]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: sync sync_completed has correct value as recovery finishes.
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         if (mddev == NULL || mddev->pers == NULL
261             || !mddev->ready) {
262                 bio_io_error(bio);
263                 return;
264         }
265         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267                 return;
268         }
269         smp_rmb(); /* Ensure implications of  'active' are visible */
270         rcu_read_lock();
271         if (mddev->suspended) {
272                 DEFINE_WAIT(__wait);
273                 for (;;) {
274                         prepare_to_wait(&mddev->sb_wait, &__wait,
275                                         TASK_UNINTERRUPTIBLE);
276                         if (!mddev->suspended)
277                                 break;
278                         rcu_read_unlock();
279                         schedule();
280                         rcu_read_lock();
281                 }
282                 finish_wait(&mddev->sb_wait, &__wait);
283         }
284         atomic_inc(&mddev->active_io);
285         rcu_read_unlock();
286
287         /*
288          * save the sectors now since our bio can
289          * go away inside make_request
290          */
291         sectors = bio_sectors(bio);
292         mddev->pers->make_request(mddev, bio);
293
294         cpu = part_stat_lock();
295         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297         part_stat_unlock();
298
299         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300                 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311         BUG_ON(mddev->suspended);
312         mddev->suspended = 1;
313         synchronize_rcu();
314         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315         mddev->pers->quiesce(mddev, 1);
316
317         del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323         mddev->suspended = 0;
324         wake_up(&mddev->sb_wait);
325         mddev->pers->quiesce(mddev, 0);
326
327         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328         md_wakeup_thread(mddev->thread);
329         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335         struct md_personality *pers = mddev->pers;
336         int ret = 0;
337
338         rcu_read_lock();
339         if (mddev->suspended)
340                 ret = 1;
341         else if (pers && pers->congested)
342                 ret = pers->congested(mddev, bits);
343         rcu_read_unlock();
344         return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349         struct mddev *mddev = data;
350         return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354                              struct bvec_merge_data *bvm,
355                              struct bio_vec *biovec)
356 {
357         struct mddev *mddev = q->queuedata;
358         int ret;
359         rcu_read_lock();
360         if (mddev->suspended) {
361                 /* Must always allow one vec */
362                 if (bvm->bi_size == 0)
363                         ret = biovec->bv_len;
364                 else
365                         ret = 0;
366         } else {
367                 struct md_personality *pers = mddev->pers;
368                 if (pers && pers->mergeable_bvec)
369                         ret = pers->mergeable_bvec(mddev, bvm, biovec);
370                 else
371                         ret = biovec->bv_len;
372         }
373         rcu_read_unlock();
374         return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382         struct md_rdev *rdev = bio->bi_private;
383         struct mddev *mddev = rdev->mddev;
384
385         rdev_dec_pending(rdev, mddev);
386
387         if (atomic_dec_and_test(&mddev->flush_pending)) {
388                 /* The pre-request flush has finished */
389                 queue_work(md_wq, &mddev->flush_work);
390         }
391         bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399         struct md_rdev *rdev;
400
401         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402         atomic_set(&mddev->flush_pending, 1);
403         rcu_read_lock();
404         rdev_for_each_rcu(rdev, mddev)
405                 if (rdev->raid_disk >= 0 &&
406                     !test_bit(Faulty, &rdev->flags)) {
407                         /* Take two references, one is dropped
408                          * when request finishes, one after
409                          * we reclaim rcu_read_lock
410                          */
411                         struct bio *bi;
412                         atomic_inc(&rdev->nr_pending);
413                         atomic_inc(&rdev->nr_pending);
414                         rcu_read_unlock();
415                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416                         bi->bi_end_io = md_end_flush;
417                         bi->bi_private = rdev;
418                         bi->bi_bdev = rdev->bdev;
419                         atomic_inc(&mddev->flush_pending);
420                         submit_bio(WRITE_FLUSH, bi);
421                         rcu_read_lock();
422                         rdev_dec_pending(rdev, mddev);
423                 }
424         rcu_read_unlock();
425         if (atomic_dec_and_test(&mddev->flush_pending))
426                 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432         struct bio *bio = mddev->flush_bio;
433
434         if (bio->bi_iter.bi_size == 0)
435                 /* an empty barrier - all done */
436                 bio_endio(bio, 0);
437         else {
438                 bio->bi_rw &= ~REQ_FLUSH;
439                 mddev->pers->make_request(mddev, bio);
440         }
441
442         mddev->flush_bio = NULL;
443         wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448         spin_lock_irq(&mddev->lock);
449         wait_event_lock_irq(mddev->sb_wait,
450                             !mddev->flush_bio,
451                             mddev->lock);
452         mddev->flush_bio = bio;
453         spin_unlock_irq(&mddev->lock);
454
455         INIT_WORK(&mddev->flush_work, submit_flushes);
456         queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462         struct mddev *mddev = cb->data;
463         md_wakeup_thread(mddev->thread);
464         kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470         atomic_inc(&mddev->active);
471         return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478         struct bio_set *bs = NULL;
479
480         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481                 return;
482         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483             mddev->ctime == 0 && !mddev->hold_active) {
484                 /* Array is not configured at all, and not held active,
485                  * so destroy it */
486                 list_del_init(&mddev->all_mddevs);
487                 bs = mddev->bio_set;
488                 mddev->bio_set = NULL;
489                 if (mddev->gendisk) {
490                         /* We did a probe so need to clean up.  Call
491                          * queue_work inside the spinlock so that
492                          * flush_workqueue() after mddev_find will
493                          * succeed in waiting for the work to be done.
494                          */
495                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496                         queue_work(md_misc_wq, &mddev->del_work);
497                 } else
498                         kfree(mddev);
499         }
500         spin_unlock(&all_mddevs_lock);
501         if (bs)
502                 bioset_free(bs);
503 }
504
505 void mddev_init(struct mddev *mddev)
506 {
507         mutex_init(&mddev->open_mutex);
508         mutex_init(&mddev->reconfig_mutex);
509         mutex_init(&mddev->bitmap_info.mutex);
510         INIT_LIST_HEAD(&mddev->disks);
511         INIT_LIST_HEAD(&mddev->all_mddevs);
512         init_timer(&mddev->safemode_timer);
513         atomic_set(&mddev->active, 1);
514         atomic_set(&mddev->openers, 0);
515         atomic_set(&mddev->active_io, 0);
516         spin_lock_init(&mddev->lock);
517         atomic_set(&mddev->flush_pending, 0);
518         init_waitqueue_head(&mddev->sb_wait);
519         init_waitqueue_head(&mddev->recovery_wait);
520         mddev->reshape_position = MaxSector;
521         mddev->reshape_backwards = 0;
522         mddev->last_sync_action = "none";
523         mddev->resync_min = 0;
524         mddev->resync_max = MaxSector;
525         mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528
529 static struct mddev *mddev_find(dev_t unit)
530 {
531         struct mddev *mddev, *new = NULL;
532
533         if (unit && MAJOR(unit) != MD_MAJOR)
534                 unit &= ~((1<<MdpMinorShift)-1);
535
536  retry:
537         spin_lock(&all_mddevs_lock);
538
539         if (unit) {
540                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541                         if (mddev->unit == unit) {
542                                 mddev_get(mddev);
543                                 spin_unlock(&all_mddevs_lock);
544                                 kfree(new);
545                                 return mddev;
546                         }
547
548                 if (new) {
549                         list_add(&new->all_mddevs, &all_mddevs);
550                         spin_unlock(&all_mddevs_lock);
551                         new->hold_active = UNTIL_IOCTL;
552                         return new;
553                 }
554         } else if (new) {
555                 /* find an unused unit number */
556                 static int next_minor = 512;
557                 int start = next_minor;
558                 int is_free = 0;
559                 int dev = 0;
560                 while (!is_free) {
561                         dev = MKDEV(MD_MAJOR, next_minor);
562                         next_minor++;
563                         if (next_minor > MINORMASK)
564                                 next_minor = 0;
565                         if (next_minor == start) {
566                                 /* Oh dear, all in use. */
567                                 spin_unlock(&all_mddevs_lock);
568                                 kfree(new);
569                                 return NULL;
570                         }
571
572                         is_free = 1;
573                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574                                 if (mddev->unit == dev) {
575                                         is_free = 0;
576                                         break;
577                                 }
578                 }
579                 new->unit = dev;
580                 new->md_minor = MINOR(dev);
581                 new->hold_active = UNTIL_STOP;
582                 list_add(&new->all_mddevs, &all_mddevs);
583                 spin_unlock(&all_mddevs_lock);
584                 return new;
585         }
586         spin_unlock(&all_mddevs_lock);
587
588         new = kzalloc(sizeof(*new), GFP_KERNEL);
589         if (!new)
590                 return NULL;
591
592         new->unit = unit;
593         if (MAJOR(unit) == MD_MAJOR)
594                 new->md_minor = MINOR(unit);
595         else
596                 new->md_minor = MINOR(unit) >> MdpMinorShift;
597
598         mddev_init(new);
599
600         goto retry;
601 }
602
603 static struct attribute_group md_redundancy_group;
604
605 void mddev_unlock(struct mddev *mddev)
606 {
607         if (mddev->to_remove) {
608                 /* These cannot be removed under reconfig_mutex as
609                  * an access to the files will try to take reconfig_mutex
610                  * while holding the file unremovable, which leads to
611                  * a deadlock.
612                  * So hold set sysfs_active while the remove in happeing,
613                  * and anything else which might set ->to_remove or my
614                  * otherwise change the sysfs namespace will fail with
615                  * -EBUSY if sysfs_active is still set.
616                  * We set sysfs_active under reconfig_mutex and elsewhere
617                  * test it under the same mutex to ensure its correct value
618                  * is seen.
619                  */
620                 struct attribute_group *to_remove = mddev->to_remove;
621                 mddev->to_remove = NULL;
622                 mddev->sysfs_active = 1;
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625                 if (mddev->kobj.sd) {
626                         if (to_remove != &md_redundancy_group)
627                                 sysfs_remove_group(&mddev->kobj, to_remove);
628                         if (mddev->pers == NULL ||
629                             mddev->pers->sync_request == NULL) {
630                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631                                 if (mddev->sysfs_action)
632                                         sysfs_put(mddev->sysfs_action);
633                                 mddev->sysfs_action = NULL;
634                         }
635                 }
636                 mddev->sysfs_active = 0;
637         } else
638                 mutex_unlock(&mddev->reconfig_mutex);
639
640         /* As we've dropped the mutex we need a spinlock to
641          * make sure the thread doesn't disappear
642          */
643         spin_lock(&pers_lock);
644         md_wakeup_thread(mddev->thread);
645         spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651         struct md_rdev *rdev;
652
653         rdev_for_each_rcu(rdev, mddev)
654                 if (rdev->desc_nr == nr)
655                         return rdev;
656
657         return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663         struct md_rdev *rdev;
664
665         rdev_for_each(rdev, mddev)
666                 if (rdev->bdev->bd_dev == dev)
667                         return rdev;
668
669         return NULL;
670 }
671
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674         struct md_rdev *rdev;
675
676         rdev_for_each_rcu(rdev, mddev)
677                 if (rdev->bdev->bd_dev == dev)
678                         return rdev;
679
680         return NULL;
681 }
682
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685         struct md_personality *pers;
686         list_for_each_entry(pers, &pers_list, list) {
687                 if (level != LEVEL_NONE && pers->level == level)
688                         return pers;
689                 if (strcmp(pers->name, clevel)==0)
690                         return pers;
691         }
692         return NULL;
693 }
694
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699         return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704         rdev->sb_page = alloc_page(GFP_KERNEL);
705         if (!rdev->sb_page) {
706                 printk(KERN_ALERT "md: out of memory.\n");
707                 return -ENOMEM;
708         }
709
710         return 0;
711 }
712
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715         if (rdev->sb_page) {
716                 put_page(rdev->sb_page);
717                 rdev->sb_loaded = 0;
718                 rdev->sb_page = NULL;
719                 rdev->sb_start = 0;
720                 rdev->sectors = 0;
721         }
722         if (rdev->bb_page) {
723                 put_page(rdev->bb_page);
724                 rdev->bb_page = NULL;
725         }
726         kfree(rdev->badblocks.page);
727         rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730
731 static void super_written(struct bio *bio, int error)
732 {
733         struct md_rdev *rdev = bio->bi_private;
734         struct mddev *mddev = rdev->mddev;
735
736         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737                 printk("md: super_written gets error=%d, uptodate=%d\n",
738                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740                 md_error(mddev, rdev);
741         }
742
743         if (atomic_dec_and_test(&mddev->pending_writes))
744                 wake_up(&mddev->sb_wait);
745         bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749                    sector_t sector, int size, struct page *page)
750 {
751         /* write first size bytes of page to sector of rdev
752          * Increment mddev->pending_writes before returning
753          * and decrement it on completion, waking up sb_wait
754          * if zero is reached.
755          * If an error occurred, call md_error
756          */
757         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760         bio->bi_iter.bi_sector = sector;
761         bio_add_page(bio, page, size, 0);
762         bio->bi_private = rdev;
763         bio->bi_end_io = super_written;
764
765         atomic_inc(&mddev->pending_writes);
766         submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771         /* wait for all superblock writes that were scheduled to complete */
772         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776                  struct page *page, int rw, bool metadata_op)
777 {
778         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779         int ret;
780
781         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782                 rdev->meta_bdev : rdev->bdev;
783         if (metadata_op)
784                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785         else if (rdev->mddev->reshape_position != MaxSector &&
786                  (rdev->mddev->reshape_backwards ==
787                   (sector >= rdev->mddev->reshape_position)))
788                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789         else
790                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791         bio_add_page(bio, page, size, 0);
792         submit_bio_wait(rw, bio);
793
794         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795         bio_put(bio);
796         return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802         char b[BDEVNAME_SIZE];
803
804         if (rdev->sb_loaded)
805                 return 0;
806
807         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808                 goto fail;
809         rdev->sb_loaded = 1;
810         return 0;
811
812 fail:
813         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814                 bdevname(rdev->bdev,b));
815         return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820         return  sb1->set_uuid0 == sb2->set_uuid0 &&
821                 sb1->set_uuid1 == sb2->set_uuid1 &&
822                 sb1->set_uuid2 == sb2->set_uuid2 &&
823                 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828         int ret;
829         mdp_super_t *tmp1, *tmp2;
830
831         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834         if (!tmp1 || !tmp2) {
835                 ret = 0;
836                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837                 goto abort;
838         }
839
840         *tmp1 = *sb1;
841         *tmp2 = *sb2;
842
843         /*
844          * nr_disks is not constant
845          */
846         tmp1->nr_disks = 0;
847         tmp2->nr_disks = 0;
848
849         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851         kfree(tmp1);
852         kfree(tmp2);
853         return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858         csum = (csum & 0xffff) + (csum >> 16);
859         return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864         u64 newcsum = 0;
865         u32 *sb32 = (u32*)sb;
866         int i;
867         unsigned int disk_csum, csum;
868
869         disk_csum = sb->sb_csum;
870         sb->sb_csum = 0;
871
872         for (i = 0; i < MD_SB_BYTES/4 ; i++)
873                 newcsum += sb32[i];
874         csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877         /* This used to use csum_partial, which was wrong for several
878          * reasons including that different results are returned on
879          * different architectures.  It isn't critical that we get exactly
880          * the same return value as before (we always csum_fold before
881          * testing, and that removes any differences).  However as we
882          * know that csum_partial always returned a 16bit value on
883          * alphas, do a fold to maximise conformity to previous behaviour.
884          */
885         sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887         sb->sb_csum = disk_csum;
888 #endif
889         return csum;
890 }
891
892 /*
893  * Handle superblock details.
894  * We want to be able to handle multiple superblock formats
895  * so we have a common interface to them all, and an array of
896  * different handlers.
897  * We rely on user-space to write the initial superblock, and support
898  * reading and updating of superblocks.
899  * Interface methods are:
900  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901  *      loads and validates a superblock on dev.
902  *      if refdev != NULL, compare superblocks on both devices
903  *    Return:
904  *      0 - dev has a superblock that is compatible with refdev
905  *      1 - dev has a superblock that is compatible and newer than refdev
906  *          so dev should be used as the refdev in future
907  *     -EINVAL superblock incompatible or invalid
908  *     -othererror e.g. -EIO
909  *
910  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
911  *      Verify that dev is acceptable into mddev.
912  *       The first time, mddev->raid_disks will be 0, and data from
913  *       dev should be merged in.  Subsequent calls check that dev
914  *       is new enough.  Return 0 or -EINVAL
915  *
916  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
917  *     Update the superblock for rdev with data in mddev
918  *     This does not write to disc.
919  *
920  */
921
922 struct super_type  {
923         char                *name;
924         struct module       *owner;
925         int                 (*load_super)(struct md_rdev *rdev,
926                                           struct md_rdev *refdev,
927                                           int minor_version);
928         int                 (*validate_super)(struct mddev *mddev,
929                                               struct md_rdev *rdev);
930         void                (*sync_super)(struct mddev *mddev,
931                                           struct md_rdev *rdev);
932         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
933                                                 sector_t num_sectors);
934         int                 (*allow_new_offset)(struct md_rdev *rdev,
935                                                 unsigned long long new_offset);
936 };
937
938 /*
939  * Check that the given mddev has no bitmap.
940  *
941  * This function is called from the run method of all personalities that do not
942  * support bitmaps. It prints an error message and returns non-zero if mddev
943  * has a bitmap. Otherwise, it returns 0.
944  *
945  */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949                 return 0;
950         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951                 mdname(mddev), mddev->pers->name);
952         return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957  * load_super for 0.90.0
958  */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962         mdp_super_t *sb;
963         int ret;
964
965         /*
966          * Calculate the position of the superblock (512byte sectors),
967          * it's at the end of the disk.
968          *
969          * It also happens to be a multiple of 4Kb.
970          */
971         rdev->sb_start = calc_dev_sboffset(rdev);
972
973         ret = read_disk_sb(rdev, MD_SB_BYTES);
974         if (ret) return ret;
975
976         ret = -EINVAL;
977
978         bdevname(rdev->bdev, b);
979         sb = page_address(rdev->sb_page);
980
981         if (sb->md_magic != MD_SB_MAGIC) {
982                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983                        b);
984                 goto abort;
985         }
986
987         if (sb->major_version != 0 ||
988             sb->minor_version < 90 ||
989             sb->minor_version > 91) {
990                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991                         sb->major_version, sb->minor_version,
992                         b);
993                 goto abort;
994         }
995
996         if (sb->raid_disks <= 0)
997                 goto abort;
998
999         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001                         b);
1002                 goto abort;
1003         }
1004
1005         rdev->preferred_minor = sb->md_minor;
1006         rdev->data_offset = 0;
1007         rdev->new_data_offset = 0;
1008         rdev->sb_size = MD_SB_BYTES;
1009         rdev->badblocks.shift = -1;
1010
1011         if (sb->level == LEVEL_MULTIPATH)
1012                 rdev->desc_nr = -1;
1013         else
1014                 rdev->desc_nr = sb->this_disk.number;
1015
1016         if (!refdev) {
1017                 ret = 1;
1018         } else {
1019                 __u64 ev1, ev2;
1020                 mdp_super_t *refsb = page_address(refdev->sb_page);
1021                 if (!uuid_equal(refsb, sb)) {
1022                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023                                 b, bdevname(refdev->bdev,b2));
1024                         goto abort;
1025                 }
1026                 if (!sb_equal(refsb, sb)) {
1027                         printk(KERN_WARNING "md: %s has same UUID"
1028                                " but different superblock to %s\n",
1029                                b, bdevname(refdev->bdev, b2));
1030                         goto abort;
1031                 }
1032                 ev1 = md_event(sb);
1033                 ev2 = md_event(refsb);
1034                 if (ev1 > ev2)
1035                         ret = 1;
1036                 else
1037                         ret = 0;
1038         }
1039         rdev->sectors = rdev->sb_start;
1040         /* Limit to 4TB as metadata cannot record more than that.
1041          * (not needed for Linear and RAID0 as metadata doesn't
1042          * record this size)
1043          */
1044         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045                 rdev->sectors = (2ULL << 32) - 2;
1046
1047         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048                 /* "this cannot possibly happen" ... */
1049                 ret = -EINVAL;
1050
1051  abort:
1052         return ret;
1053 }
1054
1055 /*
1056  * validate_super for 0.90.0
1057  */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060         mdp_disk_t *desc;
1061         mdp_super_t *sb = page_address(rdev->sb_page);
1062         __u64 ev1 = md_event(sb);
1063
1064         rdev->raid_disk = -1;
1065         clear_bit(Faulty, &rdev->flags);
1066         clear_bit(In_sync, &rdev->flags);
1067         clear_bit(Bitmap_sync, &rdev->flags);
1068         clear_bit(WriteMostly, &rdev->flags);
1069
1070         if (mddev->raid_disks == 0) {
1071                 mddev->major_version = 0;
1072                 mddev->minor_version = sb->minor_version;
1073                 mddev->patch_version = sb->patch_version;
1074                 mddev->external = 0;
1075                 mddev->chunk_sectors = sb->chunk_size >> 9;
1076                 mddev->ctime = sb->ctime;
1077                 mddev->utime = sb->utime;
1078                 mddev->level = sb->level;
1079                 mddev->clevel[0] = 0;
1080                 mddev->layout = sb->layout;
1081                 mddev->raid_disks = sb->raid_disks;
1082                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083                 mddev->events = ev1;
1084                 mddev->bitmap_info.offset = 0;
1085                 mddev->bitmap_info.space = 0;
1086                 /* bitmap can use 60 K after the 4K superblocks */
1087                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089                 mddev->reshape_backwards = 0;
1090
1091                 if (mddev->minor_version >= 91) {
1092                         mddev->reshape_position = sb->reshape_position;
1093                         mddev->delta_disks = sb->delta_disks;
1094                         mddev->new_level = sb->new_level;
1095                         mddev->new_layout = sb->new_layout;
1096                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097                         if (mddev->delta_disks < 0)
1098                                 mddev->reshape_backwards = 1;
1099                 } else {
1100                         mddev->reshape_position = MaxSector;
1101                         mddev->delta_disks = 0;
1102                         mddev->new_level = mddev->level;
1103                         mddev->new_layout = mddev->layout;
1104                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1105                 }
1106
1107                 if (sb->state & (1<<MD_SB_CLEAN))
1108                         mddev->recovery_cp = MaxSector;
1109                 else {
1110                         if (sb->events_hi == sb->cp_events_hi &&
1111                                 sb->events_lo == sb->cp_events_lo) {
1112                                 mddev->recovery_cp = sb->recovery_cp;
1113                         } else
1114                                 mddev->recovery_cp = 0;
1115                 }
1116
1117                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122                 mddev->max_disks = MD_SB_DISKS;
1123
1124                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125                     mddev->bitmap_info.file == NULL) {
1126                         mddev->bitmap_info.offset =
1127                                 mddev->bitmap_info.default_offset;
1128                         mddev->bitmap_info.space =
1129                                 mddev->bitmap_info.default_space;
1130                 }
1131
1132         } else if (mddev->pers == NULL) {
1133                 /* Insist on good event counter while assembling, except
1134                  * for spares (which don't need an event count) */
1135                 ++ev1;
1136                 if (sb->disks[rdev->desc_nr].state & (
1137                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138                         if (ev1 < mddev->events)
1139                                 return -EINVAL;
1140         } else if (mddev->bitmap) {
1141                 /* if adding to array with a bitmap, then we can accept an
1142                  * older device ... but not too old.
1143                  */
1144                 if (ev1 < mddev->bitmap->events_cleared)
1145                         return 0;
1146                 if (ev1 < mddev->events)
1147                         set_bit(Bitmap_sync, &rdev->flags);
1148         } else {
1149                 if (ev1 < mddev->events)
1150                         /* just a hot-add of a new device, leave raid_disk at -1 */
1151                         return 0;
1152         }
1153
1154         if (mddev->level != LEVEL_MULTIPATH) {
1155                 desc = sb->disks + rdev->desc_nr;
1156
1157                 if (desc->state & (1<<MD_DISK_FAULTY))
1158                         set_bit(Faulty, &rdev->flags);
1159                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160                             desc->raid_disk < mddev->raid_disks */) {
1161                         set_bit(In_sync, &rdev->flags);
1162                         rdev->raid_disk = desc->raid_disk;
1163                         rdev->saved_raid_disk = desc->raid_disk;
1164                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165                         /* active but not in sync implies recovery up to
1166                          * reshape position.  We don't know exactly where
1167                          * that is, so set to zero for now */
1168                         if (mddev->minor_version >= 91) {
1169                                 rdev->recovery_offset = 0;
1170                                 rdev->raid_disk = desc->raid_disk;
1171                         }
1172                 }
1173                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174                         set_bit(WriteMostly, &rdev->flags);
1175         } else /* MULTIPATH are always insync */
1176                 set_bit(In_sync, &rdev->flags);
1177         return 0;
1178 }
1179
1180 /*
1181  * sync_super for 0.90.0
1182  */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185         mdp_super_t *sb;
1186         struct md_rdev *rdev2;
1187         int next_spare = mddev->raid_disks;
1188
1189         /* make rdev->sb match mddev data..
1190          *
1191          * 1/ zero out disks
1192          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193          * 3/ any empty disks < next_spare become removed
1194          *
1195          * disks[0] gets initialised to REMOVED because
1196          * we cannot be sure from other fields if it has
1197          * been initialised or not.
1198          */
1199         int i;
1200         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202         rdev->sb_size = MD_SB_BYTES;
1203
1204         sb = page_address(rdev->sb_page);
1205
1206         memset(sb, 0, sizeof(*sb));
1207
1208         sb->md_magic = MD_SB_MAGIC;
1209         sb->major_version = mddev->major_version;
1210         sb->patch_version = mddev->patch_version;
1211         sb->gvalid_words  = 0; /* ignored */
1212         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217         sb->ctime = mddev->ctime;
1218         sb->level = mddev->level;
1219         sb->size = mddev->dev_sectors / 2;
1220         sb->raid_disks = mddev->raid_disks;
1221         sb->md_minor = mddev->md_minor;
1222         sb->not_persistent = 0;
1223         sb->utime = mddev->utime;
1224         sb->state = 0;
1225         sb->events_hi = (mddev->events>>32);
1226         sb->events_lo = (u32)mddev->events;
1227
1228         if (mddev->reshape_position == MaxSector)
1229                 sb->minor_version = 90;
1230         else {
1231                 sb->minor_version = 91;
1232                 sb->reshape_position = mddev->reshape_position;
1233                 sb->new_level = mddev->new_level;
1234                 sb->delta_disks = mddev->delta_disks;
1235                 sb->new_layout = mddev->new_layout;
1236                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237         }
1238         mddev->minor_version = sb->minor_version;
1239         if (mddev->in_sync)
1240         {
1241                 sb->recovery_cp = mddev->recovery_cp;
1242                 sb->cp_events_hi = (mddev->events>>32);
1243                 sb->cp_events_lo = (u32)mddev->events;
1244                 if (mddev->recovery_cp == MaxSector)
1245                         sb->state = (1<< MD_SB_CLEAN);
1246         } else
1247                 sb->recovery_cp = 0;
1248
1249         sb->layout = mddev->layout;
1250         sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256         rdev_for_each(rdev2, mddev) {
1257                 mdp_disk_t *d;
1258                 int desc_nr;
1259                 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261                 if (rdev2->raid_disk >= 0 &&
1262                     sb->minor_version >= 91)
1263                         /* we have nowhere to store the recovery_offset,
1264                          * but if it is not below the reshape_position,
1265                          * we can piggy-back on that.
1266                          */
1267                         is_active = 1;
1268                 if (rdev2->raid_disk < 0 ||
1269                     test_bit(Faulty, &rdev2->flags))
1270                         is_active = 0;
1271                 if (is_active)
1272                         desc_nr = rdev2->raid_disk;
1273                 else
1274                         desc_nr = next_spare++;
1275                 rdev2->desc_nr = desc_nr;
1276                 d = &sb->disks[rdev2->desc_nr];
1277                 nr_disks++;
1278                 d->number = rdev2->desc_nr;
1279                 d->major = MAJOR(rdev2->bdev->bd_dev);
1280                 d->minor = MINOR(rdev2->bdev->bd_dev);
1281                 if (is_active)
1282                         d->raid_disk = rdev2->raid_disk;
1283                 else
1284                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1285                 if (test_bit(Faulty, &rdev2->flags))
1286                         d->state = (1<<MD_DISK_FAULTY);
1287                 else if (is_active) {
1288                         d->state = (1<<MD_DISK_ACTIVE);
1289                         if (test_bit(In_sync, &rdev2->flags))
1290                                 d->state |= (1<<MD_DISK_SYNC);
1291                         active++;
1292                         working++;
1293                 } else {
1294                         d->state = 0;
1295                         spare++;
1296                         working++;
1297                 }
1298                 if (test_bit(WriteMostly, &rdev2->flags))
1299                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300         }
1301         /* now set the "removed" and "faulty" bits on any missing devices */
1302         for (i=0 ; i < mddev->raid_disks ; i++) {
1303                 mdp_disk_t *d = &sb->disks[i];
1304                 if (d->state == 0 && d->number == 0) {
1305                         d->number = i;
1306                         d->raid_disk = i;
1307                         d->state = (1<<MD_DISK_REMOVED);
1308                         d->state |= (1<<MD_DISK_FAULTY);
1309                         failed++;
1310                 }
1311         }
1312         sb->nr_disks = nr_disks;
1313         sb->active_disks = active;
1314         sb->working_disks = working;
1315         sb->failed_disks = failed;
1316         sb->spare_disks = spare;
1317
1318         sb->this_disk = sb->disks[rdev->desc_nr];
1319         sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323  * rdev_size_change for 0.90.0
1324  */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329                 return 0; /* component must fit device */
1330         if (rdev->mddev->bitmap_info.offset)
1331                 return 0; /* can't move bitmap */
1332         rdev->sb_start = calc_dev_sboffset(rdev);
1333         if (!num_sectors || num_sectors > rdev->sb_start)
1334                 num_sectors = rdev->sb_start;
1335         /* Limit to 4TB as metadata cannot record more than that.
1336          * 4TB == 2^32 KB, or 2*2^32 sectors.
1337          */
1338         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339                 num_sectors = (2ULL << 32) - 2;
1340         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341                        rdev->sb_page);
1342         md_super_wait(rdev->mddev);
1343         return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349         /* non-zero offset changes not possible with v0.90 */
1350         return new_offset == 0;
1351 }
1352
1353 /*
1354  * version 1 superblock
1355  */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359         __le32 disk_csum;
1360         u32 csum;
1361         unsigned long long newcsum;
1362         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363         __le32 *isuper = (__le32*)sb;
1364
1365         disk_csum = sb->sb_csum;
1366         sb->sb_csum = 0;
1367         newcsum = 0;
1368         for (; size >= 4; size -= 4)
1369                 newcsum += le32_to_cpu(*isuper++);
1370
1371         if (size == 2)
1372                 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375         sb->sb_csum = disk_csum;
1376         return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380                             int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383         struct mdp_superblock_1 *sb;
1384         int ret;
1385         sector_t sb_start;
1386         sector_t sectors;
1387         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388         int bmask;
1389
1390         /*
1391          * Calculate the position of the superblock in 512byte sectors.
1392          * It is always aligned to a 4K boundary and
1393          * depeding on minor_version, it can be:
1394          * 0: At least 8K, but less than 12K, from end of device
1395          * 1: At start of device
1396          * 2: 4K from start of device.
1397          */
1398         switch(minor_version) {
1399         case 0:
1400                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401                 sb_start -= 8*2;
1402                 sb_start &= ~(sector_t)(4*2-1);
1403                 break;
1404         case 1:
1405                 sb_start = 0;
1406                 break;
1407         case 2:
1408                 sb_start = 8;
1409                 break;
1410         default:
1411                 return -EINVAL;
1412         }
1413         rdev->sb_start = sb_start;
1414
1415         /* superblock is rarely larger than 1K, but it can be larger,
1416          * and it is safe to read 4k, so we do that
1417          */
1418         ret = read_disk_sb(rdev, 4096);
1419         if (ret) return ret;
1420
1421         sb = page_address(rdev->sb_page);
1422
1423         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424             sb->major_version != cpu_to_le32(1) ||
1425             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428                 return -EINVAL;
1429
1430         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431                 printk("md: invalid superblock checksum on %s\n",
1432                         bdevname(rdev->bdev,b));
1433                 return -EINVAL;
1434         }
1435         if (le64_to_cpu(sb->data_size) < 10) {
1436                 printk("md: data_size too small on %s\n",
1437                        bdevname(rdev->bdev,b));
1438                 return -EINVAL;
1439         }
1440         if (sb->pad0 ||
1441             sb->pad3[0] ||
1442             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443                 /* Some padding is non-zero, might be a new feature */
1444                 return -EINVAL;
1445
1446         rdev->preferred_minor = 0xffff;
1447         rdev->data_offset = le64_to_cpu(sb->data_offset);
1448         rdev->new_data_offset = rdev->data_offset;
1449         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456         if (rdev->sb_size & bmask)
1457                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459         if (minor_version
1460             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461                 return -EINVAL;
1462         if (minor_version
1463             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464                 return -EINVAL;
1465
1466         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467                 rdev->desc_nr = -1;
1468         else
1469                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471         if (!rdev->bb_page) {
1472                 rdev->bb_page = alloc_page(GFP_KERNEL);
1473                 if (!rdev->bb_page)
1474                         return -ENOMEM;
1475         }
1476         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477             rdev->badblocks.count == 0) {
1478                 /* need to load the bad block list.
1479                  * Currently we limit it to one page.
1480                  */
1481                 s32 offset;
1482                 sector_t bb_sector;
1483                 u64 *bbp;
1484                 int i;
1485                 int sectors = le16_to_cpu(sb->bblog_size);
1486                 if (sectors > (PAGE_SIZE / 512))
1487                         return -EINVAL;
1488                 offset = le32_to_cpu(sb->bblog_offset);
1489                 if (offset == 0)
1490                         return -EINVAL;
1491                 bb_sector = (long long)offset;
1492                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493                                   rdev->bb_page, READ, true))
1494                         return -EIO;
1495                 bbp = (u64 *)page_address(rdev->bb_page);
1496                 rdev->badblocks.shift = sb->bblog_shift;
1497                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498                         u64 bb = le64_to_cpu(*bbp);
1499                         int count = bb & (0x3ff);
1500                         u64 sector = bb >> 10;
1501                         sector <<= sb->bblog_shift;
1502                         count <<= sb->bblog_shift;
1503                         if (bb + 1 == 0)
1504                                 break;
1505                         if (md_set_badblocks(&rdev->badblocks,
1506                                              sector, count, 1) == 0)
1507                                 return -EINVAL;
1508                 }
1509         } else if (sb->bblog_offset != 0)
1510                 rdev->badblocks.shift = 0;
1511
1512         if (!refdev) {
1513                 ret = 1;
1514         } else {
1515                 __u64 ev1, ev2;
1516                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519                     sb->level != refsb->level ||
1520                     sb->layout != refsb->layout ||
1521                     sb->chunksize != refsb->chunksize) {
1522                         printk(KERN_WARNING "md: %s has strangely different"
1523                                 " superblock to %s\n",
1524                                 bdevname(rdev->bdev,b),
1525                                 bdevname(refdev->bdev,b2));
1526                         return -EINVAL;
1527                 }
1528                 ev1 = le64_to_cpu(sb->events);
1529                 ev2 = le64_to_cpu(refsb->events);
1530
1531                 if (ev1 > ev2)
1532                         ret = 1;
1533                 else
1534                         ret = 0;
1535         }
1536         if (minor_version) {
1537                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538                 sectors -= rdev->data_offset;
1539         } else
1540                 sectors = rdev->sb_start;
1541         if (sectors < le64_to_cpu(sb->data_size))
1542                 return -EINVAL;
1543         rdev->sectors = le64_to_cpu(sb->data_size);
1544         return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550         __u64 ev1 = le64_to_cpu(sb->events);
1551
1552         rdev->raid_disk = -1;
1553         clear_bit(Faulty, &rdev->flags);
1554         clear_bit(In_sync, &rdev->flags);
1555         clear_bit(Bitmap_sync, &rdev->flags);
1556         clear_bit(WriteMostly, &rdev->flags);
1557
1558         if (mddev->raid_disks == 0) {
1559                 mddev->major_version = 1;
1560                 mddev->patch_version = 0;
1561                 mddev->external = 0;
1562                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565                 mddev->level = le32_to_cpu(sb->level);
1566                 mddev->clevel[0] = 0;
1567                 mddev->layout = le32_to_cpu(sb->layout);
1568                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569                 mddev->dev_sectors = le64_to_cpu(sb->size);
1570                 mddev->events = ev1;
1571                 mddev->bitmap_info.offset = 0;
1572                 mddev->bitmap_info.space = 0;
1573                 /* Default location for bitmap is 1K after superblock
1574                  * using 3K - total of 4K
1575                  */
1576                 mddev->bitmap_info.default_offset = 1024 >> 9;
1577                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578                 mddev->reshape_backwards = 0;
1579
1580                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581                 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583                 mddev->max_disks =  (4096-256)/2;
1584
1585                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586                     mddev->bitmap_info.file == NULL) {
1587                         mddev->bitmap_info.offset =
1588                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1589                         /* Metadata doesn't record how much space is available.
1590                          * For 1.0, we assume we can use up to the superblock
1591                          * if before, else to 4K beyond superblock.
1592                          * For others, assume no change is possible.
1593                          */
1594                         if (mddev->minor_version > 0)
1595                                 mddev->bitmap_info.space = 0;
1596                         else if (mddev->bitmap_info.offset > 0)
1597                                 mddev->bitmap_info.space =
1598                                         8 - mddev->bitmap_info.offset;
1599                         else
1600                                 mddev->bitmap_info.space =
1601                                         -mddev->bitmap_info.offset;
1602                 }
1603
1604                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607                         mddev->new_level = le32_to_cpu(sb->new_level);
1608                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1609                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610                         if (mddev->delta_disks < 0 ||
1611                             (mddev->delta_disks == 0 &&
1612                              (le32_to_cpu(sb->feature_map)
1613                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1614                                 mddev->reshape_backwards = 1;
1615                 } else {
1616                         mddev->reshape_position = MaxSector;
1617                         mddev->delta_disks = 0;
1618                         mddev->new_level = mddev->level;
1619                         mddev->new_layout = mddev->layout;
1620                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1621                 }
1622
1623         } else if (mddev->pers == NULL) {
1624                 /* Insist of good event counter while assembling, except for
1625                  * spares (which don't need an event count) */
1626                 ++ev1;
1627                 if (rdev->desc_nr >= 0 &&
1628                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630                         if (ev1 < mddev->events)
1631                                 return -EINVAL;
1632         } else if (mddev->bitmap) {
1633                 /* If adding to array with a bitmap, then we can accept an
1634                  * older device, but not too old.
1635                  */
1636                 if (ev1 < mddev->bitmap->events_cleared)
1637                         return 0;
1638                 if (ev1 < mddev->events)
1639                         set_bit(Bitmap_sync, &rdev->flags);
1640         } else {
1641                 if (ev1 < mddev->events)
1642                         /* just a hot-add of a new device, leave raid_disk at -1 */
1643                         return 0;
1644         }
1645         if (mddev->level != LEVEL_MULTIPATH) {
1646                 int role;
1647                 if (rdev->desc_nr < 0 ||
1648                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649                         role = 0xffff;
1650                         rdev->desc_nr = -1;
1651                 } else
1652                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653                 switch(role) {
1654                 case 0xffff: /* spare */
1655                         break;
1656                 case 0xfffe: /* faulty */
1657                         set_bit(Faulty, &rdev->flags);
1658                         break;
1659                 default:
1660                         rdev->saved_raid_disk = role;
1661                         if ((le32_to_cpu(sb->feature_map) &
1662                              MD_FEATURE_RECOVERY_OFFSET)) {
1663                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664                                 if (!(le32_to_cpu(sb->feature_map) &
1665                                       MD_FEATURE_RECOVERY_BITMAP))
1666                                         rdev->saved_raid_disk = -1;
1667                         } else
1668                                 set_bit(In_sync, &rdev->flags);
1669                         rdev->raid_disk = role;
1670                         break;
1671                 }
1672                 if (sb->devflags & WriteMostly1)
1673                         set_bit(WriteMostly, &rdev->flags);
1674                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675                         set_bit(Replacement, &rdev->flags);
1676         } else /* MULTIPATH are always insync */
1677                 set_bit(In_sync, &rdev->flags);
1678
1679         return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684         struct mdp_superblock_1 *sb;
1685         struct md_rdev *rdev2;
1686         int max_dev, i;
1687         /* make rdev->sb match mddev and rdev data. */
1688
1689         sb = page_address(rdev->sb_page);
1690
1691         sb->feature_map = 0;
1692         sb->pad0 = 0;
1693         sb->recovery_offset = cpu_to_le64(0);
1694         memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696         sb->utime = cpu_to_le64((__u64)mddev->utime);
1697         sb->events = cpu_to_le64(mddev->events);
1698         if (mddev->in_sync)
1699                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700         else
1701                 sb->resync_offset = cpu_to_le64(0);
1702
1703         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706         sb->size = cpu_to_le64(mddev->dev_sectors);
1707         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708         sb->level = cpu_to_le32(mddev->level);
1709         sb->layout = cpu_to_le32(mddev->layout);
1710
1711         if (test_bit(WriteMostly, &rdev->flags))
1712                 sb->devflags |= WriteMostly1;
1713         else
1714                 sb->devflags &= ~WriteMostly1;
1715         sb->data_offset = cpu_to_le64(rdev->data_offset);
1716         sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721         }
1722
1723         if (rdev->raid_disk >= 0 &&
1724             !test_bit(In_sync, &rdev->flags)) {
1725                 sb->feature_map |=
1726                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727                 sb->recovery_offset =
1728                         cpu_to_le64(rdev->recovery_offset);
1729                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730                         sb->feature_map |=
1731                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732         }
1733         if (test_bit(Replacement, &rdev->flags))
1734                 sb->feature_map |=
1735                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737         if (mddev->reshape_position != MaxSector) {
1738                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742                 sb->new_level = cpu_to_le32(mddev->new_level);
1743                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744                 if (mddev->delta_disks == 0 &&
1745                     mddev->reshape_backwards)
1746                         sb->feature_map
1747                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748                 if (rdev->new_data_offset != rdev->data_offset) {
1749                         sb->feature_map
1750                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752                                                              - rdev->data_offset));
1753                 }
1754         }
1755
1756         if (rdev->badblocks.count == 0)
1757                 /* Nothing to do for bad blocks*/ ;
1758         else if (sb->bblog_offset == 0)
1759                 /* Cannot record bad blocks on this device */
1760                 md_error(mddev, rdev);
1761         else {
1762                 struct badblocks *bb = &rdev->badblocks;
1763                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764                 u64 *p = bb->page;
1765                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766                 if (bb->changed) {
1767                         unsigned seq;
1768
1769 retry:
1770                         seq = read_seqbegin(&bb->lock);
1771
1772                         memset(bbp, 0xff, PAGE_SIZE);
1773
1774                         for (i = 0 ; i < bb->count ; i++) {
1775                                 u64 internal_bb = p[i];
1776                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777                                                 | BB_LEN(internal_bb));
1778                                 bbp[i] = cpu_to_le64(store_bb);
1779                         }
1780                         bb->changed = 0;
1781                         if (read_seqretry(&bb->lock, seq))
1782                                 goto retry;
1783
1784                         bb->sector = (rdev->sb_start +
1785                                       (int)le32_to_cpu(sb->bblog_offset));
1786                         bb->size = le16_to_cpu(sb->bblog_size);
1787                 }
1788         }
1789
1790         max_dev = 0;
1791         rdev_for_each(rdev2, mddev)
1792                 if (rdev2->desc_nr+1 > max_dev)
1793                         max_dev = rdev2->desc_nr+1;
1794
1795         if (max_dev > le32_to_cpu(sb->max_dev)) {
1796                 int bmask;
1797                 sb->max_dev = cpu_to_le32(max_dev);
1798                 rdev->sb_size = max_dev * 2 + 256;
1799                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800                 if (rdev->sb_size & bmask)
1801                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802         } else
1803                 max_dev = le32_to_cpu(sb->max_dev);
1804
1805         for (i=0; i<max_dev;i++)
1806                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808         rdev_for_each(rdev2, mddev) {
1809                 i = rdev2->desc_nr;
1810                 if (test_bit(Faulty, &rdev2->flags))
1811                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812                 else if (test_bit(In_sync, &rdev2->flags))
1813                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814                 else if (rdev2->raid_disk >= 0)
1815                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816                 else
1817                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1818         }
1819
1820         sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826         struct mdp_superblock_1 *sb;
1827         sector_t max_sectors;
1828         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829                 return 0; /* component must fit device */
1830         if (rdev->data_offset != rdev->new_data_offset)
1831                 return 0; /* too confusing */
1832         if (rdev->sb_start < rdev->data_offset) {
1833                 /* minor versions 1 and 2; superblock before data */
1834                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835                 max_sectors -= rdev->data_offset;
1836                 if (!num_sectors || num_sectors > max_sectors)
1837                         num_sectors = max_sectors;
1838         } else if (rdev->mddev->bitmap_info.offset) {
1839                 /* minor version 0 with bitmap we can't move */
1840                 return 0;
1841         } else {
1842                 /* minor version 0; superblock after data */
1843                 sector_t sb_start;
1844                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845                 sb_start &= ~(sector_t)(4*2 - 1);
1846                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847                 if (!num_sectors || num_sectors > max_sectors)
1848                         num_sectors = max_sectors;
1849                 rdev->sb_start = sb_start;
1850         }
1851         sb = page_address(rdev->sb_page);
1852         sb->data_size = cpu_to_le64(num_sectors);
1853         sb->super_offset = rdev->sb_start;
1854         sb->sb_csum = calc_sb_1_csum(sb);
1855         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856                        rdev->sb_page);
1857         md_super_wait(rdev->mddev);
1858         return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864                          unsigned long long new_offset)
1865 {
1866         /* All necessary checks on new >= old have been done */
1867         struct bitmap *bitmap;
1868         if (new_offset >= rdev->data_offset)
1869                 return 1;
1870
1871         /* with 1.0 metadata, there is no metadata to tread on
1872          * so we can always move back */
1873         if (rdev->mddev->minor_version == 0)
1874                 return 1;
1875
1876         /* otherwise we must be sure not to step on
1877          * any metadata, so stay:
1878          * 36K beyond start of superblock
1879          * beyond end of badblocks
1880          * beyond write-intent bitmap
1881          */
1882         if (rdev->sb_start + (32+4)*2 > new_offset)
1883                 return 0;
1884         bitmap = rdev->mddev->bitmap;
1885         if (bitmap && !rdev->mddev->bitmap_info.file &&
1886             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888                 return 0;
1889         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890                 return 0;
1891
1892         return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896         [0] = {
1897                 .name   = "0.90.0",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_90_load,
1900                 .validate_super     = super_90_validate,
1901                 .sync_super         = super_90_sync,
1902                 .rdev_size_change   = super_90_rdev_size_change,
1903                 .allow_new_offset   = super_90_allow_new_offset,
1904         },
1905         [1] = {
1906                 .name   = "md-1",
1907                 .owner  = THIS_MODULE,
1908                 .load_super         = super_1_load,
1909                 .validate_super     = super_1_validate,
1910                 .sync_super         = super_1_sync,
1911                 .rdev_size_change   = super_1_rdev_size_change,
1912                 .allow_new_offset   = super_1_allow_new_offset,
1913         },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918         if (mddev->sync_super) {
1919                 mddev->sync_super(mddev, rdev);
1920                 return;
1921         }
1922
1923         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925         super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930         struct md_rdev *rdev, *rdev2;
1931
1932         rcu_read_lock();
1933         rdev_for_each_rcu(rdev, mddev1)
1934                 rdev_for_each_rcu(rdev2, mddev2)
1935                         if (rdev->bdev->bd_contains ==
1936                             rdev2->bdev->bd_contains) {
1937                                 rcu_read_unlock();
1938                                 return 1;
1939                         }
1940         rcu_read_unlock();
1941         return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947  * Try to register data integrity profile for an mddev
1948  *
1949  * This is called when an array is started and after a disk has been kicked
1950  * from the array. It only succeeds if all working and active component devices
1951  * are integrity capable with matching profiles.
1952  */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955         struct md_rdev *rdev, *reference = NULL;
1956
1957         if (list_empty(&mddev->disks))
1958                 return 0; /* nothing to do */
1959         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960                 return 0; /* shouldn't register, or already is */
1961         rdev_for_each(rdev, mddev) {
1962                 /* skip spares and non-functional disks */
1963                 if (test_bit(Faulty, &rdev->flags))
1964                         continue;
1965                 if (rdev->raid_disk < 0)
1966                         continue;
1967                 if (!reference) {
1968                         /* Use the first rdev as the reference */
1969                         reference = rdev;
1970                         continue;
1971                 }
1972                 /* does this rdev's profile match the reference profile? */
1973                 if (blk_integrity_compare(reference->bdev->bd_disk,
1974                                 rdev->bdev->bd_disk) < 0)
1975                         return -EINVAL;
1976         }
1977         if (!reference || !bdev_get_integrity(reference->bdev))
1978                 return 0;
1979         /*
1980          * All component devices are integrity capable and have matching
1981          * profiles, register the common profile for the md device.
1982          */
1983         if (blk_integrity_register(mddev->gendisk,
1984                         bdev_get_integrity(reference->bdev)) != 0) {
1985                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986                         mdname(mddev));
1987                 return -EINVAL;
1988         }
1989         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992                        mdname(mddev));
1993                 return -EINVAL;
1994         }
1995         return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002         struct blk_integrity *bi_rdev;
2003         struct blk_integrity *bi_mddev;
2004
2005         if (!mddev->gendisk)
2006                 return;
2007
2008         bi_rdev = bdev_get_integrity(rdev->bdev);
2009         bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011         if (!bi_mddev) /* nothing to do */
2012                 return;
2013         if (rdev->raid_disk < 0) /* skip spares */
2014                 return;
2015         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016                                              rdev->bdev->bd_disk) >= 0)
2017                 return;
2018         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019         blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025         char b[BDEVNAME_SIZE];
2026         struct kobject *ko;
2027         int err;
2028
2029         /* prevent duplicates */
2030         if (find_rdev(mddev, rdev->bdev->bd_dev))
2031                 return -EEXIST;
2032
2033         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2034         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2035                         rdev->sectors < mddev->dev_sectors)) {
2036                 if (mddev->pers) {
2037                         /* Cannot change size, so fail
2038                          * If mddev->level <= 0, then we don't care
2039                          * about aligning sizes (e.g. linear)
2040                          */
2041                         if (mddev->level > 0)
2042                                 return -ENOSPC;
2043                 } else
2044                         mddev->dev_sectors = rdev->sectors;
2045         }
2046
2047         /* Verify rdev->desc_nr is unique.
2048          * If it is -1, assign a free number, else
2049          * check number is not in use
2050          */
2051         rcu_read_lock();
2052         if (rdev->desc_nr < 0) {
2053                 int choice = 0;
2054                 if (mddev->pers)
2055                         choice = mddev->raid_disks;
2056                 while (md_find_rdev_nr_rcu(mddev, choice))
2057                         choice++;
2058                 rdev->desc_nr = choice;
2059         } else {
2060                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2061                         rcu_read_unlock();
2062                         return -EBUSY;
2063                 }
2064         }
2065         rcu_read_unlock();
2066         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2067                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2068                        mdname(mddev), mddev->max_disks);
2069                 return -EBUSY;
2070         }
2071         bdevname(rdev->bdev,b);
2072         strreplace(b, '/', '!');
2073
2074         rdev->mddev = mddev;
2075         printk(KERN_INFO "md: bind<%s>\n", b);
2076
2077         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2078                 goto fail;
2079
2080         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2081         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2082                 /* failure here is OK */;
2083         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2084
2085         list_add_rcu(&rdev->same_set, &mddev->disks);
2086         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2087
2088         /* May as well allow recovery to be retried once */
2089         mddev->recovery_disabled++;
2090
2091         return 0;
2092
2093  fail:
2094         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2095                b, mdname(mddev));
2096         return err;
2097 }
2098
2099 static void md_delayed_delete(struct work_struct *ws)
2100 {
2101         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2102         kobject_del(&rdev->kobj);
2103         kobject_put(&rdev->kobj);
2104 }
2105
2106 static void unbind_rdev_from_array(struct md_rdev *rdev)
2107 {
2108         char b[BDEVNAME_SIZE];
2109
2110         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2111         list_del_rcu(&rdev->same_set);
2112         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2113         rdev->mddev = NULL;
2114         sysfs_remove_link(&rdev->kobj, "block");
2115         sysfs_put(rdev->sysfs_state);
2116         rdev->sysfs_state = NULL;
2117         rdev->badblocks.count = 0;
2118         /* We need to delay this, otherwise we can deadlock when
2119          * writing to 'remove' to "dev/state".  We also need
2120          * to delay it due to rcu usage.
2121          */
2122         synchronize_rcu();
2123         INIT_WORK(&rdev->del_work, md_delayed_delete);
2124         kobject_get(&rdev->kobj);
2125         queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127
2128 /*
2129  * prevent the device from being mounted, repartitioned or
2130  * otherwise reused by a RAID array (or any other kernel
2131  * subsystem), by bd_claiming the device.
2132  */
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135         int err = 0;
2136         struct block_device *bdev;
2137         char b[BDEVNAME_SIZE];
2138
2139         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2141         if (IS_ERR(bdev)) {
2142                 printk(KERN_ERR "md: could not open %s.\n",
2143                         __bdevname(dev, b));
2144                 return PTR_ERR(bdev);
2145         }
2146         rdev->bdev = bdev;
2147         return err;
2148 }
2149
2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152         struct block_device *bdev = rdev->bdev;
2153         rdev->bdev = NULL;
2154         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2155 }
2156
2157 void md_autodetect_dev(dev_t dev);
2158
2159 static void export_rdev(struct md_rdev *rdev)
2160 {
2161         char b[BDEVNAME_SIZE];
2162
2163         printk(KERN_INFO "md: export_rdev(%s)\n",
2164                 bdevname(rdev->bdev,b));
2165         md_rdev_clear(rdev);
2166 #ifndef MODULE
2167         if (test_bit(AutoDetected, &rdev->flags))
2168                 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170         unlock_rdev(rdev);
2171         kobject_put(&rdev->kobj);
2172 }
2173
2174 void md_kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176         unbind_rdev_from_array(rdev);
2177         export_rdev(rdev);
2178 }
2179 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2180
2181 static void export_array(struct mddev *mddev)
2182 {
2183         struct md_rdev *rdev;
2184
2185         while (!list_empty(&mddev->disks)) {
2186                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2187                                         same_set);
2188                 md_kick_rdev_from_array(rdev);
2189         }
2190         mddev->raid_disks = 0;
2191         mddev->major_version = 0;
2192 }
2193
2194 static void sync_sbs(struct mddev *mddev, int nospares)
2195 {
2196         /* Update each superblock (in-memory image), but
2197          * if we are allowed to, skip spares which already
2198          * have the right event counter, or have one earlier
2199          * (which would mean they aren't being marked as dirty
2200          * with the rest of the array)
2201          */
2202         struct md_rdev *rdev;
2203         rdev_for_each(rdev, mddev) {
2204                 if (rdev->sb_events == mddev->events ||
2205                     (nospares &&
2206                      rdev->raid_disk < 0 &&
2207                      rdev->sb_events+1 == mddev->events)) {
2208                         /* Don't update this superblock */
2209                         rdev->sb_loaded = 2;
2210                 } else {
2211                         sync_super(mddev, rdev);
2212                         rdev->sb_loaded = 1;
2213                 }
2214         }
2215 }
2216
2217 void md_update_sb(struct mddev *mddev, int force_change)
2218 {
2219         struct md_rdev *rdev;
2220         int sync_req;
2221         int nospares = 0;
2222         int any_badblocks_changed = 0;
2223
2224         if (mddev->ro) {
2225                 if (force_change)
2226                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2227                 return;
2228         }
2229 repeat:
2230         /* First make sure individual recovery_offsets are correct */
2231         rdev_for_each(rdev, mddev) {
2232                 if (rdev->raid_disk >= 0 &&
2233                     mddev->delta_disks >= 0 &&
2234                     !test_bit(In_sync, &rdev->flags) &&
2235                     mddev->curr_resync_completed > rdev->recovery_offset)
2236                                 rdev->recovery_offset = mddev->curr_resync_completed;
2237
2238         }
2239         if (!mddev->persistent) {
2240                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2241                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2242                 if (!mddev->external) {
2243                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2244                         rdev_for_each(rdev, mddev) {
2245                                 if (rdev->badblocks.changed) {
2246                                         rdev->badblocks.changed = 0;
2247                                         md_ack_all_badblocks(&rdev->badblocks);
2248                                         md_error(mddev, rdev);
2249                                 }
2250                                 clear_bit(Blocked, &rdev->flags);
2251                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2252                                 wake_up(&rdev->blocked_wait);
2253                         }
2254                 }
2255                 wake_up(&mddev->sb_wait);
2256                 return;
2257         }
2258
2259         spin_lock(&mddev->lock);
2260
2261         mddev->utime = get_seconds();
2262
2263         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2264                 force_change = 1;
2265         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2266                 /* just a clean<-> dirty transition, possibly leave spares alone,
2267                  * though if events isn't the right even/odd, we will have to do
2268                  * spares after all
2269                  */
2270                 nospares = 1;
2271         if (force_change)
2272                 nospares = 0;
2273         if (mddev->degraded)
2274                 /* If the array is degraded, then skipping spares is both
2275                  * dangerous and fairly pointless.
2276                  * Dangerous because a device that was removed from the array
2277                  * might have a event_count that still looks up-to-date,
2278                  * so it can be re-added without a resync.
2279                  * Pointless because if there are any spares to skip,
2280                  * then a recovery will happen and soon that array won't
2281                  * be degraded any more and the spare can go back to sleep then.
2282                  */
2283                 nospares = 0;
2284
2285         sync_req = mddev->in_sync;
2286
2287         /* If this is just a dirty<->clean transition, and the array is clean
2288          * and 'events' is odd, we can roll back to the previous clean state */
2289         if (nospares
2290             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2291             && mddev->can_decrease_events
2292             && mddev->events != 1) {
2293                 mddev->events--;
2294                 mddev->can_decrease_events = 0;
2295         } else {
2296                 /* otherwise we have to go forward and ... */
2297                 mddev->events ++;
2298                 mddev->can_decrease_events = nospares;
2299         }
2300
2301         /*
2302          * This 64-bit counter should never wrap.
2303          * Either we are in around ~1 trillion A.C., assuming
2304          * 1 reboot per second, or we have a bug...
2305          */
2306         WARN_ON(mddev->events == 0);
2307
2308         rdev_for_each(rdev, mddev) {
2309                 if (rdev->badblocks.changed)
2310                         any_badblocks_changed++;
2311                 if (test_bit(Faulty, &rdev->flags))
2312                         set_bit(FaultRecorded, &rdev->flags);
2313         }
2314
2315         sync_sbs(mddev, nospares);
2316         spin_unlock(&mddev->lock);
2317
2318         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2319                  mdname(mddev), mddev->in_sync);
2320
2321         bitmap_update_sb(mddev->bitmap);
2322         rdev_for_each(rdev, mddev) {
2323                 char b[BDEVNAME_SIZE];
2324
2325                 if (rdev->sb_loaded != 1)
2326                         continue; /* no noise on spare devices */
2327
2328                 if (!test_bit(Faulty, &rdev->flags)) {
2329                         md_super_write(mddev,rdev,
2330                                        rdev->sb_start, rdev->sb_size,
2331                                        rdev->sb_page);
2332                         pr_debug("md: (write) %s's sb offset: %llu\n",
2333                                  bdevname(rdev->bdev, b),
2334                                  (unsigned long long)rdev->sb_start);
2335                         rdev->sb_events = mddev->events;
2336                         if (rdev->badblocks.size) {
2337                                 md_super_write(mddev, rdev,
2338                                                rdev->badblocks.sector,
2339                                                rdev->badblocks.size << 9,
2340                                                rdev->bb_page);
2341                                 rdev->badblocks.size = 0;
2342                         }
2343
2344                 } else
2345                         pr_debug("md: %s (skipping faulty)\n",
2346                                  bdevname(rdev->bdev, b));
2347
2348                 if (mddev->level == LEVEL_MULTIPATH)
2349                         /* only need to write one superblock... */
2350                         break;
2351         }
2352         md_super_wait(mddev);
2353         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2354
2355         spin_lock(&mddev->lock);
2356         if (mddev->in_sync != sync_req ||
2357             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2358                 /* have to write it out again */
2359                 spin_unlock(&mddev->lock);
2360                 goto repeat;
2361         }
2362         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363         spin_unlock(&mddev->lock);
2364         wake_up(&mddev->sb_wait);
2365         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2366                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2367
2368         rdev_for_each(rdev, mddev) {
2369                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2370                         clear_bit(Blocked, &rdev->flags);
2371
2372                 if (any_badblocks_changed)
2373                         md_ack_all_badblocks(&rdev->badblocks);
2374                 clear_bit(BlockedBadBlocks, &rdev->flags);
2375                 wake_up(&rdev->blocked_wait);
2376         }
2377 }
2378 EXPORT_SYMBOL(md_update_sb);
2379
2380 static int add_bound_rdev(struct md_rdev *rdev)
2381 {
2382         struct mddev *mddev = rdev->mddev;
2383         int err = 0;
2384
2385         if (!mddev->pers->hot_remove_disk) {
2386                 /* If there is hot_add_disk but no hot_remove_disk
2387                  * then added disks for geometry changes,
2388                  * and should be added immediately.
2389                  */
2390                 super_types[mddev->major_version].
2391                         validate_super(mddev, rdev);
2392                 err = mddev->pers->hot_add_disk(mddev, rdev);
2393                 if (err) {
2394                         unbind_rdev_from_array(rdev);
2395                         export_rdev(rdev);
2396                         return err;
2397                 }
2398         }
2399         sysfs_notify_dirent_safe(rdev->sysfs_state);
2400
2401         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402         if (mddev->degraded)
2403                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2404         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2405         md_new_event(mddev);
2406         md_wakeup_thread(mddev->thread);
2407         return 0;
2408 }
2409
2410 /* words written to sysfs files may, or may not, be \n terminated.
2411  * We want to accept with case. For this we use cmd_match.
2412  */
2413 static int cmd_match(const char *cmd, const char *str)
2414 {
2415         /* See if cmd, written into a sysfs file, matches
2416          * str.  They must either be the same, or cmd can
2417          * have a trailing newline
2418          */
2419         while (*cmd && *str && *cmd == *str) {
2420                 cmd++;
2421                 str++;
2422         }
2423         if (*cmd == '\n')
2424                 cmd++;
2425         if (*str || *cmd)
2426                 return 0;
2427         return 1;
2428 }
2429
2430 struct rdev_sysfs_entry {
2431         struct attribute attr;
2432         ssize_t (*show)(struct md_rdev *, char *);
2433         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2434 };
2435
2436 static ssize_t
2437 state_show(struct md_rdev *rdev, char *page)
2438 {
2439         char *sep = "";
2440         size_t len = 0;
2441         unsigned long flags = ACCESS_ONCE(rdev->flags);
2442
2443         if (test_bit(Faulty, &flags) ||
2444             rdev->badblocks.unacked_exist) {
2445                 len+= sprintf(page+len, "%sfaulty",sep);
2446                 sep = ",";
2447         }
2448         if (test_bit(In_sync, &flags)) {
2449                 len += sprintf(page+len, "%sin_sync",sep);
2450                 sep = ",";
2451         }
2452         if (test_bit(WriteMostly, &flags)) {
2453                 len += sprintf(page+len, "%swrite_mostly",sep);
2454                 sep = ",";
2455         }
2456         if (test_bit(Blocked, &flags) ||
2457             (rdev->badblocks.unacked_exist
2458              && !test_bit(Faulty, &flags))) {
2459                 len += sprintf(page+len, "%sblocked", sep);
2460                 sep = ",";
2461         }
2462         if (!test_bit(Faulty, &flags) &&
2463             !test_bit(In_sync, &flags)) {
2464                 len += sprintf(page+len, "%sspare", sep);
2465                 sep = ",";
2466         }
2467         if (test_bit(WriteErrorSeen, &flags)) {
2468                 len += sprintf(page+len, "%swrite_error", sep);
2469                 sep = ",";
2470         }
2471         if (test_bit(WantReplacement, &flags)) {
2472                 len += sprintf(page+len, "%swant_replacement", sep);
2473                 sep = ",";
2474         }
2475         if (test_bit(Replacement, &flags)) {
2476                 len += sprintf(page+len, "%sreplacement", sep);
2477                 sep = ",";
2478         }
2479
2480         return len+sprintf(page+len, "\n");
2481 }
2482
2483 static ssize_t
2484 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2485 {
2486         /* can write
2487          *  faulty  - simulates an error
2488          *  remove  - disconnects the device
2489          *  writemostly - sets write_mostly
2490          *  -writemostly - clears write_mostly
2491          *  blocked - sets the Blocked flags
2492          *  -blocked - clears the Blocked and possibly simulates an error
2493          *  insync - sets Insync providing device isn't active
2494          *  -insync - clear Insync for a device with a slot assigned,
2495          *            so that it gets rebuilt based on bitmap
2496          *  write_error - sets WriteErrorSeen
2497          *  -write_error - clears WriteErrorSeen
2498          */
2499         int err = -EINVAL;
2500         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2501                 md_error(rdev->mddev, rdev);
2502                 if (test_bit(Faulty, &rdev->flags))
2503                         err = 0;
2504                 else
2505                         err = -EBUSY;
2506         } else if (cmd_match(buf, "remove")) {
2507                 if (rdev->raid_disk >= 0)
2508                         err = -EBUSY;
2509                 else {
2510                         struct mddev *mddev = rdev->mddev;
2511                         if (mddev_is_clustered(mddev))
2512                                 md_cluster_ops->remove_disk(mddev, rdev);
2513                         md_kick_rdev_from_array(rdev);
2514                         if (mddev_is_clustered(mddev))
2515                                 md_cluster_ops->metadata_update_start(mddev);
2516                         if (mddev->pers)
2517                                 md_update_sb(mddev, 1);
2518                         md_new_event(mddev);
2519                         if (mddev_is_clustered(mddev))
2520                                 md_cluster_ops->metadata_update_finish(mddev);
2521                         err = 0;
2522                 }
2523         } else if (cmd_match(buf, "writemostly")) {
2524                 set_bit(WriteMostly, &rdev->flags);
2525                 err = 0;
2526         } else if (cmd_match(buf, "-writemostly")) {
2527                 clear_bit(WriteMostly, &rdev->flags);
2528                 err = 0;
2529         } else if (cmd_match(buf, "blocked")) {
2530                 set_bit(Blocked, &rdev->flags);
2531                 err = 0;
2532         } else if (cmd_match(buf, "-blocked")) {
2533                 if (!test_bit(Faulty, &rdev->flags) &&
2534                     rdev->badblocks.unacked_exist) {
2535                         /* metadata handler doesn't understand badblocks,
2536                          * so we need to fail the device
2537                          */
2538                         md_error(rdev->mddev, rdev);
2539                 }
2540                 clear_bit(Blocked, &rdev->flags);
2541                 clear_bit(BlockedBadBlocks, &rdev->flags);
2542                 wake_up(&rdev->blocked_wait);
2543                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2544                 md_wakeup_thread(rdev->mddev->thread);
2545
2546                 err = 0;
2547         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2548                 set_bit(In_sync, &rdev->flags);
2549                 err = 0;
2550         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2551                 if (rdev->mddev->pers == NULL) {
2552                         clear_bit(In_sync, &rdev->flags);
2553                         rdev->saved_raid_disk = rdev->raid_disk;
2554                         rdev->raid_disk = -1;
2555                         err = 0;
2556                 }
2557         } else if (cmd_match(buf, "write_error")) {
2558                 set_bit(WriteErrorSeen, &rdev->flags);
2559                 err = 0;
2560         } else if (cmd_match(buf, "-write_error")) {
2561                 clear_bit(WriteErrorSeen, &rdev->flags);
2562                 err = 0;
2563         } else if (cmd_match(buf, "want_replacement")) {
2564                 /* Any non-spare device that is not a replacement can
2565                  * become want_replacement at any time, but we then need to
2566                  * check if recovery is needed.
2567                  */
2568                 if (rdev->raid_disk >= 0 &&
2569                     !test_bit(Replacement, &rdev->flags))
2570                         set_bit(WantReplacement, &rdev->flags);
2571                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2572                 md_wakeup_thread(rdev->mddev->thread);
2573                 err = 0;
2574         } else if (cmd_match(buf, "-want_replacement")) {
2575                 /* Clearing 'want_replacement' is always allowed.
2576                  * Once replacements starts it is too late though.
2577                  */
2578                 err = 0;
2579                 clear_bit(WantReplacement, &rdev->flags);
2580         } else if (cmd_match(buf, "replacement")) {
2581                 /* Can only set a device as a replacement when array has not
2582                  * yet been started.  Once running, replacement is automatic
2583                  * from spares, or by assigning 'slot'.
2584                  */
2585                 if (rdev->mddev->pers)
2586                         err = -EBUSY;
2587                 else {
2588                         set_bit(Replacement, &rdev->flags);
2589                         err = 0;
2590                 }
2591         } else if (cmd_match(buf, "-replacement")) {
2592                 /* Similarly, can only clear Replacement before start */
2593                 if (rdev->mddev->pers)
2594                         err = -EBUSY;
2595                 else {
2596                         clear_bit(Replacement, &rdev->flags);
2597                         err = 0;
2598                 }
2599         } else if (cmd_match(buf, "re-add")) {
2600                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2601                         /* clear_bit is performed _after_ all the devices
2602                          * have their local Faulty bit cleared. If any writes
2603                          * happen in the meantime in the local node, they
2604                          * will land in the local bitmap, which will be synced
2605                          * by this node eventually
2606                          */
2607                         if (!mddev_is_clustered(rdev->mddev) ||
2608                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2609                                 clear_bit(Faulty, &rdev->flags);
2610                                 err = add_bound_rdev(rdev);
2611                         }
2612                 } else
2613                         err = -EBUSY;
2614         }
2615         if (!err)
2616                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2617         return err ? err : len;
2618 }
2619 static struct rdev_sysfs_entry rdev_state =
2620 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2621
2622 static ssize_t
2623 errors_show(struct md_rdev *rdev, char *page)
2624 {
2625         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2626 }
2627
2628 static ssize_t
2629 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2630 {
2631         unsigned int n;
2632         int rv;
2633
2634         rv = kstrtouint(buf, 10, &n);
2635         if (rv < 0)
2636                 return rv;
2637         atomic_set(&rdev->corrected_errors, n);
2638         return len;
2639 }
2640 static struct rdev_sysfs_entry rdev_errors =
2641 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2642
2643 static ssize_t
2644 slot_show(struct md_rdev *rdev, char *page)
2645 {
2646         if (rdev->raid_disk < 0)
2647                 return sprintf(page, "none\n");
2648         else
2649                 return sprintf(page, "%d\n", rdev->raid_disk);
2650 }
2651
2652 static ssize_t
2653 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2654 {
2655         int slot;
2656         int err;
2657
2658         if (strncmp(buf, "none", 4)==0)
2659                 slot = -1;
2660         else {
2661                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2662                 if (err < 0)
2663                         return err;
2664         }
2665         if (rdev->mddev->pers && slot == -1) {
2666                 /* Setting 'slot' on an active array requires also
2667                  * updating the 'rd%d' link, and communicating
2668                  * with the personality with ->hot_*_disk.
2669                  * For now we only support removing
2670                  * failed/spare devices.  This normally happens automatically,
2671                  * but not when the metadata is externally managed.
2672                  */
2673                 if (rdev->raid_disk == -1)
2674                         return -EEXIST;
2675                 /* personality does all needed checks */
2676                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2677                         return -EINVAL;
2678                 clear_bit(Blocked, &rdev->flags);
2679                 remove_and_add_spares(rdev->mddev, rdev);
2680                 if (rdev->raid_disk >= 0)
2681                         return -EBUSY;
2682                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683                 md_wakeup_thread(rdev->mddev->thread);
2684         } else if (rdev->mddev->pers) {
2685                 /* Activating a spare .. or possibly reactivating
2686                  * if we ever get bitmaps working here.
2687                  */
2688
2689                 if (rdev->raid_disk != -1)
2690                         return -EBUSY;
2691
2692                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2693                         return -EBUSY;
2694
2695                 if (rdev->mddev->pers->hot_add_disk == NULL)
2696                         return -EINVAL;
2697
2698                 if (slot >= rdev->mddev->raid_disks &&
2699                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2700                         return -ENOSPC;
2701
2702                 rdev->raid_disk = slot;
2703                 if (test_bit(In_sync, &rdev->flags))
2704                         rdev->saved_raid_disk = slot;
2705                 else
2706                         rdev->saved_raid_disk = -1;
2707                 clear_bit(In_sync, &rdev->flags);
2708                 clear_bit(Bitmap_sync, &rdev->flags);
2709                 err = rdev->mddev->pers->
2710                         hot_add_disk(rdev->mddev, rdev);
2711                 if (err) {
2712                         rdev->raid_disk = -1;
2713                         return err;
2714                 } else
2715                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2716                 if (sysfs_link_rdev(rdev->mddev, rdev))
2717                         /* failure here is OK */;
2718                 /* don't wakeup anyone, leave that to userspace. */
2719         } else {
2720                 if (slot >= rdev->mddev->raid_disks &&
2721                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722                         return -ENOSPC;
2723                 rdev->raid_disk = slot;
2724                 /* assume it is working */
2725                 clear_bit(Faulty, &rdev->flags);
2726                 clear_bit(WriteMostly, &rdev->flags);
2727                 set_bit(In_sync, &rdev->flags);
2728                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2729         }
2730         return len;
2731 }
2732
2733 static struct rdev_sysfs_entry rdev_slot =
2734 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2735
2736 static ssize_t
2737 offset_show(struct md_rdev *rdev, char *page)
2738 {
2739         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 }
2741
2742 static ssize_t
2743 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2744 {
2745         unsigned long long offset;
2746         if (kstrtoull(buf, 10, &offset) < 0)
2747                 return -EINVAL;
2748         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2749                 return -EBUSY;
2750         if (rdev->sectors && rdev->mddev->external)
2751                 /* Must set offset before size, so overlap checks
2752                  * can be sane */
2753                 return -EBUSY;
2754         rdev->data_offset = offset;
2755         rdev->new_data_offset = offset;
2756         return len;
2757 }
2758
2759 static struct rdev_sysfs_entry rdev_offset =
2760 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2761
2762 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2763 {
2764         return sprintf(page, "%llu\n",
2765                        (unsigned long long)rdev->new_data_offset);
2766 }
2767
2768 static ssize_t new_offset_store(struct md_rdev *rdev,
2769                                 const char *buf, size_t len)
2770 {
2771         unsigned long long new_offset;
2772         struct mddev *mddev = rdev->mddev;
2773
2774         if (kstrtoull(buf, 10, &new_offset) < 0)
2775                 return -EINVAL;
2776
2777         if (mddev->sync_thread ||
2778             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2779                 return -EBUSY;
2780         if (new_offset == rdev->data_offset)
2781                 /* reset is always permitted */
2782                 ;
2783         else if (new_offset > rdev->data_offset) {
2784                 /* must not push array size beyond rdev_sectors */
2785                 if (new_offset - rdev->data_offset
2786                     + mddev->dev_sectors > rdev->sectors)
2787                                 return -E2BIG;
2788         }
2789         /* Metadata worries about other space details. */
2790
2791         /* decreasing the offset is inconsistent with a backwards
2792          * reshape.
2793          */
2794         if (new_offset < rdev->data_offset &&
2795             mddev->reshape_backwards)
2796                 return -EINVAL;
2797         /* Increasing offset is inconsistent with forwards
2798          * reshape.  reshape_direction should be set to
2799          * 'backwards' first.
2800          */
2801         if (new_offset > rdev->data_offset &&
2802             !mddev->reshape_backwards)
2803                 return -EINVAL;
2804
2805         if (mddev->pers && mddev->persistent &&
2806             !super_types[mddev->major_version]
2807             .allow_new_offset(rdev, new_offset))
2808                 return -E2BIG;
2809         rdev->new_data_offset = new_offset;
2810         if (new_offset > rdev->data_offset)
2811                 mddev->reshape_backwards = 1;
2812         else if (new_offset < rdev->data_offset)
2813                 mddev->reshape_backwards = 0;
2814
2815         return len;
2816 }
2817 static struct rdev_sysfs_entry rdev_new_offset =
2818 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2819
2820 static ssize_t
2821 rdev_size_show(struct md_rdev *rdev, char *page)
2822 {
2823         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2824 }
2825
2826 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2827 {
2828         /* check if two start/length pairs overlap */
2829         if (s1+l1 <= s2)
2830                 return 0;
2831         if (s2+l2 <= s1)
2832                 return 0;
2833         return 1;
2834 }
2835
2836 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2837 {
2838         unsigned long long blocks;
2839         sector_t new;
2840
2841         if (kstrtoull(buf, 10, &blocks) < 0)
2842                 return -EINVAL;
2843
2844         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2845                 return -EINVAL; /* sector conversion overflow */
2846
2847         new = blocks * 2;
2848         if (new != blocks * 2)
2849                 return -EINVAL; /* unsigned long long to sector_t overflow */
2850
2851         *sectors = new;
2852         return 0;
2853 }
2854
2855 static ssize_t
2856 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 {
2858         struct mddev *my_mddev = rdev->mddev;
2859         sector_t oldsectors = rdev->sectors;
2860         sector_t sectors;
2861
2862         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2863                 return -EINVAL;
2864         if (rdev->data_offset != rdev->new_data_offset)
2865                 return -EINVAL; /* too confusing */
2866         if (my_mddev->pers && rdev->raid_disk >= 0) {
2867                 if (my_mddev->persistent) {
2868                         sectors = super_types[my_mddev->major_version].
2869                                 rdev_size_change(rdev, sectors);
2870                         if (!sectors)
2871                                 return -EBUSY;
2872                 } else if (!sectors)
2873                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2874                                 rdev->data_offset;
2875                 if (!my_mddev->pers->resize)
2876                         /* Cannot change size for RAID0 or Linear etc */
2877                         return -EINVAL;
2878         }
2879         if (sectors < my_mddev->dev_sectors)
2880                 return -EINVAL; /* component must fit device */
2881
2882         rdev->sectors = sectors;
2883         if (sectors > oldsectors && my_mddev->external) {
2884                 /* Need to check that all other rdevs with the same
2885                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2886                  * the rdev lists safely.
2887                  * This check does not provide a hard guarantee, it
2888                  * just helps avoid dangerous mistakes.
2889                  */
2890                 struct mddev *mddev;
2891                 int overlap = 0;
2892                 struct list_head *tmp;
2893
2894                 rcu_read_lock();
2895                 for_each_mddev(mddev, tmp) {
2896                         struct md_rdev *rdev2;
2897
2898                         rdev_for_each(rdev2, mddev)
2899                                 if (rdev->bdev == rdev2->bdev &&
2900                                     rdev != rdev2 &&
2901                                     overlaps(rdev->data_offset, rdev->sectors,
2902                                              rdev2->data_offset,
2903                                              rdev2->sectors)) {
2904                                         overlap = 1;
2905                                         break;
2906                                 }
2907                         if (overlap) {
2908                                 mddev_put(mddev);
2909                                 break;
2910                         }
2911                 }
2912                 rcu_read_unlock();
2913                 if (overlap) {
2914                         /* Someone else could have slipped in a size
2915                          * change here, but doing so is just silly.
2916                          * We put oldsectors back because we *know* it is
2917                          * safe, and trust userspace not to race with
2918                          * itself
2919                          */
2920                         rdev->sectors = oldsectors;
2921                         return -EBUSY;
2922                 }
2923         }
2924         return len;
2925 }
2926
2927 static struct rdev_sysfs_entry rdev_size =
2928 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2929
2930 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2931 {
2932         unsigned long long recovery_start = rdev->recovery_offset;
2933
2934         if (test_bit(In_sync, &rdev->flags) ||
2935             recovery_start == MaxSector)
2936                 return sprintf(page, "none\n");
2937
2938         return sprintf(page, "%llu\n", recovery_start);
2939 }
2940
2941 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2942 {
2943         unsigned long long recovery_start;
2944
2945         if (cmd_match(buf, "none"))
2946                 recovery_start = MaxSector;
2947         else if (kstrtoull(buf, 10, &recovery_start))
2948                 return -EINVAL;
2949
2950         if (rdev->mddev->pers &&
2951             rdev->raid_disk >= 0)
2952                 return -EBUSY;
2953
2954         rdev->recovery_offset = recovery_start;
2955         if (recovery_start == MaxSector)
2956                 set_bit(In_sync, &rdev->flags);
2957         else
2958                 clear_bit(In_sync, &rdev->flags);
2959         return len;
2960 }
2961
2962 static struct rdev_sysfs_entry rdev_recovery_start =
2963 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2964
2965 static ssize_t
2966 badblocks_show(struct badblocks *bb, char *page, int unack);
2967 static ssize_t
2968 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2969
2970 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2971 {
2972         return badblocks_show(&rdev->badblocks, page, 0);
2973 }
2974 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2975 {
2976         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2977         /* Maybe that ack was all we needed */
2978         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2979                 wake_up(&rdev->blocked_wait);
2980         return rv;
2981 }
2982 static struct rdev_sysfs_entry rdev_bad_blocks =
2983 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2984
2985 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2986 {
2987         return badblocks_show(&rdev->badblocks, page, 1);
2988 }
2989 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2990 {
2991         return badblocks_store(&rdev->badblocks, page, len, 1);
2992 }
2993 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2994 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2995
2996 static struct attribute *rdev_default_attrs[] = {
2997         &rdev_state.attr,
2998         &rdev_errors.attr,
2999         &rdev_slot.attr,
3000         &rdev_offset.attr,
3001         &rdev_new_offset.attr,
3002         &rdev_size.attr,
3003         &rdev_recovery_start.attr,
3004         &rdev_bad_blocks.attr,
3005         &rdev_unack_bad_blocks.attr,
3006         NULL,
3007 };
3008 static ssize_t
3009 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3010 {
3011         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3012         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3013
3014         if (!entry->show)
3015                 return -EIO;
3016         if (!rdev->mddev)
3017                 return -EBUSY;
3018         return entry->show(rdev, page);
3019 }
3020
3021 static ssize_t
3022 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3023               const char *page, size_t length)
3024 {
3025         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3026         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3027         ssize_t rv;
3028         struct mddev *mddev = rdev->mddev;
3029
3030         if (!entry->store)
3031                 return -EIO;
3032         if (!capable(CAP_SYS_ADMIN))
3033                 return -EACCES;
3034         rv = mddev ? mddev_lock(mddev): -EBUSY;
3035         if (!rv) {
3036                 if (rdev->mddev == NULL)
3037                         rv = -EBUSY;
3038                 else
3039                         rv = entry->store(rdev, page, length);
3040                 mddev_unlock(mddev);
3041         }
3042         return rv;
3043 }
3044
3045 static void rdev_free(struct kobject *ko)
3046 {
3047         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3048         kfree(rdev);
3049 }
3050 static const struct sysfs_ops rdev_sysfs_ops = {
3051         .show           = rdev_attr_show,
3052         .store          = rdev_attr_store,
3053 };
3054 static struct kobj_type rdev_ktype = {
3055         .release        = rdev_free,
3056         .sysfs_ops      = &rdev_sysfs_ops,
3057         .default_attrs  = rdev_default_attrs,
3058 };
3059
3060 int md_rdev_init(struct md_rdev *rdev)
3061 {
3062         rdev->desc_nr = -1;
3063         rdev->saved_raid_disk = -1;
3064         rdev->raid_disk = -1;
3065         rdev->flags = 0;
3066         rdev->data_offset = 0;
3067         rdev->new_data_offset = 0;
3068         rdev->sb_events = 0;
3069         rdev->last_read_error.tv_sec  = 0;
3070         rdev->last_read_error.tv_nsec = 0;
3071         rdev->sb_loaded = 0;
3072         rdev->bb_page = NULL;
3073         atomic_set(&rdev->nr_pending, 0);
3074         atomic_set(&rdev->read_errors, 0);
3075         atomic_set(&rdev->corrected_errors, 0);
3076
3077         INIT_LIST_HEAD(&rdev->same_set);
3078         init_waitqueue_head(&rdev->blocked_wait);
3079
3080         /* Add space to store bad block list.
3081          * This reserves the space even on arrays where it cannot
3082          * be used - I wonder if that matters
3083          */
3084         rdev->badblocks.count = 0;
3085         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3086         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087         seqlock_init(&rdev->badblocks.lock);
3088         if (rdev->badblocks.page == NULL)
3089                 return -ENOMEM;
3090
3091         return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(md_rdev_init);
3094 /*
3095  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3096  *
3097  * mark the device faulty if:
3098  *
3099  *   - the device is nonexistent (zero size)
3100  *   - the device has no valid superblock
3101  *
3102  * a faulty rdev _never_ has rdev->sb set.
3103  */
3104 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3105 {
3106         char b[BDEVNAME_SIZE];
3107         int err;
3108         struct md_rdev *rdev;
3109         sector_t size;
3110
3111         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3112         if (!rdev) {
3113                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3114                 return ERR_PTR(-ENOMEM);
3115         }
3116
3117         err = md_rdev_init(rdev);
3118         if (err)
3119                 goto abort_free;
3120         err = alloc_disk_sb(rdev);
3121         if (err)
3122                 goto abort_free;
3123
3124         err = lock_rdev(rdev, newdev, super_format == -2);
3125         if (err)
3126                 goto abort_free;
3127
3128         kobject_init(&rdev->kobj, &rdev_ktype);
3129
3130         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3131         if (!size) {
3132                 printk(KERN_WARNING
3133                         "md: %s has zero or unknown size, marking faulty!\n",
3134                         bdevname(rdev->bdev,b));
3135                 err = -EINVAL;
3136                 goto abort_free;
3137         }
3138
3139         if (super_format >= 0) {
3140                 err = super_types[super_format].
3141                         load_super(rdev, NULL, super_minor);
3142                 if (err == -EINVAL) {
3143                         printk(KERN_WARNING
3144                                 "md: %s does not have a valid v%d.%d "
3145                                "superblock, not importing!\n",
3146                                 bdevname(rdev->bdev,b),
3147                                super_format, super_minor);
3148                         goto abort_free;
3149                 }
3150                 if (err < 0) {
3151                         printk(KERN_WARNING
3152                                 "md: could not read %s's sb, not importing!\n",
3153                                 bdevname(rdev->bdev,b));
3154                         goto abort_free;
3155                 }
3156         }
3157
3158         return rdev;
3159
3160 abort_free:
3161         if (rdev->bdev)
3162                 unlock_rdev(rdev);
3163         md_rdev_clear(rdev);
3164         kfree(rdev);
3165         return ERR_PTR(err);
3166 }
3167
3168 /*
3169  * Check a full RAID array for plausibility
3170  */
3171
3172 static void analyze_sbs(struct mddev *mddev)
3173 {
3174         int i;
3175         struct md_rdev *rdev, *freshest, *tmp;
3176         char b[BDEVNAME_SIZE];
3177
3178         freshest = NULL;
3179         rdev_for_each_safe(rdev, tmp, mddev)
3180                 switch (super_types[mddev->major_version].
3181                         load_super(rdev, freshest, mddev->minor_version)) {
3182                 case 1:
3183                         freshest = rdev;
3184                         break;
3185                 case 0:
3186                         break;
3187                 default:
3188                         printk( KERN_ERR \
3189                                 "md: fatal superblock inconsistency in %s"
3190                                 " -- removing from array\n",
3191                                 bdevname(rdev->bdev,b));
3192                         md_kick_rdev_from_array(rdev);
3193                 }
3194
3195         super_types[mddev->major_version].
3196                 validate_super(mddev, freshest);
3197
3198         i = 0;
3199         rdev_for_each_safe(rdev, tmp, mddev) {
3200                 if (mddev->max_disks &&
3201                     (rdev->desc_nr >= mddev->max_disks ||
3202                      i > mddev->max_disks)) {
3203                         printk(KERN_WARNING
3204                                "md: %s: %s: only %d devices permitted\n",
3205                                mdname(mddev), bdevname(rdev->bdev, b),
3206                                mddev->max_disks);
3207                         md_kick_rdev_from_array(rdev);
3208                         continue;
3209                 }
3210                 if (rdev != freshest) {
3211                         if (super_types[mddev->major_version].
3212                             validate_super(mddev, rdev)) {
3213                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3214                                         " from array!\n",
3215                                         bdevname(rdev->bdev,b));
3216                                 md_kick_rdev_from_array(rdev);
3217                                 continue;
3218                         }
3219                         /* No device should have a Candidate flag
3220                          * when reading devices
3221                          */
3222                         if (test_bit(Candidate, &rdev->flags)) {
3223                                 pr_info("md: kicking Cluster Candidate %s from array!\n",
3224                                         bdevname(rdev->bdev, b));
3225                                 md_kick_rdev_from_array(rdev);
3226                         }
3227                 }
3228                 if (mddev->level == LEVEL_MULTIPATH) {
3229                         rdev->desc_nr = i++;
3230                         rdev->raid_disk = rdev->desc_nr;
3231                         set_bit(In_sync, &rdev->flags);
3232                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3233                         rdev->raid_disk = -1;
3234                         clear_bit(In_sync, &rdev->flags);
3235                 }
3236         }
3237 }
3238
3239 /* Read a fixed-point number.
3240  * Numbers in sysfs attributes should be in "standard" units where
3241  * possible, so time should be in seconds.
3242  * However we internally use a a much smaller unit such as
3243  * milliseconds or jiffies.
3244  * This function takes a decimal number with a possible fractional
3245  * component, and produces an integer which is the result of
3246  * multiplying that number by 10^'scale'.
3247  * all without any floating-point arithmetic.
3248  */
3249 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3250 {
3251         unsigned long result = 0;
3252         long decimals = -1;
3253         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3254                 if (*cp == '.')
3255                         decimals = 0;
3256                 else if (decimals < scale) {
3257                         unsigned int value;
3258                         value = *cp - '0';
3259                         result = result * 10 + value;
3260                         if (decimals >= 0)
3261                                 decimals++;
3262                 }
3263                 cp++;
3264         }
3265         if (*cp == '\n')
3266                 cp++;
3267         if (*cp)
3268                 return -EINVAL;
3269         if (decimals < 0)
3270                 decimals = 0;
3271         while (decimals < scale) {
3272                 result *= 10;
3273                 decimals ++;
3274         }
3275         *res = result;
3276         return 0;
3277 }
3278
3279 static void md_safemode_timeout(unsigned long data);
3280
3281 static ssize_t
3282 safe_delay_show(struct mddev *mddev, char *page)
3283 {
3284         int msec = (mddev->safemode_delay*1000)/HZ;
3285         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3286 }
3287 static ssize_t
3288 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3289 {
3290         unsigned long msec;
3291
3292         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3293                 return -EINVAL;
3294         if (msec == 0)
3295                 mddev->safemode_delay = 0;
3296         else {
3297                 unsigned long old_delay = mddev->safemode_delay;
3298                 unsigned long new_delay = (msec*HZ)/1000;
3299
3300                 if (new_delay == 0)
3301                         new_delay = 1;
3302                 mddev->safemode_delay = new_delay;
3303                 if (new_delay < old_delay || old_delay == 0)
3304                         mod_timer(&mddev->safemode_timer, jiffies+1);
3305         }
3306         return len;
3307 }
3308 static struct md_sysfs_entry md_safe_delay =
3309 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3310
3311 static ssize_t
3312 level_show(struct mddev *mddev, char *page)
3313 {
3314         struct md_personality *p;
3315         int ret;
3316         spin_lock(&mddev->lock);
3317         p = mddev->pers;
3318         if (p)
3319                 ret = sprintf(page, "%s\n", p->name);
3320         else if (mddev->clevel[0])
3321                 ret = sprintf(page, "%s\n", mddev->clevel);
3322         else if (mddev->level != LEVEL_NONE)
3323                 ret = sprintf(page, "%d\n", mddev->level);
3324         else
3325                 ret = 0;
3326         spin_unlock(&mddev->lock);
3327         return ret;
3328 }
3329
3330 static ssize_t
3331 level_store(struct mddev *mddev, const char *buf, size_t len)
3332 {
3333         char clevel[16];
3334         ssize_t rv;
3335         size_t slen = len;
3336         struct md_personality *pers, *oldpers;
3337         long level;
3338         void *priv, *oldpriv;
3339         struct md_rdev *rdev;
3340
3341         if (slen == 0 || slen >= sizeof(clevel))
3342                 return -EINVAL;
3343
3344         rv = mddev_lock(mddev);
3345         if (rv)
3346                 return rv;
3347
3348         if (mddev->pers == NULL) {
3349                 strncpy(mddev->clevel, buf, slen);
3350                 if (mddev->clevel[slen-1] == '\n')
3351                         slen--;
3352                 mddev->clevel[slen] = 0;
3353                 mddev->level = LEVEL_NONE;
3354                 rv = len;
3355                 goto out_unlock;
3356         }
3357         rv = -EROFS;
3358         if (mddev->ro)
3359                 goto out_unlock;
3360
3361         /* request to change the personality.  Need to ensure:
3362          *  - array is not engaged in resync/recovery/reshape
3363          *  - old personality can be suspended
3364          *  - new personality will access other array.
3365          */
3366
3367         rv = -EBUSY;
3368         if (mddev->sync_thread ||
3369             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3370             mddev->reshape_position != MaxSector ||
3371             mddev->sysfs_active)
3372                 goto out_unlock;
3373
3374         rv = -EINVAL;
3375         if (!mddev->pers->quiesce) {
3376                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3377                        mdname(mddev), mddev->pers->name);
3378                 goto out_unlock;
3379         }
3380
3381         /* Now find the new personality */
3382         strncpy(clevel, buf, slen);
3383         if (clevel[slen-1] == '\n')
3384                 slen--;
3385         clevel[slen] = 0;
3386         if (kstrtol(clevel, 10, &level))
3387                 level = LEVEL_NONE;
3388
3389         if (request_module("md-%s", clevel) != 0)
3390                 request_module("md-level-%s", clevel);
3391         spin_lock(&pers_lock);
3392         pers = find_pers(level, clevel);
3393         if (!pers || !try_module_get(pers->owner)) {
3394                 spin_unlock(&pers_lock);
3395                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3396                 rv = -EINVAL;
3397                 goto out_unlock;
3398         }
3399         spin_unlock(&pers_lock);
3400
3401         if (pers == mddev->pers) {
3402                 /* Nothing to do! */
3403                 module_put(pers->owner);
3404                 rv = len;
3405                 goto out_unlock;
3406         }
3407         if (!pers->takeover) {
3408                 module_put(pers->owner);
3409                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3410                        mdname(mddev), clevel);
3411                 rv = -EINVAL;
3412                 goto out_unlock;
3413         }
3414
3415         rdev_for_each(rdev, mddev)
3416                 rdev->new_raid_disk = rdev->raid_disk;
3417
3418         /* ->takeover must set new_* and/or delta_disks
3419          * if it succeeds, and may set them when it fails.
3420          */
3421         priv = pers->takeover(mddev);
3422         if (IS_ERR(priv)) {
3423                 mddev->new_level = mddev->level;
3424                 mddev->new_layout = mddev->layout;
3425                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3426                 mddev->raid_disks -= mddev->delta_disks;
3427                 mddev->delta_disks = 0;
3428                 mddev->reshape_backwards = 0;
3429                 module_put(pers->owner);
3430                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431                        mdname(mddev), clevel);
3432                 rv = PTR_ERR(priv);
3433                 goto out_unlock;
3434         }
3435
3436         /* Looks like we have a winner */
3437         mddev_suspend(mddev);
3438         mddev_detach(mddev);
3439
3440         spin_lock(&mddev->lock);
3441         oldpers = mddev->pers;
3442         oldpriv = mddev->private;
3443         mddev->pers = pers;
3444         mddev->private = priv;
3445         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446         mddev->level = mddev->new_level;
3447         mddev->layout = mddev->new_layout;
3448         mddev->chunk_sectors = mddev->new_chunk_sectors;
3449         mddev->delta_disks = 0;
3450         mddev->reshape_backwards = 0;
3451         mddev->degraded = 0;
3452         spin_unlock(&mddev->lock);
3453
3454         if (oldpers->sync_request == NULL &&
3455             mddev->external) {
3456                 /* We are converting from a no-redundancy array
3457                  * to a redundancy array and metadata is managed
3458                  * externally so we need to be sure that writes
3459                  * won't block due to a need to transition
3460                  *      clean->dirty
3461                  * until external management is started.
3462                  */
3463                 mddev->in_sync = 0;
3464                 mddev->safemode_delay = 0;
3465                 mddev->safemode = 0;
3466         }
3467
3468         oldpers->free(mddev, oldpriv);
3469
3470         if (oldpers->sync_request == NULL &&
3471             pers->sync_request != NULL) {
3472                 /* need to add the md_redundancy_group */
3473                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3474                         printk(KERN_WARNING
3475                                "md: cannot register extra attributes for %s\n",
3476                                mdname(mddev));
3477                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3478         }
3479         if (oldpers->sync_request != NULL &&
3480             pers->sync_request == NULL) {
3481                 /* need to remove the md_redundancy_group */
3482                 if (mddev->to_remove == NULL)
3483                         mddev->to_remove = &md_redundancy_group;
3484         }
3485
3486         rdev_for_each(rdev, mddev) {
3487                 if (rdev->raid_disk < 0)
3488                         continue;
3489                 if (rdev->new_raid_disk >= mddev->raid_disks)
3490                         rdev->new_raid_disk = -1;
3491                 if (rdev->new_raid_disk == rdev->raid_disk)
3492                         continue;
3493                 sysfs_unlink_rdev(mddev, rdev);
3494         }
3495         rdev_for_each(rdev, mddev) {
3496                 if (rdev->raid_disk < 0)
3497                         continue;
3498                 if (rdev->new_raid_disk == rdev->raid_disk)
3499                         continue;
3500                 rdev->raid_disk = rdev->new_raid_disk;
3501                 if (rdev->raid_disk < 0)
3502                         clear_bit(In_sync, &rdev->flags);
3503                 else {
3504                         if (sysfs_link_rdev(mddev, rdev))
3505                                 printk(KERN_WARNING "md: cannot register rd%d"
3506                                        " for %s after level change\n",
3507                                        rdev->raid_disk, mdname(mddev));
3508                 }
3509         }
3510
3511         if (pers->sync_request == NULL) {
3512                 /* this is now an array without redundancy, so
3513                  * it must always be in_sync
3514                  */
3515                 mddev->in_sync = 1;
3516                 del_timer_sync(&mddev->safemode_timer);
3517         }
3518         blk_set_stacking_limits(&mddev->queue->limits);
3519         pers->run(mddev);
3520         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3521         mddev_resume(mddev);
3522         if (!mddev->thread)
3523                 md_update_sb(mddev, 1);
3524         sysfs_notify(&mddev->kobj, NULL, "level");
3525         md_new_event(mddev);
3526         rv = len;
3527 out_unlock:
3528         mddev_unlock(mddev);
3529         return rv;
3530 }
3531
3532 static struct md_sysfs_entry md_level =
3533 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3534
3535 static ssize_t
3536 layout_show(struct mddev *mddev, char *page)
3537 {
3538         /* just a number, not meaningful for all levels */
3539         if (mddev->reshape_position != MaxSector &&
3540             mddev->layout != mddev->new_layout)
3541                 return sprintf(page, "%d (%d)\n",
3542                                mddev->new_layout, mddev->layout);
3543         return sprintf(page, "%d\n", mddev->layout);
3544 }
3545
3546 static ssize_t
3547 layout_store(struct mddev *mddev, const char *buf, size_t len)
3548 {
3549         unsigned int n;
3550         int err;
3551
3552         err = kstrtouint(buf, 10, &n);
3553         if (err < 0)
3554                 return err;
3555         err = mddev_lock(mddev);
3556         if (err)
3557                 return err;
3558
3559         if (mddev->pers) {
3560                 if (mddev->pers->check_reshape == NULL)
3561                         err = -EBUSY;
3562                 else if (mddev->ro)
3563                         err = -EROFS;
3564                 else {
3565                         mddev->new_layout = n;
3566                         err = mddev->pers->check_reshape(mddev);
3567                         if (err)
3568                                 mddev->new_layout = mddev->layout;
3569                 }
3570         } else {
3571                 mddev->new_layout = n;
3572                 if (mddev->reshape_position == MaxSector)
3573                         mddev->layout = n;
3574         }
3575         mddev_unlock(mddev);
3576         return err ?: len;
3577 }
3578 static struct md_sysfs_entry md_layout =
3579 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3580
3581 static ssize_t
3582 raid_disks_show(struct mddev *mddev, char *page)
3583 {
3584         if (mddev->raid_disks == 0)
3585                 return 0;
3586         if (mddev->reshape_position != MaxSector &&
3587             mddev->delta_disks != 0)
3588                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3589                                mddev->raid_disks - mddev->delta_disks);
3590         return sprintf(page, "%d\n", mddev->raid_disks);
3591 }
3592
3593 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3594
3595 static ssize_t
3596 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598         unsigned int n;
3599         int err;
3600
3601         err = kstrtouint(buf, 10, &n);
3602         if (err < 0)
3603                 return err;
3604
3605         err = mddev_lock(mddev);
3606         if (err)
3607                 return err;
3608         if (mddev->pers)
3609                 err = update_raid_disks(mddev, n);
3610         else if (mddev->reshape_position != MaxSector) {
3611                 struct md_rdev *rdev;
3612                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3613
3614                 err = -EINVAL;
3615                 rdev_for_each(rdev, mddev) {
3616                         if (olddisks < n &&
3617                             rdev->data_offset < rdev->new_data_offset)
3618                                 goto out_unlock;
3619                         if (olddisks > n &&
3620                             rdev->data_offset > rdev->new_data_offset)
3621                                 goto out_unlock;
3622                 }
3623                 err = 0;
3624                 mddev->delta_disks = n - olddisks;
3625                 mddev->raid_disks = n;
3626                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3627         } else
3628                 mddev->raid_disks = n;
3629 out_unlock:
3630         mddev_unlock(mddev);
3631         return err ? err : len;
3632 }
3633 static struct md_sysfs_entry md_raid_disks =
3634 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3635
3636 static ssize_t
3637 chunk_size_show(struct mddev *mddev, char *page)
3638 {
3639         if (mddev->reshape_position != MaxSector &&
3640             mddev->chunk_sectors != mddev->new_chunk_sectors)
3641                 return sprintf(page, "%d (%d)\n",
3642                                mddev->new_chunk_sectors << 9,
3643                                mddev->chunk_sectors << 9);
3644         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3645 }
3646
3647 static ssize_t
3648 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3649 {
3650         unsigned long n;
3651         int err;
3652
3653         err = kstrtoul(buf, 10, &n);
3654         if (err < 0)
3655                 return err;
3656
3657         err = mddev_lock(mddev);
3658         if (err)
3659                 return err;
3660         if (mddev->pers) {
3661                 if (mddev->pers->check_reshape == NULL)
3662                         err = -EBUSY;
3663                 else if (mddev->ro)
3664                         err = -EROFS;
3665                 else {
3666                         mddev->new_chunk_sectors = n >> 9;
3667                         err = mddev->pers->check_reshape(mddev);
3668                         if (err)
3669                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3670                 }
3671         } else {
3672                 mddev->new_chunk_sectors = n >> 9;
3673                 if (mddev->reshape_position == MaxSector)
3674                         mddev->chunk_sectors = n >> 9;
3675         }
3676         mddev_unlock(mddev);
3677         return err ?: len;
3678 }
3679 static struct md_sysfs_entry md_chunk_size =
3680 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3681
3682 static ssize_t
3683 resync_start_show(struct mddev *mddev, char *page)
3684 {
3685         if (mddev->recovery_cp == MaxSector)
3686                 return sprintf(page, "none\n");
3687         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3688 }
3689
3690 static ssize_t
3691 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693         unsigned long long n;
3694         int err;
3695
3696         if (cmd_match(buf, "none"))
3697                 n = MaxSector;
3698         else {
3699                 err = kstrtoull(buf, 10, &n);
3700                 if (err < 0)
3701                         return err;
3702                 if (n != (sector_t)n)
3703                         return -EINVAL;
3704         }
3705
3706         err = mddev_lock(mddev);
3707         if (err)
3708                 return err;
3709         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3710                 err = -EBUSY;
3711
3712         if (!err) {
3713                 mddev->recovery_cp = n;
3714                 if (mddev->pers)
3715                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3716         }
3717         mddev_unlock(mddev);
3718         return err ?: len;
3719 }
3720 static struct md_sysfs_entry md_resync_start =
3721 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3722                 resync_start_show, resync_start_store);
3723
3724 /*
3725  * The array state can be:
3726  *
3727  * clear
3728  *     No devices, no size, no level
3729  *     Equivalent to STOP_ARRAY ioctl
3730  * inactive
3731  *     May have some settings, but array is not active
3732  *        all IO results in error
3733  *     When written, doesn't tear down array, but just stops it
3734  * suspended (not supported yet)
3735  *     All IO requests will block. The array can be reconfigured.
3736  *     Writing this, if accepted, will block until array is quiescent
3737  * readonly
3738  *     no resync can happen.  no superblocks get written.
3739  *     write requests fail
3740  * read-auto
3741  *     like readonly, but behaves like 'clean' on a write request.
3742  *
3743  * clean - no pending writes, but otherwise active.
3744  *     When written to inactive array, starts without resync
3745  *     If a write request arrives then
3746  *       if metadata is known, mark 'dirty' and switch to 'active'.
3747  *       if not known, block and switch to write-pending
3748  *     If written to an active array that has pending writes, then fails.
3749  * active
3750  *     fully active: IO and resync can be happening.
3751  *     When written to inactive array, starts with resync
3752  *
3753  * write-pending
3754  *     clean, but writes are blocked waiting for 'active' to be written.
3755  *
3756  * active-idle
3757  *     like active, but no writes have been seen for a while (100msec).
3758  *
3759  */
3760 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3761                    write_pending, active_idle, bad_word};
3762 static char *array_states[] = {
3763         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3764         "write-pending", "active-idle", NULL };
3765
3766 static int match_word(const char *word, char **list)
3767 {
3768         int n;
3769         for (n=0; list[n]; n++)
3770                 if (cmd_match(word, list[n]))
3771                         break;
3772         return n;
3773 }
3774
3775 static ssize_t
3776 array_state_show(struct mddev *mddev, char *page)
3777 {
3778         enum array_state st = inactive;
3779
3780         if (mddev->pers)
3781                 switch(mddev->ro) {
3782                 case 1:
3783                         st = readonly;
3784                         break;
3785                 case 2:
3786                         st = read_auto;
3787                         break;
3788                 case 0:
3789                         if (mddev->in_sync)
3790                                 st = clean;
3791                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3792                                 st = write_pending;
3793                         else if (mddev->safemode)
3794                                 st = active_idle;
3795                         else
3796                                 st = active;
3797                 }
3798         else {
3799                 if (list_empty(&mddev->disks) &&
3800                     mddev->raid_disks == 0 &&
3801                     mddev->dev_sectors == 0)
3802                         st = clear;
3803                 else
3804                         st = inactive;
3805         }
3806         return sprintf(page, "%s\n", array_states[st]);
3807 }
3808
3809 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3810 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3811 static int do_md_run(struct mddev *mddev);
3812 static int restart_array(struct mddev *mddev);
3813
3814 static ssize_t
3815 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3816 {
3817         int err;
3818         enum array_state st = match_word(buf, array_states);
3819
3820         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3821                 /* don't take reconfig_mutex when toggling between
3822                  * clean and active
3823                  */
3824                 spin_lock(&mddev->lock);
3825                 if (st == active) {
3826                         restart_array(mddev);
3827                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3828                         wake_up(&mddev->sb_wait);
3829                         err = 0;
3830                 } else /* st == clean */ {
3831                         restart_array(mddev);
3832                         if (atomic_read(&mddev->writes_pending) == 0) {
3833                                 if (mddev->in_sync == 0) {
3834                                         mddev->in_sync = 1;
3835                                         if (mddev->safemode == 1)
3836                                                 mddev->safemode = 0;
3837                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3838                                 }
3839                                 err = 0;
3840                         } else
3841                                 err = -EBUSY;
3842                 }
3843                 spin_unlock(&mddev->lock);
3844                 return err ?: len;
3845         }
3846         err = mddev_lock(mddev);
3847         if (err)
3848                 return err;
3849         err = -EINVAL;
3850         switch(st) {
3851         case bad_word:
3852                 break;
3853         case clear:
3854                 /* stopping an active array */
3855                 err = do_md_stop(mddev, 0, NULL);
3856                 break;
3857         case inactive:
3858                 /* stopping an active array */
3859                 if (mddev->pers)
3860                         err = do_md_stop(mddev, 2, NULL);
3861                 else
3862                         err = 0; /* already inactive */
3863                 break;
3864         case suspended:
3865                 break; /* not supported yet */
3866         case readonly:
3867                 if (mddev->pers)
3868                         err = md_set_readonly(mddev, NULL);
3869                 else {
3870                         mddev->ro = 1;
3871                         set_disk_ro(mddev->gendisk, 1);
3872                         err = do_md_run(mddev);
3873                 }
3874                 break;
3875         case read_auto:
3876                 if (mddev->pers) {
3877                         if (mddev->ro == 0)
3878                                 err = md_set_readonly(mddev, NULL);
3879                         else if (mddev->ro == 1)
3880                                 err = restart_array(mddev);
3881                         if (err == 0) {
3882                                 mddev->ro = 2;
3883                                 set_disk_ro(mddev->gendisk, 0);
3884                         }
3885                 } else {
3886                         mddev->ro = 2;
3887                         err = do_md_run(mddev);
3888                 }
3889                 break;
3890         case clean:
3891                 if (mddev->pers) {
3892                         restart_array(mddev);
3893                         spin_lock(&mddev->lock);
3894                         if (atomic_read(&mddev->writes_pending) == 0) {
3895                                 if (mddev->in_sync == 0) {
3896                                         mddev->in_sync = 1;
3897                                         if (mddev->safemode == 1)
3898                                                 mddev->safemode = 0;
3899                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3900                                 }
3901                                 err = 0;
3902                         } else
3903                                 err = -EBUSY;
3904                         spin_unlock(&mddev->lock);
3905                 } else
3906                         err = -EINVAL;
3907                 break;
3908         case active:
3909                 if (mddev->pers) {
3910                         restart_array(mddev);
3911                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3912                         wake_up(&mddev->sb_wait);
3913                         err = 0;
3914                 } else {
3915                         mddev->ro = 0;
3916                         set_disk_ro(mddev->gendisk, 0);
3917                         err = do_md_run(mddev);
3918                 }
3919                 break;
3920         case write_pending:
3921         case active_idle:
3922                 /* these cannot be set */
3923                 break;
3924         }
3925
3926         if (!err) {
3927                 if (mddev->hold_active == UNTIL_IOCTL)
3928                         mddev->hold_active = 0;
3929                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3930         }
3931         mddev_unlock(mddev);
3932         return err ?: len;
3933 }
3934 static struct md_sysfs_entry md_array_state =
3935 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3936
3937 static ssize_t
3938 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3939         return sprintf(page, "%d\n",
3940                        atomic_read(&mddev->max_corr_read_errors));
3941 }
3942
3943 static ssize_t
3944 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946         unsigned int n;
3947         int rv;
3948
3949         rv = kstrtouint(buf, 10, &n);
3950         if (rv < 0)
3951                 return rv;
3952         atomic_set(&mddev->max_corr_read_errors, n);
3953         return len;
3954 }
3955
3956 static struct md_sysfs_entry max_corr_read_errors =
3957 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3958         max_corrected_read_errors_store);
3959
3960 static ssize_t
3961 null_show(struct mddev *mddev, char *page)
3962 {
3963         return -EINVAL;
3964 }
3965
3966 static ssize_t
3967 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3968 {
3969         /* buf must be %d:%d\n? giving major and minor numbers */
3970         /* The new device is added to the array.
3971          * If the array has a persistent superblock, we read the
3972          * superblock to initialise info and check validity.
3973          * Otherwise, only checking done is that in bind_rdev_to_array,
3974          * which mainly checks size.
3975          */
3976         char *e;
3977         int major = simple_strtoul(buf, &e, 10);
3978         int minor;
3979         dev_t dev;
3980         struct md_rdev *rdev;
3981         int err;
3982
3983         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3984                 return -EINVAL;
3985         minor = simple_strtoul(e+1, &e, 10);
3986         if (*e && *e != '\n')
3987                 return -EINVAL;
3988         dev = MKDEV(major, minor);
3989         if (major != MAJOR(dev) ||
3990             minor != MINOR(dev))
3991                 return -EOVERFLOW;
3992
3993         flush_workqueue(md_misc_wq);
3994
3995         err = mddev_lock(mddev);
3996         if (err)
3997                 return err;
3998         if (mddev->persistent) {
3999                 rdev = md_import_device(dev, mddev->major_version,
4000                                         mddev->minor_version);
4001                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4002                         struct md_rdev *rdev0
4003                                 = list_entry(mddev->disks.next,
4004                                              struct md_rdev, same_set);
4005                         err = super_types[mddev->major_version]
4006                                 .load_super(rdev, rdev0, mddev->minor_version);
4007                         if (err < 0)
4008                                 goto out;
4009                 }
4010         } else if (mddev->external)
4011                 rdev = md_import_device(dev, -2, -1);
4012         else
4013                 rdev = md_import_device(dev, -1, -1);
4014
4015         if (IS_ERR(rdev)) {
4016                 mddev_unlock(mddev);
4017                 return PTR_ERR(rdev);
4018         }
4019         err = bind_rdev_to_array(rdev, mddev);
4020  out:
4021         if (err)
4022                 export_rdev(rdev);
4023         mddev_unlock(mddev);
4024         return err ? err : len;
4025 }
4026
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033         char *end;
4034         unsigned long chunk, end_chunk;
4035         int err;
4036
4037         err = mddev_lock(mddev);
4038         if (err)
4039                 return err;
4040         if (!mddev->bitmap)
4041                 goto out;
4042         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4043         while (*buf) {
4044                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4045                 if (buf == end) break;
4046                 if (*end == '-') { /* range */
4047                         buf = end + 1;
4048                         end_chunk = simple_strtoul(buf, &end, 0);
4049                         if (buf == end) break;
4050                 }
4051                 if (*end && !isspace(*end)) break;
4052                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4053                 buf = skip_spaces(end);
4054         }
4055         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4056 out:
4057         mddev_unlock(mddev);
4058         return len;
4059 }
4060
4061 static struct md_sysfs_entry md_bitmap =
4062 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4063
4064 static ssize_t
4065 size_show(struct mddev *mddev, char *page)
4066 {
4067         return sprintf(page, "%llu\n",
4068                 (unsigned long long)mddev->dev_sectors / 2);
4069 }
4070
4071 static int update_size(struct mddev *mddev, sector_t num_sectors);
4072
4073 static ssize_t
4074 size_store(struct mddev *mddev, const char *buf, size_t len)
4075 {
4076         /* If array is inactive, we can reduce the component size, but
4077          * not increase it (except from 0).
4078          * If array is active, we can try an on-line resize
4079          */
4080         sector_t sectors;
4081         int err = strict_blocks_to_sectors(buf, &sectors);
4082
4083         if (err < 0)
4084                 return err;
4085         err = mddev_lock(mddev);
4086         if (err)
4087                 return err;
4088         if (mddev->pers) {
4089                 if (mddev_is_clustered(mddev))
4090                         md_cluster_ops->metadata_update_start(mddev);
4091                 err = update_size(mddev, sectors);
4092                 md_update_sb(mddev, 1);
4093                 if (mddev_is_clustered(mddev))
4094                         md_cluster_ops->metadata_update_finish(mddev);
4095         } else {
4096                 if (mddev->dev_sectors == 0 ||
4097                     mddev->dev_sectors > sectors)
4098                         mddev->dev_sectors = sectors;
4099                 else
4100                         err = -ENOSPC;
4101         }
4102         mddev_unlock(mddev);
4103         return err ? err : len;
4104 }
4105
4106 static struct md_sysfs_entry md_size =
4107 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4108
4109 /* Metadata version.
4110  * This is one of
4111  *   'none' for arrays with no metadata (good luck...)
4112  *   'external' for arrays with externally managed metadata,
4113  * or N.M for internally known formats
4114  */
4115 static ssize_t
4116 metadata_show(struct mddev *mddev, char *page)
4117 {
4118         if (mddev->persistent)
4119                 return sprintf(page, "%d.%d\n",
4120                                mddev->major_version, mddev->minor_version);
4121         else if (mddev->external)
4122                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4123         else
4124                 return sprintf(page, "none\n");
4125 }
4126
4127 static ssize_t
4128 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130         int major, minor;
4131         char *e;
4132         int err;
4133         /* Changing the details of 'external' metadata is
4134          * always permitted.  Otherwise there must be
4135          * no devices attached to the array.
4136          */
4137
4138         err = mddev_lock(mddev);
4139         if (err)
4140                 return err;
4141         err = -EBUSY;
4142         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4143                 ;
4144         else if (!list_empty(&mddev->disks))
4145                 goto out_unlock;
4146
4147         err = 0;
4148         if (cmd_match(buf, "none")) {
4149                 mddev->persistent = 0;
4150                 mddev->external = 0;
4151                 mddev->major_version = 0;
4152                 mddev->minor_version = 90;
4153                 goto out_unlock;
4154         }
4155         if (strncmp(buf, "external:", 9) == 0) {
4156                 size_t namelen = len-9;
4157                 if (namelen >= sizeof(mddev->metadata_type))
4158                         namelen = sizeof(mddev->metadata_type)-1;
4159                 strncpy(mddev->metadata_type, buf+9, namelen);
4160                 mddev->metadata_type[namelen] = 0;
4161                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162                         mddev->metadata_type[--namelen] = 0;
4163                 mddev->persistent = 0;
4164                 mddev->external = 1;
4165                 mddev->major_version = 0;
4166                 mddev->minor_version = 90;
4167                 goto out_unlock;
4168         }
4169         major = simple_strtoul(buf, &e, 10);
4170         err = -EINVAL;
4171         if (e==buf || *e != '.')
4172                 goto out_unlock;
4173         buf = e+1;
4174         minor = simple_strtoul(buf, &e, 10);
4175         if (e==buf || (*e && *e != '\n') )
4176                 goto out_unlock;
4177         err = -ENOENT;
4178         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4179                 goto out_unlock;
4180         mddev->major_version = major;
4181         mddev->minor_version = minor;
4182         mddev->persistent = 1;
4183         mddev->external = 0;
4184         err = 0;
4185 out_unlock:
4186         mddev_unlock(mddev);
4187         return err ?: len;
4188 }
4189
4190 static struct md_sysfs_entry md_metadata =
4191 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4192
4193 static ssize_t
4194 action_show(struct mddev *mddev, char *page)
4195 {
4196         char *type = "idle";
4197         unsigned long recovery = mddev->recovery;
4198         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4199                 type = "frozen";
4200         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4201             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4202                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4203                         type = "reshape";
4204                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4205                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4206                                 type = "resync";
4207                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4208                                 type = "check";
4209                         else
4210                                 type = "repair";
4211                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4212                         type = "recover";
4213                 else if (mddev->reshape_position != MaxSector)
4214                         type = "reshape";
4215         }
4216         return sprintf(page, "%s\n", type);
4217 }
4218
4219 static ssize_t
4220 action_store(struct mddev *mddev, const char *page, size_t len)
4221 {
4222         if (!mddev->pers || !mddev->pers->sync_request)
4223                 return -EINVAL;
4224
4225
4226         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4227                 if (cmd_match(page, "frozen"))
4228                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229                 else
4230                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4232                     mddev_lock(mddev) == 0) {
4233                         flush_workqueue(md_misc_wq);
4234                         if (mddev->sync_thread) {
4235                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236                                 md_reap_sync_thread(mddev);
4237                         }
4238                         mddev_unlock(mddev);
4239                 }
4240         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4241                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4242                 return -EBUSY;
4243         else if (cmd_match(page, "resync"))
4244                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4245         else if (cmd_match(page, "recover")) {
4246                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4247                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4248         } else if (cmd_match(page, "reshape")) {
4249                 int err;
4250                 if (mddev->pers->start_reshape == NULL)
4251                         return -EINVAL;
4252                 err = mddev_lock(mddev);
4253                 if (!err) {
4254                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4255                         err = mddev->pers->start_reshape(mddev);
4256                         mddev_unlock(mddev);
4257                 }
4258                 if (err)
4259                         return err;
4260                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4261         } else {
4262                 if (cmd_match(page, "check"))
4263                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4264                 else if (!cmd_match(page, "repair"))
4265                         return -EINVAL;
4266                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4267                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269         }
4270         if (mddev->ro == 2) {
4271                 /* A write to sync_action is enough to justify
4272                  * canceling read-auto mode
4273                  */
4274                 mddev->ro = 0;
4275                 md_wakeup_thread(mddev->sync_thread);
4276         }
4277         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278         md_wakeup_thread(mddev->thread);
4279         sysfs_notify_dirent_safe(mddev->sysfs_action);
4280         return len;
4281 }
4282
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285
4286 static ssize_t
4287 last_sync_action_show(struct mddev *mddev, char *page)
4288 {
4289         return sprintf(page, "%s\n", mddev->last_sync_action);
4290 }
4291
4292 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4293
4294 static ssize_t
4295 mismatch_cnt_show(struct mddev *mddev, char *page)
4296 {
4297         return sprintf(page, "%llu\n",
4298                        (unsigned long long)
4299                        atomic64_read(&mddev->resync_mismatches));
4300 }
4301
4302 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4303
4304 static ssize_t
4305 sync_min_show(struct mddev *mddev, char *page)
4306 {
4307         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4308                        mddev->sync_speed_min ? "local": "system");
4309 }
4310
4311 static ssize_t
4312 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4313 {
4314         unsigned int min;
4315         int rv;
4316
4317         if (strncmp(buf, "system", 6)==0) {
4318                 min = 0;
4319         } else {
4320                 rv = kstrtouint(buf, 10, &min);
4321                 if (rv < 0)
4322                         return rv;
4323                 if (min == 0)
4324                         return -EINVAL;
4325         }
4326         mddev->sync_speed_min = min;
4327         return len;
4328 }
4329
4330 static struct md_sysfs_entry md_sync_min =
4331 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4332
4333 static ssize_t
4334 sync_max_show(struct mddev *mddev, char *page)
4335 {
4336         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4337                        mddev->sync_speed_max ? "local": "system");
4338 }
4339
4340 static ssize_t
4341 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4342 {
4343         unsigned int max;
4344         int rv;
4345
4346         if (strncmp(buf, "system", 6)==0) {
4347                 max = 0;
4348         } else {
4349                 rv = kstrtouint(buf, 10, &max);
4350                 if (rv < 0)
4351                         return rv;
4352                 if (max == 0)
4353                         return -EINVAL;
4354         }
4355         mddev->sync_speed_max = max;
4356         return len;
4357 }
4358
4359 static struct md_sysfs_entry md_sync_max =
4360 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4361
4362 static ssize_t
4363 degraded_show(struct mddev *mddev, char *page)
4364 {
4365         return sprintf(page, "%d\n", mddev->degraded);
4366 }
4367 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4368
4369 static ssize_t
4370 sync_force_parallel_show(struct mddev *mddev, char *page)
4371 {
4372         return sprintf(page, "%d\n", mddev->parallel_resync);
4373 }
4374
4375 static ssize_t
4376 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4377 {
4378         long n;
4379
4380         if (kstrtol(buf, 10, &n))
4381                 return -EINVAL;
4382
4383         if (n != 0 && n != 1)
4384                 return -EINVAL;
4385
4386         mddev->parallel_resync = n;
4387
4388         if (mddev->sync_thread)
4389                 wake_up(&resync_wait);
4390
4391         return len;
4392 }
4393
4394 /* force parallel resync, even with shared block devices */
4395 static struct md_sysfs_entry md_sync_force_parallel =
4396 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4397        sync_force_parallel_show, sync_force_parallel_store);
4398
4399 static ssize_t
4400 sync_speed_show(struct mddev *mddev, char *page)
4401 {
4402         unsigned long resync, dt, db;
4403         if (mddev->curr_resync == 0)
4404                 return sprintf(page, "none\n");
4405         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4406         dt = (jiffies - mddev->resync_mark) / HZ;
4407         if (!dt) dt++;
4408         db = resync - mddev->resync_mark_cnt;
4409         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4410 }
4411
4412 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4413
4414 static ssize_t
4415 sync_completed_show(struct mddev *mddev, char *page)
4416 {
4417         unsigned long long max_sectors, resync;
4418
4419         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4420                 return sprintf(page, "none\n");
4421
4422         if (mddev->curr_resync == 1 ||
4423             mddev->curr_resync == 2)
4424                 return sprintf(page, "delayed\n");
4425
4426         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4427             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4428                 max_sectors = mddev->resync_max_sectors;
4429         else
4430                 max_sectors = mddev->dev_sectors;
4431
4432         resync = mddev->curr_resync_completed;
4433         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4434 }
4435
4436 static struct md_sysfs_entry md_sync_completed =
4437         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4438
4439 static ssize_t
4440 min_sync_show(struct mddev *mddev, char *page)
4441 {
4442         return sprintf(page, "%llu\n",
4443                        (unsigned long long)mddev->resync_min);
4444 }
4445 static ssize_t
4446 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4447 {
4448         unsigned long long min;
4449         int err;
4450
4451         if (kstrtoull(buf, 10, &min))
4452                 return -EINVAL;
4453
4454         spin_lock(&mddev->lock);
4455         err = -EINVAL;
4456         if (min > mddev->resync_max)
4457                 goto out_unlock;
4458
4459         err = -EBUSY;
4460         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4461                 goto out_unlock;
4462
4463         /* Round down to multiple of 4K for safety */
4464         mddev->resync_min = round_down(min, 8);
4465         err = 0;
4466
4467 out_unlock:
4468         spin_unlock(&mddev->lock);
4469         return err ?: len;
4470 }
4471
4472 static struct md_sysfs_entry md_min_sync =
4473 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4474
4475 static ssize_t
4476 max_sync_show(struct mddev *mddev, char *page)
4477 {
4478         if (mddev->resync_max == MaxSector)
4479                 return sprintf(page, "max\n");
4480         else
4481                 return sprintf(page, "%llu\n",
4482                                (unsigned long long)mddev->resync_max);
4483 }
4484 static ssize_t
4485 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4486 {
4487         int err;
4488         spin_lock(&mddev->lock);
4489         if (strncmp(buf, "max", 3) == 0)
4490                 mddev->resync_max = MaxSector;
4491         else {
4492                 unsigned long long max;
4493                 int chunk;
4494
4495                 err = -EINVAL;
4496                 if (kstrtoull(buf, 10, &max))
4497                         goto out_unlock;
4498                 if (max < mddev->resync_min)
4499                         goto out_unlock;
4500
4501                 err = -EBUSY;
4502                 if (max < mddev->resync_max &&
4503                     mddev->ro == 0 &&
4504                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4505                         goto out_unlock;
4506
4507                 /* Must be a multiple of chunk_size */
4508                 chunk = mddev->chunk_sectors;
4509                 if (chunk) {
4510                         sector_t temp = max;
4511
4512                         err = -EINVAL;
4513                         if (sector_div(temp, chunk))
4514                                 goto out_unlock;
4515                 }
4516                 mddev->resync_max = max;
4517         }
4518         wake_up(&mddev->recovery_wait);
4519         err = 0;
4520 out_unlock:
4521         spin_unlock(&mddev->lock);
4522         return err ?: len;
4523 }
4524
4525 static struct md_sysfs_entry md_max_sync =
4526 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4527
4528 static ssize_t
4529 suspend_lo_show(struct mddev *mddev, char *page)
4530 {
4531         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4532 }
4533
4534 static ssize_t
4535 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4536 {
4537         unsigned long long old, new;
4538         int err;
4539
4540         err = kstrtoull(buf, 10, &new);
4541         if (err < 0)
4542                 return err;
4543         if (new != (sector_t)new)
4544                 return -EINVAL;
4545
4546         err = mddev_lock(mddev);
4547         if (err)
4548                 return err;
4549         err = -EINVAL;
4550         if (mddev->pers == NULL ||
4551             mddev->pers->quiesce == NULL)
4552                 goto unlock;
4553         old = mddev->suspend_lo;
4554         mddev->suspend_lo = new;
4555         if (new >= old)
4556                 /* Shrinking suspended region */
4557                 mddev->pers->quiesce(mddev, 2);
4558         else {
4559                 /* Expanding suspended region - need to wait */
4560                 mddev->pers->quiesce(mddev, 1);
4561                 mddev->pers->quiesce(mddev, 0);
4562         }
4563         err = 0;
4564 unlock:
4565         mddev_unlock(mddev);
4566         return err ?: len;
4567 }
4568 static struct md_sysfs_entry md_suspend_lo =
4569 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4570
4571 static ssize_t
4572 suspend_hi_show(struct mddev *mddev, char *page)
4573 {
4574         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4575 }
4576
4577 static ssize_t
4578 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4579 {
4580         unsigned long long old, new;
4581         int err;
4582
4583         err = kstrtoull(buf, 10, &new);
4584         if (err < 0)
4585                 return err;
4586         if (new != (sector_t)new)
4587                 return -EINVAL;
4588
4589         err = mddev_lock(mddev);
4590         if (err)
4591                 return err;
4592         err = -EINVAL;
4593         if (mddev->pers == NULL ||
4594             mddev->pers->quiesce == NULL)
4595                 goto unlock;
4596         old = mddev->suspend_hi;
4597         mddev->suspend_hi = new;
4598         if (new <= old)
4599                 /* Shrinking suspended region */
4600                 mddev->pers->quiesce(mddev, 2);
4601         else {
4602                 /* Expanding suspended region - need to wait */
4603                 mddev->pers->quiesce(mddev, 1);
4604                 mddev->pers->quiesce(mddev, 0);
4605         }
4606         err = 0;
4607 unlock:
4608         mddev_unlock(mddev);
4609         return err ?: len;
4610 }
4611 static struct md_sysfs_entry md_suspend_hi =
4612 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4613
4614 static ssize_t
4615 reshape_position_show(struct mddev *mddev, char *page)
4616 {
4617         if (mddev->reshape_position != MaxSector)
4618                 return sprintf(page, "%llu\n",
4619                                (unsigned long long)mddev->reshape_position);
4620         strcpy(page, "none\n");
4621         return 5;
4622 }
4623
4624 static ssize_t
4625 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4626 {
4627         struct md_rdev *rdev;
4628         unsigned long long new;
4629         int err;
4630
4631         err = kstrtoull(buf, 10, &new);
4632         if (err < 0)
4633                 return err;
4634         if (new != (sector_t)new)
4635                 return -EINVAL;
4636         err = mddev_lock(mddev);
4637         if (err)
4638                 return err;
4639         err = -EBUSY;
4640         if (mddev->pers)
4641                 goto unlock;
4642         mddev->reshape_position = new;
4643         mddev->delta_disks = 0;
4644         mddev->reshape_backwards = 0;
4645         mddev->new_level = mddev->level;
4646         mddev->new_layout = mddev->layout;
4647         mddev->new_chunk_sectors = mddev->chunk_sectors;
4648         rdev_for_each(rdev, mddev)
4649                 rdev->new_data_offset = rdev->data_offset;
4650         err = 0;
4651 unlock:
4652         mddev_unlock(mddev);
4653         return err ?: len;
4654 }
4655
4656 static struct md_sysfs_entry md_reshape_position =
4657 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4658        reshape_position_store);
4659
4660 static ssize_t
4661 reshape_direction_show(struct mddev *mddev, char *page)
4662 {
4663         return sprintf(page, "%s\n",
4664                        mddev->reshape_backwards ? "backwards" : "forwards");
4665 }
4666
4667 static ssize_t
4668 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4669 {
4670         int backwards = 0;
4671         int err;
4672
4673         if (cmd_match(buf, "forwards"))
4674                 backwards = 0;
4675         else if (cmd_match(buf, "backwards"))
4676                 backwards = 1;
4677         else
4678                 return -EINVAL;
4679         if (mddev->reshape_backwards == backwards)
4680                 return len;
4681
4682         err = mddev_lock(mddev);
4683         if (err)
4684                 return err;
4685         /* check if we are allowed to change */
4686         if (mddev->delta_disks)
4687                 err = -EBUSY;
4688         else if (mddev->persistent &&
4689             mddev->major_version == 0)
4690                 err =  -EINVAL;
4691         else
4692                 mddev->reshape_backwards = backwards;
4693         mddev_unlock(mddev);
4694         return err ?: len;
4695 }
4696
4697 static struct md_sysfs_entry md_reshape_direction =
4698 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4699        reshape_direction_store);
4700
4701 static ssize_t
4702 array_size_show(struct mddev *mddev, char *page)
4703 {
4704         if (mddev->external_size)
4705                 return sprintf(page, "%llu\n",
4706                                (unsigned long long)mddev->array_sectors/2);
4707         else
4708                 return sprintf(page, "default\n");
4709 }
4710
4711 static ssize_t
4712 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4713 {
4714         sector_t sectors;
4715         int err;
4716
4717         err = mddev_lock(mddev);
4718         if (err)
4719                 return err;
4720
4721         if (strncmp(buf, "default", 7) == 0) {
4722                 if (mddev->pers)
4723                         sectors = mddev->pers->size(mddev, 0, 0);
4724                 else
4725                         sectors = mddev->array_sectors;
4726
4727                 mddev->external_size = 0;
4728         } else {
4729                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4730                         err = -EINVAL;
4731                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4732                         err = -E2BIG;
4733                 else
4734                         mddev->external_size = 1;
4735         }
4736
4737         if (!err) {
4738                 mddev->array_sectors = sectors;
4739                 if (mddev->pers) {
4740                         set_capacity(mddev->gendisk, mddev->array_sectors);
4741                         revalidate_disk(mddev->gendisk);
4742                 }
4743         }
4744         mddev_unlock(mddev);
4745         return err ?: len;
4746 }
4747
4748 static struct md_sysfs_entry md_array_size =
4749 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4750        array_size_store);
4751
4752 static struct attribute *md_default_attrs[] = {
4753         &md_level.attr,
4754         &md_layout.attr,
4755         &md_raid_disks.attr,
4756         &md_chunk_size.attr,
4757         &md_size.attr,
4758         &md_resync_start.attr,
4759         &md_metadata.attr,
4760         &md_new_device.attr,
4761         &md_safe_delay.attr,
4762         &md_array_state.attr,
4763         &md_reshape_position.attr,
4764         &md_reshape_direction.attr,
4765         &md_array_size.attr,
4766         &max_corr_read_errors.attr,
4767         NULL,
4768 };
4769
4770 static struct attribute *md_redundancy_attrs[] = {
4771         &md_scan_mode.attr,
4772         &md_last_scan_mode.attr,
4773         &md_mismatches.attr,
4774         &md_sync_min.attr,
4775         &md_sync_max.attr,
4776         &md_sync_speed.attr,
4777         &md_sync_force_parallel.attr,
4778         &md_sync_completed.attr,
4779         &md_min_sync.attr,
4780         &md_max_sync.attr,
4781         &md_suspend_lo.attr,
4782         &md_suspend_hi.attr,
4783         &md_bitmap.attr,
4784         &md_degraded.attr,
4785         NULL,
4786 };
4787 static struct attribute_group md_redundancy_group = {
4788         .name = NULL,
4789         .attrs = md_redundancy_attrs,
4790 };
4791
4792 static ssize_t
4793 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4794 {
4795         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4796         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4797         ssize_t rv;
4798
4799         if (!entry->show)
4800                 return -EIO;
4801         spin_lock(&all_mddevs_lock);
4802         if (list_empty(&mddev->all_mddevs)) {
4803                 spin_unlock(&all_mddevs_lock);
4804                 return -EBUSY;
4805         }
4806         mddev_get(mddev);
4807         spin_unlock(&all_mddevs_lock);
4808
4809         rv = entry->show(mddev, page);
4810         mddev_put(mddev);
4811         return rv;
4812 }
4813
4814 static ssize_t
4815 md_attr_store(struct kobject *kobj, struct attribute *attr,
4816               const char *page, size_t length)
4817 {
4818         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4819         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4820         ssize_t rv;
4821
4822         if (!entry->store)
4823                 return -EIO;
4824         if (!capable(CAP_SYS_ADMIN))
4825                 return -EACCES;
4826         spin_lock(&all_mddevs_lock);
4827         if (list_empty(&mddev->all_mddevs)) {
4828                 spin_unlock(&all_mddevs_lock);
4829                 return -EBUSY;
4830         }
4831         mddev_get(mddev);
4832         spin_unlock(&all_mddevs_lock);
4833         rv = entry->store(mddev, page, length);
4834         mddev_put(mddev);
4835         return rv;
4836 }
4837
4838 static void md_free(struct kobject *ko)
4839 {
4840         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4841
4842         if (mddev->sysfs_state)
4843                 sysfs_put(mddev->sysfs_state);
4844
4845         if (mddev->queue)
4846                 blk_cleanup_queue(mddev->queue);
4847         if (mddev->gendisk) {
4848                 del_gendisk(mddev->gendisk);
4849                 put_disk(mddev->gendisk);
4850         }
4851
4852         kfree(mddev);
4853 }
4854
4855 static const struct sysfs_ops md_sysfs_ops = {
4856         .show   = md_attr_show,
4857         .store  = md_attr_store,
4858 };
4859 static struct kobj_type md_ktype = {
4860         .release        = md_free,
4861         .sysfs_ops      = &md_sysfs_ops,
4862         .default_attrs  = md_default_attrs,
4863 };
4864
4865 int mdp_major = 0;
4866
4867 static void mddev_delayed_delete(struct work_struct *ws)
4868 {
4869         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4870
4871         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4872         kobject_del(&mddev->kobj);
4873         kobject_put(&mddev->kobj);
4874 }
4875
4876 static int md_alloc(dev_t dev, char *name)
4877 {
4878         static DEFINE_MUTEX(disks_mutex);
4879         struct mddev *mddev = mddev_find(dev);
4880         struct gendisk *disk;
4881         int partitioned;
4882         int shift;
4883         int unit;
4884         int error;
4885
4886         if (!mddev)
4887                 return -ENODEV;
4888
4889         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4890         shift = partitioned ? MdpMinorShift : 0;
4891         unit = MINOR(mddev->unit) >> shift;
4892
4893         /* wait for any previous instance of this device to be
4894          * completely removed (mddev_delayed_delete).
4895          */
4896         flush_workqueue(md_misc_wq);
4897
4898         mutex_lock(&disks_mutex);
4899         error = -EEXIST;
4900         if (mddev->gendisk)
4901                 goto abort;
4902
4903         if (name) {
4904                 /* Need to ensure that 'name' is not a duplicate.
4905                  */
4906                 struct mddev *mddev2;
4907                 spin_lock(&all_mddevs_lock);
4908
4909                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4910                         if (mddev2->gendisk &&
4911                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4912                                 spin_unlock(&all_mddevs_lock);
4913                                 goto abort;
4914                         }
4915                 spin_unlock(&all_mddevs_lock);
4916         }
4917
4918         error = -ENOMEM;
4919         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4920         if (!mddev->queue)
4921                 goto abort;
4922         mddev->queue->queuedata = mddev;
4923
4924         blk_queue_make_request(mddev->queue, md_make_request);
4925         blk_set_stacking_limits(&mddev->queue->limits);
4926
4927         disk = alloc_disk(1 << shift);
4928         if (!disk) {
4929                 blk_cleanup_queue(mddev->queue);
4930                 mddev->queue = NULL;
4931                 goto abort;
4932         }
4933         disk->major = MAJOR(mddev->unit);
4934         disk->first_minor = unit << shift;
4935         if (name)
4936                 strcpy(disk->disk_name, name);
4937         else if (partitioned)
4938                 sprintf(disk->disk_name, "md_d%d", unit);
4939         else
4940                 sprintf(disk->disk_name, "md%d", unit);
4941         disk->fops = &md_fops;
4942         disk->private_data = mddev;
4943         disk->queue = mddev->queue;
4944         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4945         /* Allow extended partitions.  This makes the
4946          * 'mdp' device redundant, but we can't really
4947          * remove it now.
4948          */
4949         disk->flags |= GENHD_FL_EXT_DEVT;
4950         mddev->gendisk = disk;
4951         /* As soon as we call add_disk(), another thread could get
4952          * through to md_open, so make sure it doesn't get too far
4953          */
4954         mutex_lock(&mddev->open_mutex);
4955         add_disk(disk);
4956
4957         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4958                                      &disk_to_dev(disk)->kobj, "%s", "md");
4959         if (error) {
4960                 /* This isn't possible, but as kobject_init_and_add is marked
4961                  * __must_check, we must do something with the result
4962                  */
4963                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4964                        disk->disk_name);
4965                 error = 0;
4966         }
4967         if (mddev->kobj.sd &&
4968             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4969                 printk(KERN_DEBUG "pointless warning\n");
4970         mutex_unlock(&mddev->open_mutex);
4971  abort:
4972         mutex_unlock(&disks_mutex);
4973         if (!error && mddev->kobj.sd) {
4974                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4975                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4976         }
4977         mddev_put(mddev);
4978         return error;
4979 }
4980
4981 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4982 {
4983         md_alloc(dev, NULL);
4984         return NULL;
4985 }
4986
4987 static int add_named_array(const char *val, struct kernel_param *kp)
4988 {
4989         /* val must be "md_*" where * is not all digits.
4990          * We allocate an array with a large free minor number, and
4991          * set the name to val.  val must not already be an active name.
4992          */
4993         int len = strlen(val);
4994         char buf[DISK_NAME_LEN];
4995
4996         while (len && val[len-1] == '\n')
4997                 len--;
4998         if (len >= DISK_NAME_LEN)
4999                 return -E2BIG;
5000         strlcpy(buf, val, len+1);
5001         if (strncmp(buf, "md_", 3) != 0)
5002                 return -EINVAL;
5003         return md_alloc(0, buf);
5004 }
5005
5006 static void md_safemode_timeout(unsigned long data)
5007 {
5008         struct mddev *mddev = (struct mddev *) data;
5009
5010         if (!atomic_read(&mddev->writes_pending)) {
5011                 mddev->safemode = 1;
5012                 if (mddev->external)
5013                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5014         }
5015         md_wakeup_thread(mddev->thread);
5016 }
5017
5018 static int start_dirty_degraded;
5019
5020 int md_run(struct mddev *mddev)
5021 {
5022         int err;
5023         struct md_rdev *rdev;
5024         struct md_personality *pers;
5025
5026         if (list_empty(&mddev->disks))
5027                 /* cannot run an array with no devices.. */
5028                 return -EINVAL;
5029
5030         if (mddev->pers)
5031                 return -EBUSY;
5032         /* Cannot run until previous stop completes properly */
5033         if (mddev->sysfs_active)
5034                 return -EBUSY;
5035
5036         /*
5037          * Analyze all RAID superblock(s)
5038          */
5039         if (!mddev->raid_disks) {
5040                 if (!mddev->persistent)
5041                         return -EINVAL;
5042                 analyze_sbs(mddev);
5043         }
5044
5045         if (mddev->level != LEVEL_NONE)
5046                 request_module("md-level-%d", mddev->level);
5047         else if (mddev->clevel[0])
5048                 request_module("md-%s", mddev->clevel);
5049
5050         /*
5051          * Drop all container device buffers, from now on
5052          * the only valid external interface is through the md
5053          * device.
5054          */
5055         rdev_for_each(rdev, mddev) {
5056                 if (test_bit(Faulty, &rdev->flags))
5057                         continue;
5058                 sync_blockdev(rdev->bdev);
5059                 invalidate_bdev(rdev->bdev);
5060
5061                 /* perform some consistency tests on the device.
5062                  * We don't want the data to overlap the metadata,
5063                  * Internal Bitmap issues have been handled elsewhere.
5064                  */
5065                 if (rdev->meta_bdev) {
5066                         /* Nothing to check */;
5067                 } else if (rdev->data_offset < rdev->sb_start) {
5068                         if (mddev->dev_sectors &&
5069                             rdev->data_offset + mddev->dev_sectors
5070                             > rdev->sb_start) {
5071                                 printk("md: %s: data overlaps metadata\n",
5072                                        mdname(mddev));
5073                                 return -EINVAL;
5074                         }
5075                 } else {
5076                         if (rdev->sb_start + rdev->sb_size/512
5077                             > rdev->data_offset) {
5078                                 printk("md: %s: metadata overlaps data\n",
5079                                        mdname(mddev));
5080                                 return -EINVAL;
5081                         }
5082                 }
5083                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5084         }
5085
5086         if (mddev->bio_set == NULL)
5087                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5088
5089         spin_lock(&pers_lock);
5090         pers = find_pers(mddev->level, mddev->clevel);
5091         if (!pers || !try_module_get(pers->owner)) {
5092                 spin_unlock(&pers_lock);
5093                 if (mddev->level != LEVEL_NONE)
5094                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5095                                mddev->level);
5096                 else
5097                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5098                                mddev->clevel);
5099                 return -EINVAL;
5100         }
5101         spin_unlock(&pers_lock);
5102         if (mddev->level != pers->level) {
5103                 mddev->level = pers->level;
5104                 mddev->new_level = pers->level;
5105         }
5106         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5107
5108         if (mddev->reshape_position != MaxSector &&
5109             pers->start_reshape == NULL) {
5110                 /* This personality cannot handle reshaping... */
5111                 module_put(pers->owner);
5112                 return -EINVAL;
5113         }
5114
5115         if (pers->sync_request) {
5116                 /* Warn if this is a potentially silly
5117                  * configuration.
5118                  */
5119                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5120                 struct md_rdev *rdev2;
5121                 int warned = 0;
5122
5123                 rdev_for_each(rdev, mddev)
5124                         rdev_for_each(rdev2, mddev) {
5125                                 if (rdev < rdev2 &&
5126                                     rdev->bdev->bd_contains ==
5127                                     rdev2->bdev->bd_contains) {
5128                                         printk(KERN_WARNING
5129                                                "%s: WARNING: %s appears to be"
5130                                                " on the same physical disk as"
5131                                                " %s.\n",
5132                                                mdname(mddev),
5133                                                bdevname(rdev->bdev,b),
5134                                                bdevname(rdev2->bdev,b2));
5135                                         warned = 1;
5136                                 }
5137                         }
5138
5139                 if (warned)
5140                         printk(KERN_WARNING
5141                                "True protection against single-disk"
5142                                " failure might be compromised.\n");
5143         }
5144
5145         mddev->recovery = 0;
5146         /* may be over-ridden by personality */
5147         mddev->resync_max_sectors = mddev->dev_sectors;
5148
5149         mddev->ok_start_degraded = start_dirty_degraded;
5150
5151         if (start_readonly && mddev->ro == 0)
5152                 mddev->ro = 2; /* read-only, but switch on first write */
5153
5154         err = pers->run(mddev);
5155         if (err)
5156                 printk(KERN_ERR "md: pers->run() failed ...\n");
5157         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5158                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5159                           " but 'external_size' not in effect?\n", __func__);
5160                 printk(KERN_ERR
5161                        "md: invalid array_size %llu > default size %llu\n",
5162                        (unsigned long long)mddev->array_sectors / 2,
5163                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5164                 err = -EINVAL;
5165         }
5166         if (err == 0 && pers->sync_request &&
5167             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5168                 struct bitmap *bitmap;
5169
5170                 bitmap = bitmap_create(mddev, -1);
5171                 if (IS_ERR(bitmap)) {
5172                         err = PTR_ERR(bitmap);
5173                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5174                                mdname(mddev), err);
5175                 } else
5176                         mddev->bitmap = bitmap;
5177
5178         }
5179         if (err) {
5180                 mddev_detach(mddev);
5181                 if (mddev->private)
5182                         pers->free(mddev, mddev->private);
5183                 mddev->private = NULL;
5184                 module_put(pers->owner);
5185                 bitmap_destroy(mddev);
5186                 return err;
5187         }
5188         if (mddev->queue) {
5189                 mddev->queue->backing_dev_info.congested_data = mddev;
5190                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5191                 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5192         }
5193         if (pers->sync_request) {
5194                 if (mddev->kobj.sd &&
5195                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5196                         printk(KERN_WARNING
5197                                "md: cannot register extra attributes for %s\n",
5198                                mdname(mddev));
5199                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5200         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5201                 mddev->ro = 0;
5202
5203         atomic_set(&mddev->writes_pending,0);
5204         atomic_set(&mddev->max_corr_read_errors,
5205                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5206         mddev->safemode = 0;
5207         mddev->safemode_timer.function = md_safemode_timeout;
5208         mddev->safemode_timer.data = (unsigned long) mddev;
5209         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5210         mddev->in_sync = 1;
5211         smp_wmb();
5212         spin_lock(&mddev->lock);
5213         mddev->pers = pers;
5214         mddev->ready = 1;
5215         spin_unlock(&mddev->lock);
5216         rdev_for_each(rdev, mddev)
5217                 if (rdev->raid_disk >= 0)
5218                         if (sysfs_link_rdev(mddev, rdev))
5219                                 /* failure here is OK */;
5220
5221         if (mddev->degraded && !mddev->ro)
5222                 /* This ensures that recovering status is reported immediately
5223                  * via sysfs - until a lack of spares is confirmed.
5224                  */
5225                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5226         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5227
5228         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5229                 md_update_sb(mddev, 0);
5230
5231         md_new_event(mddev);
5232         sysfs_notify_dirent_safe(mddev->sysfs_state);
5233         sysfs_notify_dirent_safe(mddev->sysfs_action);
5234         sysfs_notify(&mddev->kobj, NULL, "degraded");
5235         return 0;
5236 }
5237 EXPORT_SYMBOL_GPL(md_run);
5238
5239 static int do_md_run(struct mddev *mddev)
5240 {
5241         int err;
5242
5243         err = md_run(mddev);
5244         if (err)
5245                 goto out;
5246         err = bitmap_load(mddev);
5247         if (err) {
5248                 bitmap_destroy(mddev);
5249                 goto out;
5250         }
5251
5252         md_wakeup_thread(mddev->thread);
5253         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5254
5255         set_capacity(mddev->gendisk, mddev->array_sectors);
5256         revalidate_disk(mddev->gendisk);
5257         mddev->changed = 1;
5258         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5259 out:
5260         return err;
5261 }
5262
5263 static int restart_array(struct mddev *mddev)
5264 {
5265         struct gendisk *disk = mddev->gendisk;
5266
5267         /* Complain if it has no devices */
5268         if (list_empty(&mddev->disks))
5269                 return -ENXIO;
5270         if (!mddev->pers)
5271                 return -EINVAL;
5272         if (!mddev->ro)
5273                 return -EBUSY;
5274         mddev->safemode = 0;
5275         mddev->ro = 0;
5276         set_disk_ro(disk, 0);
5277         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5278                 mdname(mddev));
5279         /* Kick recovery or resync if necessary */
5280         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5281         md_wakeup_thread(mddev->thread);
5282         md_wakeup_thread(mddev->sync_thread);
5283         sysfs_notify_dirent_safe(mddev->sysfs_state);
5284         return 0;
5285 }
5286
5287 static void md_clean(struct mddev *mddev)
5288 {
5289         mddev->array_sectors = 0;
5290         mddev->external_size = 0;
5291         mddev->dev_sectors = 0;
5292         mddev->raid_disks = 0;
5293         mddev->recovery_cp = 0;
5294         mddev->resync_min = 0;
5295         mddev->resync_max = MaxSector;
5296         mddev->reshape_position = MaxSector;
5297         mddev->external = 0;
5298         mddev->persistent = 0;
5299         mddev->level = LEVEL_NONE;
5300         mddev->clevel[0] = 0;
5301         mddev->flags = 0;
5302         mddev->ro = 0;
5303         mddev->metadata_type[0] = 0;
5304         mddev->chunk_sectors = 0;
5305         mddev->ctime = mddev->utime = 0;
5306         mddev->layout = 0;
5307         mddev->max_disks = 0;
5308         mddev->events = 0;
5309         mddev->can_decrease_events = 0;
5310         mddev->delta_disks = 0;
5311         mddev->reshape_backwards = 0;
5312         mddev->new_level = LEVEL_NONE;
5313         mddev->new_layout = 0;
5314         mddev->new_chunk_sectors = 0;
5315         mddev->curr_resync = 0;
5316         atomic64_set(&mddev->resync_mismatches, 0);
5317         mddev->suspend_lo = mddev->suspend_hi = 0;
5318         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5319         mddev->recovery = 0;
5320         mddev->in_sync = 0;
5321         mddev->changed = 0;
5322         mddev->degraded = 0;
5323         mddev->safemode = 0;
5324         mddev->private = NULL;
5325         mddev->merge_check_needed = 0;
5326         mddev->bitmap_info.offset = 0;
5327         mddev->bitmap_info.default_offset = 0;
5328         mddev->bitmap_info.default_space = 0;
5329         mddev->bitmap_info.chunksize = 0;
5330         mddev->bitmap_info.daemon_sleep = 0;
5331         mddev->bitmap_info.max_write_behind = 0;
5332 }
5333
5334 static void __md_stop_writes(struct mddev *mddev)
5335 {
5336         if (mddev_is_clustered(mddev))
5337                 md_cluster_ops->metadata_update_start(mddev);
5338         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5339         flush_workqueue(md_misc_wq);
5340         if (mddev->sync_thread) {
5341                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5342                 md_reap_sync_thread(mddev);
5343         }
5344
5345         del_timer_sync(&mddev->safemode_timer);
5346
5347         bitmap_flush(mddev);
5348         md_super_wait(mddev);
5349
5350         if (mddev->ro == 0 &&
5351             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5352                 /* mark array as shutdown cleanly */
5353                 mddev->in_sync = 1;
5354                 md_update_sb(mddev, 1);
5355         }
5356         if (mddev_is_clustered(mddev))
5357                 md_cluster_ops->metadata_update_finish(mddev);
5358 }
5359
5360 void md_stop_writes(struct mddev *mddev)
5361 {
5362         mddev_lock_nointr(mddev);
5363         __md_stop_writes(mddev);
5364         mddev_unlock(mddev);
5365 }
5366 EXPORT_SYMBOL_GPL(md_stop_writes);
5367
5368 static void mddev_detach(struct mddev *mddev)
5369 {
5370         struct bitmap *bitmap = mddev->bitmap;
5371         /* wait for behind writes to complete */
5372         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5373                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5374                        mdname(mddev));
5375                 /* need to kick something here to make sure I/O goes? */
5376                 wait_event(bitmap->behind_wait,
5377                            atomic_read(&bitmap->behind_writes) == 0);
5378         }
5379         if (mddev->pers && mddev->pers->quiesce) {
5380                 mddev->pers->quiesce(mddev, 1);
5381                 mddev->pers->quiesce(mddev, 0);
5382         }
5383         md_unregister_thread(&mddev->thread);
5384         if (mddev->queue)
5385                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5386 }
5387
5388 static void __md_stop(struct mddev *mddev)
5389 {
5390         struct md_personality *pers = mddev->pers;
5391         mddev_detach(mddev);
5392         /* Ensure ->event_work is done */
5393         flush_workqueue(md_misc_wq);
5394         spin_lock(&mddev->lock);
5395         mddev->ready = 0;
5396         mddev->pers = NULL;
5397         spin_unlock(&mddev->lock);
5398         pers->free(mddev, mddev->private);
5399         mddev->private = NULL;
5400         if (pers->sync_request && mddev->to_remove == NULL)
5401                 mddev->to_remove = &md_redundancy_group;
5402         module_put(pers->owner);
5403         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5404 }
5405
5406 void md_stop(struct mddev *mddev)
5407 {
5408         /* stop the array and free an attached data structures.
5409          * This is called from dm-raid
5410          */
5411         __md_stop(mddev);
5412         bitmap_destroy(mddev);
5413         if (mddev->bio_set)
5414                 bioset_free(mddev->bio_set);
5415 }
5416
5417 EXPORT_SYMBOL_GPL(md_stop);
5418
5419 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5420 {
5421         int err = 0;
5422         int did_freeze = 0;
5423
5424         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5425                 did_freeze = 1;
5426                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5427                 md_wakeup_thread(mddev->thread);
5428         }
5429         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5430                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5431         if (mddev->sync_thread)
5432                 /* Thread might be blocked waiting for metadata update
5433                  * which will now never happen */
5434                 wake_up_process(mddev->sync_thread->tsk);
5435
5436         mddev_unlock(mddev);
5437         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5438                                           &mddev->recovery));
5439         mddev_lock_nointr(mddev);
5440
5441         mutex_lock(&mddev->open_mutex);
5442         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5443             mddev->sync_thread ||
5444             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5445             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5446                 printk("md: %s still in use.\n",mdname(mddev));
5447                 if (did_freeze) {
5448                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5449                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5450                         md_wakeup_thread(mddev->thread);
5451                 }
5452                 err = -EBUSY;
5453                 goto out;
5454         }
5455         if (mddev->pers) {
5456                 __md_stop_writes(mddev);
5457
5458                 err  = -ENXIO;
5459                 if (mddev->ro==1)
5460                         goto out;
5461                 mddev->ro = 1;
5462                 set_disk_ro(mddev->gendisk, 1);
5463                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5464                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5465                 md_wakeup_thread(mddev->thread);
5466                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5467                 err = 0;
5468         }
5469 out:
5470         mutex_unlock(&mddev->open_mutex);
5471         return err;
5472 }
5473
5474 /* mode:
5475  *   0 - completely stop and dis-assemble array
5476  *   2 - stop but do not disassemble array
5477  */
5478 static int do_md_stop(struct mddev *mddev, int mode,
5479                       struct block_device *bdev)
5480 {
5481         struct gendisk *disk = mddev->gendisk;
5482         struct md_rdev *rdev;
5483         int did_freeze = 0;
5484
5485         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5486                 did_freeze = 1;
5487                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5488                 md_wakeup_thread(mddev->thread);
5489         }
5490         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5491                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5492         if (mddev->sync_thread)
5493                 /* Thread might be blocked waiting for metadata update
5494                  * which will now never happen */
5495                 wake_up_process(mddev->sync_thread->tsk);
5496
5497         mddev_unlock(mddev);
5498         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5499                                  !test_bit(MD_RECOVERY_RUNNING,
5500                                            &mddev->recovery)));
5501         mddev_lock_nointr(mddev);
5502
5503         mutex_lock(&mddev->open_mutex);
5504         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5505             mddev->sysfs_active ||
5506             mddev->sync_thread ||
5507             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5508             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5509                 printk("md: %s still in use.\n",mdname(mddev));
5510                 mutex_unlock(&mddev->open_mutex);
5511                 if (did_freeze) {
5512                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5513                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5514                         md_wakeup_thread(mddev->thread);
5515                 }
5516                 return -EBUSY;
5517         }
5518         if (mddev->pers) {
5519                 if (mddev->ro)
5520                         set_disk_ro(disk, 0);
5521
5522                 __md_stop_writes(mddev);
5523                 __md_stop(mddev);
5524                 mddev->queue->merge_bvec_fn = NULL;
5525                 mddev->queue->backing_dev_info.congested_fn = NULL;
5526
5527                 /* tell userspace to handle 'inactive' */
5528                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5529
5530                 rdev_for_each(rdev, mddev)
5531                         if (rdev->raid_disk >= 0)
5532                                 sysfs_unlink_rdev(mddev, rdev);
5533
5534                 set_capacity(disk, 0);
5535                 mutex_unlock(&mddev->open_mutex);
5536                 mddev->changed = 1;
5537                 revalidate_disk(disk);
5538
5539                 if (mddev->ro)
5540                         mddev->ro = 0;
5541         } else
5542                 mutex_unlock(&mddev->open_mutex);
5543         /*
5544          * Free resources if final stop
5545          */
5546         if (mode == 0) {
5547                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5548
5549                 bitmap_destroy(mddev);
5550                 if (mddev->bitmap_info.file) {
5551                         struct file *f = mddev->bitmap_info.file;
5552                         spin_lock(&mddev->lock);
5553                         mddev->bitmap_info.file = NULL;
5554                         spin_unlock(&mddev->lock);
5555                         fput(f);
5556                 }
5557                 mddev->bitmap_info.offset = 0;
5558
5559                 export_array(mddev);
5560
5561                 md_clean(mddev);
5562                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5563                 if (mddev->hold_active == UNTIL_STOP)
5564                         mddev->hold_active = 0;
5565         }
5566         blk_integrity_unregister(disk);
5567         md_new_event(mddev);
5568         sysfs_notify_dirent_safe(mddev->sysfs_state);
5569         return 0;
5570 }
5571
5572 #ifndef MODULE
5573 static void autorun_array(struct mddev *mddev)
5574 {
5575         struct md_rdev *rdev;
5576         int err;
5577
5578         if (list_empty(&mddev->disks))
5579                 return;
5580
5581         printk(KERN_INFO "md: running: ");
5582
5583         rdev_for_each(rdev, mddev) {
5584                 char b[BDEVNAME_SIZE];
5585                 printk("<%s>", bdevname(rdev->bdev,b));
5586         }
5587         printk("\n");
5588
5589         err = do_md_run(mddev);
5590         if (err) {
5591                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5592                 do_md_stop(mddev, 0, NULL);
5593         }
5594 }
5595
5596 /*
5597  * lets try to run arrays based on all disks that have arrived
5598  * until now. (those are in pending_raid_disks)
5599  *
5600  * the method: pick the first pending disk, collect all disks with
5601  * the same UUID, remove all from the pending list and put them into
5602  * the 'same_array' list. Then order this list based on superblock
5603  * update time (freshest comes first), kick out 'old' disks and
5604  * compare superblocks. If everything's fine then run it.
5605  *
5606  * If "unit" is allocated, then bump its reference count
5607  */
5608 static void autorun_devices(int part)
5609 {
5610         struct md_rdev *rdev0, *rdev, *tmp;
5611         struct mddev *mddev;
5612         char b[BDEVNAME_SIZE];
5613
5614         printk(KERN_INFO "md: autorun ...\n");
5615         while (!list_empty(&pending_raid_disks)) {
5616                 int unit;
5617                 dev_t dev;
5618                 LIST_HEAD(candidates);
5619                 rdev0 = list_entry(pending_raid_disks.next,
5620                                          struct md_rdev, same_set);
5621
5622                 printk(KERN_INFO "md: considering %s ...\n",
5623                         bdevname(rdev0->bdev,b));
5624                 INIT_LIST_HEAD(&candidates);
5625                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5626                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5627                                 printk(KERN_INFO "md:  adding %s ...\n",
5628                                         bdevname(rdev->bdev,b));
5629                                 list_move(&rdev->same_set, &candidates);
5630                         }
5631                 /*
5632                  * now we have a set of devices, with all of them having
5633                  * mostly sane superblocks. It's time to allocate the
5634                  * mddev.
5635                  */
5636                 if (part) {
5637                         dev = MKDEV(mdp_major,
5638                                     rdev0->preferred_minor << MdpMinorShift);
5639                         unit = MINOR(dev) >> MdpMinorShift;
5640                 } else {
5641                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5642                         unit = MINOR(dev);
5643                 }
5644                 if (rdev0->preferred_minor != unit) {
5645                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5646                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5647                         break;
5648                 }
5649
5650                 md_probe(dev, NULL, NULL);
5651                 mddev = mddev_find(dev);
5652                 if (!mddev || !mddev->gendisk) {
5653                         if (mddev)
5654                                 mddev_put(mddev);
5655                         printk(KERN_ERR
5656                                 "md: cannot allocate memory for md drive.\n");
5657                         break;
5658                 }
5659                 if (mddev_lock(mddev))
5660                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5661                                mdname(mddev));
5662                 else if (mddev->raid_disks || mddev->major_version
5663                          || !list_empty(&mddev->disks)) {
5664                         printk(KERN_WARNING
5665                                 "md: %s already running, cannot run %s\n",
5666                                 mdname(mddev), bdevname(rdev0->bdev,b));
5667                         mddev_unlock(mddev);
5668                 } else {
5669                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5670                         mddev->persistent = 1;
5671                         rdev_for_each_list(rdev, tmp, &candidates) {
5672                                 list_del_init(&rdev->same_set);
5673                                 if (bind_rdev_to_array(rdev, mddev))
5674                                         export_rdev(rdev);
5675                         }
5676                         autorun_array(mddev);
5677                         mddev_unlock(mddev);
5678                 }
5679                 /* on success, candidates will be empty, on error
5680                  * it won't...
5681                  */
5682                 rdev_for_each_list(rdev, tmp, &candidates) {
5683                         list_del_init(&rdev->same_set);
5684                         export_rdev(rdev);
5685                 }
5686                 mddev_put(mddev);
5687         }
5688         printk(KERN_INFO "md: ... autorun DONE.\n");
5689 }
5690 #endif /* !MODULE */
5691
5692 static int get_version(void __user *arg)
5693 {
5694         mdu_version_t ver;
5695
5696         ver.major = MD_MAJOR_VERSION;
5697         ver.minor = MD_MINOR_VERSION;
5698         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5699
5700         if (copy_to_user(arg, &ver, sizeof(ver)))
5701                 return -EFAULT;
5702
5703         return 0;
5704 }
5705
5706 static int get_array_info(struct mddev *mddev, void __user *arg)
5707 {
5708         mdu_array_info_t info;
5709         int nr,working,insync,failed,spare;
5710         struct md_rdev *rdev;
5711
5712         nr = working = insync = failed = spare = 0;
5713         rcu_read_lock();
5714         rdev_for_each_rcu(rdev, mddev) {
5715                 nr++;
5716                 if (test_bit(Faulty, &rdev->flags))
5717                         failed++;
5718                 else {
5719                         working++;
5720                         if (test_bit(In_sync, &rdev->flags))
5721                                 insync++;
5722                         else
5723                                 spare++;
5724                 }
5725         }
5726         rcu_read_unlock();
5727
5728         info.major_version = mddev->major_version;
5729         info.minor_version = mddev->minor_version;
5730         info.patch_version = MD_PATCHLEVEL_VERSION;
5731         info.ctime         = mddev->ctime;
5732         info.level         = mddev->level;
5733         info.size          = mddev->dev_sectors / 2;
5734         if (info.size != mddev->dev_sectors / 2) /* overflow */
5735                 info.size = -1;
5736         info.nr_disks      = nr;
5737         info.raid_disks    = mddev->raid_disks;
5738         info.md_minor      = mddev->md_minor;
5739         info.not_persistent= !mddev->persistent;
5740
5741         info.utime         = mddev->utime;
5742         info.state         = 0;
5743         if (mddev->in_sync)
5744                 info.state = (1<<MD_SB_CLEAN);
5745         if (mddev->bitmap && mddev->bitmap_info.offset)
5746                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5747         if (mddev_is_clustered(mddev))
5748                 info.state |= (1<<MD_SB_CLUSTERED);
5749         info.active_disks  = insync;
5750         info.working_disks = working;
5751         info.failed_disks  = failed;
5752         info.spare_disks   = spare;
5753
5754         info.layout        = mddev->layout;
5755         info.chunk_size    = mddev->chunk_sectors << 9;
5756
5757         if (copy_to_user(arg, &info, sizeof(info)))
5758                 return -EFAULT;
5759
5760         return 0;
5761 }
5762
5763 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5764 {
5765         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5766         char *ptr;
5767         int err;
5768
5769         file = kzalloc(sizeof(*file), GFP_NOIO);
5770         if (!file)
5771                 return -ENOMEM;
5772
5773         err = 0;
5774         spin_lock(&mddev->lock);
5775         /* bitmap enabled */
5776         if (mddev->bitmap_info.file) {
5777                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5778                                 sizeof(file->pathname));
5779                 if (IS_ERR(ptr))
5780                         err = PTR_ERR(ptr);
5781                 else
5782                         memmove(file->pathname, ptr,
5783                                 sizeof(file->pathname)-(ptr-file->pathname));
5784         }
5785         spin_unlock(&mddev->lock);
5786
5787         if (err == 0 &&
5788             copy_to_user(arg, file, sizeof(*file)))
5789                 err = -EFAULT;
5790
5791         kfree(file);
5792         return err;
5793 }
5794
5795 static int get_disk_info(struct mddev *mddev, void __user * arg)
5796 {
5797         mdu_disk_info_t info;
5798         struct md_rdev *rdev;
5799
5800         if (copy_from_user(&info, arg, sizeof(info)))
5801                 return -EFAULT;
5802
5803         rcu_read_lock();
5804         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5805         if (rdev) {
5806                 info.major = MAJOR(rdev->bdev->bd_dev);
5807                 info.minor = MINOR(rdev->bdev->bd_dev);
5808                 info.raid_disk = rdev->raid_disk;
5809                 info.state = 0;
5810                 if (test_bit(Faulty, &rdev->flags))
5811                         info.state |= (1<<MD_DISK_FAULTY);
5812                 else if (test_bit(In_sync, &rdev->flags)) {
5813                         info.state |= (1<<MD_DISK_ACTIVE);
5814                         info.state |= (1<<MD_DISK_SYNC);
5815                 }
5816                 if (test_bit(WriteMostly, &rdev->flags))
5817                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5818         } else {
5819                 info.major = info.minor = 0;
5820                 info.raid_disk = -1;
5821                 info.state = (1<<MD_DISK_REMOVED);
5822         }
5823         rcu_read_unlock();
5824
5825         if (copy_to_user(arg, &info, sizeof(info)))
5826                 return -EFAULT;
5827
5828         return 0;
5829 }
5830
5831 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5832 {
5833         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5834         struct md_rdev *rdev;
5835         dev_t dev = MKDEV(info->major,info->minor);
5836
5837         if (mddev_is_clustered(mddev) &&
5838                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5839                 pr_err("%s: Cannot add to clustered mddev.\n",
5840                                mdname(mddev));
5841                 return -EINVAL;
5842         }
5843
5844         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5845                 return -EOVERFLOW;
5846
5847         if (!mddev->raid_disks) {
5848                 int err;
5849                 /* expecting a device which has a superblock */
5850                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5851                 if (IS_ERR(rdev)) {
5852                         printk(KERN_WARNING
5853                                 "md: md_import_device returned %ld\n",
5854                                 PTR_ERR(rdev));
5855                         return PTR_ERR(rdev);
5856                 }
5857                 if (!list_empty(&mddev->disks)) {
5858                         struct md_rdev *rdev0
5859                                 = list_entry(mddev->disks.next,
5860                                              struct md_rdev, same_set);
5861                         err = super_types[mddev->major_version]
5862                                 .load_super(rdev, rdev0, mddev->minor_version);
5863                         if (err < 0) {
5864                                 printk(KERN_WARNING
5865                                         "md: %s has different UUID to %s\n",
5866                                         bdevname(rdev->bdev,b),
5867                                         bdevname(rdev0->bdev,b2));
5868                                 export_rdev(rdev);
5869                                 return -EINVAL;
5870                         }
5871                 }
5872                 err = bind_rdev_to_array(rdev, mddev);
5873                 if (err)
5874                         export_rdev(rdev);
5875                 return err;
5876         }
5877
5878         /*
5879          * add_new_disk can be used once the array is assembled
5880          * to add "hot spares".  They must already have a superblock
5881          * written
5882          */
5883         if (mddev->pers) {
5884                 int err;
5885                 if (!mddev->pers->hot_add_disk) {
5886                         printk(KERN_WARNING
5887                                 "%s: personality does not support diskops!\n",
5888                                mdname(mddev));
5889                         return -EINVAL;
5890                 }
5891                 if (mddev->persistent)
5892                         rdev = md_import_device(dev, mddev->major_version,
5893                                                 mddev->minor_version);
5894                 else
5895                         rdev = md_import_device(dev, -1, -1);
5896                 if (IS_ERR(rdev)) {
5897                         printk(KERN_WARNING
5898                                 "md: md_import_device returned %ld\n",
5899                                 PTR_ERR(rdev));
5900                         return PTR_ERR(rdev);
5901                 }
5902                 /* set saved_raid_disk if appropriate */
5903                 if (!mddev->persistent) {
5904                         if (info->state & (1<<MD_DISK_SYNC)  &&
5905                             info->raid_disk < mddev->raid_disks) {
5906                                 rdev->raid_disk = info->raid_disk;
5907                                 set_bit(In_sync, &rdev->flags);
5908                                 clear_bit(Bitmap_sync, &rdev->flags);
5909                         } else
5910                                 rdev->raid_disk = -1;
5911                         rdev->saved_raid_disk = rdev->raid_disk;
5912                 } else
5913                         super_types[mddev->major_version].
5914                                 validate_super(mddev, rdev);
5915                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5916                      rdev->raid_disk != info->raid_disk) {
5917                         /* This was a hot-add request, but events doesn't
5918                          * match, so reject it.
5919                          */
5920                         export_rdev(rdev);
5921                         return -EINVAL;
5922                 }
5923
5924                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5925                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5926                         set_bit(WriteMostly, &rdev->flags);
5927                 else
5928                         clear_bit(WriteMostly, &rdev->flags);
5929
5930                 /*
5931                  * check whether the device shows up in other nodes
5932                  */
5933                 if (mddev_is_clustered(mddev)) {
5934                         if (info->state & (1 << MD_DISK_CANDIDATE)) {
5935                                 /* Through --cluster-confirm */
5936                                 set_bit(Candidate, &rdev->flags);
5937                                 err = md_cluster_ops->new_disk_ack(mddev, true);
5938                                 if (err) {
5939                                         export_rdev(rdev);
5940                                         return err;
5941                                 }
5942                         } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5943                                 /* --add initiated by this node */
5944                                 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5945                                 if (err) {
5946                                         md_cluster_ops->add_new_disk_finish(mddev);
5947                                         export_rdev(rdev);
5948                                         return err;
5949                                 }
5950                         }
5951                 }
5952
5953                 rdev->raid_disk = -1;
5954                 err = bind_rdev_to_array(rdev, mddev);
5955                 if (err)
5956                         export_rdev(rdev);
5957                 else
5958                         err = add_bound_rdev(rdev);
5959                 if (mddev_is_clustered(mddev) &&
5960                                 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5961                         md_cluster_ops->add_new_disk_finish(mddev);
5962                 return err;
5963         }
5964
5965         /* otherwise, add_new_disk is only allowed
5966          * for major_version==0 superblocks
5967          */
5968         if (mddev->major_version != 0) {
5969                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5970                        mdname(mddev));
5971                 return -EINVAL;
5972         }
5973
5974         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5975                 int err;
5976                 rdev = md_import_device(dev, -1, 0);
5977                 if (IS_ERR(rdev)) {
5978                         printk(KERN_WARNING
5979                                 "md: error, md_import_device() returned %ld\n",
5980                                 PTR_ERR(rdev));
5981                         return PTR_ERR(rdev);
5982                 }
5983                 rdev->desc_nr = info->number;
5984                 if (info->raid_disk < mddev->raid_disks)
5985                         rdev->raid_disk = info->raid_disk;
5986                 else
5987                         rdev->raid_disk = -1;
5988
5989                 if (rdev->raid_disk < mddev->raid_disks)
5990                         if (info->state & (1<<MD_DISK_SYNC))
5991                                 set_bit(In_sync, &rdev->flags);
5992
5993                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5994                         set_bit(WriteMostly, &rdev->flags);
5995
5996                 if (!mddev->persistent) {
5997                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5998                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5999                 } else
6000                         rdev->sb_start = calc_dev_sboffset(rdev);
6001                 rdev->sectors = rdev->sb_start;
6002
6003                 err = bind_rdev_to_array(rdev, mddev);
6004                 if (err) {
6005                         export_rdev(rdev);
6006                         return err;
6007                 }
6008         }
6009
6010         return 0;
6011 }
6012
6013 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6014 {
6015         char b[BDEVNAME_SIZE];
6016         struct md_rdev *rdev;
6017
6018         rdev = find_rdev(mddev, dev);
6019         if (!rdev)
6020                 return -ENXIO;
6021
6022         if (mddev_is_clustered(mddev))
6023                 md_cluster_ops->metadata_update_start(mddev);
6024
6025         clear_bit(Blocked, &rdev->flags);
6026         remove_and_add_spares(mddev, rdev);
6027
6028         if (rdev->raid_disk >= 0)
6029                 goto busy;
6030
6031         if (mddev_is_clustered(mddev))
6032                 md_cluster_ops->remove_disk(mddev, rdev);
6033
6034         md_kick_rdev_from_array(rdev);
6035         md_update_sb(mddev, 1);
6036         md_new_event(mddev);
6037
6038         if (mddev_is_clustered(mddev))
6039                 md_cluster_ops->metadata_update_finish(mddev);
6040
6041         return 0;
6042 busy:
6043         if (mddev_is_clustered(mddev))
6044                 md_cluster_ops->metadata_update_cancel(mddev);
6045         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6046                 bdevname(rdev->bdev,b), mdname(mddev));
6047         return -EBUSY;
6048 }
6049
6050 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6051 {
6052         char b[BDEVNAME_SIZE];
6053         int err;
6054         struct md_rdev *rdev;
6055
6056         if (!mddev->pers)
6057                 return -ENODEV;
6058
6059         if (mddev->major_version != 0) {
6060                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6061                         " version-0 superblocks.\n",
6062                         mdname(mddev));
6063                 return -EINVAL;
6064         }
6065         if (!mddev->pers->hot_add_disk) {
6066                 printk(KERN_WARNING
6067                         "%s: personality does not support diskops!\n",
6068                         mdname(mddev));
6069                 return -EINVAL;
6070         }
6071
6072         rdev = md_import_device(dev, -1, 0);
6073         if (IS_ERR(rdev)) {
6074                 printk(KERN_WARNING
6075                         "md: error, md_import_device() returned %ld\n",
6076                         PTR_ERR(rdev));
6077                 return -EINVAL;
6078         }
6079
6080         if (mddev->persistent)
6081                 rdev->sb_start = calc_dev_sboffset(rdev);
6082         else
6083                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6084
6085         rdev->sectors = rdev->sb_start;
6086
6087         if (test_bit(Faulty, &rdev->flags)) {
6088                 printk(KERN_WARNING
6089                         "md: can not hot-add faulty %s disk to %s!\n",
6090                         bdevname(rdev->bdev,b), mdname(mddev));
6091                 err = -EINVAL;
6092                 goto abort_export;
6093         }
6094
6095         if (mddev_is_clustered(mddev))
6096                 md_cluster_ops->metadata_update_start(mddev);
6097         clear_bit(In_sync, &rdev->flags);
6098         rdev->desc_nr = -1;
6099         rdev->saved_raid_disk = -1;
6100         err = bind_rdev_to_array(rdev, mddev);
6101         if (err)
6102                 goto abort_clustered;
6103
6104         /*
6105          * The rest should better be atomic, we can have disk failures
6106          * noticed in interrupt contexts ...
6107          */
6108
6109         rdev->raid_disk = -1;
6110
6111         md_update_sb(mddev, 1);
6112
6113         if (mddev_is_clustered(mddev))
6114                 md_cluster_ops->metadata_update_finish(mddev);
6115         /*
6116          * Kick recovery, maybe this spare has to be added to the
6117          * array immediately.
6118          */
6119         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6120         md_wakeup_thread(mddev->thread);
6121         md_new_event(mddev);
6122         return 0;
6123
6124 abort_clustered:
6125         if (mddev_is_clustered(mddev))
6126                 md_cluster_ops->metadata_update_cancel(mddev);
6127 abort_export:
6128         export_rdev(rdev);
6129         return err;
6130 }
6131
6132 static int set_bitmap_file(struct mddev *mddev, int fd)
6133 {
6134         int err = 0;
6135
6136         if (mddev->pers) {
6137                 if (!mddev->pers->quiesce || !mddev->thread)
6138                         return -EBUSY;
6139                 if (mddev->recovery || mddev->sync_thread)
6140                         return -EBUSY;
6141                 /* we should be able to change the bitmap.. */
6142         }
6143
6144         if (fd >= 0) {
6145                 struct inode *inode;
6146                 struct file *f;
6147
6148                 if (mddev->bitmap || mddev->bitmap_info.file)
6149                         return -EEXIST; /* cannot add when bitmap is present */
6150                 f = fget(fd);
6151
6152                 if (f == NULL) {
6153                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6154                                mdname(mddev));
6155                         return -EBADF;
6156                 }
6157
6158                 inode = f->f_mapping->host;
6159                 if (!S_ISREG(inode->i_mode)) {
6160                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6161                                mdname(mddev));
6162                         err = -EBADF;
6163                 } else if (!(f->f_mode & FMODE_WRITE)) {
6164                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6165                                mdname(mddev));
6166                         err = -EBADF;
6167                 } else if (atomic_read(&inode->i_writecount) != 1) {
6168                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6169                                mdname(mddev));
6170                         err = -EBUSY;
6171                 }
6172                 if (err) {
6173                         fput(f);
6174                         return err;
6175                 }
6176                 mddev->bitmap_info.file = f;
6177                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6178         } else if (mddev->bitmap == NULL)
6179                 return -ENOENT; /* cannot remove what isn't there */
6180         err = 0;
6181         if (mddev->pers) {
6182                 mddev->pers->quiesce(mddev, 1);
6183                 if (fd >= 0) {
6184                         struct bitmap *bitmap;
6185
6186                         bitmap = bitmap_create(mddev, -1);
6187                         if (!IS_ERR(bitmap)) {
6188                                 mddev->bitmap = bitmap;
6189                                 err = bitmap_load(mddev);
6190                         } else
6191                                 err = PTR_ERR(bitmap);
6192                 }
6193                 if (fd < 0 || err) {
6194                         bitmap_destroy(mddev);
6195                         fd = -1; /* make sure to put the file */
6196                 }
6197                 mddev->pers->quiesce(mddev, 0);
6198         }
6199         if (fd < 0) {
6200                 struct file *f = mddev->bitmap_info.file;
6201                 if (f) {
6202                         spin_lock(&mddev->lock);
6203                         mddev->bitmap_info.file = NULL;
6204                         spin_unlock(&mddev->lock);
6205                         fput(f);
6206                 }
6207         }
6208
6209         return err;
6210 }
6211
6212 /*
6213  * set_array_info is used two different ways
6214  * The original usage is when creating a new array.
6215  * In this usage, raid_disks is > 0 and it together with
6216  *  level, size, not_persistent,layout,chunksize determine the
6217  *  shape of the array.
6218  *  This will always create an array with a type-0.90.0 superblock.
6219  * The newer usage is when assembling an array.
6220  *  In this case raid_disks will be 0, and the major_version field is
6221  *  use to determine which style super-blocks are to be found on the devices.
6222  *  The minor and patch _version numbers are also kept incase the
6223  *  super_block handler wishes to interpret them.
6224  */
6225 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6226 {
6227
6228         if (info->raid_disks == 0) {
6229                 /* just setting version number for superblock loading */
6230                 if (info->major_version < 0 ||
6231                     info->major_version >= ARRAY_SIZE(super_types) ||
6232                     super_types[info->major_version].name == NULL) {
6233                         /* maybe try to auto-load a module? */
6234                         printk(KERN_INFO
6235                                 "md: superblock version %d not known\n",
6236                                 info->major_version);
6237                         return -EINVAL;
6238                 }
6239                 mddev->major_version = info->major_version;
6240                 mddev->minor_version = info->minor_version;
6241                 mddev->patch_version = info->patch_version;
6242                 mddev->persistent = !info->not_persistent;
6243                 /* ensure mddev_put doesn't delete this now that there
6244                  * is some minimal configuration.
6245                  */
6246                 mddev->ctime         = get_seconds();
6247                 return 0;
6248         }
6249         mddev->major_version = MD_MAJOR_VERSION;
6250         mddev->minor_version = MD_MINOR_VERSION;
6251         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6252         mddev->ctime         = get_seconds();
6253
6254         mddev->level         = info->level;
6255         mddev->clevel[0]     = 0;
6256         mddev->dev_sectors   = 2 * (sector_t)info->size;
6257         mddev->raid_disks    = info->raid_disks;
6258         /* don't set md_minor, it is determined by which /dev/md* was
6259          * openned
6260          */
6261         if (info->state & (1<<MD_SB_CLEAN))
6262                 mddev->recovery_cp = MaxSector;
6263         else
6264                 mddev->recovery_cp = 0;
6265         mddev->persistent    = ! info->not_persistent;
6266         mddev->external      = 0;
6267
6268         mddev->layout        = info->layout;
6269         mddev->chunk_sectors = info->chunk_size >> 9;
6270
6271         mddev->max_disks     = MD_SB_DISKS;
6272
6273         if (mddev->persistent)
6274                 mddev->flags         = 0;
6275         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6276
6277         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6278         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6279         mddev->bitmap_info.offset = 0;
6280
6281         mddev->reshape_position = MaxSector;
6282
6283         /*
6284          * Generate a 128 bit UUID
6285          */
6286         get_random_bytes(mddev->uuid, 16);
6287
6288         mddev->new_level = mddev->level;
6289         mddev->new_chunk_sectors = mddev->chunk_sectors;
6290         mddev->new_layout = mddev->layout;
6291         mddev->delta_disks = 0;
6292         mddev->reshape_backwards = 0;
6293
6294         return 0;
6295 }
6296
6297 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6298 {
6299         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6300
6301         if (mddev->external_size)
6302                 return;
6303
6304         mddev->array_sectors = array_sectors;
6305 }
6306 EXPORT_SYMBOL(md_set_array_sectors);
6307
6308 static int update_size(struct mddev *mddev, sector_t num_sectors)
6309 {
6310         struct md_rdev *rdev;
6311         int rv;
6312         int fit = (num_sectors == 0);
6313
6314         if (mddev->pers->resize == NULL)
6315                 return -EINVAL;
6316         /* The "num_sectors" is the number of sectors of each device that
6317          * is used.  This can only make sense for arrays with redundancy.
6318          * linear and raid0 always use whatever space is available. We can only
6319          * consider changing this number if no resync or reconstruction is
6320          * happening, and if the new size is acceptable. It must fit before the
6321          * sb_start or, if that is <data_offset, it must fit before the size
6322          * of each device.  If num_sectors is zero, we find the largest size
6323          * that fits.
6324          */
6325         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6326             mddev->sync_thread)
6327                 return -EBUSY;
6328         if (mddev->ro)
6329                 return -EROFS;
6330
6331         rdev_for_each(rdev, mddev) {
6332                 sector_t avail = rdev->sectors;
6333
6334                 if (fit && (num_sectors == 0 || num_sectors > avail))
6335                         num_sectors = avail;
6336                 if (avail < num_sectors)
6337                         return -ENOSPC;
6338         }
6339         rv = mddev->pers->resize(mddev, num_sectors);
6340         if (!rv)
6341                 revalidate_disk(mddev->gendisk);
6342         return rv;
6343 }
6344
6345 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6346 {
6347         int rv;
6348         struct md_rdev *rdev;
6349         /* change the number of raid disks */
6350         if (mddev->pers->check_reshape == NULL)
6351                 return -EINVAL;
6352         if (mddev->ro)
6353                 return -EROFS;
6354         if (raid_disks <= 0 ||
6355             (mddev->max_disks && raid_disks >= mddev->max_disks))
6356                 return -EINVAL;
6357         if (mddev->sync_thread ||
6358             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6359             mddev->reshape_position != MaxSector)
6360                 return -EBUSY;
6361
6362         rdev_for_each(rdev, mddev) {
6363                 if (mddev->raid_disks < raid_disks &&
6364                     rdev->data_offset < rdev->new_data_offset)
6365                         return -EINVAL;
6366                 if (mddev->raid_disks > raid_disks &&
6367                     rdev->data_offset > rdev->new_data_offset)
6368                         return -EINVAL;
6369         }
6370
6371         mddev->delta_disks = raid_disks - mddev->raid_disks;
6372         if (mddev->delta_disks < 0)
6373                 mddev->reshape_backwards = 1;
6374         else if (mddev->delta_disks > 0)
6375                 mddev->reshape_backwards = 0;
6376
6377         rv = mddev->pers->check_reshape(mddev);
6378         if (rv < 0) {
6379                 mddev->delta_disks = 0;
6380                 mddev->reshape_backwards = 0;
6381         }
6382         return rv;
6383 }
6384
6385 /*
6386  * update_array_info is used to change the configuration of an
6387  * on-line array.
6388  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6389  * fields in the info are checked against the array.
6390  * Any differences that cannot be handled will cause an error.
6391  * Normally, only one change can be managed at a time.
6392  */
6393 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6394 {
6395         int rv = 0;
6396         int cnt = 0;
6397         int state = 0;
6398
6399         /* calculate expected state,ignoring low bits */
6400         if (mddev->bitmap && mddev->bitmap_info.offset)
6401                 state |= (1 << MD_SB_BITMAP_PRESENT);
6402
6403         if (mddev->major_version != info->major_version ||
6404             mddev->minor_version != info->minor_version ||
6405 /*          mddev->patch_version != info->patch_version || */
6406             mddev->ctime         != info->ctime         ||
6407             mddev->level         != info->level         ||
6408 /*          mddev->layout        != info->layout        || */
6409             mddev->persistent    != !info->not_persistent ||
6410             mddev->chunk_sectors != info->chunk_size >> 9 ||
6411             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6412             ((state^info->state) & 0xfffffe00)
6413                 )
6414                 return -EINVAL;
6415         /* Check there is only one change */
6416         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6417                 cnt++;
6418         if (mddev->raid_disks != info->raid_disks)
6419                 cnt++;
6420         if (mddev->layout != info->layout)
6421                 cnt++;
6422         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6423                 cnt++;
6424         if (cnt == 0)
6425                 return 0;
6426         if (cnt > 1)
6427                 return -EINVAL;
6428
6429         if (mddev->layout != info->layout) {
6430                 /* Change layout
6431                  * we don't need to do anything at the md level, the
6432                  * personality will take care of it all.
6433                  */
6434                 if (mddev->pers->check_reshape == NULL)
6435                         return -EINVAL;
6436                 else {
6437                         mddev->new_layout = info->layout;
6438                         rv = mddev->pers->check_reshape(mddev);
6439                         if (rv)
6440                                 mddev->new_layout = mddev->layout;
6441                         return rv;
6442                 }
6443         }
6444         if (mddev_is_clustered(mddev))
6445                 md_cluster_ops->metadata_update_start(mddev);
6446         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6447                 rv = update_size(mddev, (sector_t)info->size * 2);
6448
6449         if (mddev->raid_disks    != info->raid_disks)
6450                 rv = update_raid_disks(mddev, info->raid_disks);
6451
6452         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6453                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6454                         rv = -EINVAL;
6455                         goto err;
6456                 }
6457                 if (mddev->recovery || mddev->sync_thread) {
6458                         rv = -EBUSY;
6459                         goto err;
6460                 }
6461                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6462                         struct bitmap *bitmap;
6463                         /* add the bitmap */
6464                         if (mddev->bitmap) {
6465                                 rv = -EEXIST;
6466                                 goto err;
6467                         }
6468                         if (mddev->bitmap_info.default_offset == 0) {
6469                                 rv = -EINVAL;
6470                                 goto err;
6471                         }
6472                         mddev->bitmap_info.offset =
6473                                 mddev->bitmap_info.default_offset;
6474                         mddev->bitmap_info.space =
6475                                 mddev->bitmap_info.default_space;
6476                         mddev->pers->quiesce(mddev, 1);
6477                         bitmap = bitmap_create(mddev, -1);
6478                         if (!IS_ERR(bitmap)) {
6479                                 mddev->bitmap = bitmap;
6480                                 rv = bitmap_load(mddev);
6481                         } else
6482                                 rv = PTR_ERR(bitmap);
6483                         if (rv)
6484                                 bitmap_destroy(mddev);
6485                         mddev->pers->quiesce(mddev, 0);
6486                 } else {
6487                         /* remove the bitmap */
6488                         if (!mddev->bitmap) {
6489                                 rv = -ENOENT;
6490                                 goto err;
6491                         }
6492                         if (mddev->bitmap->storage.file) {
6493                                 rv = -EINVAL;
6494                                 goto err;
6495                         }
6496                         mddev->pers->quiesce(mddev, 1);
6497                         bitmap_destroy(mddev);
6498                         mddev->pers->quiesce(mddev, 0);
6499                         mddev->bitmap_info.offset = 0;
6500                 }
6501         }
6502         md_update_sb(mddev, 1);
6503         if (mddev_is_clustered(mddev))
6504                 md_cluster_ops->metadata_update_finish(mddev);
6505         return rv;
6506 err:
6507         if (mddev_is_clustered(mddev))
6508                 md_cluster_ops->metadata_update_cancel(mddev);
6509         return rv;
6510 }
6511
6512 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6513 {
6514         struct md_rdev *rdev;
6515         int err = 0;
6516
6517         if (mddev->pers == NULL)
6518                 return -ENODEV;
6519
6520         rcu_read_lock();
6521         rdev = find_rdev_rcu(mddev, dev);
6522         if (!rdev)
6523                 err =  -ENODEV;
6524         else {
6525                 md_error(mddev, rdev);
6526                 if (!test_bit(Faulty, &rdev->flags))
6527                         err = -EBUSY;
6528         }
6529         rcu_read_unlock();
6530         return err;
6531 }
6532
6533 /*
6534  * We have a problem here : there is no easy way to give a CHS
6535  * virtual geometry. We currently pretend that we have a 2 heads
6536  * 4 sectors (with a BIG number of cylinders...). This drives
6537  * dosfs just mad... ;-)
6538  */
6539 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6540 {
6541         struct mddev *mddev = bdev->bd_disk->private_data;
6542
6543         geo->heads = 2;
6544         geo->sectors = 4;
6545         geo->cylinders = mddev->array_sectors / 8;
6546         return 0;
6547 }
6548
6549 static inline bool md_ioctl_valid(unsigned int cmd)
6550 {
6551         switch (cmd) {
6552         case ADD_NEW_DISK:
6553         case BLKROSET:
6554         case GET_ARRAY_INFO:
6555         case GET_BITMAP_FILE:
6556         case GET_DISK_INFO:
6557         case HOT_ADD_DISK:
6558         case HOT_REMOVE_DISK:
6559         case RAID_AUTORUN:
6560         case RAID_VERSION:
6561         case RESTART_ARRAY_RW:
6562         case RUN_ARRAY:
6563         case SET_ARRAY_INFO:
6564         case SET_BITMAP_FILE:
6565         case SET_DISK_FAULTY:
6566         case STOP_ARRAY:
6567         case STOP_ARRAY_RO:
6568         case CLUSTERED_DISK_NACK:
6569                 return true;
6570         default:
6571                 return false;
6572         }
6573 }
6574
6575 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6576                         unsigned int cmd, unsigned long arg)
6577 {
6578         int err = 0;
6579         void __user *argp = (void __user *)arg;
6580         struct mddev *mddev = NULL;
6581         int ro;
6582
6583         if (!md_ioctl_valid(cmd))
6584                 return -ENOTTY;
6585
6586         switch (cmd) {
6587         case RAID_VERSION:
6588         case GET_ARRAY_INFO:
6589         case GET_DISK_INFO:
6590                 break;
6591         default:
6592                 if (!capable(CAP_SYS_ADMIN))
6593                         return -EACCES;
6594         }
6595
6596         /*
6597          * Commands dealing with the RAID driver but not any
6598          * particular array:
6599          */
6600         switch (cmd) {
6601         case RAID_VERSION:
6602                 err = get_version(argp);
6603                 goto out;
6604
6605 #ifndef MODULE
6606         case RAID_AUTORUN:
6607                 err = 0;
6608                 autostart_arrays(arg);
6609                 goto out;
6610 #endif
6611         default:;
6612         }
6613
6614         /*
6615          * Commands creating/starting a new array:
6616          */
6617
6618         mddev = bdev->bd_disk->private_data;
6619
6620         if (!mddev) {
6621                 BUG();
6622                 goto out;
6623         }
6624
6625         /* Some actions do not requires the mutex */
6626         switch (cmd) {
6627         case GET_ARRAY_INFO:
6628                 if (!mddev->raid_disks && !mddev->external)
6629                         err = -ENODEV;
6630                 else
6631                         err = get_array_info(mddev, argp);
6632                 goto out;
6633
6634         case GET_DISK_INFO:
6635                 if (!mddev->raid_disks && !mddev->external)
6636                         err = -ENODEV;
6637                 else
6638                         err = get_disk_info(mddev, argp);
6639                 goto out;
6640
6641         case SET_DISK_FAULTY:
6642                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6643                 goto out;
6644
6645         case GET_BITMAP_FILE:
6646                 err = get_bitmap_file(mddev, argp);
6647                 goto out;
6648
6649         }
6650
6651         if (cmd == ADD_NEW_DISK)
6652                 /* need to ensure md_delayed_delete() has completed */
6653                 flush_workqueue(md_misc_wq);
6654
6655         if (cmd == HOT_REMOVE_DISK)
6656                 /* need to ensure recovery thread has run */
6657                 wait_event_interruptible_timeout(mddev->sb_wait,
6658                                                  !test_bit(MD_RECOVERY_NEEDED,
6659                                                            &mddev->flags),
6660                                                  msecs_to_jiffies(5000));
6661         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6662                 /* Need to flush page cache, and ensure no-one else opens
6663                  * and writes
6664                  */
6665                 mutex_lock(&mddev->open_mutex);
6666                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6667                         mutex_unlock(&mddev->open_mutex);
6668                         err = -EBUSY;
6669                         goto out;
6670                 }
6671                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6672                 mutex_unlock(&mddev->open_mutex);
6673                 sync_blockdev(bdev);
6674         }
6675         err = mddev_lock(mddev);
6676         if (err) {
6677                 printk(KERN_INFO
6678                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6679                         err, cmd);
6680                 goto out;
6681         }
6682
6683         if (cmd == SET_ARRAY_INFO) {
6684                 mdu_array_info_t info;
6685                 if (!arg)
6686                         memset(&info, 0, sizeof(info));
6687                 else if (copy_from_user(&info, argp, sizeof(info))) {
6688                         err = -EFAULT;
6689                         goto unlock;
6690                 }
6691                 if (mddev->pers) {
6692                         err = update_array_info(mddev, &info);
6693                         if (err) {
6694                                 printk(KERN_WARNING "md: couldn't update"
6695                                        " array info. %d\n", err);
6696                                 goto unlock;
6697                         }
6698                         goto unlock;
6699                 }
6700                 if (!list_empty(&mddev->disks)) {
6701                         printk(KERN_WARNING
6702                                "md: array %s already has disks!\n",
6703                                mdname(mddev));
6704                         err = -EBUSY;
6705                         goto unlock;
6706                 }
6707                 if (mddev->raid_disks) {
6708                         printk(KERN_WARNING
6709                                "md: array %s already initialised!\n",
6710                                mdname(mddev));
6711                         err = -EBUSY;
6712                         goto unlock;
6713                 }
6714                 err = set_array_info(mddev, &info);
6715                 if (err) {
6716                         printk(KERN_WARNING "md: couldn't set"
6717                                " array info. %d\n", err);
6718                         goto unlock;
6719                 }
6720                 goto unlock;
6721         }
6722
6723         /*
6724          * Commands querying/configuring an existing array:
6725          */
6726         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6727          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6728         if ((!mddev->raid_disks && !mddev->external)
6729             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6730             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6731             && cmd != GET_BITMAP_FILE) {
6732                 err = -ENODEV;
6733                 goto unlock;
6734         }
6735
6736         /*
6737          * Commands even a read-only array can execute:
6738          */
6739         switch (cmd) {
6740         case RESTART_ARRAY_RW:
6741                 err = restart_array(mddev);
6742                 goto unlock;
6743
6744         case STOP_ARRAY:
6745                 err = do_md_stop(mddev, 0, bdev);
6746                 goto unlock;
6747
6748         case STOP_ARRAY_RO:
6749                 err = md_set_readonly(mddev, bdev);
6750                 goto unlock;
6751
6752         case HOT_REMOVE_DISK:
6753                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6754                 goto unlock;
6755
6756         case ADD_NEW_DISK:
6757                 /* We can support ADD_NEW_DISK on read-only arrays
6758                  * on if we are re-adding a preexisting device.
6759                  * So require mddev->pers and MD_DISK_SYNC.
6760                  */
6761                 if (mddev->pers) {
6762                         mdu_disk_info_t info;
6763                         if (copy_from_user(&info, argp, sizeof(info)))
6764                                 err = -EFAULT;
6765                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6766                                 /* Need to clear read-only for this */
6767                                 break;
6768                         else
6769                                 err = add_new_disk(mddev, &info);
6770                         goto unlock;
6771                 }
6772                 break;
6773
6774         case BLKROSET:
6775                 if (get_user(ro, (int __user *)(arg))) {
6776                         err = -EFAULT;
6777                         goto unlock;
6778                 }
6779                 err = -EINVAL;
6780
6781                 /* if the bdev is going readonly the value of mddev->ro
6782                  * does not matter, no writes are coming
6783                  */
6784                 if (ro)
6785                         goto unlock;
6786
6787                 /* are we are already prepared for writes? */
6788                 if (mddev->ro != 1)
6789                         goto unlock;
6790
6791                 /* transitioning to readauto need only happen for
6792                  * arrays that call md_write_start
6793                  */
6794                 if (mddev->pers) {
6795                         err = restart_array(mddev);
6796                         if (err == 0) {
6797                                 mddev->ro = 2;
6798                                 set_disk_ro(mddev->gendisk, 0);
6799                         }
6800                 }
6801                 goto unlock;
6802         }
6803
6804         /*
6805          * The remaining ioctls are changing the state of the
6806          * superblock, so we do not allow them on read-only arrays.
6807          */
6808         if (mddev->ro && mddev->pers) {
6809                 if (mddev->ro == 2) {
6810                         mddev->ro = 0;
6811                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6812                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6813                         /* mddev_unlock will wake thread */
6814                         /* If a device failed while we were read-only, we
6815                          * need to make sure the metadata is updated now.
6816                          */
6817                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6818                                 mddev_unlock(mddev);
6819                                 wait_event(mddev->sb_wait,
6820                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6821                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6822                                 mddev_lock_nointr(mddev);
6823                         }
6824                 } else {
6825                         err = -EROFS;
6826                         goto unlock;
6827                 }
6828         }
6829
6830         switch (cmd) {
6831         case ADD_NEW_DISK:
6832         {
6833                 mdu_disk_info_t info;
6834                 if (copy_from_user(&info, argp, sizeof(info)))
6835                         err = -EFAULT;
6836                 else
6837                         err = add_new_disk(mddev, &info);
6838                 goto unlock;
6839         }
6840
6841         case CLUSTERED_DISK_NACK:
6842                 if (mddev_is_clustered(mddev))
6843                         md_cluster_ops->new_disk_ack(mddev, false);
6844                 else
6845                         err = -EINVAL;
6846                 goto unlock;
6847
6848         case HOT_ADD_DISK:
6849                 err = hot_add_disk(mddev, new_decode_dev(arg));
6850                 goto unlock;
6851
6852         case RUN_ARRAY:
6853                 err = do_md_run(mddev);
6854                 goto unlock;
6855
6856         case SET_BITMAP_FILE:
6857                 err = set_bitmap_file(mddev, (int)arg);
6858                 goto unlock;
6859
6860         default:
6861                 err = -EINVAL;
6862                 goto unlock;
6863         }
6864
6865 unlock:
6866         if (mddev->hold_active == UNTIL_IOCTL &&
6867             err != -EINVAL)
6868                 mddev->hold_active = 0;
6869         mddev_unlock(mddev);
6870 out:
6871         return err;
6872 }
6873 #ifdef CONFIG_COMPAT
6874 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6875                     unsigned int cmd, unsigned long arg)
6876 {
6877         switch (cmd) {
6878         case HOT_REMOVE_DISK:
6879         case HOT_ADD_DISK:
6880         case SET_DISK_FAULTY:
6881         case SET_BITMAP_FILE:
6882                 /* These take in integer arg, do not convert */
6883                 break;
6884         default:
6885                 arg = (unsigned long)compat_ptr(arg);
6886                 break;
6887         }
6888
6889         return md_ioctl(bdev, mode, cmd, arg);
6890 }
6891 #endif /* CONFIG_COMPAT */
6892
6893 static int md_open(struct block_device *bdev, fmode_t mode)
6894 {
6895         /*
6896          * Succeed if we can lock the mddev, which confirms that
6897          * it isn't being stopped right now.
6898          */
6899         struct mddev *mddev = mddev_find(bdev->bd_dev);
6900         int err;
6901
6902         if (!mddev)
6903                 return -ENODEV;
6904
6905         if (mddev->gendisk != bdev->bd_disk) {
6906                 /* we are racing with mddev_put which is discarding this
6907                  * bd_disk.
6908                  */
6909                 mddev_put(mddev);
6910                 /* Wait until bdev->bd_disk is definitely gone */
6911                 flush_workqueue(md_misc_wq);
6912                 /* Then retry the open from the top */
6913                 return -ERESTARTSYS;
6914         }
6915         BUG_ON(mddev != bdev->bd_disk->private_data);
6916
6917         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6918                 goto out;
6919
6920         err = 0;
6921         atomic_inc(&mddev->openers);
6922         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6923         mutex_unlock(&mddev->open_mutex);
6924
6925         check_disk_change(bdev);
6926  out:
6927         return err;
6928 }
6929
6930 static void md_release(struct gendisk *disk, fmode_t mode)
6931 {
6932         struct mddev *mddev = disk->private_data;
6933
6934         BUG_ON(!mddev);
6935         atomic_dec(&mddev->openers);
6936         mddev_put(mddev);
6937 }
6938
6939 static int md_media_changed(struct gendisk *disk)
6940 {
6941         struct mddev *mddev = disk->private_data;
6942
6943         return mddev->changed;
6944 }
6945
6946 static int md_revalidate(struct gendisk *disk)
6947 {
6948         struct mddev *mddev = disk->private_data;
6949
6950         mddev->changed = 0;
6951         return 0;
6952 }
6953 static const struct block_device_operations md_fops =
6954 {
6955         .owner          = THIS_MODULE,
6956         .open           = md_open,
6957         .release        = md_release,
6958         .ioctl          = md_ioctl,
6959 #ifdef CONFIG_COMPAT
6960         .compat_ioctl   = md_compat_ioctl,
6961 #endif
6962         .getgeo         = md_getgeo,
6963         .media_changed  = md_media_changed,
6964         .revalidate_disk= md_revalidate,
6965 };
6966
6967 static int md_thread(void *arg)
6968 {
6969         struct md_thread *thread = arg;
6970
6971         /*
6972          * md_thread is a 'system-thread', it's priority should be very
6973          * high. We avoid resource deadlocks individually in each
6974          * raid personality. (RAID5 does preallocation) We also use RR and
6975          * the very same RT priority as kswapd, thus we will never get
6976          * into a priority inversion deadlock.
6977          *
6978          * we definitely have to have equal or higher priority than
6979          * bdflush, otherwise bdflush will deadlock if there are too
6980          * many dirty RAID5 blocks.
6981          */
6982
6983         allow_signal(SIGKILL);
6984         while (!kthread_should_stop()) {
6985
6986                 /* We need to wait INTERRUPTIBLE so that
6987                  * we don't add to the load-average.
6988                  * That means we need to be sure no signals are
6989                  * pending
6990                  */
6991                 if (signal_pending(current))
6992                         flush_signals(current);
6993
6994                 wait_event_interruptible_timeout
6995                         (thread->wqueue,
6996                          test_bit(THREAD_WAKEUP, &thread->flags)
6997                          || kthread_should_stop(),
6998                          thread->timeout);
6999
7000                 clear_bit(THREAD_WAKEUP, &thread->flags);
7001                 if (!kthread_should_stop())
7002                         thread->run(thread);
7003         }
7004
7005         return 0;
7006 }
7007
7008 void md_wakeup_thread(struct md_thread *thread)
7009 {
7010         if (thread) {
7011                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7012                 set_bit(THREAD_WAKEUP, &thread->flags);
7013                 wake_up(&thread->wqueue);
7014         }
7015 }
7016 EXPORT_SYMBOL(md_wakeup_thread);
7017
7018 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7019                 struct mddev *mddev, const char *name)
7020 {
7021         struct md_thread *thread;
7022
7023         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7024         if (!thread)
7025                 return NULL;
7026
7027         init_waitqueue_head(&thread->wqueue);
7028
7029         thread->run = run;
7030         thread->mddev = mddev;
7031         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7032         thread->tsk = kthread_run(md_thread, thread,
7033                                   "%s_%s",
7034                                   mdname(thread->mddev),
7035                                   name);
7036         if (IS_ERR(thread->tsk)) {
7037                 kfree(thread);
7038                 return NULL;
7039         }
7040         return thread;
7041 }
7042 EXPORT_SYMBOL(md_register_thread);
7043
7044 void md_unregister_thread(struct md_thread **threadp)
7045 {
7046         struct md_thread *thread = *threadp;
7047         if (!thread)
7048                 return;
7049         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7050         /* Locking ensures that mddev_unlock does not wake_up a
7051          * non-existent thread
7052          */
7053         spin_lock(&pers_lock);
7054         *threadp = NULL;
7055         spin_unlock(&pers_lock);
7056
7057         kthread_stop(thread->tsk);
7058         kfree(thread);
7059 }
7060 EXPORT_SYMBOL(md_unregister_thread);
7061
7062 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7063 {
7064         if (!rdev || test_bit(Faulty, &rdev->flags))
7065                 return;
7066
7067         if (!mddev->pers || !mddev->pers->error_handler)
7068                 return;
7069         mddev->pers->error_handler(mddev,rdev);
7070         if (mddev->degraded)
7071                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7072         sysfs_notify_dirent_safe(rdev->sysfs_state);
7073         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7074         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7075         md_wakeup_thread(mddev->thread);
7076         if (mddev->event_work.func)
7077                 queue_work(md_misc_wq, &mddev->event_work);
7078         md_new_event_inintr(mddev);
7079 }
7080 EXPORT_SYMBOL(md_error);
7081
7082 /* seq_file implementation /proc/mdstat */
7083
7084 static void status_unused(struct seq_file *seq)
7085 {
7086         int i = 0;
7087         struct md_rdev *rdev;
7088
7089         seq_printf(seq, "unused devices: ");
7090
7091         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7092                 char b[BDEVNAME_SIZE];
7093                 i++;
7094                 seq_printf(seq, "%s ",
7095                               bdevname(rdev->bdev,b));
7096         }
7097         if (!i)
7098                 seq_printf(seq, "<none>");
7099
7100         seq_printf(seq, "\n");
7101 }
7102
7103 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7104 {
7105         sector_t max_sectors, resync, res;
7106         unsigned long dt, db;
7107         sector_t rt;
7108         int scale;
7109         unsigned int per_milli;
7110
7111         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7112             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7113                 max_sectors = mddev->resync_max_sectors;
7114         else
7115                 max_sectors = mddev->dev_sectors;
7116
7117         resync = mddev->curr_resync;
7118         if (resync <= 3) {
7119                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7120                         /* Still cleaning up */
7121                         resync = max_sectors;
7122         } else
7123                 resync -= atomic_read(&mddev->recovery_active);
7124
7125         if (resync == 0) {
7126                 if (mddev->recovery_cp < MaxSector) {
7127                         seq_printf(seq, "\tresync=PENDING");
7128                         return 1;
7129                 }
7130                 return 0;
7131         }
7132         if (resync < 3) {
7133                 seq_printf(seq, "\tresync=DELAYED");
7134                 return 1;
7135         }
7136
7137         WARN_ON(max_sectors == 0);
7138         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7139          * in a sector_t, and (max_sectors>>scale) will fit in a
7140          * u32, as those are the requirements for sector_div.
7141          * Thus 'scale' must be at least 10
7142          */
7143         scale = 10;
7144         if (sizeof(sector_t) > sizeof(unsigned long)) {
7145                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7146                         scale++;
7147         }
7148         res = (resync>>scale)*1000;
7149         sector_div(res, (u32)((max_sectors>>scale)+1));
7150
7151         per_milli = res;
7152         {
7153                 int i, x = per_milli/50, y = 20-x;
7154                 seq_printf(seq, "[");
7155                 for (i = 0; i < x; i++)
7156                         seq_printf(seq, "=");
7157                 seq_printf(seq, ">");
7158                 for (i = 0; i < y; i++)
7159                         seq_printf(seq, ".");
7160                 seq_printf(seq, "] ");
7161         }
7162         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7163                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7164                     "reshape" :
7165                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7166                      "check" :
7167                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7168                       "resync" : "recovery"))),
7169                    per_milli/10, per_milli % 10,
7170                    (unsigned long long) resync/2,
7171                    (unsigned long long) max_sectors/2);
7172
7173         /*
7174          * dt: time from mark until now
7175          * db: blocks written from mark until now
7176          * rt: remaining time
7177          *
7178          * rt is a sector_t, so could be 32bit or 64bit.
7179          * So we divide before multiply in case it is 32bit and close
7180          * to the limit.
7181          * We scale the divisor (db) by 32 to avoid losing precision
7182          * near the end of resync when the number of remaining sectors
7183          * is close to 'db'.
7184          * We then divide rt by 32 after multiplying by db to compensate.
7185          * The '+1' avoids division by zero if db is very small.
7186          */
7187         dt = ((jiffies - mddev->resync_mark) / HZ);
7188         if (!dt) dt++;
7189         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7190                 - mddev->resync_mark_cnt;
7191
7192         rt = max_sectors - resync;    /* number of remaining sectors */
7193         sector_div(rt, db/32+1);
7194         rt *= dt;
7195         rt >>= 5;
7196
7197         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7198                    ((unsigned long)rt % 60)/6);
7199
7200         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7201         return 1;
7202 }
7203
7204 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7205 {
7206         struct list_head *tmp;
7207         loff_t l = *pos;
7208         struct mddev *mddev;
7209
7210         if (l >= 0x10000)
7211                 return NULL;
7212         if (!l--)
7213                 /* header */
7214                 return (void*)1;
7215
7216         spin_lock(&all_mddevs_lock);
7217         list_for_each(tmp,&all_mddevs)
7218                 if (!l--) {
7219                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7220                         mddev_get(mddev);
7221                         spin_unlock(&all_mddevs_lock);
7222                         return mddev;
7223                 }
7224         spin_unlock(&all_mddevs_lock);
7225         if (!l--)
7226                 return (void*)2;/* tail */
7227         return NULL;
7228 }
7229
7230 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7231 {
7232         struct list_head *tmp;
7233         struct mddev *next_mddev, *mddev = v;
7234
7235         ++*pos;
7236         if (v == (void*)2)
7237                 return NULL;
7238
7239         spin_lock(&all_mddevs_lock);
7240         if (v == (void*)1)
7241                 tmp = all_mddevs.next;
7242         else
7243                 tmp = mddev->all_mddevs.next;
7244         if (tmp != &all_mddevs)
7245                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7246         else {
7247                 next_mddev = (void*)2;
7248                 *pos = 0x10000;
7249         }
7250         spin_unlock(&all_mddevs_lock);
7251
7252         if (v != (void*)1)
7253                 mddev_put(mddev);
7254         return next_mddev;
7255
7256 }
7257
7258 static void md_seq_stop(struct seq_file *seq, void *v)
7259 {
7260         struct mddev *mddev = v;
7261
7262         if (mddev && v != (void*)1 && v != (void*)2)
7263                 mddev_put(mddev);
7264 }
7265
7266 static int md_seq_show(struct seq_file *seq, void *v)
7267 {
7268         struct mddev *mddev = v;
7269         sector_t sectors;
7270         struct md_rdev *rdev;
7271
7272         if (v == (void*)1) {
7273                 struct md_personality *pers;
7274                 seq_printf(seq, "Personalities : ");
7275                 spin_lock(&pers_lock);
7276                 list_for_each_entry(pers, &pers_list, list)
7277                         seq_printf(seq, "[%s] ", pers->name);
7278
7279                 spin_unlock(&pers_lock);
7280                 seq_printf(seq, "\n");
7281                 seq->poll_event = atomic_read(&md_event_count);
7282                 return 0;
7283         }
7284         if (v == (void*)2) {
7285                 status_unused(seq);
7286                 return 0;
7287         }
7288
7289         spin_lock(&mddev->lock);
7290         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7291                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7292                                                 mddev->pers ? "" : "in");
7293                 if (mddev->pers) {
7294                         if (mddev->ro==1)
7295                                 seq_printf(seq, " (read-only)");
7296                         if (mddev->ro==2)
7297                                 seq_printf(seq, " (auto-read-only)");
7298                         seq_printf(seq, " %s", mddev->pers->name);
7299                 }
7300
7301                 sectors = 0;
7302                 rcu_read_lock();
7303                 rdev_for_each_rcu(rdev, mddev) {
7304                         char b[BDEVNAME_SIZE];
7305                         seq_printf(seq, " %s[%d]",
7306                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7307                         if (test_bit(WriteMostly, &rdev->flags))
7308                                 seq_printf(seq, "(W)");
7309                         if (test_bit(Faulty, &rdev->flags)) {
7310                                 seq_printf(seq, "(F)");
7311                                 continue;
7312                         }
7313                         if (rdev->raid_disk < 0)
7314                                 seq_printf(seq, "(S)"); /* spare */
7315                         if (test_bit(Replacement, &rdev->flags))
7316                                 seq_printf(seq, "(R)");
7317                         sectors += rdev->sectors;
7318                 }
7319                 rcu_read_unlock();
7320
7321                 if (!list_empty(&mddev->disks)) {
7322                         if (mddev->pers)
7323                                 seq_printf(seq, "\n      %llu blocks",
7324                                            (unsigned long long)
7325                                            mddev->array_sectors / 2);
7326                         else
7327                                 seq_printf(seq, "\n      %llu blocks",
7328                                            (unsigned long long)sectors / 2);
7329                 }
7330                 if (mddev->persistent) {
7331                         if (mddev->major_version != 0 ||
7332                             mddev->minor_version != 90) {
7333                                 seq_printf(seq," super %d.%d",
7334                                            mddev->major_version,
7335                                            mddev->minor_version);
7336                         }
7337                 } else if (mddev->external)
7338                         seq_printf(seq, " super external:%s",
7339                                    mddev->metadata_type);
7340                 else
7341                         seq_printf(seq, " super non-persistent");
7342
7343                 if (mddev->pers) {
7344                         mddev->pers->status(seq, mddev);
7345                         seq_printf(seq, "\n      ");
7346                         if (mddev->pers->sync_request) {
7347                                 if (status_resync(seq, mddev))
7348                                         seq_printf(seq, "\n      ");
7349                         }
7350                 } else
7351                         seq_printf(seq, "\n       ");
7352
7353                 bitmap_status(seq, mddev->bitmap);
7354
7355                 seq_printf(seq, "\n");
7356         }
7357         spin_unlock(&mddev->lock);
7358
7359         return 0;
7360 }
7361
7362 static const struct seq_operations md_seq_ops = {
7363         .start  = md_seq_start,
7364         .next   = md_seq_next,
7365         .stop   = md_seq_stop,
7366         .show   = md_seq_show,
7367 };
7368
7369 static int md_seq_open(struct inode *inode, struct file *file)
7370 {
7371         struct seq_file *seq;
7372         int error;
7373
7374         error = seq_open(file, &md_seq_ops);
7375         if (error)
7376                 return error;
7377
7378         seq = file->private_data;
7379         seq->poll_event = atomic_read(&md_event_count);
7380         return error;
7381 }
7382
7383 static int md_unloading;
7384 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7385 {
7386         struct seq_file *seq = filp->private_data;
7387         int mask;
7388
7389         if (md_unloading)
7390                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7391         poll_wait(filp, &md_event_waiters, wait);
7392
7393         /* always allow read */
7394         mask = POLLIN | POLLRDNORM;
7395
7396         if (seq->poll_event != atomic_read(&md_event_count))
7397                 mask |= POLLERR | POLLPRI;
7398         return mask;
7399 }
7400
7401 static const struct file_operations md_seq_fops = {
7402         .owner          = THIS_MODULE,
7403         .open           = md_seq_open,
7404         .read           = seq_read,
7405         .llseek         = seq_lseek,
7406         .release        = seq_release_private,
7407         .poll           = mdstat_poll,
7408 };
7409
7410 int register_md_personality(struct md_personality *p)
7411 {
7412         printk(KERN_INFO "md: %s personality registered for level %d\n",
7413                                                 p->name, p->level);
7414         spin_lock(&pers_lock);
7415         list_add_tail(&p->list, &pers_list);
7416         spin_unlock(&pers_lock);
7417         return 0;
7418 }
7419 EXPORT_SYMBOL(register_md_personality);
7420
7421 int unregister_md_personality(struct md_personality *p)
7422 {
7423         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7424         spin_lock(&pers_lock);
7425         list_del_init(&p->list);
7426         spin_unlock(&pers_lock);
7427         return 0;
7428 }
7429 EXPORT_SYMBOL(unregister_md_personality);
7430
7431 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7432 {
7433         if (md_cluster_ops != NULL)
7434                 return -EALREADY;
7435         spin_lock(&pers_lock);
7436         md_cluster_ops = ops;
7437         md_cluster_mod = module;
7438         spin_unlock(&pers_lock);
7439         return 0;
7440 }
7441 EXPORT_SYMBOL(register_md_cluster_operations);
7442
7443 int unregister_md_cluster_operations(void)
7444 {
7445         spin_lock(&pers_lock);
7446         md_cluster_ops = NULL;
7447         spin_unlock(&pers_lock);
7448         return 0;
7449 }
7450 EXPORT_SYMBOL(unregister_md_cluster_operations);
7451
7452 int md_setup_cluster(struct mddev *mddev, int nodes)
7453 {
7454         int err;
7455
7456         err = request_module("md-cluster");
7457         if (err) {
7458                 pr_err("md-cluster module not found.\n");
7459                 return -ENOENT;
7460         }
7461
7462         spin_lock(&pers_lock);
7463         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7464                 spin_unlock(&pers_lock);
7465                 return -ENOENT;
7466         }
7467         spin_unlock(&pers_lock);
7468
7469         return md_cluster_ops->join(mddev, nodes);
7470 }
7471
7472 void md_cluster_stop(struct mddev *mddev)
7473 {
7474         if (!md_cluster_ops)
7475                 return;
7476         md_cluster_ops->leave(mddev);
7477         module_put(md_cluster_mod);
7478 }
7479
7480 static int is_mddev_idle(struct mddev *mddev, int init)
7481 {
7482         struct md_rdev *rdev;
7483         int idle;
7484         int curr_events;
7485
7486         idle = 1;
7487         rcu_read_lock();
7488         rdev_for_each_rcu(rdev, mddev) {
7489                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7490                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7491                               (int)part_stat_read(&disk->part0, sectors[1]) -
7492                               atomic_read(&disk->sync_io);
7493                 /* sync IO will cause sync_io to increase before the disk_stats
7494                  * as sync_io is counted when a request starts, and
7495                  * disk_stats is counted when it completes.
7496                  * So resync activity will cause curr_events to be smaller than
7497                  * when there was no such activity.
7498                  * non-sync IO will cause disk_stat to increase without
7499                  * increasing sync_io so curr_events will (eventually)
7500                  * be larger than it was before.  Once it becomes
7501                  * substantially larger, the test below will cause
7502                  * the array to appear non-idle, and resync will slow
7503                  * down.
7504                  * If there is a lot of outstanding resync activity when
7505                  * we set last_event to curr_events, then all that activity
7506                  * completing might cause the array to appear non-idle
7507                  * and resync will be slowed down even though there might
7508                  * not have been non-resync activity.  This will only
7509                  * happen once though.  'last_events' will soon reflect
7510                  * the state where there is little or no outstanding
7511                  * resync requests, and further resync activity will
7512                  * always make curr_events less than last_events.
7513                  *
7514                  */
7515                 if (init || curr_events - rdev->last_events > 64) {
7516                         rdev->last_events = curr_events;
7517                         idle = 0;
7518                 }
7519         }
7520         rcu_read_unlock();
7521         return idle;
7522 }
7523
7524 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7525 {
7526         /* another "blocks" (512byte) blocks have been synced */
7527         atomic_sub(blocks, &mddev->recovery_active);
7528         wake_up(&mddev->recovery_wait);
7529         if (!ok) {
7530                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7531                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7532                 md_wakeup_thread(mddev->thread);
7533                 // stop recovery, signal do_sync ....
7534         }
7535 }
7536 EXPORT_SYMBOL(md_done_sync);
7537
7538 /* md_write_start(mddev, bi)
7539  * If we need to update some array metadata (e.g. 'active' flag
7540  * in superblock) before writing, schedule a superblock update
7541  * and wait for it to complete.
7542  */
7543 void md_write_start(struct mddev *mddev, struct bio *bi)
7544 {
7545         int did_change = 0;
7546         if (bio_data_dir(bi) != WRITE)
7547                 return;
7548
7549         BUG_ON(mddev->ro == 1);
7550         if (mddev->ro == 2) {
7551                 /* need to switch to read/write */
7552                 mddev->ro = 0;
7553                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7554                 md_wakeup_thread(mddev->thread);
7555                 md_wakeup_thread(mddev->sync_thread);
7556                 did_change = 1;
7557         }
7558         atomic_inc(&mddev->writes_pending);
7559         if (mddev->safemode == 1)
7560                 mddev->safemode = 0;
7561         if (mddev->in_sync) {
7562                 spin_lock(&mddev->lock);
7563                 if (mddev->in_sync) {
7564                         mddev->in_sync = 0;
7565                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7566                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7567                         md_wakeup_thread(mddev->thread);
7568                         did_change = 1;
7569                 }
7570                 spin_unlock(&mddev->lock);
7571         }
7572         if (did_change)
7573                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7574         wait_event(mddev->sb_wait,
7575                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7576 }
7577 EXPORT_SYMBOL(md_write_start);
7578
7579 void md_write_end(struct mddev *mddev)
7580 {
7581         if (atomic_dec_and_test(&mddev->writes_pending)) {
7582                 if (mddev->safemode == 2)
7583                         md_wakeup_thread(mddev->thread);
7584                 else if (mddev->safemode_delay)
7585                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7586         }
7587 }
7588 EXPORT_SYMBOL(md_write_end);
7589
7590 /* md_allow_write(mddev)
7591  * Calling this ensures that the array is marked 'active' so that writes
7592  * may proceed without blocking.  It is important to call this before
7593  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7594  * Must be called with mddev_lock held.
7595  *
7596  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7597  * is dropped, so return -EAGAIN after notifying userspace.
7598  */
7599 int md_allow_write(struct mddev *mddev)
7600 {
7601         if (!mddev->pers)
7602                 return 0;
7603         if (mddev->ro)
7604                 return 0;
7605         if (!mddev->pers->sync_request)
7606                 return 0;
7607
7608         spin_lock(&mddev->lock);
7609         if (mddev->in_sync) {
7610                 mddev->in_sync = 0;
7611                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7612                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7613                 if (mddev->safemode_delay &&
7614                     mddev->safemode == 0)
7615                         mddev->safemode = 1;
7616                 spin_unlock(&mddev->lock);
7617                 if (mddev_is_clustered(mddev))
7618                         md_cluster_ops->metadata_update_start(mddev);
7619                 md_update_sb(mddev, 0);
7620                 if (mddev_is_clustered(mddev))
7621                         md_cluster_ops->metadata_update_finish(mddev);
7622                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7623         } else
7624                 spin_unlock(&mddev->lock);
7625
7626         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7627                 return -EAGAIN;
7628         else
7629                 return 0;
7630 }
7631 EXPORT_SYMBOL_GPL(md_allow_write);
7632
7633 #define SYNC_MARKS      10
7634 #define SYNC_MARK_STEP  (3*HZ)
7635 #define UPDATE_FREQUENCY (5*60*HZ)
7636 void md_do_sync(struct md_thread *thread)
7637 {
7638         struct mddev *mddev = thread->mddev;
7639         struct mddev *mddev2;
7640         unsigned int currspeed = 0,
7641                  window;
7642         sector_t max_sectors,j, io_sectors, recovery_done;
7643         unsigned long mark[SYNC_MARKS];
7644         unsigned long update_time;
7645         sector_t mark_cnt[SYNC_MARKS];
7646         int last_mark,m;
7647         struct list_head *tmp;
7648         sector_t last_check;
7649         int skipped = 0;
7650         struct md_rdev *rdev;
7651         char *desc, *action = NULL;
7652         struct blk_plug plug;
7653
7654         /* just incase thread restarts... */
7655         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7656                 return;
7657         if (mddev->ro) {/* never try to sync a read-only array */
7658                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7659                 return;
7660         }
7661
7662         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7663                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7664                         desc = "data-check";
7665                         action = "check";
7666                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7667                         desc = "requested-resync";
7668                         action = "repair";
7669                 } else
7670                         desc = "resync";
7671         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7672                 desc = "reshape";
7673         else
7674                 desc = "recovery";
7675
7676         mddev->last_sync_action = action ?: desc;
7677
7678         /* we overload curr_resync somewhat here.
7679          * 0 == not engaged in resync at all
7680          * 2 == checking that there is no conflict with another sync
7681          * 1 == like 2, but have yielded to allow conflicting resync to
7682          *              commense
7683          * other == active in resync - this many blocks
7684          *
7685          * Before starting a resync we must have set curr_resync to
7686          * 2, and then checked that every "conflicting" array has curr_resync
7687          * less than ours.  When we find one that is the same or higher
7688          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7689          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7690          * This will mean we have to start checking from the beginning again.
7691          *
7692          */
7693
7694         do {
7695                 mddev->curr_resync = 2;
7696
7697         try_again:
7698                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7699                         goto skip;
7700                 for_each_mddev(mddev2, tmp) {
7701                         if (mddev2 == mddev)
7702                                 continue;
7703                         if (!mddev->parallel_resync
7704                         &&  mddev2->curr_resync
7705                         &&  match_mddev_units(mddev, mddev2)) {
7706                                 DEFINE_WAIT(wq);
7707                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7708                                         /* arbitrarily yield */
7709                                         mddev->curr_resync = 1;
7710                                         wake_up(&resync_wait);
7711                                 }
7712                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7713                                         /* no need to wait here, we can wait the next
7714                                          * time 'round when curr_resync == 2
7715                                          */
7716                                         continue;
7717                                 /* We need to wait 'interruptible' so as not to
7718                                  * contribute to the load average, and not to
7719                                  * be caught by 'softlockup'
7720                                  */
7721                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7722                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7723                                     mddev2->curr_resync >= mddev->curr_resync) {
7724                                         printk(KERN_INFO "md: delaying %s of %s"
7725                                                " until %s has finished (they"
7726                                                " share one or more physical units)\n",
7727                                                desc, mdname(mddev), mdname(mddev2));
7728                                         mddev_put(mddev2);
7729                                         if (signal_pending(current))
7730                                                 flush_signals(current);
7731                                         schedule();
7732                                         finish_wait(&resync_wait, &wq);
7733                                         goto try_again;
7734                                 }
7735                                 finish_wait(&resync_wait, &wq);
7736                         }
7737                 }
7738         } while (mddev->curr_resync < 2);
7739
7740         j = 0;
7741         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7742                 /* resync follows the size requested by the personality,
7743                  * which defaults to physical size, but can be virtual size
7744                  */
7745                 max_sectors = mddev->resync_max_sectors;
7746                 atomic64_set(&mddev->resync_mismatches, 0);
7747                 /* we don't use the checkpoint if there's a bitmap */
7748                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7749                         j = mddev->resync_min;
7750                 else if (!mddev->bitmap)
7751                         j = mddev->recovery_cp;
7752
7753         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7754                 max_sectors = mddev->resync_max_sectors;
7755         else {
7756                 /* recovery follows the physical size of devices */
7757                 max_sectors = mddev->dev_sectors;
7758                 j = MaxSector;
7759                 rcu_read_lock();
7760                 rdev_for_each_rcu(rdev, mddev)
7761                         if (rdev->raid_disk >= 0 &&
7762                             !test_bit(Faulty, &rdev->flags) &&
7763                             !test_bit(In_sync, &rdev->flags) &&
7764                             rdev->recovery_offset < j)
7765                                 j = rdev->recovery_offset;
7766                 rcu_read_unlock();
7767
7768                 /* If there is a bitmap, we need to make sure all
7769                  * writes that started before we added a spare
7770                  * complete before we start doing a recovery.
7771                  * Otherwise the write might complete and (via
7772                  * bitmap_endwrite) set a bit in the bitmap after the
7773                  * recovery has checked that bit and skipped that
7774                  * region.
7775                  */
7776                 if (mddev->bitmap) {
7777                         mddev->pers->quiesce(mddev, 1);
7778                         mddev->pers->quiesce(mddev, 0);
7779                 }
7780         }
7781
7782         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7783         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7784                 " %d KB/sec/disk.\n", speed_min(mddev));
7785         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7786                "(but not more than %d KB/sec) for %s.\n",
7787                speed_max(mddev), desc);
7788
7789         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7790
7791         io_sectors = 0;
7792         for (m = 0; m < SYNC_MARKS; m++) {
7793                 mark[m] = jiffies;
7794                 mark_cnt[m] = io_sectors;
7795         }
7796         last_mark = 0;
7797         mddev->resync_mark = mark[last_mark];
7798         mddev->resync_mark_cnt = mark_cnt[last_mark];
7799
7800         /*
7801          * Tune reconstruction:
7802          */
7803         window = 32*(PAGE_SIZE/512);
7804         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7805                 window/2, (unsigned long long)max_sectors/2);
7806
7807         atomic_set(&mddev->recovery_active, 0);
7808         last_check = 0;
7809
7810         if (j>2) {
7811                 printk(KERN_INFO
7812                        "md: resuming %s of %s from checkpoint.\n",
7813                        desc, mdname(mddev));
7814                 mddev->curr_resync = j;
7815         } else
7816                 mddev->curr_resync = 3; /* no longer delayed */
7817         mddev->curr_resync_completed = j;
7818         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7819         md_new_event(mddev);
7820         update_time = jiffies;
7821
7822         if (mddev_is_clustered(mddev))
7823                 md_cluster_ops->resync_start(mddev, j, max_sectors);
7824
7825         blk_start_plug(&plug);
7826         while (j < max_sectors) {
7827                 sector_t sectors;
7828
7829                 skipped = 0;
7830
7831                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7832                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7833                       (mddev->curr_resync - mddev->curr_resync_completed)
7834                       > (max_sectors >> 4)) ||
7835                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7836                      (j - mddev->curr_resync_completed)*2
7837                      >= mddev->resync_max - mddev->curr_resync_completed ||
7838                      mddev->curr_resync_completed > mddev->resync_max
7839                             )) {
7840                         /* time to update curr_resync_completed */
7841                         wait_event(mddev->recovery_wait,
7842                                    atomic_read(&mddev->recovery_active) == 0);
7843                         mddev->curr_resync_completed = j;
7844                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7845                             j > mddev->recovery_cp)
7846                                 mddev->recovery_cp = j;
7847                         update_time = jiffies;
7848                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7849                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7850                 }
7851
7852                 while (j >= mddev->resync_max &&
7853                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7854                         /* As this condition is controlled by user-space,
7855                          * we can block indefinitely, so use '_interruptible'
7856                          * to avoid triggering warnings.
7857                          */
7858                         flush_signals(current); /* just in case */
7859                         wait_event_interruptible(mddev->recovery_wait,
7860                                                  mddev->resync_max > j
7861                                                  || test_bit(MD_RECOVERY_INTR,
7862                                                              &mddev->recovery));
7863                 }
7864
7865                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7866                         break;
7867
7868                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7869                 if (sectors == 0) {
7870                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7871                         break;
7872                 }
7873
7874                 if (!skipped) { /* actual IO requested */
7875                         io_sectors += sectors;
7876                         atomic_add(sectors, &mddev->recovery_active);
7877                 }
7878
7879                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7880                         break;
7881
7882                 j += sectors;
7883                 if (j > max_sectors)
7884                         /* when skipping, extra large numbers can be returned. */
7885                         j = max_sectors;
7886                 if (j > 2)
7887                         mddev->curr_resync = j;
7888                 if (mddev_is_clustered(mddev))
7889                         md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7890                 mddev->curr_mark_cnt = io_sectors;
7891                 if (last_check == 0)
7892                         /* this is the earliest that rebuild will be
7893                          * visible in /proc/mdstat
7894                          */
7895                         md_new_event(mddev);
7896
7897                 if (last_check + window > io_sectors || j == max_sectors)
7898                         continue;
7899
7900                 last_check = io_sectors;
7901         repeat:
7902                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7903                         /* step marks */
7904                         int next = (last_mark+1) % SYNC_MARKS;
7905
7906                         mddev->resync_mark = mark[next];
7907                         mddev->resync_mark_cnt = mark_cnt[next];
7908                         mark[next] = jiffies;
7909                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7910                         last_mark = next;
7911                 }
7912
7913                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7914                         break;
7915
7916                 /*
7917                  * this loop exits only if either when we are slower than
7918                  * the 'hard' speed limit, or the system was IO-idle for
7919                  * a jiffy.
7920                  * the system might be non-idle CPU-wise, but we only care
7921                  * about not overloading the IO subsystem. (things like an
7922                  * e2fsck being done on the RAID array should execute fast)
7923                  */
7924                 cond_resched();
7925
7926                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7927                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7928                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7929
7930                 if (currspeed > speed_min(mddev)) {
7931                         if (currspeed > speed_max(mddev)) {
7932                                 msleep(500);
7933                                 goto repeat;
7934                         }
7935                         if (!is_mddev_idle(mddev, 0)) {
7936                                 /*
7937                                  * Give other IO more of a chance.
7938                                  * The faster the devices, the less we wait.
7939                                  */
7940                                 wait_event(mddev->recovery_wait,
7941                                            !atomic_read(&mddev->recovery_active));
7942                         }
7943                 }
7944         }
7945         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7946                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7947                ? "interrupted" : "done");
7948         /*
7949          * this also signals 'finished resyncing' to md_stop
7950          */
7951         blk_finish_plug(&plug);
7952         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7953
7954         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7955             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7956             mddev->curr_resync > 2) {
7957                 mddev->curr_resync_completed = mddev->curr_resync;
7958                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7959         }
7960         /* tell personality that we are finished */
7961         mddev->pers->sync_request(mddev, max_sectors, &skipped);
7962
7963         if (mddev_is_clustered(mddev))
7964                 md_cluster_ops->resync_finish(mddev);
7965
7966         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7967             mddev->curr_resync > 2) {
7968                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7969                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7970                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7971                                         printk(KERN_INFO
7972                                                "md: checkpointing %s of %s.\n",
7973                                                desc, mdname(mddev));
7974                                         if (test_bit(MD_RECOVERY_ERROR,
7975                                                 &mddev->recovery))
7976                                                 mddev->recovery_cp =
7977                                                         mddev->curr_resync_completed;
7978                                         else
7979                                                 mddev->recovery_cp =
7980                                                         mddev->curr_resync;
7981                                 }
7982                         } else
7983                                 mddev->recovery_cp = MaxSector;
7984                 } else {
7985                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7986                                 mddev->curr_resync = MaxSector;
7987                         rcu_read_lock();
7988                         rdev_for_each_rcu(rdev, mddev)
7989                                 if (rdev->raid_disk >= 0 &&
7990                                     mddev->delta_disks >= 0 &&
7991                                     !test_bit(Faulty, &rdev->flags) &&
7992                                     !test_bit(In_sync, &rdev->flags) &&
7993                                     rdev->recovery_offset < mddev->curr_resync)
7994                                         rdev->recovery_offset = mddev->curr_resync;
7995                         rcu_read_unlock();
7996                 }
7997         }
7998  skip:
7999         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8000
8001         spin_lock(&mddev->lock);
8002         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8003                 /* We completed so min/max setting can be forgotten if used. */
8004                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8005                         mddev->resync_min = 0;
8006                 mddev->resync_max = MaxSector;
8007         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8008                 mddev->resync_min = mddev->curr_resync_completed;
8009         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8010         mddev->curr_resync = 0;
8011         spin_unlock(&mddev->lock);
8012
8013         wake_up(&resync_wait);
8014         md_wakeup_thread(mddev->thread);
8015         return;
8016 }
8017 EXPORT_SYMBOL_GPL(md_do_sync);
8018
8019 static int remove_and_add_spares(struct mddev *mddev,
8020                                  struct md_rdev *this)
8021 {
8022         struct md_rdev *rdev;
8023         int spares = 0;
8024         int removed = 0;
8025
8026         rdev_for_each(rdev, mddev)
8027                 if ((this == NULL || rdev == this) &&
8028                     rdev->raid_disk >= 0 &&
8029                     !test_bit(Blocked, &rdev->flags) &&
8030                     (test_bit(Faulty, &rdev->flags) ||
8031                      ! test_bit(In_sync, &rdev->flags)) &&
8032                     atomic_read(&rdev->nr_pending)==0) {
8033                         if (mddev->pers->hot_remove_disk(
8034                                     mddev, rdev) == 0) {
8035                                 sysfs_unlink_rdev(mddev, rdev);
8036                                 rdev->raid_disk = -1;
8037                                 removed++;
8038                         }
8039                 }
8040         if (removed && mddev->kobj.sd)
8041                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8042
8043         if (this)
8044                 goto no_add;
8045
8046         rdev_for_each(rdev, mddev) {
8047                 if (rdev->raid_disk >= 0 &&
8048                     !test_bit(In_sync, &rdev->flags) &&
8049                     !test_bit(Faulty, &rdev->flags))
8050                         spares++;
8051                 if (rdev->raid_disk >= 0)
8052                         continue;
8053                 if (test_bit(Faulty, &rdev->flags))
8054                         continue;
8055                 if (mddev->ro &&
8056                     ! (rdev->saved_raid_disk >= 0 &&
8057                        !test_bit(Bitmap_sync, &rdev->flags)))
8058                         continue;
8059
8060                 if (rdev->saved_raid_disk < 0)
8061                         rdev->recovery_offset = 0;
8062                 if (mddev->pers->
8063                     hot_add_disk(mddev, rdev) == 0) {
8064                         if (sysfs_link_rdev(mddev, rdev))
8065                                 /* failure here is OK */;
8066                         spares++;
8067                         md_new_event(mddev);
8068                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8069                 }
8070         }
8071 no_add:
8072         if (removed)
8073                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8074         return spares;
8075 }
8076
8077 static void md_start_sync(struct work_struct *ws)
8078 {
8079         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8080
8081         mddev->sync_thread = md_register_thread(md_do_sync,
8082                                                 mddev,
8083                                                 "resync");
8084         if (!mddev->sync_thread) {
8085                 printk(KERN_ERR "%s: could not start resync"
8086                        " thread...\n",
8087                        mdname(mddev));
8088                 /* leave the spares where they are, it shouldn't hurt */
8089                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8090                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8091                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8092                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8093                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8094                 wake_up(&resync_wait);
8095                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8096                                        &mddev->recovery))
8097                         if (mddev->sysfs_action)
8098                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8099         } else
8100                 md_wakeup_thread(mddev->sync_thread);
8101         sysfs_notify_dirent_safe(mddev->sysfs_action);
8102         md_new_event(mddev);
8103 }
8104
8105 /*
8106  * This routine is regularly called by all per-raid-array threads to
8107  * deal with generic issues like resync and super-block update.
8108  * Raid personalities that don't have a thread (linear/raid0) do not
8109  * need this as they never do any recovery or update the superblock.
8110  *
8111  * It does not do any resync itself, but rather "forks" off other threads
8112  * to do that as needed.
8113  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8114  * "->recovery" and create a thread at ->sync_thread.
8115  * When the thread finishes it sets MD_RECOVERY_DONE
8116  * and wakeups up this thread which will reap the thread and finish up.
8117  * This thread also removes any faulty devices (with nr_pending == 0).
8118  *
8119  * The overall approach is:
8120  *  1/ if the superblock needs updating, update it.
8121  *  2/ If a recovery thread is running, don't do anything else.
8122  *  3/ If recovery has finished, clean up, possibly marking spares active.
8123  *  4/ If there are any faulty devices, remove them.
8124  *  5/ If array is degraded, try to add spares devices
8125  *  6/ If array has spares or is not in-sync, start a resync thread.
8126  */
8127 void md_check_recovery(struct mddev *mddev)
8128 {
8129         if (mddev->suspended)
8130                 return;
8131
8132         if (mddev->bitmap)
8133                 bitmap_daemon_work(mddev);
8134
8135         if (signal_pending(current)) {
8136                 if (mddev->pers->sync_request && !mddev->external) {
8137                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8138                                mdname(mddev));
8139                         mddev->safemode = 2;
8140                 }
8141                 flush_signals(current);
8142         }
8143
8144         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8145                 return;
8146         if ( ! (
8147                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8148                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8149                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8150                 (mddev->external == 0 && mddev->safemode == 1) ||
8151                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8152                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8153                 ))
8154                 return;
8155
8156         if (mddev_trylock(mddev)) {
8157                 int spares = 0;
8158
8159                 if (mddev->ro) {
8160                         struct md_rdev *rdev;
8161                         if (!mddev->external && mddev->in_sync)
8162                                 /* 'Blocked' flag not needed as failed devices
8163                                  * will be recorded if array switched to read/write.
8164                                  * Leaving it set will prevent the device
8165                                  * from being removed.
8166                                  */
8167                                 rdev_for_each(rdev, mddev)
8168                                         clear_bit(Blocked, &rdev->flags);
8169                         /* On a read-only array we can:
8170                          * - remove failed devices
8171                          * - add already-in_sync devices if the array itself
8172                          *   is in-sync.
8173                          * As we only add devices that are already in-sync,
8174                          * we can activate the spares immediately.
8175                          */
8176                         remove_and_add_spares(mddev, NULL);
8177                         /* There is no thread, but we need to call
8178                          * ->spare_active and clear saved_raid_disk
8179                          */
8180                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8181                         md_reap_sync_thread(mddev);
8182                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8183                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8184                         goto unlock;
8185                 }
8186
8187                 if (!mddev->external) {
8188                         int did_change = 0;
8189                         spin_lock(&mddev->lock);
8190                         if (mddev->safemode &&
8191                             !atomic_read(&mddev->writes_pending) &&
8192                             !mddev->in_sync &&
8193                             mddev->recovery_cp == MaxSector) {
8194                                 mddev->in_sync = 1;
8195                                 did_change = 1;
8196                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8197                         }
8198                         if (mddev->safemode == 1)
8199                                 mddev->safemode = 0;
8200                         spin_unlock(&mddev->lock);
8201                         if (did_change)
8202                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8203                 }
8204
8205                 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8206                         if (mddev_is_clustered(mddev))
8207                                 md_cluster_ops->metadata_update_start(mddev);
8208                         md_update_sb(mddev, 0);
8209                         if (mddev_is_clustered(mddev))
8210                                 md_cluster_ops->metadata_update_finish(mddev);
8211                 }
8212
8213                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8214                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8215                         /* resync/recovery still happening */
8216                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8217                         goto unlock;
8218                 }
8219                 if (mddev->sync_thread) {
8220                         md_reap_sync_thread(mddev);
8221                         goto unlock;
8222                 }
8223                 /* Set RUNNING before clearing NEEDED to avoid
8224                  * any transients in the value of "sync_action".
8225                  */
8226                 mddev->curr_resync_completed = 0;
8227                 spin_lock(&mddev->lock);
8228                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8229                 spin_unlock(&mddev->lock);
8230                 /* Clear some bits that don't mean anything, but
8231                  * might be left set
8232                  */
8233                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8234                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8235
8236                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8237                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8238                         goto not_running;
8239                 /* no recovery is running.
8240                  * remove any failed drives, then
8241                  * add spares if possible.
8242                  * Spares are also removed and re-added, to allow
8243                  * the personality to fail the re-add.
8244                  */
8245
8246                 if (mddev->reshape_position != MaxSector) {
8247                         if (mddev->pers->check_reshape == NULL ||
8248                             mddev->pers->check_reshape(mddev) != 0)
8249                                 /* Cannot proceed */
8250                                 goto not_running;
8251                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8252                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8253                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8254                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8255                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8256                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8257                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8258                 } else if (mddev->recovery_cp < MaxSector) {
8259                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8260                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8261                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8262                         /* nothing to be done ... */
8263                         goto not_running;
8264
8265                 if (mddev->pers->sync_request) {
8266                         if (spares) {
8267                                 /* We are adding a device or devices to an array
8268                                  * which has the bitmap stored on all devices.
8269                                  * So make sure all bitmap pages get written
8270                                  */
8271                                 bitmap_write_all(mddev->bitmap);
8272                         }
8273                         INIT_WORK(&mddev->del_work, md_start_sync);
8274                         queue_work(md_misc_wq, &mddev->del_work);
8275                         goto unlock;
8276                 }
8277         not_running:
8278                 if (!mddev->sync_thread) {
8279                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8280                         wake_up(&resync_wait);
8281                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8282                                                &mddev->recovery))
8283                                 if (mddev->sysfs_action)
8284                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8285                 }
8286         unlock:
8287                 wake_up(&mddev->sb_wait);
8288                 mddev_unlock(mddev);
8289         }
8290 }
8291 EXPORT_SYMBOL(md_check_recovery);
8292
8293 void md_reap_sync_thread(struct mddev *mddev)
8294 {
8295         struct md_rdev *rdev;
8296
8297         /* resync has finished, collect result */
8298         md_unregister_thread(&mddev->sync_thread);
8299         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8300             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8301                 /* success...*/
8302                 /* activate any spares */
8303                 if (mddev->pers->spare_active(mddev)) {
8304                         sysfs_notify(&mddev->kobj, NULL,
8305                                      "degraded");
8306                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8307                 }
8308         }
8309         if (mddev_is_clustered(mddev))
8310                 md_cluster_ops->metadata_update_start(mddev);
8311         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8312             mddev->pers->finish_reshape)
8313                 mddev->pers->finish_reshape(mddev);
8314
8315         /* If array is no-longer degraded, then any saved_raid_disk
8316          * information must be scrapped.
8317          */
8318         if (!mddev->degraded)
8319                 rdev_for_each(rdev, mddev)
8320                         rdev->saved_raid_disk = -1;
8321
8322         md_update_sb(mddev, 1);
8323         if (mddev_is_clustered(mddev))
8324                 md_cluster_ops->metadata_update_finish(mddev);
8325         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8326         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8327         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8328         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8329         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8330         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8331         wake_up(&resync_wait);
8332         /* flag recovery needed just to double check */
8333         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8334         sysfs_notify_dirent_safe(mddev->sysfs_action);
8335         md_new_event(mddev);
8336         if (mddev->event_work.func)
8337                 queue_work(md_misc_wq, &mddev->event_work);
8338 }
8339 EXPORT_SYMBOL(md_reap_sync_thread);
8340
8341 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8342 {
8343         sysfs_notify_dirent_safe(rdev->sysfs_state);
8344         wait_event_timeout(rdev->blocked_wait,
8345                            !test_bit(Blocked, &rdev->flags) &&
8346                            !test_bit(BlockedBadBlocks, &rdev->flags),
8347                            msecs_to_jiffies(5000));
8348         rdev_dec_pending(rdev, mddev);
8349 }
8350 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8351
8352 void md_finish_reshape(struct mddev *mddev)
8353 {
8354         /* called be personality module when reshape completes. */
8355         struct md_rdev *rdev;
8356
8357         rdev_for_each(rdev, mddev) {
8358                 if (rdev->data_offset > rdev->new_data_offset)
8359                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8360                 else
8361                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8362                 rdev->data_offset = rdev->new_data_offset;
8363         }
8364 }
8365 EXPORT_SYMBOL(md_finish_reshape);
8366
8367 /* Bad block management.
8368  * We can record which blocks on each device are 'bad' and so just
8369  * fail those blocks, or that stripe, rather than the whole device.
8370  * Entries in the bad-block table are 64bits wide.  This comprises:
8371  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8372  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8373  *  A 'shift' can be set so that larger blocks are tracked and
8374  *  consequently larger devices can be covered.
8375  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8376  *
8377  * Locking of the bad-block table uses a seqlock so md_is_badblock
8378  * might need to retry if it is very unlucky.
8379  * We will sometimes want to check for bad blocks in a bi_end_io function,
8380  * so we use the write_seqlock_irq variant.
8381  *
8382  * When looking for a bad block we specify a range and want to
8383  * know if any block in the range is bad.  So we binary-search
8384  * to the last range that starts at-or-before the given endpoint,
8385  * (or "before the sector after the target range")
8386  * then see if it ends after the given start.
8387  * We return
8388  *  0 if there are no known bad blocks in the range
8389  *  1 if there are known bad block which are all acknowledged
8390  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8391  * plus the start/length of the first bad section we overlap.
8392  */
8393 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8394                    sector_t *first_bad, int *bad_sectors)
8395 {
8396         int hi;
8397         int lo;
8398         u64 *p = bb->page;
8399         int rv;
8400         sector_t target = s + sectors;
8401         unsigned seq;
8402
8403         if (bb->shift > 0) {
8404                 /* round the start down, and the end up */
8405                 s >>= bb->shift;
8406                 target += (1<<bb->shift) - 1;
8407                 target >>= bb->shift;
8408                 sectors = target - s;
8409         }
8410         /* 'target' is now the first block after the bad range */
8411
8412 retry:
8413         seq = read_seqbegin(&bb->lock);
8414         lo = 0;
8415         rv = 0;
8416         hi = bb->count;
8417
8418         /* Binary search between lo and hi for 'target'
8419          * i.e. for the last range that starts before 'target'
8420          */
8421         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8422          * are known not to be the last range before target.
8423          * VARIANT: hi-lo is the number of possible
8424          * ranges, and decreases until it reaches 1
8425          */
8426         while (hi - lo > 1) {
8427                 int mid = (lo + hi) / 2;
8428                 sector_t a = BB_OFFSET(p[mid]);
8429                 if (a < target)
8430                         /* This could still be the one, earlier ranges
8431                          * could not. */
8432                         lo = mid;
8433                 else
8434                         /* This and later ranges are definitely out. */
8435                         hi = mid;
8436         }
8437         /* 'lo' might be the last that started before target, but 'hi' isn't */
8438         if (hi > lo) {
8439                 /* need to check all range that end after 's' to see if
8440                  * any are unacknowledged.
8441                  */
8442                 while (lo >= 0 &&
8443                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8444                         if (BB_OFFSET(p[lo]) < target) {
8445                                 /* starts before the end, and finishes after
8446                                  * the start, so they must overlap
8447                                  */
8448                                 if (rv != -1 && BB_ACK(p[lo]))
8449                                         rv = 1;
8450                                 else
8451                                         rv = -1;
8452                                 *first_bad = BB_OFFSET(p[lo]);
8453                                 *bad_sectors = BB_LEN(p[lo]);
8454                         }
8455                         lo--;
8456                 }
8457         }
8458
8459         if (read_seqretry(&bb->lock, seq))
8460                 goto retry;
8461
8462         return rv;
8463 }
8464 EXPORT_SYMBOL_GPL(md_is_badblock);
8465
8466 /*
8467  * Add a range of bad blocks to the table.
8468  * This might extend the table, or might contract it
8469  * if two adjacent ranges can be merged.
8470  * We binary-search to find the 'insertion' point, then
8471  * decide how best to handle it.
8472  */
8473 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8474                             int acknowledged)
8475 {
8476         u64 *p;
8477         int lo, hi;
8478         int rv = 1;
8479         unsigned long flags;
8480
8481         if (bb->shift < 0)
8482                 /* badblocks are disabled */
8483                 return 0;
8484
8485         if (bb->shift) {
8486                 /* round the start down, and the end up */
8487                 sector_t next = s + sectors;
8488                 s >>= bb->shift;
8489                 next += (1<<bb->shift) - 1;
8490                 next >>= bb->shift;
8491                 sectors = next - s;
8492         }
8493
8494         write_seqlock_irqsave(&bb->lock, flags);
8495
8496         p = bb->page;
8497         lo = 0;
8498         hi = bb->count;
8499         /* Find the last range that starts at-or-before 's' */
8500         while (hi - lo > 1) {
8501                 int mid = (lo + hi) / 2;
8502                 sector_t a = BB_OFFSET(p[mid]);
8503                 if (a <= s)
8504                         lo = mid;
8505                 else
8506                         hi = mid;
8507         }
8508         if (hi > lo && BB_OFFSET(p[lo]) > s)
8509                 hi = lo;
8510
8511         if (hi > lo) {
8512                 /* we found a range that might merge with the start
8513                  * of our new range
8514                  */
8515                 sector_t a = BB_OFFSET(p[lo]);
8516                 sector_t e = a + BB_LEN(p[lo]);
8517                 int ack = BB_ACK(p[lo]);
8518                 if (e >= s) {
8519                         /* Yes, we can merge with a previous range */
8520                         if (s == a && s + sectors >= e)
8521                                 /* new range covers old */
8522                                 ack = acknowledged;
8523                         else
8524                                 ack = ack && acknowledged;
8525
8526                         if (e < s + sectors)
8527                                 e = s + sectors;
8528                         if (e - a <= BB_MAX_LEN) {
8529                                 p[lo] = BB_MAKE(a, e-a, ack);
8530                                 s = e;
8531                         } else {
8532                                 /* does not all fit in one range,
8533                                  * make p[lo] maximal
8534                                  */
8535                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8536                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8537                                 s = a + BB_MAX_LEN;
8538                         }
8539                         sectors = e - s;
8540                 }
8541         }
8542         if (sectors && hi < bb->count) {
8543                 /* 'hi' points to the first range that starts after 's'.
8544                  * Maybe we can merge with the start of that range */
8545                 sector_t a = BB_OFFSET(p[hi]);
8546                 sector_t e = a + BB_LEN(p[hi]);
8547                 int ack = BB_ACK(p[hi]);
8548                 if (a <= s + sectors) {
8549                         /* merging is possible */
8550                         if (e <= s + sectors) {
8551                                 /* full overlap */
8552                                 e = s + sectors;
8553                                 ack = acknowledged;
8554                         } else
8555                                 ack = ack && acknowledged;
8556
8557                         a = s;
8558                         if (e - a <= BB_MAX_LEN) {
8559                                 p[hi] = BB_MAKE(a, e-a, ack);
8560                                 s = e;
8561                         } else {
8562                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8563                                 s = a + BB_MAX_LEN;
8564                         }
8565                         sectors = e - s;
8566                         lo = hi;
8567                         hi++;
8568                 }
8569         }
8570         if (sectors == 0 && hi < bb->count) {
8571                 /* we might be able to combine lo and hi */
8572                 /* Note: 's' is at the end of 'lo' */
8573                 sector_t a = BB_OFFSET(p[hi]);
8574                 int lolen = BB_LEN(p[lo]);
8575                 int hilen = BB_LEN(p[hi]);
8576                 int newlen = lolen + hilen - (s - a);
8577                 if (s >= a && newlen < BB_MAX_LEN) {
8578                         /* yes, we can combine them */
8579                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8580                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8581                         memmove(p + hi, p + hi + 1,
8582                                 (bb->count - hi - 1) * 8);
8583                         bb->count--;
8584                 }
8585         }
8586         while (sectors) {
8587                 /* didn't merge (it all).
8588                  * Need to add a range just before 'hi' */
8589                 if (bb->count >= MD_MAX_BADBLOCKS) {
8590                         /* No room for more */
8591                         rv = 0;
8592                         break;
8593                 } else {
8594                         int this_sectors = sectors;
8595                         memmove(p + hi + 1, p + hi,
8596                                 (bb->count - hi) * 8);
8597                         bb->count++;
8598
8599                         if (this_sectors > BB_MAX_LEN)
8600                                 this_sectors = BB_MAX_LEN;
8601                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8602                         sectors -= this_sectors;
8603                         s += this_sectors;
8604                 }
8605         }
8606
8607         bb->changed = 1;
8608         if (!acknowledged)
8609                 bb->unacked_exist = 1;
8610         write_sequnlock_irqrestore(&bb->lock, flags);
8611
8612         return rv;
8613 }
8614
8615 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8616                        int is_new)
8617 {
8618         int rv;
8619         if (is_new)
8620                 s += rdev->new_data_offset;
8621         else
8622                 s += rdev->data_offset;
8623         rv = md_set_badblocks(&rdev->badblocks,
8624                               s, sectors, 0);
8625         if (rv) {
8626                 /* Make sure they get written out promptly */
8627                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8628                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8629                 md_wakeup_thread(rdev->mddev->thread);
8630         }
8631         return rv;
8632 }
8633 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8634
8635 /*
8636  * Remove a range of bad blocks from the table.
8637  * This may involve extending the table if we spilt a region,
8638  * but it must not fail.  So if the table becomes full, we just
8639  * drop the remove request.
8640  */
8641 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8642 {
8643         u64 *p;
8644         int lo, hi;
8645         sector_t target = s + sectors;
8646         int rv = 0;
8647
8648         if (bb->shift > 0) {
8649                 /* When clearing we round the start up and the end down.
8650                  * This should not matter as the shift should align with
8651                  * the block size and no rounding should ever be needed.
8652                  * However it is better the think a block is bad when it
8653                  * isn't than to think a block is not bad when it is.
8654                  */
8655                 s += (1<<bb->shift) - 1;
8656                 s >>= bb->shift;
8657                 target >>= bb->shift;
8658                 sectors = target - s;
8659         }
8660
8661         write_seqlock_irq(&bb->lock);
8662
8663         p = bb->page;
8664         lo = 0;
8665         hi = bb->count;
8666         /* Find the last range that starts before 'target' */
8667         while (hi - lo > 1) {
8668                 int mid = (lo + hi) / 2;
8669                 sector_t a = BB_OFFSET(p[mid]);
8670                 if (a < target)
8671                         lo = mid;
8672                 else
8673                         hi = mid;
8674         }
8675         if (hi > lo) {
8676                 /* p[lo] is the last range that could overlap the
8677                  * current range.  Earlier ranges could also overlap,
8678                  * but only this one can overlap the end of the range.
8679                  */
8680                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8681                         /* Partial overlap, leave the tail of this range */
8682                         int ack = BB_ACK(p[lo]);
8683                         sector_t a = BB_OFFSET(p[lo]);
8684                         sector_t end = a + BB_LEN(p[lo]);
8685
8686                         if (a < s) {
8687                                 /* we need to split this range */
8688                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8689                                         rv = -ENOSPC;
8690                                         goto out;
8691                                 }
8692                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8693                                 bb->count++;
8694                                 p[lo] = BB_MAKE(a, s-a, ack);
8695                                 lo++;
8696                         }
8697                         p[lo] = BB_MAKE(target, end - target, ack);
8698                         /* there is no longer an overlap */
8699                         hi = lo;
8700                         lo--;
8701                 }
8702                 while (lo >= 0 &&
8703                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8704                         /* This range does overlap */
8705                         if (BB_OFFSET(p[lo]) < s) {
8706                                 /* Keep the early parts of this range. */
8707                                 int ack = BB_ACK(p[lo]);
8708                                 sector_t start = BB_OFFSET(p[lo]);
8709                                 p[lo] = BB_MAKE(start, s - start, ack);
8710                                 /* now low doesn't overlap, so.. */
8711                                 break;
8712                         }
8713                         lo--;
8714                 }
8715                 /* 'lo' is strictly before, 'hi' is strictly after,
8716                  * anything between needs to be discarded
8717                  */
8718                 if (hi - lo > 1) {
8719                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8720                         bb->count -= (hi - lo - 1);
8721                 }
8722         }
8723
8724         bb->changed = 1;
8725 out:
8726         write_sequnlock_irq(&bb->lock);
8727         return rv;
8728 }
8729
8730 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8731                          int is_new)
8732 {
8733         if (is_new)
8734                 s += rdev->new_data_offset;
8735         else
8736                 s += rdev->data_offset;
8737         return md_clear_badblocks(&rdev->badblocks,
8738                                   s, sectors);
8739 }
8740 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8741
8742 /*
8743  * Acknowledge all bad blocks in a list.
8744  * This only succeeds if ->changed is clear.  It is used by
8745  * in-kernel metadata updates
8746  */
8747 void md_ack_all_badblocks(struct badblocks *bb)
8748 {
8749         if (bb->page == NULL || bb->changed)
8750                 /* no point even trying */
8751                 return;
8752         write_seqlock_irq(&bb->lock);
8753
8754         if (bb->changed == 0 && bb->unacked_exist) {
8755                 u64 *p = bb->page;
8756                 int i;
8757                 for (i = 0; i < bb->count ; i++) {
8758                         if (!BB_ACK(p[i])) {
8759                                 sector_t start = BB_OFFSET(p[i]);
8760                                 int len = BB_LEN(p[i]);
8761                                 p[i] = BB_MAKE(start, len, 1);
8762                         }
8763                 }
8764                 bb->unacked_exist = 0;
8765         }
8766         write_sequnlock_irq(&bb->lock);
8767 }
8768 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8769
8770 /* sysfs access to bad-blocks list.
8771  * We present two files.
8772  * 'bad-blocks' lists sector numbers and lengths of ranges that
8773  *    are recorded as bad.  The list is truncated to fit within
8774  *    the one-page limit of sysfs.
8775  *    Writing "sector length" to this file adds an acknowledged
8776  *    bad block list.
8777  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8778  *    been acknowledged.  Writing to this file adds bad blocks
8779  *    without acknowledging them.  This is largely for testing.
8780  */
8781
8782 static ssize_t
8783 badblocks_show(struct badblocks *bb, char *page, int unack)
8784 {
8785         size_t len;
8786         int i;
8787         u64 *p = bb->page;
8788         unsigned seq;
8789
8790         if (bb->shift < 0)
8791                 return 0;
8792
8793 retry:
8794         seq = read_seqbegin(&bb->lock);
8795
8796         len = 0;
8797         i = 0;
8798
8799         while (len < PAGE_SIZE && i < bb->count) {
8800                 sector_t s = BB_OFFSET(p[i]);
8801                 unsigned int length = BB_LEN(p[i]);
8802                 int ack = BB_ACK(p[i]);
8803                 i++;
8804
8805                 if (unack && ack)
8806                         continue;
8807
8808                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8809                                 (unsigned long long)s << bb->shift,
8810                                 length << bb->shift);
8811         }
8812         if (unack && len == 0)
8813                 bb->unacked_exist = 0;
8814
8815         if (read_seqretry(&bb->lock, seq))
8816                 goto retry;
8817
8818         return len;
8819 }
8820
8821 #define DO_DEBUG 1
8822
8823 static ssize_t
8824 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8825 {
8826         unsigned long long sector;
8827         int length;
8828         char newline;
8829 #ifdef DO_DEBUG
8830         /* Allow clearing via sysfs *only* for testing/debugging.
8831          * Normally only a successful write may clear a badblock
8832          */
8833         int clear = 0;
8834         if (page[0] == '-') {
8835                 clear = 1;
8836                 page++;
8837         }
8838 #endif /* DO_DEBUG */
8839
8840         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8841         case 3:
8842                 if (newline != '\n')
8843                         return -EINVAL;
8844         case 2:
8845                 if (length <= 0)
8846                         return -EINVAL;
8847                 break;
8848         default:
8849                 return -EINVAL;
8850         }
8851
8852 #ifdef DO_DEBUG
8853         if (clear) {
8854                 md_clear_badblocks(bb, sector, length);
8855                 return len;
8856         }
8857 #endif /* DO_DEBUG */
8858         if (md_set_badblocks(bb, sector, length, !unack))
8859                 return len;
8860         else
8861                 return -ENOSPC;
8862 }
8863
8864 static int md_notify_reboot(struct notifier_block *this,
8865                             unsigned long code, void *x)
8866 {
8867         struct list_head *tmp;
8868         struct mddev *mddev;
8869         int need_delay = 0;
8870
8871         for_each_mddev(mddev, tmp) {
8872                 if (mddev_trylock(mddev)) {
8873                         if (mddev->pers)
8874                                 __md_stop_writes(mddev);
8875                         if (mddev->persistent)
8876                                 mddev->safemode = 2;
8877                         mddev_unlock(mddev);
8878                 }
8879                 need_delay = 1;
8880         }
8881         /*
8882          * certain more exotic SCSI devices are known to be
8883          * volatile wrt too early system reboots. While the
8884          * right place to handle this issue is the given
8885          * driver, we do want to have a safe RAID driver ...
8886          */
8887         if (need_delay)
8888                 mdelay(1000*1);
8889
8890         return NOTIFY_DONE;
8891 }
8892
8893 static struct notifier_block md_notifier = {
8894         .notifier_call  = md_notify_reboot,
8895         .next           = NULL,
8896         .priority       = INT_MAX, /* before any real devices */
8897 };
8898
8899 static void md_geninit(void)
8900 {
8901         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8902
8903         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8904 }
8905
8906 static int __init md_init(void)
8907 {
8908         int ret = -ENOMEM;
8909
8910         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8911         if (!md_wq)
8912                 goto err_wq;
8913
8914         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8915         if (!md_misc_wq)
8916                 goto err_misc_wq;
8917
8918         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8919                 goto err_md;
8920
8921         if ((ret = register_blkdev(0, "mdp")) < 0)
8922                 goto err_mdp;
8923         mdp_major = ret;
8924
8925         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8926                             md_probe, NULL, NULL);
8927         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8928                             md_probe, NULL, NULL);
8929
8930         register_reboot_notifier(&md_notifier);
8931         raid_table_header = register_sysctl_table(raid_root_table);
8932
8933         md_geninit();
8934         return 0;
8935
8936 err_mdp:
8937         unregister_blkdev(MD_MAJOR, "md");
8938 err_md:
8939         destroy_workqueue(md_misc_wq);
8940 err_misc_wq:
8941         destroy_workqueue(md_wq);
8942 err_wq:
8943         return ret;
8944 }
8945
8946 void md_reload_sb(struct mddev *mddev)
8947 {
8948         struct md_rdev *rdev, *tmp;
8949
8950         rdev_for_each_safe(rdev, tmp, mddev) {
8951                 rdev->sb_loaded = 0;
8952                 ClearPageUptodate(rdev->sb_page);
8953         }
8954         mddev->raid_disks = 0;
8955         analyze_sbs(mddev);
8956         rdev_for_each_safe(rdev, tmp, mddev) {
8957                 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8958                 /* since we don't write to faulty devices, we figure out if the
8959                  *  disk is faulty by comparing events
8960                  */
8961                 if (mddev->events > sb->events)
8962                         set_bit(Faulty, &rdev->flags);
8963         }
8964
8965 }
8966 EXPORT_SYMBOL(md_reload_sb);
8967
8968 #ifndef MODULE
8969
8970 /*
8971  * Searches all registered partitions for autorun RAID arrays
8972  * at boot time.
8973  */
8974
8975 static LIST_HEAD(all_detected_devices);
8976 struct detected_devices_node {
8977         struct list_head list;
8978         dev_t dev;
8979 };
8980
8981 void md_autodetect_dev(dev_t dev)
8982 {
8983         struct detected_devices_node *node_detected_dev;
8984
8985         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8986         if (node_detected_dev) {
8987                 node_detected_dev->dev = dev;
8988                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8989         } else {
8990                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8991                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8992         }
8993 }
8994
8995 static void autostart_arrays(int part)
8996 {
8997         struct md_rdev *rdev;
8998         struct detected_devices_node *node_detected_dev;
8999         dev_t dev;
9000         int i_scanned, i_passed;
9001
9002         i_scanned = 0;
9003         i_passed = 0;
9004
9005         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9006
9007         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9008                 i_scanned++;
9009                 node_detected_dev = list_entry(all_detected_devices.next,
9010                                         struct detected_devices_node, list);
9011                 list_del(&node_detected_dev->list);
9012                 dev = node_detected_dev->dev;
9013                 kfree(node_detected_dev);
9014                 rdev = md_import_device(dev,0, 90);
9015                 if (IS_ERR(rdev))
9016                         continue;
9017
9018                 if (test_bit(Faulty, &rdev->flags))
9019                         continue;
9020
9021                 set_bit(AutoDetected, &rdev->flags);
9022                 list_add(&rdev->same_set, &pending_raid_disks);
9023                 i_passed++;
9024         }
9025
9026         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9027                                                 i_scanned, i_passed);
9028
9029         autorun_devices(part);
9030 }
9031
9032 #endif /* !MODULE */
9033
9034 static __exit void md_exit(void)
9035 {
9036         struct mddev *mddev;
9037         struct list_head *tmp;
9038         int delay = 1;
9039
9040         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9041         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9042
9043         unregister_blkdev(MD_MAJOR,"md");
9044         unregister_blkdev(mdp_major, "mdp");
9045         unregister_reboot_notifier(&md_notifier);
9046         unregister_sysctl_table(raid_table_header);
9047
9048         /* We cannot unload the modules while some process is
9049          * waiting for us in select() or poll() - wake them up
9050          */
9051         md_unloading = 1;
9052         while (waitqueue_active(&md_event_waiters)) {
9053                 /* not safe to leave yet */
9054                 wake_up(&md_event_waiters);
9055                 msleep(delay);
9056                 delay += delay;
9057         }
9058         remove_proc_entry("mdstat", NULL);
9059
9060         for_each_mddev(mddev, tmp) {
9061                 export_array(mddev);
9062                 mddev->hold_active = 0;
9063         }
9064         destroy_workqueue(md_misc_wq);
9065         destroy_workqueue(md_wq);
9066 }
9067
9068 subsys_initcall(md_init);
9069 module_exit(md_exit)
9070
9071 static int get_ro(char *buffer, struct kernel_param *kp)
9072 {
9073         return sprintf(buffer, "%d", start_readonly);
9074 }
9075 static int set_ro(const char *val, struct kernel_param *kp)
9076 {
9077         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9078 }
9079
9080 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9081 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9082 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9083
9084 MODULE_LICENSE("GPL");
9085 MODULE_DESCRIPTION("MD RAID framework");
9086 MODULE_ALIAS("md");
9087 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);