struct mddev *mddev2;
7623         unsigned int currspeed = 0,
7624                  window;
7625         sector_t max_sectors,j, io_sectors, recovery_done;
7626         unsigned long mark[SYNC_MARKS];
7627         unsigned long update_time;
7628         sector_t mark_cnt[SYNC_MARKS];
7629         int last_mark,m;
7630         struct list_head *tmp;
7631         sector_t last_check;
7632         int skipped = 0;
7633         struct md_rdev *rdev;
7634         char *desc, *action = NULL;
7635         struct blk_plug plug;
7636
7637         /* just incase thread restarts... */
7638         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7639                 return;
7640         if (mddev->ro) {/* never try to sync a read-only array */
7641                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7642                 return;
7643         }
7644
7645         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7646                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7647                         desc = "data-check";
7648                         action = "check";
7649                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7650                         desc = "requested-resync";
7651                         action = "repair";
7652                 } else
7653                         desc = "resync";
7654         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7655                 desc = "reshape";
7656         else
7657                 desc = "recovery";
7658
7659         mddev->last_sync_action = action ?: desc;
7660
7661         /* we overload curr_resync somewhat here.
7662          * 0 == not engaged in resync at all
7663          * 2 == checking that there is no conflict with another sync
7664          * 1 == like 2, but have yielded to allow conflicting resync to
7665          *              commense
7666          * other == active in resync - this many blocks
7667          *
7668          * Before starting a resync we must have set curr_resync to
7669          * 2, and then checked that every "conflicting" array has curr_resync
7670          * less than ours.  When we find one that is the same or higher
7671          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7672          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7673          * This will mean we have to start checking from the beginning again.
7674          *
7675          */
7676
7677         do {
7678                 mddev->curr_resync = 2;
7679
7680         try_again:
7681                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7682                         goto skip;
7683                 for_each_mddev(mddev2, tmp) {
7684                         if (mddev2 == mddev)
7685                                 continue;
7686                         if (!mddev->parallel_resync
7687                         &&  mddev2->curr_resync
7688                         &&  match_mddev_units(mddev, mddev2)) {
7689                                 DEFINE_WAIT(wq);
7690                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7691                                         /* arbitrarily yield */
7692                                         mddev->curr_resync = 1;
7693                                         wake_up(&resync_wait);
7694                                 }
7695                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7696                                         /* no need to wait here, we can wait the next
7697                                          * time 'round when curr_resync == 2
7698                                          */
7699                                         continue;
7700                                 /* We need to wait 'interruptible' so as not to
7701                                  * contribute to the load average, and not to
7702                                  * be caught by 'softlockup'
7703                                  */
7704                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7705                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7706                                     mddev2->curr_resync >= mddev->curr_resync) {
7707                                         printk(KERN_INFO "md: delaying %s of %s"
7708                                                " until %s has finished (they"
7709                                                " share one or more physical units)\n",
7710                                                desc, mdname(mddev), mdname(mddev2));
7711                                         mddev_put(mddev2);
7712                                         if (signal_pending(current))
7713                                                 flush_signals(current);
7714                                         schedule();
7715                                         finish_wait(&resync_wait, &wq);
7716                                         goto try_again;
7717                                 }
7718                                 finish_wait(&resync_wait, &wq);
7719                         }
7720                 }
7721         } while (mddev->curr_resync < 2);
7722
7723         j = 0;
7724         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7725                 /* resync follows the size requested by the personality,
7726                  * which defaults to physical size, but can be virtual size
7727                  */
7728                 max_sectors = mddev->resync_max_sectors;
7729                 atomic64_set(&mddev->resync_mismatches, 0);
7730                 /* we don't use the checkpoint if there's a bitmap */
7731                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7732                         j = mddev->resync_min;
7733                 else if (!mddev->bitmap)
7734                         j = mddev->recovery_cp;
7735
7736         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7737                 max_sectors = mddev->resync_max_sectors;
7738         else {
7739                 /* recovery follows the physical size of devices */
7740                 max_sectors = mddev->dev_sectors;
7741                 j = MaxSector;
7742                 rcu_read_lock();
7743                 rdev_for_each_rcu(rdev, mddev)
7744                         if (rdev->raid_disk >= 0 &&
7745                             !test_bit(Faulty, &rdev->flags) &&
7746                             !test_bit(In_sync, &rdev->flags) &&
7747                             rdev->recovery_offset < j)
7748                                 j = rdev->recovery_offset;
7749                 rcu_read_unlock();
7750
7751                 /* If there is a bitmap, we need to make sure all
7752                  * writes that started before we added a spare
7753                  * complete before we start doing a recovery.
7754                  * Otherwise the write might complete and (via
7755                  * bitmap_endwrite) set a bit in the bitmap after the
7756                  * recovery has checked that bit and skipped that
7757                  * region.
7758                  */
7759                 if (mddev->bitmap) {
7760                         mddev->pers->quiesce(mddev, 1);
7761                         mddev->pers->quiesce(mddev, 0);
7762                 }
7763         }
7764
7765         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7766         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7767                 " %d KB/sec/disk.\n", speed_min(mddev));
7768         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7769                "(but not more than %d KB/sec) for %s.\n",
7770                speed_max(mddev), desc);
7771
7772         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7773
7774         io_sectors = 0;
7775         for (m = 0; m < SYNC_MARKS; m++) {
7776                 mark[m] = jiffies;
7777                 mark_cnt[m] = io_sectors;
7778         }
7779         last_mark = 0;
7780         mddev->resync_mark = mark[last_mark];
7781         mddev->resync_mark_cnt = mark_cnt[last_mark];
7782
7783         /*
7784          * Tune reconstruction:
7785          */
7786         window = 32*(PAGE_SIZE/512);
7787         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7788                 window/2, (unsigned long long)max_sectors/2);
7789
7790         atomic_set(&mddev->recovery_active, 0);
7791         last_check = 0;
7792
7793         if (j>2) {
7794                 printk(KERN_INFO
7795                        "md: resuming %s of %s from checkpoint.\n",
7796                        desc, mdname(mddev));
7797                 mddev->curr_resync = j;
7798         } else
7799                 mddev->curr_resync = 3; /* no longer delayed */
7800         mddev->curr_resync_completed = j;
7801         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7802         md_new_event(mddev);
7803         update_time = jiffies;
7804
7805         if (mddev_is_clustered(mddev))
7806                 md_cluster_ops->resync_start(mddev, j, max_sectors);
7807
7808         blk_start_plug(&plug);
7809         while (j < max_sectors) {
7810                 sector_t sectors;
7811
7812                 skipped = 0;
7813
7814                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7815                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7816                       (mddev->curr_resync - mddev->curr_resync_completed)
7817                       > (max_sectors >> 4)) ||
7818                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7819                      (j - mddev->curr_resync_completed)*2
7820                      >= mddev->resync_max - mddev->curr_resync_completed
7821                             )) {
7822                         /* time to update curr_resync_completed */
7823                         wait_event(mddev->recovery_wait,
7824                                    atomic_read(&mddev->recovery_active) == 0);
7825                         mddev->curr_resync_completed = j;
7826                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7827                             j > mddev->recovery_cp)
7828                                 mddev->recovery_cp = j;
7829                         update_time = jiffies;
7830                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7831                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7832                 }
7833
7834                 while (j >= mddev->resync_max &&
7835                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7836                         /* As this condition is controlled by user-space,
7837                          * we can block indefinitely, so use '_interruptible'
7838                          * to avoid triggering warnings.
7839                          */
7840                         flush_signals(current); /* just in case */
7841                         wait_event_interruptible(mddev->recovery_wait,
7842                                                  mddev->resync_max > j
7843                                                  || test_bit(MD_RECOVERY_INTR,
7844                                                              &mddev->recovery));
7845                 }
7846
7847                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7848                         break;
7849
7850                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7851                 if (sectors == 0) {
7852                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7853                         break;
7854                 }
7855
7856                 if (!skipped) { /* actual IO requested */
7857                         io_sectors += sectors;
7858                         atomic_add(sectors, &mddev->recovery_active);
7859                 }
7860
7861                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7862                         break;
7863
7864                 j += sectors;
7865                 if (j > 2)
7866                         mddev->curr_resync = j;
7867                 if (mddev_is_clustered(mddev))
7868                         md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7869                 mddev->curr_mark_cnt = io_sectors;
7870                 if (last_check == 0)
7871                         /* this is the earliest that rebuild will be
7872                          * visible in /proc/mdstat
7873                          */
7874                         md_new_event(mddev);
7875
7876                 if (last_check + window > io_sectors || j == max_sectors)
7877                         continue;
7878
7879                 last_check = io_sectors;
7880         repeat:
7881                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7882                         /* step marks */
7883                         int next = (last_mark+1) % SYNC_MARKS;
7884
7885                         mddev->resync_mark = mark[next];
7886                         mddev->resync_mark_cnt = mark_cnt[next];
7887                         mark[next] = jiffies;
7888                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7889                         last_mark = next;
7890                 }
7891
7892                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7893                         break;
7894
7895                 /*
7896                  * this loop exits only if either when we are slower than
7897                  * the 'hard' speed limit, or the system was IO-idle for
7898                  * a jiffy.
7899                  * the system might be non-idle CPU-wise, but we only care
7900                  * about not overloading the IO subsystem. (things like an
7901                  * e2fsck being done on the RAID array should execute fast)
7902                  */
7903                 cond_resched();
7904
7905                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7906                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7907                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7908
7909                 if (currspeed > speed_min(mddev)) {
7910                         if (currspeed > speed_max(mddev)) {
7911                                 msleep(500);
7912                                 goto repeat;
7913                         }
7914                         if (!is_mddev_idle(mddev, 0)) {
7915                                 /*
7916                                  * Give other IO more of a chance.
7917                                  * The faster the devices, the less we wait.
7918                                  */
7919                                 wait_event(mddev->recovery_wait,
7920                                            !atomic_read(&mddev->recovery_active));
7921                         }
7922                 }
7923         }
7924         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7925                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7926                ? "interrupted" : "done");
7927         /*
7928          * this also signals 'finished resyncing' to md_stop
7929          */
7930         blk_finish_plug(&plug);
7931         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7932
7933         /* tell personality that we are finished */
7934         mddev->pers->sync_request(mddev, max_sectors, &skipped);
7935
7936         if (mddev_is_clustered(mddev))
7937                 md_cluster_ops->resync_finish(mddev);
7938
7939         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7940             mddev->curr_resync > 2) {
7941                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7942                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7943                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7944                                         printk(KERN_INFO
7945                                                "md: checkpointing %s of %s.\n",
7946                                                desc, mdname(mddev));
7947                                         if (test_bit(MD_RECOVERY_ERROR,
7948                                                 &mddev->recovery))
7949                                                 mddev->recovery_cp =
7950                                                         mddev->curr_resync_completed;
7951                                         else
7952                                                 mddev->recovery_cp =
7953                                                         mddev->curr_resync;
7954                                 }
7955                         } else
7956                                 mddev->recovery_cp = MaxSector;
7957                 } else {
7958                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7959                                 mddev->curr_resync = MaxSector;
7960                         rcu_read_lock();
7961                         rdev_for_each_rcu(rdev, mddev)
7962                                 if (rdev->raid_disk >= 0 &&
7963                                     mddev->delta_disks >= 0 &&
7964                                     !test_bit(Faulty, &rdev->flags) &&
7965                                     !test_bit(In_sync, &rdev->flags) &&
7966                                     rdev->recovery_offset < mddev->curr_resync)
7967                                         rdev->recovery_offset = mddev->curr_resync;
7968                         rcu_read_unlock();
7969                 }
7970         }
7971  skip:
7972         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7973
7974         spin_lock(&mddev->lock);
7975         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7976                 /* We completed so min/max setting can be forgotten if used. */
7977                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7978                         mddev->resync_min = 0;
7979                 mddev->resync_max = MaxSector;
7980         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7981                 mddev->resync_min = mddev->curr_resync_completed;
7982         mddev->curr_resync = 0;
7983         spin_unlock(&mddev->lock);
7984
7985         wake_up(&resync_wait);
7986         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7987         md_wakeup_thread(mddev->thread);
7988         return;
7989 }
7990 EXPORT_SYMBOL_GPL(md_do_sync);
7991
7992 static int remove_and_add_spares(struct mddev *mddev,
7993                                  struct md_rdev *this)
7994 {
7995         struct md_rdev *rdev;
7996         int spares = 0;
7997         int removed = 0;
7998
7999         rdev_for_each(rdev, mddev)
8000                 if ((this == NULL || rdev == this) &&
8001                     rdev->raid_disk >= 0 &&
8002                     !test_bit(Blocked, &rdev->flags) &&
8003                     (test_bit(Faulty, &rdev->flags) ||
8004                      ! test_bit(In_sync, &rdev->flags)) &&
8005                     atomic_read(&rdev->nr_pending)==0) {
8006                         if (mddev->pers->hot_remove_disk(
8007                                     mddev, rdev) == 0) {
8008                                 sysfs_unlink_rdev(mddev, rdev);
8009                                 rdev->raid_disk = -1;
8010                                 removed++;
8011                         }
8012                 }
8013         if (removed && mddev->kobj.sd)
8014                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8015
8016         if (this)
8017                 goto no_add;
8018
8019         rdev_for_each(rdev, mddev) {
8020                 if (rdev->raid_disk >= 0 &&
8021                     !test_bit(In_sync, &rdev->flags) &&
8022                     !test_bit(Faulty, &rdev->flags))
8023                         spares++;
8024                 if (rdev->raid_disk >= 0)
8025                         continue;
8026                 if (test_bit(Faulty, &rdev->flags))
8027                         continue;
8028                 if (mddev->ro &&
8029                     ! (rdev->saved_raid_disk >= 0 &&
8030                        !test_bit(Bitmap_sync, &rdev->flags)))
8031                         continue;
8032
8033                 if (rdev->saved_raid_disk < 0)
8034                         rdev->recovery_offset = 0;
8035                 if (mddev->pers->
8036                     hot_add_disk(mddev, rdev) == 0) {
8037                         if (sysfs_link_rdev(mddev, rdev))
8038                                 /* failure here is OK */;
8039                         spares++;
8040                         md_new_event(mddev);
8041                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8042                 }
8043         }
8044 no_add:
8045         if (removed)
8046                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8047         return spares;
8048 }
8049
8050 static void md_start_sync(struct work_struct *ws)
8051 {
8052         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8053
8054         mddev->sync_thread = md_register_thread(md_do_sync,
8055                                                 mddev,
8056                                                 "resync");
8057         if (!mddev->sync_thread) {
8058                 printk(KERN_ERR "%s: could not start resync"
8059                        " thread...\n",
8060                        mdname(mddev));
8061                 /* leave the spares where they are, it shouldn't hurt */
8062                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8063                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8064                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8065                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8066                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8067                 wake_up(&resync_wait);
8068                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8069                                        &mddev->recovery))
8070                         if (mddev->sysfs_action)
8071                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8072         } else
8073                 md_wakeup_thread(mddev->sync_thread);
8074         sysfs_notify_dirent_safe(mddev->sysfs_action);
8075         md_new_event(mddev);
8076 }
8077
8078 /*
8079  * This routine is regularly called by all per-raid-array threads to
8080  * deal with generic issues like resync and super-block update.
8081  * Raid personalities that don't have a thread (linear/raid0) do not
8082  * need this as they never do any recovery or update the superblock.
8083  *
8084  * It does not do any resync itself, but rather "forks" off other threads
8085  * to do that as needed.
8086  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8087  * "->recovery" and create a thread at ->sync_thread.
8088  * When the thread finishes it sets MD_RECOVERY_DONE
8089  * and wakeups up this thread which will reap the thread and finish up.
8090  * This thread also removes any faulty devices (with nr_pending == 0).
8091  *
8092  * The overall approach is:
8093  *  1/ if the superblock needs updating, update it.
8094  *  2/ If a recovery thread is running, don't do anything else.
8095  *  3/ If recovery has finished, clean up, possibly marking spares active.
8096  *  4/ If there are any faulty devices, remove them.
8097  *  5/ If array is degraded, try to add spares devices
8098  *  6/ If array has spares or is not in-sync, start a resync thread.
8099  */
8100 void md_check_recovery(struct mddev *mddev)
8101 {
8102         if (mddev->suspended)
8103                 return;
8104
8105         if (mddev->bitmap)
8106                 bitmap_daemon_work(mddev);
8107
8108         if (signal_pending(current)) {
8109                 if (mddev->pers->sync_request && !mddev->external) {
8110                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8111                                mdname(mddev));
8112                         mddev->safemode = 2;
8113                 }
8114                 flush_signals(current);
8115         }
8116
8117         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8118                 return;
8119         if ( ! (
8120                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8121                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8122                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8123                 (mddev->external == 0 && mddev->safemode == 1) ||
8124                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8125                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8126                 ))
8127                 return;
8128
8129         if (mddev_trylock(mddev)) {
8130                 int spares = 0;
8131
8132                 if (mddev->ro) {
8133                         /* On a read-only array we can:
8134                          * - remove failed devices
8135                          * - add already-in_sync devices if the array itself
8136                          *   is in-sync.
8137                          * As we only add devices that are already in-sync,
8138                          * we can activate the spares immediately.
8139                          */
8140                         remove_and_add_spares(mddev, NULL);
8141                         /* There is no thread, but we need to call
8142                          * ->spare_active and clear saved_raid_disk
8143                          */
8144                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8145                         md_reap_sync_thread(mddev);
8146                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8147                         goto unlock;
8148                 }
8149
8150                 if (!mddev->external) {
8151                         int did_change = 0;
8152                         spin_lock(&mddev->lock);
8153                         if (mddev->safemode &&
8154                             !atomic_read(&mddev->writes_pending) &&
8155                             !mddev->in_sync &&
8156                             mddev->recovery_cp == MaxSector) {
8157                                 mddev->in_sync = 1;
8158                                 did_change = 1;
8159                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8160                         }
8161                         if (mddev->safemode == 1)
8162                                 mddev->safemode = 0;
8163                         spin_unlock(&mddev->lock);
8164                         if (did_change)
8165                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8166                 }
8167
8168                 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8169                         if (mddev_is_clustered(mddev))
8170                                 md_cluster_ops->metadata_update_start(mddev);
8171                         md_update_sb(mddev, 0);
8172                         if (mddev_is_clustered(mddev))
8173                                 md_cluster_ops->metadata_update_finish(mddev);
8174                 }
8175
8176                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8177                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8178                         /* resync/recovery still happening */
8179                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8180                         goto unlock;
8181                 }
8182                 if (mddev->sync_thread) {
8183                         md_reap_sync_thread(mddev);
8184                         goto unlock;
8185                 }
8186                 /* Set RUNNING before clearing NEEDED to avoid
8187                  * any transients in the value of "sync_action".
8188                  */
8189                 mddev->curr_resync_completed = 0;
8190                 spin_lock(&mddev->lock);
8191                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8192                 spin_unlock(&mddev->lock);
8193                 /* Clear some bits that don't mean anything, but
8194                  * might be left set
8195                  */
8196                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8197                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8198
8199                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8200                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8201                         goto not_running;
8202                 /* no recovery is running.
8203                  * remove any failed drives, then
8204                  * add spares if possible.
8205                  * Spares are also removed and re-added, to allow
8206                  * the personality to fail the re-add.
8207                  */
8208
8209                 if (mddev->reshape_position != MaxSector) {
8210                         if (mddev->pers->check_reshape == NULL ||
8211                             mddev->pers->check_reshape(mddev) != 0)
8212                                 /* Cannot proceed */
8213                                 goto not_running;
8214                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8215                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8216                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8217                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8218                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8219                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8220                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8221                 } else if (mddev->recovery_cp < MaxSector) {
8222                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8223                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8224                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8225                         /* nothing to be done ... */
8226                         goto not_running;
8227
8228                 if (mddev->pers->sync_request) {
8229                         if (spares) {
8230                                 /* We are adding a device or devices to an array
8231                                  * which has the bitmap stored on all devices.
8232                                  * So make sure all bitmap pages get written
8233                                  */
8234                                 bitmap_write_all(mddev->bitmap);
8235                         }
8236                         INIT_WORK(&mddev->del_work, md_start_sync);
8237                         queue_work(md_misc_wq, &mddev->del_work);
8238                         goto unlock;
8239                 }
8240         not_running:
8241                 if (!mddev->sync_thread) {
8242                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8243                         wake_up(&resync_wait);
8244                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8245                                                &mddev->recovery))
8246                                 if (mddev->sysfs_action)
8247                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8248                 }
8249         unlock:
8250                 wake_up(&mddev->sb_wait);
8251                 mddev_unlock(mddev);
8252         }
8253 }
8254 EXPORT_SYMBOL(md_check_recovery);
8255
8256 void md_reap_sync_thread(struct mddev *mddev)
8257 {
8258         struct md_rdev *rdev;
8259
8260         /* resync has finished, collect result */
8261         md_unregister_thread(&mddev->sync_thread);
8262         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8263             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8264                 /* success...*/
8265                 /* activate any spares */
8266                 if (mddev->pers->spare_active(mddev)) {
8267                         sysfs_notify(&mddev->kobj, NULL,
8268                                      "degraded");
8269                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8270                 }
8271         }
8272         if (mddev_is_clustered(mddev))
8273                 md_cluster_ops->metadata_update_start(mddev);
8274         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8275             mddev->pers->finish_reshape)
8276                 mddev->pers->finish_reshape(mddev);
8277
8278         /* If array is no-longer degraded, then any saved_raid_disk
8279          * information must be scrapped.
8280          */
8281         if (!mddev->degraded)
8282                 rdev_for_each(rdev, mddev)
8283                         rdev->saved_raid_disk = -1;
8284
8285         md_update_sb(mddev, 1);
8286         if (mddev_is_clustered(mddev))
8287                 md_cluster_ops->metadata_update_finish(mddev);
8288         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8289         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8290         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8291         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8292         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8293         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8294         wake_up(&resync_wait);
8295         /* flag recovery needed just to double check */
8296         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8297         sysfs_notify_dirent_safe(mddev->sysfs_action);
8298         md_new_event(mddev);
8299         if (mddev->event_work.func)
8300                 queue_work(md_misc_wq, &mddev->event_work);
8301 }
8302 EXPORT_SYMBOL(md_reap_sync_thread);
8303
8304 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8305 {
8306         sysfs_notify_dirent_safe(rdev->sysfs_state);
8307         wait_event_timeout(rdev->blocked_wait,
8308                            !test_bit(Blocked, &rdev->flags) &&
8309                            !test_bit(BlockedBadBlocks, &rdev->flags),
8310                            msecs_to_jiffies(5000));
8311         rdev_dec_pending(rdev, mddev);
8312 }
8313 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8314
8315 void md_finish_reshape(struct mddev *mddev)
8316 {
8317         /* called be personality module when reshape completes. */
8318         struct md_rdev *rdev;
8319
8320         rdev_for_each(rdev, mddev) {
8321                 if (rdev->data_offset > rdev->new_data_offset)
8322                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8323                 else
8324                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8325                 rdev->data_offset = rdev->new_data_offset;
8326         }
8327 }
8328 EXPORT_SYMBOL(md_finish_reshape);
8329
8330 /* Bad block management.
8331  * We can record which blocks on each device are 'bad' and so just
8332  * fail those blocks, or that stripe, rather than the whole device.
8333  * Entries in the bad-block table are 64bits wide.  This comprises:
8334  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8335  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8336  *  A 'shift' can be set so that larger blocks are tracked and
8337  *  consequently larger devices can be covered.
8338  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8339  *
8340  * Locking of the bad-block table uses a seqlock so md_is_badblock
8341  * might need to retry if it is very unlucky.
8342  * We will sometimes want to check for bad blocks in a bi_end_io function,
8343  * so we use the write_seqlock_irq variant.
8344  *
8345  * When looking for a bad block we specify a range and want to
8346  * know if any block in the range is bad.  So we binary-search
8347  * to the last range that starts at-or-before the given endpoint,
8348  * (or "before the sector after the target range")
8349  * then see if it ends after the given start.
8350  * We return
8351  *  0 if there are no known bad blocks in the range
8352  *  1 if there are known bad block which are all acknowledged
8353  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8354  * plus the start/length of the first bad section we overlap.
8355  */
8356 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8357                    sector_t *first_bad, int *bad_sectors)
8358 {
8359         int hi;
8360         int lo;
8361         u64 *p = bb->page;
8362         int rv;
8363         sector_t target = s + sectors;
8364         unsigned seq;
8365
8366         if (bb->shift > 0) {
8367                 /* round the start down, and the end up */
8368                 s >>= bb->shift;
8369                 target += (1<<bb->shift) - 1;
8370                 target >>= bb->shift;
8371                 sectors = target - s;
8372         }
8373         /* 'target' is now the first block after the bad range */
8374
8375 retry:
8376         seq = read_seqbegin(&bb->lock);
8377         lo = 0;
8378         rv = 0;
8379         hi = bb->count;
8380
8381         /* Binary search between lo and hi for 'target'
8382          * i.e. for the last range that starts before 'target'
8383          */
8384         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8385          * are known not to be the last range before target.
8386          * VARIANT: hi-lo is the number of possible
8387          * ranges, and decreases until it reaches 1
8388          */
8389         while (hi - lo > 1) {
8390                 int mid = (lo + hi) / 2;
8391                 sector_t a = BB_OFFSET(p[mid]);
8392                 if (a < target)
8393                         /* This could still be the one, earlier ranges
8394                          * could not. */
8395                         lo = mid;
8396                 else
8397                         /* This and later ranges are definitely out. */
8398                         hi = mid;
8399         }
8400         /* 'lo' might be the last that started before target, but 'hi' isn't */
8401         if (hi > lo) {
8402                 /* need to check all range that end after 's' to see if
8403                  * any are unacknowledged.
8404                  */
8405                 while (lo >= 0 &&
8406                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8407                         if (BB_OFFSET(p[lo]) < target) {
8408                                 /* starts before the end, and finishes after
8409                                  * the start, so they must overlap
8410                                  */
8411                                 if (rv != -1 && BB_ACK(p[lo]))
8412                                         rv = 1;
8413                                 else
8414                                         rv = -1;
8415                                 *first_bad = BB_OFFSET(p[lo]);
8416                                 *bad_sectors = BB_LEN(p[lo]);
8417                         }
8418                         lo--;
8419                 }
8420         }
8421
8422         if (read_seqretry(&bb->lock, seq))
8423                 goto retry;
8424
8425         return rv;
8426 }
8427 EXPORT_SYMBOL_GPL(md_is_badblock);
8428
8429 /*
8430  * Add a range of bad blocks to the table.
8431  * This might extend the table, or might contract it
8432  * if two adjacent ranges can be merged.
8433  * We binary-search to find the 'insertion' point, then
8434  * decide how best to handle it.
8435  */
8436 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8437                             int acknowledged)
8438 {
8439         u64 *p;
8440         int lo, hi;
8441         int rv = 1;
8442         unsigned long flags;
8443
8444         if (bb->shift < 0)
8445                 /* badblocks are disabled */
8446                 return 0;
8447
8448         if (bb->shift) {
8449                 /* round the start down, and the end up */
8450                 sector_t next = s + sectors;
8451                 s >>= bb->shift;
8452                 next += (1<<bb->shift) - 1;
8453                 next >>= bb->shift;
8454                 sectors = next - s;
8455         }
8456
8457         write_seqlock_irqsave(&bb->lock, flags);
8458
8459         p = bb->page;
8460         lo = 0;
8461         hi = bb->count;
8462         /* Find the last range that starts at-or-before 's' */
8463         while (hi - lo > 1) {
8464                 int mid = (lo + hi) / 2;
8465                 sector_t a = BB_OFFSET(p[mid]);
8466                 if (a <= s)
8467                         lo = mid;
8468                 else
8469                         hi = mid;
8470         }
8471         if (hi > lo && BB_OFFSET(p[lo]) > s)
8472                 hi = lo;
8473
8474         if (hi > lo) {
8475                 /* we found a range that might merge with the start
8476                  * of our new range
8477                  */
8478                 sector_t a = BB_OFFSET(p[lo]);
8479                 sector_t e = a + BB_LEN(p[lo]);
8480                 int ack = BB_ACK(p[lo]);
8481                 if (e >= s) {
8482                         /* Yes, we can merge with a previous range */
8483                         if (s == a && s + sectors >= e)
8484                                 /* new range covers old */
8485                                 ack = acknowledged;
8486                         else
8487                                 ack = ack && acknowledged;
8488
8489                         if (e < s + sectors)
8490                                 e = s + sectors;
8491                         if (e - a <= BB_MAX_LEN) {
8492                                 p[lo] = BB_MAKE(a, e-a, ack);
8493                                 s = e;
8494                         } else {
8495                                 /* does not all fit in one range,
8496                                  * make p[lo] maximal
8497                                  */
8498                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8499                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8500                                 s = a + BB_MAX_LEN;
8501                         }
8502                         sectors = e - s;
8503                 }
8504         }
8505         if (sectors && hi < bb->count) {
8506                 /* 'hi' points to the first range that starts after 's'.
8507                  * Maybe we can merge with the start of that range */
8508                 sector_t a = BB_OFFSET(p[hi]);
8509                 sector_t e = a + BB_LEN(p[hi]);
8510                 int ack = BB_ACK(p[hi]);
8511                 if (a <= s + sectors) {
8512                         /* merging is possible */
8513                         if (e <= s + sectors) {
8514                                 /* full overlap */
8515                                 e = s + sectors;
8516                                 ack = acknowledged;
8517                         } else
8518                                 ack = ack && acknowledged;
8519
8520                         a = s;
8521                         if (e - a <= BB_MAX_LEN) {
8522                                 p[hi] = BB_MAKE(a, e-a, ack);
8523                                 s = e;
8524                         } else {
8525                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8526                                 s = a + BB_MAX_LEN;
8527                         }
8528                         sectors = e - s;
8529                         lo = hi;
8530                         hi++;
8531                 }
8532         }
8533         if (sectors == 0 && hi < bb->count) {
8534                 /* we might be able to combine lo and hi */
8535                 /* Note: 's' is at the end of 'lo' */
8536                 sector_t a = BB_OFFSET(p[hi]);
8537                 int lolen = BB_LEN(p[lo]);
8538                 int hilen = BB_LEN(p[hi]);
8539                 int newlen = lolen + hilen - (s - a);
8540                 if (s >= a && newlen < BB_MAX_LEN) {
8541                         /* yes, we can combine them */
8542                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8543                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8544                         memmove(p + hi, p + hi + 1,
8545                                 (bb->count - hi - 1) * 8);
8546                         bb->count--;
8547                 }
8548         }
8549         while (sectors) {
8550                 /* didn't merge (it all).
8551                  * Need to add a range just before 'hi' */
8552                 if (bb->count >= MD_MAX_BADBLOCKS) {
8553                         /* No room for more */
8554                         rv = 0;
8555                         break;
8556                 } else {
8557                         int this_sectors = sectors;
8558                         memmove(p + hi + 1, p + hi,
8559                                 (bb->count - hi) * 8);
8560                         bb->count++;
8561
8562                         if (this_sectors > BB_MAX_LEN)
8563                                 this_sectors = BB_MAX_LEN;
8564                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8565                         sectors -= this_sectors;
8566                         s += this_sectors;
8567                 }
8568         }
8569
8570         bb->changed = 1;
8571         if (!acknowledged)
8572                 bb->unacked_exist = 1;
8573         write_sequnlock_irqrestore(&bb->lock, flags);
8574
8575         return rv;
8576 }
8577
8578 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8579                        int is_new)
8580 {
8581         int rv;
8582         if (is_new)
8583                 s += rdev->new_data_offset;
8584         else
8585                 s += rdev->data_offset;
8586         rv = md_set_badblocks(&rdev->badblocks,
8587                               s, sectors, 0);
8588         if (rv) {
8589                 /* Make sure they get written out promptly */
8590                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8591                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8592                 md_wakeup_thread(rdev->mddev->thread);
8593         }
8594         return rv;
8595 }
8596 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8597
8598 /*
8599  * Remove a range of bad blocks from the table.
8600  * This may involve extending the table if we spilt a region,
8601  * but it must not fail.  So if the table becomes full, we just
8602  * drop the remove request.
8603  */
8604 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8605 {
8606         u64 *p;
8607         int lo, hi;
8608         sector_t target = s + sectors;
8609         int rv = 0;
8610
8611         if (bb->shift > 0) {
8612                 /* When clearing we round the start up and the end down.
8613                  * This should not matter as the shift should align with
8614                  * the block size and no rounding should ever be needed.
8615                  * However it is better the think a block is bad when it
8616                  * isn't than to think a block is not bad when it is.
8617                  */
8618                 s += (1<<bb->shift) - 1;
8619                 s >>= bb->shift;
8620                 target >>= bb->shift;
8621                 sectors = target - s;
8622         }
8623
8624         write_seqlock_irq(&bb->lock);
8625
8626         p = bb->page;
8627         lo = 0;
8628         hi = bb->count;
8629         /* Find the last range that starts before 'target' */
8630         while (hi - lo > 1) {
8631                 int mid = (lo + hi) / 2;
8632                 sector_t a = BB_OFFSET(p[mid]);
8633                 if (a < target)
8634                         lo = mid;
8635                 else
8636                         hi = mid;
8637         }
8638         if (hi > lo) {
8639                 /* p[lo] is the last range that could overlap the
8640                  * current range.  Earlier ranges could also overlap,
8641                  * but only this one can overlap the end of the range.
8642                  */
8643                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8644                         /* Partial overlap, leave the tail of this range */
8645                         int ack = BB_ACK(p[lo]);
8646                         sector_t a = BB_OFFSET(p[lo]);
8647                         sector_t end = a + BB_LEN(p[lo]);
8648
8649                         if (a < s) {
8650                                 /* we need to split this range */
8651                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8652                                         rv = -ENOSPC;
8653                                         goto out;
8654                                 }
8655                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8656                                 bb->count++;
8657                                 p[lo] = BB_MAKE(a, s-a, ack);
8658                                 lo++;
8659                         }
8660                         p[lo] = BB_MAKE(target, end - target, ack);
8661                         /* there is no longer an overlap */
8662                         hi = lo;
8663                         lo--;
8664                 }
8665                 while (lo >= 0 &&
8666                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8667                         /* This range does overlap */
8668                         if (BB_OFFSET(p[lo]) < s) {
8669                                 /* Keep the early parts of this range. */
8670                                 int ack = BB_ACK(p[lo]);
8671                                 sector_t start = BB_OFFSET(p[lo]);
8672                                 p[lo] = BB_MAKE(start, s - start, ack);
8673                                 /* now low doesn't overlap, so.. */
8674                                 break;
8675                         }
8676                         lo--;
8677                 }
8678                 /* 'lo' is strictly before, 'hi' is strictly after,
8679                  * anything between needs to be discarded
8680                  */
8681                 if (hi - lo > 1) {
8682                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8683                         bb->count -= (hi - lo - 1);
8684                 }
8685         }
8686
8687         bb->changed = 1;
8688 out:
8689         write_sequnlock_irq(&bb->lock);
8690         return rv;
8691 }
8692
8693 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8694                          int is_new)
8695 {
8696         if (is_new)
8697                 s += rdev->new_data_offset;
8698         else
8699                 s += rdev->data_offset;
8700         return md_clear_badblocks(&rdev->badblocks,
8701                                   s, sectors);
8702 }
8703 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8704
8705 /*
8706  * Acknowledge all bad blocks in a list.
8707  * This only succeeds if ->changed is clear.  It is used by
8708  * in-kernel metadata updates
8709  */
8710 void md_ack_all_badblocks(struct badblocks *bb)
8711 {
8712         if (bb->page == NULL || bb->changed)
8713                 /* no point even trying */
8714                 return;
8715         write_seqlock_irq(&bb->lock);
8716
8717         if (bb->changed == 0 && bb->unacked_exist) {
8718                 u64 *p = bb->page;
8719                 int i;
8720                 for (i = 0; i < bb->count ; i++) {
8721                         if (!BB_ACK(p[i])) {
8722                                 sector_t start = BB_OFFSET(p[i]);
8723                                 int len = BB_LEN(p[i]);
8724                                 p[i] = BB_MAKE(start, len, 1);
8725                         }
8726                 }
8727                 bb->unacked_exist = 0;
8728         }
8729         write_sequnlock_irq(&bb->lock);
8730 }
8731 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8732
8733 /* sysfs access to bad-blocks list.
8734  * We present two files.
8735  * 'bad-blocks' lists sector numbers and lengths of ranges that
8736  *    are recorded as bad.  The list is truncated to fit within
8737  *    the one-page limit of sysfs.
8738  *    Writing "sector length" to this file adds an acknowledged
8739  *    bad block list.
8740  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8741  *    been acknowledged.  Writing to this file adds bad blocks
8742  *    without acknowledging them.  This is largely for testing.
8743  */
8744
8745 static ssize_t
8746 badblocks_show(struct badblocks *bb, char *page, int unack)
8747 {
8748         size_t len;
8749         int i;
8750         u64 *p = bb->page;
8751         unsigned seq;
8752
8753         if (bb->shift < 0)
8754                 return 0;
8755
8756 retry:
8757         seq = read_seqbegin(&bb->lock);
8758
8759         len = 0;
8760         i = 0;
8761
8762         while (len < PAGE_SIZE && i < bb->count) {
8763                 sector_t s = BB_OFFSET(p[i]);
8764                 unsigned int length = BB_LEN(p[i]);
8765                 int ack = BB_ACK(p[i]);
8766                 i++;
8767
8768                 if (unack && ack)
8769                         continue;
8770
8771                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8772                                 (unsigned long long)s << bb->shift,
8773                                 length << bb->shift);
8774         }
8775         if (unack && len == 0)
8776                 bb->unacked_exist = 0;
8777
8778         if (read_seqretry(&bb->lock, seq))
8779                 goto retry;
8780
8781         return len;
8782 }
8783
8784 #define DO_DEBUG 1
8785
8786 static ssize_t
8787 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8788 {
8789         unsigned long long sector;
8790         int length;
8791         char newline;
8792 #ifdef DO_DEBUG
8793         /* Allow clearing via sysfs *only* for testing/debugging.
8794          * Normally only a successful write may clear a badblock
8795          */
8796         int clear = 0;
8797         if (page[0] == '-') {
8798                 clear = 1;
8799                 page++;
8800         }
8801 #endif /* DO_DEBUG */
8802
8803         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8804         case 3:
8805                 if (newline != '\n')
8806                         return -EINVAL;
8807         case 2:
8808                 if (length <= 0)
8809                         return -EINVAL;
8810                 break;
8811         default:
8812                 return -EINVAL;
8813         }
8814
8815 #ifdef DO_DEBUG
8816         if (clear) {
8817                 md_clear_badblocks(bb, sector, length);
8818                 return len;
8819         }
8820 #endif /* DO_DEBUG */
8821         if (md_set_badblocks(bb, sector, length, !unack))
8822                 return len;
8823         else
8824                 return -ENOSPC;
8825 }
8826
8827 static int md_notify_reboot(struct notifier_block *this,
8828                             unsigned long code, void *x)
8829 {
8830         struct list_head *tmp;
8831         struct mddev *mddev;
8832         int need_delay = 0;
8833
8834         for_each_mddev(mddev, tmp) {
8835                 if (mddev_trylock(mddev)) {
8836                         if (mddev->pers)
8837                                 __md_stop_writes(mddev);
8838                         if (mddev->persistent)
8839                                 mddev->safemode = 2;
8840                         mddev_unlock(mddev);
8841                 }
8842                 need_delay = 1;
8843         }
8844         /*
8845          * certain more exotic SCSI devices are known to be
8846          * volatile wrt too early system reboots. While the
8847          * right place to handle this issue is the given
8848          * driver, we do want to have a safe RAID driver ...
8849          */
8850         if (need_delay)
8851                 mdelay(1000*1);
8852
8853         return NOTIFY_DONE;
8854 }
8855
8856 static struct notifier_block md_notifier = {
8857         .notifier_call  = md_notify_reboot,
8858         .next           = NULL,
8859         .priority       = INT_MAX, /* before any real devices */
8860 };
8861
8862 static void md_geninit(void)
8863 {
8864         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8865
8866         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8867 }
8868
8869 static int __init md_init(void)
8870 {
8871         int ret = -ENOMEM;
8872
8873         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8874         if (!md_wq)
8875                 goto err_wq;
8876
8877         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8878         if (!md_misc_wq)
8879                 goto err_misc_wq;
8880
8881         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8882                 goto err_md;
8883
8884         if ((ret = register_blkdev(0, "mdp")) < 0)
8885                 goto err_mdp;
8886         mdp_major = ret;
8887
8888         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8889                             md_probe, NULL, NULL);
8890         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8891                             md_probe, NULL, NULL);
8892
8893         register_reboot_notifier(&md_notifier);
8894         raid_table_header = register_sysctl_table(raid_root_table);
8895
8896         md_geninit();
8897         return 0;
8898
8899 err_mdp:
8900         unregister_blkdev(MD_MAJOR, "md");
8901 err_md:
8902         destroy_workqueue(md_misc_wq);
8903 err_misc_wq:
8904         destroy_workqueue(md_wq);
8905 err_wq:
8906         return ret;
8907 }
8908
8909 void md_reload_sb(struct mddev *mddev)
8910 {
8911         struct md_rdev *rdev, *tmp;
8912
8913         rdev_for_each_safe(rdev, tmp, mddev) {
8914                 rdev->sb_loaded = 0;
8915                 ClearPageUptodate(rdev->sb_page);
8916         }
8917         mddev->raid_disks = 0;
8918         analyze_sbs(mddev);
8919         rdev_for_each_safe(rdev, tmp, mddev) {
8920                 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8921                 /* since we don't write to faulty devices, we figure out if the
8922                  *  disk is faulty by comparing events
8923                  */
8924                 if (mddev->events > sb->events)
8925                         set_bit(Faulty, &rdev->flags);
8926         }
8927
8928 }
8929 EXPORT_SYMBOL(md_reload_sb);
8930
8931 #ifndef MODULE
8932
8933 /*
8934  * Searches all registered partitions for autorun RAID arrays
8935  * at boot time.
8936  */
8937
8938 static LIST_HEAD(all_detected_devices);
8939 struct detected_devices_node {
8940         struct list_head list;
8941         dev_t dev;
8942 };
8943
8944 void md_autodetect_dev(dev_t dev)
8945 {
8946         struct detected_devices_node *node_detected_dev;
8947
8948         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8949         if (node_detected_dev) {
8950                 node_detected_dev->dev = dev;
8951                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8952         } else {
8953                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8954                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8955         }
8956 }
8957
8958 static void autostart_arrays(int part)
8959 {
8960         struct md_rdev *rdev;
8961         struct detected_devices_node *node_detected_dev;
8962         dev_t dev;
8963         int i_scanned, i_passed;
8964
8965         i_scanned = 0;
8966         i_passed = 0;
8967
8968         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8969
8970         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8971                 i_scanned++;
8972                 node_detected_dev = list_entry(all_detected_devices.next,
8973                                         struct detected_devices_node, list);
8974                 list_del(&node_detected_dev->list);
8975                 dev = node_detected_dev->dev;
8976                 kfree(node_detected_dev);
8977                 rdev = md_import_device(dev,0, 90);
8978                 if (IS_ERR(rdev))
8979                         continue;
8980
8981                 if (test_bit(Faulty, &rdev->flags))
8982                         continue;
8983
8984                 set_bit(AutoDetected, &rdev->flags);
8985                 list_add(&rdev->same_set, &pending_raid_disks);
8986                 i_passed++;
8987         }
8988
8989         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8990                                                 i_scanned, i_passed);
8991
8992         autorun_devices(part);
8993 }
8994
8995 #endif /* !MODULE */
8996
8997 static __exit void md_exit(void)
8998 {
8999         struct mddev *mddev;
9000         struct list_head *tmp;
9001         int delay = 1;
9002
9003         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9004         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9005
9006         unregister_blkdev(MD_MAJOR,"md");
9007         unregister_blkdev(mdp_major, "mdp");
9008         unregister_reboot_notifier(&md_notifier);
9009         unregister_sysctl_table(raid_table_header);
9010
9011         /* We cannot unload the modules while some process is
9012          * waiting for us in select() or poll() - wake them up
9013          */
9014         md_unloading = 1;
9015         while (waitqueue_active(&md_event_waiters)) {
9016                 /* not safe to leave yet */
9017                 wake_up(&md_event_waiters);
9018                 msleep(delay);
9019                 delay += delay;
9020         }
9021         remove_proc_entry("mdstat", NULL);
9022
9023         for_each_mddev(mddev, tmp) {
9024                 export_array(mddev);
9025                 mddev->hold_active = 0;
9026         }
9027         destroy_workqueue(md_misc_wq);
9028         destroy_workqueue(md_wq);
9029 }
9030
9031 subsys_initcall(md_init);
9032 module_exit(md_exit)
9033
9034 static int get_ro(char *buffer, struct kernel_param *kp)
9035 {
9036         return sprintf(buffer, "%d", start_readonly);
9037 }
9038 static int set_ro(const char *val, struct kernel_param *kp)
9039 {
9040         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9041 }
9042
9043 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9044 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9045 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9046
9047 MODULE_LICENSE("GPL");
9048 MODULE_DESCRIPTION("MD RAID framework");
9049 MODULE_ALIAS("md");
9050 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);