]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
Merge branch 'for-next' of git://git.infradead.org/users/eparis/notify
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 /*
64  * Stripe cache
65  */
66
67 #define NR_STRIPES              256
68 #define STRIPE_SIZE             PAGE_SIZE
69 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD            1
72 #define BYPASS_THRESHOLD        1
73 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK               (NR_HASH - 1)
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79         return &conf->stripe_hashtbl[hash];
80 }
81
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93         int sectors = bio->bi_size >> 9;
94         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95                 return bio->bi_next;
96         else
97                 return NULL;
98 }
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107         return (atomic_read(segments) >> 16) & 0xffff;
108 }
109
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return atomic_sub_return(1, segments) & 0xffff;
114 }
115
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         atomic_inc(segments);
120 }
121
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123         unsigned int cnt)
124 {
125         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126         int old, new;
127
128         do {
129                 old = atomic_read(segments);
130                 new = (old & 0xffff) | (cnt << 16);
131         } while (atomic_cmpxchg(segments, old, new) != old);
132 }
133
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137         atomic_set(segments, cnt);
138 }
139
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143         if (sh->ddf_layout)
144                 /* ddf always start from first device */
145                 return 0;
146         /* md starts just after Q block */
147         if (sh->qd_idx == sh->disks - 1)
148                 return 0;
149         else
150                 return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154         disk++;
155         return (disk < raid_disks) ? disk : 0;
156 }
157
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164                              int *count, int syndrome_disks)
165 {
166         int slot = *count;
167
168         if (sh->ddf_layout)
169                 (*count)++;
170         if (idx == sh->pd_idx)
171                 return syndrome_disks;
172         if (idx == sh->qd_idx)
173                 return syndrome_disks + 1;
174         if (!sh->ddf_layout)
175                 (*count)++;
176         return slot;
177 }
178
179 static void return_io(struct bio *return_bi)
180 {
181         struct bio *bi = return_bi;
182         while (bi) {
183
184                 return_bi = bi->bi_next;
185                 bi->bi_next = NULL;
186                 bi->bi_size = 0;
187                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188                                          bi, 0);
189                 bio_endio(bi, 0);
190                 bi = return_bi;
191         }
192 }
193
194 static void print_raid5_conf (struct r5conf *conf);
195
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198         return sh->check_state || sh->reconstruct_state ||
199                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205         BUG_ON(!list_empty(&sh->lru));
206         BUG_ON(atomic_read(&conf->active_stripes)==0);
207         if (test_bit(STRIPE_HANDLE, &sh->state)) {
208                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
209                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210                         list_add_tail(&sh->lru, &conf->delayed_list);
211                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212                            sh->bm_seq - conf->seq_write > 0)
213                         list_add_tail(&sh->lru, &conf->bitmap_list);
214                 else {
215                         clear_bit(STRIPE_DELAYED, &sh->state);
216                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
217                         list_add_tail(&sh->lru, &conf->handle_list);
218                 }
219                 md_wakeup_thread(conf->mddev->thread);
220         } else {
221                 BUG_ON(stripe_operations_active(sh));
222                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223                         if (atomic_dec_return(&conf->preread_active_stripes)
224                             < IO_THRESHOLD)
225                                 md_wakeup_thread(conf->mddev->thread);
226                 atomic_dec(&conf->active_stripes);
227                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228                         list_add_tail(&sh->lru, &conf->inactive_list);
229                         wake_up(&conf->wait_for_stripe);
230                         if (conf->retry_read_aligned)
231                                 md_wakeup_thread(conf->mddev->thread);
232                 }
233         }
234 }
235
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238         if (atomic_dec_and_test(&sh->count))
239                 do_release_stripe(conf, sh);
240 }
241
242 static void release_stripe(struct stripe_head *sh)
243 {
244         struct r5conf *conf = sh->raid_conf;
245         unsigned long flags;
246
247         local_irq_save(flags);
248         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249                 do_release_stripe(conf, sh);
250                 spin_unlock(&conf->device_lock);
251         }
252         local_irq_restore(flags);
253 }
254
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257         pr_debug("remove_hash(), stripe %llu\n",
258                 (unsigned long long)sh->sector);
259
260         hlist_del_init(&sh->hash);
261 }
262
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265         struct hlist_head *hp = stripe_hash(conf, sh->sector);
266
267         pr_debug("insert_hash(), stripe %llu\n",
268                 (unsigned long long)sh->sector);
269
270         hlist_add_head(&sh->hash, hp);
271 }
272
273
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277         struct stripe_head *sh = NULL;
278         struct list_head *first;
279
280         if (list_empty(&conf->inactive_list))
281                 goto out;
282         first = conf->inactive_list.next;
283         sh = list_entry(first, struct stripe_head, lru);
284         list_del_init(first);
285         remove_hash(sh);
286         atomic_inc(&conf->active_stripes);
287 out:
288         return sh;
289 }
290
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293         struct page *p;
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num ; i++) {
298                 p = sh->dev[i].page;
299                 if (!p)
300                         continue;
301                 sh->dev[i].page = NULL;
302                 put_page(p);
303         }
304 }
305
306 static int grow_buffers(struct stripe_head *sh)
307 {
308         int i;
309         int num = sh->raid_conf->pool_size;
310
311         for (i = 0; i < num; i++) {
312                 struct page *page;
313
314                 if (!(page = alloc_page(GFP_KERNEL))) {
315                         return 1;
316                 }
317                 sh->dev[i].page = page;
318         }
319         return 0;
320 }
321
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324                             struct stripe_head *sh);
325
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328         struct r5conf *conf = sh->raid_conf;
329         int i;
330
331         BUG_ON(atomic_read(&sh->count) != 0);
332         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333         BUG_ON(stripe_operations_active(sh));
334
335         pr_debug("init_stripe called, stripe %llu\n",
336                 (unsigned long long)sh->sector);
337
338         remove_hash(sh);
339
340         sh->generation = conf->generation - previous;
341         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342         sh->sector = sector;
343         stripe_set_idx(sector, conf, previous, sh);
344         sh->state = 0;
345
346
347         for (i = sh->disks; i--; ) {
348                 struct r5dev *dev = &sh->dev[i];
349
350                 if (dev->toread || dev->read || dev->towrite || dev->written ||
351                     test_bit(R5_LOCKED, &dev->flags)) {
352                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353                                (unsigned long long)sh->sector, i, dev->toread,
354                                dev->read, dev->towrite, dev->written,
355                                test_bit(R5_LOCKED, &dev->flags));
356                         WARN_ON(1);
357                 }
358                 dev->flags = 0;
359                 raid5_build_block(sh, i, previous);
360         }
361         insert_hash(conf, sh);
362 }
363
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365                                          short generation)
366 {
367         struct stripe_head *sh;
368         struct hlist_node *hn;
369
370         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
371         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
372                 if (sh->sector == sector && sh->generation == generation)
373                         return sh;
374         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
375         return NULL;
376 }
377
378 /*
379  * Need to check if array has failed when deciding whether to:
380  *  - start an array
381  *  - remove non-faulty devices
382  *  - add a spare
383  *  - allow a reshape
384  * This determination is simple when no reshape is happening.
385  * However if there is a reshape, we need to carefully check
386  * both the before and after sections.
387  * This is because some failed devices may only affect one
388  * of the two sections, and some non-in_sync devices may
389  * be insync in the section most affected by failed devices.
390  */
391 static int calc_degraded(struct r5conf *conf)
392 {
393         int degraded, degraded2;
394         int i;
395
396         rcu_read_lock();
397         degraded = 0;
398         for (i = 0; i < conf->previous_raid_disks; i++) {
399                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
400                 if (rdev && test_bit(Faulty, &rdev->flags))
401                         rdev = rcu_dereference(conf->disks[i].replacement);
402                 if (!rdev || test_bit(Faulty, &rdev->flags))
403                         degraded++;
404                 else if (test_bit(In_sync, &rdev->flags))
405                         ;
406                 else
407                         /* not in-sync or faulty.
408                          * If the reshape increases the number of devices,
409                          * this is being recovered by the reshape, so
410                          * this 'previous' section is not in_sync.
411                          * If the number of devices is being reduced however,
412                          * the device can only be part of the array if
413                          * we are reverting a reshape, so this section will
414                          * be in-sync.
415                          */
416                         if (conf->raid_disks >= conf->previous_raid_disks)
417                                 degraded++;
418         }
419         rcu_read_unlock();
420         if (conf->raid_disks == conf->previous_raid_disks)
421                 return degraded;
422         rcu_read_lock();
423         degraded2 = 0;
424         for (i = 0; i < conf->raid_disks; i++) {
425                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
426                 if (rdev && test_bit(Faulty, &rdev->flags))
427                         rdev = rcu_dereference(conf->disks[i].replacement);
428                 if (!rdev || test_bit(Faulty, &rdev->flags))
429                         degraded2++;
430                 else if (test_bit(In_sync, &rdev->flags))
431                         ;
432                 else
433                         /* not in-sync or faulty.
434                          * If reshape increases the number of devices, this
435                          * section has already been recovered, else it
436                          * almost certainly hasn't.
437                          */
438                         if (conf->raid_disks <= conf->previous_raid_disks)
439                                 degraded2++;
440         }
441         rcu_read_unlock();
442         if (degraded2 > degraded)
443                 return degraded2;
444         return degraded;
445 }
446
447 static int has_failed(struct r5conf *conf)
448 {
449         int degraded;
450
451         if (conf->mddev->reshape_position == MaxSector)
452                 return conf->mddev->degraded > conf->max_degraded;
453
454         degraded = calc_degraded(conf);
455         if (degraded > conf->max_degraded)
456                 return 1;
457         return 0;
458 }
459
460 static struct stripe_head *
461 get_active_stripe(struct r5conf *conf, sector_t sector,
462                   int previous, int noblock, int noquiesce)
463 {
464         struct stripe_head *sh;
465
466         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
467
468         spin_lock_irq(&conf->device_lock);
469
470         do {
471                 wait_event_lock_irq(conf->wait_for_stripe,
472                                     conf->quiesce == 0 || noquiesce,
473                                     conf->device_lock);
474                 sh = __find_stripe(conf, sector, conf->generation - previous);
475                 if (!sh) {
476                         if (!conf->inactive_blocked)
477                                 sh = get_free_stripe(conf);
478                         if (noblock && sh == NULL)
479                                 break;
480                         if (!sh) {
481                                 conf->inactive_blocked = 1;
482                                 wait_event_lock_irq(conf->wait_for_stripe,
483                                                     !list_empty(&conf->inactive_list) &&
484                                                     (atomic_read(&conf->active_stripes)
485                                                      < (conf->max_nr_stripes *3/4)
486                                                      || !conf->inactive_blocked),
487                                                     conf->device_lock);
488                                 conf->inactive_blocked = 0;
489                         } else
490                                 init_stripe(sh, sector, previous);
491                 } else {
492                         if (atomic_read(&sh->count)) {
493                                 BUG_ON(!list_empty(&sh->lru)
494                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
495                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
496                         } else {
497                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
498                                         atomic_inc(&conf->active_stripes);
499                                 if (list_empty(&sh->lru) &&
500                                     !test_bit(STRIPE_EXPANDING, &sh->state))
501                                         BUG();
502                                 list_del_init(&sh->lru);
503                         }
504                 }
505         } while (sh == NULL);
506
507         if (sh)
508                 atomic_inc(&sh->count);
509
510         spin_unlock_irq(&conf->device_lock);
511         return sh;
512 }
513
514 /* Determine if 'data_offset' or 'new_data_offset' should be used
515  * in this stripe_head.
516  */
517 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
518 {
519         sector_t progress = conf->reshape_progress;
520         /* Need a memory barrier to make sure we see the value
521          * of conf->generation, or ->data_offset that was set before
522          * reshape_progress was updated.
523          */
524         smp_rmb();
525         if (progress == MaxSector)
526                 return 0;
527         if (sh->generation == conf->generation - 1)
528                 return 0;
529         /* We are in a reshape, and this is a new-generation stripe,
530          * so use new_data_offset.
531          */
532         return 1;
533 }
534
535 static void
536 raid5_end_read_request(struct bio *bi, int error);
537 static void
538 raid5_end_write_request(struct bio *bi, int error);
539
540 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
541 {
542         struct r5conf *conf = sh->raid_conf;
543         int i, disks = sh->disks;
544
545         might_sleep();
546
547         for (i = disks; i--; ) {
548                 int rw;
549                 int replace_only = 0;
550                 struct bio *bi, *rbi;
551                 struct md_rdev *rdev, *rrdev = NULL;
552                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
553                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
554                                 rw = WRITE_FUA;
555                         else
556                                 rw = WRITE;
557                         if (test_bit(R5_Discard, &sh->dev[i].flags))
558                                 rw |= REQ_DISCARD;
559                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
560                         rw = READ;
561                 else if (test_and_clear_bit(R5_WantReplace,
562                                             &sh->dev[i].flags)) {
563                         rw = WRITE;
564                         replace_only = 1;
565                 } else
566                         continue;
567                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
568                         rw |= REQ_SYNC;
569
570                 bi = &sh->dev[i].req;
571                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
572
573                 bi->bi_rw = rw;
574                 rbi->bi_rw = rw;
575                 if (rw & WRITE) {
576                         bi->bi_end_io = raid5_end_write_request;
577                         rbi->bi_end_io = raid5_end_write_request;
578                 } else
579                         bi->bi_end_io = raid5_end_read_request;
580
581                 rcu_read_lock();
582                 rrdev = rcu_dereference(conf->disks[i].replacement);
583                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
584                 rdev = rcu_dereference(conf->disks[i].rdev);
585                 if (!rdev) {
586                         rdev = rrdev;
587                         rrdev = NULL;
588                 }
589                 if (rw & WRITE) {
590                         if (replace_only)
591                                 rdev = NULL;
592                         if (rdev == rrdev)
593                                 /* We raced and saw duplicates */
594                                 rrdev = NULL;
595                 } else {
596                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
597                                 rdev = rrdev;
598                         rrdev = NULL;
599                 }
600
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = NULL;
603                 if (rdev)
604                         atomic_inc(&rdev->nr_pending);
605                 if (rrdev && test_bit(Faulty, &rrdev->flags))
606                         rrdev = NULL;
607                 if (rrdev)
608                         atomic_inc(&rrdev->nr_pending);
609                 rcu_read_unlock();
610
611                 /* We have already checked bad blocks for reads.  Now
612                  * need to check for writes.  We never accept write errors
613                  * on the replacement, so we don't to check rrdev.
614                  */
615                 while ((rw & WRITE) && rdev &&
616                        test_bit(WriteErrorSeen, &rdev->flags)) {
617                         sector_t first_bad;
618                         int bad_sectors;
619                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
620                                               &first_bad, &bad_sectors);
621                         if (!bad)
622                                 break;
623
624                         if (bad < 0) {
625                                 set_bit(BlockedBadBlocks, &rdev->flags);
626                                 if (!conf->mddev->external &&
627                                     conf->mddev->flags) {
628                                         /* It is very unlikely, but we might
629                                          * still need to write out the
630                                          * bad block log - better give it
631                                          * a chance*/
632                                         md_check_recovery(conf->mddev);
633                                 }
634                                 /*
635                                  * Because md_wait_for_blocked_rdev
636                                  * will dec nr_pending, we must
637                                  * increment it first.
638                                  */
639                                 atomic_inc(&rdev->nr_pending);
640                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
641                         } else {
642                                 /* Acknowledged bad block - skip the write */
643                                 rdev_dec_pending(rdev, conf->mddev);
644                                 rdev = NULL;
645                         }
646                 }
647
648                 if (rdev) {
649                         if (s->syncing || s->expanding || s->expanded
650                             || s->replacing)
651                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
652
653                         set_bit(STRIPE_IO_STARTED, &sh->state);
654
655                         bi->bi_bdev = rdev->bdev;
656                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
657                                 __func__, (unsigned long long)sh->sector,
658                                 bi->bi_rw, i);
659                         atomic_inc(&sh->count);
660                         if (use_new_offset(conf, sh))
661                                 bi->bi_sector = (sh->sector
662                                                  + rdev->new_data_offset);
663                         else
664                                 bi->bi_sector = (sh->sector
665                                                  + rdev->data_offset);
666                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
667                                 bi->bi_rw |= REQ_FLUSH;
668
669                         bi->bi_flags = 1 << BIO_UPTODATE;
670                         bi->bi_idx = 0;
671                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
672                         bi->bi_io_vec[0].bv_offset = 0;
673                         bi->bi_size = STRIPE_SIZE;
674                         bi->bi_next = NULL;
675                         if (rrdev)
676                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
677                         trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
678                                               bi, disk_devt(conf->mddev->gendisk),
679                                               sh->dev[i].sector);
680                         generic_make_request(bi);
681                 }
682                 if (rrdev) {
683                         if (s->syncing || s->expanding || s->expanded
684                             || s->replacing)
685                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
686
687                         set_bit(STRIPE_IO_STARTED, &sh->state);
688
689                         rbi->bi_bdev = rrdev->bdev;
690                         pr_debug("%s: for %llu schedule op %ld on "
691                                  "replacement disc %d\n",
692                                 __func__, (unsigned long long)sh->sector,
693                                 rbi->bi_rw, i);
694                         atomic_inc(&sh->count);
695                         if (use_new_offset(conf, sh))
696                                 rbi->bi_sector = (sh->sector
697                                                   + rrdev->new_data_offset);
698                         else
699                                 rbi->bi_sector = (sh->sector
700                                                   + rrdev->data_offset);
701                         rbi->bi_flags = 1 << BIO_UPTODATE;
702                         rbi->bi_idx = 0;
703                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
704                         rbi->bi_io_vec[0].bv_offset = 0;
705                         rbi->bi_size = STRIPE_SIZE;
706                         rbi->bi_next = NULL;
707                         trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
708                                               rbi, disk_devt(conf->mddev->gendisk),
709                                               sh->dev[i].sector);
710                         generic_make_request(rbi);
711                 }
712                 if (!rdev && !rrdev) {
713                         if (rw & WRITE)
714                                 set_bit(STRIPE_DEGRADED, &sh->state);
715                         pr_debug("skip op %ld on disc %d for sector %llu\n",
716                                 bi->bi_rw, i, (unsigned long long)sh->sector);
717                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
718                         set_bit(STRIPE_HANDLE, &sh->state);
719                 }
720         }
721 }
722
723 static struct dma_async_tx_descriptor *
724 async_copy_data(int frombio, struct bio *bio, struct page *page,
725         sector_t sector, struct dma_async_tx_descriptor *tx)
726 {
727         struct bio_vec *bvl;
728         struct page *bio_page;
729         int i;
730         int page_offset;
731         struct async_submit_ctl submit;
732         enum async_tx_flags flags = 0;
733
734         if (bio->bi_sector >= sector)
735                 page_offset = (signed)(bio->bi_sector - sector) * 512;
736         else
737                 page_offset = (signed)(sector - bio->bi_sector) * -512;
738
739         if (frombio)
740                 flags |= ASYNC_TX_FENCE;
741         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
742
743         bio_for_each_segment(bvl, bio, i) {
744                 int len = bvl->bv_len;
745                 int clen;
746                 int b_offset = 0;
747
748                 if (page_offset < 0) {
749                         b_offset = -page_offset;
750                         page_offset += b_offset;
751                         len -= b_offset;
752                 }
753
754                 if (len > 0 && page_offset + len > STRIPE_SIZE)
755                         clen = STRIPE_SIZE - page_offset;
756                 else
757                         clen = len;
758
759                 if (clen > 0) {
760                         b_offset += bvl->bv_offset;
761                         bio_page = bvl->bv_page;
762                         if (frombio)
763                                 tx = async_memcpy(page, bio_page, page_offset,
764                                                   b_offset, clen, &submit);
765                         else
766                                 tx = async_memcpy(bio_page, page, b_offset,
767                                                   page_offset, clen, &submit);
768                 }
769                 /* chain the operations */
770                 submit.depend_tx = tx;
771
772                 if (clen < len) /* hit end of page */
773                         break;
774                 page_offset +=  len;
775         }
776
777         return tx;
778 }
779
780 static void ops_complete_biofill(void *stripe_head_ref)
781 {
782         struct stripe_head *sh = stripe_head_ref;
783         struct bio *return_bi = NULL;
784         int i;
785
786         pr_debug("%s: stripe %llu\n", __func__,
787                 (unsigned long long)sh->sector);
788
789         /* clear completed biofills */
790         for (i = sh->disks; i--; ) {
791                 struct r5dev *dev = &sh->dev[i];
792
793                 /* acknowledge completion of a biofill operation */
794                 /* and check if we need to reply to a read request,
795                  * new R5_Wantfill requests are held off until
796                  * !STRIPE_BIOFILL_RUN
797                  */
798                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
799                         struct bio *rbi, *rbi2;
800
801                         BUG_ON(!dev->read);
802                         rbi = dev->read;
803                         dev->read = NULL;
804                         while (rbi && rbi->bi_sector <
805                                 dev->sector + STRIPE_SECTORS) {
806                                 rbi2 = r5_next_bio(rbi, dev->sector);
807                                 if (!raid5_dec_bi_active_stripes(rbi)) {
808                                         rbi->bi_next = return_bi;
809                                         return_bi = rbi;
810                                 }
811                                 rbi = rbi2;
812                         }
813                 }
814         }
815         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
816
817         return_io(return_bi);
818
819         set_bit(STRIPE_HANDLE, &sh->state);
820         release_stripe(sh);
821 }
822
823 static void ops_run_biofill(struct stripe_head *sh)
824 {
825         struct dma_async_tx_descriptor *tx = NULL;
826         struct async_submit_ctl submit;
827         int i;
828
829         pr_debug("%s: stripe %llu\n", __func__,
830                 (unsigned long long)sh->sector);
831
832         for (i = sh->disks; i--; ) {
833                 struct r5dev *dev = &sh->dev[i];
834                 if (test_bit(R5_Wantfill, &dev->flags)) {
835                         struct bio *rbi;
836                         spin_lock_irq(&sh->stripe_lock);
837                         dev->read = rbi = dev->toread;
838                         dev->toread = NULL;
839                         spin_unlock_irq(&sh->stripe_lock);
840                         while (rbi && rbi->bi_sector <
841                                 dev->sector + STRIPE_SECTORS) {
842                                 tx = async_copy_data(0, rbi, dev->page,
843                                         dev->sector, tx);
844                                 rbi = r5_next_bio(rbi, dev->sector);
845                         }
846                 }
847         }
848
849         atomic_inc(&sh->count);
850         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
851         async_trigger_callback(&submit);
852 }
853
854 static void mark_target_uptodate(struct stripe_head *sh, int target)
855 {
856         struct r5dev *tgt;
857
858         if (target < 0)
859                 return;
860
861         tgt = &sh->dev[target];
862         set_bit(R5_UPTODATE, &tgt->flags);
863         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
864         clear_bit(R5_Wantcompute, &tgt->flags);
865 }
866
867 static void ops_complete_compute(void *stripe_head_ref)
868 {
869         struct stripe_head *sh = stripe_head_ref;
870
871         pr_debug("%s: stripe %llu\n", __func__,
872                 (unsigned long long)sh->sector);
873
874         /* mark the computed target(s) as uptodate */
875         mark_target_uptodate(sh, sh->ops.target);
876         mark_target_uptodate(sh, sh->ops.target2);
877
878         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
879         if (sh->check_state == check_state_compute_run)
880                 sh->check_state = check_state_compute_result;
881         set_bit(STRIPE_HANDLE, &sh->state);
882         release_stripe(sh);
883 }
884
885 /* return a pointer to the address conversion region of the scribble buffer */
886 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
887                                  struct raid5_percpu *percpu)
888 {
889         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
890 }
891
892 static struct dma_async_tx_descriptor *
893 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
894 {
895         int disks = sh->disks;
896         struct page **xor_srcs = percpu->scribble;
897         int target = sh->ops.target;
898         struct r5dev *tgt = &sh->dev[target];
899         struct page *xor_dest = tgt->page;
900         int count = 0;
901         struct dma_async_tx_descriptor *tx;
902         struct async_submit_ctl submit;
903         int i;
904
905         pr_debug("%s: stripe %llu block: %d\n",
906                 __func__, (unsigned long long)sh->sector, target);
907         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
908
909         for (i = disks; i--; )
910                 if (i != target)
911                         xor_srcs[count++] = sh->dev[i].page;
912
913         atomic_inc(&sh->count);
914
915         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
916                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
917         if (unlikely(count == 1))
918                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
919         else
920                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
921
922         return tx;
923 }
924
925 /* set_syndrome_sources - populate source buffers for gen_syndrome
926  * @srcs - (struct page *) array of size sh->disks
927  * @sh - stripe_head to parse
928  *
929  * Populates srcs in proper layout order for the stripe and returns the
930  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
931  * destination buffer is recorded in srcs[count] and the Q destination
932  * is recorded in srcs[count+1]].
933  */
934 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
935 {
936         int disks = sh->disks;
937         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
938         int d0_idx = raid6_d0(sh);
939         int count;
940         int i;
941
942         for (i = 0; i < disks; i++)
943                 srcs[i] = NULL;
944
945         count = 0;
946         i = d0_idx;
947         do {
948                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
949
950                 srcs[slot] = sh->dev[i].page;
951                 i = raid6_next_disk(i, disks);
952         } while (i != d0_idx);
953
954         return syndrome_disks;
955 }
956
957 static struct dma_async_tx_descriptor *
958 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
959 {
960         int disks = sh->disks;
961         struct page **blocks = percpu->scribble;
962         int target;
963         int qd_idx = sh->qd_idx;
964         struct dma_async_tx_descriptor *tx;
965         struct async_submit_ctl submit;
966         struct r5dev *tgt;
967         struct page *dest;
968         int i;
969         int count;
970
971         if (sh->ops.target < 0)
972                 target = sh->ops.target2;
973         else if (sh->ops.target2 < 0)
974                 target = sh->ops.target;
975         else
976                 /* we should only have one valid target */
977                 BUG();
978         BUG_ON(target < 0);
979         pr_debug("%s: stripe %llu block: %d\n",
980                 __func__, (unsigned long long)sh->sector, target);
981
982         tgt = &sh->dev[target];
983         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
984         dest = tgt->page;
985
986         atomic_inc(&sh->count);
987
988         if (target == qd_idx) {
989                 count = set_syndrome_sources(blocks, sh);
990                 blocks[count] = NULL; /* regenerating p is not necessary */
991                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
992                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
993                                   ops_complete_compute, sh,
994                                   to_addr_conv(sh, percpu));
995                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
996         } else {
997                 /* Compute any data- or p-drive using XOR */
998                 count = 0;
999                 for (i = disks; i-- ; ) {
1000                         if (i == target || i == qd_idx)
1001                                 continue;
1002                         blocks[count++] = sh->dev[i].page;
1003                 }
1004
1005                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1006                                   NULL, ops_complete_compute, sh,
1007                                   to_addr_conv(sh, percpu));
1008                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1009         }
1010
1011         return tx;
1012 }
1013
1014 static struct dma_async_tx_descriptor *
1015 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1016 {
1017         int i, count, disks = sh->disks;
1018         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1019         int d0_idx = raid6_d0(sh);
1020         int faila = -1, failb = -1;
1021         int target = sh->ops.target;
1022         int target2 = sh->ops.target2;
1023         struct r5dev *tgt = &sh->dev[target];
1024         struct r5dev *tgt2 = &sh->dev[target2];
1025         struct dma_async_tx_descriptor *tx;
1026         struct page **blocks = percpu->scribble;
1027         struct async_submit_ctl submit;
1028
1029         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1030                  __func__, (unsigned long long)sh->sector, target, target2);
1031         BUG_ON(target < 0 || target2 < 0);
1032         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1033         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1034
1035         /* we need to open-code set_syndrome_sources to handle the
1036          * slot number conversion for 'faila' and 'failb'
1037          */
1038         for (i = 0; i < disks ; i++)
1039                 blocks[i] = NULL;
1040         count = 0;
1041         i = d0_idx;
1042         do {
1043                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1044
1045                 blocks[slot] = sh->dev[i].page;
1046
1047                 if (i == target)
1048                         faila = slot;
1049                 if (i == target2)
1050                         failb = slot;
1051                 i = raid6_next_disk(i, disks);
1052         } while (i != d0_idx);
1053
1054         BUG_ON(faila == failb);
1055         if (failb < faila)
1056                 swap(faila, failb);
1057         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1058                  __func__, (unsigned long long)sh->sector, faila, failb);
1059
1060         atomic_inc(&sh->count);
1061
1062         if (failb == syndrome_disks+1) {
1063                 /* Q disk is one of the missing disks */
1064                 if (faila == syndrome_disks) {
1065                         /* Missing P+Q, just recompute */
1066                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1067                                           ops_complete_compute, sh,
1068                                           to_addr_conv(sh, percpu));
1069                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1070                                                   STRIPE_SIZE, &submit);
1071                 } else {
1072                         struct page *dest;
1073                         int data_target;
1074                         int qd_idx = sh->qd_idx;
1075
1076                         /* Missing D+Q: recompute D from P, then recompute Q */
1077                         if (target == qd_idx)
1078                                 data_target = target2;
1079                         else
1080                                 data_target = target;
1081
1082                         count = 0;
1083                         for (i = disks; i-- ; ) {
1084                                 if (i == data_target || i == qd_idx)
1085                                         continue;
1086                                 blocks[count++] = sh->dev[i].page;
1087                         }
1088                         dest = sh->dev[data_target].page;
1089                         init_async_submit(&submit,
1090                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1091                                           NULL, NULL, NULL,
1092                                           to_addr_conv(sh, percpu));
1093                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1094                                        &submit);
1095
1096                         count = set_syndrome_sources(blocks, sh);
1097                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1098                                           ops_complete_compute, sh,
1099                                           to_addr_conv(sh, percpu));
1100                         return async_gen_syndrome(blocks, 0, count+2,
1101                                                   STRIPE_SIZE, &submit);
1102                 }
1103         } else {
1104                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1105                                   ops_complete_compute, sh,
1106                                   to_addr_conv(sh, percpu));
1107                 if (failb == syndrome_disks) {
1108                         /* We're missing D+P. */
1109                         return async_raid6_datap_recov(syndrome_disks+2,
1110                                                        STRIPE_SIZE, faila,
1111                                                        blocks, &submit);
1112                 } else {
1113                         /* We're missing D+D. */
1114                         return async_raid6_2data_recov(syndrome_disks+2,
1115                                                        STRIPE_SIZE, faila, failb,
1116                                                        blocks, &submit);
1117                 }
1118         }
1119 }
1120
1121
1122 static void ops_complete_prexor(void *stripe_head_ref)
1123 {
1124         struct stripe_head *sh = stripe_head_ref;
1125
1126         pr_debug("%s: stripe %llu\n", __func__,
1127                 (unsigned long long)sh->sector);
1128 }
1129
1130 static struct dma_async_tx_descriptor *
1131 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1132                struct dma_async_tx_descriptor *tx)
1133 {
1134         int disks = sh->disks;
1135         struct page **xor_srcs = percpu->scribble;
1136         int count = 0, pd_idx = sh->pd_idx, i;
1137         struct async_submit_ctl submit;
1138
1139         /* existing parity data subtracted */
1140         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1141
1142         pr_debug("%s: stripe %llu\n", __func__,
1143                 (unsigned long long)sh->sector);
1144
1145         for (i = disks; i--; ) {
1146                 struct r5dev *dev = &sh->dev[i];
1147                 /* Only process blocks that are known to be uptodate */
1148                 if (test_bit(R5_Wantdrain, &dev->flags))
1149                         xor_srcs[count++] = dev->page;
1150         }
1151
1152         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1153                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1154         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1155
1156         return tx;
1157 }
1158
1159 static struct dma_async_tx_descriptor *
1160 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1161 {
1162         int disks = sh->disks;
1163         int i;
1164
1165         pr_debug("%s: stripe %llu\n", __func__,
1166                 (unsigned long long)sh->sector);
1167
1168         for (i = disks; i--; ) {
1169                 struct r5dev *dev = &sh->dev[i];
1170                 struct bio *chosen;
1171
1172                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1173                         struct bio *wbi;
1174
1175                         spin_lock_irq(&sh->stripe_lock);
1176                         chosen = dev->towrite;
1177                         dev->towrite = NULL;
1178                         BUG_ON(dev->written);
1179                         wbi = dev->written = chosen;
1180                         spin_unlock_irq(&sh->stripe_lock);
1181
1182                         while (wbi && wbi->bi_sector <
1183                                 dev->sector + STRIPE_SECTORS) {
1184                                 if (wbi->bi_rw & REQ_FUA)
1185                                         set_bit(R5_WantFUA, &dev->flags);
1186                                 if (wbi->bi_rw & REQ_SYNC)
1187                                         set_bit(R5_SyncIO, &dev->flags);
1188                                 if (wbi->bi_rw & REQ_DISCARD)
1189                                         set_bit(R5_Discard, &dev->flags);
1190                                 else
1191                                         tx = async_copy_data(1, wbi, dev->page,
1192                                                 dev->sector, tx);
1193                                 wbi = r5_next_bio(wbi, dev->sector);
1194                         }
1195                 }
1196         }
1197
1198         return tx;
1199 }
1200
1201 static void ops_complete_reconstruct(void *stripe_head_ref)
1202 {
1203         struct stripe_head *sh = stripe_head_ref;
1204         int disks = sh->disks;
1205         int pd_idx = sh->pd_idx;
1206         int qd_idx = sh->qd_idx;
1207         int i;
1208         bool fua = false, sync = false, discard = false;
1209
1210         pr_debug("%s: stripe %llu\n", __func__,
1211                 (unsigned long long)sh->sector);
1212
1213         for (i = disks; i--; ) {
1214                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1215                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1216                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1217         }
1218
1219         for (i = disks; i--; ) {
1220                 struct r5dev *dev = &sh->dev[i];
1221
1222                 if (dev->written || i == pd_idx || i == qd_idx) {
1223                         if (!discard)
1224                                 set_bit(R5_UPTODATE, &dev->flags);
1225                         if (fua)
1226                                 set_bit(R5_WantFUA, &dev->flags);
1227                         if (sync)
1228                                 set_bit(R5_SyncIO, &dev->flags);
1229                 }
1230         }
1231
1232         if (sh->reconstruct_state == reconstruct_state_drain_run)
1233                 sh->reconstruct_state = reconstruct_state_drain_result;
1234         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1235                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1236         else {
1237                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1238                 sh->reconstruct_state = reconstruct_state_result;
1239         }
1240
1241         set_bit(STRIPE_HANDLE, &sh->state);
1242         release_stripe(sh);
1243 }
1244
1245 static void
1246 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1247                      struct dma_async_tx_descriptor *tx)
1248 {
1249         int disks = sh->disks;
1250         struct page **xor_srcs = percpu->scribble;
1251         struct async_submit_ctl submit;
1252         int count = 0, pd_idx = sh->pd_idx, i;
1253         struct page *xor_dest;
1254         int prexor = 0;
1255         unsigned long flags;
1256
1257         pr_debug("%s: stripe %llu\n", __func__,
1258                 (unsigned long long)sh->sector);
1259
1260         for (i = 0; i < sh->disks; i++) {
1261                 if (pd_idx == i)
1262                         continue;
1263                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1264                         break;
1265         }
1266         if (i >= sh->disks) {
1267                 atomic_inc(&sh->count);
1268                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1269                 ops_complete_reconstruct(sh);
1270                 return;
1271         }
1272         /* check if prexor is active which means only process blocks
1273          * that are part of a read-modify-write (written)
1274          */
1275         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1276                 prexor = 1;
1277                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1278                 for (i = disks; i--; ) {
1279                         struct r5dev *dev = &sh->dev[i];
1280                         if (dev->written)
1281                                 xor_srcs[count++] = dev->page;
1282                 }
1283         } else {
1284                 xor_dest = sh->dev[pd_idx].page;
1285                 for (i = disks; i--; ) {
1286                         struct r5dev *dev = &sh->dev[i];
1287                         if (i != pd_idx)
1288                                 xor_srcs[count++] = dev->page;
1289                 }
1290         }
1291
1292         /* 1/ if we prexor'd then the dest is reused as a source
1293          * 2/ if we did not prexor then we are redoing the parity
1294          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1295          * for the synchronous xor case
1296          */
1297         flags = ASYNC_TX_ACK |
1298                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1299
1300         atomic_inc(&sh->count);
1301
1302         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1303                           to_addr_conv(sh, percpu));
1304         if (unlikely(count == 1))
1305                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1306         else
1307                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1308 }
1309
1310 static void
1311 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1312                      struct dma_async_tx_descriptor *tx)
1313 {
1314         struct async_submit_ctl submit;
1315         struct page **blocks = percpu->scribble;
1316         int count, i;
1317
1318         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1319
1320         for (i = 0; i < sh->disks; i++) {
1321                 if (sh->pd_idx == i || sh->qd_idx == i)
1322                         continue;
1323                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1324                         break;
1325         }
1326         if (i >= sh->disks) {
1327                 atomic_inc(&sh->count);
1328                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1329                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1330                 ops_complete_reconstruct(sh);
1331                 return;
1332         }
1333
1334         count = set_syndrome_sources(blocks, sh);
1335
1336         atomic_inc(&sh->count);
1337
1338         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1339                           sh, to_addr_conv(sh, percpu));
1340         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1341 }
1342
1343 static void ops_complete_check(void *stripe_head_ref)
1344 {
1345         struct stripe_head *sh = stripe_head_ref;
1346
1347         pr_debug("%s: stripe %llu\n", __func__,
1348                 (unsigned long long)sh->sector);
1349
1350         sh->check_state = check_state_check_result;
1351         set_bit(STRIPE_HANDLE, &sh->state);
1352         release_stripe(sh);
1353 }
1354
1355 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1356 {
1357         int disks = sh->disks;
1358         int pd_idx = sh->pd_idx;
1359         int qd_idx = sh->qd_idx;
1360         struct page *xor_dest;
1361         struct page **xor_srcs = percpu->scribble;
1362         struct dma_async_tx_descriptor *tx;
1363         struct async_submit_ctl submit;
1364         int count;
1365         int i;
1366
1367         pr_debug("%s: stripe %llu\n", __func__,
1368                 (unsigned long long)sh->sector);
1369
1370         count = 0;
1371         xor_dest = sh->dev[pd_idx].page;
1372         xor_srcs[count++] = xor_dest;
1373         for (i = disks; i--; ) {
1374                 if (i == pd_idx || i == qd_idx)
1375                         continue;
1376                 xor_srcs[count++] = sh->dev[i].page;
1377         }
1378
1379         init_async_submit(&submit, 0, NULL, NULL, NULL,
1380                           to_addr_conv(sh, percpu));
1381         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1382                            &sh->ops.zero_sum_result, &submit);
1383
1384         atomic_inc(&sh->count);
1385         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1386         tx = async_trigger_callback(&submit);
1387 }
1388
1389 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1390 {
1391         struct page **srcs = percpu->scribble;
1392         struct async_submit_ctl submit;
1393         int count;
1394
1395         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1396                 (unsigned long long)sh->sector, checkp);
1397
1398         count = set_syndrome_sources(srcs, sh);
1399         if (!checkp)
1400                 srcs[count] = NULL;
1401
1402         atomic_inc(&sh->count);
1403         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1404                           sh, to_addr_conv(sh, percpu));
1405         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1406                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1407 }
1408
1409 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1410 {
1411         int overlap_clear = 0, i, disks = sh->disks;
1412         struct dma_async_tx_descriptor *tx = NULL;
1413         struct r5conf *conf = sh->raid_conf;
1414         int level = conf->level;
1415         struct raid5_percpu *percpu;
1416         unsigned long cpu;
1417
1418         cpu = get_cpu();
1419         percpu = per_cpu_ptr(conf->percpu, cpu);
1420         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1421                 ops_run_biofill(sh);
1422                 overlap_clear++;
1423         }
1424
1425         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1426                 if (level < 6)
1427                         tx = ops_run_compute5(sh, percpu);
1428                 else {
1429                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1430                                 tx = ops_run_compute6_1(sh, percpu);
1431                         else
1432                                 tx = ops_run_compute6_2(sh, percpu);
1433                 }
1434                 /* terminate the chain if reconstruct is not set to be run */
1435                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1436                         async_tx_ack(tx);
1437         }
1438
1439         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1440                 tx = ops_run_prexor(sh, percpu, tx);
1441
1442         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1443                 tx = ops_run_biodrain(sh, tx);
1444                 overlap_clear++;
1445         }
1446
1447         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1448                 if (level < 6)
1449                         ops_run_reconstruct5(sh, percpu, tx);
1450                 else
1451                         ops_run_reconstruct6(sh, percpu, tx);
1452         }
1453
1454         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1455                 if (sh->check_state == check_state_run)
1456                         ops_run_check_p(sh, percpu);
1457                 else if (sh->check_state == check_state_run_q)
1458                         ops_run_check_pq(sh, percpu, 0);
1459                 else if (sh->check_state == check_state_run_pq)
1460                         ops_run_check_pq(sh, percpu, 1);
1461                 else
1462                         BUG();
1463         }
1464
1465         if (overlap_clear)
1466                 for (i = disks; i--; ) {
1467                         struct r5dev *dev = &sh->dev[i];
1468                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1469                                 wake_up(&sh->raid_conf->wait_for_overlap);
1470                 }
1471         put_cpu();
1472 }
1473
1474 #ifdef CONFIG_MULTICORE_RAID456
1475 static void async_run_ops(void *param, async_cookie_t cookie)
1476 {
1477         struct stripe_head *sh = param;
1478         unsigned long ops_request = sh->ops.request;
1479
1480         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1481         wake_up(&sh->ops.wait_for_ops);
1482
1483         __raid_run_ops(sh, ops_request);
1484         release_stripe(sh);
1485 }
1486
1487 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1488 {
1489         /* since handle_stripe can be called outside of raid5d context
1490          * we need to ensure sh->ops.request is de-staged before another
1491          * request arrives
1492          */
1493         wait_event(sh->ops.wait_for_ops,
1494                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1495         sh->ops.request = ops_request;
1496
1497         atomic_inc(&sh->count);
1498         async_schedule(async_run_ops, sh);
1499 }
1500 #else
1501 #define raid_run_ops __raid_run_ops
1502 #endif
1503
1504 static int grow_one_stripe(struct r5conf *conf)
1505 {
1506         struct stripe_head *sh;
1507         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1508         if (!sh)
1509                 return 0;
1510
1511         sh->raid_conf = conf;
1512         #ifdef CONFIG_MULTICORE_RAID456
1513         init_waitqueue_head(&sh->ops.wait_for_ops);
1514         #endif
1515
1516         spin_lock_init(&sh->stripe_lock);
1517
1518         if (grow_buffers(sh)) {
1519                 shrink_buffers(sh);
1520                 kmem_cache_free(conf->slab_cache, sh);
1521                 return 0;
1522         }
1523         /* we just created an active stripe so... */
1524         atomic_set(&sh->count, 1);
1525         atomic_inc(&conf->active_stripes);
1526         INIT_LIST_HEAD(&sh->lru);
1527         release_stripe(sh);
1528         return 1;
1529 }
1530
1531 static int grow_stripes(struct r5conf *conf, int num)
1532 {
1533         struct kmem_cache *sc;
1534         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1535
1536         if (conf->mddev->gendisk)
1537                 sprintf(conf->cache_name[0],
1538                         "raid%d-%s", conf->level, mdname(conf->mddev));
1539         else
1540                 sprintf(conf->cache_name[0],
1541                         "raid%d-%p", conf->level, conf->mddev);
1542         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1543
1544         conf->active_name = 0;
1545         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1546                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1547                                0, 0, NULL);
1548         if (!sc)
1549                 return 1;
1550         conf->slab_cache = sc;
1551         conf->pool_size = devs;
1552         while (num--)
1553                 if (!grow_one_stripe(conf))
1554                         return 1;
1555         return 0;
1556 }
1557
1558 /**
1559  * scribble_len - return the required size of the scribble region
1560  * @num - total number of disks in the array
1561  *
1562  * The size must be enough to contain:
1563  * 1/ a struct page pointer for each device in the array +2
1564  * 2/ room to convert each entry in (1) to its corresponding dma
1565  *    (dma_map_page()) or page (page_address()) address.
1566  *
1567  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1568  * calculate over all devices (not just the data blocks), using zeros in place
1569  * of the P and Q blocks.
1570  */
1571 static size_t scribble_len(int num)
1572 {
1573         size_t len;
1574
1575         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1576
1577         return len;
1578 }
1579
1580 static int resize_stripes(struct r5conf *conf, int newsize)
1581 {
1582         /* Make all the stripes able to hold 'newsize' devices.
1583          * New slots in each stripe get 'page' set to a new page.
1584          *
1585          * This happens in stages:
1586          * 1/ create a new kmem_cache and allocate the required number of
1587          *    stripe_heads.
1588          * 2/ gather all the old stripe_heads and transfer the pages across
1589          *    to the new stripe_heads.  This will have the side effect of
1590          *    freezing the array as once all stripe_heads have been collected,
1591          *    no IO will be possible.  Old stripe heads are freed once their
1592          *    pages have been transferred over, and the old kmem_cache is
1593          *    freed when all stripes are done.
1594          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1595          *    we simple return a failre status - no need to clean anything up.
1596          * 4/ allocate new pages for the new slots in the new stripe_heads.
1597          *    If this fails, we don't bother trying the shrink the
1598          *    stripe_heads down again, we just leave them as they are.
1599          *    As each stripe_head is processed the new one is released into
1600          *    active service.
1601          *
1602          * Once step2 is started, we cannot afford to wait for a write,
1603          * so we use GFP_NOIO allocations.
1604          */
1605         struct stripe_head *osh, *nsh;
1606         LIST_HEAD(newstripes);
1607         struct disk_info *ndisks;
1608         unsigned long cpu;
1609         int err;
1610         struct kmem_cache *sc;
1611         int i;
1612
1613         if (newsize <= conf->pool_size)
1614                 return 0; /* never bother to shrink */
1615
1616         err = md_allow_write(conf->mddev);
1617         if (err)
1618                 return err;
1619
1620         /* Step 1 */
1621         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1622                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1623                                0, 0, NULL);
1624         if (!sc)
1625                 return -ENOMEM;
1626
1627         for (i = conf->max_nr_stripes; i; i--) {
1628                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1629                 if (!nsh)
1630                         break;
1631
1632                 nsh->raid_conf = conf;
1633                 #ifdef CONFIG_MULTICORE_RAID456
1634                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1635                 #endif
1636                 spin_lock_init(&nsh->stripe_lock);
1637
1638                 list_add(&nsh->lru, &newstripes);
1639         }
1640         if (i) {
1641                 /* didn't get enough, give up */
1642                 while (!list_empty(&newstripes)) {
1643                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1644                         list_del(&nsh->lru);
1645                         kmem_cache_free(sc, nsh);
1646                 }
1647                 kmem_cache_destroy(sc);
1648                 return -ENOMEM;
1649         }
1650         /* Step 2 - Must use GFP_NOIO now.
1651          * OK, we have enough stripes, start collecting inactive
1652          * stripes and copying them over
1653          */
1654         list_for_each_entry(nsh, &newstripes, lru) {
1655                 spin_lock_irq(&conf->device_lock);
1656                 wait_event_lock_irq(conf->wait_for_stripe,
1657                                     !list_empty(&conf->inactive_list),
1658                                     conf->device_lock);
1659                 osh = get_free_stripe(conf);
1660                 spin_unlock_irq(&conf->device_lock);
1661                 atomic_set(&nsh->count, 1);
1662                 for(i=0; i<conf->pool_size; i++)
1663                         nsh->dev[i].page = osh->dev[i].page;
1664                 for( ; i<newsize; i++)
1665                         nsh->dev[i].page = NULL;
1666                 kmem_cache_free(conf->slab_cache, osh);
1667         }
1668         kmem_cache_destroy(conf->slab_cache);
1669
1670         /* Step 3.
1671          * At this point, we are holding all the stripes so the array
1672          * is completely stalled, so now is a good time to resize
1673          * conf->disks and the scribble region
1674          */
1675         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1676         if (ndisks) {
1677                 for (i=0; i<conf->raid_disks; i++)
1678                         ndisks[i] = conf->disks[i];
1679                 kfree(conf->disks);
1680                 conf->disks = ndisks;
1681         } else
1682                 err = -ENOMEM;
1683
1684         get_online_cpus();
1685         conf->scribble_len = scribble_len(newsize);
1686         for_each_present_cpu(cpu) {
1687                 struct raid5_percpu *percpu;
1688                 void *scribble;
1689
1690                 percpu = per_cpu_ptr(conf->percpu, cpu);
1691                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1692
1693                 if (scribble) {
1694                         kfree(percpu->scribble);
1695                         percpu->scribble = scribble;
1696                 } else {
1697                         err = -ENOMEM;
1698                         break;
1699                 }
1700         }
1701         put_online_cpus();
1702
1703         /* Step 4, return new stripes to service */
1704         while(!list_empty(&newstripes)) {
1705                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1706                 list_del_init(&nsh->lru);
1707
1708                 for (i=conf->raid_disks; i < newsize; i++)
1709                         if (nsh->dev[i].page == NULL) {
1710                                 struct page *p = alloc_page(GFP_NOIO);
1711                                 nsh->dev[i].page = p;
1712                                 if (!p)
1713                                         err = -ENOMEM;
1714                         }
1715                 release_stripe(nsh);
1716         }
1717         /* critical section pass, GFP_NOIO no longer needed */
1718
1719         conf->slab_cache = sc;
1720         conf->active_name = 1-conf->active_name;
1721         conf->pool_size = newsize;
1722         return err;
1723 }
1724
1725 static int drop_one_stripe(struct r5conf *conf)
1726 {
1727         struct stripe_head *sh;
1728
1729         spin_lock_irq(&conf->device_lock);
1730         sh = get_free_stripe(conf);
1731         spin_unlock_irq(&conf->device_lock);
1732         if (!sh)
1733                 return 0;
1734         BUG_ON(atomic_read(&sh->count));
1735         shrink_buffers(sh);
1736         kmem_cache_free(conf->slab_cache, sh);
1737         atomic_dec(&conf->active_stripes);
1738         return 1;
1739 }
1740
1741 static void shrink_stripes(struct r5conf *conf)
1742 {
1743         while (drop_one_stripe(conf))
1744                 ;
1745
1746         if (conf->slab_cache)
1747                 kmem_cache_destroy(conf->slab_cache);
1748         conf->slab_cache = NULL;
1749 }
1750
1751 static void raid5_end_read_request(struct bio * bi, int error)
1752 {
1753         struct stripe_head *sh = bi->bi_private;
1754         struct r5conf *conf = sh->raid_conf;
1755         int disks = sh->disks, i;
1756         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1757         char b[BDEVNAME_SIZE];
1758         struct md_rdev *rdev = NULL;
1759         sector_t s;
1760
1761         for (i=0 ; i<disks; i++)
1762                 if (bi == &sh->dev[i].req)
1763                         break;
1764
1765         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1766                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1767                 uptodate);
1768         if (i == disks) {
1769                 BUG();
1770                 return;
1771         }
1772         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1773                 /* If replacement finished while this request was outstanding,
1774                  * 'replacement' might be NULL already.
1775                  * In that case it moved down to 'rdev'.
1776                  * rdev is not removed until all requests are finished.
1777                  */
1778                 rdev = conf->disks[i].replacement;
1779         if (!rdev)
1780                 rdev = conf->disks[i].rdev;
1781
1782         if (use_new_offset(conf, sh))
1783                 s = sh->sector + rdev->new_data_offset;
1784         else
1785                 s = sh->sector + rdev->data_offset;
1786         if (uptodate) {
1787                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1788                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1789                         /* Note that this cannot happen on a
1790                          * replacement device.  We just fail those on
1791                          * any error
1792                          */
1793                         printk_ratelimited(
1794                                 KERN_INFO
1795                                 "md/raid:%s: read error corrected"
1796                                 " (%lu sectors at %llu on %s)\n",
1797                                 mdname(conf->mddev), STRIPE_SECTORS,
1798                                 (unsigned long long)s,
1799                                 bdevname(rdev->bdev, b));
1800                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1801                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1802                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1803                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1804                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1805
1806                 if (atomic_read(&rdev->read_errors))
1807                         atomic_set(&rdev->read_errors, 0);
1808         } else {
1809                 const char *bdn = bdevname(rdev->bdev, b);
1810                 int retry = 0;
1811                 int set_bad = 0;
1812
1813                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1814                 atomic_inc(&rdev->read_errors);
1815                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1816                         printk_ratelimited(
1817                                 KERN_WARNING
1818                                 "md/raid:%s: read error on replacement device "
1819                                 "(sector %llu on %s).\n",
1820                                 mdname(conf->mddev),
1821                                 (unsigned long long)s,
1822                                 bdn);
1823                 else if (conf->mddev->degraded >= conf->max_degraded) {
1824                         set_bad = 1;
1825                         printk_ratelimited(
1826                                 KERN_WARNING
1827                                 "md/raid:%s: read error not correctable "
1828                                 "(sector %llu on %s).\n",
1829                                 mdname(conf->mddev),
1830                                 (unsigned long long)s,
1831                                 bdn);
1832                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1833                         /* Oh, no!!! */
1834                         set_bad = 1;
1835                         printk_ratelimited(
1836                                 KERN_WARNING
1837                                 "md/raid:%s: read error NOT corrected!! "
1838                                 "(sector %llu on %s).\n",
1839                                 mdname(conf->mddev),
1840                                 (unsigned long long)s,
1841                                 bdn);
1842                 } else if (atomic_read(&rdev->read_errors)
1843                          > conf->max_nr_stripes)
1844                         printk(KERN_WARNING
1845                                "md/raid:%s: Too many read errors, failing device %s.\n",
1846                                mdname(conf->mddev), bdn);
1847                 else
1848                         retry = 1;
1849                 if (retry)
1850                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1851                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1852                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1853                         } else
1854                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1855                 else {
1856                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1857                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1858                         if (!(set_bad
1859                               && test_bit(In_sync, &rdev->flags)
1860                               && rdev_set_badblocks(
1861                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1862                                 md_error(conf->mddev, rdev);
1863                 }
1864         }
1865         rdev_dec_pending(rdev, conf->mddev);
1866         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1867         set_bit(STRIPE_HANDLE, &sh->state);
1868         release_stripe(sh);
1869 }
1870
1871 static void raid5_end_write_request(struct bio *bi, int error)
1872 {
1873         struct stripe_head *sh = bi->bi_private;
1874         struct r5conf *conf = sh->raid_conf;
1875         int disks = sh->disks, i;
1876         struct md_rdev *uninitialized_var(rdev);
1877         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1878         sector_t first_bad;
1879         int bad_sectors;
1880         int replacement = 0;
1881
1882         for (i = 0 ; i < disks; i++) {
1883                 if (bi == &sh->dev[i].req) {
1884                         rdev = conf->disks[i].rdev;
1885                         break;
1886                 }
1887                 if (bi == &sh->dev[i].rreq) {
1888                         rdev = conf->disks[i].replacement;
1889                         if (rdev)
1890                                 replacement = 1;
1891                         else
1892                                 /* rdev was removed and 'replacement'
1893                                  * replaced it.  rdev is not removed
1894                                  * until all requests are finished.
1895                                  */
1896                                 rdev = conf->disks[i].rdev;
1897                         break;
1898                 }
1899         }
1900         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1901                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1902                 uptodate);
1903         if (i == disks) {
1904                 BUG();
1905                 return;
1906         }
1907
1908         if (replacement) {
1909                 if (!uptodate)
1910                         md_error(conf->mddev, rdev);
1911                 else if (is_badblock(rdev, sh->sector,
1912                                      STRIPE_SECTORS,
1913                                      &first_bad, &bad_sectors))
1914                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1915         } else {
1916                 if (!uptodate) {
1917                         set_bit(WriteErrorSeen, &rdev->flags);
1918                         set_bit(R5_WriteError, &sh->dev[i].flags);
1919                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1920                                 set_bit(MD_RECOVERY_NEEDED,
1921                                         &rdev->mddev->recovery);
1922                 } else if (is_badblock(rdev, sh->sector,
1923                                        STRIPE_SECTORS,
1924                                        &first_bad, &bad_sectors))
1925                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1926         }
1927         rdev_dec_pending(rdev, conf->mddev);
1928
1929         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1930                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1931         set_bit(STRIPE_HANDLE, &sh->state);
1932         release_stripe(sh);
1933 }
1934
1935 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1936         
1937 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1938 {
1939         struct r5dev *dev = &sh->dev[i];
1940
1941         bio_init(&dev->req);
1942         dev->req.bi_io_vec = &dev->vec;
1943         dev->req.bi_vcnt++;
1944         dev->req.bi_max_vecs++;
1945         dev->req.bi_private = sh;
1946         dev->vec.bv_page = dev->page;
1947
1948         bio_init(&dev->rreq);
1949         dev->rreq.bi_io_vec = &dev->rvec;
1950         dev->rreq.bi_vcnt++;
1951         dev->rreq.bi_max_vecs++;
1952         dev->rreq.bi_private = sh;
1953         dev->rvec.bv_page = dev->page;
1954
1955         dev->flags = 0;
1956         dev->sector = compute_blocknr(sh, i, previous);
1957 }
1958
1959 static void error(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961         char b[BDEVNAME_SIZE];
1962         struct r5conf *conf = mddev->private;
1963         unsigned long flags;
1964         pr_debug("raid456: error called\n");
1965
1966         spin_lock_irqsave(&conf->device_lock, flags);
1967         clear_bit(In_sync, &rdev->flags);
1968         mddev->degraded = calc_degraded(conf);
1969         spin_unlock_irqrestore(&conf->device_lock, flags);
1970         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1971
1972         set_bit(Blocked, &rdev->flags);
1973         set_bit(Faulty, &rdev->flags);
1974         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1975         printk(KERN_ALERT
1976                "md/raid:%s: Disk failure on %s, disabling device.\n"
1977                "md/raid:%s: Operation continuing on %d devices.\n",
1978                mdname(mddev),
1979                bdevname(rdev->bdev, b),
1980                mdname(mddev),
1981                conf->raid_disks - mddev->degraded);
1982 }
1983
1984 /*
1985  * Input: a 'big' sector number,
1986  * Output: index of the data and parity disk, and the sector # in them.
1987  */
1988 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1989                                      int previous, int *dd_idx,
1990                                      struct stripe_head *sh)
1991 {
1992         sector_t stripe, stripe2;
1993         sector_t chunk_number;
1994         unsigned int chunk_offset;
1995         int pd_idx, qd_idx;
1996         int ddf_layout = 0;
1997         sector_t new_sector;
1998         int algorithm = previous ? conf->prev_algo
1999                                  : conf->algorithm;
2000         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2001                                          : conf->chunk_sectors;
2002         int raid_disks = previous ? conf->previous_raid_disks
2003                                   : conf->raid_disks;
2004         int data_disks = raid_disks - conf->max_degraded;
2005
2006         /* First compute the information on this sector */
2007
2008         /*
2009          * Compute the chunk number and the sector offset inside the chunk
2010          */
2011         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2012         chunk_number = r_sector;
2013
2014         /*
2015          * Compute the stripe number
2016          */
2017         stripe = chunk_number;
2018         *dd_idx = sector_div(stripe, data_disks);
2019         stripe2 = stripe;
2020         /*
2021          * Select the parity disk based on the user selected algorithm.
2022          */
2023         pd_idx = qd_idx = -1;
2024         switch(conf->level) {
2025         case 4:
2026                 pd_idx = data_disks;
2027                 break;
2028         case 5:
2029                 switch (algorithm) {
2030                 case ALGORITHM_LEFT_ASYMMETRIC:
2031                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2032                         if (*dd_idx >= pd_idx)
2033                                 (*dd_idx)++;
2034                         break;
2035                 case ALGORITHM_RIGHT_ASYMMETRIC:
2036                         pd_idx = sector_div(stripe2, raid_disks);
2037                         if (*dd_idx >= pd_idx)
2038                                 (*dd_idx)++;
2039                         break;
2040                 case ALGORITHM_LEFT_SYMMETRIC:
2041                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2042                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2043                         break;
2044                 case ALGORITHM_RIGHT_SYMMETRIC:
2045                         pd_idx = sector_div(stripe2, raid_disks);
2046                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2047                         break;
2048                 case ALGORITHM_PARITY_0:
2049                         pd_idx = 0;
2050                         (*dd_idx)++;
2051                         break;
2052                 case ALGORITHM_PARITY_N:
2053                         pd_idx = data_disks;
2054                         break;
2055                 default:
2056                         BUG();
2057                 }
2058                 break;
2059         case 6:
2060
2061                 switch (algorithm) {
2062                 case ALGORITHM_LEFT_ASYMMETRIC:
2063                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2064                         qd_idx = pd_idx + 1;
2065                         if (pd_idx == raid_disks-1) {
2066                                 (*dd_idx)++;    /* Q D D D P */
2067                                 qd_idx = 0;
2068                         } else if (*dd_idx >= pd_idx)
2069                                 (*dd_idx) += 2; /* D D P Q D */
2070                         break;
2071                 case ALGORITHM_RIGHT_ASYMMETRIC:
2072                         pd_idx = sector_div(stripe2, raid_disks);
2073                         qd_idx = pd_idx + 1;
2074                         if (pd_idx == raid_disks-1) {
2075                                 (*dd_idx)++;    /* Q D D D P */
2076                                 qd_idx = 0;
2077                         } else if (*dd_idx >= pd_idx)
2078                                 (*dd_idx) += 2; /* D D P Q D */
2079                         break;
2080                 case ALGORITHM_LEFT_SYMMETRIC:
2081                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2082                         qd_idx = (pd_idx + 1) % raid_disks;
2083                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2084                         break;
2085                 case ALGORITHM_RIGHT_SYMMETRIC:
2086                         pd_idx = sector_div(stripe2, raid_disks);
2087                         qd_idx = (pd_idx + 1) % raid_disks;
2088                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2089                         break;
2090
2091                 case ALGORITHM_PARITY_0:
2092                         pd_idx = 0;
2093                         qd_idx = 1;
2094                         (*dd_idx) += 2;
2095                         break;
2096                 case ALGORITHM_PARITY_N:
2097                         pd_idx = data_disks;
2098                         qd_idx = data_disks + 1;
2099                         break;
2100
2101                 case ALGORITHM_ROTATING_ZERO_RESTART:
2102                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2103                          * of blocks for computing Q is different.
2104                          */
2105                         pd_idx = sector_div(stripe2, raid_disks);
2106                         qd_idx = pd_idx + 1;
2107                         if (pd_idx == raid_disks-1) {
2108                                 (*dd_idx)++;    /* Q D D D P */
2109                                 qd_idx = 0;
2110                         } else if (*dd_idx >= pd_idx)
2111                                 (*dd_idx) += 2; /* D D P Q D */
2112                         ddf_layout = 1;
2113                         break;
2114
2115                 case ALGORITHM_ROTATING_N_RESTART:
2116                         /* Same a left_asymmetric, by first stripe is
2117                          * D D D P Q  rather than
2118                          * Q D D D P
2119                          */
2120                         stripe2 += 1;
2121                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2122                         qd_idx = pd_idx + 1;
2123                         if (pd_idx == raid_disks-1) {
2124                                 (*dd_idx)++;    /* Q D D D P */
2125                                 qd_idx = 0;
2126                         } else if (*dd_idx >= pd_idx)
2127                                 (*dd_idx) += 2; /* D D P Q D */
2128                         ddf_layout = 1;
2129                         break;
2130
2131                 case ALGORITHM_ROTATING_N_CONTINUE:
2132                         /* Same as left_symmetric but Q is before P */
2133                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2134                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2135                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2136                         ddf_layout = 1;
2137                         break;
2138
2139                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2140                         /* RAID5 left_asymmetric, with Q on last device */
2141                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2142                         if (*dd_idx >= pd_idx)
2143                                 (*dd_idx)++;
2144                         qd_idx = raid_disks - 1;
2145                         break;
2146
2147                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2148                         pd_idx = sector_div(stripe2, raid_disks-1);
2149                         if (*dd_idx >= pd_idx)
2150                                 (*dd_idx)++;
2151                         qd_idx = raid_disks - 1;
2152                         break;
2153
2154                 case ALGORITHM_LEFT_SYMMETRIC_6:
2155                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2156                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2157                         qd_idx = raid_disks - 1;
2158                         break;
2159
2160                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2161                         pd_idx = sector_div(stripe2, raid_disks-1);
2162                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2163                         qd_idx = raid_disks - 1;
2164                         break;
2165
2166                 case ALGORITHM_PARITY_0_6:
2167                         pd_idx = 0;
2168                         (*dd_idx)++;
2169                         qd_idx = raid_disks - 1;
2170                         break;
2171
2172                 default:
2173                         BUG();
2174                 }
2175                 break;
2176         }
2177
2178         if (sh) {
2179                 sh->pd_idx = pd_idx;
2180                 sh->qd_idx = qd_idx;
2181                 sh->ddf_layout = ddf_layout;
2182         }
2183         /*
2184          * Finally, compute the new sector number
2185          */
2186         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2187         return new_sector;
2188 }
2189
2190
2191 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2192 {
2193         struct r5conf *conf = sh->raid_conf;
2194         int raid_disks = sh->disks;
2195         int data_disks = raid_disks - conf->max_degraded;
2196         sector_t new_sector = sh->sector, check;
2197         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2198                                          : conf->chunk_sectors;
2199         int algorithm = previous ? conf->prev_algo
2200                                  : conf->algorithm;
2201         sector_t stripe;
2202         int chunk_offset;
2203         sector_t chunk_number;
2204         int dummy1, dd_idx = i;
2205         sector_t r_sector;
2206         struct stripe_head sh2;
2207
2208
2209         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2210         stripe = new_sector;
2211
2212         if (i == sh->pd_idx)
2213                 return 0;
2214         switch(conf->level) {
2215         case 4: break;
2216         case 5:
2217                 switch (algorithm) {
2218                 case ALGORITHM_LEFT_ASYMMETRIC:
2219                 case ALGORITHM_RIGHT_ASYMMETRIC:
2220                         if (i > sh->pd_idx)
2221                                 i--;
2222                         break;
2223                 case ALGORITHM_LEFT_SYMMETRIC:
2224                 case ALGORITHM_RIGHT_SYMMETRIC:
2225                         if (i < sh->pd_idx)
2226                                 i += raid_disks;
2227                         i -= (sh->pd_idx + 1);
2228                         break;
2229                 case ALGORITHM_PARITY_0:
2230                         i -= 1;
2231                         break;
2232                 case ALGORITHM_PARITY_N:
2233                         break;
2234                 default:
2235                         BUG();
2236                 }
2237                 break;
2238         case 6:
2239                 if (i == sh->qd_idx)
2240                         return 0; /* It is the Q disk */
2241                 switch (algorithm) {
2242                 case ALGORITHM_LEFT_ASYMMETRIC:
2243                 case ALGORITHM_RIGHT_ASYMMETRIC:
2244                 case ALGORITHM_ROTATING_ZERO_RESTART:
2245                 case ALGORITHM_ROTATING_N_RESTART:
2246                         if (sh->pd_idx == raid_disks-1)
2247                                 i--;    /* Q D D D P */
2248                         else if (i > sh->pd_idx)
2249                                 i -= 2; /* D D P Q D */
2250                         break;
2251                 case ALGORITHM_LEFT_SYMMETRIC:
2252                 case ALGORITHM_RIGHT_SYMMETRIC:
2253                         if (sh->pd_idx == raid_disks-1)
2254                                 i--; /* Q D D D P */
2255                         else {
2256                                 /* D D P Q D */
2257                                 if (i < sh->pd_idx)
2258                                         i += raid_disks;
2259                                 i -= (sh->pd_idx + 2);
2260                         }
2261                         break;
2262                 case ALGORITHM_PARITY_0:
2263                         i -= 2;
2264                         break;
2265                 case ALGORITHM_PARITY_N:
2266                         break;
2267                 case ALGORITHM_ROTATING_N_CONTINUE:
2268                         /* Like left_symmetric, but P is before Q */
2269                         if (sh->pd_idx == 0)
2270                                 i--;    /* P D D D Q */
2271                         else {
2272                                 /* D D Q P D */
2273                                 if (i < sh->pd_idx)
2274                                         i += raid_disks;
2275                                 i -= (sh->pd_idx + 1);
2276                         }
2277                         break;
2278                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2279                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2280                         if (i > sh->pd_idx)
2281                                 i--;
2282                         break;
2283                 case ALGORITHM_LEFT_SYMMETRIC_6:
2284                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2285                         if (i < sh->pd_idx)
2286                                 i += data_disks + 1;
2287                         i -= (sh->pd_idx + 1);
2288                         break;
2289                 case ALGORITHM_PARITY_0_6:
2290                         i -= 1;
2291                         break;
2292                 default:
2293                         BUG();
2294                 }
2295                 break;
2296         }
2297
2298         chunk_number = stripe * data_disks + i;
2299         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2300
2301         check = raid5_compute_sector(conf, r_sector,
2302                                      previous, &dummy1, &sh2);
2303         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2304                 || sh2.qd_idx != sh->qd_idx) {
2305                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2306                        mdname(conf->mddev));
2307                 return 0;
2308         }
2309         return r_sector;
2310 }
2311
2312
2313 static void
2314 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2315                          int rcw, int expand)
2316 {
2317         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2318         struct r5conf *conf = sh->raid_conf;
2319         int level = conf->level;
2320
2321         if (rcw) {
2322                 /* if we are not expanding this is a proper write request, and
2323                  * there will be bios with new data to be drained into the
2324                  * stripe cache
2325                  */
2326                 if (!expand) {
2327                         sh->reconstruct_state = reconstruct_state_drain_run;
2328                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2329                 } else
2330                         sh->reconstruct_state = reconstruct_state_run;
2331
2332                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2333
2334                 for (i = disks; i--; ) {
2335                         struct r5dev *dev = &sh->dev[i];
2336
2337                         if (dev->towrite) {
2338                                 set_bit(R5_LOCKED, &dev->flags);
2339                                 set_bit(R5_Wantdrain, &dev->flags);
2340                                 if (!expand)
2341                                         clear_bit(R5_UPTODATE, &dev->flags);
2342                                 s->locked++;
2343                         }
2344                 }
2345                 if (s->locked + conf->max_degraded == disks)
2346                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2347                                 atomic_inc(&conf->pending_full_writes);
2348         } else {
2349                 BUG_ON(level == 6);
2350                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2351                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2352
2353                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2354                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2355                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2356                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2357
2358                 for (i = disks; i--; ) {
2359                         struct r5dev *dev = &sh->dev[i];
2360                         if (i == pd_idx)
2361                                 continue;
2362
2363                         if (dev->towrite &&
2364                             (test_bit(R5_UPTODATE, &dev->flags) ||
2365                              test_bit(R5_Wantcompute, &dev->flags))) {
2366                                 set_bit(R5_Wantdrain, &dev->flags);
2367                                 set_bit(R5_LOCKED, &dev->flags);
2368                                 clear_bit(R5_UPTODATE, &dev->flags);
2369                                 s->locked++;
2370                         }
2371                 }
2372         }
2373
2374         /* keep the parity disk(s) locked while asynchronous operations
2375          * are in flight
2376          */
2377         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2378         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2379         s->locked++;
2380
2381         if (level == 6) {
2382                 int qd_idx = sh->qd_idx;
2383                 struct r5dev *dev = &sh->dev[qd_idx];
2384
2385                 set_bit(R5_LOCKED, &dev->flags);
2386                 clear_bit(R5_UPTODATE, &dev->flags);
2387                 s->locked++;
2388         }
2389
2390         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2391                 __func__, (unsigned long long)sh->sector,
2392                 s->locked, s->ops_request);
2393 }
2394
2395 /*
2396  * Each stripe/dev can have one or more bion attached.
2397  * toread/towrite point to the first in a chain.
2398  * The bi_next chain must be in order.
2399  */
2400 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2401 {
2402         struct bio **bip;
2403         struct r5conf *conf = sh->raid_conf;
2404         int firstwrite=0;
2405
2406         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2407                 (unsigned long long)bi->bi_sector,
2408                 (unsigned long long)sh->sector);
2409
2410         /*
2411          * If several bio share a stripe. The bio bi_phys_segments acts as a
2412          * reference count to avoid race. The reference count should already be
2413          * increased before this function is called (for example, in
2414          * make_request()), so other bio sharing this stripe will not free the
2415          * stripe. If a stripe is owned by one stripe, the stripe lock will
2416          * protect it.
2417          */
2418         spin_lock_irq(&sh->stripe_lock);
2419         if (forwrite) {
2420                 bip = &sh->dev[dd_idx].towrite;
2421                 if (*bip == NULL)
2422                         firstwrite = 1;
2423         } else
2424                 bip = &sh->dev[dd_idx].toread;
2425         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2426                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2427                         goto overlap;
2428                 bip = & (*bip)->bi_next;
2429         }
2430         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2431                 goto overlap;
2432
2433         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2434         if (*bip)
2435                 bi->bi_next = *bip;
2436         *bip = bi;
2437         raid5_inc_bi_active_stripes(bi);
2438
2439         if (forwrite) {
2440                 /* check if page is covered */
2441                 sector_t sector = sh->dev[dd_idx].sector;
2442                 for (bi=sh->dev[dd_idx].towrite;
2443                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2444                              bi && bi->bi_sector <= sector;
2445                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2446                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2447                                 sector = bi->bi_sector + (bi->bi_size>>9);
2448                 }
2449                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2450                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2451         }
2452
2453         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2454                 (unsigned long long)(*bip)->bi_sector,
2455                 (unsigned long long)sh->sector, dd_idx);
2456         spin_unlock_irq(&sh->stripe_lock);
2457
2458         if (conf->mddev->bitmap && firstwrite) {
2459                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2460                                   STRIPE_SECTORS, 0);
2461                 sh->bm_seq = conf->seq_flush+1;
2462                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2463         }
2464         return 1;
2465
2466  overlap:
2467         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2468         spin_unlock_irq(&sh->stripe_lock);
2469         return 0;
2470 }
2471
2472 static void end_reshape(struct r5conf *conf);
2473
2474 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2475                             struct stripe_head *sh)
2476 {
2477         int sectors_per_chunk =
2478                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2479         int dd_idx;
2480         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2481         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2482
2483         raid5_compute_sector(conf,
2484                              stripe * (disks - conf->max_degraded)
2485                              *sectors_per_chunk + chunk_offset,
2486                              previous,
2487                              &dd_idx, sh);
2488 }
2489
2490 static void
2491 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2492                                 struct stripe_head_state *s, int disks,
2493                                 struct bio **return_bi)
2494 {
2495         int i;
2496         for (i = disks; i--; ) {
2497                 struct bio *bi;
2498                 int bitmap_end = 0;
2499
2500                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2501                         struct md_rdev *rdev;
2502                         rcu_read_lock();
2503                         rdev = rcu_dereference(conf->disks[i].rdev);
2504                         if (rdev && test_bit(In_sync, &rdev->flags))
2505                                 atomic_inc(&rdev->nr_pending);
2506                         else
2507                                 rdev = NULL;
2508                         rcu_read_unlock();
2509                         if (rdev) {
2510                                 if (!rdev_set_badblocks(
2511                                             rdev,
2512                                             sh->sector,
2513                                             STRIPE_SECTORS, 0))
2514                                         md_error(conf->mddev, rdev);
2515                                 rdev_dec_pending(rdev, conf->mddev);
2516                         }
2517                 }
2518                 spin_lock_irq(&sh->stripe_lock);
2519                 /* fail all writes first */
2520                 bi = sh->dev[i].towrite;
2521                 sh->dev[i].towrite = NULL;
2522                 spin_unlock_irq(&sh->stripe_lock);
2523                 if (bi)
2524                         bitmap_end = 1;
2525
2526                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2527                         wake_up(&conf->wait_for_overlap);
2528
2529                 while (bi && bi->bi_sector <
2530                         sh->dev[i].sector + STRIPE_SECTORS) {
2531                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2532                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2533                         if (!raid5_dec_bi_active_stripes(bi)) {
2534                                 md_write_end(conf->mddev);
2535                                 bi->bi_next = *return_bi;
2536                                 *return_bi = bi;
2537                         }
2538                         bi = nextbi;
2539                 }
2540                 if (bitmap_end)
2541                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2542                                 STRIPE_SECTORS, 0, 0);
2543                 bitmap_end = 0;
2544                 /* and fail all 'written' */
2545                 bi = sh->dev[i].written;
2546                 sh->dev[i].written = NULL;
2547                 if (bi) bitmap_end = 1;
2548                 while (bi && bi->bi_sector <
2549                        sh->dev[i].sector + STRIPE_SECTORS) {
2550                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2551                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2552                         if (!raid5_dec_bi_active_stripes(bi)) {
2553                                 md_write_end(conf->mddev);
2554                                 bi->bi_next = *return_bi;
2555                                 *return_bi = bi;
2556                         }
2557                         bi = bi2;
2558                 }
2559
2560                 /* fail any reads if this device is non-operational and
2561                  * the data has not reached the cache yet.
2562                  */
2563                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2564                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2565                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2566                         spin_lock_irq(&sh->stripe_lock);
2567                         bi = sh->dev[i].toread;
2568                         sh->dev[i].toread = NULL;
2569                         spin_unlock_irq(&sh->stripe_lock);
2570                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2571                                 wake_up(&conf->wait_for_overlap);
2572                         while (bi && bi->bi_sector <
2573                                sh->dev[i].sector + STRIPE_SECTORS) {
2574                                 struct bio *nextbi =
2575                                         r5_next_bio(bi, sh->dev[i].sector);
2576                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2577                                 if (!raid5_dec_bi_active_stripes(bi)) {
2578                                         bi->bi_next = *return_bi;
2579                                         *return_bi = bi;
2580                                 }
2581                                 bi = nextbi;
2582                         }
2583                 }
2584                 if (bitmap_end)
2585                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2586                                         STRIPE_SECTORS, 0, 0);
2587                 /* If we were in the middle of a write the parity block might
2588                  * still be locked - so just clear all R5_LOCKED flags
2589                  */
2590                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2591         }
2592
2593         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2594                 if (atomic_dec_and_test(&conf->pending_full_writes))
2595                         md_wakeup_thread(conf->mddev->thread);
2596 }
2597
2598 static void
2599 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2600                    struct stripe_head_state *s)
2601 {
2602         int abort = 0;
2603         int i;
2604
2605         clear_bit(STRIPE_SYNCING, &sh->state);
2606         s->syncing = 0;
2607         s->replacing = 0;
2608         /* There is nothing more to do for sync/check/repair.
2609          * Don't even need to abort as that is handled elsewhere
2610          * if needed, and not always wanted e.g. if there is a known
2611          * bad block here.
2612          * For recover/replace we need to record a bad block on all
2613          * non-sync devices, or abort the recovery
2614          */
2615         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2616                 /* During recovery devices cannot be removed, so
2617                  * locking and refcounting of rdevs is not needed
2618                  */
2619                 for (i = 0; i < conf->raid_disks; i++) {
2620                         struct md_rdev *rdev = conf->disks[i].rdev;
2621                         if (rdev
2622                             && !test_bit(Faulty, &rdev->flags)
2623                             && !test_bit(In_sync, &rdev->flags)
2624                             && !rdev_set_badblocks(rdev, sh->sector,
2625                                                    STRIPE_SECTORS, 0))
2626                                 abort = 1;
2627                         rdev = conf->disks[i].replacement;
2628                         if (rdev
2629                             && !test_bit(Faulty, &rdev->flags)
2630                             && !test_bit(In_sync, &rdev->flags)
2631                             && !rdev_set_badblocks(rdev, sh->sector,
2632                                                    STRIPE_SECTORS, 0))
2633                                 abort = 1;
2634                 }
2635                 if (abort)
2636                         conf->recovery_disabled =
2637                                 conf->mddev->recovery_disabled;
2638         }
2639         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2640 }
2641
2642 static int want_replace(struct stripe_head *sh, int disk_idx)
2643 {
2644         struct md_rdev *rdev;
2645         int rv = 0;
2646         /* Doing recovery so rcu locking not required */
2647         rdev = sh->raid_conf->disks[disk_idx].replacement;
2648         if (rdev
2649             && !test_bit(Faulty, &rdev->flags)
2650             && !test_bit(In_sync, &rdev->flags)
2651             && (rdev->recovery_offset <= sh->sector
2652                 || rdev->mddev->recovery_cp <= sh->sector))
2653                 rv = 1;
2654
2655         return rv;
2656 }
2657
2658 /* fetch_block - checks the given member device to see if its data needs
2659  * to be read or computed to satisfy a request.
2660  *
2661  * Returns 1 when no more member devices need to be checked, otherwise returns
2662  * 0 to tell the loop in handle_stripe_fill to continue
2663  */
2664 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2665                        int disk_idx, int disks)
2666 {
2667         struct r5dev *dev = &sh->dev[disk_idx];
2668         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2669                                   &sh->dev[s->failed_num[1]] };
2670
2671         /* is the data in this block needed, and can we get it? */
2672         if (!test_bit(R5_LOCKED, &dev->flags) &&
2673             !test_bit(R5_UPTODATE, &dev->flags) &&
2674             (dev->toread ||
2675              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2676              s->syncing || s->expanding ||
2677              (s->replacing && want_replace(sh, disk_idx)) ||
2678              (s->failed >= 1 && fdev[0]->toread) ||
2679              (s->failed >= 2 && fdev[1]->toread) ||
2680              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2681               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2682              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2683                 /* we would like to get this block, possibly by computing it,
2684                  * otherwise read it if the backing disk is insync
2685                  */
2686                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2687                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2688                 if ((s->uptodate == disks - 1) &&
2689                     (s->failed && (disk_idx == s->failed_num[0] ||
2690                                    disk_idx == s->failed_num[1]))) {
2691                         /* have disk failed, and we're requested to fetch it;
2692                          * do compute it
2693                          */
2694                         pr_debug("Computing stripe %llu block %d\n",
2695                                (unsigned long long)sh->sector, disk_idx);
2696                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2697                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2698                         set_bit(R5_Wantcompute, &dev->flags);
2699                         sh->ops.target = disk_idx;
2700                         sh->ops.target2 = -1; /* no 2nd target */
2701                         s->req_compute = 1;
2702                         /* Careful: from this point on 'uptodate' is in the eye
2703                          * of raid_run_ops which services 'compute' operations
2704                          * before writes. R5_Wantcompute flags a block that will
2705                          * be R5_UPTODATE by the time it is needed for a
2706                          * subsequent operation.
2707                          */
2708                         s->uptodate++;
2709                         return 1;
2710                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2711                         /* Computing 2-failure is *very* expensive; only
2712                          * do it if failed >= 2
2713                          */
2714                         int other;
2715                         for (other = disks; other--; ) {
2716                                 if (other == disk_idx)
2717                                         continue;
2718                                 if (!test_bit(R5_UPTODATE,
2719                                       &sh->dev[other].flags))
2720                                         break;
2721                         }
2722                         BUG_ON(other < 0);
2723                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2724                                (unsigned long long)sh->sector,
2725                                disk_idx, other);
2726                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2727                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2728                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2729                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2730                         sh->ops.target = disk_idx;
2731                         sh->ops.target2 = other;
2732                         s->uptodate += 2;
2733                         s->req_compute = 1;
2734                         return 1;
2735                 } else if (test_bit(R5_Insync, &dev->flags)) {
2736                         set_bit(R5_LOCKED, &dev->flags);
2737                         set_bit(R5_Wantread, &dev->flags);
2738                         s->locked++;
2739                         pr_debug("Reading block %d (sync=%d)\n",
2740                                 disk_idx, s->syncing);
2741                 }
2742         }
2743
2744         return 0;
2745 }
2746
2747 /**
2748  * handle_stripe_fill - read or compute data to satisfy pending requests.
2749  */
2750 static void handle_stripe_fill(struct stripe_head *sh,
2751                                struct stripe_head_state *s,
2752                                int disks)
2753 {
2754         int i;
2755
2756         /* look for blocks to read/compute, skip this if a compute
2757          * is already in flight, or if the stripe contents are in the
2758          * midst of changing due to a write
2759          */
2760         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2761             !sh->reconstruct_state)
2762                 for (i = disks; i--; )
2763                         if (fetch_block(sh, s, i, disks))
2764                                 break;
2765         set_bit(STRIPE_HANDLE, &sh->state);
2766 }
2767
2768
2769 /* handle_stripe_clean_event
2770  * any written block on an uptodate or failed drive can be returned.
2771  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2772  * never LOCKED, so we don't need to test 'failed' directly.
2773  */
2774 static void handle_stripe_clean_event(struct r5conf *conf,
2775         struct stripe_head *sh, int disks, struct bio **return_bi)
2776 {
2777         int i;
2778         struct r5dev *dev;
2779
2780         for (i = disks; i--; )
2781                 if (sh->dev[i].written) {
2782                         dev = &sh->dev[i];
2783                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2784                             (test_bit(R5_UPTODATE, &dev->flags) ||
2785                              test_bit(R5_Discard, &dev->flags))) {
2786                                 /* We can return any write requests */
2787                                 struct bio *wbi, *wbi2;
2788                                 pr_debug("Return write for disc %d\n", i);
2789                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2790                                         clear_bit(R5_UPTODATE, &dev->flags);
2791                                 wbi = dev->written;
2792                                 dev->written = NULL;
2793                                 while (wbi && wbi->bi_sector <
2794                                         dev->sector + STRIPE_SECTORS) {
2795                                         wbi2 = r5_next_bio(wbi, dev->sector);
2796                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2797                                                 md_write_end(conf->mddev);
2798                                                 wbi->bi_next = *return_bi;
2799                                                 *return_bi = wbi;
2800                                         }
2801                                         wbi = wbi2;
2802                                 }
2803                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2804                                                 STRIPE_SECTORS,
2805                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2806                                                 0);
2807                         }
2808                 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2809                         clear_bit(R5_Discard, &sh->dev[i].flags);
2810
2811         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2812                 if (atomic_dec_and_test(&conf->pending_full_writes))
2813                         md_wakeup_thread(conf->mddev->thread);
2814 }
2815
2816 static void handle_stripe_dirtying(struct r5conf *conf,
2817                                    struct stripe_head *sh,
2818                                    struct stripe_head_state *s,
2819                                    int disks)
2820 {
2821         int rmw = 0, rcw = 0, i;
2822         sector_t recovery_cp = conf->mddev->recovery_cp;
2823
2824         /* RAID6 requires 'rcw' in current implementation.
2825          * Otherwise, check whether resync is now happening or should start.
2826          * If yes, then the array is dirty (after unclean shutdown or
2827          * initial creation), so parity in some stripes might be inconsistent.
2828          * In this case, we need to always do reconstruct-write, to ensure
2829          * that in case of drive failure or read-error correction, we
2830          * generate correct data from the parity.
2831          */
2832         if (conf->max_degraded == 2 ||
2833             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2834                 /* Calculate the real rcw later - for now make it
2835                  * look like rcw is cheaper
2836                  */
2837                 rcw = 1; rmw = 2;
2838                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2839                          conf->max_degraded, (unsigned long long)recovery_cp,
2840                          (unsigned long long)sh->sector);
2841         } else for (i = disks; i--; ) {
2842                 /* would I have to read this buffer for read_modify_write */
2843                 struct r5dev *dev = &sh->dev[i];
2844                 if ((dev->towrite || i == sh->pd_idx) &&
2845                     !test_bit(R5_LOCKED, &dev->flags) &&
2846                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2847                       test_bit(R5_Wantcompute, &dev->flags))) {
2848                         if (test_bit(R5_Insync, &dev->flags))
2849                                 rmw++;
2850                         else
2851                                 rmw += 2*disks;  /* cannot read it */
2852                 }
2853                 /* Would I have to read this buffer for reconstruct_write */
2854                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2855                     !test_bit(R5_LOCKED, &dev->flags) &&
2856                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2857                     test_bit(R5_Wantcompute, &dev->flags))) {
2858                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2859                         else
2860                                 rcw += 2*disks;
2861                 }
2862         }
2863         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2864                 (unsigned long long)sh->sector, rmw, rcw);
2865         set_bit(STRIPE_HANDLE, &sh->state);
2866         if (rmw < rcw && rmw > 0) {
2867                 /* prefer read-modify-write, but need to get some data */
2868                 blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d",
2869                                   (unsigned long long)sh->sector, rmw);
2870                 for (i = disks; i--; ) {
2871                         struct r5dev *dev = &sh->dev[i];
2872                         if ((dev->towrite || i == sh->pd_idx) &&
2873                             !test_bit(R5_LOCKED, &dev->flags) &&
2874                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2875                             test_bit(R5_Wantcompute, &dev->flags)) &&
2876                             test_bit(R5_Insync, &dev->flags)) {
2877                                 if (
2878                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2879                                         pr_debug("Read_old block "
2880                                                  "%d for r-m-w\n", i);
2881                                         set_bit(R5_LOCKED, &dev->flags);
2882                                         set_bit(R5_Wantread, &dev->flags);
2883                                         s->locked++;
2884                                 } else {
2885                                         set_bit(STRIPE_DELAYED, &sh->state);
2886                                         set_bit(STRIPE_HANDLE, &sh->state);
2887                                 }
2888                         }
2889                 }
2890         }
2891         if (rcw <= rmw && rcw > 0) {
2892                 /* want reconstruct write, but need to get some data */
2893                 int qread =0;
2894                 rcw = 0;
2895                 for (i = disks; i--; ) {
2896                         struct r5dev *dev = &sh->dev[i];
2897                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2898                             i != sh->pd_idx && i != sh->qd_idx &&
2899                             !test_bit(R5_LOCKED, &dev->flags) &&
2900                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2901                               test_bit(R5_Wantcompute, &dev->flags))) {
2902                                 rcw++;
2903                                 if (!test_bit(R5_Insync, &dev->flags))
2904                                         continue; /* it's a failed drive */
2905                                 if (
2906                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2907                                         pr_debug("Read_old block "
2908                                                 "%d for Reconstruct\n", i);
2909                                         set_bit(R5_LOCKED, &dev->flags);
2910                                         set_bit(R5_Wantread, &dev->flags);
2911                                         s->locked++;
2912                                         qread++;
2913                                 } else {
2914                                         set_bit(STRIPE_DELAYED, &sh->state);
2915                                         set_bit(STRIPE_HANDLE, &sh->state);
2916                                 }
2917                         }
2918                 }
2919                 if (rcw)
2920                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2921                                           (unsigned long long)sh->sector,
2922                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2923         }
2924         /* now if nothing is locked, and if we have enough data,
2925          * we can start a write request
2926          */
2927         /* since handle_stripe can be called at any time we need to handle the
2928          * case where a compute block operation has been submitted and then a
2929          * subsequent call wants to start a write request.  raid_run_ops only
2930          * handles the case where compute block and reconstruct are requested
2931          * simultaneously.  If this is not the case then new writes need to be
2932          * held off until the compute completes.
2933          */
2934         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2935             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2936             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2937                 schedule_reconstruction(sh, s, rcw == 0, 0);
2938 }
2939
2940 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2941                                 struct stripe_head_state *s, int disks)
2942 {
2943         struct r5dev *dev = NULL;
2944
2945         set_bit(STRIPE_HANDLE, &sh->state);
2946
2947         switch (sh->check_state) {
2948         case check_state_idle:
2949                 /* start a new check operation if there are no failures */
2950                 if (s->failed == 0) {
2951                         BUG_ON(s->uptodate != disks);
2952                         sh->check_state = check_state_run;
2953                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2954                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2955                         s->uptodate--;
2956                         break;
2957                 }
2958                 dev = &sh->dev[s->failed_num[0]];
2959                 /* fall through */
2960         case check_state_compute_result:
2961                 sh->check_state = check_state_idle;
2962                 if (!dev)
2963                         dev = &sh->dev[sh->pd_idx];
2964
2965                 /* check that a write has not made the stripe insync */
2966                 if (test_bit(STRIPE_INSYNC, &sh->state))
2967                         break;
2968
2969                 /* either failed parity check, or recovery is happening */
2970                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2971                 BUG_ON(s->uptodate != disks);
2972
2973                 set_bit(R5_LOCKED, &dev->flags);
2974                 s->locked++;
2975                 set_bit(R5_Wantwrite, &dev->flags);
2976
2977                 clear_bit(STRIPE_DEGRADED, &sh->state);
2978                 set_bit(STRIPE_INSYNC, &sh->state);
2979                 break;
2980         case check_state_run:
2981                 break; /* we will be called again upon completion */
2982         case check_state_check_result:
2983                 sh->check_state = check_state_idle;
2984
2985                 /* if a failure occurred during the check operation, leave
2986                  * STRIPE_INSYNC not set and let the stripe be handled again
2987                  */
2988                 if (s->failed)
2989                         break;
2990
2991                 /* handle a successful check operation, if parity is correct
2992                  * we are done.  Otherwise update the mismatch count and repair
2993                  * parity if !MD_RECOVERY_CHECK
2994                  */
2995                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2996                         /* parity is correct (on disc,
2997                          * not in buffer any more)
2998                          */
2999                         set_bit(STRIPE_INSYNC, &sh->state);
3000                 else {
3001                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3002                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3003                                 /* don't try to repair!! */
3004                                 set_bit(STRIPE_INSYNC, &sh->state);
3005                         else {
3006                                 sh->check_state = check_state_compute_run;
3007                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3008                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3009                                 set_bit(R5_Wantcompute,
3010                                         &sh->dev[sh->pd_idx].flags);
3011                                 sh->ops.target = sh->pd_idx;
3012                                 sh->ops.target2 = -1;
3013                                 s->uptodate++;
3014                         }
3015                 }
3016                 break;
3017         case check_state_compute_run:
3018                 break;
3019         default:
3020                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3021                        __func__, sh->check_state,
3022                        (unsigned long long) sh->sector);
3023                 BUG();
3024         }
3025 }
3026
3027
3028 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3029                                   struct stripe_head_state *s,
3030                                   int disks)
3031 {
3032         int pd_idx = sh->pd_idx;
3033         int qd_idx = sh->qd_idx;
3034         struct r5dev *dev;
3035
3036         set_bit(STRIPE_HANDLE, &sh->state);
3037
3038         BUG_ON(s->failed > 2);
3039
3040         /* Want to check and possibly repair P and Q.
3041          * However there could be one 'failed' device, in which
3042          * case we can only check one of them, possibly using the
3043          * other to generate missing data
3044          */
3045
3046         switch (sh->check_state) {
3047         case check_state_idle:
3048                 /* start a new check operation if there are < 2 failures */
3049                 if (s->failed == s->q_failed) {
3050                         /* The only possible failed device holds Q, so it
3051                          * makes sense to check P (If anything else were failed,
3052                          * we would have used P to recreate it).
3053                          */
3054                         sh->check_state = check_state_run;
3055                 }
3056                 if (!s->q_failed && s->failed < 2) {
3057                         /* Q is not failed, and we didn't use it to generate
3058                          * anything, so it makes sense to check it
3059                          */
3060                         if (sh->check_state == check_state_run)
3061                                 sh->check_state = check_state_run_pq;
3062                         else
3063                                 sh->check_state = check_state_run_q;
3064                 }
3065
3066                 /* discard potentially stale zero_sum_result */
3067                 sh->ops.zero_sum_result = 0;
3068
3069                 if (sh->check_state == check_state_run) {
3070                         /* async_xor_zero_sum destroys the contents of P */
3071                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3072                         s->uptodate--;
3073                 }
3074                 if (sh->check_state >= check_state_run &&
3075                     sh->check_state <= check_state_run_pq) {
3076                         /* async_syndrome_zero_sum preserves P and Q, so
3077                          * no need to mark them !uptodate here
3078                          */
3079                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3080                         break;
3081                 }
3082
3083                 /* we have 2-disk failure */
3084                 BUG_ON(s->failed != 2);
3085                 /* fall through */
3086         case check_state_compute_result:
3087                 sh->check_state = check_state_idle;
3088
3089                 /* check that a write has not made the stripe insync */
3090                 if (test_bit(STRIPE_INSYNC, &sh->state))
3091                         break;
3092
3093                 /* now write out any block on a failed drive,
3094                  * or P or Q if they were recomputed
3095                  */
3096                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3097                 if (s->failed == 2) {
3098                         dev = &sh->dev[s->failed_num[1]];
3099                         s->locked++;
3100                         set_bit(R5_LOCKED, &dev->flags);
3101                         set_bit(R5_Wantwrite, &dev->flags);
3102                 }
3103                 if (s->failed >= 1) {
3104                         dev = &sh->dev[s->failed_num[0]];
3105                         s->locked++;
3106                         set_bit(R5_LOCKED, &dev->flags);
3107                         set_bit(R5_Wantwrite, &dev->flags);
3108                 }
3109                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3110                         dev = &sh->dev[pd_idx];
3111                         s->locked++;
3112                         set_bit(R5_LOCKED, &dev->flags);
3113                         set_bit(R5_Wantwrite, &dev->flags);
3114                 }
3115                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3116                         dev = &sh->dev[qd_idx];
3117                         s->locked++;
3118                         set_bit(R5_LOCKED, &dev->flags);
3119                         set_bit(R5_Wantwrite, &dev->flags);
3120                 }
3121                 clear_bit(STRIPE_DEGRADED, &sh->state);
3122
3123                 set_bit(STRIPE_INSYNC, &sh->state);
3124                 break;
3125         case check_state_run:
3126         case check_state_run_q:
3127         case check_state_run_pq:
3128                 break; /* we will be called again upon completion */
3129         case check_state_check_result:
3130                 sh->check_state = check_state_idle;
3131
3132                 /* handle a successful check operation, if parity is correct
3133                  * we are done.  Otherwise update the mismatch count and repair
3134                  * parity if !MD_RECOVERY_CHECK
3135                  */
3136                 if (sh->ops.zero_sum_result == 0) {
3137                         /* both parities are correct */
3138                         if (!s->failed)
3139                                 set_bit(STRIPE_INSYNC, &sh->state);
3140                         else {
3141                                 /* in contrast to the raid5 case we can validate
3142                                  * parity, but still have a failure to write
3143                                  * back
3144                                  */
3145                                 sh->check_state = check_state_compute_result;
3146                                 /* Returning at this point means that we may go
3147                                  * off and bring p and/or q uptodate again so
3148                                  * we make sure to check zero_sum_result again
3149                                  * to verify if p or q need writeback
3150                                  */
3151                         }
3152                 } else {
3153                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3154                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3155                                 /* don't try to repair!! */
3156                                 set_bit(STRIPE_INSYNC, &sh->state);
3157                         else {
3158                                 int *target = &sh->ops.target;
3159
3160                                 sh->ops.target = -1;
3161                                 sh->ops.target2 = -1;
3162                                 sh->check_state = check_state_compute_run;
3163                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3164                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3165                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3166                                         set_bit(R5_Wantcompute,
3167                                                 &sh->dev[pd_idx].flags);
3168                                         *target = pd_idx;
3169                                         target = &sh->ops.target2;
3170                                         s->uptodate++;
3171                                 }
3172                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3173                                         set_bit(R5_Wantcompute,
3174                                                 &sh->dev[qd_idx].flags);
3175                                         *target = qd_idx;
3176                                         s->uptodate++;
3177                                 }
3178                         }
3179                 }
3180                 break;
3181         case check_state_compute_run:
3182                 break;
3183         default:
3184                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3185                        __func__, sh->check_state,
3186                        (unsigned long long) sh->sector);
3187                 BUG();
3188         }
3189 }
3190
3191 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3192 {
3193         int i;
3194
3195         /* We have read all the blocks in this stripe and now we need to
3196          * copy some of them into a target stripe for expand.
3197          */
3198         struct dma_async_tx_descriptor *tx = NULL;
3199         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3200         for (i = 0; i < sh->disks; i++)
3201                 if (i != sh->pd_idx && i != sh->qd_idx) {
3202                         int dd_idx, j;
3203                         struct stripe_head *sh2;
3204                         struct async_submit_ctl submit;
3205
3206                         sector_t bn = compute_blocknr(sh, i, 1);
3207                         sector_t s = raid5_compute_sector(conf, bn, 0,
3208                                                           &dd_idx, NULL);
3209                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3210                         if (sh2 == NULL)
3211                                 /* so far only the early blocks of this stripe
3212                                  * have been requested.  When later blocks
3213                                  * get requested, we will try again
3214                                  */
3215                                 continue;
3216                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3217                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3218                                 /* must have already done this block */
3219                                 release_stripe(sh2);
3220                                 continue;
3221                         }
3222
3223                         /* place all the copies on one channel */
3224                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3225                         tx = async_memcpy(sh2->dev[dd_idx].page,
3226                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3227                                           &submit);
3228
3229                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3230                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3231                         for (j = 0; j < conf->raid_disks; j++)
3232                                 if (j != sh2->pd_idx &&
3233                                     j != sh2->qd_idx &&
3234                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3235                                         break;
3236                         if (j == conf->raid_disks) {
3237                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3238                                 set_bit(STRIPE_HANDLE, &sh2->state);
3239                         }
3240                         release_stripe(sh2);
3241
3242                 }
3243         /* done submitting copies, wait for them to complete */
3244         async_tx_quiesce(&tx);
3245 }
3246
3247 /*
3248  * handle_stripe - do things to a stripe.
3249  *
3250  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3251  * state of various bits to see what needs to be done.
3252  * Possible results:
3253  *    return some read requests which now have data
3254  *    return some write requests which are safely on storage
3255  *    schedule a read on some buffers
3256  *    schedule a write of some buffers
3257  *    return confirmation of parity correctness
3258  *
3259  */
3260
3261 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3262 {
3263         struct r5conf *conf = sh->raid_conf;
3264         int disks = sh->disks;
3265         struct r5dev *dev;
3266         int i;
3267         int do_recovery = 0;
3268
3269         memset(s, 0, sizeof(*s));
3270
3271         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3272         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3273         s->failed_num[0] = -1;
3274         s->failed_num[1] = -1;
3275
3276         /* Now to look around and see what can be done */
3277         rcu_read_lock();
3278         for (i=disks; i--; ) {
3279                 struct md_rdev *rdev;
3280                 sector_t first_bad;
3281                 int bad_sectors;
3282                 int is_bad = 0;
3283
3284                 dev = &sh->dev[i];
3285
3286                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3287                          i, dev->flags,
3288                          dev->toread, dev->towrite, dev->written);
3289                 /* maybe we can reply to a read
3290                  *
3291                  * new wantfill requests are only permitted while
3292                  * ops_complete_biofill is guaranteed to be inactive
3293                  */
3294                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3295                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3296                         set_bit(R5_Wantfill, &dev->flags);
3297
3298                 /* now count some things */
3299                 if (test_bit(R5_LOCKED, &dev->flags))
3300                         s->locked++;
3301                 if (test_bit(R5_UPTODATE, &dev->flags))
3302                         s->uptodate++;
3303                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3304                         s->compute++;
3305                         BUG_ON(s->compute > 2);
3306                 }
3307
3308                 if (test_bit(R5_Wantfill, &dev->flags))
3309                         s->to_fill++;
3310                 else if (dev->toread)
3311                         s->to_read++;
3312                 if (dev->towrite) {
3313                         s->to_write++;
3314                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3315                                 s->non_overwrite++;
3316                 }
3317                 if (dev->written)
3318                         s->written++;
3319                 /* Prefer to use the replacement for reads, but only
3320                  * if it is recovered enough and has no bad blocks.
3321                  */
3322                 rdev = rcu_dereference(conf->disks[i].replacement);
3323                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3324                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3325                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3326                                  &first_bad, &bad_sectors))
3327                         set_bit(R5_ReadRepl, &dev->flags);
3328                 else {
3329                         if (rdev)
3330                                 set_bit(R5_NeedReplace, &dev->flags);
3331                         rdev = rcu_dereference(conf->disks[i].rdev);
3332                         clear_bit(R5_ReadRepl, &dev->flags);
3333                 }
3334                 if (rdev && test_bit(Faulty, &rdev->flags))
3335                         rdev = NULL;
3336                 if (rdev) {
3337                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3338                                              &first_bad, &bad_sectors);
3339                         if (s->blocked_rdev == NULL
3340                             && (test_bit(Blocked, &rdev->flags)
3341                                 || is_bad < 0)) {
3342                                 if (is_bad < 0)
3343                                         set_bit(BlockedBadBlocks,
3344                                                 &rdev->flags);
3345                                 s->blocked_rdev = rdev;
3346                                 atomic_inc(&rdev->nr_pending);
3347                         }
3348                 }
3349                 clear_bit(R5_Insync, &dev->flags);
3350                 if (!rdev)
3351                         /* Not in-sync */;
3352                 else if (is_bad) {
3353                         /* also not in-sync */
3354                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3355                             test_bit(R5_UPTODATE, &dev->flags)) {
3356                                 /* treat as in-sync, but with a read error
3357                                  * which we can now try to correct
3358                                  */
3359                                 set_bit(R5_Insync, &dev->flags);
3360                                 set_bit(R5_ReadError, &dev->flags);
3361                         }
3362                 } else if (test_bit(In_sync, &rdev->flags))
3363                         set_bit(R5_Insync, &dev->flags);
3364                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3365                         /* in sync if before recovery_offset */
3366                         set_bit(R5_Insync, &dev->flags);
3367                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3368                          test_bit(R5_Expanded, &dev->flags))
3369                         /* If we've reshaped into here, we assume it is Insync.
3370                          * We will shortly update recovery_offset to make
3371                          * it official.
3372                          */
3373                         set_bit(R5_Insync, &dev->flags);
3374
3375                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3376                         /* This flag does not apply to '.replacement'
3377                          * only to .rdev, so make sure to check that*/
3378                         struct md_rdev *rdev2 = rcu_dereference(
3379                                 conf->disks[i].rdev);
3380                         if (rdev2 == rdev)
3381                                 clear_bit(R5_Insync, &dev->flags);
3382                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3383                                 s->handle_bad_blocks = 1;
3384                                 atomic_inc(&rdev2->nr_pending);
3385                         } else
3386                                 clear_bit(R5_WriteError, &dev->flags);
3387                 }
3388                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3389                         /* This flag does not apply to '.replacement'
3390                          * only to .rdev, so make sure to check that*/
3391                         struct md_rdev *rdev2 = rcu_dereference(
3392                                 conf->disks[i].rdev);
3393                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3394                                 s->handle_bad_blocks = 1;
3395                                 atomic_inc(&rdev2->nr_pending);
3396                         } else
3397                                 clear_bit(R5_MadeGood, &dev->flags);
3398                 }
3399                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3400                         struct md_rdev *rdev2 = rcu_dereference(
3401                                 conf->disks[i].replacement);
3402                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3403                                 s->handle_bad_blocks = 1;
3404                                 atomic_inc(&rdev2->nr_pending);
3405                         } else
3406                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3407                 }
3408                 if (!test_bit(R5_Insync, &dev->flags)) {
3409                         /* The ReadError flag will just be confusing now */
3410                         clear_bit(R5_ReadError, &dev->flags);
3411                         clear_bit(R5_ReWrite, &dev->flags);
3412                 }
3413                 if (test_bit(R5_ReadError, &dev->flags))
3414                         clear_bit(R5_Insync, &dev->flags);
3415                 if (!test_bit(R5_Insync, &dev->flags)) {
3416                         if (s->failed < 2)
3417                                 s->failed_num[s->failed] = i;
3418                         s->failed++;
3419                         if (rdev && !test_bit(Faulty, &rdev->flags))
3420                                 do_recovery = 1;
3421                 }
3422         }
3423         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3424                 /* If there is a failed device being replaced,
3425                  *     we must be recovering.
3426                  * else if we are after recovery_cp, we must be syncing
3427                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3428                  * else we can only be replacing
3429                  * sync and recovery both need to read all devices, and so
3430                  * use the same flag.
3431                  */
3432                 if (do_recovery ||
3433                     sh->sector >= conf->mddev->recovery_cp ||
3434                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3435                         s->syncing = 1;
3436                 else
3437                         s->replacing = 1;
3438         }
3439         rcu_read_unlock();
3440 }
3441
3442 static void handle_stripe(struct stripe_head *sh)
3443 {
3444         struct stripe_head_state s;
3445         struct r5conf *conf = sh->raid_conf;
3446         int i;
3447         int prexor;
3448         int disks = sh->disks;
3449         struct r5dev *pdev, *qdev;
3450
3451         clear_bit(STRIPE_HANDLE, &sh->state);
3452         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3453                 /* already being handled, ensure it gets handled
3454                  * again when current action finishes */
3455                 set_bit(STRIPE_HANDLE, &sh->state);
3456                 return;
3457         }
3458
3459         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3460                 set_bit(STRIPE_SYNCING, &sh->state);
3461                 clear_bit(STRIPE_INSYNC, &sh->state);
3462         }
3463         clear_bit(STRIPE_DELAYED, &sh->state);
3464
3465         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3466                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3467                (unsigned long long)sh->sector, sh->state,
3468                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3469                sh->check_state, sh->reconstruct_state);
3470
3471         analyse_stripe(sh, &s);
3472
3473         if (s.handle_bad_blocks) {
3474                 set_bit(STRIPE_HANDLE, &sh->state);
3475                 goto finish;
3476         }
3477
3478         if (unlikely(s.blocked_rdev)) {
3479                 if (s.syncing || s.expanding || s.expanded ||
3480                     s.replacing || s.to_write || s.written) {
3481                         set_bit(STRIPE_HANDLE, &sh->state);
3482                         goto finish;
3483                 }
3484                 /* There is nothing for the blocked_rdev to block */
3485                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3486                 s.blocked_rdev = NULL;
3487         }
3488
3489         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3490                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3491                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3492         }
3493
3494         pr_debug("locked=%d uptodate=%d to_read=%d"
3495                " to_write=%d failed=%d failed_num=%d,%d\n",
3496                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3497                s.failed_num[0], s.failed_num[1]);
3498         /* check if the array has lost more than max_degraded devices and,
3499          * if so, some requests might need to be failed.
3500          */
3501         if (s.failed > conf->max_degraded) {
3502                 sh->check_state = 0;
3503                 sh->reconstruct_state = 0;
3504                 if (s.to_read+s.to_write+s.written)
3505                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3506                 if (s.syncing + s.replacing)
3507                         handle_failed_sync(conf, sh, &s);
3508         }
3509
3510         /* Now we check to see if any write operations have recently
3511          * completed
3512          */
3513         prexor = 0;
3514         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3515                 prexor = 1;
3516         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3517             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3518                 sh->reconstruct_state = reconstruct_state_idle;
3519
3520                 /* All the 'written' buffers and the parity block are ready to
3521                  * be written back to disk
3522                  */
3523                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3524                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3525                 BUG_ON(sh->qd_idx >= 0 &&
3526                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3527                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3528                 for (i = disks; i--; ) {
3529                         struct r5dev *dev = &sh->dev[i];
3530                         if (test_bit(R5_LOCKED, &dev->flags) &&
3531                                 (i == sh->pd_idx || i == sh->qd_idx ||
3532                                  dev->written)) {
3533                                 pr_debug("Writing block %d\n", i);
3534                                 set_bit(R5_Wantwrite, &dev->flags);
3535                                 if (prexor)
3536                                         continue;
3537                                 if (!test_bit(R5_Insync, &dev->flags) ||
3538                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3539                                      s.failed == 0))
3540                                         set_bit(STRIPE_INSYNC, &sh->state);
3541                         }
3542                 }
3543                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3544                         s.dec_preread_active = 1;
3545         }
3546
3547         /*
3548          * might be able to return some write requests if the parity blocks
3549          * are safe, or on a failed drive
3550          */
3551         pdev = &sh->dev[sh->pd_idx];
3552         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3553                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3554         qdev = &sh->dev[sh->qd_idx];
3555         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3556                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3557                 || conf->level < 6;
3558
3559         if (s.written &&
3560             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3561                              && !test_bit(R5_LOCKED, &pdev->flags)
3562                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3563                                  test_bit(R5_Discard, &pdev->flags))))) &&
3564             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3565                              && !test_bit(R5_LOCKED, &qdev->flags)
3566                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3567                                  test_bit(R5_Discard, &qdev->flags))))))
3568                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3569
3570         /* Now we might consider reading some blocks, either to check/generate
3571          * parity, or to satisfy requests
3572          * or to load a block that is being partially written.
3573          */
3574         if (s.to_read || s.non_overwrite
3575             || (conf->level == 6 && s.to_write && s.failed)
3576             || (s.syncing && (s.uptodate + s.compute < disks))
3577             || s.replacing
3578             || s.expanding)
3579                 handle_stripe_fill(sh, &s, disks);
3580
3581         /* Now to consider new write requests and what else, if anything
3582          * should be read.  We do not handle new writes when:
3583          * 1/ A 'write' operation (copy+xor) is already in flight.
3584          * 2/ A 'check' operation is in flight, as it may clobber the parity
3585          *    block.
3586          */
3587         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3588                 handle_stripe_dirtying(conf, sh, &s, disks);
3589
3590         /* maybe we need to check and possibly fix the parity for this stripe
3591          * Any reads will already have been scheduled, so we just see if enough
3592          * data is available.  The parity check is held off while parity
3593          * dependent operations are in flight.
3594          */
3595         if (sh->check_state ||
3596             (s.syncing && s.locked == 0 &&
3597              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3598              !test_bit(STRIPE_INSYNC, &sh->state))) {
3599                 if (conf->level == 6)
3600                         handle_parity_checks6(conf, sh, &s, disks);
3601                 else
3602                         handle_parity_checks5(conf, sh, &s, disks);
3603         }
3604
3605         if (s.replacing && s.locked == 0
3606             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3607                 /* Write out to replacement devices where possible */
3608                 for (i = 0; i < conf->raid_disks; i++)
3609                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3610                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3611                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3612                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3613                                 s.locked++;
3614                         }
3615                 set_bit(STRIPE_INSYNC, &sh->state);
3616         }
3617         if ((s.syncing || s.replacing) && s.locked == 0 &&
3618             test_bit(STRIPE_INSYNC, &sh->state)) {
3619                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3620                 clear_bit(STRIPE_SYNCING, &sh->state);
3621         }
3622
3623         /* If the failed drives are just a ReadError, then we might need
3624          * to progress the repair/check process
3625          */
3626         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3627                 for (i = 0; i < s.failed; i++) {
3628                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3629                         if (test_bit(R5_ReadError, &dev->flags)
3630                             && !test_bit(R5_LOCKED, &dev->flags)
3631                             && test_bit(R5_UPTODATE, &dev->flags)
3632                                 ) {
3633                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3634                                         set_bit(R5_Wantwrite, &dev->flags);
3635                                         set_bit(R5_ReWrite, &dev->flags);
3636                                         set_bit(R5_LOCKED, &dev->flags);
3637                                         s.locked++;
3638                                 } else {
3639                                         /* let's read it back */
3640                                         set_bit(R5_Wantread, &dev->flags);
3641                                         set_bit(R5_LOCKED, &dev->flags);
3642                                         s.locked++;
3643                                 }
3644                         }
3645                 }
3646
3647
3648         /* Finish reconstruct operations initiated by the expansion process */
3649         if (sh->reconstruct_state == reconstruct_state_result) {
3650                 struct stripe_head *sh_src
3651                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3652                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3653                         /* sh cannot be written until sh_src has been read.
3654                          * so arrange for sh to be delayed a little
3655                          */
3656                         set_bit(STRIPE_DELAYED, &sh->state);
3657                         set_bit(STRIPE_HANDLE, &sh->state);
3658                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3659                                               &sh_src->state))
3660                                 atomic_inc(&conf->preread_active_stripes);
3661                         release_stripe(sh_src);
3662                         goto finish;
3663                 }
3664                 if (sh_src)
3665                         release_stripe(sh_src);
3666
3667                 sh->reconstruct_state = reconstruct_state_idle;
3668                 clear_bit(STRIPE_EXPANDING, &sh->state);
3669                 for (i = conf->raid_disks; i--; ) {
3670                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3671                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3672                         s.locked++;
3673                 }
3674         }
3675
3676         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3677             !sh->reconstruct_state) {
3678                 /* Need to write out all blocks after computing parity */
3679                 sh->disks = conf->raid_disks;
3680                 stripe_set_idx(sh->sector, conf, 0, sh);
3681                 schedule_reconstruction(sh, &s, 1, 1);
3682         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3683                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3684                 atomic_dec(&conf->reshape_stripes);
3685                 wake_up(&conf->wait_for_overlap);
3686                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3687         }
3688
3689         if (s.expanding && s.locked == 0 &&
3690             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3691                 handle_stripe_expansion(conf, sh);
3692
3693 finish:
3694         /* wait for this device to become unblocked */
3695         if (unlikely(s.blocked_rdev)) {
3696                 if (conf->mddev->external)
3697                         md_wait_for_blocked_rdev(s.blocked_rdev,
3698                                                  conf->mddev);
3699                 else
3700                         /* Internal metadata will immediately
3701                          * be written by raid5d, so we don't
3702                          * need to wait here.
3703                          */
3704                         rdev_dec_pending(s.blocked_rdev,
3705                                          conf->mddev);
3706         }
3707
3708         if (s.handle_bad_blocks)
3709                 for (i = disks; i--; ) {
3710                         struct md_rdev *rdev;
3711                         struct r5dev *dev = &sh->dev[i];
3712                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3713                                 /* We own a safe reference to the rdev */
3714                                 rdev = conf->disks[i].rdev;
3715                                 if (!rdev_set_badblocks(rdev, sh->sector,
3716                                                         STRIPE_SECTORS, 0))
3717                                         md_error(conf->mddev, rdev);
3718                                 rdev_dec_pending(rdev, conf->mddev);
3719                         }
3720                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3721                                 rdev = conf->disks[i].rdev;
3722                                 rdev_clear_badblocks(rdev, sh->sector,
3723                                                      STRIPE_SECTORS, 0);
3724                                 rdev_dec_pending(rdev, conf->mddev);
3725                         }
3726                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3727                                 rdev = conf->disks[i].replacement;
3728                                 if (!rdev)
3729                                         /* rdev have been moved down */
3730                                         rdev = conf->disks[i].rdev;
3731                                 rdev_clear_badblocks(rdev, sh->sector,
3732                                                      STRIPE_SECTORS, 0);
3733                                 rdev_dec_pending(rdev, conf->mddev);
3734                         }
3735                 }
3736
3737         if (s.ops_request)
3738                 raid_run_ops(sh, s.ops_request);
3739
3740         ops_run_io(sh, &s);
3741
3742         if (s.dec_preread_active) {
3743                 /* We delay this until after ops_run_io so that if make_request
3744                  * is waiting on a flush, it won't continue until the writes
3745                  * have actually been submitted.
3746                  */
3747                 atomic_dec(&conf->preread_active_stripes);
3748                 if (atomic_read(&conf->preread_active_stripes) <
3749                     IO_THRESHOLD)
3750                         md_wakeup_thread(conf->mddev->thread);
3751         }
3752
3753         return_io(s.return_bi);
3754
3755         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3756 }
3757
3758 static void raid5_activate_delayed(struct r5conf *conf)
3759 {
3760         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3761                 while (!list_empty(&conf->delayed_list)) {
3762                         struct list_head *l = conf->delayed_list.next;
3763                         struct stripe_head *sh;
3764                         sh = list_entry(l, struct stripe_head, lru);
3765                         list_del_init(l);
3766                         clear_bit(STRIPE_DELAYED, &sh->state);
3767                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3768                                 atomic_inc(&conf->preread_active_stripes);
3769                         list_add_tail(&sh->lru, &conf->hold_list);
3770                 }
3771         }
3772 }
3773
3774 static void activate_bit_delay(struct r5conf *conf)
3775 {
3776         /* device_lock is held */
3777         struct list_head head;
3778         list_add(&head, &conf->bitmap_list);
3779         list_del_init(&conf->bitmap_list);
3780         while (!list_empty(&head)) {
3781                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3782                 list_del_init(&sh->lru);
3783                 atomic_inc(&sh->count);
3784                 __release_stripe(conf, sh);
3785         }
3786 }
3787
3788 int md_raid5_congested(struct mddev *mddev, int bits)
3789 {
3790         struct r5conf *conf = mddev->private;
3791
3792         /* No difference between reads and writes.  Just check
3793          * how busy the stripe_cache is
3794          */
3795
3796         if (conf->inactive_blocked)
3797                 return 1;
3798         if (conf->quiesce)
3799                 return 1;
3800         if (list_empty_careful(&conf->inactive_list))
3801                 return 1;
3802
3803         return 0;
3804 }
3805 EXPORT_SYMBOL_GPL(md_raid5_congested);
3806
3807 static int raid5_congested(void *data, int bits)
3808 {
3809         struct mddev *mddev = data;
3810
3811         return mddev_congested(mddev, bits) ||
3812                 md_raid5_congested(mddev, bits);
3813 }
3814
3815 /* We want read requests to align with chunks where possible,
3816  * but write requests don't need to.
3817  */
3818 static int raid5_mergeable_bvec(struct request_queue *q,
3819                                 struct bvec_merge_data *bvm,
3820                                 struct bio_vec *biovec)
3821 {
3822         struct mddev *mddev = q->queuedata;
3823         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3824         int max;
3825         unsigned int chunk_sectors = mddev->chunk_sectors;
3826         unsigned int bio_sectors = bvm->bi_size >> 9;
3827
3828         if ((bvm->bi_rw & 1) == WRITE)
3829                 return biovec->bv_len; /* always allow writes to be mergeable */
3830
3831         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3832                 chunk_sectors = mddev->new_chunk_sectors;
3833         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3834         if (max < 0) max = 0;
3835         if (max <= biovec->bv_len && bio_sectors == 0)
3836                 return biovec->bv_len;
3837         else
3838                 return max;
3839 }
3840
3841
3842 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3843 {
3844         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3845         unsigned int chunk_sectors = mddev->chunk_sectors;
3846         unsigned int bio_sectors = bio->bi_size >> 9;
3847
3848         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3849                 chunk_sectors = mddev->new_chunk_sectors;
3850         return  chunk_sectors >=
3851                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3852 }
3853
3854 /*
3855  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3856  *  later sampled by raid5d.
3857  */
3858 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3859 {
3860         unsigned long flags;
3861
3862         spin_lock_irqsave(&conf->device_lock, flags);
3863
3864         bi->bi_next = conf->retry_read_aligned_list;
3865         conf->retry_read_aligned_list = bi;
3866
3867         spin_unlock_irqrestore(&conf->device_lock, flags);
3868         md_wakeup_thread(conf->mddev->thread);
3869 }
3870
3871
3872 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3873 {
3874         struct bio *bi;
3875
3876         bi = conf->retry_read_aligned;
3877         if (bi) {
3878                 conf->retry_read_aligned = NULL;
3879                 return bi;
3880         }
3881         bi = conf->retry_read_aligned_list;
3882         if(bi) {
3883                 conf->retry_read_aligned_list = bi->bi_next;
3884                 bi->bi_next = NULL;
3885                 /*
3886                  * this sets the active strip count to 1 and the processed
3887                  * strip count to zero (upper 8 bits)
3888                  */
3889                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3890         }
3891
3892         return bi;
3893 }
3894
3895
3896 /*
3897  *  The "raid5_align_endio" should check if the read succeeded and if it
3898  *  did, call bio_endio on the original bio (having bio_put the new bio
3899  *  first).
3900  *  If the read failed..
3901  */
3902 static void raid5_align_endio(struct bio *bi, int error)
3903 {
3904         struct bio* raid_bi  = bi->bi_private;
3905         struct mddev *mddev;
3906         struct r5conf *conf;
3907         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3908         struct md_rdev *rdev;
3909
3910         bio_put(bi);
3911
3912         rdev = (void*)raid_bi->bi_next;
3913         raid_bi->bi_next = NULL;
3914         mddev = rdev->mddev;
3915         conf = mddev->private;
3916
3917         rdev_dec_pending(rdev, conf->mddev);
3918
3919         if (!error && uptodate) {
3920                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3921                                          raid_bi, 0);
3922                 bio_endio(raid_bi, 0);
3923                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3924                         wake_up(&conf->wait_for_stripe);
3925                 return;
3926         }
3927
3928
3929         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3930
3931         add_bio_to_retry(raid_bi, conf);
3932 }
3933
3934 static int bio_fits_rdev(struct bio *bi)
3935 {
3936         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3937
3938         if ((bi->bi_size>>9) > queue_max_sectors(q))
3939                 return 0;
3940         blk_recount_segments(q, bi);
3941         if (bi->bi_phys_segments > queue_max_segments(q))
3942                 return 0;
3943
3944         if (q->merge_bvec_fn)
3945                 /* it's too hard to apply the merge_bvec_fn at this stage,
3946                  * just just give up
3947                  */
3948                 return 0;
3949
3950         return 1;
3951 }
3952
3953
3954 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3955 {
3956         struct r5conf *conf = mddev->private;
3957         int dd_idx;
3958         struct bio* align_bi;
3959         struct md_rdev *rdev;
3960         sector_t end_sector;
3961
3962         if (!in_chunk_boundary(mddev, raid_bio)) {
3963                 pr_debug("chunk_aligned_read : non aligned\n");
3964                 return 0;
3965         }
3966         /*
3967          * use bio_clone_mddev to make a copy of the bio
3968          */
3969         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3970         if (!align_bi)
3971                 return 0;
3972         /*
3973          *   set bi_end_io to a new function, and set bi_private to the
3974          *     original bio.
3975          */
3976         align_bi->bi_end_io  = raid5_align_endio;
3977         align_bi->bi_private = raid_bio;
3978         /*
3979          *      compute position
3980          */
3981         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3982                                                     0,
3983                                                     &dd_idx, NULL);
3984
3985         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3986         rcu_read_lock();
3987         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3988         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3989             rdev->recovery_offset < end_sector) {
3990                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3991                 if (rdev &&
3992                     (test_bit(Faulty, &rdev->flags) ||
3993                     !(test_bit(In_sync, &rdev->flags) ||
3994                       rdev->recovery_offset >= end_sector)))
3995                         rdev = NULL;
3996         }
3997         if (rdev) {
3998                 sector_t first_bad;
3999                 int bad_sectors;
4000
4001                 atomic_inc(&rdev->nr_pending);
4002                 rcu_read_unlock();
4003                 raid_bio->bi_next = (void*)rdev;
4004                 align_bi->bi_bdev =  rdev->bdev;
4005                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4006
4007                 if (!bio_fits_rdev(align_bi) ||
4008                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4009                                 &first_bad, &bad_sectors)) {
4010                         /* too big in some way, or has a known bad block */
4011                         bio_put(align_bi);
4012                         rdev_dec_pending(rdev, mddev);
4013                         return 0;
4014                 }
4015
4016                 /* No reshape active, so we can trust rdev->data_offset */
4017                 align_bi->bi_sector += rdev->data_offset;
4018
4019                 spin_lock_irq(&conf->device_lock);
4020                 wait_event_lock_irq(conf->wait_for_stripe,
4021                                     conf->quiesce == 0,
4022                                     conf->device_lock);
4023                 atomic_inc(&conf->active_aligned_reads);
4024                 spin_unlock_irq(&conf->device_lock);
4025
4026                 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4027                                       align_bi, disk_devt(mddev->gendisk),
4028                                       raid_bio->bi_sector);
4029                 generic_make_request(align_bi);
4030                 return 1;
4031         } else {
4032                 rcu_read_unlock();
4033                 bio_put(align_bi);
4034                 return 0;
4035         }
4036 }
4037
4038 /* __get_priority_stripe - get the next stripe to process
4039  *
4040  * Full stripe writes are allowed to pass preread active stripes up until
4041  * the bypass_threshold is exceeded.  In general the bypass_count
4042  * increments when the handle_list is handled before the hold_list; however, it
4043  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4044  * stripe with in flight i/o.  The bypass_count will be reset when the
4045  * head of the hold_list has changed, i.e. the head was promoted to the
4046  * handle_list.
4047  */
4048 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4049 {
4050         struct stripe_head *sh;
4051
4052         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4053                   __func__,
4054                   list_empty(&conf->handle_list) ? "empty" : "busy",
4055                   list_empty(&conf->hold_list) ? "empty" : "busy",
4056                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4057
4058         if (!list_empty(&conf->handle_list)) {
4059                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4060
4061                 if (list_empty(&conf->hold_list))
4062                         conf->bypass_count = 0;
4063                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4064                         if (conf->hold_list.next == conf->last_hold)
4065                                 conf->bypass_count++;
4066                         else {
4067                                 conf->last_hold = conf->hold_list.next;
4068                                 conf->bypass_count -= conf->bypass_threshold;
4069                                 if (conf->bypass_count < 0)
4070                                         conf->bypass_count = 0;
4071                         }
4072                 }
4073         } else if (!list_empty(&conf->hold_list) &&
4074                    ((conf->bypass_threshold &&
4075                      conf->bypass_count > conf->bypass_threshold) ||
4076                     atomic_read(&conf->pending_full_writes) == 0)) {
4077                 sh = list_entry(conf->hold_list.next,
4078                                 typeof(*sh), lru);
4079                 conf->bypass_count -= conf->bypass_threshold;
4080                 if (conf->bypass_count < 0)
4081                         conf->bypass_count = 0;
4082         } else
4083                 return NULL;
4084
4085         list_del_init(&sh->lru);
4086         atomic_inc(&sh->count);
4087         BUG_ON(atomic_read(&sh->count) != 1);
4088         return sh;
4089 }
4090
4091 struct raid5_plug_cb {
4092         struct blk_plug_cb      cb;
4093         struct list_head        list;
4094 };
4095
4096 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4097 {
4098         struct raid5_plug_cb *cb = container_of(
4099                 blk_cb, struct raid5_plug_cb, cb);
4100         struct stripe_head *sh;
4101         struct mddev *mddev = cb->cb.data;
4102         struct r5conf *conf = mddev->private;
4103         int cnt = 0;
4104
4105         if (cb->list.next && !list_empty(&cb->list)) {
4106                 spin_lock_irq(&conf->device_lock);
4107                 while (!list_empty(&cb->list)) {
4108                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4109                         list_del_init(&sh->lru);
4110                         /*
4111                          * avoid race release_stripe_plug() sees
4112                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4113                          * is still in our list
4114                          */
4115                         smp_mb__before_clear_bit();
4116                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4117                         __release_stripe(conf, sh);
4118                         cnt++;
4119                 }
4120                 spin_unlock_irq(&conf->device_lock);
4121         }
4122         trace_block_unplug(mddev->queue, cnt, !from_schedule);
4123         kfree(cb);
4124 }
4125
4126 static void release_stripe_plug(struct mddev *mddev,
4127                                 struct stripe_head *sh)
4128 {
4129         struct blk_plug_cb *blk_cb = blk_check_plugged(
4130                 raid5_unplug, mddev,
4131                 sizeof(struct raid5_plug_cb));
4132         struct raid5_plug_cb *cb;
4133
4134         if (!blk_cb) {
4135                 release_stripe(sh);
4136                 return;
4137         }
4138
4139         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4140
4141         if (cb->list.next == NULL)
4142                 INIT_LIST_HEAD(&cb->list);
4143
4144         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4145                 list_add_tail(&sh->lru, &cb->list);
4146         else
4147                 release_stripe(sh);
4148 }
4149
4150 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4151 {
4152         struct r5conf *conf = mddev->private;
4153         sector_t logical_sector, last_sector;
4154         struct stripe_head *sh;
4155         int remaining;
4156         int stripe_sectors;
4157
4158         if (mddev->reshape_position != MaxSector)
4159                 /* Skip discard while reshape is happening */
4160                 return;
4161
4162         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4163         last_sector = bi->bi_sector + (bi->bi_size>>9);
4164
4165         bi->bi_next = NULL;
4166         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4167
4168         stripe_sectors = conf->chunk_sectors *
4169                 (conf->raid_disks - conf->max_degraded);
4170         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4171                                                stripe_sectors);
4172         sector_div(last_sector, stripe_sectors);
4173
4174         logical_sector *= conf->chunk_sectors;
4175         last_sector *= conf->chunk_sectors;
4176
4177         for (; logical_sector < last_sector;
4178              logical_sector += STRIPE_SECTORS) {
4179                 DEFINE_WAIT(w);
4180                 int d;
4181         again:
4182                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4183                 prepare_to_wait(&conf->wait_for_overlap, &w,
4184                                 TASK_UNINTERRUPTIBLE);
4185                 spin_lock_irq(&sh->stripe_lock);
4186                 for (d = 0; d < conf->raid_disks; d++) {
4187                         if (d == sh->pd_idx || d == sh->qd_idx)
4188                                 continue;
4189                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4190                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4191                                 spin_unlock_irq(&sh->stripe_lock);
4192                                 release_stripe(sh);
4193                                 schedule();
4194                                 goto again;
4195                         }
4196                 }
4197                 finish_wait(&conf->wait_for_overlap, &w);
4198                 for (d = 0; d < conf->raid_disks; d++) {
4199                         if (d == sh->pd_idx || d == sh->qd_idx)
4200                                 continue;
4201                         sh->dev[d].towrite = bi;
4202                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4203                         raid5_inc_bi_active_stripes(bi);
4204                 }
4205                 spin_unlock_irq(&sh->stripe_lock);
4206                 if (conf->mddev->bitmap) {
4207                         for (d = 0;
4208                              d < conf->raid_disks - conf->max_degraded;
4209                              d++)
4210                                 bitmap_startwrite(mddev->bitmap,
4211                                                   sh->sector,
4212                                                   STRIPE_SECTORS,
4213                                                   0);
4214                         sh->bm_seq = conf->seq_flush + 1;
4215                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4216                 }
4217
4218                 set_bit(STRIPE_HANDLE, &sh->state);
4219                 clear_bit(STRIPE_DELAYED, &sh->state);
4220                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4221                         atomic_inc(&conf->preread_active_stripes);
4222                 release_stripe_plug(mddev, sh);
4223         }
4224
4225         remaining = raid5_dec_bi_active_stripes(bi);
4226         if (remaining == 0) {
4227                 md_write_end(mddev);
4228                 bio_endio(bi, 0);
4229         }
4230 }
4231
4232 static void make_request(struct mddev *mddev, struct bio * bi)
4233 {
4234         struct r5conf *conf = mddev->private;
4235         int dd_idx;
4236         sector_t new_sector;
4237         sector_t logical_sector, last_sector;
4238         struct stripe_head *sh;
4239         const int rw = bio_data_dir(bi);
4240         int remaining;
4241
4242         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4243                 md_flush_request(mddev, bi);
4244                 return;
4245         }
4246
4247         md_write_start(mddev, bi);
4248
4249         if (rw == READ &&
4250              mddev->reshape_position == MaxSector &&
4251              chunk_aligned_read(mddev,bi))
4252                 return;
4253
4254         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4255                 make_discard_request(mddev, bi);
4256                 return;
4257         }
4258
4259         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4260         last_sector = bi->bi_sector + (bi->bi_size>>9);
4261         bi->bi_next = NULL;
4262         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4263
4264         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4265                 DEFINE_WAIT(w);
4266                 int previous;
4267
4268         retry:
4269                 previous = 0;
4270                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4271                 if (unlikely(conf->reshape_progress != MaxSector)) {
4272                         /* spinlock is needed as reshape_progress may be
4273                          * 64bit on a 32bit platform, and so it might be
4274                          * possible to see a half-updated value
4275                          * Of course reshape_progress could change after
4276                          * the lock is dropped, so once we get a reference
4277                          * to the stripe that we think it is, we will have
4278                          * to check again.
4279                          */
4280                         spin_lock_irq(&conf->device_lock);
4281                         if (mddev->reshape_backwards
4282                             ? logical_sector < conf->reshape_progress
4283                             : logical_sector >= conf->reshape_progress) {
4284                                 previous = 1;
4285                         } else {
4286                                 if (mddev->reshape_backwards
4287                                     ? logical_sector < conf->reshape_safe
4288                                     : logical_sector >= conf->reshape_safe) {
4289                                         spin_unlock_irq(&conf->device_lock);
4290                                         schedule();
4291                                         goto retry;
4292                                 }
4293                         }
4294                         spin_unlock_irq(&conf->device_lock);
4295                 }
4296
4297                 new_sector = raid5_compute_sector(conf, logical_sector,
4298                                                   previous,
4299                                                   &dd_idx, NULL);
4300                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4301                         (unsigned long long)new_sector, 
4302                         (unsigned long long)logical_sector);
4303
4304                 sh = get_active_stripe(conf, new_sector, previous,
4305                                        (bi->bi_rw&RWA_MASK), 0);
4306                 if (sh) {
4307                         if (unlikely(previous)) {
4308                                 /* expansion might have moved on while waiting for a
4309                                  * stripe, so we must do the range check again.
4310                                  * Expansion could still move past after this
4311                                  * test, but as we are holding a reference to
4312                                  * 'sh', we know that if that happens,
4313                                  *  STRIPE_EXPANDING will get set and the expansion
4314                                  * won't proceed until we finish with the stripe.
4315                                  */
4316                                 int must_retry = 0;
4317                                 spin_lock_irq(&conf->device_lock);
4318                                 if (mddev->reshape_backwards
4319                                     ? logical_sector >= conf->reshape_progress
4320                                     : logical_sector < conf->reshape_progress)
4321                                         /* mismatch, need to try again */
4322                                         must_retry = 1;
4323                                 spin_unlock_irq(&conf->device_lock);
4324                                 if (must_retry) {
4325                                         release_stripe(sh);
4326                                         schedule();
4327                                         goto retry;
4328                                 }
4329                         }
4330
4331                         if (rw == WRITE &&
4332                             logical_sector >= mddev->suspend_lo &&
4333                             logical_sector < mddev->suspend_hi) {
4334                                 release_stripe(sh);
4335                                 /* As the suspend_* range is controlled by
4336                                  * userspace, we want an interruptible
4337                                  * wait.
4338                                  */
4339                                 flush_signals(current);
4340                                 prepare_to_wait(&conf->wait_for_overlap,
4341                                                 &w, TASK_INTERRUPTIBLE);
4342                                 if (logical_sector >= mddev->suspend_lo &&
4343                                     logical_sector < mddev->suspend_hi)
4344                                         schedule();
4345                                 goto retry;
4346                         }
4347
4348                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4349                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4350                                 /* Stripe is busy expanding or
4351                                  * add failed due to overlap.  Flush everything
4352                                  * and wait a while
4353                                  */
4354                                 md_wakeup_thread(mddev->thread);
4355                                 release_stripe(sh);
4356                                 schedule();
4357                                 goto retry;
4358                         }
4359                         finish_wait(&conf->wait_for_overlap, &w);
4360                         set_bit(STRIPE_HANDLE, &sh->state);
4361                         clear_bit(STRIPE_DELAYED, &sh->state);
4362                         if ((bi->bi_rw & REQ_SYNC) &&
4363                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4364                                 atomic_inc(&conf->preread_active_stripes);
4365                         release_stripe_plug(mddev, sh);
4366                 } else {
4367                         /* cannot get stripe for read-ahead, just give-up */
4368                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4369                         finish_wait(&conf->wait_for_overlap, &w);
4370                         break;
4371                 }
4372         }
4373
4374         remaining = raid5_dec_bi_active_stripes(bi);
4375         if (remaining == 0) {
4376
4377                 if ( rw == WRITE )
4378                         md_write_end(mddev);
4379
4380                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4381                                          bi, 0);
4382                 bio_endio(bi, 0);
4383         }
4384 }
4385
4386 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4387
4388 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4389 {
4390         /* reshaping is quite different to recovery/resync so it is
4391          * handled quite separately ... here.
4392          *
4393          * On each call to sync_request, we gather one chunk worth of
4394          * destination stripes and flag them as expanding.
4395          * Then we find all the source stripes and request reads.
4396          * As the reads complete, handle_stripe will copy the data
4397          * into the destination stripe and release that stripe.
4398          */
4399         struct r5conf *conf = mddev->private;
4400         struct stripe_head *sh;
4401         sector_t first_sector, last_sector;
4402         int raid_disks = conf->previous_raid_disks;
4403         int data_disks = raid_disks - conf->max_degraded;
4404         int new_data_disks = conf->raid_disks - conf->max_degraded;
4405         int i;
4406         int dd_idx;
4407         sector_t writepos, readpos, safepos;
4408         sector_t stripe_addr;
4409         int reshape_sectors;
4410         struct list_head stripes;
4411
4412         if (sector_nr == 0) {
4413                 /* If restarting in the middle, skip the initial sectors */
4414                 if (mddev->reshape_backwards &&
4415                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4416                         sector_nr = raid5_size(mddev, 0, 0)
4417                                 - conf->reshape_progress;
4418                 } else if (!mddev->reshape_backwards &&
4419                            conf->reshape_progress > 0)
4420                         sector_nr = conf->reshape_progress;
4421                 sector_div(sector_nr, new_data_disks);
4422                 if (sector_nr) {
4423                         mddev->curr_resync_completed = sector_nr;
4424                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4425                         *skipped = 1;
4426                         return sector_nr;
4427                 }
4428         }
4429
4430         /* We need to process a full chunk at a time.
4431          * If old and new chunk sizes differ, we need to process the
4432          * largest of these
4433          */
4434         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4435                 reshape_sectors = mddev->new_chunk_sectors;
4436         else
4437                 reshape_sectors = mddev->chunk_sectors;
4438
4439         /* We update the metadata at least every 10 seconds, or when
4440          * the data about to be copied would over-write the source of
4441          * the data at the front of the range.  i.e. one new_stripe
4442          * along from reshape_progress new_maps to after where
4443          * reshape_safe old_maps to
4444          */
4445         writepos = conf->reshape_progress;
4446         sector_div(writepos, new_data_disks);
4447         readpos = conf->reshape_progress;
4448         sector_div(readpos, data_disks);
4449         safepos = conf->reshape_safe;
4450         sector_div(safepos, data_disks);
4451         if (mddev->reshape_backwards) {
4452                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4453                 readpos += reshape_sectors;
4454                 safepos += reshape_sectors;
4455         } else {
4456                 writepos += reshape_sectors;
4457                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4458                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4459         }
4460
4461         /* Having calculated the 'writepos' possibly use it
4462          * to set 'stripe_addr' which is where we will write to.
4463          */
4464         if (mddev->reshape_backwards) {
4465                 BUG_ON(conf->reshape_progress == 0);
4466                 stripe_addr = writepos;
4467                 BUG_ON((mddev->dev_sectors &
4468                         ~((sector_t)reshape_sectors - 1))
4469                        - reshape_sectors - stripe_addr
4470                        != sector_nr);
4471         } else {
4472                 BUG_ON(writepos != sector_nr + reshape_sectors);
4473                 stripe_addr = sector_nr;
4474         }
4475
4476         /* 'writepos' is the most advanced device address we might write.
4477          * 'readpos' is the least advanced device address we might read.
4478          * 'safepos' is the least address recorded in the metadata as having
4479          *     been reshaped.
4480          * If there is a min_offset_diff, these are adjusted either by
4481          * increasing the safepos/readpos if diff is negative, or
4482          * increasing writepos if diff is positive.
4483          * If 'readpos' is then behind 'writepos', there is no way that we can
4484          * ensure safety in the face of a crash - that must be done by userspace
4485          * making a backup of the data.  So in that case there is no particular
4486          * rush to update metadata.
4487          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4488          * update the metadata to advance 'safepos' to match 'readpos' so that
4489          * we can be safe in the event of a crash.
4490          * So we insist on updating metadata if safepos is behind writepos and
4491          * readpos is beyond writepos.
4492          * In any case, update the metadata every 10 seconds.
4493          * Maybe that number should be configurable, but I'm not sure it is
4494          * worth it.... maybe it could be a multiple of safemode_delay???
4495          */
4496         if (conf->min_offset_diff < 0) {
4497                 safepos += -conf->min_offset_diff;
4498                 readpos += -conf->min_offset_diff;
4499         } else
4500                 writepos += conf->min_offset_diff;
4501
4502         if ((mddev->reshape_backwards
4503              ? (safepos > writepos && readpos < writepos)
4504              : (safepos < writepos && readpos > writepos)) ||
4505             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4506                 /* Cannot proceed until we've updated the superblock... */
4507                 wait_event(conf->wait_for_overlap,
4508                            atomic_read(&conf->reshape_stripes)==0);
4509                 mddev->reshape_position = conf->reshape_progress;
4510                 mddev->curr_resync_completed = sector_nr;
4511                 conf->reshape_checkpoint = jiffies;
4512                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4513                 md_wakeup_thread(mddev->thread);
4514                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4515                            kthread_should_stop());
4516                 spin_lock_irq(&conf->device_lock);
4517                 conf->reshape_safe = mddev->reshape_position;
4518                 spin_unlock_irq(&conf->device_lock);
4519                 wake_up(&conf->wait_for_overlap);
4520                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4521         }
4522
4523         INIT_LIST_HEAD(&stripes);
4524         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4525                 int j;
4526                 int skipped_disk = 0;
4527                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4528                 set_bit(STRIPE_EXPANDING, &sh->state);
4529                 atomic_inc(&conf->reshape_stripes);
4530                 /* If any of this stripe is beyond the end of the old
4531                  * array, then we need to zero those blocks
4532                  */
4533                 for (j=sh->disks; j--;) {
4534                         sector_t s;
4535                         if (j == sh->pd_idx)
4536                                 continue;
4537                         if (conf->level == 6 &&
4538                             j == sh->qd_idx)
4539                                 continue;
4540                         s = compute_blocknr(sh, j, 0);
4541                         if (s < raid5_size(mddev, 0, 0)) {
4542                                 skipped_disk = 1;
4543                                 continue;
4544                         }
4545                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4546                         set_bit(R5_Expanded, &sh->dev[j].flags);
4547                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4548                 }
4549                 if (!skipped_disk) {
4550                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4551                         set_bit(STRIPE_HANDLE, &sh->state);
4552                 }
4553                 list_add(&sh->lru, &stripes);
4554         }
4555         spin_lock_irq(&conf->device_lock);
4556         if (mddev->reshape_backwards)
4557                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4558         else
4559                 conf->reshape_progress += reshape_sectors * new_data_disks;
4560         spin_unlock_irq(&conf->device_lock);
4561         /* Ok, those stripe are ready. We can start scheduling
4562          * reads on the source stripes.
4563          * The source stripes are determined by mapping the first and last
4564          * block on the destination stripes.
4565          */
4566         first_sector =
4567                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4568                                      1, &dd_idx, NULL);
4569         last_sector =
4570                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4571                                             * new_data_disks - 1),
4572                                      1, &dd_idx, NULL);
4573         if (last_sector >= mddev->dev_sectors)
4574                 last_sector = mddev->dev_sectors - 1;
4575         while (first_sector <= last_sector) {
4576                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4577                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4578                 set_bit(STRIPE_HANDLE, &sh->state);
4579                 release_stripe(sh);
4580                 first_sector += STRIPE_SECTORS;
4581         }
4582         /* Now that the sources are clearly marked, we can release
4583          * the destination stripes
4584          */
4585         while (!list_empty(&stripes)) {
4586                 sh = list_entry(stripes.next, struct stripe_head, lru);
4587                 list_del_init(&sh->lru);
4588                 release_stripe(sh);
4589         }
4590         /* If this takes us to the resync_max point where we have to pause,
4591          * then we need to write out the superblock.
4592          */
4593         sector_nr += reshape_sectors;
4594         if ((sector_nr - mddev->curr_resync_completed) * 2
4595             >= mddev->resync_max - mddev->curr_resync_completed) {
4596                 /* Cannot proceed until we've updated the superblock... */
4597                 wait_event(conf->wait_for_overlap,
4598                            atomic_read(&conf->reshape_stripes) == 0);
4599                 mddev->reshape_position = conf->reshape_progress;
4600                 mddev->curr_resync_completed = sector_nr;
4601                 conf->reshape_checkpoint = jiffies;
4602                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4603                 md_wakeup_thread(mddev->thread);
4604                 wait_event(mddev->sb_wait,
4605                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4606                            || kthread_should_stop());
4607                 spin_lock_irq(&conf->device_lock);
4608                 conf->reshape_safe = mddev->reshape_position;
4609                 spin_unlock_irq(&conf->device_lock);
4610                 wake_up(&conf->wait_for_overlap);
4611                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4612         }
4613         return reshape_sectors;
4614 }
4615
4616 /* FIXME go_faster isn't used */
4617 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4618 {
4619         struct r5conf *conf = mddev->private;
4620         struct stripe_head *sh;
4621         sector_t max_sector = mddev->dev_sectors;
4622         sector_t sync_blocks;
4623         int still_degraded = 0;
4624         int i;
4625
4626         if (sector_nr >= max_sector) {
4627                 /* just being told to finish up .. nothing much to do */
4628
4629                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4630                         end_reshape(conf);
4631                         return 0;
4632                 }
4633
4634                 if (mddev->curr_resync < max_sector) /* aborted */
4635                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4636                                         &sync_blocks, 1);
4637                 else /* completed sync */
4638                         conf->fullsync = 0;
4639                 bitmap_close_sync(mddev->bitmap);
4640
4641                 return 0;
4642         }
4643
4644         /* Allow raid5_quiesce to complete */
4645         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4646
4647         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4648                 return reshape_request(mddev, sector_nr, skipped);
4649
4650         /* No need to check resync_max as we never do more than one
4651          * stripe, and as resync_max will always be on a chunk boundary,
4652          * if the check in md_do_sync didn't fire, there is no chance
4653          * of overstepping resync_max here
4654          */
4655
4656         /* if there is too many failed drives and we are trying
4657          * to resync, then assert that we are finished, because there is
4658          * nothing we can do.
4659          */
4660         if (mddev->degraded >= conf->max_degraded &&
4661             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4662                 sector_t rv = mddev->dev_sectors - sector_nr;
4663                 *skipped = 1;
4664                 return rv;
4665         }
4666         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4667             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4668             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4669                 /* we can skip this block, and probably more */
4670                 sync_blocks /= STRIPE_SECTORS;
4671                 *skipped = 1;
4672                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4673         }
4674
4675         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4676
4677         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4678         if (sh == NULL) {
4679                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4680                 /* make sure we don't swamp the stripe cache if someone else
4681                  * is trying to get access
4682                  */
4683                 schedule_timeout_uninterruptible(1);
4684         }
4685         /* Need to check if array will still be degraded after recovery/resync
4686          * We don't need to check the 'failed' flag as when that gets set,
4687          * recovery aborts.
4688          */
4689         for (i = 0; i < conf->raid_disks; i++)
4690                 if (conf->disks[i].rdev == NULL)
4691                         still_degraded = 1;
4692
4693         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4694
4695         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4696
4697         handle_stripe(sh);
4698         release_stripe(sh);
4699
4700         return STRIPE_SECTORS;
4701 }
4702
4703 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4704 {
4705         /* We may not be able to submit a whole bio at once as there
4706          * may not be enough stripe_heads available.
4707          * We cannot pre-allocate enough stripe_heads as we may need
4708          * more than exist in the cache (if we allow ever large chunks).
4709          * So we do one stripe head at a time and record in
4710          * ->bi_hw_segments how many have been done.
4711          *
4712          * We *know* that this entire raid_bio is in one chunk, so
4713          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4714          */
4715         struct stripe_head *sh;
4716         int dd_idx;
4717         sector_t sector, logical_sector, last_sector;
4718         int scnt = 0;
4719         int remaining;
4720         int handled = 0;
4721
4722         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4723         sector = raid5_compute_sector(conf, logical_sector,
4724                                       0, &dd_idx, NULL);
4725         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4726
4727         for (; logical_sector < last_sector;
4728              logical_sector += STRIPE_SECTORS,
4729                      sector += STRIPE_SECTORS,
4730                      scnt++) {
4731
4732                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4733                         /* already done this stripe */
4734                         continue;
4735
4736                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4737
4738                 if (!sh) {
4739                         /* failed to get a stripe - must wait */
4740                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4741                         conf->retry_read_aligned = raid_bio;
4742                         return handled;
4743                 }
4744
4745                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4746                         release_stripe(sh);
4747                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4748                         conf->retry_read_aligned = raid_bio;
4749                         return handled;
4750                 }
4751
4752                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4753                 handle_stripe(sh);
4754                 release_stripe(sh);
4755                 handled++;
4756         }
4757         remaining = raid5_dec_bi_active_stripes(raid_bio);
4758         if (remaining == 0) {
4759                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4760                                          raid_bio, 0);
4761                 bio_endio(raid_bio, 0);
4762         }
4763         if (atomic_dec_and_test(&conf->active_aligned_reads))
4764                 wake_up(&conf->wait_for_stripe);
4765         return handled;
4766 }
4767
4768 #define MAX_STRIPE_BATCH 8
4769 static int handle_active_stripes(struct r5conf *conf)
4770 {
4771         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4772         int i, batch_size = 0;
4773
4774         while (batch_size < MAX_STRIPE_BATCH &&
4775                         (sh = __get_priority_stripe(conf)) != NULL)
4776                 batch[batch_size++] = sh;
4777
4778         if (batch_size == 0)
4779                 return batch_size;
4780         spin_unlock_irq(&conf->device_lock);
4781
4782         for (i = 0; i < batch_size; i++)
4783                 handle_stripe(batch[i]);
4784
4785         cond_resched();
4786
4787         spin_lock_irq(&conf->device_lock);
4788         for (i = 0; i < batch_size; i++)
4789                 __release_stripe(conf, batch[i]);
4790         return batch_size;
4791 }
4792
4793 /*
4794  * This is our raid5 kernel thread.
4795  *
4796  * We scan the hash table for stripes which can be handled now.
4797  * During the scan, completed stripes are saved for us by the interrupt
4798  * handler, so that they will not have to wait for our next wakeup.
4799  */
4800 static void raid5d(struct md_thread *thread)
4801 {
4802         struct mddev *mddev = thread->mddev;
4803         struct r5conf *conf = mddev->private;
4804         int handled;
4805         struct blk_plug plug;
4806
4807         pr_debug("+++ raid5d active\n");
4808
4809         md_check_recovery(mddev);
4810
4811         blk_start_plug(&plug);
4812         handled = 0;
4813         spin_lock_irq(&conf->device_lock);
4814         while (1) {
4815                 struct bio *bio;
4816                 int batch_size;
4817
4818                 if (
4819                     !list_empty(&conf->bitmap_list)) {
4820                         /* Now is a good time to flush some bitmap updates */
4821                         conf->seq_flush++;
4822                         spin_unlock_irq(&conf->device_lock);
4823                         bitmap_unplug(mddev->bitmap);
4824                         spin_lock_irq(&conf->device_lock);
4825                         conf->seq_write = conf->seq_flush;
4826                         activate_bit_delay(conf);
4827                 }
4828                 raid5_activate_delayed(conf);
4829
4830                 while ((bio = remove_bio_from_retry(conf))) {
4831                         int ok;
4832                         spin_unlock_irq(&conf->device_lock);
4833                         ok = retry_aligned_read(conf, bio);
4834                         spin_lock_irq(&conf->device_lock);
4835                         if (!ok)
4836                                 break;
4837                         handled++;
4838                 }
4839
4840                 batch_size = handle_active_stripes(conf);
4841                 if (!batch_size)
4842                         break;
4843                 handled += batch_size;
4844
4845                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4846                         spin_unlock_irq(&conf->device_lock);
4847                         md_check_recovery(mddev);
4848                         spin_lock_irq(&conf->device_lock);
4849                 }
4850         }
4851         pr_debug("%d stripes handled\n", handled);
4852
4853         spin_unlock_irq(&conf->device_lock);
4854
4855         async_tx_issue_pending_all();
4856         blk_finish_plug(&plug);
4857
4858         pr_debug("--- raid5d inactive\n");
4859 }
4860
4861 static ssize_t
4862 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4863 {
4864         struct r5conf *conf = mddev->private;
4865         if (conf)
4866                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4867         else
4868                 return 0;
4869 }
4870
4871 int
4872 raid5_set_cache_size(struct mddev *mddev, int size)
4873 {
4874         struct r5conf *conf = mddev->private;
4875         int err;
4876
4877         if (size <= 16 || size > 32768)
4878                 return -EINVAL;
4879         while (size < conf->max_nr_stripes) {
4880                 if (drop_one_stripe(conf))
4881                         conf->max_nr_stripes--;
4882                 else
4883                         break;
4884         }
4885         err = md_allow_write(mddev);
4886         if (err)
4887                 return err;
4888         while (size > conf->max_nr_stripes) {
4889                 if (grow_one_stripe(conf))
4890                         conf->max_nr_stripes++;
4891                 else break;
4892         }
4893         return 0;
4894 }
4895 EXPORT_SYMBOL(raid5_set_cache_size);
4896
4897 static ssize_t
4898 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4899 {
4900         struct r5conf *conf = mddev->private;
4901         unsigned long new;
4902         int err;
4903
4904         if (len >= PAGE_SIZE)
4905                 return -EINVAL;
4906         if (!conf)
4907                 return -ENODEV;
4908
4909         if (strict_strtoul(page, 10, &new))
4910                 return -EINVAL;
4911         err = raid5_set_cache_size(mddev, new);
4912         if (err)
4913                 return err;
4914         return len;
4915 }
4916
4917 static struct md_sysfs_entry
4918 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4919                                 raid5_show_stripe_cache_size,
4920                                 raid5_store_stripe_cache_size);
4921
4922 static ssize_t
4923 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4924 {
4925         struct r5conf *conf = mddev->private;
4926         if (conf)
4927                 return sprintf(page, "%d\n", conf->bypass_threshold);
4928         else
4929                 return 0;
4930 }
4931
4932 static ssize_t
4933 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4934 {
4935         struct r5conf *conf = mddev->private;
4936         unsigned long new;
4937         if (len >= PAGE_SIZE)
4938                 return -EINVAL;
4939         if (!conf)
4940                 return -ENODEV;
4941
4942         if (strict_strtoul(page, 10, &new))
4943                 return -EINVAL;
4944         if (new > conf->max_nr_stripes)
4945                 return -EINVAL;
4946         conf->bypass_threshold = new;
4947         return len;
4948 }
4949
4950 static struct md_sysfs_entry
4951 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4952                                         S_IRUGO | S_IWUSR,
4953                                         raid5_show_preread_threshold,
4954                                         raid5_store_preread_threshold);
4955
4956 static ssize_t
4957 stripe_cache_active_show(struct mddev *mddev, char *page)
4958 {
4959         struct r5conf *conf = mddev->private;
4960         if (conf)
4961                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4962         else
4963                 return 0;
4964 }
4965
4966 static struct md_sysfs_entry
4967 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4968
4969 static struct attribute *raid5_attrs[] =  {
4970         &raid5_stripecache_size.attr,
4971         &raid5_stripecache_active.attr,
4972         &raid5_preread_bypass_threshold.attr,
4973         NULL,
4974 };
4975 static struct attribute_group raid5_attrs_group = {
4976         .name = NULL,
4977         .attrs = raid5_attrs,
4978 };
4979
4980 static sector_t
4981 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4982 {
4983         struct r5conf *conf = mddev->private;
4984
4985         if (!sectors)
4986                 sectors = mddev->dev_sectors;
4987         if (!raid_disks)
4988                 /* size is defined by the smallest of previous and new size */
4989                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4990
4991         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4992         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4993         return sectors * (raid_disks - conf->max_degraded);
4994 }
4995
4996 static void raid5_free_percpu(struct r5conf *conf)
4997 {
4998         struct raid5_percpu *percpu;
4999         unsigned long cpu;
5000
5001         if (!conf->percpu)
5002                 return;
5003
5004         get_online_cpus();
5005         for_each_possible_cpu(cpu) {
5006                 percpu = per_cpu_ptr(conf->percpu, cpu);
5007                 safe_put_page(percpu->spare_page);
5008                 kfree(percpu->scribble);
5009         }
5010 #ifdef CONFIG_HOTPLUG_CPU
5011         unregister_cpu_notifier(&conf->cpu_notify);
5012 #endif
5013         put_online_cpus();
5014
5015         free_percpu(conf->percpu);
5016 }
5017
5018 static void free_conf(struct r5conf *conf)
5019 {
5020         shrink_stripes(conf);
5021         raid5_free_percpu(conf);
5022         kfree(conf->disks);
5023         kfree(conf->stripe_hashtbl);
5024         kfree(conf);
5025 }
5026
5027 #ifdef CONFIG_HOTPLUG_CPU
5028 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5029                               void *hcpu)
5030 {
5031         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5032         long cpu = (long)hcpu;
5033         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5034
5035         switch (action) {
5036         case CPU_UP_PREPARE:
5037         case CPU_UP_PREPARE_FROZEN:
5038                 if (conf->level == 6 && !percpu->spare_page)
5039                         percpu->spare_page = alloc_page(GFP_KERNEL);
5040                 if (!percpu->scribble)
5041                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5042
5043                 if (!percpu->scribble ||
5044                     (conf->level == 6 && !percpu->spare_page)) {
5045                         safe_put_page(percpu->spare_page);
5046                         kfree(percpu->scribble);
5047                         pr_err("%s: failed memory allocation for cpu%ld\n",
5048                                __func__, cpu);
5049                         return notifier_from_errno(-ENOMEM);
5050                 }
5051                 break;
5052         case CPU_DEAD:
5053         case CPU_DEAD_FROZEN:
5054                 safe_put_page(percpu->spare_page);
5055                 kfree(percpu->scribble);
5056                 percpu->spare_page = NULL;
5057                 percpu->scribble = NULL;
5058                 break;
5059         default:
5060                 break;
5061         }
5062         return NOTIFY_OK;
5063 }
5064 #endif
5065
5066 static int raid5_alloc_percpu(struct r5conf *conf)
5067 {
5068         unsigned long cpu;
5069         struct page *spare_page;
5070         struct raid5_percpu __percpu *allcpus;
5071         void *scribble;
5072         int err;
5073
5074         allcpus = alloc_percpu(struct raid5_percpu);
5075         if (!allcpus)
5076                 return -ENOMEM;
5077         conf->percpu = allcpus;
5078
5079         get_online_cpus();
5080         err = 0;
5081         for_each_present_cpu(cpu) {
5082                 if (conf->level == 6) {
5083                         spare_page = alloc_page(GFP_KERNEL);
5084                         if (!spare_page) {
5085                                 err = -ENOMEM;
5086                                 break;
5087                         }
5088                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5089                 }
5090                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5091                 if (!scribble) {
5092                         err = -ENOMEM;
5093                         break;
5094                 }
5095                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5096         }
5097 #ifdef CONFIG_HOTPLUG_CPU
5098         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5099         conf->cpu_notify.priority = 0;
5100         if (err == 0)
5101                 err = register_cpu_notifier(&conf->cpu_notify);
5102 #endif
5103         put_online_cpus();
5104
5105         return err;
5106 }
5107
5108 static struct r5conf *setup_conf(struct mddev *mddev)
5109 {
5110         struct r5conf *conf;
5111         int raid_disk, memory, max_disks;
5112         struct md_rdev *rdev;
5113         struct disk_info *disk;
5114         char pers_name[6];
5115
5116         if (mddev->new_level != 5
5117             && mddev->new_level != 4
5118             && mddev->new_level != 6) {
5119                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5120                        mdname(mddev), mddev->new_level);
5121                 return ERR_PTR(-EIO);
5122         }
5123         if ((mddev->new_level == 5
5124              && !algorithm_valid_raid5(mddev->new_layout)) ||
5125             (mddev->new_level == 6
5126              && !algorithm_valid_raid6(mddev->new_layout))) {
5127                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5128                        mdname(mddev), mddev->new_layout);
5129                 return ERR_PTR(-EIO);
5130         }
5131         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5132                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5133                        mdname(mddev), mddev->raid_disks);
5134                 return ERR_PTR(-EINVAL);
5135         }
5136
5137         if (!mddev->new_chunk_sectors ||
5138             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5139             !is_power_of_2(mddev->new_chunk_sectors)) {
5140                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5141                        mdname(mddev), mddev->new_chunk_sectors << 9);
5142                 return ERR_PTR(-EINVAL);
5143         }
5144
5145         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5146         if (conf == NULL)
5147                 goto abort;
5148         spin_lock_init(&conf->device_lock);
5149         init_waitqueue_head(&conf->wait_for_stripe);
5150         init_waitqueue_head(&conf->wait_for_overlap);
5151         INIT_LIST_HEAD(&conf->handle_list);
5152         INIT_LIST_HEAD(&conf->hold_list);
5153         INIT_LIST_HEAD(&conf->delayed_list);
5154         INIT_LIST_HEAD(&conf->bitmap_list);
5155         INIT_LIST_HEAD(&conf->inactive_list);
5156         atomic_set(&conf->active_stripes, 0);
5157         atomic_set(&conf->preread_active_stripes, 0);
5158         atomic_set(&conf->active_aligned_reads, 0);
5159         conf->bypass_threshold = BYPASS_THRESHOLD;
5160         conf->recovery_disabled = mddev->recovery_disabled - 1;
5161
5162         conf->raid_disks = mddev->raid_disks;
5163         if (mddev->reshape_position == MaxSector)
5164                 conf->previous_raid_disks = mddev->raid_disks;
5165         else
5166                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5167         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5168         conf->scribble_len = scribble_len(max_disks);
5169
5170         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5171                               GFP_KERNEL);
5172         if (!conf->disks)
5173                 goto abort;
5174
5175         conf->mddev = mddev;
5176
5177         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5178                 goto abort;
5179
5180         conf->level = mddev->new_level;
5181         if (raid5_alloc_percpu(conf) != 0)
5182                 goto abort;
5183
5184         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5185
5186         rdev_for_each(rdev, mddev) {
5187                 raid_disk = rdev->raid_disk;
5188                 if (raid_disk >= max_disks
5189                     || raid_disk < 0)
5190                         continue;
5191                 disk = conf->disks + raid_disk;
5192
5193                 if (test_bit(Replacement, &rdev->flags)) {
5194                         if (disk->replacement)
5195                                 goto abort;
5196                         disk->replacement = rdev;
5197                 } else {
5198                         if (disk->rdev)
5199                                 goto abort;
5200                         disk->rdev = rdev;
5201                 }
5202
5203                 if (test_bit(In_sync, &rdev->flags)) {
5204                         char b[BDEVNAME_SIZE];
5205                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5206                                " disk %d\n",
5207                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5208                 } else if (rdev->saved_raid_disk != raid_disk)
5209                         /* Cannot rely on bitmap to complete recovery */
5210                         conf->fullsync = 1;
5211         }
5212
5213         conf->chunk_sectors = mddev->new_chunk_sectors;
5214         conf->level = mddev->new_level;
5215         if (conf->level == 6)
5216                 conf->max_degraded = 2;
5217         else
5218                 conf->max_degraded = 1;
5219         conf->algorithm = mddev->new_layout;
5220         conf->max_nr_stripes = NR_STRIPES;
5221         conf->reshape_progress = mddev->reshape_position;
5222         if (conf->reshape_progress != MaxSector) {
5223                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5224                 conf->prev_algo = mddev->layout;
5225         }
5226
5227         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5228                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5229         if (grow_stripes(conf, conf->max_nr_stripes)) {
5230                 printk(KERN_ERR
5231                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5232                        mdname(mddev), memory);
5233                 goto abort;
5234         } else
5235                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5236                        mdname(mddev), memory);
5237
5238         sprintf(pers_name, "raid%d", mddev->new_level);
5239         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5240         if (!conf->thread) {
5241                 printk(KERN_ERR
5242                        "md/raid:%s: couldn't allocate thread.\n",
5243                        mdname(mddev));
5244                 goto abort;
5245         }
5246
5247         return conf;
5248
5249  abort:
5250         if (conf) {
5251                 free_conf(conf);
5252                 return ERR_PTR(-EIO);
5253         } else
5254                 return ERR_PTR(-ENOMEM);
5255 }
5256
5257
5258 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5259 {
5260         switch (algo) {
5261         case ALGORITHM_PARITY_0:
5262                 if (raid_disk < max_degraded)
5263                         return 1;
5264                 break;
5265         case ALGORITHM_PARITY_N:
5266                 if (raid_disk >= raid_disks - max_degraded)
5267                         return 1;
5268                 break;
5269         case ALGORITHM_PARITY_0_6:
5270                 if (raid_disk == 0 || 
5271                     raid_disk == raid_disks - 1)
5272                         return 1;
5273                 break;
5274         case ALGORITHM_LEFT_ASYMMETRIC_6:
5275         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5276         case ALGORITHM_LEFT_SYMMETRIC_6:
5277         case ALGORITHM_RIGHT_SYMMETRIC_6:
5278                 if (raid_disk == raid_disks - 1)
5279                         return 1;
5280         }
5281         return 0;
5282 }
5283
5284 static int run(struct mddev *mddev)
5285 {
5286         struct r5conf *conf;
5287         int working_disks = 0;
5288         int dirty_parity_disks = 0;
5289         struct md_rdev *rdev;
5290         sector_t reshape_offset = 0;
5291         int i;
5292         long long min_offset_diff = 0;
5293         int first = 1;
5294
5295         if (mddev->recovery_cp != MaxSector)
5296                 printk(KERN_NOTICE "md/raid:%s: not clean"
5297                        " -- starting background reconstruction\n",
5298                        mdname(mddev));
5299
5300         rdev_for_each(rdev, mddev) {
5301                 long long diff;
5302                 if (rdev->raid_disk < 0)
5303                         continue;
5304                 diff = (rdev->new_data_offset - rdev->data_offset);
5305                 if (first) {
5306                         min_offset_diff = diff;
5307                         first = 0;
5308                 } else if (mddev->reshape_backwards &&
5309                          diff < min_offset_diff)
5310                         min_offset_diff = diff;
5311                 else if (!mddev->reshape_backwards &&
5312                          diff > min_offset_diff)
5313                         min_offset_diff = diff;
5314         }
5315
5316         if (mddev->reshape_position != MaxSector) {
5317                 /* Check that we can continue the reshape.
5318                  * Difficulties arise if the stripe we would write to
5319                  * next is at or after the stripe we would read from next.
5320                  * For a reshape that changes the number of devices, this
5321                  * is only possible for a very short time, and mdadm makes
5322                  * sure that time appears to have past before assembling
5323                  * the array.  So we fail if that time hasn't passed.
5324                  * For a reshape that keeps the number of devices the same
5325                  * mdadm must be monitoring the reshape can keeping the
5326                  * critical areas read-only and backed up.  It will start
5327                  * the array in read-only mode, so we check for that.
5328                  */
5329                 sector_t here_new, here_old;
5330                 int old_disks;
5331                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5332
5333                 if (mddev->new_level != mddev->level) {
5334                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5335                                "required - aborting.\n",
5336                                mdname(mddev));
5337                         return -EINVAL;
5338                 }
5339                 old_disks = mddev->raid_disks - mddev->delta_disks;
5340                 /* reshape_position must be on a new-stripe boundary, and one
5341                  * further up in new geometry must map after here in old
5342                  * geometry.
5343                  */
5344                 here_new = mddev->reshape_position;
5345                 if (sector_div(here_new, mddev->new_chunk_sectors *
5346                                (mddev->raid_disks - max_degraded))) {
5347                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5348                                "on a stripe boundary\n", mdname(mddev));
5349                         return -EINVAL;
5350                 }
5351                 reshape_offset = here_new * mddev->new_chunk_sectors;
5352                 /* here_new is the stripe we will write to */
5353                 here_old = mddev->reshape_position;
5354                 sector_div(here_old, mddev->chunk_sectors *
5355                            (old_disks-max_degraded));
5356                 /* here_old is the first stripe that we might need to read
5357                  * from */
5358                 if (mddev->delta_disks == 0) {
5359                         if ((here_new * mddev->new_chunk_sectors !=
5360                              here_old * mddev->chunk_sectors)) {
5361                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5362                                        " confused - aborting\n", mdname(mddev));
5363                                 return -EINVAL;
5364                         }
5365                         /* We cannot be sure it is safe to start an in-place
5366                          * reshape.  It is only safe if user-space is monitoring
5367                          * and taking constant backups.
5368                          * mdadm always starts a situation like this in
5369                          * readonly mode so it can take control before
5370                          * allowing any writes.  So just check for that.
5371                          */
5372                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5373                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5374                                 /* not really in-place - so OK */;
5375                         else if (mddev->ro == 0) {
5376                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5377                                        "must be started in read-only mode "
5378                                        "- aborting\n",
5379                                        mdname(mddev));
5380                                 return -EINVAL;
5381                         }
5382                 } else if (mddev->reshape_backwards
5383                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5384                        here_old * mddev->chunk_sectors)
5385                     : (here_new * mddev->new_chunk_sectors >=
5386                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5387                         /* Reading from the same stripe as writing to - bad */
5388                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5389                                "auto-recovery - aborting.\n",
5390                                mdname(mddev));
5391                         return -EINVAL;
5392                 }
5393                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5394                        mdname(mddev));
5395                 /* OK, we should be able to continue; */
5396         } else {
5397                 BUG_ON(mddev->level != mddev->new_level);
5398                 BUG_ON(mddev->layout != mddev->new_layout);
5399                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5400                 BUG_ON(mddev->delta_disks != 0);
5401         }
5402
5403         if (mddev->private == NULL)
5404                 conf = setup_conf(mddev);
5405         else
5406                 conf = mddev->private;
5407
5408         if (IS_ERR(conf))
5409                 return PTR_ERR(conf);
5410
5411         conf->min_offset_diff = min_offset_diff;
5412         mddev->thread = conf->thread;
5413         conf->thread = NULL;
5414         mddev->private = conf;
5415
5416         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5417              i++) {
5418                 rdev = conf->disks[i].rdev;
5419                 if (!rdev && conf->disks[i].replacement) {
5420                         /* The replacement is all we have yet */
5421                         rdev = conf->disks[i].replacement;
5422                         conf->disks[i].replacement = NULL;
5423                         clear_bit(Replacement, &rdev->flags);
5424                         conf->disks[i].rdev = rdev;
5425                 }
5426                 if (!rdev)
5427                         continue;
5428                 if (conf->disks[i].replacement &&
5429                     conf->reshape_progress != MaxSector) {
5430                         /* replacements and reshape simply do not mix. */
5431                         printk(KERN_ERR "md: cannot handle concurrent "
5432                                "replacement and reshape.\n");
5433                         goto abort;
5434                 }
5435                 if (test_bit(In_sync, &rdev->flags)) {
5436                         working_disks++;
5437                         continue;
5438                 }
5439                 /* This disc is not fully in-sync.  However if it
5440                  * just stored parity (beyond the recovery_offset),
5441                  * when we don't need to be concerned about the
5442                  * array being dirty.
5443                  * When reshape goes 'backwards', we never have
5444                  * partially completed devices, so we only need
5445                  * to worry about reshape going forwards.
5446                  */
5447                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5448                 if (mddev->major_version == 0 &&
5449                     mddev->minor_version > 90)
5450                         rdev->recovery_offset = reshape_offset;
5451                         
5452                 if (rdev->recovery_offset < reshape_offset) {
5453                         /* We need to check old and new layout */
5454                         if (!only_parity(rdev->raid_disk,
5455                                          conf->algorithm,
5456                                          conf->raid_disks,
5457                                          conf->max_degraded))
5458                                 continue;
5459                 }
5460                 if (!only_parity(rdev->raid_disk,
5461                                  conf->prev_algo,
5462                                  conf->previous_raid_disks,
5463                                  conf->max_degraded))
5464                         continue;
5465                 dirty_parity_disks++;
5466         }
5467
5468         /*
5469          * 0 for a fully functional array, 1 or 2 for a degraded array.
5470          */
5471         mddev->degraded = calc_degraded(conf);
5472
5473         if (has_failed(conf)) {
5474                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5475                         " (%d/%d failed)\n",
5476                         mdname(mddev), mddev->degraded, conf->raid_disks);
5477                 goto abort;
5478         }
5479
5480         /* device size must be a multiple of chunk size */
5481         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5482         mddev->resync_max_sectors = mddev->dev_sectors;
5483
5484         if (mddev->degraded > dirty_parity_disks &&
5485             mddev->recovery_cp != MaxSector) {
5486                 if (mddev->ok_start_degraded)
5487                         printk(KERN_WARNING
5488                                "md/raid:%s: starting dirty degraded array"
5489                                " - data corruption possible.\n",
5490                                mdname(mddev));
5491                 else {
5492                         printk(KERN_ERR
5493                                "md/raid:%s: cannot start dirty degraded array.\n",
5494                                mdname(mddev));
5495                         goto abort;
5496                 }
5497         }
5498
5499         if (mddev->degraded == 0)
5500                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5501                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5502                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5503                        mddev->new_layout);
5504         else
5505                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5506                        " out of %d devices, algorithm %d\n",
5507                        mdname(mddev), conf->level,
5508                        mddev->raid_disks - mddev->degraded,
5509                        mddev->raid_disks, mddev->new_layout);
5510
5511         print_raid5_conf(conf);
5512
5513         if (conf->reshape_progress != MaxSector) {
5514                 conf->reshape_safe = conf->reshape_progress;
5515                 atomic_set(&conf->reshape_stripes, 0);
5516                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5517                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5518                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5519                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5520                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5521                                                         "reshape");
5522         }
5523
5524
5525         /* Ok, everything is just fine now */
5526         if (mddev->to_remove == &raid5_attrs_group)
5527                 mddev->to_remove = NULL;
5528         else if (mddev->kobj.sd &&
5529             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5530                 printk(KERN_WARNING
5531                        "raid5: failed to create sysfs attributes for %s\n",
5532                        mdname(mddev));
5533         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5534
5535         if (mddev->queue) {
5536                 int chunk_size;
5537                 bool discard_supported = true;
5538                 /* read-ahead size must cover two whole stripes, which
5539                  * is 2 * (datadisks) * chunksize where 'n' is the
5540                  * number of raid devices
5541                  */
5542                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5543                 int stripe = data_disks *
5544                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5545                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5546                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5547
5548                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5549
5550                 mddev->queue->backing_dev_info.congested_data = mddev;
5551                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5552
5553                 chunk_size = mddev->chunk_sectors << 9;
5554                 blk_queue_io_min(mddev->queue, chunk_size);
5555                 blk_queue_io_opt(mddev->queue, chunk_size *
5556                                  (conf->raid_disks - conf->max_degraded));
5557                 /*
5558                  * We can only discard a whole stripe. It doesn't make sense to
5559                  * discard data disk but write parity disk
5560                  */
5561                 stripe = stripe * PAGE_SIZE;
5562                 /* Round up to power of 2, as discard handling
5563                  * currently assumes that */
5564                 while ((stripe-1) & stripe)
5565                         stripe = (stripe | (stripe-1)) + 1;
5566                 mddev->queue->limits.discard_alignment = stripe;
5567                 mddev->queue->limits.discard_granularity = stripe;
5568                 /*
5569                  * unaligned part of discard request will be ignored, so can't
5570                  * guarantee discard_zerors_data
5571                  */
5572                 mddev->queue->limits.discard_zeroes_data = 0;
5573
5574                 rdev_for_each(rdev, mddev) {
5575                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5576                                           rdev->data_offset << 9);
5577                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5578                                           rdev->new_data_offset << 9);
5579                         /*
5580                          * discard_zeroes_data is required, otherwise data
5581                          * could be lost. Consider a scenario: discard a stripe
5582                          * (the stripe could be inconsistent if
5583                          * discard_zeroes_data is 0); write one disk of the
5584                          * stripe (the stripe could be inconsistent again
5585                          * depending on which disks are used to calculate
5586                          * parity); the disk is broken; The stripe data of this
5587                          * disk is lost.
5588                          */
5589                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5590                             !bdev_get_queue(rdev->bdev)->
5591                                                 limits.discard_zeroes_data)
5592                                 discard_supported = false;
5593                 }
5594
5595                 if (discard_supported &&
5596                    mddev->queue->limits.max_discard_sectors >= stripe &&
5597                    mddev->queue->limits.discard_granularity >= stripe)
5598                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5599                                                 mddev->queue);
5600                 else
5601                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5602                                                 mddev->queue);
5603         }
5604
5605         return 0;
5606 abort:
5607         md_unregister_thread(&mddev->thread);
5608         print_raid5_conf(conf);
5609         free_conf(conf);
5610         mddev->private = NULL;
5611         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5612         return -EIO;
5613 }
5614
5615 static int stop(struct mddev *mddev)
5616 {
5617         struct r5conf *conf = mddev->private;
5618
5619         md_unregister_thread(&mddev->thread);
5620         if (mddev->queue)
5621                 mddev->queue->backing_dev_info.congested_fn = NULL;
5622         free_conf(conf);
5623         mddev->private = NULL;
5624         mddev->to_remove = &raid5_attrs_group;
5625         return 0;
5626 }
5627
5628 static void status(struct seq_file *seq, struct mddev *mddev)
5629 {
5630         struct r5conf *conf = mddev->private;
5631         int i;
5632
5633         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5634                 mddev->chunk_sectors / 2, mddev->layout);
5635         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5636         for (i = 0; i < conf->raid_disks; i++)
5637                 seq_printf (seq, "%s",
5638                                conf->disks[i].rdev &&
5639                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5640         seq_printf (seq, "]");
5641 }
5642
5643 static void print_raid5_conf (struct r5conf *conf)
5644 {
5645         int i;
5646         struct disk_info *tmp;
5647
5648         printk(KERN_DEBUG "RAID conf printout:\n");
5649         if (!conf) {
5650                 printk("(conf==NULL)\n");
5651                 return;
5652         }
5653         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5654                conf->raid_disks,
5655                conf->raid_disks - conf->mddev->degraded);
5656
5657         for (i = 0; i < conf->raid_disks; i++) {
5658                 char b[BDEVNAME_SIZE];
5659                 tmp = conf->disks + i;
5660                 if (tmp->rdev)
5661                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5662                                i, !test_bit(Faulty, &tmp->rdev->flags),
5663                                bdevname(tmp->rdev->bdev, b));
5664         }
5665 }
5666
5667 static int raid5_spare_active(struct mddev *mddev)
5668 {
5669         int i;
5670         struct r5conf *conf = mddev->private;
5671         struct disk_info *tmp;
5672         int count = 0;
5673         unsigned long flags;
5674
5675         for (i = 0; i < conf->raid_disks; i++) {
5676                 tmp = conf->disks + i;
5677                 if (tmp->replacement
5678                     && tmp->replacement->recovery_offset == MaxSector
5679                     && !test_bit(Faulty, &tmp->replacement->flags)
5680                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5681                         /* Replacement has just become active. */
5682                         if (!tmp->rdev
5683                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5684                                 count++;
5685                         if (tmp->rdev) {
5686                                 /* Replaced device not technically faulty,
5687                                  * but we need to be sure it gets removed
5688                                  * and never re-added.
5689                                  */
5690                                 set_bit(Faulty, &tmp->rdev->flags);
5691                                 sysfs_notify_dirent_safe(
5692                                         tmp->rdev->sysfs_state);
5693                         }
5694                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5695                 } else if (tmp->rdev
5696                     && tmp->rdev->recovery_offset == MaxSector
5697                     && !test_bit(Faulty, &tmp->rdev->flags)
5698                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5699                         count++;
5700                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5701                 }
5702         }
5703         spin_lock_irqsave(&conf->device_lock, flags);
5704         mddev->degraded = calc_degraded(conf);
5705         spin_unlock_irqrestore(&conf->device_lock, flags);
5706         print_raid5_conf(conf);
5707         return count;
5708 }
5709
5710 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5711 {
5712         struct r5conf *conf = mddev->private;
5713         int err = 0;
5714         int number = rdev->raid_disk;
5715         struct md_rdev **rdevp;
5716         struct disk_info *p = conf->disks + number;
5717
5718         print_raid5_conf(conf);
5719         if (rdev == p->rdev)
5720                 rdevp = &p->rdev;
5721         else if (rdev == p->replacement)
5722                 rdevp = &p->replacement;
5723         else
5724                 return 0;
5725
5726         if (number >= conf->raid_disks &&
5727             conf->reshape_progress == MaxSector)
5728                 clear_bit(In_sync, &rdev->flags);
5729
5730         if (test_bit(In_sync, &rdev->flags) ||
5731             atomic_read(&rdev->nr_pending)) {
5732                 err = -EBUSY;
5733                 goto abort;
5734         }
5735         /* Only remove non-faulty devices if recovery
5736          * isn't possible.
5737          */
5738         if (!test_bit(Faulty, &rdev->flags) &&
5739             mddev->recovery_disabled != conf->recovery_disabled &&
5740             !has_failed(conf) &&
5741             (!p->replacement || p->replacement == rdev) &&
5742             number < conf->raid_disks) {
5743                 err = -EBUSY;
5744                 goto abort;
5745         }
5746         *rdevp = NULL;
5747         synchronize_rcu();
5748         if (atomic_read(&rdev->nr_pending)) {
5749                 /* lost the race, try later */
5750                 err = -EBUSY;
5751                 *rdevp = rdev;
5752         } else if (p->replacement) {
5753                 /* We must have just cleared 'rdev' */
5754                 p->rdev = p->replacement;
5755                 clear_bit(Replacement, &p->replacement->flags);
5756                 smp_mb(); /* Make sure other CPUs may see both as identical
5757                            * but will never see neither - if they are careful
5758                            */
5759                 p->replacement = NULL;
5760                 clear_bit(WantReplacement, &rdev->flags);
5761         } else
5762                 /* We might have just removed the Replacement as faulty-
5763                  * clear the bit just in case
5764                  */
5765                 clear_bit(WantReplacement, &rdev->flags);
5766 abort:
5767
5768         print_raid5_conf(conf);
5769         return err;
5770 }
5771
5772 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5773 {
5774         struct r5conf *conf = mddev->private;
5775         int err = -EEXIST;
5776         int disk;
5777         struct disk_info *p;
5778         int first = 0;
5779         int last = conf->raid_disks - 1;
5780
5781         if (mddev->recovery_disabled == conf->recovery_disabled)
5782                 return -EBUSY;
5783
5784         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5785                 /* no point adding a device */
5786                 return -EINVAL;
5787
5788         if (rdev->raid_disk >= 0)
5789                 first = last = rdev->raid_disk;
5790
5791         /*
5792          * find the disk ... but prefer rdev->saved_raid_disk
5793          * if possible.
5794          */
5795         if (rdev->saved_raid_disk >= 0 &&
5796             rdev->saved_raid_disk >= first &&
5797             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5798                 first = rdev->saved_raid_disk;
5799
5800         for (disk = first; disk <= last; disk++) {
5801                 p = conf->disks + disk;
5802                 if (p->rdev == NULL) {
5803                         clear_bit(In_sync, &rdev->flags);
5804                         rdev->raid_disk = disk;
5805                         err = 0;
5806                         if (rdev->saved_raid_disk != disk)
5807                                 conf->fullsync = 1;
5808                         rcu_assign_pointer(p->rdev, rdev);
5809                         goto out;
5810                 }
5811         }
5812         for (disk = first; disk <= last; disk++) {
5813                 p = conf->disks + disk;
5814                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5815                     p->replacement == NULL) {
5816                         clear_bit(In_sync, &rdev->flags);
5817                         set_bit(Replacement, &rdev->flags);
5818                         rdev->raid_disk = disk;
5819                         err = 0;
5820                         conf->fullsync = 1;
5821                         rcu_assign_pointer(p->replacement, rdev);
5822                         break;
5823                 }
5824         }
5825 out:
5826         print_raid5_conf(conf);
5827         return err;
5828 }
5829
5830 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5831 {
5832         /* no resync is happening, and there is enough space
5833          * on all devices, so we can resize.
5834          * We need to make sure resync covers any new space.
5835          * If the array is shrinking we should possibly wait until
5836          * any io in the removed space completes, but it hardly seems
5837          * worth it.
5838          */
5839         sector_t newsize;
5840         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5841         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5842         if (mddev->external_size &&
5843             mddev->array_sectors > newsize)
5844                 return -EINVAL;
5845         if (mddev->bitmap) {
5846                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5847                 if (ret)
5848                         return ret;
5849         }
5850         md_set_array_sectors(mddev, newsize);
5851         set_capacity(mddev->gendisk, mddev->array_sectors);
5852         revalidate_disk(mddev->gendisk);
5853         if (sectors > mddev->dev_sectors &&
5854             mddev->recovery_cp > mddev->dev_sectors) {
5855                 mddev->recovery_cp = mddev->dev_sectors;
5856                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5857         }
5858         mddev->dev_sectors = sectors;
5859         mddev->resync_max_sectors = sectors;
5860         return 0;
5861 }
5862
5863 static int check_stripe_cache(struct mddev *mddev)
5864 {
5865         /* Can only proceed if there are plenty of stripe_heads.
5866          * We need a minimum of one full stripe,, and for sensible progress
5867          * it is best to have about 4 times that.
5868          * If we require 4 times, then the default 256 4K stripe_heads will
5869          * allow for chunk sizes up to 256K, which is probably OK.
5870          * If the chunk size is greater, user-space should request more
5871          * stripe_heads first.
5872          */
5873         struct r5conf *conf = mddev->private;
5874         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5875             > conf->max_nr_stripes ||
5876             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5877             > conf->max_nr_stripes) {
5878                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5879                        mdname(mddev),
5880                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5881                         / STRIPE_SIZE)*4);
5882                 return 0;
5883         }
5884         return 1;
5885 }
5886
5887 static int check_reshape(struct mddev *mddev)
5888 {
5889         struct r5conf *conf = mddev->private;
5890
5891         if (mddev->delta_disks == 0 &&
5892             mddev->new_layout == mddev->layout &&
5893             mddev->new_chunk_sectors == mddev->chunk_sectors)
5894                 return 0; /* nothing to do */
5895         if (has_failed(conf))
5896                 return -EINVAL;
5897         if (mddev->delta_disks < 0) {
5898                 /* We might be able to shrink, but the devices must
5899                  * be made bigger first.
5900                  * For raid6, 4 is the minimum size.
5901                  * Otherwise 2 is the minimum
5902                  */
5903                 int min = 2;
5904                 if (mddev->level == 6)
5905                         min = 4;
5906                 if (mddev->raid_disks + mddev->delta_disks < min)
5907                         return -EINVAL;
5908         }
5909
5910         if (!check_stripe_cache(mddev))
5911                 return -ENOSPC;
5912
5913         return resize_stripes(conf, (conf->previous_raid_disks
5914                                      + mddev->delta_disks));
5915 }
5916
5917 static int raid5_start_reshape(struct mddev *mddev)
5918 {
5919         struct r5conf *conf = mddev->private;
5920         struct md_rdev *rdev;
5921         int spares = 0;
5922         unsigned long flags;
5923
5924         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5925                 return -EBUSY;
5926
5927         if (!check_stripe_cache(mddev))
5928                 return -ENOSPC;
5929
5930         if (has_failed(conf))
5931                 return -EINVAL;
5932
5933         rdev_for_each(rdev, mddev) {
5934                 if (!test_bit(In_sync, &rdev->flags)
5935                     && !test_bit(Faulty, &rdev->flags))
5936                         spares++;
5937         }
5938
5939         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5940                 /* Not enough devices even to make a degraded array
5941                  * of that size
5942                  */
5943                 return -EINVAL;
5944
5945         /* Refuse to reduce size of the array.  Any reductions in
5946          * array size must be through explicit setting of array_size
5947          * attribute.
5948          */
5949         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5950             < mddev->array_sectors) {
5951                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5952                        "before number of disks\n", mdname(mddev));
5953                 return -EINVAL;
5954         }
5955
5956         atomic_set(&conf->reshape_stripes, 0);
5957         spin_lock_irq(&conf->device_lock);
5958         conf->previous_raid_disks = conf->raid_disks;
5959         conf->raid_disks += mddev->delta_disks;
5960         conf->prev_chunk_sectors = conf->chunk_sectors;
5961         conf->chunk_sectors = mddev->new_chunk_sectors;
5962         conf->prev_algo = conf->algorithm;
5963         conf->algorithm = mddev->new_layout;
5964         conf->generation++;
5965         /* Code that selects data_offset needs to see the generation update
5966          * if reshape_progress has been set - so a memory barrier needed.
5967          */
5968         smp_mb();
5969         if (mddev->reshape_backwards)
5970                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5971         else
5972                 conf->reshape_progress = 0;
5973         conf->reshape_safe = conf->reshape_progress;
5974         spin_unlock_irq(&conf->device_lock);
5975
5976         /* Add some new drives, as many as will fit.
5977          * We know there are enough to make the newly sized array work.
5978          * Don't add devices if we are reducing the number of
5979          * devices in the array.  This is because it is not possible
5980          * to correctly record the "partially reconstructed" state of
5981          * such devices during the reshape and confusion could result.
5982          */
5983         if (mddev->delta_disks >= 0) {
5984                 rdev_for_each(rdev, mddev)
5985                         if (rdev->raid_disk < 0 &&
5986                             !test_bit(Faulty, &rdev->flags)) {
5987                                 if (raid5_add_disk(mddev, rdev) == 0) {
5988                                         if (rdev->raid_disk
5989                                             >= conf->previous_raid_disks)
5990                                                 set_bit(In_sync, &rdev->flags);
5991                                         else
5992                                                 rdev->recovery_offset = 0;
5993
5994                                         if (sysfs_link_rdev(mddev, rdev))
5995                                                 /* Failure here is OK */;
5996                                 }
5997                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5998                                    && !test_bit(Faulty, &rdev->flags)) {
5999                                 /* This is a spare that was manually added */
6000                                 set_bit(In_sync, &rdev->flags);
6001                         }
6002
6003                 /* When a reshape changes the number of devices,
6004                  * ->degraded is measured against the larger of the
6005                  * pre and post number of devices.
6006                  */
6007                 spin_lock_irqsave(&conf->device_lock, flags);
6008                 mddev->degraded = calc_degraded(conf);
6009                 spin_unlock_irqrestore(&conf->device_lock, flags);
6010         }
6011         mddev->raid_disks = conf->raid_disks;
6012         mddev->reshape_position = conf->reshape_progress;
6013         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6014
6015         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6016         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6017         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6018         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6019         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6020                                                 "reshape");
6021         if (!mddev->sync_thread) {
6022                 mddev->recovery = 0;
6023                 spin_lock_irq(&conf->device_lock);
6024                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6025                 rdev_for_each(rdev, mddev)
6026                         rdev->new_data_offset = rdev->data_offset;
6027                 smp_wmb();
6028                 conf->reshape_progress = MaxSector;
6029                 mddev->reshape_position = MaxSector;
6030                 spin_unlock_irq(&conf->device_lock);
6031                 return -EAGAIN;
6032         }
6033         conf->reshape_checkpoint = jiffies;
6034         md_wakeup_thread(mddev->sync_thread);
6035         md_new_event(mddev);
6036         return 0;
6037 }
6038
6039 /* This is called from the reshape thread and should make any
6040  * changes needed in 'conf'
6041  */
6042 static void end_reshape(struct r5conf *conf)
6043 {
6044
6045         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6046                 struct md_rdev *rdev;
6047
6048                 spin_lock_irq(&conf->device_lock);
6049                 conf->previous_raid_disks = conf->raid_disks;
6050                 rdev_for_each(rdev, conf->mddev)
6051                         rdev->data_offset = rdev->new_data_offset;
6052                 smp_wmb();
6053                 conf->reshape_progress = MaxSector;
6054                 spin_unlock_irq(&conf->device_lock);
6055                 wake_up(&conf->wait_for_overlap);
6056
6057                 /* read-ahead size must cover two whole stripes, which is
6058                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6059                  */
6060                 if (conf->mddev->queue) {
6061                         int data_disks = conf->raid_disks - conf->max_degraded;
6062                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6063                                                    / PAGE_SIZE);
6064                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6065                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6066                 }
6067         }
6068 }
6069
6070 /* This is called from the raid5d thread with mddev_lock held.
6071  * It makes config changes to the device.
6072  */
6073 static void raid5_finish_reshape(struct mddev *mddev)
6074 {
6075         struct r5conf *conf = mddev->private;
6076
6077         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6078
6079                 if (mddev->delta_disks > 0) {
6080                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6081                         set_capacity(mddev->gendisk, mddev->array_sectors);
6082                         revalidate_disk(mddev->gendisk);
6083                 } else {
6084                         int d;
6085                         spin_lock_irq(&conf->device_lock);
6086                         mddev->degraded = calc_degraded(conf);
6087                         spin_unlock_irq(&conf->device_lock);
6088                         for (d = conf->raid_disks ;
6089                              d < conf->raid_disks - mddev->delta_disks;
6090                              d++) {
6091                                 struct md_rdev *rdev = conf->disks[d].rdev;
6092                                 if (rdev)
6093                                         clear_bit(In_sync, &rdev->flags);
6094                                 rdev = conf->disks[d].replacement;
6095                                 if (rdev)
6096                                         clear_bit(In_sync, &rdev->flags);
6097                         }
6098                 }
6099                 mddev->layout = conf->algorithm;
6100                 mddev->chunk_sectors = conf->chunk_sectors;
6101                 mddev->reshape_position = MaxSector;
6102                 mddev->delta_disks = 0;
6103                 mddev->reshape_backwards = 0;
6104         }
6105 }
6106
6107 static void raid5_quiesce(struct mddev *mddev, int state)
6108 {
6109         struct r5conf *conf = mddev->private;
6110
6111         switch(state) {
6112         case 2: /* resume for a suspend */
6113                 wake_up(&conf->wait_for_overlap);
6114                 break;
6115
6116         case 1: /* stop all writes */
6117                 spin_lock_irq(&conf->device_lock);
6118                 /* '2' tells resync/reshape to pause so that all
6119                  * active stripes can drain
6120                  */
6121                 conf->quiesce = 2;
6122                 wait_event_lock_irq(conf->wait_for_stripe,
6123                                     atomic_read(&conf->active_stripes) == 0 &&
6124                                     atomic_read(&conf->active_aligned_reads) == 0,
6125                                     conf->device_lock);
6126                 conf->quiesce = 1;
6127                 spin_unlock_irq(&conf->device_lock);
6128                 /* allow reshape to continue */
6129                 wake_up(&conf->wait_for_overlap);
6130                 break;
6131
6132         case 0: /* re-enable writes */
6133                 spin_lock_irq(&conf->device_lock);
6134                 conf->quiesce = 0;
6135                 wake_up(&conf->wait_for_stripe);
6136                 wake_up(&conf->wait_for_overlap);
6137                 spin_unlock_irq(&conf->device_lock);
6138                 break;
6139         }
6140 }
6141
6142
6143 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6144 {
6145         struct r0conf *raid0_conf = mddev->private;
6146         sector_t sectors;
6147
6148         /* for raid0 takeover only one zone is supported */
6149         if (raid0_conf->nr_strip_zones > 1) {
6150                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6151                        mdname(mddev));
6152                 return ERR_PTR(-EINVAL);
6153         }
6154
6155         sectors = raid0_conf->strip_zone[0].zone_end;
6156         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6157         mddev->dev_sectors = sectors;
6158         mddev->new_level = level;
6159         mddev->new_layout = ALGORITHM_PARITY_N;
6160         mddev->new_chunk_sectors = mddev->chunk_sectors;
6161         mddev->raid_disks += 1;
6162         mddev->delta_disks = 1;
6163         /* make sure it will be not marked as dirty */
6164         mddev->recovery_cp = MaxSector;
6165
6166         return setup_conf(mddev);
6167 }
6168
6169
6170 static void *raid5_takeover_raid1(struct mddev *mddev)
6171 {
6172         int chunksect;
6173
6174         if (mddev->raid_disks != 2 ||
6175             mddev->degraded > 1)
6176                 return ERR_PTR(-EINVAL);
6177
6178         /* Should check if there are write-behind devices? */
6179
6180         chunksect = 64*2; /* 64K by default */
6181
6182         /* The array must be an exact multiple of chunksize */
6183         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6184                 chunksect >>= 1;
6185
6186         if ((chunksect<<9) < STRIPE_SIZE)
6187                 /* array size does not allow a suitable chunk size */
6188                 return ERR_PTR(-EINVAL);
6189
6190         mddev->new_level = 5;
6191         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6192         mddev->new_chunk_sectors = chunksect;
6193
6194         return setup_conf(mddev);
6195 }
6196
6197 static void *raid5_takeover_raid6(struct mddev *mddev)
6198 {
6199         int new_layout;
6200
6201         switch (mddev->layout) {
6202         case ALGORITHM_LEFT_ASYMMETRIC_6:
6203                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6204                 break;
6205         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6206                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6207                 break;
6208         case ALGORITHM_LEFT_SYMMETRIC_6:
6209                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6210                 break;
6211         case ALGORITHM_RIGHT_SYMMETRIC_6:
6212                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6213                 break;
6214         case ALGORITHM_PARITY_0_6:
6215                 new_layout = ALGORITHM_PARITY_0;
6216                 break;
6217         case ALGORITHM_PARITY_N:
6218                 new_layout = ALGORITHM_PARITY_N;
6219                 break;
6220         default:
6221                 return ERR_PTR(-EINVAL);
6222         }
6223         mddev->new_level = 5;
6224         mddev->new_layout = new_layout;
6225         mddev->delta_disks = -1;
6226         mddev->raid_disks -= 1;
6227         return setup_conf(mddev);
6228 }
6229
6230
6231 static int raid5_check_reshape(struct mddev *mddev)
6232 {
6233         /* For a 2-drive array, the layout and chunk size can be changed
6234          * immediately as not restriping is needed.
6235          * For larger arrays we record the new value - after validation
6236          * to be used by a reshape pass.
6237          */
6238         struct r5conf *conf = mddev->private;
6239         int new_chunk = mddev->new_chunk_sectors;
6240
6241         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6242                 return -EINVAL;
6243         if (new_chunk > 0) {
6244                 if (!is_power_of_2(new_chunk))
6245                         return -EINVAL;
6246                 if (new_chunk < (PAGE_SIZE>>9))
6247                         return -EINVAL;
6248                 if (mddev->array_sectors & (new_chunk-1))
6249                         /* not factor of array size */
6250                         return -EINVAL;
6251         }
6252
6253         /* They look valid */
6254
6255         if (mddev->raid_disks == 2) {
6256                 /* can make the change immediately */
6257                 if (mddev->new_layout >= 0) {
6258                         conf->algorithm = mddev->new_layout;
6259                         mddev->layout = mddev->new_layout;
6260                 }
6261                 if (new_chunk > 0) {
6262                         conf->chunk_sectors = new_chunk ;
6263                         mddev->chunk_sectors = new_chunk;
6264                 }
6265                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6266                 md_wakeup_thread(mddev->thread);
6267         }
6268         return check_reshape(mddev);
6269 }
6270
6271 static int raid6_check_reshape(struct mddev *mddev)
6272 {
6273         int new_chunk = mddev->new_chunk_sectors;
6274
6275         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6276                 return -EINVAL;
6277         if (new_chunk > 0) {
6278                 if (!is_power_of_2(new_chunk))
6279                         return -EINVAL;
6280                 if (new_chunk < (PAGE_SIZE >> 9))
6281                         return -EINVAL;
6282                 if (mddev->array_sectors & (new_chunk-1))
6283                         /* not factor of array size */
6284                         return -EINVAL;
6285         }
6286
6287         /* They look valid */
6288         return check_reshape(mddev);
6289 }
6290
6291 static void *raid5_takeover(struct mddev *mddev)
6292 {
6293         /* raid5 can take over:
6294          *  raid0 - if there is only one strip zone - make it a raid4 layout
6295          *  raid1 - if there are two drives.  We need to know the chunk size
6296          *  raid4 - trivial - just use a raid4 layout.
6297          *  raid6 - Providing it is a *_6 layout
6298          */
6299         if (mddev->level == 0)
6300                 return raid45_takeover_raid0(mddev, 5);
6301         if (mddev->level == 1)
6302                 return raid5_takeover_raid1(mddev);
6303         if (mddev->level == 4) {
6304                 mddev->new_layout = ALGORITHM_PARITY_N;
6305                 mddev->new_level = 5;
6306                 return setup_conf(mddev);
6307         }
6308         if (mddev->level == 6)
6309                 return raid5_takeover_raid6(mddev);
6310
6311         return ERR_PTR(-EINVAL);
6312 }
6313
6314 static void *raid4_takeover(struct mddev *mddev)
6315 {
6316         /* raid4 can take over:
6317          *  raid0 - if there is only one strip zone
6318          *  raid5 - if layout is right
6319          */
6320         if (mddev->level == 0)
6321                 return raid45_takeover_raid0(mddev, 4);
6322         if (mddev->level == 5 &&
6323             mddev->layout == ALGORITHM_PARITY_N) {
6324                 mddev->new_layout = 0;
6325                 mddev->new_level = 4;
6326                 return setup_conf(mddev);
6327         }
6328         return ERR_PTR(-EINVAL);
6329 }
6330
6331 static struct md_personality raid5_personality;
6332
6333 static void *raid6_takeover(struct mddev *mddev)
6334 {
6335         /* Currently can only take over a raid5.  We map the
6336          * personality to an equivalent raid6 personality
6337          * with the Q block at the end.
6338          */
6339         int new_layout;
6340
6341         if (mddev->pers != &raid5_personality)
6342                 return ERR_PTR(-EINVAL);
6343         if (mddev->degraded > 1)
6344                 return ERR_PTR(-EINVAL);
6345         if (mddev->raid_disks > 253)
6346                 return ERR_PTR(-EINVAL);
6347         if (mddev->raid_disks < 3)
6348                 return ERR_PTR(-EINVAL);
6349
6350         switch (mddev->layout) {
6351         case ALGORITHM_LEFT_ASYMMETRIC:
6352                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6353                 break;
6354         case ALGORITHM_RIGHT_ASYMMETRIC:
6355                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6356                 break;
6357         case ALGORITHM_LEFT_SYMMETRIC:
6358                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6359                 break;
6360         case ALGORITHM_RIGHT_SYMMETRIC:
6361                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6362                 break;
6363         case ALGORITHM_PARITY_0:
6364                 new_layout = ALGORITHM_PARITY_0_6;
6365                 break;
6366         case ALGORITHM_PARITY_N:
6367                 new_layout = ALGORITHM_PARITY_N;
6368                 break;
6369         default:
6370                 return ERR_PTR(-EINVAL);
6371         }
6372         mddev->new_level = 6;
6373         mddev->new_layout = new_layout;
6374         mddev->delta_disks = 1;
6375         mddev->raid_disks += 1;
6376         return setup_conf(mddev);
6377 }
6378
6379
6380 static struct md_personality raid6_personality =
6381 {
6382         .name           = "raid6",
6383         .level          = 6,
6384         .owner          = THIS_MODULE,
6385         .make_request   = make_request,
6386         .run            = run,
6387         .stop           = stop,
6388         .status         = status,
6389         .error_handler  = error,
6390         .hot_add_disk   = raid5_add_disk,
6391         .hot_remove_disk= raid5_remove_disk,
6392         .spare_active   = raid5_spare_active,
6393         .sync_request   = sync_request,
6394         .resize         = raid5_resize,
6395         .size           = raid5_size,
6396         .check_reshape  = raid6_check_reshape,
6397         .start_reshape  = raid5_start_reshape,
6398         .finish_reshape = raid5_finish_reshape,
6399         .quiesce        = raid5_quiesce,
6400         .takeover       = raid6_takeover,
6401 };
6402 static struct md_personality raid5_personality =
6403 {
6404         .name           = "raid5",
6405         .level          = 5,
6406         .owner          = THIS_MODULE,
6407         .make_request   = make_request,
6408         .run            = run,
6409         .stop           = stop,
6410         .status         = status,
6411         .error_handler  = error,
6412         .hot_add_disk   = raid5_add_disk,
6413         .hot_remove_disk= raid5_remove_disk,
6414         .spare_active   = raid5_spare_active,
6415         .sync_request   = sync_request,
6416         .resize         = raid5_resize,
6417         .size           = raid5_size,
6418         .check_reshape  = raid5_check_reshape,
6419         .start_reshape  = raid5_start_reshape,
6420         .finish_reshape = raid5_finish_reshape,
6421         .quiesce        = raid5_quiesce,
6422         .takeover       = raid5_takeover,
6423 };
6424
6425 static struct md_personality raid4_personality =
6426 {
6427         .name           = "raid4",
6428         .level          = 4,
6429         .owner          = THIS_MODULE,
6430         .make_request   = make_request,
6431         .run            = run,
6432         .stop           = stop,
6433         .status         = status,
6434         .error_handler  = error,
6435         .hot_add_disk   = raid5_add_disk,
6436         .hot_remove_disk= raid5_remove_disk,
6437         .spare_active   = raid5_spare_active,
6438         .sync_request   = sync_request,
6439         .resize         = raid5_resize,
6440         .size           = raid5_size,
6441         .check_reshape  = raid5_check_reshape,
6442         .start_reshape  = raid5_start_reshape,
6443         .finish_reshape = raid5_finish_reshape,
6444         .quiesce        = raid5_quiesce,
6445         .takeover       = raid4_takeover,
6446 };
6447
6448 static int __init raid5_init(void)
6449 {
6450         register_md_personality(&raid6_personality);
6451         register_md_personality(&raid5_personality);
6452         register_md_personality(&raid4_personality);
6453         return 0;
6454 }
6455
6456 static void raid5_exit(void)
6457 {
6458         unregister_md_personality(&raid6_personality);
6459         unregister_md_personality(&raid5_personality);
6460         unregister_md_personality(&raid4_personality);
6461 }
6462
6463 module_init(raid5_init);
6464 module_exit(raid5_exit);
6465 MODULE_LICENSE("GPL");
6466 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6467 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6468 MODULE_ALIAS("md-raid5");
6469 MODULE_ALIAS("md-raid4");
6470 MODULE_ALIAS("md-level-5");
6471 MODULE_ALIAS("md-level-4");
6472 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6473 MODULE_ALIAS("md-raid6");
6474 MODULE_ALIAS("md-level-6");
6475
6476 /* This used to be two separate modules, they were: */
6477 MODULE_ALIAS("raid5");
6478 MODULE_ALIAS("raid6");