]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
hlist: drop the node parameter from iterators
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 /*
64  * Stripe cache
65  */
66
67 #define NR_STRIPES              256
68 #define STRIPE_SIZE             PAGE_SIZE
69 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD            1
72 #define BYPASS_THRESHOLD        1
73 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK               (NR_HASH - 1)
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79         return &conf->stripe_hashtbl[hash];
80 }
81
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93         int sectors = bio->bi_size >> 9;
94         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95                 return bio->bi_next;
96         else
97                 return NULL;
98 }
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107         return (atomic_read(segments) >> 16) & 0xffff;
108 }
109
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return atomic_sub_return(1, segments) & 0xffff;
114 }
115
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         atomic_inc(segments);
120 }
121
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123         unsigned int cnt)
124 {
125         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126         int old, new;
127
128         do {
129                 old = atomic_read(segments);
130                 new = (old & 0xffff) | (cnt << 16);
131         } while (atomic_cmpxchg(segments, old, new) != old);
132 }
133
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137         atomic_set(segments, cnt);
138 }
139
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143         if (sh->ddf_layout)
144                 /* ddf always start from first device */
145                 return 0;
146         /* md starts just after Q block */
147         if (sh->qd_idx == sh->disks - 1)
148                 return 0;
149         else
150                 return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154         disk++;
155         return (disk < raid_disks) ? disk : 0;
156 }
157
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164                              int *count, int syndrome_disks)
165 {
166         int slot = *count;
167
168         if (sh->ddf_layout)
169                 (*count)++;
170         if (idx == sh->pd_idx)
171                 return syndrome_disks;
172         if (idx == sh->qd_idx)
173                 return syndrome_disks + 1;
174         if (!sh->ddf_layout)
175                 (*count)++;
176         return slot;
177 }
178
179 static void return_io(struct bio *return_bi)
180 {
181         struct bio *bi = return_bi;
182         while (bi) {
183
184                 return_bi = bi->bi_next;
185                 bi->bi_next = NULL;
186                 bi->bi_size = 0;
187                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188                                          bi, 0);
189                 bio_endio(bi, 0);
190                 bi = return_bi;
191         }
192 }
193
194 static void print_raid5_conf (struct r5conf *conf);
195
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198         return sh->check_state || sh->reconstruct_state ||
199                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205         BUG_ON(!list_empty(&sh->lru));
206         BUG_ON(atomic_read(&conf->active_stripes)==0);
207         if (test_bit(STRIPE_HANDLE, &sh->state)) {
208                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
209                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210                         list_add_tail(&sh->lru, &conf->delayed_list);
211                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212                            sh->bm_seq - conf->seq_write > 0)
213                         list_add_tail(&sh->lru, &conf->bitmap_list);
214                 else {
215                         clear_bit(STRIPE_DELAYED, &sh->state);
216                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
217                         list_add_tail(&sh->lru, &conf->handle_list);
218                 }
219                 md_wakeup_thread(conf->mddev->thread);
220         } else {
221                 BUG_ON(stripe_operations_active(sh));
222                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223                         if (atomic_dec_return(&conf->preread_active_stripes)
224                             < IO_THRESHOLD)
225                                 md_wakeup_thread(conf->mddev->thread);
226                 atomic_dec(&conf->active_stripes);
227                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228                         list_add_tail(&sh->lru, &conf->inactive_list);
229                         wake_up(&conf->wait_for_stripe);
230                         if (conf->retry_read_aligned)
231                                 md_wakeup_thread(conf->mddev->thread);
232                 }
233         }
234 }
235
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238         if (atomic_dec_and_test(&sh->count))
239                 do_release_stripe(conf, sh);
240 }
241
242 static void release_stripe(struct stripe_head *sh)
243 {
244         struct r5conf *conf = sh->raid_conf;
245         unsigned long flags;
246
247         local_irq_save(flags);
248         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249                 do_release_stripe(conf, sh);
250                 spin_unlock(&conf->device_lock);
251         }
252         local_irq_restore(flags);
253 }
254
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257         pr_debug("remove_hash(), stripe %llu\n",
258                 (unsigned long long)sh->sector);
259
260         hlist_del_init(&sh->hash);
261 }
262
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265         struct hlist_head *hp = stripe_hash(conf, sh->sector);
266
267         pr_debug("insert_hash(), stripe %llu\n",
268                 (unsigned long long)sh->sector);
269
270         hlist_add_head(&sh->hash, hp);
271 }
272
273
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277         struct stripe_head *sh = NULL;
278         struct list_head *first;
279
280         if (list_empty(&conf->inactive_list))
281                 goto out;
282         first = conf->inactive_list.next;
283         sh = list_entry(first, struct stripe_head, lru);
284         list_del_init(first);
285         remove_hash(sh);
286         atomic_inc(&conf->active_stripes);
287 out:
288         return sh;
289 }
290
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293         struct page *p;
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num ; i++) {
298                 p = sh->dev[i].page;
299                 if (!p)
300                         continue;
301                 sh->dev[i].page = NULL;
302                 put_page(p);
303         }
304 }
305
306 static int grow_buffers(struct stripe_head *sh)
307 {
308         int i;
309         int num = sh->raid_conf->pool_size;
310
311         for (i = 0; i < num; i++) {
312                 struct page *page;
313
314                 if (!(page = alloc_page(GFP_KERNEL))) {
315                         return 1;
316                 }
317                 sh->dev[i].page = page;
318         }
319         return 0;
320 }
321
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324                             struct stripe_head *sh);
325
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328         struct r5conf *conf = sh->raid_conf;
329         int i;
330
331         BUG_ON(atomic_read(&sh->count) != 0);
332         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333         BUG_ON(stripe_operations_active(sh));
334
335         pr_debug("init_stripe called, stripe %llu\n",
336                 (unsigned long long)sh->sector);
337
338         remove_hash(sh);
339
340         sh->generation = conf->generation - previous;
341         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342         sh->sector = sector;
343         stripe_set_idx(sector, conf, previous, sh);
344         sh->state = 0;
345
346
347         for (i = sh->disks; i--; ) {
348                 struct r5dev *dev = &sh->dev[i];
349
350                 if (dev->toread || dev->read || dev->towrite || dev->written ||
351                     test_bit(R5_LOCKED, &dev->flags)) {
352                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353                                (unsigned long long)sh->sector, i, dev->toread,
354                                dev->read, dev->towrite, dev->written,
355                                test_bit(R5_LOCKED, &dev->flags));
356                         WARN_ON(1);
357                 }
358                 dev->flags = 0;
359                 raid5_build_block(sh, i, previous);
360         }
361         insert_hash(conf, sh);
362 }
363
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365                                          short generation)
366 {
367         struct stripe_head *sh;
368
369         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371                 if (sh->sector == sector && sh->generation == generation)
372                         return sh;
373         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
374         return NULL;
375 }
376
377 /*
378  * Need to check if array has failed when deciding whether to:
379  *  - start an array
380  *  - remove non-faulty devices
381  *  - add a spare
382  *  - allow a reshape
383  * This determination is simple when no reshape is happening.
384  * However if there is a reshape, we need to carefully check
385  * both the before and after sections.
386  * This is because some failed devices may only affect one
387  * of the two sections, and some non-in_sync devices may
388  * be insync in the section most affected by failed devices.
389  */
390 static int calc_degraded(struct r5conf *conf)
391 {
392         int degraded, degraded2;
393         int i;
394
395         rcu_read_lock();
396         degraded = 0;
397         for (i = 0; i < conf->previous_raid_disks; i++) {
398                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399                 if (rdev && test_bit(Faulty, &rdev->flags))
400                         rdev = rcu_dereference(conf->disks[i].replacement);
401                 if (!rdev || test_bit(Faulty, &rdev->flags))
402                         degraded++;
403                 else if (test_bit(In_sync, &rdev->flags))
404                         ;
405                 else
406                         /* not in-sync or faulty.
407                          * If the reshape increases the number of devices,
408                          * this is being recovered by the reshape, so
409                          * this 'previous' section is not in_sync.
410                          * If the number of devices is being reduced however,
411                          * the device can only be part of the array if
412                          * we are reverting a reshape, so this section will
413                          * be in-sync.
414                          */
415                         if (conf->raid_disks >= conf->previous_raid_disks)
416                                 degraded++;
417         }
418         rcu_read_unlock();
419         if (conf->raid_disks == conf->previous_raid_disks)
420                 return degraded;
421         rcu_read_lock();
422         degraded2 = 0;
423         for (i = 0; i < conf->raid_disks; i++) {
424                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425                 if (rdev && test_bit(Faulty, &rdev->flags))
426                         rdev = rcu_dereference(conf->disks[i].replacement);
427                 if (!rdev || test_bit(Faulty, &rdev->flags))
428                         degraded2++;
429                 else if (test_bit(In_sync, &rdev->flags))
430                         ;
431                 else
432                         /* not in-sync or faulty.
433                          * If reshape increases the number of devices, this
434                          * section has already been recovered, else it
435                          * almost certainly hasn't.
436                          */
437                         if (conf->raid_disks <= conf->previous_raid_disks)
438                                 degraded2++;
439         }
440         rcu_read_unlock();
441         if (degraded2 > degraded)
442                 return degraded2;
443         return degraded;
444 }
445
446 static int has_failed(struct r5conf *conf)
447 {
448         int degraded;
449
450         if (conf->mddev->reshape_position == MaxSector)
451                 return conf->mddev->degraded > conf->max_degraded;
452
453         degraded = calc_degraded(conf);
454         if (degraded > conf->max_degraded)
455                 return 1;
456         return 0;
457 }
458
459 static struct stripe_head *
460 get_active_stripe(struct r5conf *conf, sector_t sector,
461                   int previous, int noblock, int noquiesce)
462 {
463         struct stripe_head *sh;
464
465         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
466
467         spin_lock_irq(&conf->device_lock);
468
469         do {
470                 wait_event_lock_irq(conf->wait_for_stripe,
471                                     conf->quiesce == 0 || noquiesce,
472                                     conf->device_lock);
473                 sh = __find_stripe(conf, sector, conf->generation - previous);
474                 if (!sh) {
475                         if (!conf->inactive_blocked)
476                                 sh = get_free_stripe(conf);
477                         if (noblock && sh == NULL)
478                                 break;
479                         if (!sh) {
480                                 conf->inactive_blocked = 1;
481                                 wait_event_lock_irq(conf->wait_for_stripe,
482                                                     !list_empty(&conf->inactive_list) &&
483                                                     (atomic_read(&conf->active_stripes)
484                                                      < (conf->max_nr_stripes *3/4)
485                                                      || !conf->inactive_blocked),
486                                                     conf->device_lock);
487                                 conf->inactive_blocked = 0;
488                         } else
489                                 init_stripe(sh, sector, previous);
490                 } else {
491                         if (atomic_read(&sh->count)) {
492                                 BUG_ON(!list_empty(&sh->lru)
493                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
494                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
495                         } else {
496                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
497                                         atomic_inc(&conf->active_stripes);
498                                 if (list_empty(&sh->lru) &&
499                                     !test_bit(STRIPE_EXPANDING, &sh->state))
500                                         BUG();
501                                 list_del_init(&sh->lru);
502                         }
503                 }
504         } while (sh == NULL);
505
506         if (sh)
507                 atomic_inc(&sh->count);
508
509         spin_unlock_irq(&conf->device_lock);
510         return sh;
511 }
512
513 /* Determine if 'data_offset' or 'new_data_offset' should be used
514  * in this stripe_head.
515  */
516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
517 {
518         sector_t progress = conf->reshape_progress;
519         /* Need a memory barrier to make sure we see the value
520          * of conf->generation, or ->data_offset that was set before
521          * reshape_progress was updated.
522          */
523         smp_rmb();
524         if (progress == MaxSector)
525                 return 0;
526         if (sh->generation == conf->generation - 1)
527                 return 0;
528         /* We are in a reshape, and this is a new-generation stripe,
529          * so use new_data_offset.
530          */
531         return 1;
532 }
533
534 static void
535 raid5_end_read_request(struct bio *bi, int error);
536 static void
537 raid5_end_write_request(struct bio *bi, int error);
538
539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540 {
541         struct r5conf *conf = sh->raid_conf;
542         int i, disks = sh->disks;
543
544         might_sleep();
545
546         for (i = disks; i--; ) {
547                 int rw;
548                 int replace_only = 0;
549                 struct bio *bi, *rbi;
550                 struct md_rdev *rdev, *rrdev = NULL;
551                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
552                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
553                                 rw = WRITE_FUA;
554                         else
555                                 rw = WRITE;
556                         if (test_bit(R5_Discard, &sh->dev[i].flags))
557                                 rw |= REQ_DISCARD;
558                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559                         rw = READ;
560                 else if (test_and_clear_bit(R5_WantReplace,
561                                             &sh->dev[i].flags)) {
562                         rw = WRITE;
563                         replace_only = 1;
564                 } else
565                         continue;
566                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
567                         rw |= REQ_SYNC;
568
569                 bi = &sh->dev[i].req;
570                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
571
572                 bi->bi_rw = rw;
573                 rbi->bi_rw = rw;
574                 if (rw & WRITE) {
575                         bi->bi_end_io = raid5_end_write_request;
576                         rbi->bi_end_io = raid5_end_write_request;
577                 } else
578                         bi->bi_end_io = raid5_end_read_request;
579
580                 rcu_read_lock();
581                 rrdev = rcu_dereference(conf->disks[i].replacement);
582                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
583                 rdev = rcu_dereference(conf->disks[i].rdev);
584                 if (!rdev) {
585                         rdev = rrdev;
586                         rrdev = NULL;
587                 }
588                 if (rw & WRITE) {
589                         if (replace_only)
590                                 rdev = NULL;
591                         if (rdev == rrdev)
592                                 /* We raced and saw duplicates */
593                                 rrdev = NULL;
594                 } else {
595                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
596                                 rdev = rrdev;
597                         rrdev = NULL;
598                 }
599
600                 if (rdev && test_bit(Faulty, &rdev->flags))
601                         rdev = NULL;
602                 if (rdev)
603                         atomic_inc(&rdev->nr_pending);
604                 if (rrdev && test_bit(Faulty, &rrdev->flags))
605                         rrdev = NULL;
606                 if (rrdev)
607                         atomic_inc(&rrdev->nr_pending);
608                 rcu_read_unlock();
609
610                 /* We have already checked bad blocks for reads.  Now
611                  * need to check for writes.  We never accept write errors
612                  * on the replacement, so we don't to check rrdev.
613                  */
614                 while ((rw & WRITE) && rdev &&
615                        test_bit(WriteErrorSeen, &rdev->flags)) {
616                         sector_t first_bad;
617                         int bad_sectors;
618                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
619                                               &first_bad, &bad_sectors);
620                         if (!bad)
621                                 break;
622
623                         if (bad < 0) {
624                                 set_bit(BlockedBadBlocks, &rdev->flags);
625                                 if (!conf->mddev->external &&
626                                     conf->mddev->flags) {
627                                         /* It is very unlikely, but we might
628                                          * still need to write out the
629                                          * bad block log - better give it
630                                          * a chance*/
631                                         md_check_recovery(conf->mddev);
632                                 }
633                                 /*
634                                  * Because md_wait_for_blocked_rdev
635                                  * will dec nr_pending, we must
636                                  * increment it first.
637                                  */
638                                 atomic_inc(&rdev->nr_pending);
639                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
640                         } else {
641                                 /* Acknowledged bad block - skip the write */
642                                 rdev_dec_pending(rdev, conf->mddev);
643                                 rdev = NULL;
644                         }
645                 }
646
647                 if (rdev) {
648                         if (s->syncing || s->expanding || s->expanded
649                             || s->replacing)
650                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
651
652                         set_bit(STRIPE_IO_STARTED, &sh->state);
653
654                         bi->bi_bdev = rdev->bdev;
655                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
656                                 __func__, (unsigned long long)sh->sector,
657                                 bi->bi_rw, i);
658                         atomic_inc(&sh->count);
659                         if (use_new_offset(conf, sh))
660                                 bi->bi_sector = (sh->sector
661                                                  + rdev->new_data_offset);
662                         else
663                                 bi->bi_sector = (sh->sector
664                                                  + rdev->data_offset);
665                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
666                                 bi->bi_rw |= REQ_FLUSH;
667
668                         bi->bi_flags = 1 << BIO_UPTODATE;
669                         bi->bi_idx = 0;
670                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
671                         bi->bi_io_vec[0].bv_offset = 0;
672                         bi->bi_size = STRIPE_SIZE;
673                         bi->bi_next = NULL;
674                         if (rrdev)
675                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
676                         trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
677                                               bi, disk_devt(conf->mddev->gendisk),
678                                               sh->dev[i].sector);
679                         generic_make_request(bi);
680                 }
681                 if (rrdev) {
682                         if (s->syncing || s->expanding || s->expanded
683                             || s->replacing)
684                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
685
686                         set_bit(STRIPE_IO_STARTED, &sh->state);
687
688                         rbi->bi_bdev = rrdev->bdev;
689                         pr_debug("%s: for %llu schedule op %ld on "
690                                  "replacement disc %d\n",
691                                 __func__, (unsigned long long)sh->sector,
692                                 rbi->bi_rw, i);
693                         atomic_inc(&sh->count);
694                         if (use_new_offset(conf, sh))
695                                 rbi->bi_sector = (sh->sector
696                                                   + rrdev->new_data_offset);
697                         else
698                                 rbi->bi_sector = (sh->sector
699                                                   + rrdev->data_offset);
700                         rbi->bi_flags = 1 << BIO_UPTODATE;
701                         rbi->bi_idx = 0;
702                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
703                         rbi->bi_io_vec[0].bv_offset = 0;
704                         rbi->bi_size = STRIPE_SIZE;
705                         rbi->bi_next = NULL;
706                         trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
707                                               rbi, disk_devt(conf->mddev->gendisk),
708                                               sh->dev[i].sector);
709                         generic_make_request(rbi);
710                 }
711                 if (!rdev && !rrdev) {
712                         if (rw & WRITE)
713                                 set_bit(STRIPE_DEGRADED, &sh->state);
714                         pr_debug("skip op %ld on disc %d for sector %llu\n",
715                                 bi->bi_rw, i, (unsigned long long)sh->sector);
716                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
717                         set_bit(STRIPE_HANDLE, &sh->state);
718                 }
719         }
720 }
721
722 static struct dma_async_tx_descriptor *
723 async_copy_data(int frombio, struct bio *bio, struct page *page,
724         sector_t sector, struct dma_async_tx_descriptor *tx)
725 {
726         struct bio_vec *bvl;
727         struct page *bio_page;
728         int i;
729         int page_offset;
730         struct async_submit_ctl submit;
731         enum async_tx_flags flags = 0;
732
733         if (bio->bi_sector >= sector)
734                 page_offset = (signed)(bio->bi_sector - sector) * 512;
735         else
736                 page_offset = (signed)(sector - bio->bi_sector) * -512;
737
738         if (frombio)
739                 flags |= ASYNC_TX_FENCE;
740         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
741
742         bio_for_each_segment(bvl, bio, i) {
743                 int len = bvl->bv_len;
744                 int clen;
745                 int b_offset = 0;
746
747                 if (page_offset < 0) {
748                         b_offset = -page_offset;
749                         page_offset += b_offset;
750                         len -= b_offset;
751                 }
752
753                 if (len > 0 && page_offset + len > STRIPE_SIZE)
754                         clen = STRIPE_SIZE - page_offset;
755                 else
756                         clen = len;
757
758                 if (clen > 0) {
759                         b_offset += bvl->bv_offset;
760                         bio_page = bvl->bv_page;
761                         if (frombio)
762                                 tx = async_memcpy(page, bio_page, page_offset,
763                                                   b_offset, clen, &submit);
764                         else
765                                 tx = async_memcpy(bio_page, page, b_offset,
766                                                   page_offset, clen, &submit);
767                 }
768                 /* chain the operations */
769                 submit.depend_tx = tx;
770
771                 if (clen < len) /* hit end of page */
772                         break;
773                 page_offset +=  len;
774         }
775
776         return tx;
777 }
778
779 static void ops_complete_biofill(void *stripe_head_ref)
780 {
781         struct stripe_head *sh = stripe_head_ref;
782         struct bio *return_bi = NULL;
783         int i;
784
785         pr_debug("%s: stripe %llu\n", __func__,
786                 (unsigned long long)sh->sector);
787
788         /* clear completed biofills */
789         for (i = sh->disks; i--; ) {
790                 struct r5dev *dev = &sh->dev[i];
791
792                 /* acknowledge completion of a biofill operation */
793                 /* and check if we need to reply to a read request,
794                  * new R5_Wantfill requests are held off until
795                  * !STRIPE_BIOFILL_RUN
796                  */
797                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
798                         struct bio *rbi, *rbi2;
799
800                         BUG_ON(!dev->read);
801                         rbi = dev->read;
802                         dev->read = NULL;
803                         while (rbi && rbi->bi_sector <
804                                 dev->sector + STRIPE_SECTORS) {
805                                 rbi2 = r5_next_bio(rbi, dev->sector);
806                                 if (!raid5_dec_bi_active_stripes(rbi)) {
807                                         rbi->bi_next = return_bi;
808                                         return_bi = rbi;
809                                 }
810                                 rbi = rbi2;
811                         }
812                 }
813         }
814         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
815
816         return_io(return_bi);
817
818         set_bit(STRIPE_HANDLE, &sh->state);
819         release_stripe(sh);
820 }
821
822 static void ops_run_biofill(struct stripe_head *sh)
823 {
824         struct dma_async_tx_descriptor *tx = NULL;
825         struct async_submit_ctl submit;
826         int i;
827
828         pr_debug("%s: stripe %llu\n", __func__,
829                 (unsigned long long)sh->sector);
830
831         for (i = sh->disks; i--; ) {
832                 struct r5dev *dev = &sh->dev[i];
833                 if (test_bit(R5_Wantfill, &dev->flags)) {
834                         struct bio *rbi;
835                         spin_lock_irq(&sh->stripe_lock);
836                         dev->read = rbi = dev->toread;
837                         dev->toread = NULL;
838                         spin_unlock_irq(&sh->stripe_lock);
839                         while (rbi && rbi->bi_sector <
840                                 dev->sector + STRIPE_SECTORS) {
841                                 tx = async_copy_data(0, rbi, dev->page,
842                                         dev->sector, tx);
843                                 rbi = r5_next_bio(rbi, dev->sector);
844                         }
845                 }
846         }
847
848         atomic_inc(&sh->count);
849         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
850         async_trigger_callback(&submit);
851 }
852
853 static void mark_target_uptodate(struct stripe_head *sh, int target)
854 {
855         struct r5dev *tgt;
856
857         if (target < 0)
858                 return;
859
860         tgt = &sh->dev[target];
861         set_bit(R5_UPTODATE, &tgt->flags);
862         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
863         clear_bit(R5_Wantcompute, &tgt->flags);
864 }
865
866 static void ops_complete_compute(void *stripe_head_ref)
867 {
868         struct stripe_head *sh = stripe_head_ref;
869
870         pr_debug("%s: stripe %llu\n", __func__,
871                 (unsigned long long)sh->sector);
872
873         /* mark the computed target(s) as uptodate */
874         mark_target_uptodate(sh, sh->ops.target);
875         mark_target_uptodate(sh, sh->ops.target2);
876
877         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
878         if (sh->check_state == check_state_compute_run)
879                 sh->check_state = check_state_compute_result;
880         set_bit(STRIPE_HANDLE, &sh->state);
881         release_stripe(sh);
882 }
883
884 /* return a pointer to the address conversion region of the scribble buffer */
885 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
886                                  struct raid5_percpu *percpu)
887 {
888         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
889 }
890
891 static struct dma_async_tx_descriptor *
892 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
893 {
894         int disks = sh->disks;
895         struct page **xor_srcs = percpu->scribble;
896         int target = sh->ops.target;
897         struct r5dev *tgt = &sh->dev[target];
898         struct page *xor_dest = tgt->page;
899         int count = 0;
900         struct dma_async_tx_descriptor *tx;
901         struct async_submit_ctl submit;
902         int i;
903
904         pr_debug("%s: stripe %llu block: %d\n",
905                 __func__, (unsigned long long)sh->sector, target);
906         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
907
908         for (i = disks; i--; )
909                 if (i != target)
910                         xor_srcs[count++] = sh->dev[i].page;
911
912         atomic_inc(&sh->count);
913
914         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
915                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
916         if (unlikely(count == 1))
917                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
918         else
919                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
920
921         return tx;
922 }
923
924 /* set_syndrome_sources - populate source buffers for gen_syndrome
925  * @srcs - (struct page *) array of size sh->disks
926  * @sh - stripe_head to parse
927  *
928  * Populates srcs in proper layout order for the stripe and returns the
929  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
930  * destination buffer is recorded in srcs[count] and the Q destination
931  * is recorded in srcs[count+1]].
932  */
933 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
934 {
935         int disks = sh->disks;
936         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
937         int d0_idx = raid6_d0(sh);
938         int count;
939         int i;
940
941         for (i = 0; i < disks; i++)
942                 srcs[i] = NULL;
943
944         count = 0;
945         i = d0_idx;
946         do {
947                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
948
949                 srcs[slot] = sh->dev[i].page;
950                 i = raid6_next_disk(i, disks);
951         } while (i != d0_idx);
952
953         return syndrome_disks;
954 }
955
956 static struct dma_async_tx_descriptor *
957 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
958 {
959         int disks = sh->disks;
960         struct page **blocks = percpu->scribble;
961         int target;
962         int qd_idx = sh->qd_idx;
963         struct dma_async_tx_descriptor *tx;
964         struct async_submit_ctl submit;
965         struct r5dev *tgt;
966         struct page *dest;
967         int i;
968         int count;
969
970         if (sh->ops.target < 0)
971                 target = sh->ops.target2;
972         else if (sh->ops.target2 < 0)
973                 target = sh->ops.target;
974         else
975                 /* we should only have one valid target */
976                 BUG();
977         BUG_ON(target < 0);
978         pr_debug("%s: stripe %llu block: %d\n",
979                 __func__, (unsigned long long)sh->sector, target);
980
981         tgt = &sh->dev[target];
982         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
983         dest = tgt->page;
984
985         atomic_inc(&sh->count);
986
987         if (target == qd_idx) {
988                 count = set_syndrome_sources(blocks, sh);
989                 blocks[count] = NULL; /* regenerating p is not necessary */
990                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
991                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
992                                   ops_complete_compute, sh,
993                                   to_addr_conv(sh, percpu));
994                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
995         } else {
996                 /* Compute any data- or p-drive using XOR */
997                 count = 0;
998                 for (i = disks; i-- ; ) {
999                         if (i == target || i == qd_idx)
1000                                 continue;
1001                         blocks[count++] = sh->dev[i].page;
1002                 }
1003
1004                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1005                                   NULL, ops_complete_compute, sh,
1006                                   to_addr_conv(sh, percpu));
1007                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1008         }
1009
1010         return tx;
1011 }
1012
1013 static struct dma_async_tx_descriptor *
1014 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1015 {
1016         int i, count, disks = sh->disks;
1017         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1018         int d0_idx = raid6_d0(sh);
1019         int faila = -1, failb = -1;
1020         int target = sh->ops.target;
1021         int target2 = sh->ops.target2;
1022         struct r5dev *tgt = &sh->dev[target];
1023         struct r5dev *tgt2 = &sh->dev[target2];
1024         struct dma_async_tx_descriptor *tx;
1025         struct page **blocks = percpu->scribble;
1026         struct async_submit_ctl submit;
1027
1028         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1029                  __func__, (unsigned long long)sh->sector, target, target2);
1030         BUG_ON(target < 0 || target2 < 0);
1031         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1032         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1033
1034         /* we need to open-code set_syndrome_sources to handle the
1035          * slot number conversion for 'faila' and 'failb'
1036          */
1037         for (i = 0; i < disks ; i++)
1038                 blocks[i] = NULL;
1039         count = 0;
1040         i = d0_idx;
1041         do {
1042                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1043
1044                 blocks[slot] = sh->dev[i].page;
1045
1046                 if (i == target)
1047                         faila = slot;
1048                 if (i == target2)
1049                         failb = slot;
1050                 i = raid6_next_disk(i, disks);
1051         } while (i != d0_idx);
1052
1053         BUG_ON(faila == failb);
1054         if (failb < faila)
1055                 swap(faila, failb);
1056         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1057                  __func__, (unsigned long long)sh->sector, faila, failb);
1058
1059         atomic_inc(&sh->count);
1060
1061         if (failb == syndrome_disks+1) {
1062                 /* Q disk is one of the missing disks */
1063                 if (faila == syndrome_disks) {
1064                         /* Missing P+Q, just recompute */
1065                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1066                                           ops_complete_compute, sh,
1067                                           to_addr_conv(sh, percpu));
1068                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1069                                                   STRIPE_SIZE, &submit);
1070                 } else {
1071                         struct page *dest;
1072                         int data_target;
1073                         int qd_idx = sh->qd_idx;
1074
1075                         /* Missing D+Q: recompute D from P, then recompute Q */
1076                         if (target == qd_idx)
1077                                 data_target = target2;
1078                         else
1079                                 data_target = target;
1080
1081                         count = 0;
1082                         for (i = disks; i-- ; ) {
1083                                 if (i == data_target || i == qd_idx)
1084                                         continue;
1085                                 blocks[count++] = sh->dev[i].page;
1086                         }
1087                         dest = sh->dev[data_target].page;
1088                         init_async_submit(&submit,
1089                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1090                                           NULL, NULL, NULL,
1091                                           to_addr_conv(sh, percpu));
1092                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1093                                        &submit);
1094
1095                         count = set_syndrome_sources(blocks, sh);
1096                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1097                                           ops_complete_compute, sh,
1098                                           to_addr_conv(sh, percpu));
1099                         return async_gen_syndrome(blocks, 0, count+2,
1100                                                   STRIPE_SIZE, &submit);
1101                 }
1102         } else {
1103                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1104                                   ops_complete_compute, sh,
1105                                   to_addr_conv(sh, percpu));
1106                 if (failb == syndrome_disks) {
1107                         /* We're missing D+P. */
1108                         return async_raid6_datap_recov(syndrome_disks+2,
1109                                                        STRIPE_SIZE, faila,
1110                                                        blocks, &submit);
1111                 } else {
1112                         /* We're missing D+D. */
1113                         return async_raid6_2data_recov(syndrome_disks+2,
1114                                                        STRIPE_SIZE, faila, failb,
1115                                                        blocks, &submit);
1116                 }
1117         }
1118 }
1119
1120
1121 static void ops_complete_prexor(void *stripe_head_ref)
1122 {
1123         struct stripe_head *sh = stripe_head_ref;
1124
1125         pr_debug("%s: stripe %llu\n", __func__,
1126                 (unsigned long long)sh->sector);
1127 }
1128
1129 static struct dma_async_tx_descriptor *
1130 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1131                struct dma_async_tx_descriptor *tx)
1132 {
1133         int disks = sh->disks;
1134         struct page **xor_srcs = percpu->scribble;
1135         int count = 0, pd_idx = sh->pd_idx, i;
1136         struct async_submit_ctl submit;
1137
1138         /* existing parity data subtracted */
1139         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1140
1141         pr_debug("%s: stripe %llu\n", __func__,
1142                 (unsigned long long)sh->sector);
1143
1144         for (i = disks; i--; ) {
1145                 struct r5dev *dev = &sh->dev[i];
1146                 /* Only process blocks that are known to be uptodate */
1147                 if (test_bit(R5_Wantdrain, &dev->flags))
1148                         xor_srcs[count++] = dev->page;
1149         }
1150
1151         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1152                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1153         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1154
1155         return tx;
1156 }
1157
1158 static struct dma_async_tx_descriptor *
1159 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1160 {
1161         int disks = sh->disks;
1162         int i;
1163
1164         pr_debug("%s: stripe %llu\n", __func__,
1165                 (unsigned long long)sh->sector);
1166
1167         for (i = disks; i--; ) {
1168                 struct r5dev *dev = &sh->dev[i];
1169                 struct bio *chosen;
1170
1171                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1172                         struct bio *wbi;
1173
1174                         spin_lock_irq(&sh->stripe_lock);
1175                         chosen = dev->towrite;
1176                         dev->towrite = NULL;
1177                         BUG_ON(dev->written);
1178                         wbi = dev->written = chosen;
1179                         spin_unlock_irq(&sh->stripe_lock);
1180
1181                         while (wbi && wbi->bi_sector <
1182                                 dev->sector + STRIPE_SECTORS) {
1183                                 if (wbi->bi_rw & REQ_FUA)
1184                                         set_bit(R5_WantFUA, &dev->flags);
1185                                 if (wbi->bi_rw & REQ_SYNC)
1186                                         set_bit(R5_SyncIO, &dev->flags);
1187                                 if (wbi->bi_rw & REQ_DISCARD)
1188                                         set_bit(R5_Discard, &dev->flags);
1189                                 else
1190                                         tx = async_copy_data(1, wbi, dev->page,
1191                                                 dev->sector, tx);
1192                                 wbi = r5_next_bio(wbi, dev->sector);
1193                         }
1194                 }
1195         }
1196
1197         return tx;
1198 }
1199
1200 static void ops_complete_reconstruct(void *stripe_head_ref)
1201 {
1202         struct stripe_head *sh = stripe_head_ref;
1203         int disks = sh->disks;
1204         int pd_idx = sh->pd_idx;
1205         int qd_idx = sh->qd_idx;
1206         int i;
1207         bool fua = false, sync = false, discard = false;
1208
1209         pr_debug("%s: stripe %llu\n", __func__,
1210                 (unsigned long long)sh->sector);
1211
1212         for (i = disks; i--; ) {
1213                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1214                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1215                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1216         }
1217
1218         for (i = disks; i--; ) {
1219                 struct r5dev *dev = &sh->dev[i];
1220
1221                 if (dev->written || i == pd_idx || i == qd_idx) {
1222                         if (!discard)
1223                                 set_bit(R5_UPTODATE, &dev->flags);
1224                         if (fua)
1225                                 set_bit(R5_WantFUA, &dev->flags);
1226                         if (sync)
1227                                 set_bit(R5_SyncIO, &dev->flags);
1228                 }
1229         }
1230
1231         if (sh->reconstruct_state == reconstruct_state_drain_run)
1232                 sh->reconstruct_state = reconstruct_state_drain_result;
1233         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1234                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1235         else {
1236                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1237                 sh->reconstruct_state = reconstruct_state_result;
1238         }
1239
1240         set_bit(STRIPE_HANDLE, &sh->state);
1241         release_stripe(sh);
1242 }
1243
1244 static void
1245 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1246                      struct dma_async_tx_descriptor *tx)
1247 {
1248         int disks = sh->disks;
1249         struct page **xor_srcs = percpu->scribble;
1250         struct async_submit_ctl submit;
1251         int count = 0, pd_idx = sh->pd_idx, i;
1252         struct page *xor_dest;
1253         int prexor = 0;
1254         unsigned long flags;
1255
1256         pr_debug("%s: stripe %llu\n", __func__,
1257                 (unsigned long long)sh->sector);
1258
1259         for (i = 0; i < sh->disks; i++) {
1260                 if (pd_idx == i)
1261                         continue;
1262                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1263                         break;
1264         }
1265         if (i >= sh->disks) {
1266                 atomic_inc(&sh->count);
1267                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1268                 ops_complete_reconstruct(sh);
1269                 return;
1270         }
1271         /* check if prexor is active which means only process blocks
1272          * that are part of a read-modify-write (written)
1273          */
1274         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1275                 prexor = 1;
1276                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (dev->written)
1280                                 xor_srcs[count++] = dev->page;
1281                 }
1282         } else {
1283                 xor_dest = sh->dev[pd_idx].page;
1284                 for (i = disks; i--; ) {
1285                         struct r5dev *dev = &sh->dev[i];
1286                         if (i != pd_idx)
1287                                 xor_srcs[count++] = dev->page;
1288                 }
1289         }
1290
1291         /* 1/ if we prexor'd then the dest is reused as a source
1292          * 2/ if we did not prexor then we are redoing the parity
1293          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1294          * for the synchronous xor case
1295          */
1296         flags = ASYNC_TX_ACK |
1297                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1298
1299         atomic_inc(&sh->count);
1300
1301         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1302                           to_addr_conv(sh, percpu));
1303         if (unlikely(count == 1))
1304                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1305         else
1306                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1307 }
1308
1309 static void
1310 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1311                      struct dma_async_tx_descriptor *tx)
1312 {
1313         struct async_submit_ctl submit;
1314         struct page **blocks = percpu->scribble;
1315         int count, i;
1316
1317         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1318
1319         for (i = 0; i < sh->disks; i++) {
1320                 if (sh->pd_idx == i || sh->qd_idx == i)
1321                         continue;
1322                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1323                         break;
1324         }
1325         if (i >= sh->disks) {
1326                 atomic_inc(&sh->count);
1327                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1328                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1329                 ops_complete_reconstruct(sh);
1330                 return;
1331         }
1332
1333         count = set_syndrome_sources(blocks, sh);
1334
1335         atomic_inc(&sh->count);
1336
1337         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1338                           sh, to_addr_conv(sh, percpu));
1339         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1340 }
1341
1342 static void ops_complete_check(void *stripe_head_ref)
1343 {
1344         struct stripe_head *sh = stripe_head_ref;
1345
1346         pr_debug("%s: stripe %llu\n", __func__,
1347                 (unsigned long long)sh->sector);
1348
1349         sh->check_state = check_state_check_result;
1350         set_bit(STRIPE_HANDLE, &sh->state);
1351         release_stripe(sh);
1352 }
1353
1354 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1355 {
1356         int disks = sh->disks;
1357         int pd_idx = sh->pd_idx;
1358         int qd_idx = sh->qd_idx;
1359         struct page *xor_dest;
1360         struct page **xor_srcs = percpu->scribble;
1361         struct dma_async_tx_descriptor *tx;
1362         struct async_submit_ctl submit;
1363         int count;
1364         int i;
1365
1366         pr_debug("%s: stripe %llu\n", __func__,
1367                 (unsigned long long)sh->sector);
1368
1369         count = 0;
1370         xor_dest = sh->dev[pd_idx].page;
1371         xor_srcs[count++] = xor_dest;
1372         for (i = disks; i--; ) {
1373                 if (i == pd_idx || i == qd_idx)
1374                         continue;
1375                 xor_srcs[count++] = sh->dev[i].page;
1376         }
1377
1378         init_async_submit(&submit, 0, NULL, NULL, NULL,
1379                           to_addr_conv(sh, percpu));
1380         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1381                            &sh->ops.zero_sum_result, &submit);
1382
1383         atomic_inc(&sh->count);
1384         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1385         tx = async_trigger_callback(&submit);
1386 }
1387
1388 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1389 {
1390         struct page **srcs = percpu->scribble;
1391         struct async_submit_ctl submit;
1392         int count;
1393
1394         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1395                 (unsigned long long)sh->sector, checkp);
1396
1397         count = set_syndrome_sources(srcs, sh);
1398         if (!checkp)
1399                 srcs[count] = NULL;
1400
1401         atomic_inc(&sh->count);
1402         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1403                           sh, to_addr_conv(sh, percpu));
1404         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1405                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1406 }
1407
1408 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1409 {
1410         int overlap_clear = 0, i, disks = sh->disks;
1411         struct dma_async_tx_descriptor *tx = NULL;
1412         struct r5conf *conf = sh->raid_conf;
1413         int level = conf->level;
1414         struct raid5_percpu *percpu;
1415         unsigned long cpu;
1416
1417         cpu = get_cpu();
1418         percpu = per_cpu_ptr(conf->percpu, cpu);
1419         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1420                 ops_run_biofill(sh);
1421                 overlap_clear++;
1422         }
1423
1424         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1425                 if (level < 6)
1426                         tx = ops_run_compute5(sh, percpu);
1427                 else {
1428                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1429                                 tx = ops_run_compute6_1(sh, percpu);
1430                         else
1431                                 tx = ops_run_compute6_2(sh, percpu);
1432                 }
1433                 /* terminate the chain if reconstruct is not set to be run */
1434                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1435                         async_tx_ack(tx);
1436         }
1437
1438         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1439                 tx = ops_run_prexor(sh, percpu, tx);
1440
1441         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1442                 tx = ops_run_biodrain(sh, tx);
1443                 overlap_clear++;
1444         }
1445
1446         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1447                 if (level < 6)
1448                         ops_run_reconstruct5(sh, percpu, tx);
1449                 else
1450                         ops_run_reconstruct6(sh, percpu, tx);
1451         }
1452
1453         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1454                 if (sh->check_state == check_state_run)
1455                         ops_run_check_p(sh, percpu);
1456                 else if (sh->check_state == check_state_run_q)
1457                         ops_run_check_pq(sh, percpu, 0);
1458                 else if (sh->check_state == check_state_run_pq)
1459                         ops_run_check_pq(sh, percpu, 1);
1460                 else
1461                         BUG();
1462         }
1463
1464         if (overlap_clear)
1465                 for (i = disks; i--; ) {
1466                         struct r5dev *dev = &sh->dev[i];
1467                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1468                                 wake_up(&sh->raid_conf->wait_for_overlap);
1469                 }
1470         put_cpu();
1471 }
1472
1473 #ifdef CONFIG_MULTICORE_RAID456
1474 static void async_run_ops(void *param, async_cookie_t cookie)
1475 {
1476         struct stripe_head *sh = param;
1477         unsigned long ops_request = sh->ops.request;
1478
1479         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1480         wake_up(&sh->ops.wait_for_ops);
1481
1482         __raid_run_ops(sh, ops_request);
1483         release_stripe(sh);
1484 }
1485
1486 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1487 {
1488         /* since handle_stripe can be called outside of raid5d context
1489          * we need to ensure sh->ops.request is de-staged before another
1490          * request arrives
1491          */
1492         wait_event(sh->ops.wait_for_ops,
1493                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1494         sh->ops.request = ops_request;
1495
1496         atomic_inc(&sh->count);
1497         async_schedule(async_run_ops, sh);
1498 }
1499 #else
1500 #define raid_run_ops __raid_run_ops
1501 #endif
1502
1503 static int grow_one_stripe(struct r5conf *conf)
1504 {
1505         struct stripe_head *sh;
1506         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1507         if (!sh)
1508                 return 0;
1509
1510         sh->raid_conf = conf;
1511         #ifdef CONFIG_MULTICORE_RAID456
1512         init_waitqueue_head(&sh->ops.wait_for_ops);
1513         #endif
1514
1515         spin_lock_init(&sh->stripe_lock);
1516
1517         if (grow_buffers(sh)) {
1518                 shrink_buffers(sh);
1519                 kmem_cache_free(conf->slab_cache, sh);
1520                 return 0;
1521         }
1522         /* we just created an active stripe so... */
1523         atomic_set(&sh->count, 1);
1524         atomic_inc(&conf->active_stripes);
1525         INIT_LIST_HEAD(&sh->lru);
1526         release_stripe(sh);
1527         return 1;
1528 }
1529
1530 static int grow_stripes(struct r5conf *conf, int num)
1531 {
1532         struct kmem_cache *sc;
1533         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1534
1535         if (conf->mddev->gendisk)
1536                 sprintf(conf->cache_name[0],
1537                         "raid%d-%s", conf->level, mdname(conf->mddev));
1538         else
1539                 sprintf(conf->cache_name[0],
1540                         "raid%d-%p", conf->level, conf->mddev);
1541         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1542
1543         conf->active_name = 0;
1544         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1545                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1546                                0, 0, NULL);
1547         if (!sc)
1548                 return 1;
1549         conf->slab_cache = sc;
1550         conf->pool_size = devs;
1551         while (num--)
1552                 if (!grow_one_stripe(conf))
1553                         return 1;
1554         return 0;
1555 }
1556
1557 /**
1558  * scribble_len - return the required size of the scribble region
1559  * @num - total number of disks in the array
1560  *
1561  * The size must be enough to contain:
1562  * 1/ a struct page pointer for each device in the array +2
1563  * 2/ room to convert each entry in (1) to its corresponding dma
1564  *    (dma_map_page()) or page (page_address()) address.
1565  *
1566  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1567  * calculate over all devices (not just the data blocks), using zeros in place
1568  * of the P and Q blocks.
1569  */
1570 static size_t scribble_len(int num)
1571 {
1572         size_t len;
1573
1574         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1575
1576         return len;
1577 }
1578
1579 static int resize_stripes(struct r5conf *conf, int newsize)
1580 {
1581         /* Make all the stripes able to hold 'newsize' devices.
1582          * New slots in each stripe get 'page' set to a new page.
1583          *
1584          * This happens in stages:
1585          * 1/ create a new kmem_cache and allocate the required number of
1586          *    stripe_heads.
1587          * 2/ gather all the old stripe_heads and transfer the pages across
1588          *    to the new stripe_heads.  This will have the side effect of
1589          *    freezing the array as once all stripe_heads have been collected,
1590          *    no IO will be possible.  Old stripe heads are freed once their
1591          *    pages have been transferred over, and the old kmem_cache is
1592          *    freed when all stripes are done.
1593          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1594          *    we simple return a failre status - no need to clean anything up.
1595          * 4/ allocate new pages for the new slots in the new stripe_heads.
1596          *    If this fails, we don't bother trying the shrink the
1597          *    stripe_heads down again, we just leave them as they are.
1598          *    As each stripe_head is processed the new one is released into
1599          *    active service.
1600          *
1601          * Once step2 is started, we cannot afford to wait for a write,
1602          * so we use GFP_NOIO allocations.
1603          */
1604         struct stripe_head *osh, *nsh;
1605         LIST_HEAD(newstripes);
1606         struct disk_info *ndisks;
1607         unsigned long cpu;
1608         int err;
1609         struct kmem_cache *sc;
1610         int i;
1611
1612         if (newsize <= conf->pool_size)
1613                 return 0; /* never bother to shrink */
1614
1615         err = md_allow_write(conf->mddev);
1616         if (err)
1617                 return err;
1618
1619         /* Step 1 */
1620         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1621                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1622                                0, 0, NULL);
1623         if (!sc)
1624                 return -ENOMEM;
1625
1626         for (i = conf->max_nr_stripes; i; i--) {
1627                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1628                 if (!nsh)
1629                         break;
1630
1631                 nsh->raid_conf = conf;
1632                 #ifdef CONFIG_MULTICORE_RAID456
1633                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1634                 #endif
1635                 spin_lock_init(&nsh->stripe_lock);
1636
1637                 list_add(&nsh->lru, &newstripes);
1638         }
1639         if (i) {
1640                 /* didn't get enough, give up */
1641                 while (!list_empty(&newstripes)) {
1642                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1643                         list_del(&nsh->lru);
1644                         kmem_cache_free(sc, nsh);
1645                 }
1646                 kmem_cache_destroy(sc);
1647                 return -ENOMEM;
1648         }
1649         /* Step 2 - Must use GFP_NOIO now.
1650          * OK, we have enough stripes, start collecting inactive
1651          * stripes and copying them over
1652          */
1653         list_for_each_entry(nsh, &newstripes, lru) {
1654                 spin_lock_irq(&conf->device_lock);
1655                 wait_event_lock_irq(conf->wait_for_stripe,
1656                                     !list_empty(&conf->inactive_list),
1657                                     conf->device_lock);
1658                 osh = get_free_stripe(conf);
1659                 spin_unlock_irq(&conf->device_lock);
1660                 atomic_set(&nsh->count, 1);
1661                 for(i=0; i<conf->pool_size; i++)
1662                         nsh->dev[i].page = osh->dev[i].page;
1663                 for( ; i<newsize; i++)
1664                         nsh->dev[i].page = NULL;
1665                 kmem_cache_free(conf->slab_cache, osh);
1666         }
1667         kmem_cache_destroy(conf->slab_cache);
1668
1669         /* Step 3.
1670          * At this point, we are holding all the stripes so the array
1671          * is completely stalled, so now is a good time to resize
1672          * conf->disks and the scribble region
1673          */
1674         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1675         if (ndisks) {
1676                 for (i=0; i<conf->raid_disks; i++)
1677                         ndisks[i] = conf->disks[i];
1678                 kfree(conf->disks);
1679                 conf->disks = ndisks;
1680         } else
1681                 err = -ENOMEM;
1682
1683         get_online_cpus();
1684         conf->scribble_len = scribble_len(newsize);
1685         for_each_present_cpu(cpu) {
1686                 struct raid5_percpu *percpu;
1687                 void *scribble;
1688
1689                 percpu = per_cpu_ptr(conf->percpu, cpu);
1690                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1691
1692                 if (scribble) {
1693                         kfree(percpu->scribble);
1694                         percpu->scribble = scribble;
1695                 } else {
1696                         err = -ENOMEM;
1697                         break;
1698                 }
1699         }
1700         put_online_cpus();
1701
1702         /* Step 4, return new stripes to service */
1703         while(!list_empty(&newstripes)) {
1704                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1705                 list_del_init(&nsh->lru);
1706
1707                 for (i=conf->raid_disks; i < newsize; i++)
1708                         if (nsh->dev[i].page == NULL) {
1709                                 struct page *p = alloc_page(GFP_NOIO);
1710                                 nsh->dev[i].page = p;
1711                                 if (!p)
1712                                         err = -ENOMEM;
1713                         }
1714                 release_stripe(nsh);
1715         }
1716         /* critical section pass, GFP_NOIO no longer needed */
1717
1718         conf->slab_cache = sc;
1719         conf->active_name = 1-conf->active_name;
1720         conf->pool_size = newsize;
1721         return err;
1722 }
1723
1724 static int drop_one_stripe(struct r5conf *conf)
1725 {
1726         struct stripe_head *sh;
1727
1728         spin_lock_irq(&conf->device_lock);
1729         sh = get_free_stripe(conf);
1730         spin_unlock_irq(&conf->device_lock);
1731         if (!sh)
1732                 return 0;
1733         BUG_ON(atomic_read(&sh->count));
1734         shrink_buffers(sh);
1735         kmem_cache_free(conf->slab_cache, sh);
1736         atomic_dec(&conf->active_stripes);
1737         return 1;
1738 }
1739
1740 static void shrink_stripes(struct r5conf *conf)
1741 {
1742         while (drop_one_stripe(conf))
1743                 ;
1744
1745         if (conf->slab_cache)
1746                 kmem_cache_destroy(conf->slab_cache);
1747         conf->slab_cache = NULL;
1748 }
1749
1750 static void raid5_end_read_request(struct bio * bi, int error)
1751 {
1752         struct stripe_head *sh = bi->bi_private;
1753         struct r5conf *conf = sh->raid_conf;
1754         int disks = sh->disks, i;
1755         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1756         char b[BDEVNAME_SIZE];
1757         struct md_rdev *rdev = NULL;
1758         sector_t s;
1759
1760         for (i=0 ; i<disks; i++)
1761                 if (bi == &sh->dev[i].req)
1762                         break;
1763
1764         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1765                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1766                 uptodate);
1767         if (i == disks) {
1768                 BUG();
1769                 return;
1770         }
1771         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1772                 /* If replacement finished while this request was outstanding,
1773                  * 'replacement' might be NULL already.
1774                  * In that case it moved down to 'rdev'.
1775                  * rdev is not removed until all requests are finished.
1776                  */
1777                 rdev = conf->disks[i].replacement;
1778         if (!rdev)
1779                 rdev = conf->disks[i].rdev;
1780
1781         if (use_new_offset(conf, sh))
1782                 s = sh->sector + rdev->new_data_offset;
1783         else
1784                 s = sh->sector + rdev->data_offset;
1785         if (uptodate) {
1786                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1787                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1788                         /* Note that this cannot happen on a
1789                          * replacement device.  We just fail those on
1790                          * any error
1791                          */
1792                         printk_ratelimited(
1793                                 KERN_INFO
1794                                 "md/raid:%s: read error corrected"
1795                                 " (%lu sectors at %llu on %s)\n",
1796                                 mdname(conf->mddev), STRIPE_SECTORS,
1797                                 (unsigned long long)s,
1798                                 bdevname(rdev->bdev, b));
1799                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1800                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1801                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1802                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1803                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1804
1805                 if (atomic_read(&rdev->read_errors))
1806                         atomic_set(&rdev->read_errors, 0);
1807         } else {
1808                 const char *bdn = bdevname(rdev->bdev, b);
1809                 int retry = 0;
1810                 int set_bad = 0;
1811
1812                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1813                 atomic_inc(&rdev->read_errors);
1814                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1815                         printk_ratelimited(
1816                                 KERN_WARNING
1817                                 "md/raid:%s: read error on replacement device "
1818                                 "(sector %llu on %s).\n",
1819                                 mdname(conf->mddev),
1820                                 (unsigned long long)s,
1821                                 bdn);
1822                 else if (conf->mddev->degraded >= conf->max_degraded) {
1823                         set_bad = 1;
1824                         printk_ratelimited(
1825                                 KERN_WARNING
1826                                 "md/raid:%s: read error not correctable "
1827                                 "(sector %llu on %s).\n",
1828                                 mdname(conf->mddev),
1829                                 (unsigned long long)s,
1830                                 bdn);
1831                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1832                         /* Oh, no!!! */
1833                         set_bad = 1;
1834                         printk_ratelimited(
1835                                 KERN_WARNING
1836                                 "md/raid:%s: read error NOT corrected!! "
1837                                 "(sector %llu on %s).\n",
1838                                 mdname(conf->mddev),
1839                                 (unsigned long long)s,
1840                                 bdn);
1841                 } else if (atomic_read(&rdev->read_errors)
1842                          > conf->max_nr_stripes)
1843                         printk(KERN_WARNING
1844                                "md/raid:%s: Too many read errors, failing device %s.\n",
1845                                mdname(conf->mddev), bdn);
1846                 else
1847                         retry = 1;
1848                 if (retry)
1849                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1850                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1851                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1852                         } else
1853                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1854                 else {
1855                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1856                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1857                         if (!(set_bad
1858                               && test_bit(In_sync, &rdev->flags)
1859                               && rdev_set_badblocks(
1860                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1861                                 md_error(conf->mddev, rdev);
1862                 }
1863         }
1864         rdev_dec_pending(rdev, conf->mddev);
1865         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1866         set_bit(STRIPE_HANDLE, &sh->state);
1867         release_stripe(sh);
1868 }
1869
1870 static void raid5_end_write_request(struct bio *bi, int error)
1871 {
1872         struct stripe_head *sh = bi->bi_private;
1873         struct r5conf *conf = sh->raid_conf;
1874         int disks = sh->disks, i;
1875         struct md_rdev *uninitialized_var(rdev);
1876         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1877         sector_t first_bad;
1878         int bad_sectors;
1879         int replacement = 0;
1880
1881         for (i = 0 ; i < disks; i++) {
1882                 if (bi == &sh->dev[i].req) {
1883                         rdev = conf->disks[i].rdev;
1884                         break;
1885                 }
1886                 if (bi == &sh->dev[i].rreq) {
1887                         rdev = conf->disks[i].replacement;
1888                         if (rdev)
1889                                 replacement = 1;
1890                         else
1891                                 /* rdev was removed and 'replacement'
1892                                  * replaced it.  rdev is not removed
1893                                  * until all requests are finished.
1894                                  */
1895                                 rdev = conf->disks[i].rdev;
1896                         break;
1897                 }
1898         }
1899         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1900                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1901                 uptodate);
1902         if (i == disks) {
1903                 BUG();
1904                 return;
1905         }
1906
1907         if (replacement) {
1908                 if (!uptodate)
1909                         md_error(conf->mddev, rdev);
1910                 else if (is_badblock(rdev, sh->sector,
1911                                      STRIPE_SECTORS,
1912                                      &first_bad, &bad_sectors))
1913                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1914         } else {
1915                 if (!uptodate) {
1916                         set_bit(WriteErrorSeen, &rdev->flags);
1917                         set_bit(R5_WriteError, &sh->dev[i].flags);
1918                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1919                                 set_bit(MD_RECOVERY_NEEDED,
1920                                         &rdev->mddev->recovery);
1921                 } else if (is_badblock(rdev, sh->sector,
1922                                        STRIPE_SECTORS,
1923                                        &first_bad, &bad_sectors))
1924                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1925         }
1926         rdev_dec_pending(rdev, conf->mddev);
1927
1928         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1929                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1930         set_bit(STRIPE_HANDLE, &sh->state);
1931         release_stripe(sh);
1932 }
1933
1934 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1935         
1936 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1937 {
1938         struct r5dev *dev = &sh->dev[i];
1939
1940         bio_init(&dev->req);
1941         dev->req.bi_io_vec = &dev->vec;
1942         dev->req.bi_vcnt++;
1943         dev->req.bi_max_vecs++;
1944         dev->req.bi_private = sh;
1945         dev->vec.bv_page = dev->page;
1946
1947         bio_init(&dev->rreq);
1948         dev->rreq.bi_io_vec = &dev->rvec;
1949         dev->rreq.bi_vcnt++;
1950         dev->rreq.bi_max_vecs++;
1951         dev->rreq.bi_private = sh;
1952         dev->rvec.bv_page = dev->page;
1953
1954         dev->flags = 0;
1955         dev->sector = compute_blocknr(sh, i, previous);
1956 }
1957
1958 static void error(struct mddev *mddev, struct md_rdev *rdev)
1959 {
1960         char b[BDEVNAME_SIZE];
1961         struct r5conf *conf = mddev->private;
1962         unsigned long flags;
1963         pr_debug("raid456: error called\n");
1964
1965         spin_lock_irqsave(&conf->device_lock, flags);
1966         clear_bit(In_sync, &rdev->flags);
1967         mddev->degraded = calc_degraded(conf);
1968         spin_unlock_irqrestore(&conf->device_lock, flags);
1969         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1970
1971         set_bit(Blocked, &rdev->flags);
1972         set_bit(Faulty, &rdev->flags);
1973         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1974         printk(KERN_ALERT
1975                "md/raid:%s: Disk failure on %s, disabling device.\n"
1976                "md/raid:%s: Operation continuing on %d devices.\n",
1977                mdname(mddev),
1978                bdevname(rdev->bdev, b),
1979                mdname(mddev),
1980                conf->raid_disks - mddev->degraded);
1981 }
1982
1983 /*
1984  * Input: a 'big' sector number,
1985  * Output: index of the data and parity disk, and the sector # in them.
1986  */
1987 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1988                                      int previous, int *dd_idx,
1989                                      struct stripe_head *sh)
1990 {
1991         sector_t stripe, stripe2;
1992         sector_t chunk_number;
1993         unsigned int chunk_offset;
1994         int pd_idx, qd_idx;
1995         int ddf_layout = 0;
1996         sector_t new_sector;
1997         int algorithm = previous ? conf->prev_algo
1998                                  : conf->algorithm;
1999         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2000                                          : conf->chunk_sectors;
2001         int raid_disks = previous ? conf->previous_raid_disks
2002                                   : conf->raid_disks;
2003         int data_disks = raid_disks - conf->max_degraded;
2004
2005         /* First compute the information on this sector */
2006
2007         /*
2008          * Compute the chunk number and the sector offset inside the chunk
2009          */
2010         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2011         chunk_number = r_sector;
2012
2013         /*
2014          * Compute the stripe number
2015          */
2016         stripe = chunk_number;
2017         *dd_idx = sector_div(stripe, data_disks);
2018         stripe2 = stripe;
2019         /*
2020          * Select the parity disk based on the user selected algorithm.
2021          */
2022         pd_idx = qd_idx = -1;
2023         switch(conf->level) {
2024         case 4:
2025                 pd_idx = data_disks;
2026                 break;
2027         case 5:
2028                 switch (algorithm) {
2029                 case ALGORITHM_LEFT_ASYMMETRIC:
2030                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2031                         if (*dd_idx >= pd_idx)
2032                                 (*dd_idx)++;
2033                         break;
2034                 case ALGORITHM_RIGHT_ASYMMETRIC:
2035                         pd_idx = sector_div(stripe2, raid_disks);
2036                         if (*dd_idx >= pd_idx)
2037                                 (*dd_idx)++;
2038                         break;
2039                 case ALGORITHM_LEFT_SYMMETRIC:
2040                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2041                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2042                         break;
2043                 case ALGORITHM_RIGHT_SYMMETRIC:
2044                         pd_idx = sector_div(stripe2, raid_disks);
2045                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2046                         break;
2047                 case ALGORITHM_PARITY_0:
2048                         pd_idx = 0;
2049                         (*dd_idx)++;
2050                         break;
2051                 case ALGORITHM_PARITY_N:
2052                         pd_idx = data_disks;
2053                         break;
2054                 default:
2055                         BUG();
2056                 }
2057                 break;
2058         case 6:
2059
2060                 switch (algorithm) {
2061                 case ALGORITHM_LEFT_ASYMMETRIC:
2062                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2063                         qd_idx = pd_idx + 1;
2064                         if (pd_idx == raid_disks-1) {
2065                                 (*dd_idx)++;    /* Q D D D P */
2066                                 qd_idx = 0;
2067                         } else if (*dd_idx >= pd_idx)
2068                                 (*dd_idx) += 2; /* D D P Q D */
2069                         break;
2070                 case ALGORITHM_RIGHT_ASYMMETRIC:
2071                         pd_idx = sector_div(stripe2, raid_disks);
2072                         qd_idx = pd_idx + 1;
2073                         if (pd_idx == raid_disks-1) {
2074                                 (*dd_idx)++;    /* Q D D D P */
2075                                 qd_idx = 0;
2076                         } else if (*dd_idx >= pd_idx)
2077                                 (*dd_idx) += 2; /* D D P Q D */
2078                         break;
2079                 case ALGORITHM_LEFT_SYMMETRIC:
2080                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2081                         qd_idx = (pd_idx + 1) % raid_disks;
2082                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2083                         break;
2084                 case ALGORITHM_RIGHT_SYMMETRIC:
2085                         pd_idx = sector_div(stripe2, raid_disks);
2086                         qd_idx = (pd_idx + 1) % raid_disks;
2087                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2088                         break;
2089
2090                 case ALGORITHM_PARITY_0:
2091                         pd_idx = 0;
2092                         qd_idx = 1;
2093                         (*dd_idx) += 2;
2094                         break;
2095                 case ALGORITHM_PARITY_N:
2096                         pd_idx = data_disks;
2097                         qd_idx = data_disks + 1;
2098                         break;
2099
2100                 case ALGORITHM_ROTATING_ZERO_RESTART:
2101                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2102                          * of blocks for computing Q is different.
2103                          */
2104                         pd_idx = sector_div(stripe2, raid_disks);
2105                         qd_idx = pd_idx + 1;
2106                         if (pd_idx == raid_disks-1) {
2107                                 (*dd_idx)++;    /* Q D D D P */
2108                                 qd_idx = 0;
2109                         } else if (*dd_idx >= pd_idx)
2110                                 (*dd_idx) += 2; /* D D P Q D */
2111                         ddf_layout = 1;
2112                         break;
2113
2114                 case ALGORITHM_ROTATING_N_RESTART:
2115                         /* Same a left_asymmetric, by first stripe is
2116                          * D D D P Q  rather than
2117                          * Q D D D P
2118                          */
2119                         stripe2 += 1;
2120                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2121                         qd_idx = pd_idx + 1;
2122                         if (pd_idx == raid_disks-1) {
2123                                 (*dd_idx)++;    /* Q D D D P */
2124                                 qd_idx = 0;
2125                         } else if (*dd_idx >= pd_idx)
2126                                 (*dd_idx) += 2; /* D D P Q D */
2127                         ddf_layout = 1;
2128                         break;
2129
2130                 case ALGORITHM_ROTATING_N_CONTINUE:
2131                         /* Same as left_symmetric but Q is before P */
2132                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2133                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2134                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2135                         ddf_layout = 1;
2136                         break;
2137
2138                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2139                         /* RAID5 left_asymmetric, with Q on last device */
2140                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2141                         if (*dd_idx >= pd_idx)
2142                                 (*dd_idx)++;
2143                         qd_idx = raid_disks - 1;
2144                         break;
2145
2146                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2147                         pd_idx = sector_div(stripe2, raid_disks-1);
2148                         if (*dd_idx >= pd_idx)
2149                                 (*dd_idx)++;
2150                         qd_idx = raid_disks - 1;
2151                         break;
2152
2153                 case ALGORITHM_LEFT_SYMMETRIC_6:
2154                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2155                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2156                         qd_idx = raid_disks - 1;
2157                         break;
2158
2159                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2160                         pd_idx = sector_div(stripe2, raid_disks-1);
2161                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2162                         qd_idx = raid_disks - 1;
2163                         break;
2164
2165                 case ALGORITHM_PARITY_0_6:
2166                         pd_idx = 0;
2167                         (*dd_idx)++;
2168                         qd_idx = raid_disks - 1;
2169                         break;
2170
2171                 default:
2172                         BUG();
2173                 }
2174                 break;
2175         }
2176
2177         if (sh) {
2178                 sh->pd_idx = pd_idx;
2179                 sh->qd_idx = qd_idx;
2180                 sh->ddf_layout = ddf_layout;
2181         }
2182         /*
2183          * Finally, compute the new sector number
2184          */
2185         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2186         return new_sector;
2187 }
2188
2189
2190 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2191 {
2192         struct r5conf *conf = sh->raid_conf;
2193         int raid_disks = sh->disks;
2194         int data_disks = raid_disks - conf->max_degraded;
2195         sector_t new_sector = sh->sector, check;
2196         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2197                                          : conf->chunk_sectors;
2198         int algorithm = previous ? conf->prev_algo
2199                                  : conf->algorithm;
2200         sector_t stripe;
2201         int chunk_offset;
2202         sector_t chunk_number;
2203         int dummy1, dd_idx = i;
2204         sector_t r_sector;
2205         struct stripe_head sh2;
2206
2207
2208         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2209         stripe = new_sector;
2210
2211         if (i == sh->pd_idx)
2212                 return 0;
2213         switch(conf->level) {
2214         case 4: break;
2215         case 5:
2216                 switch (algorithm) {
2217                 case ALGORITHM_LEFT_ASYMMETRIC:
2218                 case ALGORITHM_RIGHT_ASYMMETRIC:
2219                         if (i > sh->pd_idx)
2220                                 i--;
2221                         break;
2222                 case ALGORITHM_LEFT_SYMMETRIC:
2223                 case ALGORITHM_RIGHT_SYMMETRIC:
2224                         if (i < sh->pd_idx)
2225                                 i += raid_disks;
2226                         i -= (sh->pd_idx + 1);
2227                         break;
2228                 case ALGORITHM_PARITY_0:
2229                         i -= 1;
2230                         break;
2231                 case ALGORITHM_PARITY_N:
2232                         break;
2233                 default:
2234                         BUG();
2235                 }
2236                 break;
2237         case 6:
2238                 if (i == sh->qd_idx)
2239                         return 0; /* It is the Q disk */
2240                 switch (algorithm) {
2241                 case ALGORITHM_LEFT_ASYMMETRIC:
2242                 case ALGORITHM_RIGHT_ASYMMETRIC:
2243                 case ALGORITHM_ROTATING_ZERO_RESTART:
2244                 case ALGORITHM_ROTATING_N_RESTART:
2245                         if (sh->pd_idx == raid_disks-1)
2246                                 i--;    /* Q D D D P */
2247                         else if (i > sh->pd_idx)
2248                                 i -= 2; /* D D P Q D */
2249                         break;
2250                 case ALGORITHM_LEFT_SYMMETRIC:
2251                 case ALGORITHM_RIGHT_SYMMETRIC:
2252                         if (sh->pd_idx == raid_disks-1)
2253                                 i--; /* Q D D D P */
2254                         else {
2255                                 /* D D P Q D */
2256                                 if (i < sh->pd_idx)
2257                                         i += raid_disks;
2258                                 i -= (sh->pd_idx + 2);
2259                         }
2260                         break;
2261                 case ALGORITHM_PARITY_0:
2262                         i -= 2;
2263                         break;
2264                 case ALGORITHM_PARITY_N:
2265                         break;
2266                 case ALGORITHM_ROTATING_N_CONTINUE:
2267                         /* Like left_symmetric, but P is before Q */
2268                         if (sh->pd_idx == 0)
2269                                 i--;    /* P D D D Q */
2270                         else {
2271                                 /* D D Q P D */
2272                                 if (i < sh->pd_idx)
2273                                         i += raid_disks;
2274                                 i -= (sh->pd_idx + 1);
2275                         }
2276                         break;
2277                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2278                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2279                         if (i > sh->pd_idx)
2280                                 i--;
2281                         break;
2282                 case ALGORITHM_LEFT_SYMMETRIC_6:
2283                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2284                         if (i < sh->pd_idx)
2285                                 i += data_disks + 1;
2286                         i -= (sh->pd_idx + 1);
2287                         break;
2288                 case ALGORITHM_PARITY_0_6:
2289                         i -= 1;
2290                         break;
2291                 default:
2292                         BUG();
2293                 }
2294                 break;
2295         }
2296
2297         chunk_number = stripe * data_disks + i;
2298         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2299
2300         check = raid5_compute_sector(conf, r_sector,
2301                                      previous, &dummy1, &sh2);
2302         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2303                 || sh2.qd_idx != sh->qd_idx) {
2304                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2305                        mdname(conf->mddev));
2306                 return 0;
2307         }
2308         return r_sector;
2309 }
2310
2311
2312 static void
2313 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2314                          int rcw, int expand)
2315 {
2316         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2317         struct r5conf *conf = sh->raid_conf;
2318         int level = conf->level;
2319
2320         if (rcw) {
2321                 /* if we are not expanding this is a proper write request, and
2322                  * there will be bios with new data to be drained into the
2323                  * stripe cache
2324                  */
2325                 if (!expand) {
2326                         sh->reconstruct_state = reconstruct_state_drain_run;
2327                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2328                 } else
2329                         sh->reconstruct_state = reconstruct_state_run;
2330
2331                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2332
2333                 for (i = disks; i--; ) {
2334                         struct r5dev *dev = &sh->dev[i];
2335
2336                         if (dev->towrite) {
2337                                 set_bit(R5_LOCKED, &dev->flags);
2338                                 set_bit(R5_Wantdrain, &dev->flags);
2339                                 if (!expand)
2340                                         clear_bit(R5_UPTODATE, &dev->flags);
2341                                 s->locked++;
2342                         }
2343                 }
2344                 if (s->locked + conf->max_degraded == disks)
2345                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2346                                 atomic_inc(&conf->pending_full_writes);
2347         } else {
2348                 BUG_ON(level == 6);
2349                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2350                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2351
2352                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2353                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2354                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2355                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2356
2357                 for (i = disks; i--; ) {
2358                         struct r5dev *dev = &sh->dev[i];
2359                         if (i == pd_idx)
2360                                 continue;
2361
2362                         if (dev->towrite &&
2363                             (test_bit(R5_UPTODATE, &dev->flags) ||
2364                              test_bit(R5_Wantcompute, &dev->flags))) {
2365                                 set_bit(R5_Wantdrain, &dev->flags);
2366                                 set_bit(R5_LOCKED, &dev->flags);
2367                                 clear_bit(R5_UPTODATE, &dev->flags);
2368                                 s->locked++;
2369                         }
2370                 }
2371         }
2372
2373         /* keep the parity disk(s) locked while asynchronous operations
2374          * are in flight
2375          */
2376         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2377         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2378         s->locked++;
2379
2380         if (level == 6) {
2381                 int qd_idx = sh->qd_idx;
2382                 struct r5dev *dev = &sh->dev[qd_idx];
2383
2384                 set_bit(R5_LOCKED, &dev->flags);
2385                 clear_bit(R5_UPTODATE, &dev->flags);
2386                 s->locked++;
2387         }
2388
2389         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2390                 __func__, (unsigned long long)sh->sector,
2391                 s->locked, s->ops_request);
2392 }
2393
2394 /*
2395  * Each stripe/dev can have one or more bion attached.
2396  * toread/towrite point to the first in a chain.
2397  * The bi_next chain must be in order.
2398  */
2399 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2400 {
2401         struct bio **bip;
2402         struct r5conf *conf = sh->raid_conf;
2403         int firstwrite=0;
2404
2405         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2406                 (unsigned long long)bi->bi_sector,
2407                 (unsigned long long)sh->sector);
2408
2409         /*
2410          * If several bio share a stripe. The bio bi_phys_segments acts as a
2411          * reference count to avoid race. The reference count should already be
2412          * increased before this function is called (for example, in
2413          * make_request()), so other bio sharing this stripe will not free the
2414          * stripe. If a stripe is owned by one stripe, the stripe lock will
2415          * protect it.
2416          */
2417         spin_lock_irq(&sh->stripe_lock);
2418         if (forwrite) {
2419                 bip = &sh->dev[dd_idx].towrite;
2420                 if (*bip == NULL)
2421                         firstwrite = 1;
2422         } else
2423                 bip = &sh->dev[dd_idx].toread;
2424         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2425                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2426                         goto overlap;
2427                 bip = & (*bip)->bi_next;
2428         }
2429         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2430                 goto overlap;
2431
2432         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2433         if (*bip)
2434                 bi->bi_next = *bip;
2435         *bip = bi;
2436         raid5_inc_bi_active_stripes(bi);
2437
2438         if (forwrite) {
2439                 /* check if page is covered */
2440                 sector_t sector = sh->dev[dd_idx].sector;
2441                 for (bi=sh->dev[dd_idx].towrite;
2442                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2443                              bi && bi->bi_sector <= sector;
2444                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2445                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2446                                 sector = bi->bi_sector + (bi->bi_size>>9);
2447                 }
2448                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2449                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2450         }
2451
2452         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2453                 (unsigned long long)(*bip)->bi_sector,
2454                 (unsigned long long)sh->sector, dd_idx);
2455         spin_unlock_irq(&sh->stripe_lock);
2456
2457         if (conf->mddev->bitmap && firstwrite) {
2458                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2459                                   STRIPE_SECTORS, 0);
2460                 sh->bm_seq = conf->seq_flush+1;
2461                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2462         }
2463         return 1;
2464
2465  overlap:
2466         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2467         spin_unlock_irq(&sh->stripe_lock);
2468         return 0;
2469 }
2470
2471 static void end_reshape(struct r5conf *conf);
2472
2473 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2474                             struct stripe_head *sh)
2475 {
2476         int sectors_per_chunk =
2477                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2478         int dd_idx;
2479         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2480         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2481
2482         raid5_compute_sector(conf,
2483                              stripe * (disks - conf->max_degraded)
2484                              *sectors_per_chunk + chunk_offset,
2485                              previous,
2486                              &dd_idx, sh);
2487 }
2488
2489 static void
2490 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2491                                 struct stripe_head_state *s, int disks,
2492                                 struct bio **return_bi)
2493 {
2494         int i;
2495         for (i = disks; i--; ) {
2496                 struct bio *bi;
2497                 int bitmap_end = 0;
2498
2499                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2500                         struct md_rdev *rdev;
2501                         rcu_read_lock();
2502                         rdev = rcu_dereference(conf->disks[i].rdev);
2503                         if (rdev && test_bit(In_sync, &rdev->flags))
2504                                 atomic_inc(&rdev->nr_pending);
2505                         else
2506                                 rdev = NULL;
2507                         rcu_read_unlock();
2508                         if (rdev) {
2509                                 if (!rdev_set_badblocks(
2510                                             rdev,
2511                                             sh->sector,
2512                                             STRIPE_SECTORS, 0))
2513                                         md_error(conf->mddev, rdev);
2514                                 rdev_dec_pending(rdev, conf->mddev);
2515                         }
2516                 }
2517                 spin_lock_irq(&sh->stripe_lock);
2518                 /* fail all writes first */
2519                 bi = sh->dev[i].towrite;
2520                 sh->dev[i].towrite = NULL;
2521                 spin_unlock_irq(&sh->stripe_lock);
2522                 if (bi)
2523                         bitmap_end = 1;
2524
2525                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2526                         wake_up(&conf->wait_for_overlap);
2527
2528                 while (bi && bi->bi_sector <
2529                         sh->dev[i].sector + STRIPE_SECTORS) {
2530                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2531                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2532                         if (!raid5_dec_bi_active_stripes(bi)) {
2533                                 md_write_end(conf->mddev);
2534                                 bi->bi_next = *return_bi;
2535                                 *return_bi = bi;
2536                         }
2537                         bi = nextbi;
2538                 }
2539                 if (bitmap_end)
2540                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2541                                 STRIPE_SECTORS, 0, 0);
2542                 bitmap_end = 0;
2543                 /* and fail all 'written' */
2544                 bi = sh->dev[i].written;
2545                 sh->dev[i].written = NULL;
2546                 if (bi) bitmap_end = 1;
2547                 while (bi && bi->bi_sector <
2548                        sh->dev[i].sector + STRIPE_SECTORS) {
2549                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2550                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2551                         if (!raid5_dec_bi_active_stripes(bi)) {
2552                                 md_write_end(conf->mddev);
2553                                 bi->bi_next = *return_bi;
2554                                 *return_bi = bi;
2555                         }
2556                         bi = bi2;
2557                 }
2558
2559                 /* fail any reads if this device is non-operational and
2560                  * the data has not reached the cache yet.
2561                  */
2562                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2563                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2564                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2565                         spin_lock_irq(&sh->stripe_lock);
2566                         bi = sh->dev[i].toread;
2567                         sh->dev[i].toread = NULL;
2568                         spin_unlock_irq(&sh->stripe_lock);
2569                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2570                                 wake_up(&conf->wait_for_overlap);
2571                         while (bi && bi->bi_sector <
2572                                sh->dev[i].sector + STRIPE_SECTORS) {
2573                                 struct bio *nextbi =
2574                                         r5_next_bio(bi, sh->dev[i].sector);
2575                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2576                                 if (!raid5_dec_bi_active_stripes(bi)) {
2577                                         bi->bi_next = *return_bi;
2578                                         *return_bi = bi;
2579                                 }
2580                                 bi = nextbi;
2581                         }
2582                 }
2583                 if (bitmap_end)
2584                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2585                                         STRIPE_SECTORS, 0, 0);
2586                 /* If we were in the middle of a write the parity block might
2587                  * still be locked - so just clear all R5_LOCKED flags
2588                  */
2589                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2590         }
2591
2592         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2593                 if (atomic_dec_and_test(&conf->pending_full_writes))
2594                         md_wakeup_thread(conf->mddev->thread);
2595 }
2596
2597 static void
2598 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2599                    struct stripe_head_state *s)
2600 {
2601         int abort = 0;
2602         int i;
2603
2604         clear_bit(STRIPE_SYNCING, &sh->state);
2605         s->syncing = 0;
2606         s->replacing = 0;
2607         /* There is nothing more to do for sync/check/repair.
2608          * Don't even need to abort as that is handled elsewhere
2609          * if needed, and not always wanted e.g. if there is a known
2610          * bad block here.
2611          * For recover/replace we need to record a bad block on all
2612          * non-sync devices, or abort the recovery
2613          */
2614         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2615                 /* During recovery devices cannot be removed, so
2616                  * locking and refcounting of rdevs is not needed
2617                  */
2618                 for (i = 0; i < conf->raid_disks; i++) {
2619                         struct md_rdev *rdev = conf->disks[i].rdev;
2620                         if (rdev
2621                             && !test_bit(Faulty, &rdev->flags)
2622                             && !test_bit(In_sync, &rdev->flags)
2623                             && !rdev_set_badblocks(rdev, sh->sector,
2624                                                    STRIPE_SECTORS, 0))
2625                                 abort = 1;
2626                         rdev = conf->disks[i].replacement;
2627                         if (rdev
2628                             && !test_bit(Faulty, &rdev->flags)
2629                             && !test_bit(In_sync, &rdev->flags)
2630                             && !rdev_set_badblocks(rdev, sh->sector,
2631                                                    STRIPE_SECTORS, 0))
2632                                 abort = 1;
2633                 }
2634                 if (abort)
2635                         conf->recovery_disabled =
2636                                 conf->mddev->recovery_disabled;
2637         }
2638         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2639 }
2640
2641 static int want_replace(struct stripe_head *sh, int disk_idx)
2642 {
2643         struct md_rdev *rdev;
2644         int rv = 0;
2645         /* Doing recovery so rcu locking not required */
2646         rdev = sh->raid_conf->disks[disk_idx].replacement;
2647         if (rdev
2648             && !test_bit(Faulty, &rdev->flags)
2649             && !test_bit(In_sync, &rdev->flags)
2650             && (rdev->recovery_offset <= sh->sector
2651                 || rdev->mddev->recovery_cp <= sh->sector))
2652                 rv = 1;
2653
2654         return rv;
2655 }
2656
2657 /* fetch_block - checks the given member device to see if its data needs
2658  * to be read or computed to satisfy a request.
2659  *
2660  * Returns 1 when no more member devices need to be checked, otherwise returns
2661  * 0 to tell the loop in handle_stripe_fill to continue
2662  */
2663 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2664                        int disk_idx, int disks)
2665 {
2666         struct r5dev *dev = &sh->dev[disk_idx];
2667         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2668                                   &sh->dev[s->failed_num[1]] };
2669
2670         /* is the data in this block needed, and can we get it? */
2671         if (!test_bit(R5_LOCKED, &dev->flags) &&
2672             !test_bit(R5_UPTODATE, &dev->flags) &&
2673             (dev->toread ||
2674              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2675              s->syncing || s->expanding ||
2676              (s->replacing && want_replace(sh, disk_idx)) ||
2677              (s->failed >= 1 && fdev[0]->toread) ||
2678              (s->failed >= 2 && fdev[1]->toread) ||
2679              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2680               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2681              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2682                 /* we would like to get this block, possibly by computing it,
2683                  * otherwise read it if the backing disk is insync
2684                  */
2685                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2686                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2687                 if ((s->uptodate == disks - 1) &&
2688                     (s->failed && (disk_idx == s->failed_num[0] ||
2689                                    disk_idx == s->failed_num[1]))) {
2690                         /* have disk failed, and we're requested to fetch it;
2691                          * do compute it
2692                          */
2693                         pr_debug("Computing stripe %llu block %d\n",
2694                                (unsigned long long)sh->sector, disk_idx);
2695                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2696                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2697                         set_bit(R5_Wantcompute, &dev->flags);
2698                         sh->ops.target = disk_idx;
2699                         sh->ops.target2 = -1; /* no 2nd target */
2700                         s->req_compute = 1;
2701                         /* Careful: from this point on 'uptodate' is in the eye
2702                          * of raid_run_ops which services 'compute' operations
2703                          * before writes. R5_Wantcompute flags a block that will
2704                          * be R5_UPTODATE by the time it is needed for a
2705                          * subsequent operation.
2706                          */
2707                         s->uptodate++;
2708                         return 1;
2709                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2710                         /* Computing 2-failure is *very* expensive; only
2711                          * do it if failed >= 2
2712                          */
2713                         int other;
2714                         for (other = disks; other--; ) {
2715                                 if (other == disk_idx)
2716                                         continue;
2717                                 if (!test_bit(R5_UPTODATE,
2718                                       &sh->dev[other].flags))
2719                                         break;
2720                         }
2721                         BUG_ON(other < 0);
2722                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2723                                (unsigned long long)sh->sector,
2724                                disk_idx, other);
2725                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2728                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2729                         sh->ops.target = disk_idx;
2730                         sh->ops.target2 = other;
2731                         s->uptodate += 2;
2732                         s->req_compute = 1;
2733                         return 1;
2734                 } else if (test_bit(R5_Insync, &dev->flags)) {
2735                         set_bit(R5_LOCKED, &dev->flags);
2736                         set_bit(R5_Wantread, &dev->flags);
2737                         s->locked++;
2738                         pr_debug("Reading block %d (sync=%d)\n",
2739                                 disk_idx, s->syncing);
2740                 }
2741         }
2742
2743         return 0;
2744 }
2745
2746 /**
2747  * handle_stripe_fill - read or compute data to satisfy pending requests.
2748  */
2749 static void handle_stripe_fill(struct stripe_head *sh,
2750                                struct stripe_head_state *s,
2751                                int disks)
2752 {
2753         int i;
2754
2755         /* look for blocks to read/compute, skip this if a compute
2756          * is already in flight, or if the stripe contents are in the
2757          * midst of changing due to a write
2758          */
2759         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2760             !sh->reconstruct_state)
2761                 for (i = disks; i--; )
2762                         if (fetch_block(sh, s, i, disks))
2763                                 break;
2764         set_bit(STRIPE_HANDLE, &sh->state);
2765 }
2766
2767
2768 /* handle_stripe_clean_event
2769  * any written block on an uptodate or failed drive can be returned.
2770  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2771  * never LOCKED, so we don't need to test 'failed' directly.
2772  */
2773 static void handle_stripe_clean_event(struct r5conf *conf,
2774         struct stripe_head *sh, int disks, struct bio **return_bi)
2775 {
2776         int i;
2777         struct r5dev *dev;
2778
2779         for (i = disks; i--; )
2780                 if (sh->dev[i].written) {
2781                         dev = &sh->dev[i];
2782                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2783                             (test_bit(R5_UPTODATE, &dev->flags) ||
2784                              test_bit(R5_Discard, &dev->flags))) {
2785                                 /* We can return any write requests */
2786                                 struct bio *wbi, *wbi2;
2787                                 pr_debug("Return write for disc %d\n", i);
2788                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2789                                         clear_bit(R5_UPTODATE, &dev->flags);
2790                                 wbi = dev->written;
2791                                 dev->written = NULL;
2792                                 while (wbi && wbi->bi_sector <
2793                                         dev->sector + STRIPE_SECTORS) {
2794                                         wbi2 = r5_next_bio(wbi, dev->sector);
2795                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2796                                                 md_write_end(conf->mddev);
2797                                                 wbi->bi_next = *return_bi;
2798                                                 *return_bi = wbi;
2799                                         }
2800                                         wbi = wbi2;
2801                                 }
2802                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2803                                                 STRIPE_SECTORS,
2804                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2805                                                 0);
2806                         }
2807                 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2808                         clear_bit(R5_Discard, &sh->dev[i].flags);
2809
2810         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2811                 if (atomic_dec_and_test(&conf->pending_full_writes))
2812                         md_wakeup_thread(conf->mddev->thread);
2813 }
2814
2815 static void handle_stripe_dirtying(struct r5conf *conf,
2816                                    struct stripe_head *sh,
2817                                    struct stripe_head_state *s,
2818                                    int disks)
2819 {
2820         int rmw = 0, rcw = 0, i;
2821         sector_t recovery_cp = conf->mddev->recovery_cp;
2822
2823         /* RAID6 requires 'rcw' in current implementation.
2824          * Otherwise, check whether resync is now happening or should start.
2825          * If yes, then the array is dirty (after unclean shutdown or
2826          * initial creation), so parity in some stripes might be inconsistent.
2827          * In this case, we need to always do reconstruct-write, to ensure
2828          * that in case of drive failure or read-error correction, we
2829          * generate correct data from the parity.
2830          */
2831         if (conf->max_degraded == 2 ||
2832             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2833                 /* Calculate the real rcw later - for now make it
2834                  * look like rcw is cheaper
2835                  */
2836                 rcw = 1; rmw = 2;
2837                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2838                          conf->max_degraded, (unsigned long long)recovery_cp,
2839                          (unsigned long long)sh->sector);
2840         } else for (i = disks; i--; ) {
2841                 /* would I have to read this buffer for read_modify_write */
2842                 struct r5dev *dev = &sh->dev[i];
2843                 if ((dev->towrite || i == sh->pd_idx) &&
2844                     !test_bit(R5_LOCKED, &dev->flags) &&
2845                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2846                       test_bit(R5_Wantcompute, &dev->flags))) {
2847                         if (test_bit(R5_Insync, &dev->flags))
2848                                 rmw++;
2849                         else
2850                                 rmw += 2*disks;  /* cannot read it */
2851                 }
2852                 /* Would I have to read this buffer for reconstruct_write */
2853                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2854                     !test_bit(R5_LOCKED, &dev->flags) &&
2855                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2856                     test_bit(R5_Wantcompute, &dev->flags))) {
2857                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2858                         else
2859                                 rcw += 2*disks;
2860                 }
2861         }
2862         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2863                 (unsigned long long)sh->sector, rmw, rcw);
2864         set_bit(STRIPE_HANDLE, &sh->state);
2865         if (rmw < rcw && rmw > 0) {
2866                 /* prefer read-modify-write, but need to get some data */
2867                 blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d",
2868                                   (unsigned long long)sh->sector, rmw);
2869                 for (i = disks; i--; ) {
2870                         struct r5dev *dev = &sh->dev[i];
2871                         if ((dev->towrite || i == sh->pd_idx) &&
2872                             !test_bit(R5_LOCKED, &dev->flags) &&
2873                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2874                             test_bit(R5_Wantcompute, &dev->flags)) &&
2875                             test_bit(R5_Insync, &dev->flags)) {
2876                                 if (
2877                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2878                                         pr_debug("Read_old block "
2879                                                  "%d for r-m-w\n", i);
2880                                         set_bit(R5_LOCKED, &dev->flags);
2881                                         set_bit(R5_Wantread, &dev->flags);
2882                                         s->locked++;
2883                                 } else {
2884                                         set_bit(STRIPE_DELAYED, &sh->state);
2885                                         set_bit(STRIPE_HANDLE, &sh->state);
2886                                 }
2887                         }
2888                 }
2889         }
2890         if (rcw <= rmw && rcw > 0) {
2891                 /* want reconstruct write, but need to get some data */
2892                 int qread =0;
2893                 rcw = 0;
2894                 for (i = disks; i--; ) {
2895                         struct r5dev *dev = &sh->dev[i];
2896                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2897                             i != sh->pd_idx && i != sh->qd_idx &&
2898                             !test_bit(R5_LOCKED, &dev->flags) &&
2899                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2900                               test_bit(R5_Wantcompute, &dev->flags))) {
2901                                 rcw++;
2902                                 if (!test_bit(R5_Insync, &dev->flags))
2903                                         continue; /* it's a failed drive */
2904                                 if (
2905                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2906                                         pr_debug("Read_old block "
2907                                                 "%d for Reconstruct\n", i);
2908                                         set_bit(R5_LOCKED, &dev->flags);
2909                                         set_bit(R5_Wantread, &dev->flags);
2910                                         s->locked++;
2911                                         qread++;
2912                                 } else {
2913                                         set_bit(STRIPE_DELAYED, &sh->state);
2914                                         set_bit(STRIPE_HANDLE, &sh->state);
2915                                 }
2916                         }
2917                 }
2918                 if (rcw)
2919                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2920                                           (unsigned long long)sh->sector,
2921                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2922         }
2923         /* now if nothing is locked, and if we have enough data,
2924          * we can start a write request
2925          */
2926         /* since handle_stripe can be called at any time we need to handle the
2927          * case where a compute block operation has been submitted and then a
2928          * subsequent call wants to start a write request.  raid_run_ops only
2929          * handles the case where compute block and reconstruct are requested
2930          * simultaneously.  If this is not the case then new writes need to be
2931          * held off until the compute completes.
2932          */
2933         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2934             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2935             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2936                 schedule_reconstruction(sh, s, rcw == 0, 0);
2937 }
2938
2939 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2940                                 struct stripe_head_state *s, int disks)
2941 {
2942         struct r5dev *dev = NULL;
2943
2944         set_bit(STRIPE_HANDLE, &sh->state);
2945
2946         switch (sh->check_state) {
2947         case check_state_idle:
2948                 /* start a new check operation if there are no failures */
2949                 if (s->failed == 0) {
2950                         BUG_ON(s->uptodate != disks);
2951                         sh->check_state = check_state_run;
2952                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2953                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2954                         s->uptodate--;
2955                         break;
2956                 }
2957                 dev = &sh->dev[s->failed_num[0]];
2958                 /* fall through */
2959         case check_state_compute_result:
2960                 sh->check_state = check_state_idle;
2961                 if (!dev)
2962                         dev = &sh->dev[sh->pd_idx];
2963
2964                 /* check that a write has not made the stripe insync */
2965                 if (test_bit(STRIPE_INSYNC, &sh->state))
2966                         break;
2967
2968                 /* either failed parity check, or recovery is happening */
2969                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2970                 BUG_ON(s->uptodate != disks);
2971
2972                 set_bit(R5_LOCKED, &dev->flags);
2973                 s->locked++;
2974                 set_bit(R5_Wantwrite, &dev->flags);
2975
2976                 clear_bit(STRIPE_DEGRADED, &sh->state);
2977                 set_bit(STRIPE_INSYNC, &sh->state);
2978                 break;
2979         case check_state_run:
2980                 break; /* we will be called again upon completion */
2981         case check_state_check_result:
2982                 sh->check_state = check_state_idle;
2983
2984                 /* if a failure occurred during the check operation, leave
2985                  * STRIPE_INSYNC not set and let the stripe be handled again
2986                  */
2987                 if (s->failed)
2988                         break;
2989
2990                 /* handle a successful check operation, if parity is correct
2991                  * we are done.  Otherwise update the mismatch count and repair
2992                  * parity if !MD_RECOVERY_CHECK
2993                  */
2994                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2995                         /* parity is correct (on disc,
2996                          * not in buffer any more)
2997                          */
2998                         set_bit(STRIPE_INSYNC, &sh->state);
2999                 else {
3000                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3001                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3002                                 /* don't try to repair!! */
3003                                 set_bit(STRIPE_INSYNC, &sh->state);
3004                         else {
3005                                 sh->check_state = check_state_compute_run;
3006                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3007                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3008                                 set_bit(R5_Wantcompute,
3009                                         &sh->dev[sh->pd_idx].flags);
3010                                 sh->ops.target = sh->pd_idx;
3011                                 sh->ops.target2 = -1;
3012                                 s->uptodate++;
3013                         }
3014                 }
3015                 break;
3016         case check_state_compute_run:
3017                 break;
3018         default:
3019                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3020                        __func__, sh->check_state,
3021                        (unsigned long long) sh->sector);
3022                 BUG();
3023         }
3024 }
3025
3026
3027 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3028                                   struct stripe_head_state *s,
3029                                   int disks)
3030 {
3031         int pd_idx = sh->pd_idx;
3032         int qd_idx = sh->qd_idx;
3033         struct r5dev *dev;
3034
3035         set_bit(STRIPE_HANDLE, &sh->state);
3036
3037         BUG_ON(s->failed > 2);
3038
3039         /* Want to check and possibly repair P and Q.
3040          * However there could be one 'failed' device, in which
3041          * case we can only check one of them, possibly using the
3042          * other to generate missing data
3043          */
3044
3045         switch (sh->check_state) {
3046         case check_state_idle:
3047                 /* start a new check operation if there are < 2 failures */
3048                 if (s->failed == s->q_failed) {
3049                         /* The only possible failed device holds Q, so it
3050                          * makes sense to check P (If anything else were failed,
3051                          * we would have used P to recreate it).
3052                          */
3053                         sh->check_state = check_state_run;
3054                 }
3055                 if (!s->q_failed && s->failed < 2) {
3056                         /* Q is not failed, and we didn't use it to generate
3057                          * anything, so it makes sense to check it
3058                          */
3059                         if (sh->check_state == check_state_run)
3060                                 sh->check_state = check_state_run_pq;
3061                         else
3062                                 sh->check_state = check_state_run_q;
3063                 }
3064
3065                 /* discard potentially stale zero_sum_result */
3066                 sh->ops.zero_sum_result = 0;
3067
3068                 if (sh->check_state == check_state_run) {
3069                         /* async_xor_zero_sum destroys the contents of P */
3070                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3071                         s->uptodate--;
3072                 }
3073                 if (sh->check_state >= check_state_run &&
3074                     sh->check_state <= check_state_run_pq) {
3075                         /* async_syndrome_zero_sum preserves P and Q, so
3076                          * no need to mark them !uptodate here
3077                          */
3078                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3079                         break;
3080                 }
3081
3082                 /* we have 2-disk failure */
3083                 BUG_ON(s->failed != 2);
3084                 /* fall through */
3085         case check_state_compute_result:
3086                 sh->check_state = check_state_idle;
3087
3088                 /* check that a write has not made the stripe insync */
3089                 if (test_bit(STRIPE_INSYNC, &sh->state))
3090                         break;
3091
3092                 /* now write out any block on a failed drive,
3093                  * or P or Q if they were recomputed
3094                  */
3095                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3096                 if (s->failed == 2) {
3097                         dev = &sh->dev[s->failed_num[1]];
3098                         s->locked++;
3099                         set_bit(R5_LOCKED, &dev->flags);
3100                         set_bit(R5_Wantwrite, &dev->flags);
3101                 }
3102                 if (s->failed >= 1) {
3103                         dev = &sh->dev[s->failed_num[0]];
3104                         s->locked++;
3105                         set_bit(R5_LOCKED, &dev->flags);
3106                         set_bit(R5_Wantwrite, &dev->flags);
3107                 }
3108                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3109                         dev = &sh->dev[pd_idx];
3110                         s->locked++;
3111                         set_bit(R5_LOCKED, &dev->flags);
3112                         set_bit(R5_Wantwrite, &dev->flags);
3113                 }
3114                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3115                         dev = &sh->dev[qd_idx];
3116                         s->locked++;
3117                         set_bit(R5_LOCKED, &dev->flags);
3118                         set_bit(R5_Wantwrite, &dev->flags);
3119                 }
3120                 clear_bit(STRIPE_DEGRADED, &sh->state);
3121
3122                 set_bit(STRIPE_INSYNC, &sh->state);
3123                 break;
3124         case check_state_run:
3125         case check_state_run_q:
3126         case check_state_run_pq:
3127                 break; /* we will be called again upon completion */
3128         case check_state_check_result:
3129                 sh->check_state = check_state_idle;
3130
3131                 /* handle a successful check operation, if parity is correct
3132                  * we are done.  Otherwise update the mismatch count and repair
3133                  * parity if !MD_RECOVERY_CHECK
3134                  */
3135                 if (sh->ops.zero_sum_result == 0) {
3136                         /* both parities are correct */
3137                         if (!s->failed)
3138                                 set_bit(STRIPE_INSYNC, &sh->state);
3139                         else {
3140                                 /* in contrast to the raid5 case we can validate
3141                                  * parity, but still have a failure to write
3142                                  * back
3143                                  */
3144                                 sh->check_state = check_state_compute_result;
3145                                 /* Returning at this point means that we may go
3146                                  * off and bring p and/or q uptodate again so
3147                                  * we make sure to check zero_sum_result again
3148                                  * to verify if p or q need writeback
3149                                  */
3150                         }
3151                 } else {
3152                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3153                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3154                                 /* don't try to repair!! */
3155                                 set_bit(STRIPE_INSYNC, &sh->state);
3156                         else {
3157                                 int *target = &sh->ops.target;
3158
3159                                 sh->ops.target = -1;
3160                                 sh->ops.target2 = -1;
3161                                 sh->check_state = check_state_compute_run;
3162                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3163                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3164                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3165                                         set_bit(R5_Wantcompute,
3166                                                 &sh->dev[pd_idx].flags);
3167                                         *target = pd_idx;
3168                                         target = &sh->ops.target2;
3169                                         s->uptodate++;
3170                                 }
3171                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3172                                         set_bit(R5_Wantcompute,
3173                                                 &sh->dev[qd_idx].flags);
3174                                         *target = qd_idx;
3175                                         s->uptodate++;
3176                                 }
3177                         }
3178                 }
3179                 break;
3180         case check_state_compute_run:
3181                 break;
3182         default:
3183                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3184                        __func__, sh->check_state,
3185                        (unsigned long long) sh->sector);
3186                 BUG();
3187         }
3188 }
3189
3190 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3191 {
3192         int i;
3193
3194         /* We have read all the blocks in this stripe and now we need to
3195          * copy some of them into a target stripe for expand.
3196          */
3197         struct dma_async_tx_descriptor *tx = NULL;
3198         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3199         for (i = 0; i < sh->disks; i++)
3200                 if (i != sh->pd_idx && i != sh->qd_idx) {
3201                         int dd_idx, j;
3202                         struct stripe_head *sh2;
3203                         struct async_submit_ctl submit;
3204
3205                         sector_t bn = compute_blocknr(sh, i, 1);
3206                         sector_t s = raid5_compute_sector(conf, bn, 0,
3207                                                           &dd_idx, NULL);
3208                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3209                         if (sh2 == NULL)
3210                                 /* so far only the early blocks of this stripe
3211                                  * have been requested.  When later blocks
3212                                  * get requested, we will try again
3213                                  */
3214                                 continue;
3215                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3216                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3217                                 /* must have already done this block */
3218                                 release_stripe(sh2);
3219                                 continue;
3220                         }
3221
3222                         /* place all the copies on one channel */
3223                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3224                         tx = async_memcpy(sh2->dev[dd_idx].page,
3225                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3226                                           &submit);
3227
3228                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3229                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3230                         for (j = 0; j < conf->raid_disks; j++)
3231                                 if (j != sh2->pd_idx &&
3232                                     j != sh2->qd_idx &&
3233                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3234                                         break;
3235                         if (j == conf->raid_disks) {
3236                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3237                                 set_bit(STRIPE_HANDLE, &sh2->state);
3238                         }
3239                         release_stripe(sh2);
3240
3241                 }
3242         /* done submitting copies, wait for them to complete */
3243         async_tx_quiesce(&tx);
3244 }
3245
3246 /*
3247  * handle_stripe - do things to a stripe.
3248  *
3249  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3250  * state of various bits to see what needs to be done.
3251  * Possible results:
3252  *    return some read requests which now have data
3253  *    return some write requests which are safely on storage
3254  *    schedule a read on some buffers
3255  *    schedule a write of some buffers
3256  *    return confirmation of parity correctness
3257  *
3258  */
3259
3260 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3261 {
3262         struct r5conf *conf = sh->raid_conf;
3263         int disks = sh->disks;
3264         struct r5dev *dev;
3265         int i;
3266         int do_recovery = 0;
3267
3268         memset(s, 0, sizeof(*s));
3269
3270         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3271         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3272         s->failed_num[0] = -1;
3273         s->failed_num[1] = -1;
3274
3275         /* Now to look around and see what can be done */
3276         rcu_read_lock();
3277         for (i=disks; i--; ) {
3278                 struct md_rdev *rdev;
3279                 sector_t first_bad;
3280                 int bad_sectors;
3281                 int is_bad = 0;
3282
3283                 dev = &sh->dev[i];
3284
3285                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3286                          i, dev->flags,
3287                          dev->toread, dev->towrite, dev->written);
3288                 /* maybe we can reply to a read
3289                  *
3290                  * new wantfill requests are only permitted while
3291                  * ops_complete_biofill is guaranteed to be inactive
3292                  */
3293                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3294                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3295                         set_bit(R5_Wantfill, &dev->flags);
3296
3297                 /* now count some things */
3298                 if (test_bit(R5_LOCKED, &dev->flags))
3299                         s->locked++;
3300                 if (test_bit(R5_UPTODATE, &dev->flags))
3301                         s->uptodate++;
3302                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3303                         s->compute++;
3304                         BUG_ON(s->compute > 2);
3305                 }
3306
3307                 if (test_bit(R5_Wantfill, &dev->flags))
3308                         s->to_fill++;
3309                 else if (dev->toread)
3310                         s->to_read++;
3311                 if (dev->towrite) {
3312                         s->to_write++;
3313                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3314                                 s->non_overwrite++;
3315                 }
3316                 if (dev->written)
3317                         s->written++;
3318                 /* Prefer to use the replacement for reads, but only
3319                  * if it is recovered enough and has no bad blocks.
3320                  */
3321                 rdev = rcu_dereference(conf->disks[i].replacement);
3322                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3323                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3324                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3325                                  &first_bad, &bad_sectors))
3326                         set_bit(R5_ReadRepl, &dev->flags);
3327                 else {
3328                         if (rdev)
3329                                 set_bit(R5_NeedReplace, &dev->flags);
3330                         rdev = rcu_dereference(conf->disks[i].rdev);
3331                         clear_bit(R5_ReadRepl, &dev->flags);
3332                 }
3333                 if (rdev && test_bit(Faulty, &rdev->flags))
3334                         rdev = NULL;
3335                 if (rdev) {
3336                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3337                                              &first_bad, &bad_sectors);
3338                         if (s->blocked_rdev == NULL
3339                             && (test_bit(Blocked, &rdev->flags)
3340                                 || is_bad < 0)) {
3341                                 if (is_bad < 0)
3342                                         set_bit(BlockedBadBlocks,
3343                                                 &rdev->flags);
3344                                 s->blocked_rdev = rdev;
3345                                 atomic_inc(&rdev->nr_pending);
3346                         }
3347                 }
3348                 clear_bit(R5_Insync, &dev->flags);
3349                 if (!rdev)
3350                         /* Not in-sync */;
3351                 else if (is_bad) {
3352                         /* also not in-sync */
3353                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3354                             test_bit(R5_UPTODATE, &dev->flags)) {
3355                                 /* treat as in-sync, but with a read error
3356                                  * which we can now try to correct
3357                                  */
3358                                 set_bit(R5_Insync, &dev->flags);
3359                                 set_bit(R5_ReadError, &dev->flags);
3360                         }
3361                 } else if (test_bit(In_sync, &rdev->flags))
3362                         set_bit(R5_Insync, &dev->flags);
3363                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3364                         /* in sync if before recovery_offset */
3365                         set_bit(R5_Insync, &dev->flags);
3366                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3367                          test_bit(R5_Expanded, &dev->flags))
3368                         /* If we've reshaped into here, we assume it is Insync.
3369                          * We will shortly update recovery_offset to make
3370                          * it official.
3371                          */
3372                         set_bit(R5_Insync, &dev->flags);
3373
3374                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3375                         /* This flag does not apply to '.replacement'
3376                          * only to .rdev, so make sure to check that*/
3377                         struct md_rdev *rdev2 = rcu_dereference(
3378                                 conf->disks[i].rdev);
3379                         if (rdev2 == rdev)
3380                                 clear_bit(R5_Insync, &dev->flags);
3381                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3382                                 s->handle_bad_blocks = 1;
3383                                 atomic_inc(&rdev2->nr_pending);
3384                         } else
3385                                 clear_bit(R5_WriteError, &dev->flags);
3386                 }
3387                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3388                         /* This flag does not apply to '.replacement'
3389                          * only to .rdev, so make sure to check that*/
3390                         struct md_rdev *rdev2 = rcu_dereference(
3391                                 conf->disks[i].rdev);
3392                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3393                                 s->handle_bad_blocks = 1;
3394                                 atomic_inc(&rdev2->nr_pending);
3395                         } else
3396                                 clear_bit(R5_MadeGood, &dev->flags);
3397                 }
3398                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3399                         struct md_rdev *rdev2 = rcu_dereference(
3400                                 conf->disks[i].replacement);
3401                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3402                                 s->handle_bad_blocks = 1;
3403                                 atomic_inc(&rdev2->nr_pending);
3404                         } else
3405                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3406                 }
3407                 if (!test_bit(R5_Insync, &dev->flags)) {
3408                         /* The ReadError flag will just be confusing now */
3409                         clear_bit(R5_ReadError, &dev->flags);
3410                         clear_bit(R5_ReWrite, &dev->flags);
3411                 }
3412                 if (test_bit(R5_ReadError, &dev->flags))
3413                         clear_bit(R5_Insync, &dev->flags);
3414                 if (!test_bit(R5_Insync, &dev->flags)) {
3415                         if (s->failed < 2)
3416                                 s->failed_num[s->failed] = i;
3417                         s->failed++;
3418                         if (rdev && !test_bit(Faulty, &rdev->flags))
3419                                 do_recovery = 1;
3420                 }
3421         }
3422         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3423                 /* If there is a failed device being replaced,
3424                  *     we must be recovering.
3425                  * else if we are after recovery_cp, we must be syncing
3426                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3427                  * else we can only be replacing
3428                  * sync and recovery both need to read all devices, and so
3429                  * use the same flag.
3430                  */
3431                 if (do_recovery ||
3432                     sh->sector >= conf->mddev->recovery_cp ||
3433                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3434                         s->syncing = 1;
3435                 else
3436                         s->replacing = 1;
3437         }
3438         rcu_read_unlock();
3439 }
3440
3441 static void handle_stripe(struct stripe_head *sh)
3442 {
3443         struct stripe_head_state s;
3444         struct r5conf *conf = sh->raid_conf;
3445         int i;
3446         int prexor;
3447         int disks = sh->disks;
3448         struct r5dev *pdev, *qdev;
3449
3450         clear_bit(STRIPE_HANDLE, &sh->state);
3451         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3452                 /* already being handled, ensure it gets handled
3453                  * again when current action finishes */
3454                 set_bit(STRIPE_HANDLE, &sh->state);
3455                 return;
3456         }
3457
3458         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3459                 set_bit(STRIPE_SYNCING, &sh->state);
3460                 clear_bit(STRIPE_INSYNC, &sh->state);
3461         }
3462         clear_bit(STRIPE_DELAYED, &sh->state);
3463
3464         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3465                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3466                (unsigned long long)sh->sector, sh->state,
3467                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3468                sh->check_state, sh->reconstruct_state);
3469
3470         analyse_stripe(sh, &s);
3471
3472         if (s.handle_bad_blocks) {
3473                 set_bit(STRIPE_HANDLE, &sh->state);
3474                 goto finish;
3475         }
3476
3477         if (unlikely(s.blocked_rdev)) {
3478                 if (s.syncing || s.expanding || s.expanded ||
3479                     s.replacing || s.to_write || s.written) {
3480                         set_bit(STRIPE_HANDLE, &sh->state);
3481                         goto finish;
3482                 }
3483                 /* There is nothing for the blocked_rdev to block */
3484                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3485                 s.blocked_rdev = NULL;
3486         }
3487
3488         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3489                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3490                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3491         }
3492
3493         pr_debug("locked=%d uptodate=%d to_read=%d"
3494                " to_write=%d failed=%d failed_num=%d,%d\n",
3495                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3496                s.failed_num[0], s.failed_num[1]);
3497         /* check if the array has lost more than max_degraded devices and,
3498          * if so, some requests might need to be failed.
3499          */
3500         if (s.failed > conf->max_degraded) {
3501                 sh->check_state = 0;
3502                 sh->reconstruct_state = 0;
3503                 if (s.to_read+s.to_write+s.written)
3504                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3505                 if (s.syncing + s.replacing)
3506                         handle_failed_sync(conf, sh, &s);
3507         }
3508
3509         /* Now we check to see if any write operations have recently
3510          * completed
3511          */
3512         prexor = 0;
3513         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3514                 prexor = 1;
3515         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3516             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3517                 sh->reconstruct_state = reconstruct_state_idle;
3518
3519                 /* All the 'written' buffers and the parity block are ready to
3520                  * be written back to disk
3521                  */
3522                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3523                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3524                 BUG_ON(sh->qd_idx >= 0 &&
3525                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3526                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3527                 for (i = disks; i--; ) {
3528                         struct r5dev *dev = &sh->dev[i];
3529                         if (test_bit(R5_LOCKED, &dev->flags) &&
3530                                 (i == sh->pd_idx || i == sh->qd_idx ||
3531                                  dev->written)) {
3532                                 pr_debug("Writing block %d\n", i);
3533                                 set_bit(R5_Wantwrite, &dev->flags);
3534                                 if (prexor)
3535                                         continue;
3536                                 if (!test_bit(R5_Insync, &dev->flags) ||
3537                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3538                                      s.failed == 0))
3539                                         set_bit(STRIPE_INSYNC, &sh->state);
3540                         }
3541                 }
3542                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3543                         s.dec_preread_active = 1;
3544         }
3545
3546         /*
3547          * might be able to return some write requests if the parity blocks
3548          * are safe, or on a failed drive
3549          */
3550         pdev = &sh->dev[sh->pd_idx];
3551         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3552                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3553         qdev = &sh->dev[sh->qd_idx];
3554         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3555                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3556                 || conf->level < 6;
3557
3558         if (s.written &&
3559             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3560                              && !test_bit(R5_LOCKED, &pdev->flags)
3561                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3562                                  test_bit(R5_Discard, &pdev->flags))))) &&
3563             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3564                              && !test_bit(R5_LOCKED, &qdev->flags)
3565                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3566                                  test_bit(R5_Discard, &qdev->flags))))))
3567                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3568
3569         /* Now we might consider reading some blocks, either to check/generate
3570          * parity, or to satisfy requests
3571          * or to load a block that is being partially written.
3572          */
3573         if (s.to_read || s.non_overwrite
3574             || (conf->level == 6 && s.to_write && s.failed)
3575             || (s.syncing && (s.uptodate + s.compute < disks))
3576             || s.replacing
3577             || s.expanding)
3578                 handle_stripe_fill(sh, &s, disks);
3579
3580         /* Now to consider new write requests and what else, if anything
3581          * should be read.  We do not handle new writes when:
3582          * 1/ A 'write' operation (copy+xor) is already in flight.
3583          * 2/ A 'check' operation is in flight, as it may clobber the parity
3584          *    block.
3585          */
3586         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3587                 handle_stripe_dirtying(conf, sh, &s, disks);
3588
3589         /* maybe we need to check and possibly fix the parity for this stripe
3590          * Any reads will already have been scheduled, so we just see if enough
3591          * data is available.  The parity check is held off while parity
3592          * dependent operations are in flight.
3593          */
3594         if (sh->check_state ||
3595             (s.syncing && s.locked == 0 &&
3596              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3597              !test_bit(STRIPE_INSYNC, &sh->state))) {
3598                 if (conf->level == 6)
3599                         handle_parity_checks6(conf, sh, &s, disks);
3600                 else
3601                         handle_parity_checks5(conf, sh, &s, disks);
3602         }
3603
3604         if (s.replacing && s.locked == 0
3605             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3606                 /* Write out to replacement devices where possible */
3607                 for (i = 0; i < conf->raid_disks; i++)
3608                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3609                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3610                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3611                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3612                                 s.locked++;
3613                         }
3614                 set_bit(STRIPE_INSYNC, &sh->state);
3615         }
3616         if ((s.syncing || s.replacing) && s.locked == 0 &&
3617             test_bit(STRIPE_INSYNC, &sh->state)) {
3618                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3619                 clear_bit(STRIPE_SYNCING, &sh->state);
3620         }
3621
3622         /* If the failed drives are just a ReadError, then we might need
3623          * to progress the repair/check process
3624          */
3625         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3626                 for (i = 0; i < s.failed; i++) {
3627                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3628                         if (test_bit(R5_ReadError, &dev->flags)
3629                             && !test_bit(R5_LOCKED, &dev->flags)
3630                             && test_bit(R5_UPTODATE, &dev->flags)
3631                                 ) {
3632                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3633                                         set_bit(R5_Wantwrite, &dev->flags);
3634                                         set_bit(R5_ReWrite, &dev->flags);
3635                                         set_bit(R5_LOCKED, &dev->flags);
3636                                         s.locked++;
3637                                 } else {
3638                                         /* let's read it back */
3639                                         set_bit(R5_Wantread, &dev->flags);
3640                                         set_bit(R5_LOCKED, &dev->flags);
3641                                         s.locked++;
3642                                 }
3643                         }
3644                 }
3645
3646
3647         /* Finish reconstruct operations initiated by the expansion process */
3648         if (sh->reconstruct_state == reconstruct_state_result) {
3649                 struct stripe_head *sh_src
3650                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3651                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3652                         /* sh cannot be written until sh_src has been read.
3653                          * so arrange for sh to be delayed a little
3654                          */
3655                         set_bit(STRIPE_DELAYED, &sh->state);
3656                         set_bit(STRIPE_HANDLE, &sh->state);
3657                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3658                                               &sh_src->state))
3659                                 atomic_inc(&conf->preread_active_stripes);
3660                         release_stripe(sh_src);
3661                         goto finish;
3662                 }
3663                 if (sh_src)
3664                         release_stripe(sh_src);
3665
3666                 sh->reconstruct_state = reconstruct_state_idle;
3667                 clear_bit(STRIPE_EXPANDING, &sh->state);
3668                 for (i = conf->raid_disks; i--; ) {
3669                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3670                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3671                         s.locked++;
3672                 }
3673         }
3674
3675         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3676             !sh->reconstruct_state) {
3677                 /* Need to write out all blocks after computing parity */
3678                 sh->disks = conf->raid_disks;
3679                 stripe_set_idx(sh->sector, conf, 0, sh);
3680                 schedule_reconstruction(sh, &s, 1, 1);
3681         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3682                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3683                 atomic_dec(&conf->reshape_stripes);
3684                 wake_up(&conf->wait_for_overlap);
3685                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3686         }
3687
3688         if (s.expanding && s.locked == 0 &&
3689             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3690                 handle_stripe_expansion(conf, sh);
3691
3692 finish:
3693         /* wait for this device to become unblocked */
3694         if (unlikely(s.blocked_rdev)) {
3695                 if (conf->mddev->external)
3696                         md_wait_for_blocked_rdev(s.blocked_rdev,
3697                                                  conf->mddev);
3698                 else
3699                         /* Internal metadata will immediately
3700                          * be written by raid5d, so we don't
3701                          * need to wait here.
3702                          */
3703                         rdev_dec_pending(s.blocked_rdev,
3704                                          conf->mddev);
3705         }
3706
3707         if (s.handle_bad_blocks)
3708                 for (i = disks; i--; ) {
3709                         struct md_rdev *rdev;
3710                         struct r5dev *dev = &sh->dev[i];
3711                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3712                                 /* We own a safe reference to the rdev */
3713                                 rdev = conf->disks[i].rdev;
3714                                 if (!rdev_set_badblocks(rdev, sh->sector,
3715                                                         STRIPE_SECTORS, 0))
3716                                         md_error(conf->mddev, rdev);
3717                                 rdev_dec_pending(rdev, conf->mddev);
3718                         }
3719                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3720                                 rdev = conf->disks[i].rdev;
3721                                 rdev_clear_badblocks(rdev, sh->sector,
3722                                                      STRIPE_SECTORS, 0);
3723                                 rdev_dec_pending(rdev, conf->mddev);
3724                         }
3725                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3726                                 rdev = conf->disks[i].replacement;
3727                                 if (!rdev)
3728                                         /* rdev have been moved down */
3729                                         rdev = conf->disks[i].rdev;
3730                                 rdev_clear_badblocks(rdev, sh->sector,
3731                                                      STRIPE_SECTORS, 0);
3732                                 rdev_dec_pending(rdev, conf->mddev);
3733                         }
3734                 }
3735
3736         if (s.ops_request)
3737                 raid_run_ops(sh, s.ops_request);
3738
3739         ops_run_io(sh, &s);
3740
3741         if (s.dec_preread_active) {
3742                 /* We delay this until after ops_run_io so that if make_request
3743                  * is waiting on a flush, it won't continue until the writes
3744                  * have actually been submitted.
3745                  */
3746                 atomic_dec(&conf->preread_active_stripes);
3747                 if (atomic_read(&conf->preread_active_stripes) <
3748                     IO_THRESHOLD)
3749                         md_wakeup_thread(conf->mddev->thread);
3750         }
3751
3752         return_io(s.return_bi);
3753
3754         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3755 }
3756
3757 static void raid5_activate_delayed(struct r5conf *conf)
3758 {
3759         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3760                 while (!list_empty(&conf->delayed_list)) {
3761                         struct list_head *l = conf->delayed_list.next;
3762                         struct stripe_head *sh;
3763                         sh = list_entry(l, struct stripe_head, lru);
3764                         list_del_init(l);
3765                         clear_bit(STRIPE_DELAYED, &sh->state);
3766                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3767                                 atomic_inc(&conf->preread_active_stripes);
3768                         list_add_tail(&sh->lru, &conf->hold_list);
3769                 }
3770         }
3771 }
3772
3773 static void activate_bit_delay(struct r5conf *conf)
3774 {
3775         /* device_lock is held */
3776         struct list_head head;
3777         list_add(&head, &conf->bitmap_list);
3778         list_del_init(&conf->bitmap_list);
3779         while (!list_empty(&head)) {
3780                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3781                 list_del_init(&sh->lru);
3782                 atomic_inc(&sh->count);
3783                 __release_stripe(conf, sh);
3784         }
3785 }
3786
3787 int md_raid5_congested(struct mddev *mddev, int bits)
3788 {
3789         struct r5conf *conf = mddev->private;
3790
3791         /* No difference between reads and writes.  Just check
3792          * how busy the stripe_cache is
3793          */
3794
3795         if (conf->inactive_blocked)
3796                 return 1;
3797         if (conf->quiesce)
3798                 return 1;
3799         if (list_empty_careful(&conf->inactive_list))
3800                 return 1;
3801
3802         return 0;
3803 }
3804 EXPORT_SYMBOL_GPL(md_raid5_congested);
3805
3806 static int raid5_congested(void *data, int bits)
3807 {
3808         struct mddev *mddev = data;
3809
3810         return mddev_congested(mddev, bits) ||
3811                 md_raid5_congested(mddev, bits);
3812 }
3813
3814 /* We want read requests to align with chunks where possible,
3815  * but write requests don't need to.
3816  */
3817 static int raid5_mergeable_bvec(struct request_queue *q,
3818                                 struct bvec_merge_data *bvm,
3819                                 struct bio_vec *biovec)
3820 {
3821         struct mddev *mddev = q->queuedata;
3822         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3823         int max;
3824         unsigned int chunk_sectors = mddev->chunk_sectors;
3825         unsigned int bio_sectors = bvm->bi_size >> 9;
3826
3827         if ((bvm->bi_rw & 1) == WRITE)
3828                 return biovec->bv_len; /* always allow writes to be mergeable */
3829
3830         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3831                 chunk_sectors = mddev->new_chunk_sectors;
3832         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3833         if (max < 0) max = 0;
3834         if (max <= biovec->bv_len && bio_sectors == 0)
3835                 return biovec->bv_len;
3836         else
3837                 return max;
3838 }
3839
3840
3841 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3842 {
3843         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3844         unsigned int chunk_sectors = mddev->chunk_sectors;
3845         unsigned int bio_sectors = bio->bi_size >> 9;
3846
3847         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3848                 chunk_sectors = mddev->new_chunk_sectors;
3849         return  chunk_sectors >=
3850                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3851 }
3852
3853 /*
3854  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3855  *  later sampled by raid5d.
3856  */
3857 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3858 {
3859         unsigned long flags;
3860
3861         spin_lock_irqsave(&conf->device_lock, flags);
3862
3863         bi->bi_next = conf->retry_read_aligned_list;
3864         conf->retry_read_aligned_list = bi;
3865
3866         spin_unlock_irqrestore(&conf->device_lock, flags);
3867         md_wakeup_thread(conf->mddev->thread);
3868 }
3869
3870
3871 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3872 {
3873         struct bio *bi;
3874
3875         bi = conf->retry_read_aligned;
3876         if (bi) {
3877                 conf->retry_read_aligned = NULL;
3878                 return bi;
3879         }
3880         bi = conf->retry_read_aligned_list;
3881         if(bi) {
3882                 conf->retry_read_aligned_list = bi->bi_next;
3883                 bi->bi_next = NULL;
3884                 /*
3885                  * this sets the active strip count to 1 and the processed
3886                  * strip count to zero (upper 8 bits)
3887                  */
3888                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3889         }
3890
3891         return bi;
3892 }
3893
3894
3895 /*
3896  *  The "raid5_align_endio" should check if the read succeeded and if it
3897  *  did, call bio_endio on the original bio (having bio_put the new bio
3898  *  first).
3899  *  If the read failed..
3900  */
3901 static void raid5_align_endio(struct bio *bi, int error)
3902 {
3903         struct bio* raid_bi  = bi->bi_private;
3904         struct mddev *mddev;
3905         struct r5conf *conf;
3906         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3907         struct md_rdev *rdev;
3908
3909         bio_put(bi);
3910
3911         rdev = (void*)raid_bi->bi_next;
3912         raid_bi->bi_next = NULL;
3913         mddev = rdev->mddev;
3914         conf = mddev->private;
3915
3916         rdev_dec_pending(rdev, conf->mddev);
3917
3918         if (!error && uptodate) {
3919                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3920                                          raid_bi, 0);
3921                 bio_endio(raid_bi, 0);
3922                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3923                         wake_up(&conf->wait_for_stripe);
3924                 return;
3925         }
3926
3927
3928         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3929
3930         add_bio_to_retry(raid_bi, conf);
3931 }
3932
3933 static int bio_fits_rdev(struct bio *bi)
3934 {
3935         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3936
3937         if ((bi->bi_size>>9) > queue_max_sectors(q))
3938                 return 0;
3939         blk_recount_segments(q, bi);
3940         if (bi->bi_phys_segments > queue_max_segments(q))
3941                 return 0;
3942
3943         if (q->merge_bvec_fn)
3944                 /* it's too hard to apply the merge_bvec_fn at this stage,
3945                  * just just give up
3946                  */
3947                 return 0;
3948
3949         return 1;
3950 }
3951
3952
3953 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3954 {
3955         struct r5conf *conf = mddev->private;
3956         int dd_idx;
3957         struct bio* align_bi;
3958         struct md_rdev *rdev;
3959         sector_t end_sector;
3960
3961         if (!in_chunk_boundary(mddev, raid_bio)) {
3962                 pr_debug("chunk_aligned_read : non aligned\n");
3963                 return 0;
3964         }
3965         /*
3966          * use bio_clone_mddev to make a copy of the bio
3967          */
3968         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3969         if (!align_bi)
3970                 return 0;
3971         /*
3972          *   set bi_end_io to a new function, and set bi_private to the
3973          *     original bio.
3974          */
3975         align_bi->bi_end_io  = raid5_align_endio;
3976         align_bi->bi_private = raid_bio;
3977         /*
3978          *      compute position
3979          */
3980         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3981                                                     0,
3982                                                     &dd_idx, NULL);
3983
3984         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3985         rcu_read_lock();
3986         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3987         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3988             rdev->recovery_offset < end_sector) {
3989                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3990                 if (rdev &&
3991                     (test_bit(Faulty, &rdev->flags) ||
3992                     !(test_bit(In_sync, &rdev->flags) ||
3993                       rdev->recovery_offset >= end_sector)))
3994                         rdev = NULL;
3995         }
3996         if (rdev) {
3997                 sector_t first_bad;
3998                 int bad_sectors;
3999
4000                 atomic_inc(&rdev->nr_pending);
4001                 rcu_read_unlock();
4002                 raid_bio->bi_next = (void*)rdev;
4003                 align_bi->bi_bdev =  rdev->bdev;
4004                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4005
4006                 if (!bio_fits_rdev(align_bi) ||
4007                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4008                                 &first_bad, &bad_sectors)) {
4009                         /* too big in some way, or has a known bad block */
4010                         bio_put(align_bi);
4011                         rdev_dec_pending(rdev, mddev);
4012                         return 0;
4013                 }
4014
4015                 /* No reshape active, so we can trust rdev->data_offset */
4016                 align_bi->bi_sector += rdev->data_offset;
4017
4018                 spin_lock_irq(&conf->device_lock);
4019                 wait_event_lock_irq(conf->wait_for_stripe,
4020                                     conf->quiesce == 0,
4021                                     conf->device_lock);
4022                 atomic_inc(&conf->active_aligned_reads);
4023                 spin_unlock_irq(&conf->device_lock);
4024
4025                 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4026                                       align_bi, disk_devt(mddev->gendisk),
4027                                       raid_bio->bi_sector);
4028                 generic_make_request(align_bi);
4029                 return 1;
4030         } else {
4031                 rcu_read_unlock();
4032                 bio_put(align_bi);
4033                 return 0;
4034         }
4035 }
4036
4037 /* __get_priority_stripe - get the next stripe to process
4038  *
4039  * Full stripe writes are allowed to pass preread active stripes up until
4040  * the bypass_threshold is exceeded.  In general the bypass_count
4041  * increments when the handle_list is handled before the hold_list; however, it
4042  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4043  * stripe with in flight i/o.  The bypass_count will be reset when the
4044  * head of the hold_list has changed, i.e. the head was promoted to the
4045  * handle_list.
4046  */
4047 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4048 {
4049         struct stripe_head *sh;
4050
4051         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4052                   __func__,
4053                   list_empty(&conf->handle_list) ? "empty" : "busy",
4054                   list_empty(&conf->hold_list) ? "empty" : "busy",
4055                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4056
4057         if (!list_empty(&conf->handle_list)) {
4058                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4059
4060                 if (list_empty(&conf->hold_list))
4061                         conf->bypass_count = 0;
4062                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4063                         if (conf->hold_list.next == conf->last_hold)
4064                                 conf->bypass_count++;
4065                         else {
4066                                 conf->last_hold = conf->hold_list.next;
4067                                 conf->bypass_count -= conf->bypass_threshold;
4068                                 if (conf->bypass_count < 0)
4069                                         conf->bypass_count = 0;
4070                         }
4071                 }
4072         } else if (!list_empty(&conf->hold_list) &&
4073                    ((conf->bypass_threshold &&
4074                      conf->bypass_count > conf->bypass_threshold) ||
4075                     atomic_read(&conf->pending_full_writes) == 0)) {
4076                 sh = list_entry(conf->hold_list.next,
4077                                 typeof(*sh), lru);
4078                 conf->bypass_count -= conf->bypass_threshold;
4079                 if (conf->bypass_count < 0)
4080                         conf->bypass_count = 0;
4081         } else
4082                 return NULL;
4083
4084         list_del_init(&sh->lru);
4085         atomic_inc(&sh->count);
4086         BUG_ON(atomic_read(&sh->count) != 1);
4087         return sh;
4088 }
4089
4090 struct raid5_plug_cb {
4091         struct blk_plug_cb      cb;
4092         struct list_head        list;
4093 };
4094
4095 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4096 {
4097         struct raid5_plug_cb *cb = container_of(
4098                 blk_cb, struct raid5_plug_cb, cb);
4099         struct stripe_head *sh;
4100         struct mddev *mddev = cb->cb.data;
4101         struct r5conf *conf = mddev->private;
4102         int cnt = 0;
4103
4104         if (cb->list.next && !list_empty(&cb->list)) {
4105                 spin_lock_irq(&conf->device_lock);
4106                 while (!list_empty(&cb->list)) {
4107                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4108                         list_del_init(&sh->lru);
4109                         /*
4110                          * avoid race release_stripe_plug() sees
4111                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4112                          * is still in our list
4113                          */
4114                         smp_mb__before_clear_bit();
4115                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4116                         __release_stripe(conf, sh);
4117                         cnt++;
4118                 }
4119                 spin_unlock_irq(&conf->device_lock);
4120         }
4121         trace_block_unplug(mddev->queue, cnt, !from_schedule);
4122         kfree(cb);
4123 }
4124
4125 static void release_stripe_plug(struct mddev *mddev,
4126                                 struct stripe_head *sh)
4127 {
4128         struct blk_plug_cb *blk_cb = blk_check_plugged(
4129                 raid5_unplug, mddev,
4130                 sizeof(struct raid5_plug_cb));
4131         struct raid5_plug_cb *cb;
4132
4133         if (!blk_cb) {
4134                 release_stripe(sh);
4135                 return;
4136         }
4137
4138         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4139
4140         if (cb->list.next == NULL)
4141                 INIT_LIST_HEAD(&cb->list);
4142
4143         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4144                 list_add_tail(&sh->lru, &cb->list);
4145         else
4146                 release_stripe(sh);
4147 }
4148
4149 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4150 {
4151         struct r5conf *conf = mddev->private;
4152         sector_t logical_sector, last_sector;
4153         struct stripe_head *sh;
4154         int remaining;
4155         int stripe_sectors;
4156
4157         if (mddev->reshape_position != MaxSector)
4158                 /* Skip discard while reshape is happening */
4159                 return;
4160
4161         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4162         last_sector = bi->bi_sector + (bi->bi_size>>9);
4163
4164         bi->bi_next = NULL;
4165         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4166
4167         stripe_sectors = conf->chunk_sectors *
4168                 (conf->raid_disks - conf->max_degraded);
4169         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4170                                                stripe_sectors);
4171         sector_div(last_sector, stripe_sectors);
4172
4173         logical_sector *= conf->chunk_sectors;
4174         last_sector *= conf->chunk_sectors;
4175
4176         for (; logical_sector < last_sector;
4177              logical_sector += STRIPE_SECTORS) {
4178                 DEFINE_WAIT(w);
4179                 int d;
4180         again:
4181                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4182                 prepare_to_wait(&conf->wait_for_overlap, &w,
4183                                 TASK_UNINTERRUPTIBLE);
4184                 spin_lock_irq(&sh->stripe_lock);
4185                 for (d = 0; d < conf->raid_disks; d++) {
4186                         if (d == sh->pd_idx || d == sh->qd_idx)
4187                                 continue;
4188                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4189                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4190                                 spin_unlock_irq(&sh->stripe_lock);
4191                                 release_stripe(sh);
4192                                 schedule();
4193                                 goto again;
4194                         }
4195                 }
4196                 finish_wait(&conf->wait_for_overlap, &w);
4197                 for (d = 0; d < conf->raid_disks; d++) {
4198                         if (d == sh->pd_idx || d == sh->qd_idx)
4199                                 continue;
4200                         sh->dev[d].towrite = bi;
4201                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4202                         raid5_inc_bi_active_stripes(bi);
4203                 }
4204                 spin_unlock_irq(&sh->stripe_lock);
4205                 if (conf->mddev->bitmap) {
4206                         for (d = 0;
4207                              d < conf->raid_disks - conf->max_degraded;
4208                              d++)
4209                                 bitmap_startwrite(mddev->bitmap,
4210                                                   sh->sector,
4211                                                   STRIPE_SECTORS,
4212                                                   0);
4213                         sh->bm_seq = conf->seq_flush + 1;
4214                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4215                 }
4216
4217                 set_bit(STRIPE_HANDLE, &sh->state);
4218                 clear_bit(STRIPE_DELAYED, &sh->state);
4219                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4220                         atomic_inc(&conf->preread_active_stripes);
4221                 release_stripe_plug(mddev, sh);
4222         }
4223
4224         remaining = raid5_dec_bi_active_stripes(bi);
4225         if (remaining == 0) {
4226                 md_write_end(mddev);
4227                 bio_endio(bi, 0);
4228         }
4229 }
4230
4231 static void make_request(struct mddev *mddev, struct bio * bi)
4232 {
4233         struct r5conf *conf = mddev->private;
4234         int dd_idx;
4235         sector_t new_sector;
4236         sector_t logical_sector, last_sector;
4237         struct stripe_head *sh;
4238         const int rw = bio_data_dir(bi);
4239         int remaining;
4240
4241         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4242                 md_flush_request(mddev, bi);
4243                 return;
4244         }
4245
4246         md_write_start(mddev, bi);
4247
4248         if (rw == READ &&
4249              mddev->reshape_position == MaxSector &&
4250              chunk_aligned_read(mddev,bi))
4251                 return;
4252
4253         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4254                 make_discard_request(mddev, bi);
4255                 return;
4256         }
4257
4258         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4259         last_sector = bi->bi_sector + (bi->bi_size>>9);
4260         bi->bi_next = NULL;
4261         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4262
4263         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4264                 DEFINE_WAIT(w);
4265                 int previous;
4266
4267         retry:
4268                 previous = 0;
4269                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4270                 if (unlikely(conf->reshape_progress != MaxSector)) {
4271                         /* spinlock is needed as reshape_progress may be
4272                          * 64bit on a 32bit platform, and so it might be
4273                          * possible to see a half-updated value
4274                          * Of course reshape_progress could change after
4275                          * the lock is dropped, so once we get a reference
4276                          * to the stripe that we think it is, we will have
4277                          * to check again.
4278                          */
4279                         spin_lock_irq(&conf->device_lock);
4280                         if (mddev->reshape_backwards
4281                             ? logical_sector < conf->reshape_progress
4282                             : logical_sector >= conf->reshape_progress) {
4283                                 previous = 1;
4284                         } else {
4285                                 if (mddev->reshape_backwards
4286                                     ? logical_sector < conf->reshape_safe
4287                                     : logical_sector >= conf->reshape_safe) {
4288                                         spin_unlock_irq(&conf->device_lock);
4289                                         schedule();
4290                                         goto retry;
4291                                 }
4292                         }
4293                         spin_unlock_irq(&conf->device_lock);
4294                 }
4295
4296                 new_sector = raid5_compute_sector(conf, logical_sector,
4297                                                   previous,
4298                                                   &dd_idx, NULL);
4299                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4300                         (unsigned long long)new_sector, 
4301                         (unsigned long long)logical_sector);
4302
4303                 sh = get_active_stripe(conf, new_sector, previous,
4304                                        (bi->bi_rw&RWA_MASK), 0);
4305                 if (sh) {
4306                         if (unlikely(previous)) {
4307                                 /* expansion might have moved on while waiting for a
4308                                  * stripe, so we must do the range check again.
4309                                  * Expansion could still move past after this
4310                                  * test, but as we are holding a reference to
4311                                  * 'sh', we know that if that happens,
4312                                  *  STRIPE_EXPANDING will get set and the expansion
4313                                  * won't proceed until we finish with the stripe.
4314                                  */
4315                                 int must_retry = 0;
4316                                 spin_lock_irq(&conf->device_lock);
4317                                 if (mddev->reshape_backwards
4318                                     ? logical_sector >= conf->reshape_progress
4319                                     : logical_sector < conf->reshape_progress)
4320                                         /* mismatch, need to try again */
4321                                         must_retry = 1;
4322                                 spin_unlock_irq(&conf->device_lock);
4323                                 if (must_retry) {
4324                                         release_stripe(sh);
4325                                         schedule();
4326                                         goto retry;
4327                                 }
4328                         }
4329
4330                         if (rw == WRITE &&
4331                             logical_sector >= mddev->suspend_lo &&
4332                             logical_sector < mddev->suspend_hi) {
4333                                 release_stripe(sh);
4334                                 /* As the suspend_* range is controlled by
4335                                  * userspace, we want an interruptible
4336                                  * wait.
4337                                  */
4338                                 flush_signals(current);
4339                                 prepare_to_wait(&conf->wait_for_overlap,
4340                                                 &w, TASK_INTERRUPTIBLE);
4341                                 if (logical_sector >= mddev->suspend_lo &&
4342                                     logical_sector < mddev->suspend_hi)
4343                                         schedule();
4344                                 goto retry;
4345                         }
4346
4347                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4348                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4349                                 /* Stripe is busy expanding or
4350                                  * add failed due to overlap.  Flush everything
4351                                  * and wait a while
4352                                  */
4353                                 md_wakeup_thread(mddev->thread);
4354                                 release_stripe(sh);
4355                                 schedule();
4356                                 goto retry;
4357                         }
4358                         finish_wait(&conf->wait_for_overlap, &w);
4359                         set_bit(STRIPE_HANDLE, &sh->state);
4360                         clear_bit(STRIPE_DELAYED, &sh->state);
4361                         if ((bi->bi_rw & REQ_SYNC) &&
4362                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4363                                 atomic_inc(&conf->preread_active_stripes);
4364                         release_stripe_plug(mddev, sh);
4365                 } else {
4366                         /* cannot get stripe for read-ahead, just give-up */
4367                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4368                         finish_wait(&conf->wait_for_overlap, &w);
4369                         break;
4370                 }
4371         }
4372
4373         remaining = raid5_dec_bi_active_stripes(bi);
4374         if (remaining == 0) {
4375
4376                 if ( rw == WRITE )
4377                         md_write_end(mddev);
4378
4379                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4380                                          bi, 0);
4381                 bio_endio(bi, 0);
4382         }
4383 }
4384
4385 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4386
4387 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4388 {
4389         /* reshaping is quite different to recovery/resync so it is
4390          * handled quite separately ... here.
4391          *
4392          * On each call to sync_request, we gather one chunk worth of
4393          * destination stripes and flag them as expanding.
4394          * Then we find all the source stripes and request reads.
4395          * As the reads complete, handle_stripe will copy the data
4396          * into the destination stripe and release that stripe.
4397          */
4398         struct r5conf *conf = mddev->private;
4399         struct stripe_head *sh;
4400         sector_t first_sector, last_sector;
4401         int raid_disks = conf->previous_raid_disks;
4402         int data_disks = raid_disks - conf->max_degraded;
4403         int new_data_disks = conf->raid_disks - conf->max_degraded;
4404         int i;
4405         int dd_idx;
4406         sector_t writepos, readpos, safepos;
4407         sector_t stripe_addr;
4408         int reshape_sectors;
4409         struct list_head stripes;
4410
4411         if (sector_nr == 0) {
4412                 /* If restarting in the middle, skip the initial sectors */
4413                 if (mddev->reshape_backwards &&
4414                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4415                         sector_nr = raid5_size(mddev, 0, 0)
4416                                 - conf->reshape_progress;
4417                 } else if (!mddev->reshape_backwards &&
4418                            conf->reshape_progress > 0)
4419                         sector_nr = conf->reshape_progress;
4420                 sector_div(sector_nr, new_data_disks);
4421                 if (sector_nr) {
4422                         mddev->curr_resync_completed = sector_nr;
4423                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4424                         *skipped = 1;
4425                         return sector_nr;
4426                 }
4427         }
4428
4429         /* We need to process a full chunk at a time.
4430          * If old and new chunk sizes differ, we need to process the
4431          * largest of these
4432          */
4433         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4434                 reshape_sectors = mddev->new_chunk_sectors;
4435         else
4436                 reshape_sectors = mddev->chunk_sectors;
4437
4438         /* We update the metadata at least every 10 seconds, or when
4439          * the data about to be copied would over-write the source of
4440          * the data at the front of the range.  i.e. one new_stripe
4441          * along from reshape_progress new_maps to after where
4442          * reshape_safe old_maps to
4443          */
4444         writepos = conf->reshape_progress;
4445         sector_div(writepos, new_data_disks);
4446         readpos = conf->reshape_progress;
4447         sector_div(readpos, data_disks);
4448         safepos = conf->reshape_safe;
4449         sector_div(safepos, data_disks);
4450         if (mddev->reshape_backwards) {
4451                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4452                 readpos += reshape_sectors;
4453                 safepos += reshape_sectors;
4454         } else {
4455                 writepos += reshape_sectors;
4456                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4457                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4458         }
4459
4460         /* Having calculated the 'writepos' possibly use it
4461          * to set 'stripe_addr' which is where we will write to.
4462          */
4463         if (mddev->reshape_backwards) {
4464                 BUG_ON(conf->reshape_progress == 0);
4465                 stripe_addr = writepos;
4466                 BUG_ON((mddev->dev_sectors &
4467                         ~((sector_t)reshape_sectors - 1))
4468                        - reshape_sectors - stripe_addr
4469                        != sector_nr);
4470         } else {
4471                 BUG_ON(writepos != sector_nr + reshape_sectors);
4472                 stripe_addr = sector_nr;
4473         }
4474
4475         /* 'writepos' is the most advanced device address we might write.
4476          * 'readpos' is the least advanced device address we might read.
4477          * 'safepos' is the least address recorded in the metadata as having
4478          *     been reshaped.
4479          * If there is a min_offset_diff, these are adjusted either by
4480          * increasing the safepos/readpos if diff is negative, or
4481          * increasing writepos if diff is positive.
4482          * If 'readpos' is then behind 'writepos', there is no way that we can
4483          * ensure safety in the face of a crash - that must be done by userspace
4484          * making a backup of the data.  So in that case there is no particular
4485          * rush to update metadata.
4486          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4487          * update the metadata to advance 'safepos' to match 'readpos' so that
4488          * we can be safe in the event of a crash.
4489          * So we insist on updating metadata if safepos is behind writepos and
4490          * readpos is beyond writepos.
4491          * In any case, update the metadata every 10 seconds.
4492          * Maybe that number should be configurable, but I'm not sure it is
4493          * worth it.... maybe it could be a multiple of safemode_delay???
4494          */
4495         if (conf->min_offset_diff < 0) {
4496                 safepos += -conf->min_offset_diff;
4497                 readpos += -conf->min_offset_diff;
4498         } else
4499                 writepos += conf->min_offset_diff;
4500
4501         if ((mddev->reshape_backwards
4502              ? (safepos > writepos && readpos < writepos)
4503              : (safepos < writepos && readpos > writepos)) ||
4504             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4505                 /* Cannot proceed until we've updated the superblock... */
4506                 wait_event(conf->wait_for_overlap,
4507                            atomic_read(&conf->reshape_stripes)==0);
4508                 mddev->reshape_position = conf->reshape_progress;
4509                 mddev->curr_resync_completed = sector_nr;
4510                 conf->reshape_checkpoint = jiffies;
4511                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4512                 md_wakeup_thread(mddev->thread);
4513                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4514                            kthread_should_stop());
4515                 spin_lock_irq(&conf->device_lock);
4516                 conf->reshape_safe = mddev->reshape_position;
4517                 spin_unlock_irq(&conf->device_lock);
4518                 wake_up(&conf->wait_for_overlap);
4519                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4520         }
4521
4522         INIT_LIST_HEAD(&stripes);
4523         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4524                 int j;
4525                 int skipped_disk = 0;
4526                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4527                 set_bit(STRIPE_EXPANDING, &sh->state);
4528                 atomic_inc(&conf->reshape_stripes);
4529                 /* If any of this stripe is beyond the end of the old
4530                  * array, then we need to zero those blocks
4531                  */
4532                 for (j=sh->disks; j--;) {
4533                         sector_t s;
4534                         if (j == sh->pd_idx)
4535                                 continue;
4536                         if (conf->level == 6 &&
4537                             j == sh->qd_idx)
4538                                 continue;
4539                         s = compute_blocknr(sh, j, 0);
4540                         if (s < raid5_size(mddev, 0, 0)) {
4541                                 skipped_disk = 1;
4542                                 continue;
4543                         }
4544                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4545                         set_bit(R5_Expanded, &sh->dev[j].flags);
4546                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4547                 }
4548                 if (!skipped_disk) {
4549                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4550                         set_bit(STRIPE_HANDLE, &sh->state);
4551                 }
4552                 list_add(&sh->lru, &stripes);
4553         }
4554         spin_lock_irq(&conf->device_lock);
4555         if (mddev->reshape_backwards)
4556                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4557         else
4558                 conf->reshape_progress += reshape_sectors * new_data_disks;
4559         spin_unlock_irq(&conf->device_lock);
4560         /* Ok, those stripe are ready. We can start scheduling
4561          * reads on the source stripes.
4562          * The source stripes are determined by mapping the first and last
4563          * block on the destination stripes.
4564          */
4565         first_sector =
4566                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4567                                      1, &dd_idx, NULL);
4568         last_sector =
4569                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4570                                             * new_data_disks - 1),
4571                                      1, &dd_idx, NULL);
4572         if (last_sector >= mddev->dev_sectors)
4573                 last_sector = mddev->dev_sectors - 1;
4574         while (first_sector <= last_sector) {
4575                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4576                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4577                 set_bit(STRIPE_HANDLE, &sh->state);
4578                 release_stripe(sh);
4579                 first_sector += STRIPE_SECTORS;
4580         }
4581         /* Now that the sources are clearly marked, we can release
4582          * the destination stripes
4583          */
4584         while (!list_empty(&stripes)) {
4585                 sh = list_entry(stripes.next, struct stripe_head, lru);
4586                 list_del_init(&sh->lru);
4587                 release_stripe(sh);
4588         }
4589         /* If this takes us to the resync_max point where we have to pause,
4590          * then we need to write out the superblock.
4591          */
4592         sector_nr += reshape_sectors;
4593         if ((sector_nr - mddev->curr_resync_completed) * 2
4594             >= mddev->resync_max - mddev->curr_resync_completed) {
4595                 /* Cannot proceed until we've updated the superblock... */
4596                 wait_event(conf->wait_for_overlap,
4597                            atomic_read(&conf->reshape_stripes) == 0);
4598                 mddev->reshape_position = conf->reshape_progress;
4599                 mddev->curr_resync_completed = sector_nr;
4600                 conf->reshape_checkpoint = jiffies;
4601                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4602                 md_wakeup_thread(mddev->thread);
4603                 wait_event(mddev->sb_wait,
4604                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4605                            || kthread_should_stop());
4606                 spin_lock_irq(&conf->device_lock);
4607                 conf->reshape_safe = mddev->reshape_position;
4608                 spin_unlock_irq(&conf->device_lock);
4609                 wake_up(&conf->wait_for_overlap);
4610                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4611         }
4612         return reshape_sectors;
4613 }
4614
4615 /* FIXME go_faster isn't used */
4616 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4617 {
4618         struct r5conf *conf = mddev->private;
4619         struct stripe_head *sh;
4620         sector_t max_sector = mddev->dev_sectors;
4621         sector_t sync_blocks;
4622         int still_degraded = 0;
4623         int i;
4624
4625         if (sector_nr >= max_sector) {
4626                 /* just being told to finish up .. nothing much to do */
4627
4628                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4629                         end_reshape(conf);
4630                         return 0;
4631                 }
4632
4633                 if (mddev->curr_resync < max_sector) /* aborted */
4634                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4635                                         &sync_blocks, 1);
4636                 else /* completed sync */
4637                         conf->fullsync = 0;
4638                 bitmap_close_sync(mddev->bitmap);
4639
4640                 return 0;
4641         }
4642
4643         /* Allow raid5_quiesce to complete */
4644         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4645
4646         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4647                 return reshape_request(mddev, sector_nr, skipped);
4648
4649         /* No need to check resync_max as we never do more than one
4650          * stripe, and as resync_max will always be on a chunk boundary,
4651          * if the check in md_do_sync didn't fire, there is no chance
4652          * of overstepping resync_max here
4653          */
4654
4655         /* if there is too many failed drives and we are trying
4656          * to resync, then assert that we are finished, because there is
4657          * nothing we can do.
4658          */
4659         if (mddev->degraded >= conf->max_degraded &&
4660             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4661                 sector_t rv = mddev->dev_sectors - sector_nr;
4662                 *skipped = 1;
4663                 return rv;
4664         }
4665         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4666             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4667             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4668                 /* we can skip this block, and probably more */
4669                 sync_blocks /= STRIPE_SECTORS;
4670                 *skipped = 1;
4671                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4672         }
4673
4674         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4675
4676         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4677         if (sh == NULL) {
4678                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4679                 /* make sure we don't swamp the stripe cache if someone else
4680                  * is trying to get access
4681                  */
4682                 schedule_timeout_uninterruptible(1);
4683         }
4684         /* Need to check if array will still be degraded after recovery/resync
4685          * We don't need to check the 'failed' flag as when that gets set,
4686          * recovery aborts.
4687          */
4688         for (i = 0; i < conf->raid_disks; i++)
4689                 if (conf->disks[i].rdev == NULL)
4690                         still_degraded = 1;
4691
4692         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4693
4694         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4695
4696         handle_stripe(sh);
4697         release_stripe(sh);
4698
4699         return STRIPE_SECTORS;
4700 }
4701
4702 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4703 {
4704         /* We may not be able to submit a whole bio at once as there
4705          * may not be enough stripe_heads available.
4706          * We cannot pre-allocate enough stripe_heads as we may need
4707          * more than exist in the cache (if we allow ever large chunks).
4708          * So we do one stripe head at a time and record in
4709          * ->bi_hw_segments how many have been done.
4710          *
4711          * We *know* that this entire raid_bio is in one chunk, so
4712          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4713          */
4714         struct stripe_head *sh;
4715         int dd_idx;
4716         sector_t sector, logical_sector, last_sector;
4717         int scnt = 0;
4718         int remaining;
4719         int handled = 0;
4720
4721         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4722         sector = raid5_compute_sector(conf, logical_sector,
4723                                       0, &dd_idx, NULL);
4724         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4725
4726         for (; logical_sector < last_sector;
4727              logical_sector += STRIPE_SECTORS,
4728                      sector += STRIPE_SECTORS,
4729                      scnt++) {
4730
4731                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4732                         /* already done this stripe */
4733                         continue;
4734
4735                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4736
4737                 if (!sh) {
4738                         /* failed to get a stripe - must wait */
4739                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4740                         conf->retry_read_aligned = raid_bio;
4741                         return handled;
4742                 }
4743
4744                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4745                         release_stripe(sh);
4746                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4747                         conf->retry_read_aligned = raid_bio;
4748                         return handled;
4749                 }
4750
4751                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4752                 handle_stripe(sh);
4753                 release_stripe(sh);
4754                 handled++;
4755         }
4756         remaining = raid5_dec_bi_active_stripes(raid_bio);
4757         if (remaining == 0) {
4758                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4759                                          raid_bio, 0);
4760                 bio_endio(raid_bio, 0);
4761         }
4762         if (atomic_dec_and_test(&conf->active_aligned_reads))
4763                 wake_up(&conf->wait_for_stripe);
4764         return handled;
4765 }
4766
4767 #define MAX_STRIPE_BATCH 8
4768 static int handle_active_stripes(struct r5conf *conf)
4769 {
4770         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4771         int i, batch_size = 0;
4772
4773         while (batch_size < MAX_STRIPE_BATCH &&
4774                         (sh = __get_priority_stripe(conf)) != NULL)
4775                 batch[batch_size++] = sh;
4776
4777         if (batch_size == 0)
4778                 return batch_size;
4779         spin_unlock_irq(&conf->device_lock);
4780
4781         for (i = 0; i < batch_size; i++)
4782                 handle_stripe(batch[i]);
4783
4784         cond_resched();
4785
4786         spin_lock_irq(&conf->device_lock);
4787         for (i = 0; i < batch_size; i++)
4788                 __release_stripe(conf, batch[i]);
4789         return batch_size;
4790 }
4791
4792 /*
4793  * This is our raid5 kernel thread.
4794  *
4795  * We scan the hash table for stripes which can be handled now.
4796  * During the scan, completed stripes are saved for us by the interrupt
4797  * handler, so that they will not have to wait for our next wakeup.
4798  */
4799 static void raid5d(struct md_thread *thread)
4800 {
4801         struct mddev *mddev = thread->mddev;
4802         struct r5conf *conf = mddev->private;
4803         int handled;
4804         struct blk_plug plug;
4805
4806         pr_debug("+++ raid5d active\n");
4807
4808         md_check_recovery(mddev);
4809
4810         blk_start_plug(&plug);
4811         handled = 0;
4812         spin_lock_irq(&conf->device_lock);
4813         while (1) {
4814                 struct bio *bio;
4815                 int batch_size;
4816
4817                 if (
4818                     !list_empty(&conf->bitmap_list)) {
4819                         /* Now is a good time to flush some bitmap updates */
4820                         conf->seq_flush++;
4821                         spin_unlock_irq(&conf->device_lock);
4822                         bitmap_unplug(mddev->bitmap);
4823                         spin_lock_irq(&conf->device_lock);
4824                         conf->seq_write = conf->seq_flush;
4825                         activate_bit_delay(conf);
4826                 }
4827                 raid5_activate_delayed(conf);
4828
4829                 while ((bio = remove_bio_from_retry(conf))) {
4830                         int ok;
4831                         spin_unlock_irq(&conf->device_lock);
4832                         ok = retry_aligned_read(conf, bio);
4833                         spin_lock_irq(&conf->device_lock);
4834                         if (!ok)
4835                                 break;
4836                         handled++;
4837                 }
4838
4839                 batch_size = handle_active_stripes(conf);
4840                 if (!batch_size)
4841                         break;
4842                 handled += batch_size;
4843
4844                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4845                         spin_unlock_irq(&conf->device_lock);
4846                         md_check_recovery(mddev);
4847                         spin_lock_irq(&conf->device_lock);
4848                 }
4849         }
4850         pr_debug("%d stripes handled\n", handled);
4851
4852         spin_unlock_irq(&conf->device_lock);
4853
4854         async_tx_issue_pending_all();
4855         blk_finish_plug(&plug);
4856
4857         pr_debug("--- raid5d inactive\n");
4858 }
4859
4860 static ssize_t
4861 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4862 {
4863         struct r5conf *conf = mddev->private;
4864         if (conf)
4865                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4866         else
4867                 return 0;
4868 }
4869
4870 int
4871 raid5_set_cache_size(struct mddev *mddev, int size)
4872 {
4873         struct r5conf *conf = mddev->private;
4874         int err;
4875
4876         if (size <= 16 || size > 32768)
4877                 return -EINVAL;
4878         while (size < conf->max_nr_stripes) {
4879                 if (drop_one_stripe(conf))
4880                         conf->max_nr_stripes--;
4881                 else
4882                         break;
4883         }
4884         err = md_allow_write(mddev);
4885         if (err)
4886                 return err;
4887         while (size > conf->max_nr_stripes) {
4888                 if (grow_one_stripe(conf))
4889                         conf->max_nr_stripes++;
4890                 else break;
4891         }
4892         return 0;
4893 }
4894 EXPORT_SYMBOL(raid5_set_cache_size);
4895
4896 static ssize_t
4897 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4898 {
4899         struct r5conf *conf = mddev->private;
4900         unsigned long new;
4901         int err;
4902
4903         if (len >= PAGE_SIZE)
4904                 return -EINVAL;
4905         if (!conf)
4906                 return -ENODEV;
4907
4908         if (strict_strtoul(page, 10, &new))
4909                 return -EINVAL;
4910         err = raid5_set_cache_size(mddev, new);
4911         if (err)
4912                 return err;
4913         return len;
4914 }
4915
4916 static struct md_sysfs_entry
4917 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4918                                 raid5_show_stripe_cache_size,
4919                                 raid5_store_stripe_cache_size);
4920
4921 static ssize_t
4922 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4923 {
4924         struct r5conf *conf = mddev->private;
4925         if (conf)
4926                 return sprintf(page, "%d\n", conf->bypass_threshold);
4927         else
4928                 return 0;
4929 }
4930
4931 static ssize_t
4932 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4933 {
4934         struct r5conf *conf = mddev->private;
4935         unsigned long new;
4936         if (len >= PAGE_SIZE)
4937                 return -EINVAL;
4938         if (!conf)
4939                 return -ENODEV;
4940
4941         if (strict_strtoul(page, 10, &new))
4942                 return -EINVAL;
4943         if (new > conf->max_nr_stripes)
4944                 return -EINVAL;
4945         conf->bypass_threshold = new;
4946         return len;
4947 }
4948
4949 static struct md_sysfs_entry
4950 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4951                                         S_IRUGO | S_IWUSR,
4952                                         raid5_show_preread_threshold,
4953                                         raid5_store_preread_threshold);
4954
4955 static ssize_t
4956 stripe_cache_active_show(struct mddev *mddev, char *page)
4957 {
4958         struct r5conf *conf = mddev->private;
4959         if (conf)
4960                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4961         else
4962                 return 0;
4963 }
4964
4965 static struct md_sysfs_entry
4966 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4967
4968 static struct attribute *raid5_attrs[] =  {
4969         &raid5_stripecache_size.attr,
4970         &raid5_stripecache_active.attr,
4971         &raid5_preread_bypass_threshold.attr,
4972         NULL,
4973 };
4974 static struct attribute_group raid5_attrs_group = {
4975         .name = NULL,
4976         .attrs = raid5_attrs,
4977 };
4978
4979 static sector_t
4980 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4981 {
4982         struct r5conf *conf = mddev->private;
4983
4984         if (!sectors)
4985                 sectors = mddev->dev_sectors;
4986         if (!raid_disks)
4987                 /* size is defined by the smallest of previous and new size */
4988                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4989
4990         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4991         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4992         return sectors * (raid_disks - conf->max_degraded);
4993 }
4994
4995 static void raid5_free_percpu(struct r5conf *conf)
4996 {
4997         struct raid5_percpu *percpu;
4998         unsigned long cpu;
4999
5000         if (!conf->percpu)
5001                 return;
5002
5003         get_online_cpus();
5004         for_each_possible_cpu(cpu) {
5005                 percpu = per_cpu_ptr(conf->percpu, cpu);
5006                 safe_put_page(percpu->spare_page);
5007                 kfree(percpu->scribble);
5008         }
5009 #ifdef CONFIG_HOTPLUG_CPU
5010         unregister_cpu_notifier(&conf->cpu_notify);
5011 #endif
5012         put_online_cpus();
5013
5014         free_percpu(conf->percpu);
5015 }
5016
5017 static void free_conf(struct r5conf *conf)
5018 {
5019         shrink_stripes(conf);
5020         raid5_free_percpu(conf);
5021         kfree(conf->disks);
5022         kfree(conf->stripe_hashtbl);
5023         kfree(conf);
5024 }
5025
5026 #ifdef CONFIG_HOTPLUG_CPU
5027 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5028                               void *hcpu)
5029 {
5030         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5031         long cpu = (long)hcpu;
5032         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5033
5034         switch (action) {
5035         case CPU_UP_PREPARE:
5036         case CPU_UP_PREPARE_FROZEN:
5037                 if (conf->level == 6 && !percpu->spare_page)
5038                         percpu->spare_page = alloc_page(GFP_KERNEL);
5039                 if (!percpu->scribble)
5040                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5041
5042                 if (!percpu->scribble ||
5043                     (conf->level == 6 && !percpu->spare_page)) {
5044                         safe_put_page(percpu->spare_page);
5045                         kfree(percpu->scribble);
5046                         pr_err("%s: failed memory allocation for cpu%ld\n",
5047                                __func__, cpu);
5048                         return notifier_from_errno(-ENOMEM);
5049                 }
5050                 break;
5051         case CPU_DEAD:
5052         case CPU_DEAD_FROZEN:
5053                 safe_put_page(percpu->spare_page);
5054                 kfree(percpu->scribble);
5055                 percpu->spare_page = NULL;
5056                 percpu->scribble = NULL;
5057                 break;
5058         default:
5059                 break;
5060         }
5061         return NOTIFY_OK;
5062 }
5063 #endif
5064
5065 static int raid5_alloc_percpu(struct r5conf *conf)
5066 {
5067         unsigned long cpu;
5068         struct page *spare_page;
5069         struct raid5_percpu __percpu *allcpus;
5070         void *scribble;
5071         int err;
5072
5073         allcpus = alloc_percpu(struct raid5_percpu);
5074         if (!allcpus)
5075                 return -ENOMEM;
5076         conf->percpu = allcpus;
5077
5078         get_online_cpus();
5079         err = 0;
5080         for_each_present_cpu(cpu) {
5081                 if (conf->level == 6) {
5082                         spare_page = alloc_page(GFP_KERNEL);
5083                         if (!spare_page) {
5084                                 err = -ENOMEM;
5085                                 break;
5086                         }
5087                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5088                 }
5089                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5090                 if (!scribble) {
5091                         err = -ENOMEM;
5092                         break;
5093                 }
5094                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5095         }
5096 #ifdef CONFIG_HOTPLUG_CPU
5097         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5098         conf->cpu_notify.priority = 0;
5099         if (err == 0)
5100                 err = register_cpu_notifier(&conf->cpu_notify);
5101 #endif
5102         put_online_cpus();
5103
5104         return err;
5105 }
5106
5107 static struct r5conf *setup_conf(struct mddev *mddev)
5108 {
5109         struct r5conf *conf;
5110         int raid_disk, memory, max_disks;
5111         struct md_rdev *rdev;
5112         struct disk_info *disk;
5113         char pers_name[6];
5114
5115         if (mddev->new_level != 5
5116             && mddev->new_level != 4
5117             && mddev->new_level != 6) {
5118                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5119                        mdname(mddev), mddev->new_level);
5120                 return ERR_PTR(-EIO);
5121         }
5122         if ((mddev->new_level == 5
5123              && !algorithm_valid_raid5(mddev->new_layout)) ||
5124             (mddev->new_level == 6
5125              && !algorithm_valid_raid6(mddev->new_layout))) {
5126                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5127                        mdname(mddev), mddev->new_layout);
5128                 return ERR_PTR(-EIO);
5129         }
5130         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5131                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5132                        mdname(mddev), mddev->raid_disks);
5133                 return ERR_PTR(-EINVAL);
5134         }
5135
5136         if (!mddev->new_chunk_sectors ||
5137             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5138             !is_power_of_2(mddev->new_chunk_sectors)) {
5139                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5140                        mdname(mddev), mddev->new_chunk_sectors << 9);
5141                 return ERR_PTR(-EINVAL);
5142         }
5143
5144         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5145         if (conf == NULL)
5146                 goto abort;
5147         spin_lock_init(&conf->device_lock);
5148         init_waitqueue_head(&conf->wait_for_stripe);
5149         init_waitqueue_head(&conf->wait_for_overlap);
5150         INIT_LIST_HEAD(&conf->handle_list);
5151         INIT_LIST_HEAD(&conf->hold_list);
5152         INIT_LIST_HEAD(&conf->delayed_list);
5153         INIT_LIST_HEAD(&conf->bitmap_list);
5154         INIT_LIST_HEAD(&conf->inactive_list);
5155         atomic_set(&conf->active_stripes, 0);
5156         atomic_set(&conf->preread_active_stripes, 0);
5157         atomic_set(&conf->active_aligned_reads, 0);
5158         conf->bypass_threshold = BYPASS_THRESHOLD;
5159         conf->recovery_disabled = mddev->recovery_disabled - 1;
5160
5161         conf->raid_disks = mddev->raid_disks;
5162         if (mddev->reshape_position == MaxSector)
5163                 conf->previous_raid_disks = mddev->raid_disks;
5164         else
5165                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5166         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5167         conf->scribble_len = scribble_len(max_disks);
5168
5169         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5170                               GFP_KERNEL);
5171         if (!conf->disks)
5172                 goto abort;
5173
5174         conf->mddev = mddev;
5175
5176         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5177                 goto abort;
5178
5179         conf->level = mddev->new_level;
5180         if (raid5_alloc_percpu(conf) != 0)
5181                 goto abort;
5182
5183         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5184
5185         rdev_for_each(rdev, mddev) {
5186                 raid_disk = rdev->raid_disk;
5187                 if (raid_disk >= max_disks
5188                     || raid_disk < 0)
5189                         continue;
5190                 disk = conf->disks + raid_disk;
5191
5192                 if (test_bit(Replacement, &rdev->flags)) {
5193                         if (disk->replacement)
5194                                 goto abort;
5195                         disk->replacement = rdev;
5196                 } else {
5197                         if (disk->rdev)
5198                                 goto abort;
5199                         disk->rdev = rdev;
5200                 }
5201
5202                 if (test_bit(In_sync, &rdev->flags)) {
5203                         char b[BDEVNAME_SIZE];
5204                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5205                                " disk %d\n",
5206                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5207                 } else if (rdev->saved_raid_disk != raid_disk)
5208                         /* Cannot rely on bitmap to complete recovery */
5209                         conf->fullsync = 1;
5210         }
5211
5212         conf->chunk_sectors = mddev->new_chunk_sectors;
5213         conf->level = mddev->new_level;
5214         if (conf->level == 6)
5215                 conf->max_degraded = 2;
5216         else
5217                 conf->max_degraded = 1;
5218         conf->algorithm = mddev->new_layout;
5219         conf->max_nr_stripes = NR_STRIPES;
5220         conf->reshape_progress = mddev->reshape_position;
5221         if (conf->reshape_progress != MaxSector) {
5222                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5223                 conf->prev_algo = mddev->layout;
5224         }
5225
5226         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5227                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5228         if (grow_stripes(conf, conf->max_nr_stripes)) {
5229                 printk(KERN_ERR
5230                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5231                        mdname(mddev), memory);
5232                 goto abort;
5233         } else
5234                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5235                        mdname(mddev), memory);
5236
5237         sprintf(pers_name, "raid%d", mddev->new_level);
5238         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5239         if (!conf->thread) {
5240                 printk(KERN_ERR
5241                        "md/raid:%s: couldn't allocate thread.\n",
5242                        mdname(mddev));
5243                 goto abort;
5244         }
5245
5246         return conf;
5247
5248  abort:
5249         if (conf) {
5250                 free_conf(conf);
5251                 return ERR_PTR(-EIO);
5252         } else
5253                 return ERR_PTR(-ENOMEM);
5254 }
5255
5256
5257 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5258 {
5259         switch (algo) {
5260         case ALGORITHM_PARITY_0:
5261                 if (raid_disk < max_degraded)
5262                         return 1;
5263                 break;
5264         case ALGORITHM_PARITY_N:
5265                 if (raid_disk >= raid_disks - max_degraded)
5266                         return 1;
5267                 break;
5268         case ALGORITHM_PARITY_0_6:
5269                 if (raid_disk == 0 || 
5270                     raid_disk == raid_disks - 1)
5271                         return 1;
5272                 break;
5273         case ALGORITHM_LEFT_ASYMMETRIC_6:
5274         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5275         case ALGORITHM_LEFT_SYMMETRIC_6:
5276         case ALGORITHM_RIGHT_SYMMETRIC_6:
5277                 if (raid_disk == raid_disks - 1)
5278                         return 1;
5279         }
5280         return 0;
5281 }
5282
5283 static int run(struct mddev *mddev)
5284 {
5285         struct r5conf *conf;
5286         int working_disks = 0;
5287         int dirty_parity_disks = 0;
5288         struct md_rdev *rdev;
5289         sector_t reshape_offset = 0;
5290         int i;
5291         long long min_offset_diff = 0;
5292         int first = 1;
5293
5294         if (mddev->recovery_cp != MaxSector)
5295                 printk(KERN_NOTICE "md/raid:%s: not clean"
5296                        " -- starting background reconstruction\n",
5297                        mdname(mddev));
5298
5299         rdev_for_each(rdev, mddev) {
5300                 long long diff;
5301                 if (rdev->raid_disk < 0)
5302                         continue;
5303                 diff = (rdev->new_data_offset - rdev->data_offset);
5304                 if (first) {
5305                         min_offset_diff = diff;
5306                         first = 0;
5307                 } else if (mddev->reshape_backwards &&
5308                          diff < min_offset_diff)
5309                         min_offset_diff = diff;
5310                 else if (!mddev->reshape_backwards &&
5311                          diff > min_offset_diff)
5312                         min_offset_diff = diff;
5313         }
5314
5315         if (mddev->reshape_position != MaxSector) {
5316                 /* Check that we can continue the reshape.
5317                  * Difficulties arise if the stripe we would write to
5318                  * next is at or after the stripe we would read from next.
5319                  * For a reshape that changes the number of devices, this
5320                  * is only possible for a very short time, and mdadm makes
5321                  * sure that time appears to have past before assembling
5322                  * the array.  So we fail if that time hasn't passed.
5323                  * For a reshape that keeps the number of devices the same
5324                  * mdadm must be monitoring the reshape can keeping the
5325                  * critical areas read-only and backed up.  It will start
5326                  * the array in read-only mode, so we check for that.
5327                  */
5328                 sector_t here_new, here_old;
5329                 int old_disks;
5330                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5331
5332                 if (mddev->new_level != mddev->level) {
5333                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5334                                "required - aborting.\n",
5335                                mdname(mddev));
5336                         return -EINVAL;
5337                 }
5338                 old_disks = mddev->raid_disks - mddev->delta_disks;
5339                 /* reshape_position must be on a new-stripe boundary, and one
5340                  * further up in new geometry must map after here in old
5341                  * geometry.
5342                  */
5343                 here_new = mddev->reshape_position;
5344                 if (sector_div(here_new, mddev->new_chunk_sectors *
5345                                (mddev->raid_disks - max_degraded))) {
5346                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5347                                "on a stripe boundary\n", mdname(mddev));
5348                         return -EINVAL;
5349                 }
5350                 reshape_offset = here_new * mddev->new_chunk_sectors;
5351                 /* here_new is the stripe we will write to */
5352                 here_old = mddev->reshape_position;
5353                 sector_div(here_old, mddev->chunk_sectors *
5354                            (old_disks-max_degraded));
5355                 /* here_old is the first stripe that we might need to read
5356                  * from */
5357                 if (mddev->delta_disks == 0) {
5358                         if ((here_new * mddev->new_chunk_sectors !=
5359                              here_old * mddev->chunk_sectors)) {
5360                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5361                                        " confused - aborting\n", mdname(mddev));
5362                                 return -EINVAL;
5363                         }
5364                         /* We cannot be sure it is safe to start an in-place
5365                          * reshape.  It is only safe if user-space is monitoring
5366                          * and taking constant backups.
5367                          * mdadm always starts a situation like this in
5368                          * readonly mode so it can take control before
5369                          * allowing any writes.  So just check for that.
5370                          */
5371                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5372                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5373                                 /* not really in-place - so OK */;
5374                         else if (mddev->ro == 0) {
5375                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5376                                        "must be started in read-only mode "
5377                                        "- aborting\n",
5378                                        mdname(mddev));
5379                                 return -EINVAL;
5380                         }
5381                 } else if (mddev->reshape_backwards
5382                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5383                        here_old * mddev->chunk_sectors)
5384                     : (here_new * mddev->new_chunk_sectors >=
5385                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5386                         /* Reading from the same stripe as writing to - bad */
5387                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5388                                "auto-recovery - aborting.\n",
5389                                mdname(mddev));
5390                         return -EINVAL;
5391                 }
5392                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5393                        mdname(mddev));
5394                 /* OK, we should be able to continue; */
5395         } else {
5396                 BUG_ON(mddev->level != mddev->new_level);
5397                 BUG_ON(mddev->layout != mddev->new_layout);
5398                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5399                 BUG_ON(mddev->delta_disks != 0);
5400         }
5401
5402         if (mddev->private == NULL)
5403                 conf = setup_conf(mddev);
5404         else
5405                 conf = mddev->private;
5406
5407         if (IS_ERR(conf))
5408                 return PTR_ERR(conf);
5409
5410         conf->min_offset_diff = min_offset_diff;
5411         mddev->thread = conf->thread;
5412         conf->thread = NULL;
5413         mddev->private = conf;
5414
5415         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5416              i++) {
5417                 rdev = conf->disks[i].rdev;
5418                 if (!rdev && conf->disks[i].replacement) {
5419                         /* The replacement is all we have yet */
5420                         rdev = conf->disks[i].replacement;
5421                         conf->disks[i].replacement = NULL;
5422                         clear_bit(Replacement, &rdev->flags);
5423                         conf->disks[i].rdev = rdev;
5424                 }
5425                 if (!rdev)
5426                         continue;
5427                 if (conf->disks[i].replacement &&
5428                     conf->reshape_progress != MaxSector) {
5429                         /* replacements and reshape simply do not mix. */
5430                         printk(KERN_ERR "md: cannot handle concurrent "
5431                                "replacement and reshape.\n");
5432                         goto abort;
5433                 }
5434                 if (test_bit(In_sync, &rdev->flags)) {
5435                         working_disks++;
5436                         continue;
5437                 }
5438                 /* This disc is not fully in-sync.  However if it
5439                  * just stored parity (beyond the recovery_offset),
5440                  * when we don't need to be concerned about the
5441                  * array being dirty.
5442                  * When reshape goes 'backwards', we never have
5443                  * partially completed devices, so we only need
5444                  * to worry about reshape going forwards.
5445                  */
5446                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5447                 if (mddev->major_version == 0 &&
5448                     mddev->minor_version > 90)
5449                         rdev->recovery_offset = reshape_offset;
5450                         
5451                 if (rdev->recovery_offset < reshape_offset) {
5452                         /* We need to check old and new layout */
5453                         if (!only_parity(rdev->raid_disk,
5454                                          conf->algorithm,
5455                                          conf->raid_disks,
5456                                          conf->max_degraded))
5457                                 continue;
5458                 }
5459                 if (!only_parity(rdev->raid_disk,
5460                                  conf->prev_algo,
5461                                  conf->previous_raid_disks,
5462                                  conf->max_degraded))
5463                         continue;
5464                 dirty_parity_disks++;
5465         }
5466
5467         /*
5468          * 0 for a fully functional array, 1 or 2 for a degraded array.
5469          */
5470         mddev->degraded = calc_degraded(conf);
5471
5472         if (has_failed(conf)) {
5473                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5474                         " (%d/%d failed)\n",
5475                         mdname(mddev), mddev->degraded, conf->raid_disks);
5476                 goto abort;
5477         }
5478
5479         /* device size must be a multiple of chunk size */
5480         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5481         mddev->resync_max_sectors = mddev->dev_sectors;
5482
5483         if (mddev->degraded > dirty_parity_disks &&
5484             mddev->recovery_cp != MaxSector) {
5485                 if (mddev->ok_start_degraded)
5486                         printk(KERN_WARNING
5487                                "md/raid:%s: starting dirty degraded array"
5488                                " - data corruption possible.\n",
5489                                mdname(mddev));
5490                 else {
5491                         printk(KERN_ERR
5492                                "md/raid:%s: cannot start dirty degraded array.\n",
5493                                mdname(mddev));
5494                         goto abort;
5495                 }
5496         }
5497
5498         if (mddev->degraded == 0)
5499                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5500                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5501                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5502                        mddev->new_layout);
5503         else
5504                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5505                        " out of %d devices, algorithm %d\n",
5506                        mdname(mddev), conf->level,
5507                        mddev->raid_disks - mddev->degraded,
5508                        mddev->raid_disks, mddev->new_layout);
5509
5510         print_raid5_conf(conf);
5511
5512         if (conf->reshape_progress != MaxSector) {
5513                 conf->reshape_safe = conf->reshape_progress;
5514                 atomic_set(&conf->reshape_stripes, 0);
5515                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5516                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5517                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5518                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5519                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5520                                                         "reshape");
5521         }
5522
5523
5524         /* Ok, everything is just fine now */
5525         if (mddev->to_remove == &raid5_attrs_group)
5526                 mddev->to_remove = NULL;
5527         else if (mddev->kobj.sd &&
5528             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5529                 printk(KERN_WARNING
5530                        "raid5: failed to create sysfs attributes for %s\n",
5531                        mdname(mddev));
5532         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5533
5534         if (mddev->queue) {
5535                 int chunk_size;
5536                 bool discard_supported = true;
5537                 /* read-ahead size must cover two whole stripes, which
5538                  * is 2 * (datadisks) * chunksize where 'n' is the
5539                  * number of raid devices
5540                  */
5541                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5542                 int stripe = data_disks *
5543                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5544                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5545                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5546
5547                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5548
5549                 mddev->queue->backing_dev_info.congested_data = mddev;
5550                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5551
5552                 chunk_size = mddev->chunk_sectors << 9;
5553                 blk_queue_io_min(mddev->queue, chunk_size);
5554                 blk_queue_io_opt(mddev->queue, chunk_size *
5555                                  (conf->raid_disks - conf->max_degraded));
5556                 /*
5557                  * We can only discard a whole stripe. It doesn't make sense to
5558                  * discard data disk but write parity disk
5559                  */
5560                 stripe = stripe * PAGE_SIZE;
5561                 /* Round up to power of 2, as discard handling
5562                  * currently assumes that */
5563                 while ((stripe-1) & stripe)
5564                         stripe = (stripe | (stripe-1)) + 1;
5565                 mddev->queue->limits.discard_alignment = stripe;
5566                 mddev->queue->limits.discard_granularity = stripe;
5567                 /*
5568                  * unaligned part of discard request will be ignored, so can't
5569                  * guarantee discard_zerors_data
5570                  */
5571                 mddev->queue->limits.discard_zeroes_data = 0;
5572
5573                 rdev_for_each(rdev, mddev) {
5574                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5575                                           rdev->data_offset << 9);
5576                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5577                                           rdev->new_data_offset << 9);
5578                         /*
5579                          * discard_zeroes_data is required, otherwise data
5580                          * could be lost. Consider a scenario: discard a stripe
5581                          * (the stripe could be inconsistent if
5582                          * discard_zeroes_data is 0); write one disk of the
5583                          * stripe (the stripe could be inconsistent again
5584                          * depending on which disks are used to calculate
5585                          * parity); the disk is broken; The stripe data of this
5586                          * disk is lost.
5587                          */
5588                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5589                             !bdev_get_queue(rdev->bdev)->
5590                                                 limits.discard_zeroes_data)
5591                                 discard_supported = false;
5592                 }
5593
5594                 if (discard_supported &&
5595                    mddev->queue->limits.max_discard_sectors >= stripe &&
5596                    mddev->queue->limits.discard_granularity >= stripe)
5597                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5598                                                 mddev->queue);
5599                 else
5600                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5601                                                 mddev->queue);
5602         }
5603
5604         return 0;
5605 abort:
5606         md_unregister_thread(&mddev->thread);
5607         print_raid5_conf(conf);
5608         free_conf(conf);
5609         mddev->private = NULL;
5610         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5611         return -EIO;
5612 }
5613
5614 static int stop(struct mddev *mddev)
5615 {
5616         struct r5conf *conf = mddev->private;
5617
5618         md_unregister_thread(&mddev->thread);
5619         if (mddev->queue)
5620                 mddev->queue->backing_dev_info.congested_fn = NULL;
5621         free_conf(conf);
5622         mddev->private = NULL;
5623         mddev->to_remove = &raid5_attrs_group;
5624         return 0;
5625 }
5626
5627 static void status(struct seq_file *seq, struct mddev *mddev)
5628 {
5629         struct r5conf *conf = mddev->private;
5630         int i;
5631
5632         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5633                 mddev->chunk_sectors / 2, mddev->layout);
5634         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5635         for (i = 0; i < conf->raid_disks; i++)
5636                 seq_printf (seq, "%s",
5637                                conf->disks[i].rdev &&
5638                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5639         seq_printf (seq, "]");
5640 }
5641
5642 static void print_raid5_conf (struct r5conf *conf)
5643 {
5644         int i;
5645         struct disk_info *tmp;
5646
5647         printk(KERN_DEBUG "RAID conf printout:\n");
5648         if (!conf) {
5649                 printk("(conf==NULL)\n");
5650                 return;
5651         }
5652         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5653                conf->raid_disks,
5654                conf->raid_disks - conf->mddev->degraded);
5655
5656         for (i = 0; i < conf->raid_disks; i++) {
5657                 char b[BDEVNAME_SIZE];
5658                 tmp = conf->disks + i;
5659                 if (tmp->rdev)
5660                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5661                                i, !test_bit(Faulty, &tmp->rdev->flags),
5662                                bdevname(tmp->rdev->bdev, b));
5663         }
5664 }
5665
5666 static int raid5_spare_active(struct mddev *mddev)
5667 {
5668         int i;
5669         struct r5conf *conf = mddev->private;
5670         struct disk_info *tmp;
5671         int count = 0;
5672         unsigned long flags;
5673
5674         for (i = 0; i < conf->raid_disks; i++) {
5675                 tmp = conf->disks + i;
5676                 if (tmp->replacement
5677                     && tmp->replacement->recovery_offset == MaxSector
5678                     && !test_bit(Faulty, &tmp->replacement->flags)
5679                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5680                         /* Replacement has just become active. */
5681                         if (!tmp->rdev
5682                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5683                                 count++;
5684                         if (tmp->rdev) {
5685                                 /* Replaced device not technically faulty,
5686                                  * but we need to be sure it gets removed
5687                                  * and never re-added.
5688                                  */
5689                                 set_bit(Faulty, &tmp->rdev->flags);
5690                                 sysfs_notify_dirent_safe(
5691                                         tmp->rdev->sysfs_state);
5692                         }
5693                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5694                 } else if (tmp->rdev
5695                     && tmp->rdev->recovery_offset == MaxSector
5696                     && !test_bit(Faulty, &tmp->rdev->flags)
5697                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5698                         count++;
5699                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5700                 }
5701         }
5702         spin_lock_irqsave(&conf->device_lock, flags);
5703         mddev->degraded = calc_degraded(conf);
5704         spin_unlock_irqrestore(&conf->device_lock, flags);
5705         print_raid5_conf(conf);
5706         return count;
5707 }
5708
5709 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5710 {
5711         struct r5conf *conf = mddev->private;
5712         int err = 0;
5713         int number = rdev->raid_disk;
5714         struct md_rdev **rdevp;
5715         struct disk_info *p = conf->disks + number;
5716
5717         print_raid5_conf(conf);
5718         if (rdev == p->rdev)
5719                 rdevp = &p->rdev;
5720         else if (rdev == p->replacement)
5721                 rdevp = &p->replacement;
5722         else
5723                 return 0;
5724
5725         if (number >= conf->raid_disks &&
5726             conf->reshape_progress == MaxSector)
5727                 clear_bit(In_sync, &rdev->flags);
5728
5729         if (test_bit(In_sync, &rdev->flags) ||
5730             atomic_read(&rdev->nr_pending)) {
5731                 err = -EBUSY;
5732                 goto abort;
5733         }
5734         /* Only remove non-faulty devices if recovery
5735          * isn't possible.
5736          */
5737         if (!test_bit(Faulty, &rdev->flags) &&
5738             mddev->recovery_disabled != conf->recovery_disabled &&
5739             !has_failed(conf) &&
5740             (!p->replacement || p->replacement == rdev) &&
5741             number < conf->raid_disks) {
5742                 err = -EBUSY;
5743                 goto abort;
5744         }
5745         *rdevp = NULL;
5746         synchronize_rcu();
5747         if (atomic_read(&rdev->nr_pending)) {
5748                 /* lost the race, try later */
5749                 err = -EBUSY;
5750                 *rdevp = rdev;
5751         } else if (p->replacement) {
5752                 /* We must have just cleared 'rdev' */
5753                 p->rdev = p->replacement;
5754                 clear_bit(Replacement, &p->replacement->flags);
5755                 smp_mb(); /* Make sure other CPUs may see both as identical
5756                            * but will never see neither - if they are careful
5757                            */
5758                 p->replacement = NULL;
5759                 clear_bit(WantReplacement, &rdev->flags);
5760         } else
5761                 /* We might have just removed the Replacement as faulty-
5762                  * clear the bit just in case
5763                  */
5764                 clear_bit(WantReplacement, &rdev->flags);
5765 abort:
5766
5767         print_raid5_conf(conf);
5768         return err;
5769 }
5770
5771 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5772 {
5773         struct r5conf *conf = mddev->private;
5774         int err = -EEXIST;
5775         int disk;
5776         struct disk_info *p;
5777         int first = 0;
5778         int last = conf->raid_disks - 1;
5779
5780         if (mddev->recovery_disabled == conf->recovery_disabled)
5781                 return -EBUSY;
5782
5783         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5784                 /* no point adding a device */
5785                 return -EINVAL;
5786
5787         if (rdev->raid_disk >= 0)
5788                 first = last = rdev->raid_disk;
5789
5790         /*
5791          * find the disk ... but prefer rdev->saved_raid_disk
5792          * if possible.
5793          */
5794         if (rdev->saved_raid_disk >= 0 &&
5795             rdev->saved_raid_disk >= first &&
5796             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5797                 first = rdev->saved_raid_disk;
5798
5799         for (disk = first; disk <= last; disk++) {
5800                 p = conf->disks + disk;
5801                 if (p->rdev == NULL) {
5802                         clear_bit(In_sync, &rdev->flags);
5803                         rdev->raid_disk = disk;
5804                         err = 0;
5805                         if (rdev->saved_raid_disk != disk)
5806                                 conf->fullsync = 1;
5807                         rcu_assign_pointer(p->rdev, rdev);
5808                         goto out;
5809                 }
5810         }
5811         for (disk = first; disk <= last; disk++) {
5812                 p = conf->disks + disk;
5813                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5814                     p->replacement == NULL) {
5815                         clear_bit(In_sync, &rdev->flags);
5816                         set_bit(Replacement, &rdev->flags);
5817                         rdev->raid_disk = disk;
5818                         err = 0;
5819                         conf->fullsync = 1;
5820                         rcu_assign_pointer(p->replacement, rdev);
5821                         break;
5822                 }
5823         }
5824 out:
5825         print_raid5_conf(conf);
5826         return err;
5827 }
5828
5829 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5830 {
5831         /* no resync is happening, and there is enough space
5832          * on all devices, so we can resize.
5833          * We need to make sure resync covers any new space.
5834          * If the array is shrinking we should possibly wait until
5835          * any io in the removed space completes, but it hardly seems
5836          * worth it.
5837          */
5838         sector_t newsize;
5839         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5840         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5841         if (mddev->external_size &&
5842             mddev->array_sectors > newsize)
5843                 return -EINVAL;
5844         if (mddev->bitmap) {
5845                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5846                 if (ret)
5847                         return ret;
5848         }
5849         md_set_array_sectors(mddev, newsize);
5850         set_capacity(mddev->gendisk, mddev->array_sectors);
5851         revalidate_disk(mddev->gendisk);
5852         if (sectors > mddev->dev_sectors &&
5853             mddev->recovery_cp > mddev->dev_sectors) {
5854                 mddev->recovery_cp = mddev->dev_sectors;
5855                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5856         }
5857         mddev->dev_sectors = sectors;
5858         mddev->resync_max_sectors = sectors;
5859         return 0;
5860 }
5861
5862 static int check_stripe_cache(struct mddev *mddev)
5863 {
5864         /* Can only proceed if there are plenty of stripe_heads.
5865          * We need a minimum of one full stripe,, and for sensible progress
5866          * it is best to have about 4 times that.
5867          * If we require 4 times, then the default 256 4K stripe_heads will
5868          * allow for chunk sizes up to 256K, which is probably OK.
5869          * If the chunk size is greater, user-space should request more
5870          * stripe_heads first.
5871          */
5872         struct r5conf *conf = mddev->private;
5873         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5874             > conf->max_nr_stripes ||
5875             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5876             > conf->max_nr_stripes) {
5877                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5878                        mdname(mddev),
5879                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5880                         / STRIPE_SIZE)*4);
5881                 return 0;
5882         }
5883         return 1;
5884 }
5885
5886 static int check_reshape(struct mddev *mddev)
5887 {
5888         struct r5conf *conf = mddev->private;
5889
5890         if (mddev->delta_disks == 0 &&
5891             mddev->new_layout == mddev->layout &&
5892             mddev->new_chunk_sectors == mddev->chunk_sectors)
5893                 return 0; /* nothing to do */
5894         if (has_failed(conf))
5895                 return -EINVAL;
5896         if (mddev->delta_disks < 0) {
5897                 /* We might be able to shrink, but the devices must
5898                  * be made bigger first.
5899                  * For raid6, 4 is the minimum size.
5900                  * Otherwise 2 is the minimum
5901                  */
5902                 int min = 2;
5903                 if (mddev->level == 6)
5904                         min = 4;
5905                 if (mddev->raid_disks + mddev->delta_disks < min)
5906                         return -EINVAL;
5907         }
5908
5909         if (!check_stripe_cache(mddev))
5910                 return -ENOSPC;
5911
5912         return resize_stripes(conf, (conf->previous_raid_disks
5913                                      + mddev->delta_disks));
5914 }
5915
5916 static int raid5_start_reshape(struct mddev *mddev)
5917 {
5918         struct r5conf *conf = mddev->private;
5919         struct md_rdev *rdev;
5920         int spares = 0;
5921         unsigned long flags;
5922
5923         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5924                 return -EBUSY;
5925
5926         if (!check_stripe_cache(mddev))
5927                 return -ENOSPC;
5928
5929         if (has_failed(conf))
5930                 return -EINVAL;
5931
5932         rdev_for_each(rdev, mddev) {
5933                 if (!test_bit(In_sync, &rdev->flags)
5934                     && !test_bit(Faulty, &rdev->flags))
5935                         spares++;
5936         }
5937
5938         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5939                 /* Not enough devices even to make a degraded array
5940                  * of that size
5941                  */
5942                 return -EINVAL;
5943
5944         /* Refuse to reduce size of the array.  Any reductions in
5945          * array size must be through explicit setting of array_size
5946          * attribute.
5947          */
5948         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5949             < mddev->array_sectors) {
5950                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5951                        "before number of disks\n", mdname(mddev));
5952                 return -EINVAL;
5953         }
5954
5955         atomic_set(&conf->reshape_stripes, 0);
5956         spin_lock_irq(&conf->device_lock);
5957         conf->previous_raid_disks = conf->raid_disks;
5958         conf->raid_disks += mddev->delta_disks;
5959         conf->prev_chunk_sectors = conf->chunk_sectors;
5960         conf->chunk_sectors = mddev->new_chunk_sectors;
5961         conf->prev_algo = conf->algorithm;
5962         conf->algorithm = mddev->new_layout;
5963         conf->generation++;
5964         /* Code that selects data_offset needs to see the generation update
5965          * if reshape_progress has been set - so a memory barrier needed.
5966          */
5967         smp_mb();
5968         if (mddev->reshape_backwards)
5969                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5970         else
5971                 conf->reshape_progress = 0;
5972         conf->reshape_safe = conf->reshape_progress;
5973         spin_unlock_irq(&conf->device_lock);
5974
5975         /* Add some new drives, as many as will fit.
5976          * We know there are enough to make the newly sized array work.
5977          * Don't add devices if we are reducing the number of
5978          * devices in the array.  This is because it is not possible
5979          * to correctly record the "partially reconstructed" state of
5980          * such devices during the reshape and confusion could result.
5981          */
5982         if (mddev->delta_disks >= 0) {
5983                 rdev_for_each(rdev, mddev)
5984                         if (rdev->raid_disk < 0 &&
5985                             !test_bit(Faulty, &rdev->flags)) {
5986                                 if (raid5_add_disk(mddev, rdev) == 0) {
5987                                         if (rdev->raid_disk
5988                                             >= conf->previous_raid_disks)
5989                                                 set_bit(In_sync, &rdev->flags);
5990                                         else
5991                                                 rdev->recovery_offset = 0;
5992
5993                                         if (sysfs_link_rdev(mddev, rdev))
5994                                                 /* Failure here is OK */;
5995                                 }
5996                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5997                                    && !test_bit(Faulty, &rdev->flags)) {
5998                                 /* This is a spare that was manually added */
5999                                 set_bit(In_sync, &rdev->flags);
6000                         }
6001
6002                 /* When a reshape changes the number of devices,
6003                  * ->degraded is measured against the larger of the
6004                  * pre and post number of devices.
6005                  */
6006                 spin_lock_irqsave(&conf->device_lock, flags);
6007                 mddev->degraded = calc_degraded(conf);
6008                 spin_unlock_irqrestore(&conf->device_lock, flags);
6009         }
6010         mddev->raid_disks = conf->raid_disks;
6011         mddev->reshape_position = conf->reshape_progress;
6012         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6013
6014         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6015         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6016         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6017         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6018         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6019                                                 "reshape");
6020         if (!mddev->sync_thread) {
6021                 mddev->recovery = 0;
6022                 spin_lock_irq(&conf->device_lock);
6023                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6024                 rdev_for_each(rdev, mddev)
6025                         rdev->new_data_offset = rdev->data_offset;
6026                 smp_wmb();
6027                 conf->reshape_progress = MaxSector;
6028                 mddev->reshape_position = MaxSector;
6029                 spin_unlock_irq(&conf->device_lock);
6030                 return -EAGAIN;
6031         }
6032         conf->reshape_checkpoint = jiffies;
6033         md_wakeup_thread(mddev->sync_thread);
6034         md_new_event(mddev);
6035         return 0;
6036 }
6037
6038 /* This is called from the reshape thread and should make any
6039  * changes needed in 'conf'
6040  */
6041 static void end_reshape(struct r5conf *conf)
6042 {
6043
6044         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6045                 struct md_rdev *rdev;
6046
6047                 spin_lock_irq(&conf->device_lock);
6048                 conf->previous_raid_disks = conf->raid_disks;
6049                 rdev_for_each(rdev, conf->mddev)
6050                         rdev->data_offset = rdev->new_data_offset;
6051                 smp_wmb();
6052                 conf->reshape_progress = MaxSector;
6053                 spin_unlock_irq(&conf->device_lock);
6054                 wake_up(&conf->wait_for_overlap);
6055
6056                 /* read-ahead size must cover two whole stripes, which is
6057                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6058                  */
6059                 if (conf->mddev->queue) {
6060                         int data_disks = conf->raid_disks - conf->max_degraded;
6061                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6062                                                    / PAGE_SIZE);
6063                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6064                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6065                 }
6066         }
6067 }
6068
6069 /* This is called from the raid5d thread with mddev_lock held.
6070  * It makes config changes to the device.
6071  */
6072 static void raid5_finish_reshape(struct mddev *mddev)
6073 {
6074         struct r5conf *conf = mddev->private;
6075
6076         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6077
6078                 if (mddev->delta_disks > 0) {
6079                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6080                         set_capacity(mddev->gendisk, mddev->array_sectors);
6081                         revalidate_disk(mddev->gendisk);
6082                 } else {
6083                         int d;
6084                         spin_lock_irq(&conf->device_lock);
6085                         mddev->degraded = calc_degraded(conf);
6086                         spin_unlock_irq(&conf->device_lock);
6087                         for (d = conf->raid_disks ;
6088                              d < conf->raid_disks - mddev->delta_disks;
6089                              d++) {
6090                                 struct md_rdev *rdev = conf->disks[d].rdev;
6091                                 if (rdev)
6092                                         clear_bit(In_sync, &rdev->flags);
6093                                 rdev = conf->disks[d].replacement;
6094                                 if (rdev)
6095                                         clear_bit(In_sync, &rdev->flags);
6096                         }
6097                 }
6098                 mddev->layout = conf->algorithm;
6099                 mddev->chunk_sectors = conf->chunk_sectors;
6100                 mddev->reshape_position = MaxSector;
6101                 mddev->delta_disks = 0;
6102                 mddev->reshape_backwards = 0;
6103         }
6104 }
6105
6106 static void raid5_quiesce(struct mddev *mddev, int state)
6107 {
6108         struct r5conf *conf = mddev->private;
6109
6110         switch(state) {
6111         case 2: /* resume for a suspend */
6112                 wake_up(&conf->wait_for_overlap);
6113                 break;
6114
6115         case 1: /* stop all writes */
6116                 spin_lock_irq(&conf->device_lock);
6117                 /* '2' tells resync/reshape to pause so that all
6118                  * active stripes can drain
6119                  */
6120                 conf->quiesce = 2;
6121                 wait_event_lock_irq(conf->wait_for_stripe,
6122                                     atomic_read(&conf->active_stripes) == 0 &&
6123                                     atomic_read(&conf->active_aligned_reads) == 0,
6124                                     conf->device_lock);
6125                 conf->quiesce = 1;
6126                 spin_unlock_irq(&conf->device_lock);
6127                 /* allow reshape to continue */
6128                 wake_up(&conf->wait_for_overlap);
6129                 break;
6130
6131         case 0: /* re-enable writes */
6132                 spin_lock_irq(&conf->device_lock);
6133                 conf->quiesce = 0;
6134                 wake_up(&conf->wait_for_stripe);
6135                 wake_up(&conf->wait_for_overlap);
6136                 spin_unlock_irq(&conf->device_lock);
6137                 break;
6138         }
6139 }
6140
6141
6142 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6143 {
6144         struct r0conf *raid0_conf = mddev->private;
6145         sector_t sectors;
6146
6147         /* for raid0 takeover only one zone is supported */
6148         if (raid0_conf->nr_strip_zones > 1) {
6149                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6150                        mdname(mddev));
6151                 return ERR_PTR(-EINVAL);
6152         }
6153
6154         sectors = raid0_conf->strip_zone[0].zone_end;
6155         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6156         mddev->dev_sectors = sectors;
6157         mddev->new_level = level;
6158         mddev->new_layout = ALGORITHM_PARITY_N;
6159         mddev->new_chunk_sectors = mddev->chunk_sectors;
6160         mddev->raid_disks += 1;
6161         mddev->delta_disks = 1;
6162         /* make sure it will be not marked as dirty */
6163         mddev->recovery_cp = MaxSector;
6164
6165         return setup_conf(mddev);
6166 }
6167
6168
6169 static void *raid5_takeover_raid1(struct mddev *mddev)
6170 {
6171         int chunksect;
6172
6173         if (mddev->raid_disks != 2 ||
6174             mddev->degraded > 1)
6175                 return ERR_PTR(-EINVAL);
6176
6177         /* Should check if there are write-behind devices? */
6178
6179         chunksect = 64*2; /* 64K by default */
6180
6181         /* The array must be an exact multiple of chunksize */
6182         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6183                 chunksect >>= 1;
6184
6185         if ((chunksect<<9) < STRIPE_SIZE)
6186                 /* array size does not allow a suitable chunk size */
6187                 return ERR_PTR(-EINVAL);
6188
6189         mddev->new_level = 5;
6190         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6191         mddev->new_chunk_sectors = chunksect;
6192
6193         return setup_conf(mddev);
6194 }
6195
6196 static void *raid5_takeover_raid6(struct mddev *mddev)
6197 {
6198         int new_layout;
6199
6200         switch (mddev->layout) {
6201         case ALGORITHM_LEFT_ASYMMETRIC_6:
6202                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6203                 break;
6204         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6205                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6206                 break;
6207         case ALGORITHM_LEFT_SYMMETRIC_6:
6208                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6209                 break;
6210         case ALGORITHM_RIGHT_SYMMETRIC_6:
6211                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6212                 break;
6213         case ALGORITHM_PARITY_0_6:
6214                 new_layout = ALGORITHM_PARITY_0;
6215                 break;
6216         case ALGORITHM_PARITY_N:
6217                 new_layout = ALGORITHM_PARITY_N;
6218                 break;
6219         default:
6220                 return ERR_PTR(-EINVAL);
6221         }
6222         mddev->new_level = 5;
6223         mddev->new_layout = new_layout;
6224         mddev->delta_disks = -1;
6225         mddev->raid_disks -= 1;
6226         return setup_conf(mddev);
6227 }
6228
6229
6230 static int raid5_check_reshape(struct mddev *mddev)
6231 {
6232         /* For a 2-drive array, the layout and chunk size can be changed
6233          * immediately as not restriping is needed.
6234          * For larger arrays we record the new value - after validation
6235          * to be used by a reshape pass.
6236          */
6237         struct r5conf *conf = mddev->private;
6238         int new_chunk = mddev->new_chunk_sectors;
6239
6240         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6241                 return -EINVAL;
6242         if (new_chunk > 0) {
6243                 if (!is_power_of_2(new_chunk))
6244                         return -EINVAL;
6245                 if (new_chunk < (PAGE_SIZE>>9))
6246                         return -EINVAL;
6247                 if (mddev->array_sectors & (new_chunk-1))
6248                         /* not factor of array size */
6249                         return -EINVAL;
6250         }
6251
6252         /* They look valid */
6253
6254         if (mddev->raid_disks == 2) {
6255                 /* can make the change immediately */
6256                 if (mddev->new_layout >= 0) {
6257                         conf->algorithm = mddev->new_layout;
6258                         mddev->layout = mddev->new_layout;
6259                 }
6260                 if (new_chunk > 0) {
6261                         conf->chunk_sectors = new_chunk ;
6262                         mddev->chunk_sectors = new_chunk;
6263                 }
6264                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6265                 md_wakeup_thread(mddev->thread);
6266         }
6267         return check_reshape(mddev);
6268 }
6269
6270 static int raid6_check_reshape(struct mddev *mddev)
6271 {
6272         int new_chunk = mddev->new_chunk_sectors;
6273
6274         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6275                 return -EINVAL;
6276         if (new_chunk > 0) {
6277                 if (!is_power_of_2(new_chunk))
6278                         return -EINVAL;
6279                 if (new_chunk < (PAGE_SIZE >> 9))
6280                         return -EINVAL;
6281                 if (mddev->array_sectors & (new_chunk-1))
6282                         /* not factor of array size */
6283                         return -EINVAL;
6284         }
6285
6286         /* They look valid */
6287         return check_reshape(mddev);
6288 }
6289
6290 static void *raid5_takeover(struct mddev *mddev)
6291 {
6292         /* raid5 can take over:
6293          *  raid0 - if there is only one strip zone - make it a raid4 layout
6294          *  raid1 - if there are two drives.  We need to know the chunk size
6295          *  raid4 - trivial - just use a raid4 layout.
6296          *  raid6 - Providing it is a *_6 layout
6297          */
6298         if (mddev->level == 0)
6299                 return raid45_takeover_raid0(mddev, 5);
6300         if (mddev->level == 1)
6301                 return raid5_takeover_raid1(mddev);
6302         if (mddev->level == 4) {
6303                 mddev->new_layout = ALGORITHM_PARITY_N;
6304                 mddev->new_level = 5;
6305                 return setup_conf(mddev);
6306         }
6307         if (mddev->level == 6)
6308                 return raid5_takeover_raid6(mddev);
6309
6310         return ERR_PTR(-EINVAL);
6311 }
6312
6313 static void *raid4_takeover(struct mddev *mddev)
6314 {
6315         /* raid4 can take over:
6316          *  raid0 - if there is only one strip zone
6317          *  raid5 - if layout is right
6318          */
6319         if (mddev->level == 0)
6320                 return raid45_takeover_raid0(mddev, 4);
6321         if (mddev->level == 5 &&
6322             mddev->layout == ALGORITHM_PARITY_N) {
6323                 mddev->new_layout = 0;
6324                 mddev->new_level = 4;
6325                 return setup_conf(mddev);
6326         }
6327         return ERR_PTR(-EINVAL);
6328 }
6329
6330 static struct md_personality raid5_personality;
6331
6332 static void *raid6_takeover(struct mddev *mddev)
6333 {
6334         /* Currently can only take over a raid5.  We map the
6335          * personality to an equivalent raid6 personality
6336          * with the Q block at the end.
6337          */
6338         int new_layout;
6339
6340         if (mddev->pers != &raid5_personality)
6341                 return ERR_PTR(-EINVAL);
6342         if (mddev->degraded > 1)
6343                 return ERR_PTR(-EINVAL);
6344         if (mddev->raid_disks > 253)
6345                 return ERR_PTR(-EINVAL);
6346         if (mddev->raid_disks < 3)
6347                 return ERR_PTR(-EINVAL);
6348
6349         switch (mddev->layout) {
6350         case ALGORITHM_LEFT_ASYMMETRIC:
6351                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6352                 break;
6353         case ALGORITHM_RIGHT_ASYMMETRIC:
6354                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6355                 break;
6356         case ALGORITHM_LEFT_SYMMETRIC:
6357                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6358                 break;
6359         case ALGORITHM_RIGHT_SYMMETRIC:
6360                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6361                 break;
6362         case ALGORITHM_PARITY_0:
6363                 new_layout = ALGORITHM_PARITY_0_6;
6364                 break;
6365         case ALGORITHM_PARITY_N:
6366                 new_layout = ALGORITHM_PARITY_N;
6367                 break;
6368         default:
6369                 return ERR_PTR(-EINVAL);
6370         }
6371         mddev->new_level = 6;
6372         mddev->new_layout = new_layout;
6373         mddev->delta_disks = 1;
6374         mddev->raid_disks += 1;
6375         return setup_conf(mddev);
6376 }
6377
6378
6379 static struct md_personality raid6_personality =
6380 {
6381         .name           = "raid6",
6382         .level          = 6,
6383         .owner          = THIS_MODULE,
6384         .make_request   = make_request,
6385         .run            = run,
6386         .stop           = stop,
6387         .status         = status,
6388         .error_handler  = error,
6389         .hot_add_disk   = raid5_add_disk,
6390         .hot_remove_disk= raid5_remove_disk,
6391         .spare_active   = raid5_spare_active,
6392         .sync_request   = sync_request,
6393         .resize         = raid5_resize,
6394         .size           = raid5_size,
6395         .check_reshape  = raid6_check_reshape,
6396         .start_reshape  = raid5_start_reshape,
6397         .finish_reshape = raid5_finish_reshape,
6398         .quiesce        = raid5_quiesce,
6399         .takeover       = raid6_takeover,
6400 };
6401 static struct md_personality raid5_personality =
6402 {
6403         .name           = "raid5",
6404         .level          = 5,
6405         .owner          = THIS_MODULE,
6406         .make_request   = make_request,
6407         .run            = run,
6408         .stop           = stop,
6409         .status         = status,
6410         .error_handler  = error,
6411         .hot_add_disk   = raid5_add_disk,
6412         .hot_remove_disk= raid5_remove_disk,
6413         .spare_active   = raid5_spare_active,
6414         .sync_request   = sync_request,
6415         .resize         = raid5_resize,
6416         .size           = raid5_size,
6417         .check_reshape  = raid5_check_reshape,
6418         .start_reshape  = raid5_start_reshape,
6419         .finish_reshape = raid5_finish_reshape,
6420         .quiesce        = raid5_quiesce,
6421         .takeover       = raid5_takeover,
6422 };
6423
6424 static struct md_personality raid4_personality =
6425 {
6426         .name           = "raid4",
6427         .level          = 4,
6428         .owner          = THIS_MODULE,
6429         .make_request   = make_request,
6430         .run            = run,
6431         .stop           = stop,
6432         .status         = status,
6433         .error_handler  = error,
6434         .hot_add_disk   = raid5_add_disk,
6435         .hot_remove_disk= raid5_remove_disk,
6436         .spare_active   = raid5_spare_active,
6437         .sync_request   = sync_request,
6438         .resize         = raid5_resize,
6439         .size           = raid5_size,
6440         .check_reshape  = raid5_check_reshape,
6441         .start_reshape  = raid5_start_reshape,
6442         .finish_reshape = raid5_finish_reshape,
6443         .quiesce        = raid5_quiesce,
6444         .takeover       = raid4_takeover,
6445 };
6446
6447 static int __init raid5_init(void)
6448 {
6449         register_md_personality(&raid6_personality);
6450         register_md_personality(&raid5_personality);
6451         register_md_personality(&raid4_personality);
6452         return 0;
6453 }
6454
6455 static void raid5_exit(void)
6456 {
6457         unregister_md_personality(&raid6_personality);
6458         unregister_md_personality(&raid5_personality);
6459         unregister_md_personality(&raid4_personality);
6460 }
6461
6462 module_init(raid5_init);
6463 module_exit(raid5_exit);
6464 MODULE_LICENSE("GPL");
6465 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6466 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6467 MODULE_ALIAS("md-raid5");
6468 MODULE_ALIAS("md-raid4");
6469 MODULE_ALIAS("md-level-5");
6470 MODULE_ALIAS("md-level-4");
6471 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6472 MODULE_ALIAS("md-raid6");
6473 MODULE_ALIAS("md-level-6");
6474
6475 /* This used to be two separate modules, they were: */
6476 MODULE_ALIAS("raid5");
6477 MODULE_ALIAS("raid6");