]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
b0bf81d084fd88108d53c845a6372aef5b6da696
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, raid5_get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663                         int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         struct r5conf *conf = sh->raid_conf;
759
760         if (conf->log)
761                 return false;
762         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764                 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770         struct stripe_head *head;
771         sector_t head_sector, tmp_sec;
772         int hash;
773         int dd_idx;
774
775         if (!stripe_can_batch(sh))
776                 return;
777         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778         tmp_sec = sh->sector;
779         if (!sector_div(tmp_sec, conf->chunk_sectors))
780                 return;
781         head_sector = sh->sector - STRIPE_SECTORS;
782
783         hash = stripe_hash_locks_hash(head_sector);
784         spin_lock_irq(conf->hash_locks + hash);
785         head = __find_stripe(conf, head_sector, conf->generation);
786         if (head && !atomic_inc_not_zero(&head->count)) {
787                 spin_lock(&conf->device_lock);
788                 if (!atomic_read(&head->count)) {
789                         if (!test_bit(STRIPE_HANDLE, &head->state))
790                                 atomic_inc(&conf->active_stripes);
791                         BUG_ON(list_empty(&head->lru) &&
792                                !test_bit(STRIPE_EXPANDING, &head->state));
793                         list_del_init(&head->lru);
794                         if (head->group) {
795                                 head->group->stripes_cnt--;
796                                 head->group = NULL;
797                         }
798                 }
799                 atomic_inc(&head->count);
800                 spin_unlock(&conf->device_lock);
801         }
802         spin_unlock_irq(conf->hash_locks + hash);
803
804         if (!head)
805                 return;
806         if (!stripe_can_batch(head))
807                 goto out;
808
809         lock_two_stripes(head, sh);
810         /* clear_batch_ready clear the flag */
811         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812                 goto unlock_out;
813
814         if (sh->batch_head)
815                 goto unlock_out;
816
817         dd_idx = 0;
818         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819                 dd_idx++;
820         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821                 goto unlock_out;
822
823         if (head->batch_head) {
824                 spin_lock(&head->batch_head->batch_lock);
825                 /* This batch list is already running */
826                 if (!stripe_can_batch(head)) {
827                         spin_unlock(&head->batch_head->batch_lock);
828                         goto unlock_out;
829                 }
830
831                 /*
832                  * at this point, head's BATCH_READY could be cleared, but we
833                  * can still add the stripe to batch list
834                  */
835                 list_add(&sh->batch_list, &head->batch_list);
836                 spin_unlock(&head->batch_head->batch_lock);
837
838                 sh->batch_head = head->batch_head;
839         } else {
840                 head->batch_head = head;
841                 sh->batch_head = head->batch_head;
842                 spin_lock(&head->batch_lock);
843                 list_add_tail(&sh->batch_list, &head->batch_list);
844                 spin_unlock(&head->batch_lock);
845         }
846
847         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848                 if (atomic_dec_return(&conf->preread_active_stripes)
849                     < IO_THRESHOLD)
850                         md_wakeup_thread(conf->mddev->thread);
851
852         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853                 int seq = sh->bm_seq;
854                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855                     sh->batch_head->bm_seq > seq)
856                         seq = sh->batch_head->bm_seq;
857                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858                 sh->batch_head->bm_seq = seq;
859         }
860
861         atomic_inc(&sh->count);
862 unlock_out:
863         unlock_two_stripes(head, sh);
864 out:
865         raid5_release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869  * in this stripe_head.
870  */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873         sector_t progress = conf->reshape_progress;
874         /* Need a memory barrier to make sure we see the value
875          * of conf->generation, or ->data_offset that was set before
876          * reshape_progress was updated.
877          */
878         smp_rmb();
879         if (progress == MaxSector)
880                 return 0;
881         if (sh->generation == conf->generation - 1)
882                 return 0;
883         /* We are in a reshape, and this is a new-generation stripe,
884          * so use new_data_offset.
885          */
886         return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi);
891 static void
892 raid5_end_write_request(struct bio *bi);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896         struct r5conf *conf = sh->raid_conf;
897         int i, disks = sh->disks;
898         struct stripe_head *head_sh = sh;
899
900         might_sleep();
901
902         if (r5l_write_stripe(conf->log, sh) == 0)
903                 return;
904         for (i = disks; i--; ) {
905                 int rw;
906                 int replace_only = 0;
907                 struct bio *bi, *rbi;
908                 struct md_rdev *rdev, *rrdev = NULL;
909
910                 sh = head_sh;
911                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
912                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
913                                 rw = WRITE_FUA;
914                         else
915                                 rw = WRITE;
916                         if (test_bit(R5_Discard, &sh->dev[i].flags))
917                                 rw |= REQ_DISCARD;
918                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
919                         rw = READ;
920                 else if (test_and_clear_bit(R5_WantReplace,
921                                             &sh->dev[i].flags)) {
922                         rw = WRITE;
923                         replace_only = 1;
924                 } else
925                         continue;
926                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
927                         rw |= REQ_SYNC;
928
929 again:
930                 bi = &sh->dev[i].req;
931                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
932
933                 rcu_read_lock();
934                 rrdev = rcu_dereference(conf->disks[i].replacement);
935                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
936                 rdev = rcu_dereference(conf->disks[i].rdev);
937                 if (!rdev) {
938                         rdev = rrdev;
939                         rrdev = NULL;
940                 }
941                 if (rw & WRITE) {
942                         if (replace_only)
943                                 rdev = NULL;
944                         if (rdev == rrdev)
945                                 /* We raced and saw duplicates */
946                                 rrdev = NULL;
947                 } else {
948                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
949                                 rdev = rrdev;
950                         rrdev = NULL;
951                 }
952
953                 if (rdev && test_bit(Faulty, &rdev->flags))
954                         rdev = NULL;
955                 if (rdev)
956                         atomic_inc(&rdev->nr_pending);
957                 if (rrdev && test_bit(Faulty, &rrdev->flags))
958                         rrdev = NULL;
959                 if (rrdev)
960                         atomic_inc(&rrdev->nr_pending);
961                 rcu_read_unlock();
962
963                 /* We have already checked bad blocks for reads.  Now
964                  * need to check for writes.  We never accept write errors
965                  * on the replacement, so we don't to check rrdev.
966                  */
967                 while ((rw & WRITE) && rdev &&
968                        test_bit(WriteErrorSeen, &rdev->flags)) {
969                         sector_t first_bad;
970                         int bad_sectors;
971                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
972                                               &first_bad, &bad_sectors);
973                         if (!bad)
974                                 break;
975
976                         if (bad < 0) {
977                                 set_bit(BlockedBadBlocks, &rdev->flags);
978                                 if (!conf->mddev->external &&
979                                     conf->mddev->flags) {
980                                         /* It is very unlikely, but we might
981                                          * still need to write out the
982                                          * bad block log - better give it
983                                          * a chance*/
984                                         md_check_recovery(conf->mddev);
985                                 }
986                                 /*
987                                  * Because md_wait_for_blocked_rdev
988                                  * will dec nr_pending, we must
989                                  * increment it first.
990                                  */
991                                 atomic_inc(&rdev->nr_pending);
992                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
993                         } else {
994                                 /* Acknowledged bad block - skip the write */
995                                 rdev_dec_pending(rdev, conf->mddev);
996                                 rdev = NULL;
997                         }
998                 }
999
1000                 if (rdev) {
1001                         if (s->syncing || s->expanding || s->expanded
1002                             || s->replacing)
1003                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1004
1005                         set_bit(STRIPE_IO_STARTED, &sh->state);
1006
1007                         bio_reset(bi);
1008                         bi->bi_bdev = rdev->bdev;
1009                         bi->bi_rw = rw;
1010                         bi->bi_end_io = (rw & WRITE)
1011                                 ? raid5_end_write_request
1012                                 : raid5_end_read_request;
1013                         bi->bi_private = sh;
1014
1015                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1016                                 __func__, (unsigned long long)sh->sector,
1017                                 bi->bi_rw, i);
1018                         atomic_inc(&sh->count);
1019                         if (sh != head_sh)
1020                                 atomic_inc(&head_sh->count);
1021                         if (use_new_offset(conf, sh))
1022                                 bi->bi_iter.bi_sector = (sh->sector
1023                                                  + rdev->new_data_offset);
1024                         else
1025                                 bi->bi_iter.bi_sector = (sh->sector
1026                                                  + rdev->data_offset);
1027                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028                                 bi->bi_rw |= REQ_NOMERGE;
1029
1030                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1033                         bi->bi_vcnt = 1;
1034                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035                         bi->bi_io_vec[0].bv_offset = 0;
1036                         bi->bi_iter.bi_size = STRIPE_SIZE;
1037                         /*
1038                          * If this is discard request, set bi_vcnt 0. We don't
1039                          * want to confuse SCSI because SCSI will replace payload
1040                          */
1041                         if (rw & REQ_DISCARD)
1042                                 bi->bi_vcnt = 0;
1043                         if (rrdev)
1044                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046                         if (conf->mddev->gendisk)
1047                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048                                                       bi, disk_devt(conf->mddev->gendisk),
1049                                                       sh->dev[i].sector);
1050                         generic_make_request(bi);
1051                 }
1052                 if (rrdev) {
1053                         if (s->syncing || s->expanding || s->expanded
1054                             || s->replacing)
1055                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057                         set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059                         bio_reset(rbi);
1060                         rbi->bi_bdev = rrdev->bdev;
1061                         rbi->bi_rw = rw;
1062                         BUG_ON(!(rw & WRITE));
1063                         rbi->bi_end_io = raid5_end_write_request;
1064                         rbi->bi_private = sh;
1065
1066                         pr_debug("%s: for %llu schedule op %ld on "
1067                                  "replacement disc %d\n",
1068                                 __func__, (unsigned long long)sh->sector,
1069                                 rbi->bi_rw, i);
1070                         atomic_inc(&sh->count);
1071                         if (sh != head_sh)
1072                                 atomic_inc(&head_sh->count);
1073                         if (use_new_offset(conf, sh))
1074                                 rbi->bi_iter.bi_sector = (sh->sector
1075                                                   + rrdev->new_data_offset);
1076                         else
1077                                 rbi->bi_iter.bi_sector = (sh->sector
1078                                                   + rrdev->data_offset);
1079                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1080                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1081                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1082                         rbi->bi_vcnt = 1;
1083                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1084                         rbi->bi_io_vec[0].bv_offset = 0;
1085                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1086                         /*
1087                          * If this is discard request, set bi_vcnt 0. We don't
1088                          * want to confuse SCSI because SCSI will replace payload
1089                          */
1090                         if (rw & REQ_DISCARD)
1091                                 rbi->bi_vcnt = 0;
1092                         if (conf->mddev->gendisk)
1093                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1094                                                       rbi, disk_devt(conf->mddev->gendisk),
1095                                                       sh->dev[i].sector);
1096                         generic_make_request(rbi);
1097                 }
1098                 if (!rdev && !rrdev) {
1099                         if (rw & WRITE)
1100                                 set_bit(STRIPE_DEGRADED, &sh->state);
1101                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1102                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1103                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1104                         set_bit(STRIPE_HANDLE, &sh->state);
1105                 }
1106
1107                 if (!head_sh->batch_head)
1108                         continue;
1109                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1110                                       batch_list);
1111                 if (sh != head_sh)
1112                         goto again;
1113         }
1114 }
1115
1116 static struct dma_async_tx_descriptor *
1117 async_copy_data(int frombio, struct bio *bio, struct page **page,
1118         sector_t sector, struct dma_async_tx_descriptor *tx,
1119         struct stripe_head *sh)
1120 {
1121         struct bio_vec bvl;
1122         struct bvec_iter iter;
1123         struct page *bio_page;
1124         int page_offset;
1125         struct async_submit_ctl submit;
1126         enum async_tx_flags flags = 0;
1127
1128         if (bio->bi_iter.bi_sector >= sector)
1129                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1130         else
1131                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1132
1133         if (frombio)
1134                 flags |= ASYNC_TX_FENCE;
1135         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1136
1137         bio_for_each_segment(bvl, bio, iter) {
1138                 int len = bvl.bv_len;
1139                 int clen;
1140                 int b_offset = 0;
1141
1142                 if (page_offset < 0) {
1143                         b_offset = -page_offset;
1144                         page_offset += b_offset;
1145                         len -= b_offset;
1146                 }
1147
1148                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1149                         clen = STRIPE_SIZE - page_offset;
1150                 else
1151                         clen = len;
1152
1153                 if (clen > 0) {
1154                         b_offset += bvl.bv_offset;
1155                         bio_page = bvl.bv_page;
1156                         if (frombio) {
1157                                 if (sh->raid_conf->skip_copy &&
1158                                     b_offset == 0 && page_offset == 0 &&
1159                                     clen == STRIPE_SIZE)
1160                                         *page = bio_page;
1161                                 else
1162                                         tx = async_memcpy(*page, bio_page, page_offset,
1163                                                   b_offset, clen, &submit);
1164                         } else
1165                                 tx = async_memcpy(bio_page, *page, b_offset,
1166                                                   page_offset, clen, &submit);
1167                 }
1168                 /* chain the operations */
1169                 submit.depend_tx = tx;
1170
1171                 if (clen < len) /* hit end of page */
1172                         break;
1173                 page_offset +=  len;
1174         }
1175
1176         return tx;
1177 }
1178
1179 static void ops_complete_biofill(void *stripe_head_ref)
1180 {
1181         struct stripe_head *sh = stripe_head_ref;
1182         struct bio_list return_bi = BIO_EMPTY_LIST;
1183         int i;
1184
1185         pr_debug("%s: stripe %llu\n", __func__,
1186                 (unsigned long long)sh->sector);
1187
1188         /* clear completed biofills */
1189         for (i = sh->disks; i--; ) {
1190                 struct r5dev *dev = &sh->dev[i];
1191
1192                 /* acknowledge completion of a biofill operation */
1193                 /* and check if we need to reply to a read request,
1194                  * new R5_Wantfill requests are held off until
1195                  * !STRIPE_BIOFILL_RUN
1196                  */
1197                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1198                         struct bio *rbi, *rbi2;
1199
1200                         BUG_ON(!dev->read);
1201                         rbi = dev->read;
1202                         dev->read = NULL;
1203                         while (rbi && rbi->bi_iter.bi_sector <
1204                                 dev->sector + STRIPE_SECTORS) {
1205                                 rbi2 = r5_next_bio(rbi, dev->sector);
1206                                 if (!raid5_dec_bi_active_stripes(rbi))
1207                                         bio_list_add(&return_bi, rbi);
1208                                 rbi = rbi2;
1209                         }
1210                 }
1211         }
1212         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214         return_io(&return_bi);
1215
1216         set_bit(STRIPE_HANDLE, &sh->state);
1217         raid5_release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222         struct dma_async_tx_descriptor *tx = NULL;
1223         struct async_submit_ctl submit;
1224         int i;
1225
1226         BUG_ON(sh->batch_head);
1227         pr_debug("%s: stripe %llu\n", __func__,
1228                 (unsigned long long)sh->sector);
1229
1230         for (i = sh->disks; i--; ) {
1231                 struct r5dev *dev = &sh->dev[i];
1232                 if (test_bit(R5_Wantfill, &dev->flags)) {
1233                         struct bio *rbi;
1234                         spin_lock_irq(&sh->stripe_lock);
1235                         dev->read = rbi = dev->toread;
1236                         dev->toread = NULL;
1237                         spin_unlock_irq(&sh->stripe_lock);
1238                         while (rbi && rbi->bi_iter.bi_sector <
1239                                 dev->sector + STRIPE_SECTORS) {
1240                                 tx = async_copy_data(0, rbi, &dev->page,
1241                                         dev->sector, tx, sh);
1242                                 rbi = r5_next_bio(rbi, dev->sector);
1243                         }
1244                 }
1245         }
1246
1247         atomic_inc(&sh->count);
1248         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249         async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254         struct r5dev *tgt;
1255
1256         if (target < 0)
1257                 return;
1258
1259         tgt = &sh->dev[target];
1260         set_bit(R5_UPTODATE, &tgt->flags);
1261         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262         clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267         struct stripe_head *sh = stripe_head_ref;
1268
1269         pr_debug("%s: stripe %llu\n", __func__,
1270                 (unsigned long long)sh->sector);
1271
1272         /* mark the computed target(s) as uptodate */
1273         mark_target_uptodate(sh, sh->ops.target);
1274         mark_target_uptodate(sh, sh->ops.target2);
1275
1276         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277         if (sh->check_state == check_state_compute_run)
1278                 sh->check_state = check_state_compute_result;
1279         set_bit(STRIPE_HANDLE, &sh->state);
1280         raid5_release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285                                  struct raid5_percpu *percpu, int i)
1286 {
1287         void *addr;
1288
1289         addr = flex_array_get(percpu->scribble, i);
1290         return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296         void *addr;
1297
1298         addr = flex_array_get(percpu->scribble, i);
1299         return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305         int disks = sh->disks;
1306         struct page **xor_srcs = to_addr_page(percpu, 0);
1307         int target = sh->ops.target;
1308         struct r5dev *tgt = &sh->dev[target];
1309         struct page *xor_dest = tgt->page;
1310         int count = 0;
1311         struct dma_async_tx_descriptor *tx;
1312         struct async_submit_ctl submit;
1313         int i;
1314
1315         BUG_ON(sh->batch_head);
1316
1317         pr_debug("%s: stripe %llu block: %d\n",
1318                 __func__, (unsigned long long)sh->sector, target);
1319         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321         for (i = disks; i--; )
1322                 if (i != target)
1323                         xor_srcs[count++] = sh->dev[i].page;
1324
1325         atomic_inc(&sh->count);
1326
1327         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329         if (unlikely(count == 1))
1330                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331         else
1332                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334         return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338  * @srcs - (struct page *) array of size sh->disks
1339  * @sh - stripe_head to parse
1340  *
1341  * Populates srcs in proper layout order for the stripe and returns the
1342  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1343  * destination buffer is recorded in srcs[count] and the Q destination
1344  * is recorded in srcs[count+1]].
1345  */
1346 static int set_syndrome_sources(struct page **srcs,
1347                                 struct stripe_head *sh,
1348                                 int srctype)
1349 {
1350         int disks = sh->disks;
1351         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352         int d0_idx = raid6_d0(sh);
1353         int count;
1354         int i;
1355
1356         for (i = 0; i < disks; i++)
1357                 srcs[i] = NULL;
1358
1359         count = 0;
1360         i = d0_idx;
1361         do {
1362                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363                 struct r5dev *dev = &sh->dev[i];
1364
1365                 if (i == sh->qd_idx || i == sh->pd_idx ||
1366                     (srctype == SYNDROME_SRC_ALL) ||
1367                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368                      test_bit(R5_Wantdrain, &dev->flags)) ||
1369                     (srctype == SYNDROME_SRC_WRITTEN &&
1370                      dev->written))
1371                         srcs[slot] = sh->dev[i].page;
1372                 i = raid6_next_disk(i, disks);
1373         } while (i != d0_idx);
1374
1375         return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381         int disks = sh->disks;
1382         struct page **blocks = to_addr_page(percpu, 0);
1383         int target;
1384         int qd_idx = sh->qd_idx;
1385         struct dma_async_tx_descriptor *tx;
1386         struct async_submit_ctl submit;
1387         struct r5dev *tgt;
1388         struct page *dest;
1389         int i;
1390         int count;
1391
1392         BUG_ON(sh->batch_head);
1393         if (sh->ops.target < 0)
1394                 target = sh->ops.target2;
1395         else if (sh->ops.target2 < 0)
1396                 target = sh->ops.target;
1397         else
1398                 /* we should only have one valid target */
1399                 BUG();
1400         BUG_ON(target < 0);
1401         pr_debug("%s: stripe %llu block: %d\n",
1402                 __func__, (unsigned long long)sh->sector, target);
1403
1404         tgt = &sh->dev[target];
1405         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406         dest = tgt->page;
1407
1408         atomic_inc(&sh->count);
1409
1410         if (target == qd_idx) {
1411                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412                 blocks[count] = NULL; /* regenerating p is not necessary */
1413                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415                                   ops_complete_compute, sh,
1416                                   to_addr_conv(sh, percpu, 0));
1417                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418         } else {
1419                 /* Compute any data- or p-drive using XOR */
1420                 count = 0;
1421                 for (i = disks; i-- ; ) {
1422                         if (i == target || i == qd_idx)
1423                                 continue;
1424                         blocks[count++] = sh->dev[i].page;
1425                 }
1426
1427                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428                                   NULL, ops_complete_compute, sh,
1429                                   to_addr_conv(sh, percpu, 0));
1430                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431         }
1432
1433         return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439         int i, count, disks = sh->disks;
1440         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441         int d0_idx = raid6_d0(sh);
1442         int faila = -1, failb = -1;
1443         int target = sh->ops.target;
1444         int target2 = sh->ops.target2;
1445         struct r5dev *tgt = &sh->dev[target];
1446         struct r5dev *tgt2 = &sh->dev[target2];
1447         struct dma_async_tx_descriptor *tx;
1448         struct page **blocks = to_addr_page(percpu, 0);
1449         struct async_submit_ctl submit;
1450
1451         BUG_ON(sh->batch_head);
1452         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453                  __func__, (unsigned long long)sh->sector, target, target2);
1454         BUG_ON(target < 0 || target2 < 0);
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458         /* we need to open-code set_syndrome_sources to handle the
1459          * slot number conversion for 'faila' and 'failb'
1460          */
1461         for (i = 0; i < disks ; i++)
1462                 blocks[i] = NULL;
1463         count = 0;
1464         i = d0_idx;
1465         do {
1466                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468                 blocks[slot] = sh->dev[i].page;
1469
1470                 if (i == target)
1471                         faila = slot;
1472                 if (i == target2)
1473                         failb = slot;
1474                 i = raid6_next_disk(i, disks);
1475         } while (i != d0_idx);
1476
1477         BUG_ON(faila == failb);
1478         if (failb < faila)
1479                 swap(faila, failb);
1480         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481                  __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483         atomic_inc(&sh->count);
1484
1485         if (failb == syndrome_disks+1) {
1486                 /* Q disk is one of the missing disks */
1487                 if (faila == syndrome_disks) {
1488                         /* Missing P+Q, just recompute */
1489                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490                                           ops_complete_compute, sh,
1491                                           to_addr_conv(sh, percpu, 0));
1492                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493                                                   STRIPE_SIZE, &submit);
1494                 } else {
1495                         struct page *dest;
1496                         int data_target;
1497                         int qd_idx = sh->qd_idx;
1498
1499                         /* Missing D+Q: recompute D from P, then recompute Q */
1500                         if (target == qd_idx)
1501                                 data_target = target2;
1502                         else
1503                                 data_target = target;
1504
1505                         count = 0;
1506                         for (i = disks; i-- ; ) {
1507                                 if (i == data_target || i == qd_idx)
1508                                         continue;
1509                                 blocks[count++] = sh->dev[i].page;
1510                         }
1511                         dest = sh->dev[data_target].page;
1512                         init_async_submit(&submit,
1513                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514                                           NULL, NULL, NULL,
1515                                           to_addr_conv(sh, percpu, 0));
1516                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517                                        &submit);
1518
1519                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521                                           ops_complete_compute, sh,
1522                                           to_addr_conv(sh, percpu, 0));
1523                         return async_gen_syndrome(blocks, 0, count+2,
1524                                                   STRIPE_SIZE, &submit);
1525                 }
1526         } else {
1527                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528                                   ops_complete_compute, sh,
1529                                   to_addr_conv(sh, percpu, 0));
1530                 if (failb == syndrome_disks) {
1531                         /* We're missing D+P. */
1532                         return async_raid6_datap_recov(syndrome_disks+2,
1533                                                        STRIPE_SIZE, faila,
1534                                                        blocks, &submit);
1535                 } else {
1536                         /* We're missing D+D. */
1537                         return async_raid6_2data_recov(syndrome_disks+2,
1538                                                        STRIPE_SIZE, faila, failb,
1539                                                        blocks, &submit);
1540                 }
1541         }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546         struct stripe_head *sh = stripe_head_ref;
1547
1548         pr_debug("%s: stripe %llu\n", __func__,
1549                 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554                 struct dma_async_tx_descriptor *tx)
1555 {
1556         int disks = sh->disks;
1557         struct page **xor_srcs = to_addr_page(percpu, 0);
1558         int count = 0, pd_idx = sh->pd_idx, i;
1559         struct async_submit_ctl submit;
1560
1561         /* existing parity data subtracted */
1562         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564         BUG_ON(sh->batch_head);
1565         pr_debug("%s: stripe %llu\n", __func__,
1566                 (unsigned long long)sh->sector);
1567
1568         for (i = disks; i--; ) {
1569                 struct r5dev *dev = &sh->dev[i];
1570                 /* Only process blocks that are known to be uptodate */
1571                 if (test_bit(R5_Wantdrain, &dev->flags))
1572                         xor_srcs[count++] = dev->page;
1573         }
1574
1575         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579         return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584                 struct dma_async_tx_descriptor *tx)
1585 {
1586         struct page **blocks = to_addr_page(percpu, 0);
1587         int count;
1588         struct async_submit_ctl submit;
1589
1590         pr_debug("%s: stripe %llu\n", __func__,
1591                 (unsigned long long)sh->sector);
1592
1593         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598
1599         return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605         int disks = sh->disks;
1606         int i;
1607         struct stripe_head *head_sh = sh;
1608
1609         pr_debug("%s: stripe %llu\n", __func__,
1610                 (unsigned long long)sh->sector);
1611
1612         for (i = disks; i--; ) {
1613                 struct r5dev *dev;
1614                 struct bio *chosen;
1615
1616                 sh = head_sh;
1617                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618                         struct bio *wbi;
1619
1620 again:
1621                         dev = &sh->dev[i];
1622                         spin_lock_irq(&sh->stripe_lock);
1623                         chosen = dev->towrite;
1624                         dev->towrite = NULL;
1625                         sh->overwrite_disks = 0;
1626                         BUG_ON(dev->written);
1627                         wbi = dev->written = chosen;
1628                         spin_unlock_irq(&sh->stripe_lock);
1629                         WARN_ON(dev->page != dev->orig_page);
1630
1631                         while (wbi && wbi->bi_iter.bi_sector <
1632                                 dev->sector + STRIPE_SECTORS) {
1633                                 if (wbi->bi_rw & REQ_FUA)
1634                                         set_bit(R5_WantFUA, &dev->flags);
1635                                 if (wbi->bi_rw & REQ_SYNC)
1636                                         set_bit(R5_SyncIO, &dev->flags);
1637                                 if (wbi->bi_rw & REQ_DISCARD)
1638                                         set_bit(R5_Discard, &dev->flags);
1639                                 else {
1640                                         tx = async_copy_data(1, wbi, &dev->page,
1641                                                 dev->sector, tx, sh);
1642                                         if (dev->page != dev->orig_page) {
1643                                                 set_bit(R5_SkipCopy, &dev->flags);
1644                                                 clear_bit(R5_UPTODATE, &dev->flags);
1645                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1646                                         }
1647                                 }
1648                                 wbi = r5_next_bio(wbi, dev->sector);
1649                         }
1650
1651                         if (head_sh->batch_head) {
1652                                 sh = list_first_entry(&sh->batch_list,
1653                                                       struct stripe_head,
1654                                                       batch_list);
1655                                 if (sh == head_sh)
1656                                         continue;
1657                                 goto again;
1658                         }
1659                 }
1660         }
1661
1662         return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667         struct stripe_head *sh = stripe_head_ref;
1668         int disks = sh->disks;
1669         int pd_idx = sh->pd_idx;
1670         int qd_idx = sh->qd_idx;
1671         int i;
1672         bool fua = false, sync = false, discard = false;
1673
1674         pr_debug("%s: stripe %llu\n", __func__,
1675                 (unsigned long long)sh->sector);
1676
1677         for (i = disks; i--; ) {
1678                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681         }
1682
1683         for (i = disks; i--; ) {
1684                 struct r5dev *dev = &sh->dev[i];
1685
1686                 if (dev->written || i == pd_idx || i == qd_idx) {
1687                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688                                 set_bit(R5_UPTODATE, &dev->flags);
1689                         if (fua)
1690                                 set_bit(R5_WantFUA, &dev->flags);
1691                         if (sync)
1692                                 set_bit(R5_SyncIO, &dev->flags);
1693                 }
1694         }
1695
1696         if (sh->reconstruct_state == reconstruct_state_drain_run)
1697                 sh->reconstruct_state = reconstruct_state_drain_result;
1698         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700         else {
1701                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702                 sh->reconstruct_state = reconstruct_state_result;
1703         }
1704
1705         set_bit(STRIPE_HANDLE, &sh->state);
1706         raid5_release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711                      struct dma_async_tx_descriptor *tx)
1712 {
1713         int disks = sh->disks;
1714         struct page **xor_srcs;
1715         struct async_submit_ctl submit;
1716         int count, pd_idx = sh->pd_idx, i;
1717         struct page *xor_dest;
1718         int prexor = 0;
1719         unsigned long flags;
1720         int j = 0;
1721         struct stripe_head *head_sh = sh;
1722         int last_stripe;
1723
1724         pr_debug("%s: stripe %llu\n", __func__,
1725                 (unsigned long long)sh->sector);
1726
1727         for (i = 0; i < sh->disks; i++) {
1728                 if (pd_idx == i)
1729                         continue;
1730                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731                         break;
1732         }
1733         if (i >= sh->disks) {
1734                 atomic_inc(&sh->count);
1735                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736                 ops_complete_reconstruct(sh);
1737                 return;
1738         }
1739 again:
1740         count = 0;
1741         xor_srcs = to_addr_page(percpu, j);
1742         /* check if prexor is active which means only process blocks
1743          * that are part of a read-modify-write (written)
1744          */
1745         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746                 prexor = 1;
1747                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748                 for (i = disks; i--; ) {
1749                         struct r5dev *dev = &sh->dev[i];
1750                         if (head_sh->dev[i].written)
1751                                 xor_srcs[count++] = dev->page;
1752                 }
1753         } else {
1754                 xor_dest = sh->dev[pd_idx].page;
1755                 for (i = disks; i--; ) {
1756                         struct r5dev *dev = &sh->dev[i];
1757                         if (i != pd_idx)
1758                                 xor_srcs[count++] = dev->page;
1759                 }
1760         }
1761
1762         /* 1/ if we prexor'd then the dest is reused as a source
1763          * 2/ if we did not prexor then we are redoing the parity
1764          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765          * for the synchronous xor case
1766          */
1767         last_stripe = !head_sh->batch_head ||
1768                 list_first_entry(&sh->batch_list,
1769                                  struct stripe_head, batch_list) == head_sh;
1770         if (last_stripe) {
1771                 flags = ASYNC_TX_ACK |
1772                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774                 atomic_inc(&head_sh->count);
1775                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776                                   to_addr_conv(sh, percpu, j));
1777         } else {
1778                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779                 init_async_submit(&submit, flags, tx, NULL, NULL,
1780                                   to_addr_conv(sh, percpu, j));
1781         }
1782
1783         if (unlikely(count == 1))
1784                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785         else
1786                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787         if (!last_stripe) {
1788                 j++;
1789                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790                                       batch_list);
1791                 goto again;
1792         }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797                      struct dma_async_tx_descriptor *tx)
1798 {
1799         struct async_submit_ctl submit;
1800         struct page **blocks;
1801         int count, i, j = 0;
1802         struct stripe_head *head_sh = sh;
1803         int last_stripe;
1804         int synflags;
1805         unsigned long txflags;
1806
1807         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809         for (i = 0; i < sh->disks; i++) {
1810                 if (sh->pd_idx == i || sh->qd_idx == i)
1811                         continue;
1812                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813                         break;
1814         }
1815         if (i >= sh->disks) {
1816                 atomic_inc(&sh->count);
1817                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819                 ops_complete_reconstruct(sh);
1820                 return;
1821         }
1822
1823 again:
1824         blocks = to_addr_page(percpu, j);
1825
1826         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827                 synflags = SYNDROME_SRC_WRITTEN;
1828                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829         } else {
1830                 synflags = SYNDROME_SRC_ALL;
1831                 txflags = ASYNC_TX_ACK;
1832         }
1833
1834         count = set_syndrome_sources(blocks, sh, synflags);
1835         last_stripe = !head_sh->batch_head ||
1836                 list_first_entry(&sh->batch_list,
1837                                  struct stripe_head, batch_list) == head_sh;
1838
1839         if (last_stripe) {
1840                 atomic_inc(&head_sh->count);
1841                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842                                   head_sh, to_addr_conv(sh, percpu, j));
1843         } else
1844                 init_async_submit(&submit, 0, tx, NULL, NULL,
1845                                   to_addr_conv(sh, percpu, j));
1846         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847         if (!last_stripe) {
1848                 j++;
1849                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850                                       batch_list);
1851                 goto again;
1852         }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857         struct stripe_head *sh = stripe_head_ref;
1858
1859         pr_debug("%s: stripe %llu\n", __func__,
1860                 (unsigned long long)sh->sector);
1861
1862         sh->check_state = check_state_check_result;
1863         set_bit(STRIPE_HANDLE, &sh->state);
1864         raid5_release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869         int disks = sh->disks;
1870         int pd_idx = sh->pd_idx;
1871         int qd_idx = sh->qd_idx;
1872         struct page *xor_dest;
1873         struct page **xor_srcs = to_addr_page(percpu, 0);
1874         struct dma_async_tx_descriptor *tx;
1875         struct async_submit_ctl submit;
1876         int count;
1877         int i;
1878
1879         pr_debug("%s: stripe %llu\n", __func__,
1880                 (unsigned long long)sh->sector);
1881
1882         BUG_ON(sh->batch_head);
1883         count = 0;
1884         xor_dest = sh->dev[pd_idx].page;
1885         xor_srcs[count++] = xor_dest;
1886         for (i = disks; i--; ) {
1887                 if (i == pd_idx || i == qd_idx)
1888                         continue;
1889                 xor_srcs[count++] = sh->dev[i].page;
1890         }
1891
1892         init_async_submit(&submit, 0, NULL, NULL, NULL,
1893                           to_addr_conv(sh, percpu, 0));
1894         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895                            &sh->ops.zero_sum_result, &submit);
1896
1897         atomic_inc(&sh->count);
1898         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899         tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904         struct page **srcs = to_addr_page(percpu, 0);
1905         struct async_submit_ctl submit;
1906         int count;
1907
1908         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909                 (unsigned long long)sh->sector, checkp);
1910
1911         BUG_ON(sh->batch_head);
1912         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913         if (!checkp)
1914                 srcs[count] = NULL;
1915
1916         atomic_inc(&sh->count);
1917         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918                           sh, to_addr_conv(sh, percpu, 0));
1919         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925         int overlap_clear = 0, i, disks = sh->disks;
1926         struct dma_async_tx_descriptor *tx = NULL;
1927         struct r5conf *conf = sh->raid_conf;
1928         int level = conf->level;
1929         struct raid5_percpu *percpu;
1930         unsigned long cpu;
1931
1932         cpu = get_cpu();
1933         percpu = per_cpu_ptr(conf->percpu, cpu);
1934         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935                 ops_run_biofill(sh);
1936                 overlap_clear++;
1937         }
1938
1939         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940                 if (level < 6)
1941                         tx = ops_run_compute5(sh, percpu);
1942                 else {
1943                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944                                 tx = ops_run_compute6_1(sh, percpu);
1945                         else
1946                                 tx = ops_run_compute6_2(sh, percpu);
1947                 }
1948                 /* terminate the chain if reconstruct is not set to be run */
1949                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950                         async_tx_ack(tx);
1951         }
1952
1953         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954                 if (level < 6)
1955                         tx = ops_run_prexor5(sh, percpu, tx);
1956                 else
1957                         tx = ops_run_prexor6(sh, percpu, tx);
1958         }
1959
1960         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961                 tx = ops_run_biodrain(sh, tx);
1962                 overlap_clear++;
1963         }
1964
1965         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966                 if (level < 6)
1967                         ops_run_reconstruct5(sh, percpu, tx);
1968                 else
1969                         ops_run_reconstruct6(sh, percpu, tx);
1970         }
1971
1972         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973                 if (sh->check_state == check_state_run)
1974                         ops_run_check_p(sh, percpu);
1975                 else if (sh->check_state == check_state_run_q)
1976                         ops_run_check_pq(sh, percpu, 0);
1977                 else if (sh->check_state == check_state_run_pq)
1978                         ops_run_check_pq(sh, percpu, 1);
1979                 else
1980                         BUG();
1981         }
1982
1983         if (overlap_clear && !sh->batch_head)
1984                 for (i = disks; i--; ) {
1985                         struct r5dev *dev = &sh->dev[i];
1986                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987                                 wake_up(&sh->raid_conf->wait_for_overlap);
1988                 }
1989         put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994         struct stripe_head *sh;
1995
1996         sh = kmem_cache_zalloc(sc, gfp);
1997         if (sh) {
1998                 spin_lock_init(&sh->stripe_lock);
1999                 spin_lock_init(&sh->batch_lock);
2000                 INIT_LIST_HEAD(&sh->batch_list);
2001                 INIT_LIST_HEAD(&sh->lru);
2002                 atomic_set(&sh->count, 1);
2003         }
2004         return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008         struct stripe_head *sh;
2009
2010         sh = alloc_stripe(conf->slab_cache, gfp);
2011         if (!sh)
2012                 return 0;
2013
2014         sh->raid_conf = conf;
2015
2016         if (grow_buffers(sh, gfp)) {
2017                 shrink_buffers(sh);
2018                 kmem_cache_free(conf->slab_cache, sh);
2019                 return 0;
2020         }
2021         sh->hash_lock_index =
2022                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023         /* we just created an active stripe so... */
2024         atomic_inc(&conf->active_stripes);
2025
2026         raid5_release_stripe(sh);
2027         conf->max_nr_stripes++;
2028         return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033         struct kmem_cache *sc;
2034         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036         if (conf->mddev->gendisk)
2037                 sprintf(conf->cache_name[0],
2038                         "raid%d-%s", conf->level, mdname(conf->mddev));
2039         else
2040                 sprintf(conf->cache_name[0],
2041                         "raid%d-%p", conf->level, conf->mddev);
2042         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044         conf->active_name = 0;
2045         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047                                0, 0, NULL);
2048         if (!sc)
2049                 return 1;
2050         conf->slab_cache = sc;
2051         conf->pool_size = devs;
2052         while (num--)
2053                 if (!grow_one_stripe(conf, GFP_KERNEL))
2054                         return 1;
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * scribble_len - return the required size of the scribble region
2061  * @num - total number of disks in the array
2062  *
2063  * The size must be enough to contain:
2064  * 1/ a struct page pointer for each device in the array +2
2065  * 2/ room to convert each entry in (1) to its corresponding dma
2066  *    (dma_map_page()) or page (page_address()) address.
2067  *
2068  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069  * calculate over all devices (not just the data blocks), using zeros in place
2070  * of the P and Q blocks.
2071  */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074         struct flex_array *ret;
2075         size_t len;
2076
2077         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078         ret = flex_array_alloc(len, cnt, flags);
2079         if (!ret)
2080                 return NULL;
2081         /* always prealloc all elements, so no locking is required */
2082         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083                 flex_array_free(ret);
2084                 return NULL;
2085         }
2086         return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091         unsigned long cpu;
2092         int err = 0;
2093
2094         mddev_suspend(conf->mddev);
2095         get_online_cpus();
2096         for_each_present_cpu(cpu) {
2097                 struct raid5_percpu *percpu;
2098                 struct flex_array *scribble;
2099
2100                 percpu = per_cpu_ptr(conf->percpu, cpu);
2101                 scribble = scribble_alloc(new_disks,
2102                                           new_sectors / STRIPE_SECTORS,
2103                                           GFP_NOIO);
2104
2105                 if (scribble) {
2106                         flex_array_free(percpu->scribble);
2107                         percpu->scribble = scribble;
2108                 } else {
2109                         err = -ENOMEM;
2110                         break;
2111                 }
2112         }
2113         put_online_cpus();
2114         mddev_resume(conf->mddev);
2115         return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120         /* Make all the stripes able to hold 'newsize' devices.
2121          * New slots in each stripe get 'page' set to a new page.
2122          *
2123          * This happens in stages:
2124          * 1/ create a new kmem_cache and allocate the required number of
2125          *    stripe_heads.
2126          * 2/ gather all the old stripe_heads and transfer the pages across
2127          *    to the new stripe_heads.  This will have the side effect of
2128          *    freezing the array as once all stripe_heads have been collected,
2129          *    no IO will be possible.  Old stripe heads are freed once their
2130          *    pages have been transferred over, and the old kmem_cache is
2131          *    freed when all stripes are done.
2132          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2133          *    we simple return a failre status - no need to clean anything up.
2134          * 4/ allocate new pages for the new slots in the new stripe_heads.
2135          *    If this fails, we don't bother trying the shrink the
2136          *    stripe_heads down again, we just leave them as they are.
2137          *    As each stripe_head is processed the new one is released into
2138          *    active service.
2139          *
2140          * Once step2 is started, we cannot afford to wait for a write,
2141          * so we use GFP_NOIO allocations.
2142          */
2143         struct stripe_head *osh, *nsh;
2144         LIST_HEAD(newstripes);
2145         struct disk_info *ndisks;
2146         int err;
2147         struct kmem_cache *sc;
2148         int i;
2149         int hash, cnt;
2150
2151         if (newsize <= conf->pool_size)
2152                 return 0; /* never bother to shrink */
2153
2154         err = md_allow_write(conf->mddev);
2155         if (err)
2156                 return err;
2157
2158         /* Step 1 */
2159         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161                                0, 0, NULL);
2162         if (!sc)
2163                 return -ENOMEM;
2164
2165         /* Need to ensure auto-resizing doesn't interfere */
2166         mutex_lock(&conf->cache_size_mutex);
2167
2168         for (i = conf->max_nr_stripes; i; i--) {
2169                 nsh = alloc_stripe(sc, GFP_KERNEL);
2170                 if (!nsh)
2171                         break;
2172
2173                 nsh->raid_conf = conf;
2174                 list_add(&nsh->lru, &newstripes);
2175         }
2176         if (i) {
2177                 /* didn't get enough, give up */
2178                 while (!list_empty(&newstripes)) {
2179                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180                         list_del(&nsh->lru);
2181                         kmem_cache_free(sc, nsh);
2182                 }
2183                 kmem_cache_destroy(sc);
2184                 mutex_unlock(&conf->cache_size_mutex);
2185                 return -ENOMEM;
2186         }
2187         /* Step 2 - Must use GFP_NOIO now.
2188          * OK, we have enough stripes, start collecting inactive
2189          * stripes and copying them over
2190          */
2191         hash = 0;
2192         cnt = 0;
2193         list_for_each_entry(nsh, &newstripes, lru) {
2194                 lock_device_hash_lock(conf, hash);
2195                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196                                     !list_empty(conf->inactive_list + hash),
2197                                     unlock_device_hash_lock(conf, hash),
2198                                     lock_device_hash_lock(conf, hash));
2199                 osh = get_free_stripe(conf, hash);
2200                 unlock_device_hash_lock(conf, hash);
2201
2202                 for(i=0; i<conf->pool_size; i++) {
2203                         nsh->dev[i].page = osh->dev[i].page;
2204                         nsh->dev[i].orig_page = osh->dev[i].page;
2205                 }
2206                 nsh->hash_lock_index = hash;
2207                 kmem_cache_free(conf->slab_cache, osh);
2208                 cnt++;
2209                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211                         hash++;
2212                         cnt = 0;
2213                 }
2214         }
2215         kmem_cache_destroy(conf->slab_cache);
2216
2217         /* Step 3.
2218          * At this point, we are holding all the stripes so the array
2219          * is completely stalled, so now is a good time to resize
2220          * conf->disks and the scribble region
2221          */
2222         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223         if (ndisks) {
2224                 for (i=0; i<conf->raid_disks; i++)
2225                         ndisks[i] = conf->disks[i];
2226                 kfree(conf->disks);
2227                 conf->disks = ndisks;
2228         } else
2229                 err = -ENOMEM;
2230
2231         mutex_unlock(&conf->cache_size_mutex);
2232         /* Step 4, return new stripes to service */
2233         while(!list_empty(&newstripes)) {
2234                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235                 list_del_init(&nsh->lru);
2236
2237                 for (i=conf->raid_disks; i < newsize; i++)
2238                         if (nsh->dev[i].page == NULL) {
2239                                 struct page *p = alloc_page(GFP_NOIO);
2240                                 nsh->dev[i].page = p;
2241                                 nsh->dev[i].orig_page = p;
2242                                 if (!p)
2243                                         err = -ENOMEM;
2244                         }
2245                 raid5_release_stripe(nsh);
2246         }
2247         /* critical section pass, GFP_NOIO no longer needed */
2248
2249         conf->slab_cache = sc;
2250         conf->active_name = 1-conf->active_name;
2251         if (!err)
2252                 conf->pool_size = newsize;
2253         return err;
2254 }
2255
2256 static int drop_one_stripe(struct r5conf *conf)
2257 {
2258         struct stripe_head *sh;
2259         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2260
2261         spin_lock_irq(conf->hash_locks + hash);
2262         sh = get_free_stripe(conf, hash);
2263         spin_unlock_irq(conf->hash_locks + hash);
2264         if (!sh)
2265                 return 0;
2266         BUG_ON(atomic_read(&sh->count));
2267         shrink_buffers(sh);
2268         kmem_cache_free(conf->slab_cache, sh);
2269         atomic_dec(&conf->active_stripes);
2270         conf->max_nr_stripes--;
2271         return 1;
2272 }
2273
2274 static void shrink_stripes(struct r5conf *conf)
2275 {
2276         while (conf->max_nr_stripes &&
2277                drop_one_stripe(conf))
2278                 ;
2279
2280         kmem_cache_destroy(conf->slab_cache);
2281         conf->slab_cache = NULL;
2282 }
2283
2284 static void raid5_end_read_request(struct bio * bi)
2285 {
2286         struct stripe_head *sh = bi->bi_private;
2287         struct r5conf *conf = sh->raid_conf;
2288         int disks = sh->disks, i;
2289         char b[BDEVNAME_SIZE];
2290         struct md_rdev *rdev = NULL;
2291         sector_t s;
2292
2293         for (i=0 ; i<disks; i++)
2294                 if (bi == &sh->dev[i].req)
2295                         break;
2296
2297         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2298                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2299                 bi->bi_error);
2300         if (i == disks) {
2301                 BUG();
2302                 return;
2303         }
2304         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2305                 /* If replacement finished while this request was outstanding,
2306                  * 'replacement' might be NULL already.
2307                  * In that case it moved down to 'rdev'.
2308                  * rdev is not removed until all requests are finished.
2309                  */
2310                 rdev = conf->disks[i].replacement;
2311         if (!rdev)
2312                 rdev = conf->disks[i].rdev;
2313
2314         if (use_new_offset(conf, sh))
2315                 s = sh->sector + rdev->new_data_offset;
2316         else
2317                 s = sh->sector + rdev->data_offset;
2318         if (!bi->bi_error) {
2319                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2320                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2321                         /* Note that this cannot happen on a
2322                          * replacement device.  We just fail those on
2323                          * any error
2324                          */
2325                         printk_ratelimited(
2326                                 KERN_INFO
2327                                 "md/raid:%s: read error corrected"
2328                                 " (%lu sectors at %llu on %s)\n",
2329                                 mdname(conf->mddev), STRIPE_SECTORS,
2330                                 (unsigned long long)s,
2331                                 bdevname(rdev->bdev, b));
2332                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2333                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2334                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2335                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2336                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2337
2338                 if (atomic_read(&rdev->read_errors))
2339                         atomic_set(&rdev->read_errors, 0);
2340         } else {
2341                 const char *bdn = bdevname(rdev->bdev, b);
2342                 int retry = 0;
2343                 int set_bad = 0;
2344
2345                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2346                 atomic_inc(&rdev->read_errors);
2347                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2348                         printk_ratelimited(
2349                                 KERN_WARNING
2350                                 "md/raid:%s: read error on replacement device "
2351                                 "(sector %llu on %s).\n",
2352                                 mdname(conf->mddev),
2353                                 (unsigned long long)s,
2354                                 bdn);
2355                 else if (conf->mddev->degraded >= conf->max_degraded) {
2356                         set_bad = 1;
2357                         printk_ratelimited(
2358                                 KERN_WARNING
2359                                 "md/raid:%s: read error not correctable "
2360                                 "(sector %llu on %s).\n",
2361                                 mdname(conf->mddev),
2362                                 (unsigned long long)s,
2363                                 bdn);
2364                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2365                         /* Oh, no!!! */
2366                         set_bad = 1;
2367                         printk_ratelimited(
2368                                 KERN_WARNING
2369                                 "md/raid:%s: read error NOT corrected!! "
2370                                 "(sector %llu on %s).\n",
2371                                 mdname(conf->mddev),
2372                                 (unsigned long long)s,
2373                                 bdn);
2374                 } else if (atomic_read(&rdev->read_errors)
2375                          > conf->max_nr_stripes)
2376                         printk(KERN_WARNING
2377                                "md/raid:%s: Too many read errors, failing device %s.\n",
2378                                mdname(conf->mddev), bdn);
2379                 else
2380                         retry = 1;
2381                 if (set_bad && test_bit(In_sync, &rdev->flags)
2382                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2383                         retry = 1;
2384                 if (retry)
2385                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2386                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2387                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388                         } else
2389                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390                 else {
2391                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2392                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2393                         if (!(set_bad
2394                               && test_bit(In_sync, &rdev->flags)
2395                               && rdev_set_badblocks(
2396                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2397                                 md_error(conf->mddev, rdev);
2398                 }
2399         }
2400         rdev_dec_pending(rdev, conf->mddev);
2401         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2402         set_bit(STRIPE_HANDLE, &sh->state);
2403         raid5_release_stripe(sh);
2404 }
2405
2406 static void raid5_end_write_request(struct bio *bi)
2407 {
2408         struct stripe_head *sh = bi->bi_private;
2409         struct r5conf *conf = sh->raid_conf;
2410         int disks = sh->disks, i;
2411         struct md_rdev *uninitialized_var(rdev);
2412         sector_t first_bad;
2413         int bad_sectors;
2414         int replacement = 0;
2415
2416         for (i = 0 ; i < disks; i++) {
2417                 if (bi == &sh->dev[i].req) {
2418                         rdev = conf->disks[i].rdev;
2419                         break;
2420                 }
2421                 if (bi == &sh->dev[i].rreq) {
2422                         rdev = conf->disks[i].replacement;
2423                         if (rdev)
2424                                 replacement = 1;
2425                         else
2426                                 /* rdev was removed and 'replacement'
2427                                  * replaced it.  rdev is not removed
2428                                  * until all requests are finished.
2429                                  */
2430                                 rdev = conf->disks[i].rdev;
2431                         break;
2432                 }
2433         }
2434         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2435                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2436                 bi->bi_error);
2437         if (i == disks) {
2438                 BUG();
2439                 return;
2440         }
2441
2442         if (replacement) {
2443                 if (bi->bi_error)
2444                         md_error(conf->mddev, rdev);
2445                 else if (is_badblock(rdev, sh->sector,
2446                                      STRIPE_SECTORS,
2447                                      &first_bad, &bad_sectors))
2448                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2449         } else {
2450                 if (bi->bi_error) {
2451                         set_bit(STRIPE_DEGRADED, &sh->state);
2452                         set_bit(WriteErrorSeen, &rdev->flags);
2453                         set_bit(R5_WriteError, &sh->dev[i].flags);
2454                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2455                                 set_bit(MD_RECOVERY_NEEDED,
2456                                         &rdev->mddev->recovery);
2457                 } else if (is_badblock(rdev, sh->sector,
2458                                        STRIPE_SECTORS,
2459                                        &first_bad, &bad_sectors)) {
2460                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2461                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2462                                 /* That was a successful write so make
2463                                  * sure it looks like we already did
2464                                  * a re-write.
2465                                  */
2466                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2467                 }
2468         }
2469         rdev_dec_pending(rdev, conf->mddev);
2470
2471         if (sh->batch_head && bi->bi_error && !replacement)
2472                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2473
2474         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2475                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2476         set_bit(STRIPE_HANDLE, &sh->state);
2477         raid5_release_stripe(sh);
2478
2479         if (sh->batch_head && sh != sh->batch_head)
2480                 raid5_release_stripe(sh->batch_head);
2481 }
2482
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485         struct r5dev *dev = &sh->dev[i];
2486
2487         bio_init(&dev->req);
2488         dev->req.bi_io_vec = &dev->vec;
2489         dev->req.bi_max_vecs = 1;
2490         dev->req.bi_private = sh;
2491
2492         bio_init(&dev->rreq);
2493         dev->rreq.bi_io_vec = &dev->rvec;
2494         dev->rreq.bi_max_vecs = 1;
2495         dev->rreq.bi_private = sh;
2496
2497         dev->flags = 0;
2498         dev->sector = raid5_compute_blocknr(sh, i, previous);
2499 }
2500
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503         char b[BDEVNAME_SIZE];
2504         struct r5conf *conf = mddev->private;
2505         unsigned long flags;
2506         pr_debug("raid456: error called\n");
2507
2508         spin_lock_irqsave(&conf->device_lock, flags);
2509         clear_bit(In_sync, &rdev->flags);
2510         mddev->degraded = calc_degraded(conf);
2511         spin_unlock_irqrestore(&conf->device_lock, flags);
2512         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513
2514         set_bit(Blocked, &rdev->flags);
2515         set_bit(Faulty, &rdev->flags);
2516         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2518         printk(KERN_ALERT
2519                "md/raid:%s: Disk failure on %s, disabling device.\n"
2520                "md/raid:%s: Operation continuing on %d devices.\n",
2521                mdname(mddev),
2522                bdevname(rdev->bdev, b),
2523                mdname(mddev),
2524                conf->raid_disks - mddev->degraded);
2525 }
2526
2527 /*
2528  * Input: a 'big' sector number,
2529  * Output: index of the data and parity disk, and the sector # in them.
2530  */
2531 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2532                               int previous, int *dd_idx,
2533                               struct stripe_head *sh)
2534 {
2535         sector_t stripe, stripe2;
2536         sector_t chunk_number;
2537         unsigned int chunk_offset;
2538         int pd_idx, qd_idx;
2539         int ddf_layout = 0;
2540         sector_t new_sector;
2541         int algorithm = previous ? conf->prev_algo
2542                                  : conf->algorithm;
2543         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2544                                          : conf->chunk_sectors;
2545         int raid_disks = previous ? conf->previous_raid_disks
2546                                   : conf->raid_disks;
2547         int data_disks = raid_disks - conf->max_degraded;
2548
2549         /* First compute the information on this sector */
2550
2551         /*
2552          * Compute the chunk number and the sector offset inside the chunk
2553          */
2554         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2555         chunk_number = r_sector;
2556
2557         /*
2558          * Compute the stripe number
2559          */
2560         stripe = chunk_number;
2561         *dd_idx = sector_div(stripe, data_disks);
2562         stripe2 = stripe;
2563         /*
2564          * Select the parity disk based on the user selected algorithm.
2565          */
2566         pd_idx = qd_idx = -1;
2567         switch(conf->level) {
2568         case 4:
2569                 pd_idx = data_disks;
2570                 break;
2571         case 5:
2572                 switch (algorithm) {
2573                 case ALGORITHM_LEFT_ASYMMETRIC:
2574                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2575                         if (*dd_idx >= pd_idx)
2576                                 (*dd_idx)++;
2577                         break;
2578                 case ALGORITHM_RIGHT_ASYMMETRIC:
2579                         pd_idx = sector_div(stripe2, raid_disks);
2580                         if (*dd_idx >= pd_idx)
2581                                 (*dd_idx)++;
2582                         break;
2583                 case ALGORITHM_LEFT_SYMMETRIC:
2584                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2585                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586                         break;
2587                 case ALGORITHM_RIGHT_SYMMETRIC:
2588                         pd_idx = sector_div(stripe2, raid_disks);
2589                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2590                         break;
2591                 case ALGORITHM_PARITY_0:
2592                         pd_idx = 0;
2593                         (*dd_idx)++;
2594                         break;
2595                 case ALGORITHM_PARITY_N:
2596                         pd_idx = data_disks;
2597                         break;
2598                 default:
2599                         BUG();
2600                 }
2601                 break;
2602         case 6:
2603
2604                 switch (algorithm) {
2605                 case ALGORITHM_LEFT_ASYMMETRIC:
2606                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2607                         qd_idx = pd_idx + 1;
2608                         if (pd_idx == raid_disks-1) {
2609                                 (*dd_idx)++;    /* Q D D D P */
2610                                 qd_idx = 0;
2611                         } else if (*dd_idx >= pd_idx)
2612                                 (*dd_idx) += 2; /* D D P Q D */
2613                         break;
2614                 case ALGORITHM_RIGHT_ASYMMETRIC:
2615                         pd_idx = sector_div(stripe2, raid_disks);
2616                         qd_idx = pd_idx + 1;
2617                         if (pd_idx == raid_disks-1) {
2618                                 (*dd_idx)++;    /* Q D D D P */
2619                                 qd_idx = 0;
2620                         } else if (*dd_idx >= pd_idx)
2621                                 (*dd_idx) += 2; /* D D P Q D */
2622                         break;
2623                 case ALGORITHM_LEFT_SYMMETRIC:
2624                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625                         qd_idx = (pd_idx + 1) % raid_disks;
2626                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2627                         break;
2628                 case ALGORITHM_RIGHT_SYMMETRIC:
2629                         pd_idx = sector_div(stripe2, raid_disks);
2630                         qd_idx = (pd_idx + 1) % raid_disks;
2631                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632                         break;
2633
2634                 case ALGORITHM_PARITY_0:
2635                         pd_idx = 0;
2636                         qd_idx = 1;
2637                         (*dd_idx) += 2;
2638                         break;
2639                 case ALGORITHM_PARITY_N:
2640                         pd_idx = data_disks;
2641                         qd_idx = data_disks + 1;
2642                         break;
2643
2644                 case ALGORITHM_ROTATING_ZERO_RESTART:
2645                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2646                          * of blocks for computing Q is different.
2647                          */
2648                         pd_idx = sector_div(stripe2, raid_disks);
2649                         qd_idx = pd_idx + 1;
2650                         if (pd_idx == raid_disks-1) {
2651                                 (*dd_idx)++;    /* Q D D D P */
2652                                 qd_idx = 0;
2653                         } else if (*dd_idx >= pd_idx)
2654                                 (*dd_idx) += 2; /* D D P Q D */
2655                         ddf_layout = 1;
2656                         break;
2657
2658                 case ALGORITHM_ROTATING_N_RESTART:
2659                         /* Same a left_asymmetric, by first stripe is
2660                          * D D D P Q  rather than
2661                          * Q D D D P
2662                          */
2663                         stripe2 += 1;
2664                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665                         qd_idx = pd_idx + 1;
2666                         if (pd_idx == raid_disks-1) {
2667                                 (*dd_idx)++;    /* Q D D D P */
2668                                 qd_idx = 0;
2669                         } else if (*dd_idx >= pd_idx)
2670                                 (*dd_idx) += 2; /* D D P Q D */
2671                         ddf_layout = 1;
2672                         break;
2673
2674                 case ALGORITHM_ROTATING_N_CONTINUE:
2675                         /* Same as left_symmetric but Q is before P */
2676                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2677                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2678                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2679                         ddf_layout = 1;
2680                         break;
2681
2682                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2683                         /* RAID5 left_asymmetric, with Q on last device */
2684                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2685                         if (*dd_idx >= pd_idx)
2686                                 (*dd_idx)++;
2687                         qd_idx = raid_disks - 1;
2688                         break;
2689
2690                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2691                         pd_idx = sector_div(stripe2, raid_disks-1);
2692                         if (*dd_idx >= pd_idx)
2693                                 (*dd_idx)++;
2694                         qd_idx = raid_disks - 1;
2695                         break;
2696
2697                 case ALGORITHM_LEFT_SYMMETRIC_6:
2698                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2699                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2700                         qd_idx = raid_disks - 1;
2701                         break;
2702
2703                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2704                         pd_idx = sector_div(stripe2, raid_disks-1);
2705                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2706                         qd_idx = raid_disks - 1;
2707                         break;
2708
2709                 case ALGORITHM_PARITY_0_6:
2710                         pd_idx = 0;
2711                         (*dd_idx)++;
2712                         qd_idx = raid_disks - 1;
2713                         break;
2714
2715                 default:
2716                         BUG();
2717                 }
2718                 break;
2719         }
2720
2721         if (sh) {
2722                 sh->pd_idx = pd_idx;
2723                 sh->qd_idx = qd_idx;
2724                 sh->ddf_layout = ddf_layout;
2725         }
2726         /*
2727          * Finally, compute the new sector number
2728          */
2729         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2730         return new_sector;
2731 }
2732
2733 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2734 {
2735         struct r5conf *conf = sh->raid_conf;
2736         int raid_disks = sh->disks;
2737         int data_disks = raid_disks - conf->max_degraded;
2738         sector_t new_sector = sh->sector, check;
2739         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2740                                          : conf->chunk_sectors;
2741         int algorithm = previous ? conf->prev_algo
2742                                  : conf->algorithm;
2743         sector_t stripe;
2744         int chunk_offset;
2745         sector_t chunk_number;
2746         int dummy1, dd_idx = i;
2747         sector_t r_sector;
2748         struct stripe_head sh2;
2749
2750         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2751         stripe = new_sector;
2752
2753         if (i == sh->pd_idx)
2754                 return 0;
2755         switch(conf->level) {
2756         case 4: break;
2757         case 5:
2758                 switch (algorithm) {
2759                 case ALGORITHM_LEFT_ASYMMETRIC:
2760                 case ALGORITHM_RIGHT_ASYMMETRIC:
2761                         if (i > sh->pd_idx)
2762                                 i--;
2763                         break;
2764                 case ALGORITHM_LEFT_SYMMETRIC:
2765                 case ALGORITHM_RIGHT_SYMMETRIC:
2766                         if (i < sh->pd_idx)
2767                                 i += raid_disks;
2768                         i -= (sh->pd_idx + 1);
2769                         break;
2770                 case ALGORITHM_PARITY_0:
2771                         i -= 1;
2772                         break;
2773                 case ALGORITHM_PARITY_N:
2774                         break;
2775                 default:
2776                         BUG();
2777                 }
2778                 break;
2779         case 6:
2780                 if (i == sh->qd_idx)
2781                         return 0; /* It is the Q disk */
2782                 switch (algorithm) {
2783                 case ALGORITHM_LEFT_ASYMMETRIC:
2784                 case ALGORITHM_RIGHT_ASYMMETRIC:
2785                 case ALGORITHM_ROTATING_ZERO_RESTART:
2786                 case ALGORITHM_ROTATING_N_RESTART:
2787                         if (sh->pd_idx == raid_disks-1)
2788                                 i--;    /* Q D D D P */
2789                         else if (i > sh->pd_idx)
2790                                 i -= 2; /* D D P Q D */
2791                         break;
2792                 case ALGORITHM_LEFT_SYMMETRIC:
2793                 case ALGORITHM_RIGHT_SYMMETRIC:
2794                         if (sh->pd_idx == raid_disks-1)
2795                                 i--; /* Q D D D P */
2796                         else {
2797                                 /* D D P Q D */
2798                                 if (i < sh->pd_idx)
2799                                         i += raid_disks;
2800                                 i -= (sh->pd_idx + 2);
2801                         }
2802                         break;
2803                 case ALGORITHM_PARITY_0:
2804                         i -= 2;
2805                         break;
2806                 case ALGORITHM_PARITY_N:
2807                         break;
2808                 case ALGORITHM_ROTATING_N_CONTINUE:
2809                         /* Like left_symmetric, but P is before Q */
2810                         if (sh->pd_idx == 0)
2811                                 i--;    /* P D D D Q */
2812                         else {
2813                                 /* D D Q P D */
2814                                 if (i < sh->pd_idx)
2815                                         i += raid_disks;
2816                                 i -= (sh->pd_idx + 1);
2817                         }
2818                         break;
2819                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2820                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2821                         if (i > sh->pd_idx)
2822                                 i--;
2823                         break;
2824                 case ALGORITHM_LEFT_SYMMETRIC_6:
2825                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2826                         if (i < sh->pd_idx)
2827                                 i += data_disks + 1;
2828                         i -= (sh->pd_idx + 1);
2829                         break;
2830                 case ALGORITHM_PARITY_0_6:
2831                         i -= 1;
2832                         break;
2833                 default:
2834                         BUG();
2835                 }
2836                 break;
2837         }
2838
2839         chunk_number = stripe * data_disks + i;
2840         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2841
2842         check = raid5_compute_sector(conf, r_sector,
2843                                      previous, &dummy1, &sh2);
2844         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2845                 || sh2.qd_idx != sh->qd_idx) {
2846                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2847                        mdname(conf->mddev));
2848                 return 0;
2849         }
2850         return r_sector;
2851 }
2852
2853 static void
2854 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2855                          int rcw, int expand)
2856 {
2857         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2858         struct r5conf *conf = sh->raid_conf;
2859         int level = conf->level;
2860
2861         if (rcw) {
2862
2863                 for (i = disks; i--; ) {
2864                         struct r5dev *dev = &sh->dev[i];
2865
2866                         if (dev->towrite) {
2867                                 set_bit(R5_LOCKED, &dev->flags);
2868                                 set_bit(R5_Wantdrain, &dev->flags);
2869                                 if (!expand)
2870                                         clear_bit(R5_UPTODATE, &dev->flags);
2871                                 s->locked++;
2872                         }
2873                 }
2874                 /* if we are not expanding this is a proper write request, and
2875                  * there will be bios with new data to be drained into the
2876                  * stripe cache
2877                  */
2878                 if (!expand) {
2879                         if (!s->locked)
2880                                 /* False alarm, nothing to do */
2881                                 return;
2882                         sh->reconstruct_state = reconstruct_state_drain_run;
2883                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2884                 } else
2885                         sh->reconstruct_state = reconstruct_state_run;
2886
2887                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2888
2889                 if (s->locked + conf->max_degraded == disks)
2890                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2891                                 atomic_inc(&conf->pending_full_writes);
2892         } else {
2893                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2894                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2895                 BUG_ON(level == 6 &&
2896                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2897                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2898
2899                 for (i = disks; i--; ) {
2900                         struct r5dev *dev = &sh->dev[i];
2901                         if (i == pd_idx || i == qd_idx)
2902                                 continue;
2903
2904                         if (dev->towrite &&
2905                             (test_bit(R5_UPTODATE, &dev->flags) ||
2906                              test_bit(R5_Wantcompute, &dev->flags))) {
2907                                 set_bit(R5_Wantdrain, &dev->flags);
2908                                 set_bit(R5_LOCKED, &dev->flags);
2909                                 clear_bit(R5_UPTODATE, &dev->flags);
2910                                 s->locked++;
2911                         }
2912                 }
2913                 if (!s->locked)
2914                         /* False alarm - nothing to do */
2915                         return;
2916                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2917                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2918                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2919                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2920         }
2921
2922         /* keep the parity disk(s) locked while asynchronous operations
2923          * are in flight
2924          */
2925         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2926         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2927         s->locked++;
2928
2929         if (level == 6) {
2930                 int qd_idx = sh->qd_idx;
2931                 struct r5dev *dev = &sh->dev[qd_idx];
2932
2933                 set_bit(R5_LOCKED, &dev->flags);
2934                 clear_bit(R5_UPTODATE, &dev->flags);
2935                 s->locked++;
2936         }
2937
2938         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2939                 __func__, (unsigned long long)sh->sector,
2940                 s->locked, s->ops_request);
2941 }
2942
2943 /*
2944  * Each stripe/dev can have one or more bion attached.
2945  * toread/towrite point to the first in a chain.
2946  * The bi_next chain must be in order.
2947  */
2948 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2949                           int forwrite, int previous)
2950 {
2951         struct bio **bip;
2952         struct r5conf *conf = sh->raid_conf;
2953         int firstwrite=0;
2954
2955         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2956                 (unsigned long long)bi->bi_iter.bi_sector,
2957                 (unsigned long long)sh->sector);
2958
2959         /*
2960          * If several bio share a stripe. The bio bi_phys_segments acts as a
2961          * reference count to avoid race. The reference count should already be
2962          * increased before this function is called (for example, in
2963          * make_request()), so other bio sharing this stripe will not free the
2964          * stripe. If a stripe is owned by one stripe, the stripe lock will
2965          * protect it.
2966          */
2967         spin_lock_irq(&sh->stripe_lock);
2968         /* Don't allow new IO added to stripes in batch list */
2969         if (sh->batch_head)
2970                 goto overlap;
2971         if (forwrite) {
2972                 bip = &sh->dev[dd_idx].towrite;
2973                 if (*bip == NULL)
2974                         firstwrite = 1;
2975         } else
2976                 bip = &sh->dev[dd_idx].toread;
2977         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2978                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2979                         goto overlap;
2980                 bip = & (*bip)->bi_next;
2981         }
2982         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2983                 goto overlap;
2984
2985         if (!forwrite || previous)
2986                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2987
2988         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2989         if (*bip)
2990                 bi->bi_next = *bip;
2991         *bip = bi;
2992         raid5_inc_bi_active_stripes(bi);
2993
2994         if (forwrite) {
2995                 /* check if page is covered */
2996                 sector_t sector = sh->dev[dd_idx].sector;
2997                 for (bi=sh->dev[dd_idx].towrite;
2998                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2999                              bi && bi->bi_iter.bi_sector <= sector;
3000                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3001                         if (bio_end_sector(bi) >= sector)
3002                                 sector = bio_end_sector(bi);
3003                 }
3004                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3005                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3006                                 sh->overwrite_disks++;
3007         }
3008
3009         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3010                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3011                 (unsigned long long)sh->sector, dd_idx);
3012
3013         if (conf->mddev->bitmap && firstwrite) {
3014                 /* Cannot hold spinlock over bitmap_startwrite,
3015                  * but must ensure this isn't added to a batch until
3016                  * we have added to the bitmap and set bm_seq.
3017                  * So set STRIPE_BITMAP_PENDING to prevent
3018                  * batching.
3019                  * If multiple add_stripe_bio() calls race here they
3020                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3021                  * to complete "bitmap_startwrite" gets to set
3022                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3023                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3024                  * any more.
3025                  */
3026                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3027                 spin_unlock_irq(&sh->stripe_lock);
3028                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3029                                   STRIPE_SECTORS, 0);
3030                 spin_lock_irq(&sh->stripe_lock);
3031                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032                 if (!sh->batch_head) {
3033                         sh->bm_seq = conf->seq_flush+1;
3034                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3035                 }
3036         }
3037         spin_unlock_irq(&sh->stripe_lock);
3038
3039         if (stripe_can_batch(sh))
3040                 stripe_add_to_batch_list(conf, sh);
3041         return 1;
3042
3043  overlap:
3044         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3045         spin_unlock_irq(&sh->stripe_lock);
3046         return 0;
3047 }
3048
3049 static void end_reshape(struct r5conf *conf);
3050
3051 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3052                             struct stripe_head *sh)
3053 {
3054         int sectors_per_chunk =
3055                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3056         int dd_idx;
3057         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3058         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3059
3060         raid5_compute_sector(conf,
3061                              stripe * (disks - conf->max_degraded)
3062                              *sectors_per_chunk + chunk_offset,
3063                              previous,
3064                              &dd_idx, sh);
3065 }
3066
3067 static void
3068 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3069                                 struct stripe_head_state *s, int disks,
3070                                 struct bio_list *return_bi)
3071 {
3072         int i;
3073         BUG_ON(sh->batch_head);
3074         for (i = disks; i--; ) {
3075                 struct bio *bi;
3076                 int bitmap_end = 0;
3077
3078                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3079                         struct md_rdev *rdev;
3080                         rcu_read_lock();
3081                         rdev = rcu_dereference(conf->disks[i].rdev);
3082                         if (rdev && test_bit(In_sync, &rdev->flags))
3083                                 atomic_inc(&rdev->nr_pending);
3084                         else
3085                                 rdev = NULL;
3086                         rcu_read_unlock();
3087                         if (rdev) {
3088                                 if (!rdev_set_badblocks(
3089                                             rdev,
3090                                             sh->sector,
3091                                             STRIPE_SECTORS, 0))
3092                                         md_error(conf->mddev, rdev);
3093                                 rdev_dec_pending(rdev, conf->mddev);
3094                         }
3095                 }
3096                 spin_lock_irq(&sh->stripe_lock);
3097                 /* fail all writes first */
3098                 bi = sh->dev[i].towrite;
3099                 sh->dev[i].towrite = NULL;
3100                 sh->overwrite_disks = 0;
3101                 spin_unlock_irq(&sh->stripe_lock);
3102                 if (bi)
3103                         bitmap_end = 1;
3104
3105                 r5l_stripe_write_finished(sh);
3106
3107                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108                         wake_up(&conf->wait_for_overlap);
3109
3110                 while (bi && bi->bi_iter.bi_sector <
3111                         sh->dev[i].sector + STRIPE_SECTORS) {
3112                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3113
3114                         bi->bi_error = -EIO;
3115                         if (!raid5_dec_bi_active_stripes(bi)) {
3116                                 md_write_end(conf->mddev);
3117                                 bio_list_add(return_bi, bi);
3118                         }
3119                         bi = nextbi;
3120                 }
3121                 if (bitmap_end)
3122                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123                                 STRIPE_SECTORS, 0, 0);
3124                 bitmap_end = 0;
3125                 /* and fail all 'written' */
3126                 bi = sh->dev[i].written;
3127                 sh->dev[i].written = NULL;
3128                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3129                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3130                         sh->dev[i].page = sh->dev[i].orig_page;
3131                 }
3132
3133                 if (bi) bitmap_end = 1;
3134                 while (bi && bi->bi_iter.bi_sector <
3135                        sh->dev[i].sector + STRIPE_SECTORS) {
3136                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3137
3138                         bi->bi_error = -EIO;
3139                         if (!raid5_dec_bi_active_stripes(bi)) {
3140                                 md_write_end(conf->mddev);
3141                                 bio_list_add(return_bi, bi);
3142                         }
3143                         bi = bi2;
3144                 }
3145
3146                 /* fail any reads if this device is non-operational and
3147                  * the data has not reached the cache yet.
3148                  */
3149                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3150                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3151                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3152                         spin_lock_irq(&sh->stripe_lock);
3153                         bi = sh->dev[i].toread;
3154                         sh->dev[i].toread = NULL;
3155                         spin_unlock_irq(&sh->stripe_lock);
3156                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3157                                 wake_up(&conf->wait_for_overlap);
3158                         if (bi)
3159                                 s->to_read--;
3160                         while (bi && bi->bi_iter.bi_sector <
3161                                sh->dev[i].sector + STRIPE_SECTORS) {
3162                                 struct bio *nextbi =
3163                                         r5_next_bio(bi, sh->dev[i].sector);
3164
3165                                 bi->bi_error = -EIO;
3166                                 if (!raid5_dec_bi_active_stripes(bi))
3167                                         bio_list_add(return_bi, bi);
3168                                 bi = nextbi;
3169                         }
3170                 }
3171                 if (bitmap_end)
3172                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3173                                         STRIPE_SECTORS, 0, 0);
3174                 /* If we were in the middle of a write the parity block might
3175                  * still be locked - so just clear all R5_LOCKED flags
3176                  */
3177                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3178         }
3179         s->to_write = 0;
3180         s->written = 0;
3181
3182         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3183                 if (atomic_dec_and_test(&conf->pending_full_writes))
3184                         md_wakeup_thread(conf->mddev->thread);
3185 }
3186
3187 static void
3188 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3189                    struct stripe_head_state *s)
3190 {
3191         int abort = 0;
3192         int i;
3193
3194         BUG_ON(sh->batch_head);
3195         clear_bit(STRIPE_SYNCING, &sh->state);
3196         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3197                 wake_up(&conf->wait_for_overlap);
3198         s->syncing = 0;
3199         s->replacing = 0;
3200         /* There is nothing more to do for sync/check/repair.
3201          * Don't even need to abort as that is handled elsewhere
3202          * if needed, and not always wanted e.g. if there is a known
3203          * bad block here.
3204          * For recover/replace we need to record a bad block on all
3205          * non-sync devices, or abort the recovery
3206          */
3207         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3208                 /* During recovery devices cannot be removed, so
3209                  * locking and refcounting of rdevs is not needed
3210                  */
3211                 for (i = 0; i < conf->raid_disks; i++) {
3212                         struct md_rdev *rdev = conf->disks[i].rdev;
3213                         if (rdev
3214                             && !test_bit(Faulty, &rdev->flags)
3215                             && !test_bit(In_sync, &rdev->flags)
3216                             && !rdev_set_badblocks(rdev, sh->sector,
3217                                                    STRIPE_SECTORS, 0))
3218                                 abort = 1;
3219                         rdev = conf->disks[i].replacement;
3220                         if (rdev
3221                             && !test_bit(Faulty, &rdev->flags)
3222                             && !test_bit(In_sync, &rdev->flags)
3223                             && !rdev_set_badblocks(rdev, sh->sector,
3224                                                    STRIPE_SECTORS, 0))
3225                                 abort = 1;
3226                 }
3227                 if (abort)
3228                         conf->recovery_disabled =
3229                                 conf->mddev->recovery_disabled;
3230         }
3231         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3232 }
3233
3234 static int want_replace(struct stripe_head *sh, int disk_idx)
3235 {
3236         struct md_rdev *rdev;
3237         int rv = 0;
3238         /* Doing recovery so rcu locking not required */
3239         rdev = sh->raid_conf->disks[disk_idx].replacement;
3240         if (rdev
3241             && !test_bit(Faulty, &rdev->flags)
3242             && !test_bit(In_sync, &rdev->flags)
3243             && (rdev->recovery_offset <= sh->sector
3244                 || rdev->mddev->recovery_cp <= sh->sector))
3245                 rv = 1;
3246
3247         return rv;
3248 }
3249
3250 /* fetch_block - checks the given member device to see if its data needs
3251  * to be read or computed to satisfy a request.
3252  *
3253  * Returns 1 when no more member devices need to be checked, otherwise returns
3254  * 0 to tell the loop in handle_stripe_fill to continue
3255  */
3256
3257 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3258                            int disk_idx, int disks)
3259 {
3260         struct r5dev *dev = &sh->dev[disk_idx];
3261         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3262                                   &sh->dev[s->failed_num[1]] };
3263         int i;
3264
3265
3266         if (test_bit(R5_LOCKED, &dev->flags) ||
3267             test_bit(R5_UPTODATE, &dev->flags))
3268                 /* No point reading this as we already have it or have
3269                  * decided to get it.
3270                  */
3271                 return 0;
3272
3273         if (dev->toread ||
3274             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3275                 /* We need this block to directly satisfy a request */
3276                 return 1;
3277
3278         if (s->syncing || s->expanding ||
3279             (s->replacing && want_replace(sh, disk_idx)))
3280                 /* When syncing, or expanding we read everything.
3281                  * When replacing, we need the replaced block.
3282                  */
3283                 return 1;
3284
3285         if ((s->failed >= 1 && fdev[0]->toread) ||
3286             (s->failed >= 2 && fdev[1]->toread))
3287                 /* If we want to read from a failed device, then
3288                  * we need to actually read every other device.
3289                  */
3290                 return 1;
3291
3292         /* Sometimes neither read-modify-write nor reconstruct-write
3293          * cycles can work.  In those cases we read every block we
3294          * can.  Then the parity-update is certain to have enough to
3295          * work with.
3296          * This can only be a problem when we need to write something,
3297          * and some device has failed.  If either of those tests
3298          * fail we need look no further.
3299          */
3300         if (!s->failed || !s->to_write)
3301                 return 0;
3302
3303         if (test_bit(R5_Insync, &dev->flags) &&
3304             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3305                 /* Pre-reads at not permitted until after short delay
3306                  * to gather multiple requests.  However if this
3307                  * device is no Insync, the block could only be be computed
3308                  * and there is no need to delay that.
3309                  */
3310                 return 0;
3311
3312         for (i = 0; i < s->failed && i < 2; i++) {
3313                 if (fdev[i]->towrite &&
3314                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3315                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3316                         /* If we have a partial write to a failed
3317                          * device, then we will need to reconstruct
3318                          * the content of that device, so all other
3319                          * devices must be read.
3320                          */
3321                         return 1;
3322         }
3323
3324         /* If we are forced to do a reconstruct-write, either because
3325          * the current RAID6 implementation only supports that, or
3326          * or because parity cannot be trusted and we are currently
3327          * recovering it, there is extra need to be careful.
3328          * If one of the devices that we would need to read, because
3329          * it is not being overwritten (and maybe not written at all)
3330          * is missing/faulty, then we need to read everything we can.
3331          */
3332         if (sh->raid_conf->level != 6 &&
3333             sh->sector < sh->raid_conf->mddev->recovery_cp)
3334                 /* reconstruct-write isn't being forced */
3335                 return 0;
3336         for (i = 0; i < s->failed && i < 2; i++) {
3337                 if (s->failed_num[i] != sh->pd_idx &&
3338                     s->failed_num[i] != sh->qd_idx &&
3339                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341                         return 1;
3342         }
3343
3344         return 0;
3345 }
3346
3347 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3348                        int disk_idx, int disks)
3349 {
3350         struct r5dev *dev = &sh->dev[disk_idx];
3351
3352         /* is the data in this block needed, and can we get it? */
3353         if (need_this_block(sh, s, disk_idx, disks)) {
3354                 /* we would like to get this block, possibly by computing it,
3355                  * otherwise read it if the backing disk is insync
3356                  */
3357                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3358                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3359                 BUG_ON(sh->batch_head);
3360                 if ((s->uptodate == disks - 1) &&
3361                     (s->failed && (disk_idx == s->failed_num[0] ||
3362                                    disk_idx == s->failed_num[1]))) {
3363                         /* have disk failed, and we're requested to fetch it;
3364                          * do compute it
3365                          */
3366                         pr_debug("Computing stripe %llu block %d\n",
3367                                (unsigned long long)sh->sector, disk_idx);
3368                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3369                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3370                         set_bit(R5_Wantcompute, &dev->flags);
3371                         sh->ops.target = disk_idx;
3372                         sh->ops.target2 = -1; /* no 2nd target */
3373                         s->req_compute = 1;
3374                         /* Careful: from this point on 'uptodate' is in the eye
3375                          * of raid_run_ops which services 'compute' operations
3376                          * before writes. R5_Wantcompute flags a block that will
3377                          * be R5_UPTODATE by the time it is needed for a
3378                          * subsequent operation.
3379                          */
3380                         s->uptodate++;
3381                         return 1;
3382                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3383                         /* Computing 2-failure is *very* expensive; only
3384                          * do it if failed >= 2
3385                          */
3386                         int other;
3387                         for (other = disks; other--; ) {
3388                                 if (other == disk_idx)
3389                                         continue;
3390                                 if (!test_bit(R5_UPTODATE,
3391                                       &sh->dev[other].flags))
3392                                         break;
3393                         }
3394                         BUG_ON(other < 0);
3395                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3396                                (unsigned long long)sh->sector,
3397                                disk_idx, other);
3398                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3399                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3400                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3401                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3402                         sh->ops.target = disk_idx;
3403                         sh->ops.target2 = other;
3404                         s->uptodate += 2;
3405                         s->req_compute = 1;
3406                         return 1;
3407                 } else if (test_bit(R5_Insync, &dev->flags)) {
3408                         set_bit(R5_LOCKED, &dev->flags);
3409                         set_bit(R5_Wantread, &dev->flags);
3410                         s->locked++;
3411                         pr_debug("Reading block %d (sync=%d)\n",
3412                                 disk_idx, s->syncing);
3413                 }
3414         }
3415
3416         return 0;
3417 }
3418
3419 /**
3420  * handle_stripe_fill - read or compute data to satisfy pending requests.
3421  */
3422 static void handle_stripe_fill(struct stripe_head *sh,
3423                                struct stripe_head_state *s,
3424                                int disks)
3425 {
3426         int i;
3427
3428         /* look for blocks to read/compute, skip this if a compute
3429          * is already in flight, or if the stripe contents are in the
3430          * midst of changing due to a write
3431          */
3432         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3433             !sh->reconstruct_state)
3434                 for (i = disks; i--; )
3435                         if (fetch_block(sh, s, i, disks))
3436                                 break;
3437         set_bit(STRIPE_HANDLE, &sh->state);
3438 }
3439
3440 static void break_stripe_batch_list(struct stripe_head *head_sh,
3441                                     unsigned long handle_flags);
3442 /* handle_stripe_clean_event
3443  * any written block on an uptodate or failed drive can be returned.
3444  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3445  * never LOCKED, so we don't need to test 'failed' directly.
3446  */
3447 static void handle_stripe_clean_event(struct r5conf *conf,
3448         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3449 {
3450         int i;
3451         struct r5dev *dev;
3452         int discard_pending = 0;
3453         struct stripe_head *head_sh = sh;
3454         bool do_endio = false;
3455
3456         for (i = disks; i--; )
3457                 if (sh->dev[i].written) {
3458                         dev = &sh->dev[i];
3459                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3460                             (test_bit(R5_UPTODATE, &dev->flags) ||
3461                              test_bit(R5_Discard, &dev->flags) ||
3462                              test_bit(R5_SkipCopy, &dev->flags))) {
3463                                 /* We can return any write requests */
3464                                 struct bio *wbi, *wbi2;
3465                                 pr_debug("Return write for disc %d\n", i);
3466                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3467                                         clear_bit(R5_UPTODATE, &dev->flags);
3468                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3469                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3470                                 }
3471                                 do_endio = true;
3472
3473 returnbi:
3474                                 dev->page = dev->orig_page;
3475                                 wbi = dev->written;
3476                                 dev->written = NULL;
3477                                 while (wbi && wbi->bi_iter.bi_sector <
3478                                         dev->sector + STRIPE_SECTORS) {
3479                                         wbi2 = r5_next_bio(wbi, dev->sector);
3480                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3481                                                 md_write_end(conf->mddev);
3482                                                 bio_list_add(return_bi, wbi);
3483                                         }
3484                                         wbi = wbi2;
3485                                 }
3486                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3487                                                 STRIPE_SECTORS,
3488                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3489                                                 0);
3490                                 if (head_sh->batch_head) {
3491                                         sh = list_first_entry(&sh->batch_list,
3492                                                               struct stripe_head,
3493                                                               batch_list);
3494                                         if (sh != head_sh) {
3495                                                 dev = &sh->dev[i];
3496                                                 goto returnbi;
3497                                         }
3498                                 }
3499                                 sh = head_sh;
3500                                 dev = &sh->dev[i];
3501                         } else if (test_bit(R5_Discard, &dev->flags))
3502                                 discard_pending = 1;
3503                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3504                         WARN_ON(dev->page != dev->orig_page);
3505                 }
3506
3507         r5l_stripe_write_finished(sh);
3508
3509         if (!discard_pending &&
3510             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3511                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3512                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3513                 if (sh->qd_idx >= 0) {
3514                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3515                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3516                 }
3517                 /* now that discard is done we can proceed with any sync */
3518                 clear_bit(STRIPE_DISCARD, &sh->state);
3519                 /*
3520                  * SCSI discard will change some bio fields and the stripe has
3521                  * no updated data, so remove it from hash list and the stripe
3522                  * will be reinitialized
3523                  */
3524                 spin_lock_irq(&conf->device_lock);
3525 unhash:
3526                 remove_hash(sh);
3527                 if (head_sh->batch_head) {
3528                         sh = list_first_entry(&sh->batch_list,
3529                                               struct stripe_head, batch_list);
3530                         if (sh != head_sh)
3531                                         goto unhash;
3532                 }
3533                 spin_unlock_irq(&conf->device_lock);
3534                 sh = head_sh;
3535
3536                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3537                         set_bit(STRIPE_HANDLE, &sh->state);
3538
3539         }
3540
3541         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3542                 if (atomic_dec_and_test(&conf->pending_full_writes))
3543                         md_wakeup_thread(conf->mddev->thread);
3544
3545         if (head_sh->batch_head && do_endio)
3546                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3547 }
3548
3549 static void handle_stripe_dirtying(struct r5conf *conf,
3550                                    struct stripe_head *sh,
3551                                    struct stripe_head_state *s,
3552                                    int disks)
3553 {
3554         int rmw = 0, rcw = 0, i;
3555         sector_t recovery_cp = conf->mddev->recovery_cp;
3556
3557         /* Check whether resync is now happening or should start.
3558          * If yes, then the array is dirty (after unclean shutdown or
3559          * initial creation), so parity in some stripes might be inconsistent.
3560          * In this case, we need to always do reconstruct-write, to ensure
3561          * that in case of drive failure or read-error correction, we
3562          * generate correct data from the parity.
3563          */
3564         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3565             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3566              s->failed == 0)) {
3567                 /* Calculate the real rcw later - for now make it
3568                  * look like rcw is cheaper
3569                  */
3570                 rcw = 1; rmw = 2;
3571                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3572                          conf->rmw_level, (unsigned long long)recovery_cp,
3573                          (unsigned long long)sh->sector);
3574         } else for (i = disks; i--; ) {
3575                 /* would I have to read this buffer for read_modify_write */
3576                 struct r5dev *dev = &sh->dev[i];
3577                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3578                     !test_bit(R5_LOCKED, &dev->flags) &&
3579                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3580                       test_bit(R5_Wantcompute, &dev->flags))) {
3581                         if (test_bit(R5_Insync, &dev->flags))
3582                                 rmw++;
3583                         else
3584                                 rmw += 2*disks;  /* cannot read it */
3585                 }
3586                 /* Would I have to read this buffer for reconstruct_write */
3587                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3588                     i != sh->pd_idx && i != sh->qd_idx &&
3589                     !test_bit(R5_LOCKED, &dev->flags) &&
3590                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3591                     test_bit(R5_Wantcompute, &dev->flags))) {
3592                         if (test_bit(R5_Insync, &dev->flags))
3593                                 rcw++;
3594                         else
3595                                 rcw += 2*disks;
3596                 }
3597         }
3598         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3599                 (unsigned long long)sh->sector, rmw, rcw);
3600         set_bit(STRIPE_HANDLE, &sh->state);
3601         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3602                 /* prefer read-modify-write, but need to get some data */
3603                 if (conf->mddev->queue)
3604                         blk_add_trace_msg(conf->mddev->queue,
3605                                           "raid5 rmw %llu %d",
3606                                           (unsigned long long)sh->sector, rmw);
3607                 for (i = disks; i--; ) {
3608                         struct r5dev *dev = &sh->dev[i];
3609                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3610                             !test_bit(R5_LOCKED, &dev->flags) &&
3611                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3612                             test_bit(R5_Wantcompute, &dev->flags)) &&
3613                             test_bit(R5_Insync, &dev->flags)) {
3614                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3615                                              &sh->state)) {
3616                                         pr_debug("Read_old block %d for r-m-w\n",
3617                                                  i);
3618                                         set_bit(R5_LOCKED, &dev->flags);
3619                                         set_bit(R5_Wantread, &dev->flags);
3620                                         s->locked++;
3621                                 } else {
3622                                         set_bit(STRIPE_DELAYED, &sh->state);
3623                                         set_bit(STRIPE_HANDLE, &sh->state);
3624                                 }
3625                         }
3626                 }
3627         }
3628         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3629                 /* want reconstruct write, but need to get some data */
3630                 int qread =0;
3631                 rcw = 0;
3632                 for (i = disks; i--; ) {
3633                         struct r5dev *dev = &sh->dev[i];
3634                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3635                             i != sh->pd_idx && i != sh->qd_idx &&
3636                             !test_bit(R5_LOCKED, &dev->flags) &&
3637                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3638                               test_bit(R5_Wantcompute, &dev->flags))) {
3639                                 rcw++;
3640                                 if (test_bit(R5_Insync, &dev->flags) &&
3641                                     test_bit(STRIPE_PREREAD_ACTIVE,
3642                                              &sh->state)) {
3643                                         pr_debug("Read_old block "
3644                                                 "%d for Reconstruct\n", i);
3645                                         set_bit(R5_LOCKED, &dev->flags);
3646                                         set_bit(R5_Wantread, &dev->flags);
3647                                         s->locked++;
3648                                         qread++;
3649                                 } else {
3650                                         set_bit(STRIPE_DELAYED, &sh->state);
3651                                         set_bit(STRIPE_HANDLE, &sh->state);
3652                                 }
3653                         }
3654                 }
3655                 if (rcw && conf->mddev->queue)
3656                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3657                                           (unsigned long long)sh->sector,
3658                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3659         }
3660
3661         if (rcw > disks && rmw > disks &&
3662             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3663                 set_bit(STRIPE_DELAYED, &sh->state);
3664
3665         /* now if nothing is locked, and if we have enough data,
3666          * we can start a write request
3667          */
3668         /* since handle_stripe can be called at any time we need to handle the
3669          * case where a compute block operation has been submitted and then a
3670          * subsequent call wants to start a write request.  raid_run_ops only
3671          * handles the case where compute block and reconstruct are requested
3672          * simultaneously.  If this is not the case then new writes need to be
3673          * held off until the compute completes.
3674          */
3675         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3676             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3677             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3678                 schedule_reconstruction(sh, s, rcw == 0, 0);
3679 }
3680
3681 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3682                                 struct stripe_head_state *s, int disks)
3683 {
3684         struct r5dev *dev = NULL;
3685
3686         BUG_ON(sh->batch_head);
3687         set_bit(STRIPE_HANDLE, &sh->state);
3688
3689         switch (sh->check_state) {
3690         case check_state_idle:
3691                 /* start a new check operation if there are no failures */
3692                 if (s->failed == 0) {
3693                         BUG_ON(s->uptodate != disks);
3694                         sh->check_state = check_state_run;
3695                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3696                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3697                         s->uptodate--;
3698                         break;
3699                 }
3700                 dev = &sh->dev[s->failed_num[0]];
3701                 /* fall through */
3702         case check_state_compute_result:
3703                 sh->check_state = check_state_idle;
3704                 if (!dev)
3705                         dev = &sh->dev[sh->pd_idx];
3706
3707                 /* check that a write has not made the stripe insync */
3708                 if (test_bit(STRIPE_INSYNC, &sh->state))
3709                         break;
3710
3711                 /* either failed parity check, or recovery is happening */
3712                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3713                 BUG_ON(s->uptodate != disks);
3714
3715                 set_bit(R5_LOCKED, &dev->flags);
3716                 s->locked++;
3717                 set_bit(R5_Wantwrite, &dev->flags);
3718
3719                 clear_bit(STRIPE_DEGRADED, &sh->state);
3720                 set_bit(STRIPE_INSYNC, &sh->state);
3721                 break;
3722         case check_state_run:
3723                 break; /* we will be called again upon completion */
3724         case check_state_check_result:
3725                 sh->check_state = check_state_idle;
3726
3727                 /* if a failure occurred during the check operation, leave
3728                  * STRIPE_INSYNC not set and let the stripe be handled again
3729                  */
3730                 if (s->failed)
3731                         break;
3732
3733                 /* handle a successful check operation, if parity is correct
3734                  * we are done.  Otherwise update the mismatch count and repair
3735                  * parity if !MD_RECOVERY_CHECK
3736                  */
3737                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3738                         /* parity is correct (on disc,
3739                          * not in buffer any more)
3740                          */
3741                         set_bit(STRIPE_INSYNC, &sh->state);
3742                 else {
3743                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3744                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3745                                 /* don't try to repair!! */
3746                                 set_bit(STRIPE_INSYNC, &sh->state);
3747                         else {
3748                                 sh->check_state = check_state_compute_run;
3749                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3750                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3751                                 set_bit(R5_Wantcompute,
3752                                         &sh->dev[sh->pd_idx].flags);
3753                                 sh->ops.target = sh->pd_idx;
3754                                 sh->ops.target2 = -1;
3755                                 s->uptodate++;
3756                         }
3757                 }
3758                 break;
3759         case check_state_compute_run:
3760                 break;
3761         default:
3762                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3763                        __func__, sh->check_state,
3764                        (unsigned long long) sh->sector);
3765                 BUG();
3766         }
3767 }
3768
3769 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3770                                   struct stripe_head_state *s,
3771                                   int disks)
3772 {
3773         int pd_idx = sh->pd_idx;
3774         int qd_idx = sh->qd_idx;
3775         struct r5dev *dev;
3776
3777         BUG_ON(sh->batch_head);
3778         set_bit(STRIPE_HANDLE, &sh->state);
3779
3780         BUG_ON(s->failed > 2);
3781
3782         /* Want to check and possibly repair P and Q.
3783          * However there could be one 'failed' device, in which
3784          * case we can only check one of them, possibly using the
3785          * other to generate missing data
3786          */
3787
3788         switch (sh->check_state) {
3789         case check_state_idle:
3790                 /* start a new check operation if there are < 2 failures */
3791                 if (s->failed == s->q_failed) {
3792                         /* The only possible failed device holds Q, so it
3793                          * makes sense to check P (If anything else were failed,
3794                          * we would have used P to recreate it).
3795                          */
3796                         sh->check_state = check_state_run;
3797                 }
3798                 if (!s->q_failed && s->failed < 2) {
3799                         /* Q is not failed, and we didn't use it to generate
3800                          * anything, so it makes sense to check it
3801                          */
3802                         if (sh->check_state == check_state_run)
3803                                 sh->check_state = check_state_run_pq;
3804                         else
3805                                 sh->check_state = check_state_run_q;
3806                 }
3807
3808                 /* discard potentially stale zero_sum_result */
3809                 sh->ops.zero_sum_result = 0;
3810
3811                 if (sh->check_state == check_state_run) {
3812                         /* async_xor_zero_sum destroys the contents of P */
3813                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3814                         s->uptodate--;
3815                 }
3816                 if (sh->check_state >= check_state_run &&
3817                     sh->check_state <= check_state_run_pq) {
3818                         /* async_syndrome_zero_sum preserves P and Q, so
3819                          * no need to mark them !uptodate here
3820                          */
3821                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3822                         break;
3823                 }
3824
3825                 /* we have 2-disk failure */
3826                 BUG_ON(s->failed != 2);
3827                 /* fall through */
3828         case check_state_compute_result:
3829                 sh->check_state = check_state_idle;
3830
3831                 /* check that a write has not made the stripe insync */
3832                 if (test_bit(STRIPE_INSYNC, &sh->state))
3833                         break;
3834
3835                 /* now write out any block on a failed drive,
3836                  * or P or Q if they were recomputed
3837                  */
3838                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3839                 if (s->failed == 2) {
3840                         dev = &sh->dev[s->failed_num[1]];
3841                         s->locked++;
3842                         set_bit(R5_LOCKED, &dev->flags);
3843                         set_bit(R5_Wantwrite, &dev->flags);
3844                 }
3845                 if (s->failed >= 1) {
3846                         dev = &sh->dev[s->failed_num[0]];
3847                         s->locked++;
3848                         set_bit(R5_LOCKED, &dev->flags);
3849                         set_bit(R5_Wantwrite, &dev->flags);
3850                 }
3851                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3852                         dev = &sh->dev[pd_idx];
3853                         s->locked++;
3854                         set_bit(R5_LOCKED, &dev->flags);
3855                         set_bit(R5_Wantwrite, &dev->flags);
3856                 }
3857                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3858                         dev = &sh->dev[qd_idx];
3859                         s->locked++;
3860                         set_bit(R5_LOCKED, &dev->flags);
3861                         set_bit(R5_Wantwrite, &dev->flags);
3862                 }
3863                 clear_bit(STRIPE_DEGRADED, &sh->state);
3864
3865                 set_bit(STRIPE_INSYNC, &sh->state);
3866                 break;
3867         case check_state_run:
3868         case check_state_run_q:
3869         case check_state_run_pq:
3870                 break; /* we will be called again upon completion */
3871         case check_state_check_result:
3872                 sh->check_state = check_state_idle;
3873
3874                 /* handle a successful check operation, if parity is correct
3875                  * we are done.  Otherwise update the mismatch count and repair
3876                  * parity if !MD_RECOVERY_CHECK
3877                  */
3878                 if (sh->ops.zero_sum_result == 0) {
3879                         /* both parities are correct */
3880                         if (!s->failed)
3881                                 set_bit(STRIPE_INSYNC, &sh->state);
3882                         else {
3883                                 /* in contrast to the raid5 case we can validate
3884                                  * parity, but still have a failure to write
3885                                  * back
3886                                  */
3887                                 sh->check_state = check_state_compute_result;
3888                                 /* Returning at this point means that we may go
3889                                  * off and bring p and/or q uptodate again so
3890                                  * we make sure to check zero_sum_result again
3891                                  * to verify if p or q need writeback
3892                                  */
3893                         }
3894                 } else {
3895                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3896                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3897                                 /* don't try to repair!! */
3898                                 set_bit(STRIPE_INSYNC, &sh->state);
3899                         else {
3900                                 int *target = &sh->ops.target;
3901
3902                                 sh->ops.target = -1;
3903                                 sh->ops.target2 = -1;
3904                                 sh->check_state = check_state_compute_run;
3905                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3906                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3907                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3908                                         set_bit(R5_Wantcompute,
3909                                                 &sh->dev[pd_idx].flags);
3910                                         *target = pd_idx;
3911                                         target = &sh->ops.target2;
3912                                         s->uptodate++;
3913                                 }
3914                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3915                                         set_bit(R5_Wantcompute,
3916                                                 &sh->dev[qd_idx].flags);
3917                                         *target = qd_idx;
3918                                         s->uptodate++;
3919                                 }
3920                         }
3921                 }
3922                 break;
3923         case check_state_compute_run:
3924                 break;
3925         default:
3926                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3927                        __func__, sh->check_state,
3928                        (unsigned long long) sh->sector);
3929                 BUG();
3930         }
3931 }
3932
3933 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3934 {
3935         int i;
3936
3937         /* We have read all the blocks in this stripe and now we need to
3938          * copy some of them into a target stripe for expand.
3939          */
3940         struct dma_async_tx_descriptor *tx = NULL;
3941         BUG_ON(sh->batch_head);
3942         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3943         for (i = 0; i < sh->disks; i++)
3944                 if (i != sh->pd_idx && i != sh->qd_idx) {
3945                         int dd_idx, j;
3946                         struct stripe_head *sh2;
3947                         struct async_submit_ctl submit;
3948
3949                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3950                         sector_t s = raid5_compute_sector(conf, bn, 0,
3951                                                           &dd_idx, NULL);
3952                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3953                         if (sh2 == NULL)
3954                                 /* so far only the early blocks of this stripe
3955                                  * have been requested.  When later blocks
3956                                  * get requested, we will try again
3957                                  */
3958                                 continue;
3959                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3960                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3961                                 /* must have already done this block */
3962                                 raid5_release_stripe(sh2);
3963                                 continue;
3964                         }
3965
3966                         /* place all the copies on one channel */
3967                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3968                         tx = async_memcpy(sh2->dev[dd_idx].page,
3969                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3970                                           &submit);
3971
3972                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3973                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3974                         for (j = 0; j < conf->raid_disks; j++)
3975                                 if (j != sh2->pd_idx &&
3976                                     j != sh2->qd_idx &&
3977                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3978                                         break;
3979                         if (j == conf->raid_disks) {
3980                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3981                                 set_bit(STRIPE_HANDLE, &sh2->state);
3982                         }
3983                         raid5_release_stripe(sh2);
3984
3985                 }
3986         /* done submitting copies, wait for them to complete */
3987         async_tx_quiesce(&tx);
3988 }
3989
3990 /*
3991  * handle_stripe - do things to a stripe.
3992  *
3993  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3994  * state of various bits to see what needs to be done.
3995  * Possible results:
3996  *    return some read requests which now have data
3997  *    return some write requests which are safely on storage
3998  *    schedule a read on some buffers
3999  *    schedule a write of some buffers
4000  *    return confirmation of parity correctness
4001  *
4002  */
4003
4004 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4005 {
4006         struct r5conf *conf = sh->raid_conf;
4007         int disks = sh->disks;
4008         struct r5dev *dev;
4009         int i;
4010         int do_recovery = 0;
4011
4012         memset(s, 0, sizeof(*s));
4013
4014         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4015         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4016         s->failed_num[0] = -1;
4017         s->failed_num[1] = -1;
4018
4019         /* Now to look around and see what can be done */
4020         rcu_read_lock();
4021         for (i=disks; i--; ) {
4022                 struct md_rdev *rdev;
4023                 sector_t first_bad;
4024                 int bad_sectors;
4025                 int is_bad = 0;
4026
4027                 dev = &sh->dev[i];
4028
4029                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4030                          i, dev->flags,
4031                          dev->toread, dev->towrite, dev->written);
4032                 /* maybe we can reply to a read
4033                  *
4034                  * new wantfill requests are only permitted while
4035                  * ops_complete_biofill is guaranteed to be inactive
4036                  */
4037                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4038                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4039                         set_bit(R5_Wantfill, &dev->flags);
4040
4041                 /* now count some things */
4042                 if (test_bit(R5_LOCKED, &dev->flags))
4043                         s->locked++;
4044                 if (test_bit(R5_UPTODATE, &dev->flags))
4045                         s->uptodate++;
4046                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4047                         s->compute++;
4048                         BUG_ON(s->compute > 2);
4049                 }
4050
4051                 if (test_bit(R5_Wantfill, &dev->flags))
4052                         s->to_fill++;
4053                 else if (dev->toread)
4054                         s->to_read++;
4055                 if (dev->towrite) {
4056                         s->to_write++;
4057                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4058                                 s->non_overwrite++;
4059                 }
4060                 if (dev->written)
4061                         s->written++;
4062                 /* Prefer to use the replacement for reads, but only
4063                  * if it is recovered enough and has no bad blocks.
4064                  */
4065                 rdev = rcu_dereference(conf->disks[i].replacement);
4066                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4067                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4068                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4069                                  &first_bad, &bad_sectors))
4070                         set_bit(R5_ReadRepl, &dev->flags);
4071                 else {
4072                         if (rdev && !test_bit(Faulty, &rdev->flags))
4073                                 set_bit(R5_NeedReplace, &dev->flags);
4074                         else
4075                                 clear_bit(R5_NeedReplace, &dev->flags);
4076                         rdev = rcu_dereference(conf->disks[i].rdev);
4077                         clear_bit(R5_ReadRepl, &dev->flags);
4078                 }
4079                 if (rdev && test_bit(Faulty, &rdev->flags))
4080                         rdev = NULL;
4081                 if (rdev) {
4082                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4083                                              &first_bad, &bad_sectors);
4084                         if (s->blocked_rdev == NULL
4085                             && (test_bit(Blocked, &rdev->flags)
4086                                 || is_bad < 0)) {
4087                                 if (is_bad < 0)
4088                                         set_bit(BlockedBadBlocks,
4089                                                 &rdev->flags);
4090                                 s->blocked_rdev = rdev;
4091                                 atomic_inc(&rdev->nr_pending);
4092                         }
4093                 }
4094                 clear_bit(R5_Insync, &dev->flags);
4095                 if (!rdev)
4096                         /* Not in-sync */;
4097                 else if (is_bad) {
4098                         /* also not in-sync */
4099                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4100                             test_bit(R5_UPTODATE, &dev->flags)) {
4101                                 /* treat as in-sync, but with a read error
4102                                  * which we can now try to correct
4103                                  */
4104                                 set_bit(R5_Insync, &dev->flags);
4105                                 set_bit(R5_ReadError, &dev->flags);
4106                         }
4107                 } else if (test_bit(In_sync, &rdev->flags))
4108                         set_bit(R5_Insync, &dev->flags);
4109                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4110                         /* in sync if before recovery_offset */
4111                         set_bit(R5_Insync, &dev->flags);
4112                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4113                          test_bit(R5_Expanded, &dev->flags))
4114                         /* If we've reshaped into here, we assume it is Insync.
4115                          * We will shortly update recovery_offset to make
4116                          * it official.
4117                          */
4118                         set_bit(R5_Insync, &dev->flags);
4119
4120                 if (test_bit(R5_WriteError, &dev->flags)) {
4121                         /* This flag does not apply to '.replacement'
4122                          * only to .rdev, so make sure to check that*/
4123                         struct md_rdev *rdev2 = rcu_dereference(
4124                                 conf->disks[i].rdev);
4125                         if (rdev2 == rdev)
4126                                 clear_bit(R5_Insync, &dev->flags);
4127                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4128                                 s->handle_bad_blocks = 1;
4129                                 atomic_inc(&rdev2->nr_pending);
4130                         } else
4131                                 clear_bit(R5_WriteError, &dev->flags);
4132                 }
4133                 if (test_bit(R5_MadeGood, &dev->flags)) {
4134                         /* This flag does not apply to '.replacement'
4135                          * only to .rdev, so make sure to check that*/
4136                         struct md_rdev *rdev2 = rcu_dereference(
4137                                 conf->disks[i].rdev);
4138                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4139                                 s->handle_bad_blocks = 1;
4140                                 atomic_inc(&rdev2->nr_pending);
4141                         } else
4142                                 clear_bit(R5_MadeGood, &dev->flags);
4143                 }
4144                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4145                         struct md_rdev *rdev2 = rcu_dereference(
4146                                 conf->disks[i].replacement);
4147                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4148                                 s->handle_bad_blocks = 1;
4149                                 atomic_inc(&rdev2->nr_pending);
4150                         } else
4151                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4152                 }
4153                 if (!test_bit(R5_Insync, &dev->flags)) {
4154                         /* The ReadError flag will just be confusing now */
4155                         clear_bit(R5_ReadError, &dev->flags);
4156                         clear_bit(R5_ReWrite, &dev->flags);
4157                 }
4158                 if (test_bit(R5_ReadError, &dev->flags))
4159                         clear_bit(R5_Insync, &dev->flags);
4160                 if (!test_bit(R5_Insync, &dev->flags)) {
4161                         if (s->failed < 2)
4162                                 s->failed_num[s->failed] = i;
4163                         s->failed++;
4164                         if (rdev && !test_bit(Faulty, &rdev->flags))
4165                                 do_recovery = 1;
4166                 }
4167         }
4168         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4169                 /* If there is a failed device being replaced,
4170                  *     we must be recovering.
4171                  * else if we are after recovery_cp, we must be syncing
4172                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4173                  * else we can only be replacing
4174                  * sync and recovery both need to read all devices, and so
4175                  * use the same flag.
4176                  */
4177                 if (do_recovery ||
4178                     sh->sector >= conf->mddev->recovery_cp ||
4179                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4180                         s->syncing = 1;
4181                 else
4182                         s->replacing = 1;
4183         }
4184         rcu_read_unlock();
4185 }
4186
4187 static int clear_batch_ready(struct stripe_head *sh)
4188 {
4189         /* Return '1' if this is a member of batch, or
4190          * '0' if it is a lone stripe or a head which can now be
4191          * handled.
4192          */
4193         struct stripe_head *tmp;
4194         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4195                 return (sh->batch_head && sh->batch_head != sh);
4196         spin_lock(&sh->stripe_lock);
4197         if (!sh->batch_head) {
4198                 spin_unlock(&sh->stripe_lock);
4199                 return 0;
4200         }
4201
4202         /*
4203          * this stripe could be added to a batch list before we check
4204          * BATCH_READY, skips it
4205          */
4206         if (sh->batch_head != sh) {
4207                 spin_unlock(&sh->stripe_lock);
4208                 return 1;
4209         }
4210         spin_lock(&sh->batch_lock);
4211         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4212                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4213         spin_unlock(&sh->batch_lock);
4214         spin_unlock(&sh->stripe_lock);
4215
4216         /*
4217          * BATCH_READY is cleared, no new stripes can be added.
4218          * batch_list can be accessed without lock
4219          */
4220         return 0;
4221 }
4222
4223 static void break_stripe_batch_list(struct stripe_head *head_sh,
4224                                     unsigned long handle_flags)
4225 {
4226         struct stripe_head *sh, *next;
4227         int i;
4228         int do_wakeup = 0;
4229
4230         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4231
4232                 list_del_init(&sh->batch_list);
4233
4234                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4235                                           (1 << STRIPE_SYNCING) |
4236                                           (1 << STRIPE_REPLACED) |
4237                                           (1 << STRIPE_PREREAD_ACTIVE) |
4238                                           (1 << STRIPE_DELAYED) |
4239                                           (1 << STRIPE_BIT_DELAY) |
4240                                           (1 << STRIPE_FULL_WRITE) |
4241                                           (1 << STRIPE_BIOFILL_RUN) |
4242                                           (1 << STRIPE_COMPUTE_RUN)  |
4243                                           (1 << STRIPE_OPS_REQ_PENDING) |
4244                                           (1 << STRIPE_DISCARD) |
4245                                           (1 << STRIPE_BATCH_READY) |
4246                                           (1 << STRIPE_BATCH_ERR) |
4247                                           (1 << STRIPE_BITMAP_PENDING)));
4248                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4249                                               (1 << STRIPE_REPLACED)));
4250
4251                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4252                                             (1 << STRIPE_DEGRADED)),
4253                               head_sh->state & (1 << STRIPE_INSYNC));
4254
4255                 sh->check_state = head_sh->check_state;
4256                 sh->reconstruct_state = head_sh->reconstruct_state;
4257                 for (i = 0; i < sh->disks; i++) {
4258                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4259                                 do_wakeup = 1;
4260                         sh->dev[i].flags = head_sh->dev[i].flags &
4261                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4262                 }
4263                 spin_lock_irq(&sh->stripe_lock);
4264                 sh->batch_head = NULL;
4265                 spin_unlock_irq(&sh->stripe_lock);
4266                 if (handle_flags == 0 ||
4267                     sh->state & handle_flags)
4268                         set_bit(STRIPE_HANDLE, &sh->state);
4269                 raid5_release_stripe(sh);
4270         }
4271         spin_lock_irq(&head_sh->stripe_lock);
4272         head_sh->batch_head = NULL;
4273         spin_unlock_irq(&head_sh->stripe_lock);
4274         for (i = 0; i < head_sh->disks; i++)
4275                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4276                         do_wakeup = 1;
4277         if (head_sh->state & handle_flags)
4278                 set_bit(STRIPE_HANDLE, &head_sh->state);
4279
4280         if (do_wakeup)
4281                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4282 }
4283
4284 static void handle_stripe(struct stripe_head *sh)
4285 {
4286         struct stripe_head_state s;
4287         struct r5conf *conf = sh->raid_conf;
4288         int i;
4289         int prexor;
4290         int disks = sh->disks;
4291         struct r5dev *pdev, *qdev;
4292
4293         clear_bit(STRIPE_HANDLE, &sh->state);
4294         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4295                 /* already being handled, ensure it gets handled
4296                  * again when current action finishes */
4297                 set_bit(STRIPE_HANDLE, &sh->state);
4298                 return;
4299         }
4300
4301         if (clear_batch_ready(sh) ) {
4302                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4303                 return;
4304         }
4305
4306         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4307                 break_stripe_batch_list(sh, 0);
4308
4309         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4310                 spin_lock(&sh->stripe_lock);
4311                 /* Cannot process 'sync' concurrently with 'discard' */
4312                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4313                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4314                         set_bit(STRIPE_SYNCING, &sh->state);
4315                         clear_bit(STRIPE_INSYNC, &sh->state);
4316                         clear_bit(STRIPE_REPLACED, &sh->state);
4317                 }
4318                 spin_unlock(&sh->stripe_lock);
4319         }
4320         clear_bit(STRIPE_DELAYED, &sh->state);
4321
4322         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4323                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4324                (unsigned long long)sh->sector, sh->state,
4325                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4326                sh->check_state, sh->reconstruct_state);
4327
4328         analyse_stripe(sh, &s);
4329
4330         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4331                 goto finish;
4332
4333         if (s.handle_bad_blocks) {
4334                 set_bit(STRIPE_HANDLE, &sh->state);
4335                 goto finish;
4336         }
4337
4338         if (unlikely(s.blocked_rdev)) {
4339                 if (s.syncing || s.expanding || s.expanded ||
4340                     s.replacing || s.to_write || s.written) {
4341                         set_bit(STRIPE_HANDLE, &sh->state);
4342                         goto finish;
4343                 }
4344                 /* There is nothing for the blocked_rdev to block */
4345                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4346                 s.blocked_rdev = NULL;
4347         }
4348
4349         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4350                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4351                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4352         }
4353
4354         pr_debug("locked=%d uptodate=%d to_read=%d"
4355                " to_write=%d failed=%d failed_num=%d,%d\n",
4356                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4357                s.failed_num[0], s.failed_num[1]);
4358         /* check if the array has lost more than max_degraded devices and,
4359          * if so, some requests might need to be failed.
4360          */
4361         if (s.failed > conf->max_degraded) {
4362                 sh->check_state = 0;
4363                 sh->reconstruct_state = 0;
4364                 break_stripe_batch_list(sh, 0);
4365                 if (s.to_read+s.to_write+s.written)
4366                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4367                 if (s.syncing + s.replacing)
4368                         handle_failed_sync(conf, sh, &s);
4369         }
4370
4371         /* Now we check to see if any write operations have recently
4372          * completed
4373          */
4374         prexor = 0;
4375         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4376                 prexor = 1;
4377         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4378             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4379                 sh->reconstruct_state = reconstruct_state_idle;
4380
4381                 /* All the 'written' buffers and the parity block are ready to
4382                  * be written back to disk
4383                  */
4384                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4385                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4386                 BUG_ON(sh->qd_idx >= 0 &&
4387                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4388                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4389                 for (i = disks; i--; ) {
4390                         struct r5dev *dev = &sh->dev[i];
4391                         if (test_bit(R5_LOCKED, &dev->flags) &&
4392                                 (i == sh->pd_idx || i == sh->qd_idx ||
4393                                  dev->written)) {
4394                                 pr_debug("Writing block %d\n", i);
4395                                 set_bit(R5_Wantwrite, &dev->flags);
4396                                 if (prexor)
4397                                         continue;
4398                                 if (s.failed > 1)
4399                                         continue;
4400                                 if (!test_bit(R5_Insync, &dev->flags) ||
4401                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4402                                      s.failed == 0))
4403                                         set_bit(STRIPE_INSYNC, &sh->state);
4404                         }
4405                 }
4406                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4407                         s.dec_preread_active = 1;
4408         }
4409
4410         /*
4411          * might be able to return some write requests if the parity blocks
4412          * are safe, or on a failed drive
4413          */
4414         pdev = &sh->dev[sh->pd_idx];
4415         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4416                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4417         qdev = &sh->dev[sh->qd_idx];
4418         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4419                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4420                 || conf->level < 6;
4421
4422         if (s.written &&
4423             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4424                              && !test_bit(R5_LOCKED, &pdev->flags)
4425                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4426                                  test_bit(R5_Discard, &pdev->flags))))) &&
4427             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4428                              && !test_bit(R5_LOCKED, &qdev->flags)
4429                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4430                                  test_bit(R5_Discard, &qdev->flags))))))
4431                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4432
4433         /* Now we might consider reading some blocks, either to check/generate
4434          * parity, or to satisfy requests
4435          * or to load a block that is being partially written.
4436          */
4437         if (s.to_read || s.non_overwrite
4438             || (conf->level == 6 && s.to_write && s.failed)
4439             || (s.syncing && (s.uptodate + s.compute < disks))
4440             || s.replacing
4441             || s.expanding)
4442                 handle_stripe_fill(sh, &s, disks);
4443
4444         /* Now to consider new write requests and what else, if anything
4445          * should be read.  We do not handle new writes when:
4446          * 1/ A 'write' operation (copy+xor) is already in flight.
4447          * 2/ A 'check' operation is in flight, as it may clobber the parity
4448          *    block.
4449          */
4450         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4451                 handle_stripe_dirtying(conf, sh, &s, disks);
4452
4453         /* maybe we need to check and possibly fix the parity for this stripe
4454          * Any reads will already have been scheduled, so we just see if enough
4455          * data is available.  The parity check is held off while parity
4456          * dependent operations are in flight.
4457          */
4458         if (sh->check_state ||
4459             (s.syncing && s.locked == 0 &&
4460              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4461              !test_bit(STRIPE_INSYNC, &sh->state))) {
4462                 if (conf->level == 6)
4463                         handle_parity_checks6(conf, sh, &s, disks);
4464                 else
4465                         handle_parity_checks5(conf, sh, &s, disks);
4466         }
4467
4468         if ((s.replacing || s.syncing) && s.locked == 0
4469             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4470             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4471                 /* Write out to replacement devices where possible */
4472                 for (i = 0; i < conf->raid_disks; i++)
4473                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4474                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4475                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4476                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4477                                 s.locked++;
4478                         }
4479                 if (s.replacing)
4480                         set_bit(STRIPE_INSYNC, &sh->state);
4481                 set_bit(STRIPE_REPLACED, &sh->state);
4482         }
4483         if ((s.syncing || s.replacing) && s.locked == 0 &&
4484             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4485             test_bit(STRIPE_INSYNC, &sh->state)) {
4486                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4487                 clear_bit(STRIPE_SYNCING, &sh->state);
4488                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4489                         wake_up(&conf->wait_for_overlap);
4490         }
4491
4492         /* If the failed drives are just a ReadError, then we might need
4493          * to progress the repair/check process
4494          */
4495         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4496                 for (i = 0; i < s.failed; i++) {
4497                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4498                         if (test_bit(R5_ReadError, &dev->flags)
4499                             && !test_bit(R5_LOCKED, &dev->flags)
4500                             && test_bit(R5_UPTODATE, &dev->flags)
4501                                 ) {
4502                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4503                                         set_bit(R5_Wantwrite, &dev->flags);
4504                                         set_bit(R5_ReWrite, &dev->flags);
4505                                         set_bit(R5_LOCKED, &dev->flags);
4506                                         s.locked++;
4507                                 } else {
4508                                         /* let's read it back */
4509                                         set_bit(R5_Wantread, &dev->flags);
4510                                         set_bit(R5_LOCKED, &dev->flags);
4511                                         s.locked++;
4512                                 }
4513                         }
4514                 }
4515
4516         /* Finish reconstruct operations initiated by the expansion process */
4517         if (sh->reconstruct_state == reconstruct_state_result) {
4518                 struct stripe_head *sh_src
4519                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4520                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4521                         /* sh cannot be written until sh_src has been read.
4522                          * so arrange for sh to be delayed a little
4523                          */
4524                         set_bit(STRIPE_DELAYED, &sh->state);
4525                         set_bit(STRIPE_HANDLE, &sh->state);
4526                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4527                                               &sh_src->state))
4528                                 atomic_inc(&conf->preread_active_stripes);
4529                         raid5_release_stripe(sh_src);
4530                         goto finish;
4531                 }
4532                 if (sh_src)
4533                         raid5_release_stripe(sh_src);
4534
4535                 sh->reconstruct_state = reconstruct_state_idle;
4536                 clear_bit(STRIPE_EXPANDING, &sh->state);
4537                 for (i = conf->raid_disks; i--; ) {
4538                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4539                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4540                         s.locked++;
4541                 }
4542         }
4543
4544         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4545             !sh->reconstruct_state) {
4546                 /* Need to write out all blocks after computing parity */
4547                 sh->disks = conf->raid_disks;
4548                 stripe_set_idx(sh->sector, conf, 0, sh);
4549                 schedule_reconstruction(sh, &s, 1, 1);
4550         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4551                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4552                 atomic_dec(&conf->reshape_stripes);
4553                 wake_up(&conf->wait_for_overlap);
4554                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4555         }
4556
4557         if (s.expanding && s.locked == 0 &&
4558             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4559                 handle_stripe_expansion(conf, sh);
4560
4561 finish:
4562         /* wait for this device to become unblocked */
4563         if (unlikely(s.blocked_rdev)) {
4564                 if (conf->mddev->external)
4565                         md_wait_for_blocked_rdev(s.blocked_rdev,
4566                                                  conf->mddev);
4567                 else
4568                         /* Internal metadata will immediately
4569                          * be written by raid5d, so we don't
4570                          * need to wait here.
4571                          */
4572                         rdev_dec_pending(s.blocked_rdev,
4573                                          conf->mddev);
4574         }
4575
4576         if (s.handle_bad_blocks)
4577                 for (i = disks; i--; ) {
4578                         struct md_rdev *rdev;
4579                         struct r5dev *dev = &sh->dev[i];
4580                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4581                                 /* We own a safe reference to the rdev */
4582                                 rdev = conf->disks[i].rdev;
4583                                 if (!rdev_set_badblocks(rdev, sh->sector,
4584                                                         STRIPE_SECTORS, 0))
4585                                         md_error(conf->mddev, rdev);
4586                                 rdev_dec_pending(rdev, conf->mddev);
4587                         }
4588                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4589                                 rdev = conf->disks[i].rdev;
4590                                 rdev_clear_badblocks(rdev, sh->sector,
4591                                                      STRIPE_SECTORS, 0);
4592                                 rdev_dec_pending(rdev, conf->mddev);
4593                         }
4594                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4595                                 rdev = conf->disks[i].replacement;
4596                                 if (!rdev)
4597                                         /* rdev have been moved down */
4598                                         rdev = conf->disks[i].rdev;
4599                                 rdev_clear_badblocks(rdev, sh->sector,
4600                                                      STRIPE_SECTORS, 0);
4601                                 rdev_dec_pending(rdev, conf->mddev);
4602                         }
4603                 }
4604
4605         if (s.ops_request)
4606                 raid_run_ops(sh, s.ops_request);
4607
4608         ops_run_io(sh, &s);
4609
4610         if (s.dec_preread_active) {
4611                 /* We delay this until after ops_run_io so that if make_request
4612                  * is waiting on a flush, it won't continue until the writes
4613                  * have actually been submitted.
4614                  */
4615                 atomic_dec(&conf->preread_active_stripes);
4616                 if (atomic_read(&conf->preread_active_stripes) <
4617                     IO_THRESHOLD)
4618                         md_wakeup_thread(conf->mddev->thread);
4619         }
4620
4621         if (!bio_list_empty(&s.return_bi)) {
4622                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4623                         spin_lock_irq(&conf->device_lock);
4624                         bio_list_merge(&conf->return_bi, &s.return_bi);
4625                         spin_unlock_irq(&conf->device_lock);
4626                         md_wakeup_thread(conf->mddev->thread);
4627                 } else
4628                         return_io(&s.return_bi);
4629         }
4630
4631         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4632 }
4633
4634 static void raid5_activate_delayed(struct r5conf *conf)
4635 {
4636         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4637                 while (!list_empty(&conf->delayed_list)) {
4638                         struct list_head *l = conf->delayed_list.next;
4639                         struct stripe_head *sh;
4640                         sh = list_entry(l, struct stripe_head, lru);
4641                         list_del_init(l);
4642                         clear_bit(STRIPE_DELAYED, &sh->state);
4643                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4644                                 atomic_inc(&conf->preread_active_stripes);
4645                         list_add_tail(&sh->lru, &conf->hold_list);
4646                         raid5_wakeup_stripe_thread(sh);
4647                 }
4648         }
4649 }
4650
4651 static void activate_bit_delay(struct r5conf *conf,
4652         struct list_head *temp_inactive_list)
4653 {
4654         /* device_lock is held */
4655         struct list_head head;
4656         list_add(&head, &conf->bitmap_list);
4657         list_del_init(&conf->bitmap_list);
4658         while (!list_empty(&head)) {
4659                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4660                 int hash;
4661                 list_del_init(&sh->lru);
4662                 atomic_inc(&sh->count);
4663                 hash = sh->hash_lock_index;
4664                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4665         }
4666 }
4667
4668 static int raid5_congested(struct mddev *mddev, int bits)
4669 {
4670         struct r5conf *conf = mddev->private;
4671
4672         /* No difference between reads and writes.  Just check
4673          * how busy the stripe_cache is
4674          */
4675
4676         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4677                 return 1;
4678         if (conf->quiesce)
4679                 return 1;
4680         if (atomic_read(&conf->empty_inactive_list_nr))
4681                 return 1;
4682
4683         return 0;
4684 }
4685
4686 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4687 {
4688         struct r5conf *conf = mddev->private;
4689         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4690         unsigned int chunk_sectors;
4691         unsigned int bio_sectors = bio_sectors(bio);
4692
4693         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4694         return  chunk_sectors >=
4695                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4696 }
4697
4698 /*
4699  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4700  *  later sampled by raid5d.
4701  */
4702 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4703 {
4704         unsigned long flags;
4705
4706         spin_lock_irqsave(&conf->device_lock, flags);
4707
4708         bi->bi_next = conf->retry_read_aligned_list;
4709         conf->retry_read_aligned_list = bi;
4710
4711         spin_unlock_irqrestore(&conf->device_lock, flags);
4712         md_wakeup_thread(conf->mddev->thread);
4713 }
4714
4715 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4716 {
4717         struct bio *bi;
4718
4719         bi = conf->retry_read_aligned;
4720         if (bi) {
4721                 conf->retry_read_aligned = NULL;
4722                 return bi;
4723         }
4724         bi = conf->retry_read_aligned_list;
4725         if(bi) {
4726                 conf->retry_read_aligned_list = bi->bi_next;
4727                 bi->bi_next = NULL;
4728                 /*
4729                  * this sets the active strip count to 1 and the processed
4730                  * strip count to zero (upper 8 bits)
4731                  */
4732                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4733         }
4734
4735         return bi;
4736 }
4737
4738 /*
4739  *  The "raid5_align_endio" should check if the read succeeded and if it
4740  *  did, call bio_endio on the original bio (having bio_put the new bio
4741  *  first).
4742  *  If the read failed..
4743  */
4744 static void raid5_align_endio(struct bio *bi)
4745 {
4746         struct bio* raid_bi  = bi->bi_private;
4747         struct mddev *mddev;
4748         struct r5conf *conf;
4749         struct md_rdev *rdev;
4750         int error = bi->bi_error;
4751
4752         bio_put(bi);
4753
4754         rdev = (void*)raid_bi->bi_next;
4755         raid_bi->bi_next = NULL;
4756         mddev = rdev->mddev;
4757         conf = mddev->private;
4758
4759         rdev_dec_pending(rdev, conf->mddev);
4760
4761         if (!error) {
4762                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4763                                          raid_bi, 0);
4764                 bio_endio(raid_bi);
4765                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4766                         wake_up(&conf->wait_for_quiescent);
4767                 return;
4768         }
4769
4770         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4771
4772         add_bio_to_retry(raid_bi, conf);
4773 }
4774
4775 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4776 {
4777         struct r5conf *conf = mddev->private;
4778         int dd_idx;
4779         struct bio* align_bi;
4780         struct md_rdev *rdev;
4781         sector_t end_sector;
4782
4783         if (!in_chunk_boundary(mddev, raid_bio)) {
4784                 pr_debug("%s: non aligned\n", __func__);
4785                 return 0;
4786         }
4787         /*
4788          * use bio_clone_mddev to make a copy of the bio
4789          */
4790         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4791         if (!align_bi)
4792                 return 0;
4793         /*
4794          *   set bi_end_io to a new function, and set bi_private to the
4795          *     original bio.
4796          */
4797         align_bi->bi_end_io  = raid5_align_endio;
4798         align_bi->bi_private = raid_bio;
4799         /*
4800          *      compute position
4801          */
4802         align_bi->bi_iter.bi_sector =
4803                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4804                                      0, &dd_idx, NULL);
4805
4806         end_sector = bio_end_sector(align_bi);
4807         rcu_read_lock();
4808         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4809         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4810             rdev->recovery_offset < end_sector) {
4811                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4812                 if (rdev &&
4813                     (test_bit(Faulty, &rdev->flags) ||
4814                     !(test_bit(In_sync, &rdev->flags) ||
4815                       rdev->recovery_offset >= end_sector)))
4816                         rdev = NULL;
4817         }
4818         if (rdev) {
4819                 sector_t first_bad;
4820                 int bad_sectors;
4821
4822                 atomic_inc(&rdev->nr_pending);
4823                 rcu_read_unlock();
4824                 raid_bio->bi_next = (void*)rdev;
4825                 align_bi->bi_bdev =  rdev->bdev;
4826                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4827
4828                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4829                                 bio_sectors(align_bi),
4830                                 &first_bad, &bad_sectors)) {
4831                         bio_put(align_bi);
4832                         rdev_dec_pending(rdev, mddev);
4833                         return 0;
4834                 }
4835
4836                 /* No reshape active, so we can trust rdev->data_offset */
4837                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4838
4839                 spin_lock_irq(&conf->device_lock);
4840                 wait_event_lock_irq(conf->wait_for_quiescent,
4841                                     conf->quiesce == 0,
4842                                     conf->device_lock);
4843                 atomic_inc(&conf->active_aligned_reads);
4844                 spin_unlock_irq(&conf->device_lock);
4845
4846                 if (mddev->gendisk)
4847                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4848                                               align_bi, disk_devt(mddev->gendisk),
4849                                               raid_bio->bi_iter.bi_sector);
4850                 generic_make_request(align_bi);
4851                 return 1;
4852         } else {
4853                 rcu_read_unlock();
4854                 bio_put(align_bi);
4855                 return 0;
4856         }
4857 }
4858
4859 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4860 {
4861         struct bio *split;
4862
4863         do {
4864                 sector_t sector = raid_bio->bi_iter.bi_sector;
4865                 unsigned chunk_sects = mddev->chunk_sectors;
4866                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4867
4868                 if (sectors < bio_sectors(raid_bio)) {
4869                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4870                         bio_chain(split, raid_bio);
4871                 } else
4872                         split = raid_bio;
4873
4874                 if (!raid5_read_one_chunk(mddev, split)) {
4875                         if (split != raid_bio)
4876                                 generic_make_request(raid_bio);
4877                         return split;
4878                 }
4879         } while (split != raid_bio);
4880
4881         return NULL;
4882 }
4883
4884 /* __get_priority_stripe - get the next stripe to process
4885  *
4886  * Full stripe writes are allowed to pass preread active stripes up until
4887  * the bypass_threshold is exceeded.  In general the bypass_count
4888  * increments when the handle_list is handled before the hold_list; however, it
4889  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4890  * stripe with in flight i/o.  The bypass_count will be reset when the
4891  * head of the hold_list has changed, i.e. the head was promoted to the
4892  * handle_list.
4893  */
4894 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4895 {
4896         struct stripe_head *sh = NULL, *tmp;
4897         struct list_head *handle_list = NULL;
4898         struct r5worker_group *wg = NULL;
4899
4900         if (conf->worker_cnt_per_group == 0) {
4901                 handle_list = &conf->handle_list;
4902         } else if (group != ANY_GROUP) {
4903                 handle_list = &conf->worker_groups[group].handle_list;
4904                 wg = &conf->worker_groups[group];
4905         } else {
4906                 int i;
4907                 for (i = 0; i < conf->group_cnt; i++) {
4908                         handle_list = &conf->worker_groups[i].handle_list;
4909                         wg = &conf->worker_groups[i];
4910                         if (!list_empty(handle_list))
4911                                 break;
4912                 }
4913         }
4914
4915         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4916                   __func__,
4917                   list_empty(handle_list) ? "empty" : "busy",
4918                   list_empty(&conf->hold_list) ? "empty" : "busy",
4919                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4920
4921         if (!list_empty(handle_list)) {
4922                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4923
4924                 if (list_empty(&conf->hold_list))
4925                         conf->bypass_count = 0;
4926                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4927                         if (conf->hold_list.next == conf->last_hold)
4928                                 conf->bypass_count++;
4929                         else {
4930                                 conf->last_hold = conf->hold_list.next;
4931                                 conf->bypass_count -= conf->bypass_threshold;
4932                                 if (conf->bypass_count < 0)
4933                                         conf->bypass_count = 0;
4934                         }
4935                 }
4936         } else if (!list_empty(&conf->hold_list) &&
4937                    ((conf->bypass_threshold &&
4938                      conf->bypass_count > conf->bypass_threshold) ||
4939                     atomic_read(&conf->pending_full_writes) == 0)) {
4940
4941                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4942                         if (conf->worker_cnt_per_group == 0 ||
4943                             group == ANY_GROUP ||
4944                             !cpu_online(tmp->cpu) ||
4945                             cpu_to_group(tmp->cpu) == group) {
4946                                 sh = tmp;
4947                                 break;
4948                         }
4949                 }
4950
4951                 if (sh) {
4952                         conf->bypass_count -= conf->bypass_threshold;
4953                         if (conf->bypass_count < 0)
4954                                 conf->bypass_count = 0;
4955                 }
4956                 wg = NULL;
4957         }
4958
4959         if (!sh)
4960                 return NULL;
4961
4962         if (wg) {
4963                 wg->stripes_cnt--;
4964                 sh->group = NULL;
4965         }
4966         list_del_init(&sh->lru);
4967         BUG_ON(atomic_inc_return(&sh->count) != 1);
4968         return sh;
4969 }
4970
4971 struct raid5_plug_cb {
4972         struct blk_plug_cb      cb;
4973         struct list_head        list;
4974         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4975 };
4976
4977 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4978 {
4979         struct raid5_plug_cb *cb = container_of(
4980                 blk_cb, struct raid5_plug_cb, cb);
4981         struct stripe_head *sh;
4982         struct mddev *mddev = cb->cb.data;
4983         struct r5conf *conf = mddev->private;
4984         int cnt = 0;
4985         int hash;
4986
4987         if (cb->list.next && !list_empty(&cb->list)) {
4988                 spin_lock_irq(&conf->device_lock);
4989                 while (!list_empty(&cb->list)) {
4990                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4991                         list_del_init(&sh->lru);
4992                         /*
4993                          * avoid race release_stripe_plug() sees
4994                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4995                          * is still in our list
4996                          */
4997                         smp_mb__before_atomic();
4998                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4999                         /*
5000                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5001                          * case, the count is always > 1 here
5002                          */
5003                         hash = sh->hash_lock_index;
5004                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5005                         cnt++;
5006                 }
5007                 spin_unlock_irq(&conf->device_lock);
5008         }
5009         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5010                                      NR_STRIPE_HASH_LOCKS);
5011         if (mddev->queue)
5012                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5013         kfree(cb);
5014 }
5015
5016 static void release_stripe_plug(struct mddev *mddev,
5017                                 struct stripe_head *sh)
5018 {
5019         struct blk_plug_cb *blk_cb = blk_check_plugged(
5020                 raid5_unplug, mddev,
5021                 sizeof(struct raid5_plug_cb));
5022         struct raid5_plug_cb *cb;
5023
5024         if (!blk_cb) {
5025                 raid5_release_stripe(sh);
5026                 return;
5027         }
5028
5029         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5030
5031         if (cb->list.next == NULL) {
5032                 int i;
5033                 INIT_LIST_HEAD(&cb->list);
5034                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5035                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5036         }
5037
5038         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5039                 list_add_tail(&sh->lru, &cb->list);
5040         else
5041                 raid5_release_stripe(sh);
5042 }
5043
5044 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5045 {
5046         struct r5conf *conf = mddev->private;
5047         sector_t logical_sector, last_sector;
5048         struct stripe_head *sh;
5049         int remaining;
5050         int stripe_sectors;
5051
5052         if (mddev->reshape_position != MaxSector)
5053                 /* Skip discard while reshape is happening */
5054                 return;
5055
5056         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5057         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5058
5059         bi->bi_next = NULL;
5060         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5061
5062         stripe_sectors = conf->chunk_sectors *
5063                 (conf->raid_disks - conf->max_degraded);
5064         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5065                                                stripe_sectors);
5066         sector_div(last_sector, stripe_sectors);
5067
5068         logical_sector *= conf->chunk_sectors;
5069         last_sector *= conf->chunk_sectors;
5070
5071         for (; logical_sector < last_sector;
5072              logical_sector += STRIPE_SECTORS) {
5073                 DEFINE_WAIT(w);
5074                 int d;
5075         again:
5076                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5077                 prepare_to_wait(&conf->wait_for_overlap, &w,
5078                                 TASK_UNINTERRUPTIBLE);
5079                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5080                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5081                         raid5_release_stripe(sh);
5082                         schedule();
5083                         goto again;
5084                 }
5085                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5086                 spin_lock_irq(&sh->stripe_lock);
5087                 for (d = 0; d < conf->raid_disks; d++) {
5088                         if (d == sh->pd_idx || d == sh->qd_idx)
5089                                 continue;
5090                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5091                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5092                                 spin_unlock_irq(&sh->stripe_lock);
5093                                 raid5_release_stripe(sh);
5094                                 schedule();
5095                                 goto again;
5096                         }
5097                 }
5098                 set_bit(STRIPE_DISCARD, &sh->state);
5099                 finish_wait(&conf->wait_for_overlap, &w);
5100                 sh->overwrite_disks = 0;
5101                 for (d = 0; d < conf->raid_disks; d++) {
5102                         if (d == sh->pd_idx || d == sh->qd_idx)
5103                                 continue;
5104                         sh->dev[d].towrite = bi;
5105                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5106                         raid5_inc_bi_active_stripes(bi);
5107                         sh->overwrite_disks++;
5108                 }
5109                 spin_unlock_irq(&sh->stripe_lock);
5110                 if (conf->mddev->bitmap) {
5111                         for (d = 0;
5112                              d < conf->raid_disks - conf->max_degraded;
5113                              d++)
5114                                 bitmap_startwrite(mddev->bitmap,
5115                                                   sh->sector,
5116                                                   STRIPE_SECTORS,
5117                                                   0);
5118                         sh->bm_seq = conf->seq_flush + 1;
5119                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5120                 }
5121
5122                 set_bit(STRIPE_HANDLE, &sh->state);
5123                 clear_bit(STRIPE_DELAYED, &sh->state);
5124                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5125                         atomic_inc(&conf->preread_active_stripes);
5126                 release_stripe_plug(mddev, sh);
5127         }
5128
5129         remaining = raid5_dec_bi_active_stripes(bi);
5130         if (remaining == 0) {
5131                 md_write_end(mddev);
5132                 bio_endio(bi);
5133         }
5134 }
5135
5136 static void make_request(struct mddev *mddev, struct bio * bi)
5137 {
5138         struct r5conf *conf = mddev->private;
5139         int dd_idx;
5140         sector_t new_sector;
5141         sector_t logical_sector, last_sector;
5142         struct stripe_head *sh;
5143         const int rw = bio_data_dir(bi);
5144         int remaining;
5145         DEFINE_WAIT(w);
5146         bool do_prepare;
5147
5148         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5149                 md_flush_request(mddev, bi);
5150                 return;
5151         }
5152
5153         md_write_start(mddev, bi);
5154
5155         /*
5156          * If array is degraded, better not do chunk aligned read because
5157          * later we might have to read it again in order to reconstruct
5158          * data on failed drives.
5159          */
5160         if (rw == READ && mddev->degraded == 0 &&
5161             mddev->reshape_position == MaxSector) {
5162                 bi = chunk_aligned_read(mddev, bi);
5163                 if (!bi)
5164                         return;
5165         }
5166
5167         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5168                 make_discard_request(mddev, bi);
5169                 return;
5170         }
5171
5172         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5173         last_sector = bio_end_sector(bi);
5174         bi->bi_next = NULL;
5175         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5176
5177         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5178         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5179                 int previous;
5180                 int seq;
5181
5182                 do_prepare = false;
5183         retry:
5184                 seq = read_seqcount_begin(&conf->gen_lock);
5185                 previous = 0;
5186                 if (do_prepare)
5187                         prepare_to_wait(&conf->wait_for_overlap, &w,
5188                                 TASK_UNINTERRUPTIBLE);
5189                 if (unlikely(conf->reshape_progress != MaxSector)) {
5190                         /* spinlock is needed as reshape_progress may be
5191                          * 64bit on a 32bit platform, and so it might be
5192                          * possible to see a half-updated value
5193                          * Of course reshape_progress could change after
5194                          * the lock is dropped, so once we get a reference
5195                          * to the stripe that we think it is, we will have
5196                          * to check again.
5197                          */
5198                         spin_lock_irq(&conf->device_lock);
5199                         if (mddev->reshape_backwards
5200                             ? logical_sector < conf->reshape_progress
5201                             : logical_sector >= conf->reshape_progress) {
5202                                 previous = 1;
5203                         } else {
5204                                 if (mddev->reshape_backwards
5205                                     ? logical_sector < conf->reshape_safe
5206                                     : logical_sector >= conf->reshape_safe) {
5207                                         spin_unlock_irq(&conf->device_lock);
5208                                         schedule();
5209                                         do_prepare = true;
5210                                         goto retry;
5211                                 }
5212                         }
5213                         spin_unlock_irq(&conf->device_lock);
5214                 }
5215
5216                 new_sector = raid5_compute_sector(conf, logical_sector,
5217                                                   previous,
5218                                                   &dd_idx, NULL);
5219                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5220                         (unsigned long long)new_sector,
5221                         (unsigned long long)logical_sector);
5222
5223                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5224                                        (bi->bi_rw&RWA_MASK), 0);
5225                 if (sh) {
5226                         if (unlikely(previous)) {
5227                                 /* expansion might have moved on while waiting for a
5228                                  * stripe, so we must do the range check again.
5229                                  * Expansion could still move past after this
5230                                  * test, but as we are holding a reference to
5231                                  * 'sh', we know that if that happens,
5232                                  *  STRIPE_EXPANDING will get set and the expansion
5233                                  * won't proceed until we finish with the stripe.
5234                                  */
5235                                 int must_retry = 0;
5236                                 spin_lock_irq(&conf->device_lock);
5237                                 if (mddev->reshape_backwards
5238                                     ? logical_sector >= conf->reshape_progress
5239                                     : logical_sector < conf->reshape_progress)
5240                                         /* mismatch, need to try again */
5241                                         must_retry = 1;
5242                                 spin_unlock_irq(&conf->device_lock);
5243                                 if (must_retry) {
5244                                         raid5_release_stripe(sh);
5245                                         schedule();
5246                                         do_prepare = true;
5247                                         goto retry;
5248                                 }
5249                         }
5250                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5251                                 /* Might have got the wrong stripe_head
5252                                  * by accident
5253                                  */
5254                                 raid5_release_stripe(sh);
5255                                 goto retry;
5256                         }
5257
5258                         if (rw == WRITE &&
5259                             logical_sector >= mddev->suspend_lo &&
5260                             logical_sector < mddev->suspend_hi) {
5261                                 raid5_release_stripe(sh);
5262                                 /* As the suspend_* range is controlled by
5263                                  * userspace, we want an interruptible
5264                                  * wait.
5265                                  */
5266                                 flush_signals(current);
5267                                 prepare_to_wait(&conf->wait_for_overlap,
5268                                                 &w, TASK_INTERRUPTIBLE);
5269                                 if (logical_sector >= mddev->suspend_lo &&
5270                                     logical_sector < mddev->suspend_hi) {
5271                                         schedule();
5272                                         do_prepare = true;
5273                                 }
5274                                 goto retry;
5275                         }
5276
5277                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5278                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5279                                 /* Stripe is busy expanding or
5280                                  * add failed due to overlap.  Flush everything
5281                                  * and wait a while
5282                                  */
5283                                 md_wakeup_thread(mddev->thread);
5284                                 raid5_release_stripe(sh);
5285                                 schedule();
5286                                 do_prepare = true;
5287                                 goto retry;
5288                         }
5289                         set_bit(STRIPE_HANDLE, &sh->state);
5290                         clear_bit(STRIPE_DELAYED, &sh->state);
5291                         if ((!sh->batch_head || sh == sh->batch_head) &&
5292                             (bi->bi_rw & REQ_SYNC) &&
5293                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5294                                 atomic_inc(&conf->preread_active_stripes);
5295                         release_stripe_plug(mddev, sh);
5296                 } else {
5297                         /* cannot get stripe for read-ahead, just give-up */
5298                         bi->bi_error = -EIO;
5299                         break;
5300                 }
5301         }
5302         finish_wait(&conf->wait_for_overlap, &w);
5303
5304         remaining = raid5_dec_bi_active_stripes(bi);
5305         if (remaining == 0) {
5306
5307                 if ( rw == WRITE )
5308                         md_write_end(mddev);
5309
5310                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5311                                          bi, 0);
5312                 bio_endio(bi);
5313         }
5314 }
5315
5316 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5317
5318 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5319 {
5320         /* reshaping is quite different to recovery/resync so it is
5321          * handled quite separately ... here.
5322          *
5323          * On each call to sync_request, we gather one chunk worth of
5324          * destination stripes and flag them as expanding.
5325          * Then we find all the source stripes and request reads.
5326          * As the reads complete, handle_stripe will copy the data
5327          * into the destination stripe and release that stripe.
5328          */
5329         struct r5conf *conf = mddev->private;
5330         struct stripe_head *sh;
5331         sector_t first_sector, last_sector;
5332         int raid_disks = conf->previous_raid_disks;
5333         int data_disks = raid_disks - conf->max_degraded;
5334         int new_data_disks = conf->raid_disks - conf->max_degraded;
5335         int i;
5336         int dd_idx;
5337         sector_t writepos, readpos, safepos;
5338         sector_t stripe_addr;
5339         int reshape_sectors;
5340         struct list_head stripes;
5341         sector_t retn;
5342
5343         if (sector_nr == 0) {
5344                 /* If restarting in the middle, skip the initial sectors */
5345                 if (mddev->reshape_backwards &&
5346                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5347                         sector_nr = raid5_size(mddev, 0, 0)
5348                                 - conf->reshape_progress;
5349                 } else if (mddev->reshape_backwards &&
5350                            conf->reshape_progress == MaxSector) {
5351                         /* shouldn't happen, but just in case, finish up.*/
5352                         sector_nr = MaxSector;
5353                 } else if (!mddev->reshape_backwards &&
5354                            conf->reshape_progress > 0)
5355                         sector_nr = conf->reshape_progress;
5356                 sector_div(sector_nr, new_data_disks);
5357                 if (sector_nr) {
5358                         mddev->curr_resync_completed = sector_nr;
5359                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5360                         *skipped = 1;
5361                         retn = sector_nr;
5362                         goto finish;
5363                 }
5364         }
5365
5366         /* We need to process a full chunk at a time.
5367          * If old and new chunk sizes differ, we need to process the
5368          * largest of these
5369          */
5370
5371         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5372
5373         /* We update the metadata at least every 10 seconds, or when
5374          * the data about to be copied would over-write the source of
5375          * the data at the front of the range.  i.e. one new_stripe
5376          * along from reshape_progress new_maps to after where
5377          * reshape_safe old_maps to
5378          */
5379         writepos = conf->reshape_progress;
5380         sector_div(writepos, new_data_disks);
5381         readpos = conf->reshape_progress;
5382         sector_div(readpos, data_disks);
5383         safepos = conf->reshape_safe;
5384         sector_div(safepos, data_disks);
5385         if (mddev->reshape_backwards) {
5386                 BUG_ON(writepos < reshape_sectors);
5387                 writepos -= reshape_sectors;
5388                 readpos += reshape_sectors;
5389                 safepos += reshape_sectors;
5390         } else {
5391                 writepos += reshape_sectors;
5392                 /* readpos and safepos are worst-case calculations.
5393                  * A negative number is overly pessimistic, and causes
5394                  * obvious problems for unsigned storage.  So clip to 0.
5395                  */
5396                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5397                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5398         }
5399
5400         /* Having calculated the 'writepos' possibly use it
5401          * to set 'stripe_addr' which is where we will write to.
5402          */
5403         if (mddev->reshape_backwards) {
5404                 BUG_ON(conf->reshape_progress == 0);
5405                 stripe_addr = writepos;
5406                 BUG_ON((mddev->dev_sectors &
5407                         ~((sector_t)reshape_sectors - 1))
5408                        - reshape_sectors - stripe_addr
5409                        != sector_nr);
5410         } else {
5411                 BUG_ON(writepos != sector_nr + reshape_sectors);
5412                 stripe_addr = sector_nr;
5413         }
5414
5415         /* 'writepos' is the most advanced device address we might write.
5416          * 'readpos' is the least advanced device address we might read.
5417          * 'safepos' is the least address recorded in the metadata as having
5418          *     been reshaped.
5419          * If there is a min_offset_diff, these are adjusted either by
5420          * increasing the safepos/readpos if diff is negative, or
5421          * increasing writepos if diff is positive.
5422          * If 'readpos' is then behind 'writepos', there is no way that we can
5423          * ensure safety in the face of a crash - that must be done by userspace
5424          * making a backup of the data.  So in that case there is no particular
5425          * rush to update metadata.
5426          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5427          * update the metadata to advance 'safepos' to match 'readpos' so that
5428          * we can be safe in the event of a crash.
5429          * So we insist on updating metadata if safepos is behind writepos and
5430          * readpos is beyond writepos.
5431          * In any case, update the metadata every 10 seconds.
5432          * Maybe that number should be configurable, but I'm not sure it is
5433          * worth it.... maybe it could be a multiple of safemode_delay???
5434          */
5435         if (conf->min_offset_diff < 0) {
5436                 safepos += -conf->min_offset_diff;
5437                 readpos += -conf->min_offset_diff;
5438         } else
5439                 writepos += conf->min_offset_diff;
5440
5441         if ((mddev->reshape_backwards
5442              ? (safepos > writepos && readpos < writepos)
5443              : (safepos < writepos && readpos > writepos)) ||
5444             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5445                 /* Cannot proceed until we've updated the superblock... */
5446                 wait_event(conf->wait_for_overlap,
5447                            atomic_read(&conf->reshape_stripes)==0
5448                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5449                 if (atomic_read(&conf->reshape_stripes) != 0)
5450                         return 0;
5451                 mddev->reshape_position = conf->reshape_progress;
5452                 mddev->curr_resync_completed = sector_nr;
5453                 conf->reshape_checkpoint = jiffies;
5454                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5455                 md_wakeup_thread(mddev->thread);
5456                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5457                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5459                         return 0;
5460                 spin_lock_irq(&conf->device_lock);
5461                 conf->reshape_safe = mddev->reshape_position;
5462                 spin_unlock_irq(&conf->device_lock);
5463                 wake_up(&conf->wait_for_overlap);
5464                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5465         }
5466
5467         INIT_LIST_HEAD(&stripes);
5468         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5469                 int j;
5470                 int skipped_disk = 0;
5471                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5472                 set_bit(STRIPE_EXPANDING, &sh->state);
5473                 atomic_inc(&conf->reshape_stripes);
5474                 /* If any of this stripe is beyond the end of the old
5475                  * array, then we need to zero those blocks
5476                  */
5477                 for (j=sh->disks; j--;) {
5478                         sector_t s;
5479                         if (j == sh->pd_idx)
5480                                 continue;
5481                         if (conf->level == 6 &&
5482                             j == sh->qd_idx)
5483                                 continue;
5484                         s = raid5_compute_blocknr(sh, j, 0);
5485                         if (s < raid5_size(mddev, 0, 0)) {
5486                                 skipped_disk = 1;
5487                                 continue;
5488                         }
5489                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5490                         set_bit(R5_Expanded, &sh->dev[j].flags);
5491                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5492                 }
5493                 if (!skipped_disk) {
5494                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5495                         set_bit(STRIPE_HANDLE, &sh->state);
5496                 }
5497                 list_add(&sh->lru, &stripes);
5498         }
5499         spin_lock_irq(&conf->device_lock);
5500         if (mddev->reshape_backwards)
5501                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5502         else
5503                 conf->reshape_progress += reshape_sectors * new_data_disks;
5504         spin_unlock_irq(&conf->device_lock);
5505         /* Ok, those stripe are ready. We can start scheduling
5506          * reads on the source stripes.
5507          * The source stripes are determined by mapping the first and last
5508          * block on the destination stripes.
5509          */
5510         first_sector =
5511                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5512                                      1, &dd_idx, NULL);
5513         last_sector =
5514                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5515                                             * new_data_disks - 1),
5516                                      1, &dd_idx, NULL);
5517         if (last_sector >= mddev->dev_sectors)
5518                 last_sector = mddev->dev_sectors - 1;
5519         while (first_sector <= last_sector) {
5520                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5521                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5522                 set_bit(STRIPE_HANDLE, &sh->state);
5523                 raid5_release_stripe(sh);
5524                 first_sector += STRIPE_SECTORS;
5525         }
5526         /* Now that the sources are clearly marked, we can release
5527          * the destination stripes
5528          */
5529         while (!list_empty(&stripes)) {
5530                 sh = list_entry(stripes.next, struct stripe_head, lru);
5531                 list_del_init(&sh->lru);
5532                 raid5_release_stripe(sh);
5533         }
5534         /* If this takes us to the resync_max point where we have to pause,
5535          * then we need to write out the superblock.
5536          */
5537         sector_nr += reshape_sectors;
5538         retn = reshape_sectors;
5539 finish:
5540         if (mddev->curr_resync_completed > mddev->resync_max ||
5541             (sector_nr - mddev->curr_resync_completed) * 2
5542             >= mddev->resync_max - mddev->curr_resync_completed) {
5543                 /* Cannot proceed until we've updated the superblock... */
5544                 wait_event(conf->wait_for_overlap,
5545                            atomic_read(&conf->reshape_stripes) == 0
5546                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5547                 if (atomic_read(&conf->reshape_stripes) != 0)
5548                         goto ret;
5549                 mddev->reshape_position = conf->reshape_progress;
5550                 mddev->curr_resync_completed = sector_nr;
5551                 conf->reshape_checkpoint = jiffies;
5552                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5553                 md_wakeup_thread(mddev->thread);
5554                 wait_event(mddev->sb_wait,
5555                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5556                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5557                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5558                         goto ret;
5559                 spin_lock_irq(&conf->device_lock);
5560                 conf->reshape_safe = mddev->reshape_position;
5561                 spin_unlock_irq(&conf->device_lock);
5562                 wake_up(&conf->wait_for_overlap);
5563                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5564         }
5565 ret:
5566         return retn;
5567 }
5568
5569 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5570 {
5571         struct r5conf *conf = mddev->private;
5572         struct stripe_head *sh;
5573         sector_t max_sector = mddev->dev_sectors;
5574         sector_t sync_blocks;
5575         int still_degraded = 0;
5576         int i;
5577
5578         if (sector_nr >= max_sector) {
5579                 /* just being told to finish up .. nothing much to do */
5580
5581                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5582                         end_reshape(conf);
5583                         return 0;
5584                 }
5585
5586                 if (mddev->curr_resync < max_sector) /* aborted */
5587                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5588                                         &sync_blocks, 1);
5589                 else /* completed sync */
5590                         conf->fullsync = 0;
5591                 bitmap_close_sync(mddev->bitmap);
5592
5593                 return 0;
5594         }
5595
5596         /* Allow raid5_quiesce to complete */
5597         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5598
5599         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5600                 return reshape_request(mddev, sector_nr, skipped);
5601
5602         /* No need to check resync_max as we never do more than one
5603          * stripe, and as resync_max will always be on a chunk boundary,
5604          * if the check in md_do_sync didn't fire, there is no chance
5605          * of overstepping resync_max here
5606          */
5607
5608         /* if there is too many failed drives and we are trying
5609          * to resync, then assert that we are finished, because there is
5610          * nothing we can do.
5611          */
5612         if (mddev->degraded >= conf->max_degraded &&
5613             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5614                 sector_t rv = mddev->dev_sectors - sector_nr;
5615                 *skipped = 1;
5616                 return rv;
5617         }
5618         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5619             !conf->fullsync &&
5620             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5621             sync_blocks >= STRIPE_SECTORS) {
5622                 /* we can skip this block, and probably more */
5623                 sync_blocks /= STRIPE_SECTORS;
5624                 *skipped = 1;
5625                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5626         }
5627
5628         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5629
5630         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5631         if (sh == NULL) {
5632                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5633                 /* make sure we don't swamp the stripe cache if someone else
5634                  * is trying to get access
5635                  */
5636                 schedule_timeout_uninterruptible(1);
5637         }
5638         /* Need to check if array will still be degraded after recovery/resync
5639          * Note in case of > 1 drive failures it's possible we're rebuilding
5640          * one drive while leaving another faulty drive in array.
5641          */
5642         rcu_read_lock();
5643         for (i = 0; i < conf->raid_disks; i++) {
5644                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5645
5646                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5647                         still_degraded = 1;
5648         }
5649         rcu_read_unlock();
5650
5651         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5652
5653         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5654         set_bit(STRIPE_HANDLE, &sh->state);
5655
5656         raid5_release_stripe(sh);
5657
5658         return STRIPE_SECTORS;
5659 }
5660
5661 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5662 {
5663         /* We may not be able to submit a whole bio at once as there
5664          * may not be enough stripe_heads available.
5665          * We cannot pre-allocate enough stripe_heads as we may need
5666          * more than exist in the cache (if we allow ever large chunks).
5667          * So we do one stripe head at a time and record in
5668          * ->bi_hw_segments how many have been done.
5669          *
5670          * We *know* that this entire raid_bio is in one chunk, so
5671          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5672          */
5673         struct stripe_head *sh;
5674         int dd_idx;
5675         sector_t sector, logical_sector, last_sector;
5676         int scnt = 0;
5677         int remaining;
5678         int handled = 0;
5679
5680         logical_sector = raid_bio->bi_iter.bi_sector &
5681                 ~((sector_t)STRIPE_SECTORS-1);
5682         sector = raid5_compute_sector(conf, logical_sector,
5683                                       0, &dd_idx, NULL);
5684         last_sector = bio_end_sector(raid_bio);
5685
5686         for (; logical_sector < last_sector;
5687              logical_sector += STRIPE_SECTORS,
5688                      sector += STRIPE_SECTORS,
5689                      scnt++) {
5690
5691                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5692                         /* already done this stripe */
5693                         continue;
5694
5695                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5696
5697                 if (!sh) {
5698                         /* failed to get a stripe - must wait */
5699                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5700                         conf->retry_read_aligned = raid_bio;
5701                         return handled;
5702                 }
5703
5704                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5705                         raid5_release_stripe(sh);
5706                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5707                         conf->retry_read_aligned = raid_bio;
5708                         return handled;
5709                 }
5710
5711                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5712                 handle_stripe(sh);
5713                 raid5_release_stripe(sh);
5714                 handled++;
5715         }
5716         remaining = raid5_dec_bi_active_stripes(raid_bio);
5717         if (remaining == 0) {
5718                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5719                                          raid_bio, 0);
5720                 bio_endio(raid_bio);
5721         }
5722         if (atomic_dec_and_test(&conf->active_aligned_reads))
5723                 wake_up(&conf->wait_for_quiescent);
5724         return handled;
5725 }
5726
5727 static int handle_active_stripes(struct r5conf *conf, int group,
5728                                  struct r5worker *worker,
5729                                  struct list_head *temp_inactive_list)
5730 {
5731         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5732         int i, batch_size = 0, hash;
5733         bool release_inactive = false;
5734
5735         while (batch_size < MAX_STRIPE_BATCH &&
5736                         (sh = __get_priority_stripe(conf, group)) != NULL)
5737                 batch[batch_size++] = sh;
5738
5739         if (batch_size == 0) {
5740                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5741                         if (!list_empty(temp_inactive_list + i))
5742                                 break;
5743                 if (i == NR_STRIPE_HASH_LOCKS)
5744                         return batch_size;
5745                 release_inactive = true;
5746         }
5747         spin_unlock_irq(&conf->device_lock);
5748
5749         release_inactive_stripe_list(conf, temp_inactive_list,
5750                                      NR_STRIPE_HASH_LOCKS);
5751
5752         if (release_inactive) {
5753                 spin_lock_irq(&conf->device_lock);
5754                 return 0;
5755         }
5756
5757         for (i = 0; i < batch_size; i++)
5758                 handle_stripe(batch[i]);
5759         r5l_write_stripe_run(conf->log);
5760
5761         cond_resched();
5762
5763         spin_lock_irq(&conf->device_lock);
5764         for (i = 0; i < batch_size; i++) {
5765                 hash = batch[i]->hash_lock_index;
5766                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5767         }
5768         return batch_size;
5769 }
5770
5771 static void raid5_do_work(struct work_struct *work)
5772 {
5773         struct r5worker *worker = container_of(work, struct r5worker, work);
5774         struct r5worker_group *group = worker->group;
5775         struct r5conf *conf = group->conf;
5776         int group_id = group - conf->worker_groups;
5777         int handled;
5778         struct blk_plug plug;
5779
5780         pr_debug("+++ raid5worker active\n");
5781
5782         blk_start_plug(&plug);
5783         handled = 0;
5784         spin_lock_irq(&conf->device_lock);
5785         while (1) {
5786                 int batch_size, released;
5787
5788                 released = release_stripe_list(conf, worker->temp_inactive_list);
5789
5790                 batch_size = handle_active_stripes(conf, group_id, worker,
5791                                                    worker->temp_inactive_list);
5792                 worker->working = false;
5793                 if (!batch_size && !released)
5794                         break;
5795                 handled += batch_size;
5796         }
5797         pr_debug("%d stripes handled\n", handled);
5798
5799         spin_unlock_irq(&conf->device_lock);
5800         blk_finish_plug(&plug);
5801
5802         pr_debug("--- raid5worker inactive\n");
5803 }
5804
5805 /*
5806  * This is our raid5 kernel thread.
5807  *
5808  * We scan the hash table for stripes which can be handled now.
5809  * During the scan, completed stripes are saved for us by the interrupt
5810  * handler, so that they will not have to wait for our next wakeup.
5811  */
5812 static void raid5d(struct md_thread *thread)
5813 {
5814         struct mddev *mddev = thread->mddev;
5815         struct r5conf *conf = mddev->private;
5816         int handled;
5817         struct blk_plug plug;
5818
5819         pr_debug("+++ raid5d active\n");
5820
5821         md_check_recovery(mddev);
5822
5823         if (!bio_list_empty(&conf->return_bi) &&
5824             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5825                 struct bio_list tmp = BIO_EMPTY_LIST;
5826                 spin_lock_irq(&conf->device_lock);
5827                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5828                         bio_list_merge(&tmp, &conf->return_bi);
5829                         bio_list_init(&conf->return_bi);
5830                 }
5831                 spin_unlock_irq(&conf->device_lock);
5832                 return_io(&tmp);
5833         }
5834
5835         blk_start_plug(&plug);
5836         handled = 0;
5837         spin_lock_irq(&conf->device_lock);
5838         while (1) {
5839                 struct bio *bio;
5840                 int batch_size, released;
5841
5842                 released = release_stripe_list(conf, conf->temp_inactive_list);
5843                 if (released)
5844                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5845
5846                 if (
5847                     !list_empty(&conf->bitmap_list)) {
5848                         /* Now is a good time to flush some bitmap updates */
5849                         conf->seq_flush++;
5850                         spin_unlock_irq(&conf->device_lock);
5851                         bitmap_unplug(mddev->bitmap);
5852                         spin_lock_irq(&conf->device_lock);
5853                         conf->seq_write = conf->seq_flush;
5854                         activate_bit_delay(conf, conf->temp_inactive_list);
5855                 }
5856                 raid5_activate_delayed(conf);
5857
5858                 while ((bio = remove_bio_from_retry(conf))) {
5859                         int ok;
5860                         spin_unlock_irq(&conf->device_lock);
5861                         ok = retry_aligned_read(conf, bio);
5862                         spin_lock_irq(&conf->device_lock);
5863                         if (!ok)
5864                                 break;
5865                         handled++;
5866                 }
5867
5868                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5869                                                    conf->temp_inactive_list);
5870                 if (!batch_size && !released)
5871                         break;
5872                 handled += batch_size;
5873
5874                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5875                         spin_unlock_irq(&conf->device_lock);
5876                         md_check_recovery(mddev);
5877                         spin_lock_irq(&conf->device_lock);
5878                 }
5879         }
5880         pr_debug("%d stripes handled\n", handled);
5881
5882         spin_unlock_irq(&conf->device_lock);
5883         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5884             mutex_trylock(&conf->cache_size_mutex)) {
5885                 grow_one_stripe(conf, __GFP_NOWARN);
5886                 /* Set flag even if allocation failed.  This helps
5887                  * slow down allocation requests when mem is short
5888                  */
5889                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5890                 mutex_unlock(&conf->cache_size_mutex);
5891         }
5892
5893         r5l_flush_stripe_to_raid(conf->log);
5894
5895         async_tx_issue_pending_all();
5896         blk_finish_plug(&plug);
5897
5898         pr_debug("--- raid5d inactive\n");
5899 }
5900
5901 static ssize_t
5902 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5903 {
5904         struct r5conf *conf;
5905         int ret = 0;
5906         spin_lock(&mddev->lock);
5907         conf = mddev->private;
5908         if (conf)
5909                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5910         spin_unlock(&mddev->lock);
5911         return ret;
5912 }
5913
5914 int
5915 raid5_set_cache_size(struct mddev *mddev, int size)
5916 {
5917         struct r5conf *conf = mddev->private;
5918         int err;
5919
5920         if (size <= 16 || size > 32768)
5921                 return -EINVAL;
5922
5923         conf->min_nr_stripes = size;
5924         mutex_lock(&conf->cache_size_mutex);
5925         while (size < conf->max_nr_stripes &&
5926                drop_one_stripe(conf))
5927                 ;
5928         mutex_unlock(&conf->cache_size_mutex);
5929
5930
5931         err = md_allow_write(mddev);
5932         if (err)
5933                 return err;
5934
5935         mutex_lock(&conf->cache_size_mutex);
5936         while (size > conf->max_nr_stripes)
5937                 if (!grow_one_stripe(conf, GFP_KERNEL))
5938                         break;
5939         mutex_unlock(&conf->cache_size_mutex);
5940
5941         return 0;
5942 }
5943 EXPORT_SYMBOL(raid5_set_cache_size);
5944
5945 static ssize_t
5946 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5947 {
5948         struct r5conf *conf;
5949         unsigned long new;
5950         int err;
5951
5952         if (len >= PAGE_SIZE)
5953                 return -EINVAL;
5954         if (kstrtoul(page, 10, &new))
5955                 return -EINVAL;
5956         err = mddev_lock(mddev);
5957         if (err)
5958                 return err;
5959         conf = mddev->private;
5960         if (!conf)
5961                 err = -ENODEV;
5962         else
5963                 err = raid5_set_cache_size(mddev, new);
5964         mddev_unlock(mddev);
5965
5966         return err ?: len;
5967 }
5968
5969 static struct md_sysfs_entry
5970 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5971                                 raid5_show_stripe_cache_size,
5972                                 raid5_store_stripe_cache_size);
5973
5974 static ssize_t
5975 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5976 {
5977         struct r5conf *conf = mddev->private;
5978         if (conf)
5979                 return sprintf(page, "%d\n", conf->rmw_level);
5980         else
5981                 return 0;
5982 }
5983
5984 static ssize_t
5985 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5986 {
5987         struct r5conf *conf = mddev->private;
5988         unsigned long new;
5989
5990         if (!conf)
5991                 return -ENODEV;
5992
5993         if (len >= PAGE_SIZE)
5994                 return -EINVAL;
5995
5996         if (kstrtoul(page, 10, &new))
5997                 return -EINVAL;
5998
5999         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6000                 return -EINVAL;
6001
6002         if (new != PARITY_DISABLE_RMW &&
6003             new != PARITY_ENABLE_RMW &&
6004             new != PARITY_PREFER_RMW)
6005                 return -EINVAL;
6006
6007         conf->rmw_level = new;
6008         return len;
6009 }
6010
6011 static struct md_sysfs_entry
6012 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6013                          raid5_show_rmw_level,
6014                          raid5_store_rmw_level);
6015
6016
6017 static ssize_t
6018 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6019 {
6020         struct r5conf *conf;
6021         int ret = 0;
6022         spin_lock(&mddev->lock);
6023         conf = mddev->private;
6024         if (conf)
6025                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6026         spin_unlock(&mddev->lock);
6027         return ret;
6028 }
6029
6030 static ssize_t
6031 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6032 {
6033         struct r5conf *conf;
6034         unsigned long new;
6035         int err;
6036
6037         if (len >= PAGE_SIZE)
6038                 return -EINVAL;
6039         if (kstrtoul(page, 10, &new))
6040                 return -EINVAL;
6041
6042         err = mddev_lock(mddev);
6043         if (err)
6044                 return err;
6045         conf = mddev->private;
6046         if (!conf)
6047                 err = -ENODEV;
6048         else if (new > conf->min_nr_stripes)
6049                 err = -EINVAL;
6050         else
6051                 conf->bypass_threshold = new;
6052         mddev_unlock(mddev);
6053         return err ?: len;
6054 }
6055
6056 static struct md_sysfs_entry
6057 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6058                                         S_IRUGO | S_IWUSR,
6059                                         raid5_show_preread_threshold,
6060                                         raid5_store_preread_threshold);
6061
6062 static ssize_t
6063 raid5_show_skip_copy(struct mddev *mddev, char *page)
6064 {
6065         struct r5conf *conf;
6066         int ret = 0;
6067         spin_lock(&mddev->lock);
6068         conf = mddev->private;
6069         if (conf)
6070                 ret = sprintf(page, "%d\n", conf->skip_copy);
6071         spin_unlock(&mddev->lock);
6072         return ret;
6073 }
6074
6075 static ssize_t
6076 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6077 {
6078         struct r5conf *conf;
6079         unsigned long new;
6080         int err;
6081
6082         if (len >= PAGE_SIZE)
6083                 return -EINVAL;
6084         if (kstrtoul(page, 10, &new))
6085                 return -EINVAL;
6086         new = !!new;
6087
6088         err = mddev_lock(mddev);
6089         if (err)
6090                 return err;
6091         conf = mddev->private;
6092         if (!conf)
6093                 err = -ENODEV;
6094         else if (new != conf->skip_copy) {
6095                 mddev_suspend(mddev);
6096                 conf->skip_copy = new;
6097                 if (new)
6098                         mddev->queue->backing_dev_info.capabilities |=
6099                                 BDI_CAP_STABLE_WRITES;
6100                 else
6101                         mddev->queue->backing_dev_info.capabilities &=
6102                                 ~BDI_CAP_STABLE_WRITES;
6103                 mddev_resume(mddev);
6104         }
6105         mddev_unlock(mddev);
6106         return err ?: len;
6107 }
6108
6109 static struct md_sysfs_entry
6110 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6111                                         raid5_show_skip_copy,
6112                                         raid5_store_skip_copy);
6113
6114 static ssize_t
6115 stripe_cache_active_show(struct mddev *mddev, char *page)
6116 {
6117         struct r5conf *conf = mddev->private;
6118         if (conf)
6119                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6120         else
6121                 return 0;
6122 }
6123
6124 static struct md_sysfs_entry
6125 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6126
6127 static ssize_t
6128 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6129 {
6130         struct r5conf *conf;
6131         int ret = 0;
6132         spin_lock(&mddev->lock);
6133         conf = mddev->private;
6134         if (conf)
6135                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6136         spin_unlock(&mddev->lock);
6137         return ret;
6138 }
6139
6140 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6141                                int *group_cnt,
6142                                int *worker_cnt_per_group,
6143                                struct r5worker_group **worker_groups);
6144 static ssize_t
6145 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6146 {
6147         struct r5conf *conf;
6148         unsigned long new;
6149         int err;
6150         struct r5worker_group *new_groups, *old_groups;
6151         int group_cnt, worker_cnt_per_group;
6152
6153         if (len >= PAGE_SIZE)
6154                 return -EINVAL;
6155         if (kstrtoul(page, 10, &new))
6156                 return -EINVAL;
6157
6158         err = mddev_lock(mddev);
6159         if (err)
6160                 return err;
6161         conf = mddev->private;
6162         if (!conf)
6163                 err = -ENODEV;
6164         else if (new != conf->worker_cnt_per_group) {
6165                 mddev_suspend(mddev);
6166
6167                 old_groups = conf->worker_groups;
6168                 if (old_groups)
6169                         flush_workqueue(raid5_wq);
6170
6171                 err = alloc_thread_groups(conf, new,
6172                                           &group_cnt, &worker_cnt_per_group,
6173                                           &new_groups);
6174                 if (!err) {
6175                         spin_lock_irq(&conf->device_lock);
6176                         conf->group_cnt = group_cnt;
6177                         conf->worker_cnt_per_group = worker_cnt_per_group;
6178                         conf->worker_groups = new_groups;
6179                         spin_unlock_irq(&conf->device_lock);
6180
6181                         if (old_groups)
6182                                 kfree(old_groups[0].workers);
6183                         kfree(old_groups);
6184                 }
6185                 mddev_resume(mddev);
6186         }
6187         mddev_unlock(mddev);
6188
6189         return err ?: len;
6190 }
6191
6192 static struct md_sysfs_entry
6193 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6194                                 raid5_show_group_thread_cnt,
6195                                 raid5_store_group_thread_cnt);
6196
6197 static struct attribute *raid5_attrs[] =  {
6198         &raid5_stripecache_size.attr,
6199         &raid5_stripecache_active.attr,
6200         &raid5_preread_bypass_threshold.attr,
6201         &raid5_group_thread_cnt.attr,
6202         &raid5_skip_copy.attr,
6203         &raid5_rmw_level.attr,
6204         NULL,
6205 };
6206 static struct attribute_group raid5_attrs_group = {
6207         .name = NULL,
6208         .attrs = raid5_attrs,
6209 };
6210
6211 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6212                                int *group_cnt,
6213                                int *worker_cnt_per_group,
6214                                struct r5worker_group **worker_groups)
6215 {
6216         int i, j, k;
6217         ssize_t size;
6218         struct r5worker *workers;
6219
6220         *worker_cnt_per_group = cnt;
6221         if (cnt == 0) {
6222                 *group_cnt = 0;
6223                 *worker_groups = NULL;
6224                 return 0;
6225         }
6226         *group_cnt = num_possible_nodes();
6227         size = sizeof(struct r5worker) * cnt;
6228         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6229         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6230                                 *group_cnt, GFP_NOIO);
6231         if (!*worker_groups || !workers) {
6232                 kfree(workers);
6233                 kfree(*worker_groups);
6234                 return -ENOMEM;
6235         }
6236
6237         for (i = 0; i < *group_cnt; i++) {
6238                 struct r5worker_group *group;
6239
6240                 group = &(*worker_groups)[i];
6241                 INIT_LIST_HEAD(&group->handle_list);
6242                 group->conf = conf;
6243                 group->workers = workers + i * cnt;
6244
6245                 for (j = 0; j < cnt; j++) {
6246                         struct r5worker *worker = group->workers + j;
6247                         worker->group = group;
6248                         INIT_WORK(&worker->work, raid5_do_work);
6249
6250                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6251                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6252                 }
6253         }
6254
6255         return 0;
6256 }
6257
6258 static void free_thread_groups(struct r5conf *conf)
6259 {
6260         if (conf->worker_groups)
6261                 kfree(conf->worker_groups[0].workers);
6262         kfree(conf->worker_groups);
6263         conf->worker_groups = NULL;
6264 }
6265
6266 static sector_t
6267 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6268 {
6269         struct r5conf *conf = mddev->private;
6270
6271         if (!sectors)
6272                 sectors = mddev->dev_sectors;
6273         if (!raid_disks)
6274                 /* size is defined by the smallest of previous and new size */
6275                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6276
6277         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6278         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6279         return sectors * (raid_disks - conf->max_degraded);
6280 }
6281
6282 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6283 {
6284         safe_put_page(percpu->spare_page);
6285         if (percpu->scribble)
6286                 flex_array_free(percpu->scribble);
6287         percpu->spare_page = NULL;
6288         percpu->scribble = NULL;
6289 }
6290
6291 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6292 {
6293         if (conf->level == 6 && !percpu->spare_page)
6294                 percpu->spare_page = alloc_page(GFP_KERNEL);
6295         if (!percpu->scribble)
6296                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6297                                                       conf->previous_raid_disks),
6298                                                   max(conf->chunk_sectors,
6299                                                       conf->prev_chunk_sectors)
6300                                                    / STRIPE_SECTORS,
6301                                                   GFP_KERNEL);
6302
6303         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6304                 free_scratch_buffer(conf, percpu);
6305                 return -ENOMEM;
6306         }
6307
6308         return 0;
6309 }
6310
6311 static void raid5_free_percpu(struct r5conf *conf)
6312 {
6313         unsigned long cpu;
6314
6315         if (!conf->percpu)
6316                 return;
6317
6318 #ifdef CONFIG_HOTPLUG_CPU
6319         unregister_cpu_notifier(&conf->cpu_notify);
6320 #endif
6321
6322         get_online_cpus();
6323         for_each_possible_cpu(cpu)
6324                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6325         put_online_cpus();
6326
6327         free_percpu(conf->percpu);
6328 }
6329
6330 static void free_conf(struct r5conf *conf)
6331 {
6332         if (conf->log)
6333                 r5l_exit_log(conf->log);
6334         if (conf->shrinker.seeks)
6335                 unregister_shrinker(&conf->shrinker);
6336
6337         free_thread_groups(conf);
6338         shrink_stripes(conf);
6339         raid5_free_percpu(conf);
6340         kfree(conf->disks);
6341         kfree(conf->stripe_hashtbl);
6342         kfree(conf);
6343 }
6344
6345 #ifdef CONFIG_HOTPLUG_CPU
6346 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6347                               void *hcpu)
6348 {
6349         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6350         long cpu = (long)hcpu;
6351         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6352
6353         switch (action) {
6354         case CPU_UP_PREPARE:
6355         case CPU_UP_PREPARE_FROZEN:
6356                 if (alloc_scratch_buffer(conf, percpu)) {
6357                         pr_err("%s: failed memory allocation for cpu%ld\n",
6358                                __func__, cpu);
6359                         return notifier_from_errno(-ENOMEM);
6360                 }
6361                 break;
6362         case CPU_DEAD:
6363         case CPU_DEAD_FROZEN:
6364                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6365                 break;
6366         default:
6367                 break;
6368         }
6369         return NOTIFY_OK;
6370 }
6371 #endif
6372
6373 static int raid5_alloc_percpu(struct r5conf *conf)
6374 {
6375         unsigned long cpu;
6376         int err = 0;
6377
6378         conf->percpu = alloc_percpu(struct raid5_percpu);
6379         if (!conf->percpu)
6380                 return -ENOMEM;
6381
6382 #ifdef CONFIG_HOTPLUG_CPU
6383         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6384         conf->cpu_notify.priority = 0;
6385         err = register_cpu_notifier(&conf->cpu_notify);
6386         if (err)
6387                 return err;
6388 #endif
6389
6390         get_online_cpus();
6391         for_each_present_cpu(cpu) {
6392                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6393                 if (err) {
6394                         pr_err("%s: failed memory allocation for cpu%ld\n",
6395                                __func__, cpu);
6396                         break;
6397                 }
6398         }
6399         put_online_cpus();
6400
6401         return err;
6402 }
6403
6404 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6405                                       struct shrink_control *sc)
6406 {
6407         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6408         unsigned long ret = SHRINK_STOP;
6409
6410         if (mutex_trylock(&conf->cache_size_mutex)) {
6411                 ret= 0;
6412                 while (ret < sc->nr_to_scan &&
6413                        conf->max_nr_stripes > conf->min_nr_stripes) {
6414                         if (drop_one_stripe(conf) == 0) {
6415                                 ret = SHRINK_STOP;
6416                                 break;
6417                         }
6418                         ret++;
6419                 }
6420                 mutex_unlock(&conf->cache_size_mutex);
6421         }
6422         return ret;
6423 }
6424
6425 static unsigned long raid5_cache_count(struct shrinker *shrink,
6426                                        struct shrink_control *sc)
6427 {
6428         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6429
6430         if (conf->max_nr_stripes < conf->min_nr_stripes)
6431                 /* unlikely, but not impossible */
6432                 return 0;
6433         return conf->max_nr_stripes - conf->min_nr_stripes;
6434 }
6435
6436 static struct r5conf *setup_conf(struct mddev *mddev)
6437 {
6438         struct r5conf *conf;
6439         int raid_disk, memory, max_disks;
6440         struct md_rdev *rdev;
6441         struct disk_info *disk;
6442         char pers_name[6];
6443         int i;
6444         int group_cnt, worker_cnt_per_group;
6445         struct r5worker_group *new_group;
6446
6447         if (mddev->new_level != 5
6448             && mddev->new_level != 4
6449             && mddev->new_level != 6) {
6450                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6451                        mdname(mddev), mddev->new_level);
6452                 return ERR_PTR(-EIO);
6453         }
6454         if ((mddev->new_level == 5
6455              && !algorithm_valid_raid5(mddev->new_layout)) ||
6456             (mddev->new_level == 6
6457              && !algorithm_valid_raid6(mddev->new_layout))) {
6458                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6459                        mdname(mddev), mddev->new_layout);
6460                 return ERR_PTR(-EIO);
6461         }
6462         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6463                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6464                        mdname(mddev), mddev->raid_disks);
6465                 return ERR_PTR(-EINVAL);
6466         }
6467
6468         if (!mddev->new_chunk_sectors ||
6469             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6470             !is_power_of_2(mddev->new_chunk_sectors)) {
6471                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6472                        mdname(mddev), mddev->new_chunk_sectors << 9);
6473                 return ERR_PTR(-EINVAL);
6474         }
6475
6476         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6477         if (conf == NULL)
6478                 goto abort;
6479         /* Don't enable multi-threading by default*/
6480         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6481                                  &new_group)) {
6482                 conf->group_cnt = group_cnt;
6483                 conf->worker_cnt_per_group = worker_cnt_per_group;
6484                 conf->worker_groups = new_group;
6485         } else
6486                 goto abort;
6487         spin_lock_init(&conf->device_lock);
6488         seqcount_init(&conf->gen_lock);
6489         mutex_init(&conf->cache_size_mutex);
6490         init_waitqueue_head(&conf->wait_for_quiescent);
6491         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6492                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6493         }
6494         init_waitqueue_head(&conf->wait_for_overlap);
6495         INIT_LIST_HEAD(&conf->handle_list);
6496         INIT_LIST_HEAD(&conf->hold_list);
6497         INIT_LIST_HEAD(&conf->delayed_list);
6498         INIT_LIST_HEAD(&conf->bitmap_list);
6499         bio_list_init(&conf->return_bi);
6500         init_llist_head(&conf->released_stripes);
6501         atomic_set(&conf->active_stripes, 0);
6502         atomic_set(&conf->preread_active_stripes, 0);
6503         atomic_set(&conf->active_aligned_reads, 0);
6504         conf->bypass_threshold = BYPASS_THRESHOLD;
6505         conf->recovery_disabled = mddev->recovery_disabled - 1;
6506
6507         conf->raid_disks = mddev->raid_disks;
6508         if (mddev->reshape_position == MaxSector)
6509                 conf->previous_raid_disks = mddev->raid_disks;
6510         else
6511                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6512         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6513
6514         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6515                               GFP_KERNEL);
6516         if (!conf->disks)
6517                 goto abort;
6518
6519         conf->mddev = mddev;
6520
6521         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6522                 goto abort;
6523
6524         /* We init hash_locks[0] separately to that it can be used
6525          * as the reference lock in the spin_lock_nest_lock() call
6526          * in lock_all_device_hash_locks_irq in order to convince
6527          * lockdep that we know what we are doing.
6528          */
6529         spin_lock_init(conf->hash_locks);
6530         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6531                 spin_lock_init(conf->hash_locks + i);
6532
6533         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6534                 INIT_LIST_HEAD(conf->inactive_list + i);
6535
6536         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6537                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6538
6539         conf->level = mddev->new_level;
6540         conf->chunk_sectors = mddev->new_chunk_sectors;
6541         if (raid5_alloc_percpu(conf) != 0)
6542                 goto abort;
6543
6544         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6545
6546         rdev_for_each(rdev, mddev) {
6547                 raid_disk = rdev->raid_disk;
6548                 if (raid_disk >= max_disks
6549                     || raid_disk < 0)
6550                         continue;
6551                 disk = conf->disks + raid_disk;
6552
6553                 if (test_bit(Replacement, &rdev->flags)) {
6554                         if (disk->replacement)
6555                                 goto abort;
6556                         disk->replacement = rdev;
6557                 } else {
6558                         if (disk->rdev)
6559                                 goto abort;
6560                         disk->rdev = rdev;
6561                 }
6562
6563                 if (test_bit(In_sync, &rdev->flags)) {
6564                         char b[BDEVNAME_SIZE];
6565                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6566                                " disk %d\n",
6567                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6568                 } else if (rdev->saved_raid_disk != raid_disk)
6569                         /* Cannot rely on bitmap to complete recovery */
6570                         conf->fullsync = 1;
6571         }
6572
6573         conf->level = mddev->new_level;
6574         if (conf->level == 6) {
6575                 conf->max_degraded = 2;
6576                 if (raid6_call.xor_syndrome)
6577                         conf->rmw_level = PARITY_ENABLE_RMW;
6578                 else
6579                         conf->rmw_level = PARITY_DISABLE_RMW;
6580         } else {
6581                 conf->max_degraded = 1;
6582                 conf->rmw_level = PARITY_ENABLE_RMW;
6583         }
6584         conf->algorithm = mddev->new_layout;
6585         conf->reshape_progress = mddev->reshape_position;
6586         if (conf->reshape_progress != MaxSector) {
6587                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6588                 conf->prev_algo = mddev->layout;
6589         } else {
6590                 conf->prev_chunk_sectors = conf->chunk_sectors;
6591                 conf->prev_algo = conf->algorithm;
6592         }
6593
6594         conf->min_nr_stripes = NR_STRIPES;
6595         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6596                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6597         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6598         if (grow_stripes(conf, conf->min_nr_stripes)) {
6599                 printk(KERN_ERR
6600                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6601                        mdname(mddev), memory);
6602                 goto abort;
6603         } else
6604                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6605                        mdname(mddev), memory);
6606         /*
6607          * Losing a stripe head costs more than the time to refill it,
6608          * it reduces the queue depth and so can hurt throughput.
6609          * So set it rather large, scaled by number of devices.
6610          */
6611         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6612         conf->shrinker.scan_objects = raid5_cache_scan;
6613         conf->shrinker.count_objects = raid5_cache_count;
6614         conf->shrinker.batch = 128;
6615         conf->shrinker.flags = 0;
6616         register_shrinker(&conf->shrinker);
6617
6618         sprintf(pers_name, "raid%d", mddev->new_level);
6619         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6620         if (!conf->thread) {
6621                 printk(KERN_ERR
6622                        "md/raid:%s: couldn't allocate thread.\n",
6623                        mdname(mddev));
6624                 goto abort;
6625         }
6626
6627         return conf;
6628
6629  abort:
6630         if (conf) {
6631                 free_conf(conf);
6632                 return ERR_PTR(-EIO);
6633         } else
6634                 return ERR_PTR(-ENOMEM);
6635 }
6636
6637 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6638 {
6639         switch (algo) {
6640         case ALGORITHM_PARITY_0:
6641                 if (raid_disk < max_degraded)
6642                         return 1;
6643                 break;
6644         case ALGORITHM_PARITY_N:
6645                 if (raid_disk >= raid_disks - max_degraded)
6646                         return 1;
6647                 break;
6648         case ALGORITHM_PARITY_0_6:
6649                 if (raid_disk == 0 ||
6650                     raid_disk == raid_disks - 1)
6651                         return 1;
6652                 break;
6653         case ALGORITHM_LEFT_ASYMMETRIC_6:
6654         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6655         case ALGORITHM_LEFT_SYMMETRIC_6:
6656         case ALGORITHM_RIGHT_SYMMETRIC_6:
6657                 if (raid_disk == raid_disks - 1)
6658                         return 1;
6659         }
6660         return 0;
6661 }
6662
6663 static int run(struct mddev *mddev)
6664 {
6665         struct r5conf *conf;
6666         int working_disks = 0;
6667         int dirty_parity_disks = 0;
6668         struct md_rdev *rdev;
6669         struct md_rdev *journal_dev = NULL;
6670         sector_t reshape_offset = 0;
6671         int i;
6672         long long min_offset_diff = 0;
6673         int first = 1;
6674
6675         if (mddev->recovery_cp != MaxSector)
6676                 printk(KERN_NOTICE "md/raid:%s: not clean"
6677                        " -- starting background reconstruction\n",
6678                        mdname(mddev));
6679
6680         rdev_for_each(rdev, mddev) {
6681                 long long diff;
6682
6683                 if (test_bit(Journal, &rdev->flags))
6684                         journal_dev = rdev;
6685                 if (rdev->raid_disk < 0)
6686                         continue;
6687                 diff = (rdev->new_data_offset - rdev->data_offset);
6688                 if (first) {
6689                         min_offset_diff = diff;
6690                         first = 0;
6691                 } else if (mddev->reshape_backwards &&
6692                          diff < min_offset_diff)
6693                         min_offset_diff = diff;
6694                 else if (!mddev->reshape_backwards &&
6695                          diff > min_offset_diff)
6696                         min_offset_diff = diff;
6697         }
6698
6699         if (mddev->reshape_position != MaxSector) {
6700                 /* Check that we can continue the reshape.
6701                  * Difficulties arise if the stripe we would write to
6702                  * next is at or after the stripe we would read from next.
6703                  * For a reshape that changes the number of devices, this
6704                  * is only possible for a very short time, and mdadm makes
6705                  * sure that time appears to have past before assembling
6706                  * the array.  So we fail if that time hasn't passed.
6707                  * For a reshape that keeps the number of devices the same
6708                  * mdadm must be monitoring the reshape can keeping the
6709                  * critical areas read-only and backed up.  It will start
6710                  * the array in read-only mode, so we check for that.
6711                  */
6712                 sector_t here_new, here_old;
6713                 int old_disks;
6714                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6715                 int chunk_sectors;
6716                 int new_data_disks;
6717
6718                 if (journal_dev) {
6719                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6720                                mdname(mddev));
6721                         return -EINVAL;
6722                 }
6723
6724                 if (mddev->new_level != mddev->level) {
6725                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6726                                "required - aborting.\n",
6727                                mdname(mddev));
6728                         return -EINVAL;
6729                 }
6730                 old_disks = mddev->raid_disks - mddev->delta_disks;
6731                 /* reshape_position must be on a new-stripe boundary, and one
6732                  * further up in new geometry must map after here in old
6733                  * geometry.
6734                  * If the chunk sizes are different, then as we perform reshape
6735                  * in units of the largest of the two, reshape_position needs
6736                  * be a multiple of the largest chunk size times new data disks.
6737                  */
6738                 here_new = mddev->reshape_position;
6739                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6740                 new_data_disks = mddev->raid_disks - max_degraded;
6741                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6742                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6743                                "on a stripe boundary\n", mdname(mddev));
6744                         return -EINVAL;
6745                 }
6746                 reshape_offset = here_new * chunk_sectors;
6747                 /* here_new is the stripe we will write to */
6748                 here_old = mddev->reshape_position;
6749                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6750                 /* here_old is the first stripe that we might need to read
6751                  * from */
6752                 if (mddev->delta_disks == 0) {
6753                         /* We cannot be sure it is safe to start an in-place
6754                          * reshape.  It is only safe if user-space is monitoring
6755                          * and taking constant backups.
6756                          * mdadm always starts a situation like this in
6757                          * readonly mode so it can take control before
6758                          * allowing any writes.  So just check for that.
6759                          */
6760                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6761                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6762                                 /* not really in-place - so OK */;
6763                         else if (mddev->ro == 0) {
6764                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6765                                        "must be started in read-only mode "
6766                                        "- aborting\n",
6767                                        mdname(mddev));
6768                                 return -EINVAL;
6769                         }
6770                 } else if (mddev->reshape_backwards
6771                     ? (here_new * chunk_sectors + min_offset_diff <=
6772                        here_old * chunk_sectors)
6773                     : (here_new * chunk_sectors >=
6774                        here_old * chunk_sectors + (-min_offset_diff))) {
6775                         /* Reading from the same stripe as writing to - bad */
6776                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6777                                "auto-recovery - aborting.\n",
6778                                mdname(mddev));
6779                         return -EINVAL;
6780                 }
6781                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6782                        mdname(mddev));
6783                 /* OK, we should be able to continue; */
6784         } else {
6785                 BUG_ON(mddev->level != mddev->new_level);
6786                 BUG_ON(mddev->layout != mddev->new_layout);
6787                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6788                 BUG_ON(mddev->delta_disks != 0);
6789         }
6790
6791         if (mddev->private == NULL)
6792                 conf = setup_conf(mddev);
6793         else
6794                 conf = mddev->private;
6795
6796         if (IS_ERR(conf))
6797                 return PTR_ERR(conf);
6798
6799         conf->min_offset_diff = min_offset_diff;
6800         mddev->thread = conf->thread;
6801         conf->thread = NULL;
6802         mddev->private = conf;
6803
6804         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6805              i++) {
6806                 rdev = conf->disks[i].rdev;
6807                 if (!rdev && conf->disks[i].replacement) {
6808                         /* The replacement is all we have yet */
6809                         rdev = conf->disks[i].replacement;
6810                         conf->disks[i].replacement = NULL;
6811                         clear_bit(Replacement, &rdev->flags);
6812                         conf->disks[i].rdev = rdev;
6813                 }
6814                 if (!rdev)
6815                         continue;
6816                 if (conf->disks[i].replacement &&
6817                     conf->reshape_progress != MaxSector) {
6818                         /* replacements and reshape simply do not mix. */
6819                         printk(KERN_ERR "md: cannot handle concurrent "
6820                                "replacement and reshape.\n");
6821                         goto abort;
6822                 }
6823                 if (test_bit(In_sync, &rdev->flags)) {
6824                         working_disks++;
6825                         continue;
6826                 }
6827                 /* This disc is not fully in-sync.  However if it
6828                  * just stored parity (beyond the recovery_offset),
6829                  * when we don't need to be concerned about the
6830                  * array being dirty.
6831                  * When reshape goes 'backwards', we never have
6832                  * partially completed devices, so we only need
6833                  * to worry about reshape going forwards.
6834                  */
6835                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6836                 if (mddev->major_version == 0 &&
6837                     mddev->minor_version > 90)
6838                         rdev->recovery_offset = reshape_offset;
6839
6840                 if (rdev->recovery_offset < reshape_offset) {
6841                         /* We need to check old and new layout */
6842                         if (!only_parity(rdev->raid_disk,
6843                                          conf->algorithm,
6844                                          conf->raid_disks,
6845                                          conf->max_degraded))
6846                                 continue;
6847                 }
6848                 if (!only_parity(rdev->raid_disk,
6849                                  conf->prev_algo,
6850                                  conf->previous_raid_disks,
6851                                  conf->max_degraded))
6852                         continue;
6853                 dirty_parity_disks++;
6854         }
6855
6856         /*
6857          * 0 for a fully functional array, 1 or 2 for a degraded array.
6858          */
6859         mddev->degraded = calc_degraded(conf);
6860
6861         if (has_failed(conf)) {
6862                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6863                         " (%d/%d failed)\n",
6864                         mdname(mddev), mddev->degraded, conf->raid_disks);
6865                 goto abort;
6866         }
6867
6868         /* device size must be a multiple of chunk size */
6869         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6870         mddev->resync_max_sectors = mddev->dev_sectors;
6871
6872         if (mddev->degraded > dirty_parity_disks &&
6873             mddev->recovery_cp != MaxSector) {
6874                 if (mddev->ok_start_degraded)
6875                         printk(KERN_WARNING
6876                                "md/raid:%s: starting dirty degraded array"
6877                                " - data corruption possible.\n",
6878                                mdname(mddev));
6879                 else {
6880                         printk(KERN_ERR
6881                                "md/raid:%s: cannot start dirty degraded array.\n",
6882                                mdname(mddev));
6883                         goto abort;
6884                 }
6885         }
6886
6887         if (mddev->degraded == 0)
6888                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6889                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6890                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6891                        mddev->new_layout);
6892         else
6893                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6894                        " out of %d devices, algorithm %d\n",
6895                        mdname(mddev), conf->level,
6896                        mddev->raid_disks - mddev->degraded,
6897                        mddev->raid_disks, mddev->new_layout);
6898
6899         print_raid5_conf(conf);
6900
6901         if (conf->reshape_progress != MaxSector) {
6902                 conf->reshape_safe = conf->reshape_progress;
6903                 atomic_set(&conf->reshape_stripes, 0);
6904                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6905                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6906                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6907                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6908                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6909                                                         "reshape");
6910         }
6911
6912         /* Ok, everything is just fine now */
6913         if (mddev->to_remove == &raid5_attrs_group)
6914                 mddev->to_remove = NULL;
6915         else if (mddev->kobj.sd &&
6916             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6917                 printk(KERN_WARNING
6918                        "raid5: failed to create sysfs attributes for %s\n",
6919                        mdname(mddev));
6920         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6921
6922         if (mddev->queue) {
6923                 int chunk_size;
6924                 bool discard_supported = true;
6925                 /* read-ahead size must cover two whole stripes, which
6926                  * is 2 * (datadisks) * chunksize where 'n' is the
6927                  * number of raid devices
6928                  */
6929                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6930                 int stripe = data_disks *
6931                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6932                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6933                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6934
6935                 chunk_size = mddev->chunk_sectors << 9;
6936                 blk_queue_io_min(mddev->queue, chunk_size);
6937                 blk_queue_io_opt(mddev->queue, chunk_size *
6938                                  (conf->raid_disks - conf->max_degraded));
6939                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6940                 /*
6941                  * We can only discard a whole stripe. It doesn't make sense to
6942                  * discard data disk but write parity disk
6943                  */
6944                 stripe = stripe * PAGE_SIZE;
6945                 /* Round up to power of 2, as discard handling
6946                  * currently assumes that */
6947                 while ((stripe-1) & stripe)
6948                         stripe = (stripe | (stripe-1)) + 1;
6949                 mddev->queue->limits.discard_alignment = stripe;
6950                 mddev->queue->limits.discard_granularity = stripe;
6951                 /*
6952                  * unaligned part of discard request will be ignored, so can't
6953                  * guarantee discard_zeroes_data
6954                  */
6955                 mddev->queue->limits.discard_zeroes_data = 0;
6956
6957                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6958
6959                 rdev_for_each(rdev, mddev) {
6960                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6961                                           rdev->data_offset << 9);
6962                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6963                                           rdev->new_data_offset << 9);
6964                         /*
6965                          * discard_zeroes_data is required, otherwise data
6966                          * could be lost. Consider a scenario: discard a stripe
6967                          * (the stripe could be inconsistent if
6968                          * discard_zeroes_data is 0); write one disk of the
6969                          * stripe (the stripe could be inconsistent again
6970                          * depending on which disks are used to calculate
6971                          * parity); the disk is broken; The stripe data of this
6972                          * disk is lost.
6973                          */
6974                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6975                             !bdev_get_queue(rdev->bdev)->
6976                                                 limits.discard_zeroes_data)
6977                                 discard_supported = false;
6978                         /* Unfortunately, discard_zeroes_data is not currently
6979                          * a guarantee - just a hint.  So we only allow DISCARD
6980                          * if the sysadmin has confirmed that only safe devices
6981                          * are in use by setting a module parameter.
6982                          */
6983                         if (!devices_handle_discard_safely) {
6984                                 if (discard_supported) {
6985                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6986                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6987                                 }
6988                                 discard_supported = false;
6989                         }
6990                 }
6991
6992                 if (discard_supported &&
6993                    mddev->queue->limits.max_discard_sectors >= stripe &&
6994                    mddev->queue->limits.discard_granularity >= stripe)
6995                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6996                                                 mddev->queue);
6997                 else
6998                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6999                                                 mddev->queue);
7000         }
7001
7002         if (journal_dev) {
7003                 char b[BDEVNAME_SIZE];
7004
7005                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7006                        mdname(mddev), bdevname(journal_dev->bdev, b));
7007                 r5l_init_log(conf, journal_dev);
7008         }
7009
7010         return 0;
7011 abort:
7012         md_unregister_thread(&mddev->thread);
7013         print_raid5_conf(conf);
7014         free_conf(conf);
7015         mddev->private = NULL;
7016         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7017         return -EIO;
7018 }
7019
7020 static void raid5_free(struct mddev *mddev, void *priv)
7021 {
7022         struct r5conf *conf = priv;
7023
7024         free_conf(conf);
7025         mddev->to_remove = &raid5_attrs_group;
7026 }
7027
7028 static void status(struct seq_file *seq, struct mddev *mddev)
7029 {
7030         struct r5conf *conf = mddev->private;
7031         int i;
7032
7033         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7034                 conf->chunk_sectors / 2, mddev->layout);
7035         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7036         for (i = 0; i < conf->raid_disks; i++)
7037                 seq_printf (seq, "%s",
7038                                conf->disks[i].rdev &&
7039                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7040         seq_printf (seq, "]");
7041 }
7042
7043 static void print_raid5_conf (struct r5conf *conf)
7044 {
7045         int i;
7046         struct disk_info *tmp;
7047
7048         printk(KERN_DEBUG "RAID conf printout:\n");
7049         if (!conf) {
7050                 printk("(conf==NULL)\n");
7051                 return;
7052         }
7053         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7054                conf->raid_disks,
7055                conf->raid_disks - conf->mddev->degraded);
7056
7057         for (i = 0; i < conf->raid_disks; i++) {
7058                 char b[BDEVNAME_SIZE];
7059                 tmp = conf->disks + i;
7060                 if (tmp->rdev)
7061                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7062                                i, !test_bit(Faulty, &tmp->rdev->flags),
7063                                bdevname(tmp->rdev->bdev, b));
7064         }
7065 }
7066
7067 static int raid5_spare_active(struct mddev *mddev)
7068 {
7069         int i;
7070         struct r5conf *conf = mddev->private;
7071         struct disk_info *tmp;
7072         int count = 0;
7073         unsigned long flags;
7074
7075         for (i = 0; i < conf->raid_disks; i++) {
7076                 tmp = conf->disks + i;
7077                 if (tmp->replacement
7078                     && tmp->replacement->recovery_offset == MaxSector
7079                     && !test_bit(Faulty, &tmp->replacement->flags)
7080                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7081                         /* Replacement has just become active. */
7082                         if (!tmp->rdev
7083                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7084                                 count++;
7085                         if (tmp->rdev) {
7086                                 /* Replaced device not technically faulty,
7087                                  * but we need to be sure it gets removed
7088                                  * and never re-added.
7089                                  */
7090                                 set_bit(Faulty, &tmp->rdev->flags);
7091                                 sysfs_notify_dirent_safe(
7092                                         tmp->rdev->sysfs_state);
7093                         }
7094                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7095                 } else if (tmp->rdev
7096                     && tmp->rdev->recovery_offset == MaxSector
7097                     && !test_bit(Faulty, &tmp->rdev->flags)
7098                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7099                         count++;
7100                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7101                 }
7102         }
7103         spin_lock_irqsave(&conf->device_lock, flags);
7104         mddev->degraded = calc_degraded(conf);
7105         spin_unlock_irqrestore(&conf->device_lock, flags);
7106         print_raid5_conf(conf);
7107         return count;
7108 }
7109
7110 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7111 {
7112         struct r5conf *conf = mddev->private;
7113         int err = 0;
7114         int number = rdev->raid_disk;
7115         struct md_rdev **rdevp;
7116         struct disk_info *p = conf->disks + number;
7117
7118         print_raid5_conf(conf);
7119         if (rdev == p->rdev)
7120                 rdevp = &p->rdev;
7121         else if (rdev == p->replacement)
7122                 rdevp = &p->replacement;
7123         else
7124                 return 0;
7125
7126         if (number >= conf->raid_disks &&
7127             conf->reshape_progress == MaxSector)
7128                 clear_bit(In_sync, &rdev->flags);
7129
7130         if (test_bit(In_sync, &rdev->flags) ||
7131             atomic_read(&rdev->nr_pending)) {
7132                 err = -EBUSY;
7133                 goto abort;
7134         }
7135         /* Only remove non-faulty devices if recovery
7136          * isn't possible.
7137          */
7138         if (!test_bit(Faulty, &rdev->flags) &&
7139             mddev->recovery_disabled != conf->recovery_disabled &&
7140             !has_failed(conf) &&
7141             (!p->replacement || p->replacement == rdev) &&
7142             number < conf->raid_disks) {
7143                 err = -EBUSY;
7144                 goto abort;
7145         }
7146         *rdevp = NULL;
7147         synchronize_rcu();
7148         if (atomic_read(&rdev->nr_pending)) {
7149                 /* lost the race, try later */
7150                 err = -EBUSY;
7151                 *rdevp = rdev;
7152         } else if (p->replacement) {
7153                 /* We must have just cleared 'rdev' */
7154                 p->rdev = p->replacement;
7155                 clear_bit(Replacement, &p->replacement->flags);
7156                 smp_mb(); /* Make sure other CPUs may see both as identical
7157                            * but will never see neither - if they are careful
7158                            */
7159                 p->replacement = NULL;
7160                 clear_bit(WantReplacement, &rdev->flags);
7161         } else
7162                 /* We might have just removed the Replacement as faulty-
7163                  * clear the bit just in case
7164                  */
7165                 clear_bit(WantReplacement, &rdev->flags);
7166 abort:
7167
7168         print_raid5_conf(conf);
7169         return err;
7170 }
7171
7172 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7173 {
7174         struct r5conf *conf = mddev->private;
7175         int err = -EEXIST;
7176         int disk;
7177         struct disk_info *p;
7178         int first = 0;
7179         int last = conf->raid_disks - 1;
7180
7181         if (mddev->recovery_disabled == conf->recovery_disabled)
7182                 return -EBUSY;
7183
7184         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7185                 /* no point adding a device */
7186                 return -EINVAL;
7187
7188         if (rdev->raid_disk >= 0)
7189                 first = last = rdev->raid_disk;
7190
7191         /*
7192          * find the disk ... but prefer rdev->saved_raid_disk
7193          * if possible.
7194          */
7195         if (rdev->saved_raid_disk >= 0 &&
7196             rdev->saved_raid_disk >= first &&
7197             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7198                 first = rdev->saved_raid_disk;
7199
7200         for (disk = first; disk <= last; disk++) {
7201                 p = conf->disks + disk;
7202                 if (p->rdev == NULL) {
7203                         clear_bit(In_sync, &rdev->flags);
7204                         rdev->raid_disk = disk;
7205                         err = 0;
7206                         if (rdev->saved_raid_disk != disk)
7207                                 conf->fullsync = 1;
7208                         rcu_assign_pointer(p->rdev, rdev);
7209                         goto out;
7210                 }
7211         }
7212         for (disk = first; disk <= last; disk++) {
7213                 p = conf->disks + disk;
7214                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7215                     p->replacement == NULL) {
7216                         clear_bit(In_sync, &rdev->flags);
7217                         set_bit(Replacement, &rdev->flags);
7218                         rdev->raid_disk = disk;
7219                         err = 0;
7220                         conf->fullsync = 1;
7221                         rcu_assign_pointer(p->replacement, rdev);
7222                         break;
7223                 }
7224         }
7225 out:
7226         print_raid5_conf(conf);
7227         return err;
7228 }
7229
7230 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7231 {
7232         /* no resync is happening, and there is enough space
7233          * on all devices, so we can resize.
7234          * We need to make sure resync covers any new space.
7235          * If the array is shrinking we should possibly wait until
7236          * any io in the removed space completes, but it hardly seems
7237          * worth it.
7238          */
7239         sector_t newsize;
7240         struct r5conf *conf = mddev->private;
7241
7242         if (conf->log)
7243                 return -EINVAL;
7244         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7245         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7246         if (mddev->external_size &&
7247             mddev->array_sectors > newsize)
7248                 return -EINVAL;
7249         if (mddev->bitmap) {
7250                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7251                 if (ret)
7252                         return ret;
7253         }
7254         md_set_array_sectors(mddev, newsize);
7255         set_capacity(mddev->gendisk, mddev->array_sectors);
7256         revalidate_disk(mddev->gendisk);
7257         if (sectors > mddev->dev_sectors &&
7258             mddev->recovery_cp > mddev->dev_sectors) {
7259                 mddev->recovery_cp = mddev->dev_sectors;
7260                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7261         }
7262         mddev->dev_sectors = sectors;
7263         mddev->resync_max_sectors = sectors;
7264         return 0;
7265 }
7266
7267 static int check_stripe_cache(struct mddev *mddev)
7268 {
7269         /* Can only proceed if there are plenty of stripe_heads.
7270          * We need a minimum of one full stripe,, and for sensible progress
7271          * it is best to have about 4 times that.
7272          * If we require 4 times, then the default 256 4K stripe_heads will
7273          * allow for chunk sizes up to 256K, which is probably OK.
7274          * If the chunk size is greater, user-space should request more
7275          * stripe_heads first.
7276          */
7277         struct r5conf *conf = mddev->private;
7278         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7279             > conf->min_nr_stripes ||
7280             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7281             > conf->min_nr_stripes) {
7282                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7283                        mdname(mddev),
7284                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7285                         / STRIPE_SIZE)*4);
7286                 return 0;
7287         }
7288         return 1;
7289 }
7290
7291 static int check_reshape(struct mddev *mddev)
7292 {
7293         struct r5conf *conf = mddev->private;
7294
7295         if (conf->log)
7296                 return -EINVAL;
7297         if (mddev->delta_disks == 0 &&
7298             mddev->new_layout == mddev->layout &&
7299             mddev->new_chunk_sectors == mddev->chunk_sectors)
7300                 return 0; /* nothing to do */
7301         if (has_failed(conf))
7302                 return -EINVAL;
7303         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7304                 /* We might be able to shrink, but the devices must
7305                  * be made bigger first.
7306                  * For raid6, 4 is the minimum size.
7307                  * Otherwise 2 is the minimum
7308                  */
7309                 int min = 2;
7310                 if (mddev->level == 6)
7311                         min = 4;
7312                 if (mddev->raid_disks + mddev->delta_disks < min)
7313                         return -EINVAL;
7314         }
7315
7316         if (!check_stripe_cache(mddev))
7317                 return -ENOSPC;
7318
7319         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7320             mddev->delta_disks > 0)
7321                 if (resize_chunks(conf,
7322                                   conf->previous_raid_disks
7323                                   + max(0, mddev->delta_disks),
7324                                   max(mddev->new_chunk_sectors,
7325                                       mddev->chunk_sectors)
7326                             ) < 0)
7327                         return -ENOMEM;
7328         return resize_stripes(conf, (conf->previous_raid_disks
7329                                      + mddev->delta_disks));
7330 }
7331
7332 static int raid5_start_reshape(struct mddev *mddev)
7333 {
7334         struct r5conf *conf = mddev->private;
7335         struct md_rdev *rdev;
7336         int spares = 0;
7337         unsigned long flags;
7338
7339         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7340                 return -EBUSY;
7341
7342         if (!check_stripe_cache(mddev))
7343                 return -ENOSPC;
7344
7345         if (has_failed(conf))
7346                 return -EINVAL;
7347
7348         rdev_for_each(rdev, mddev) {
7349                 if (!test_bit(In_sync, &rdev->flags)
7350                     && !test_bit(Faulty, &rdev->flags))
7351                         spares++;
7352         }
7353
7354         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7355                 /* Not enough devices even to make a degraded array
7356                  * of that size
7357                  */
7358                 return -EINVAL;
7359
7360         /* Refuse to reduce size of the array.  Any reductions in
7361          * array size must be through explicit setting of array_size
7362          * attribute.
7363          */
7364         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7365             < mddev->array_sectors) {
7366                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7367                        "before number of disks\n", mdname(mddev));
7368                 return -EINVAL;
7369         }
7370
7371         atomic_set(&conf->reshape_stripes, 0);
7372         spin_lock_irq(&conf->device_lock);
7373         write_seqcount_begin(&conf->gen_lock);
7374         conf->previous_raid_disks = conf->raid_disks;
7375         conf->raid_disks += mddev->delta_disks;
7376         conf->prev_chunk_sectors = conf->chunk_sectors;
7377         conf->chunk_sectors = mddev->new_chunk_sectors;
7378         conf->prev_algo = conf->algorithm;
7379         conf->algorithm = mddev->new_layout;
7380         conf->generation++;
7381         /* Code that selects data_offset needs to see the generation update
7382          * if reshape_progress has been set - so a memory barrier needed.
7383          */
7384         smp_mb();
7385         if (mddev->reshape_backwards)
7386                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7387         else
7388                 conf->reshape_progress = 0;
7389         conf->reshape_safe = conf->reshape_progress;
7390         write_seqcount_end(&conf->gen_lock);
7391         spin_unlock_irq(&conf->device_lock);
7392
7393         /* Now make sure any requests that proceeded on the assumption
7394          * the reshape wasn't running - like Discard or Read - have
7395          * completed.
7396          */
7397         mddev_suspend(mddev);
7398         mddev_resume(mddev);
7399
7400         /* Add some new drives, as many as will fit.
7401          * We know there are enough to make the newly sized array work.
7402          * Don't add devices if we are reducing the number of
7403          * devices in the array.  This is because it is not possible
7404          * to correctly record the "partially reconstructed" state of
7405          * such devices during the reshape and confusion could result.
7406          */
7407         if (mddev->delta_disks >= 0) {
7408                 rdev_for_each(rdev, mddev)
7409                         if (rdev->raid_disk < 0 &&
7410                             !test_bit(Faulty, &rdev->flags)) {
7411                                 if (raid5_add_disk(mddev, rdev) == 0) {
7412                                         if (rdev->raid_disk
7413                                             >= conf->previous_raid_disks)
7414                                                 set_bit(In_sync, &rdev->flags);
7415                                         else
7416                                                 rdev->recovery_offset = 0;
7417
7418                                         if (sysfs_link_rdev(mddev, rdev))
7419                                                 /* Failure here is OK */;
7420                                 }
7421                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7422                                    && !test_bit(Faulty, &rdev->flags)) {
7423                                 /* This is a spare that was manually added */
7424                                 set_bit(In_sync, &rdev->flags);
7425                         }
7426
7427                 /* When a reshape changes the number of devices,
7428                  * ->degraded is measured against the larger of the
7429                  * pre and post number of devices.
7430                  */
7431                 spin_lock_irqsave(&conf->device_lock, flags);
7432                 mddev->degraded = calc_degraded(conf);
7433                 spin_unlock_irqrestore(&conf->device_lock, flags);
7434         }
7435         mddev->raid_disks = conf->raid_disks;
7436         mddev->reshape_position = conf->reshape_progress;
7437         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7438
7439         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7440         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7441         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7442         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7443         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7444         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7445                                                 "reshape");
7446         if (!mddev->sync_thread) {
7447                 mddev->recovery = 0;
7448                 spin_lock_irq(&conf->device_lock);
7449                 write_seqcount_begin(&conf->gen_lock);
7450                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7451                 mddev->new_chunk_sectors =
7452                         conf->chunk_sectors = conf->prev_chunk_sectors;
7453                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7454                 rdev_for_each(rdev, mddev)
7455                         rdev->new_data_offset = rdev->data_offset;
7456                 smp_wmb();
7457                 conf->generation --;
7458                 conf->reshape_progress = MaxSector;
7459                 mddev->reshape_position = MaxSector;
7460                 write_seqcount_end(&conf->gen_lock);
7461                 spin_unlock_irq(&conf->device_lock);
7462                 return -EAGAIN;
7463         }
7464         conf->reshape_checkpoint = jiffies;
7465         md_wakeup_thread(mddev->sync_thread);
7466         md_new_event(mddev);
7467         return 0;
7468 }
7469
7470 /* This is called from the reshape thread and should make any
7471  * changes needed in 'conf'
7472  */
7473 static void end_reshape(struct r5conf *conf)
7474 {
7475
7476         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7477                 struct md_rdev *rdev;
7478
7479                 spin_lock_irq(&conf->device_lock);
7480                 conf->previous_raid_disks = conf->raid_disks;
7481                 rdev_for_each(rdev, conf->mddev)
7482                         rdev->data_offset = rdev->new_data_offset;
7483                 smp_wmb();
7484                 conf->reshape_progress = MaxSector;
7485                 conf->mddev->reshape_position = MaxSector;
7486                 spin_unlock_irq(&conf->device_lock);
7487                 wake_up(&conf->wait_for_overlap);
7488
7489                 /* read-ahead size must cover two whole stripes, which is
7490                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7491                  */
7492                 if (conf->mddev->queue) {
7493                         int data_disks = conf->raid_disks - conf->max_degraded;
7494                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7495                                                    / PAGE_SIZE);
7496                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7497                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7498                 }
7499         }
7500 }
7501
7502 /* This is called from the raid5d thread with mddev_lock held.
7503  * It makes config changes to the device.
7504  */
7505 static void raid5_finish_reshape(struct mddev *mddev)
7506 {
7507         struct r5conf *conf = mddev->private;
7508
7509         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7510
7511                 if (mddev->delta_disks > 0) {
7512                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7513                         set_capacity(mddev->gendisk, mddev->array_sectors);
7514                         revalidate_disk(mddev->gendisk);
7515                 } else {
7516                         int d;
7517                         spin_lock_irq(&conf->device_lock);
7518                         mddev->degraded = calc_degraded(conf);
7519                         spin_unlock_irq(&conf->device_lock);
7520                         for (d = conf->raid_disks ;
7521                              d < conf->raid_disks - mddev->delta_disks;
7522                              d++) {
7523                                 struct md_rdev *rdev = conf->disks[d].rdev;
7524                                 if (rdev)
7525                                         clear_bit(In_sync, &rdev->flags);
7526                                 rdev = conf->disks[d].replacement;
7527                                 if (rdev)
7528                                         clear_bit(In_sync, &rdev->flags);
7529                         }
7530                 }
7531                 mddev->layout = conf->algorithm;
7532                 mddev->chunk_sectors = conf->chunk_sectors;
7533                 mddev->reshape_position = MaxSector;
7534                 mddev->delta_disks = 0;
7535                 mddev->reshape_backwards = 0;
7536         }
7537 }
7538
7539 static void raid5_quiesce(struct mddev *mddev, int state)
7540 {
7541         struct r5conf *conf = mddev->private;
7542
7543         switch(state) {
7544         case 2: /* resume for a suspend */
7545                 wake_up(&conf->wait_for_overlap);
7546                 break;
7547
7548         case 1: /* stop all writes */
7549                 lock_all_device_hash_locks_irq(conf);
7550                 /* '2' tells resync/reshape to pause so that all
7551                  * active stripes can drain
7552                  */
7553                 conf->quiesce = 2;
7554                 wait_event_cmd(conf->wait_for_quiescent,
7555                                     atomic_read(&conf->active_stripes) == 0 &&
7556                                     atomic_read(&conf->active_aligned_reads) == 0,
7557                                     unlock_all_device_hash_locks_irq(conf),
7558                                     lock_all_device_hash_locks_irq(conf));
7559                 conf->quiesce = 1;
7560                 unlock_all_device_hash_locks_irq(conf);
7561                 /* allow reshape to continue */
7562                 wake_up(&conf->wait_for_overlap);
7563                 break;
7564
7565         case 0: /* re-enable writes */
7566                 lock_all_device_hash_locks_irq(conf);
7567                 conf->quiesce = 0;
7568                 wake_up(&conf->wait_for_quiescent);
7569                 wake_up(&conf->wait_for_overlap);
7570                 unlock_all_device_hash_locks_irq(conf);
7571                 break;
7572         }
7573 }
7574
7575 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7576 {
7577         struct r0conf *raid0_conf = mddev->private;
7578         sector_t sectors;
7579
7580         /* for raid0 takeover only one zone is supported */
7581         if (raid0_conf->nr_strip_zones > 1) {
7582                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7583                        mdname(mddev));
7584                 return ERR_PTR(-EINVAL);
7585         }
7586
7587         sectors = raid0_conf->strip_zone[0].zone_end;
7588         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7589         mddev->dev_sectors = sectors;
7590         mddev->new_level = level;
7591         mddev->new_layout = ALGORITHM_PARITY_N;
7592         mddev->new_chunk_sectors = mddev->chunk_sectors;
7593         mddev->raid_disks += 1;
7594         mddev->delta_disks = 1;
7595         /* make sure it will be not marked as dirty */
7596         mddev->recovery_cp = MaxSector;
7597
7598         return setup_conf(mddev);
7599 }
7600
7601 static void *raid5_takeover_raid1(struct mddev *mddev)
7602 {
7603         int chunksect;
7604
7605         if (mddev->raid_disks != 2 ||
7606             mddev->degraded > 1)
7607                 return ERR_PTR(-EINVAL);
7608
7609         /* Should check if there are write-behind devices? */
7610
7611         chunksect = 64*2; /* 64K by default */
7612
7613         /* The array must be an exact multiple of chunksize */
7614         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7615                 chunksect >>= 1;
7616
7617         if ((chunksect<<9) < STRIPE_SIZE)
7618                 /* array size does not allow a suitable chunk size */
7619                 return ERR_PTR(-EINVAL);
7620
7621         mddev->new_level = 5;
7622         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7623         mddev->new_chunk_sectors = chunksect;
7624
7625         return setup_conf(mddev);
7626 }
7627
7628 static void *raid5_takeover_raid6(struct mddev *mddev)
7629 {
7630         int new_layout;
7631
7632         switch (mddev->layout) {
7633         case ALGORITHM_LEFT_ASYMMETRIC_6:
7634                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7635                 break;
7636         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7637                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7638                 break;
7639         case ALGORITHM_LEFT_SYMMETRIC_6:
7640                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7641                 break;
7642         case ALGORITHM_RIGHT_SYMMETRIC_6:
7643                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7644                 break;
7645         case ALGORITHM_PARITY_0_6:
7646                 new_layout = ALGORITHM_PARITY_0;
7647                 break;
7648         case ALGORITHM_PARITY_N:
7649                 new_layout = ALGORITHM_PARITY_N;
7650                 break;
7651         default:
7652                 return ERR_PTR(-EINVAL);
7653         }
7654         mddev->new_level = 5;
7655         mddev->new_layout = new_layout;
7656         mddev->delta_disks = -1;
7657         mddev->raid_disks -= 1;
7658         return setup_conf(mddev);
7659 }
7660
7661 static int raid5_check_reshape(struct mddev *mddev)
7662 {
7663         /* For a 2-drive array, the layout and chunk size can be changed
7664          * immediately as not restriping is needed.
7665          * For larger arrays we record the new value - after validation
7666          * to be used by a reshape pass.
7667          */
7668         struct r5conf *conf = mddev->private;
7669         int new_chunk = mddev->new_chunk_sectors;
7670
7671         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7672                 return -EINVAL;
7673         if (new_chunk > 0) {
7674                 if (!is_power_of_2(new_chunk))
7675                         return -EINVAL;
7676                 if (new_chunk < (PAGE_SIZE>>9))
7677                         return -EINVAL;
7678                 if (mddev->array_sectors & (new_chunk-1))
7679                         /* not factor of array size */
7680                         return -EINVAL;
7681         }
7682
7683         /* They look valid */
7684
7685         if (mddev->raid_disks == 2) {
7686                 /* can make the change immediately */
7687                 if (mddev->new_layout >= 0) {
7688                         conf->algorithm = mddev->new_layout;
7689                         mddev->layout = mddev->new_layout;
7690                 }
7691                 if (new_chunk > 0) {
7692                         conf->chunk_sectors = new_chunk ;
7693                         mddev->chunk_sectors = new_chunk;
7694                 }
7695                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7696                 md_wakeup_thread(mddev->thread);
7697         }
7698         return check_reshape(mddev);
7699 }
7700
7701 static int raid6_check_reshape(struct mddev *mddev)
7702 {
7703         int new_chunk = mddev->new_chunk_sectors;
7704
7705         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7706                 return -EINVAL;
7707         if (new_chunk > 0) {
7708                 if (!is_power_of_2(new_chunk))
7709                         return -EINVAL;
7710                 if (new_chunk < (PAGE_SIZE >> 9))
7711                         return -EINVAL;
7712                 if (mddev->array_sectors & (new_chunk-1))
7713                         /* not factor of array size */
7714                         return -EINVAL;
7715         }
7716
7717         /* They look valid */
7718         return check_reshape(mddev);
7719 }
7720
7721 static void *raid5_takeover(struct mddev *mddev)
7722 {
7723         /* raid5 can take over:
7724          *  raid0 - if there is only one strip zone - make it a raid4 layout
7725          *  raid1 - if there are two drives.  We need to know the chunk size
7726          *  raid4 - trivial - just use a raid4 layout.
7727          *  raid6 - Providing it is a *_6 layout
7728          */
7729         if (mddev->level == 0)
7730                 return raid45_takeover_raid0(mddev, 5);
7731         if (mddev->level == 1)
7732                 return raid5_takeover_raid1(mddev);
7733         if (mddev->level == 4) {
7734                 mddev->new_layout = ALGORITHM_PARITY_N;
7735                 mddev->new_level = 5;
7736                 return setup_conf(mddev);
7737         }
7738         if (mddev->level == 6)
7739                 return raid5_takeover_raid6(mddev);
7740
7741         return ERR_PTR(-EINVAL);
7742 }
7743
7744 static void *raid4_takeover(struct mddev *mddev)
7745 {
7746         /* raid4 can take over:
7747          *  raid0 - if there is only one strip zone
7748          *  raid5 - if layout is right
7749          */
7750         if (mddev->level == 0)
7751                 return raid45_takeover_raid0(mddev, 4);
7752         if (mddev->level == 5 &&
7753             mddev->layout == ALGORITHM_PARITY_N) {
7754                 mddev->new_layout = 0;
7755                 mddev->new_level = 4;
7756                 return setup_conf(mddev);
7757         }
7758         return ERR_PTR(-EINVAL);
7759 }
7760
7761 static struct md_personality raid5_personality;
7762
7763 static void *raid6_takeover(struct mddev *mddev)
7764 {
7765         /* Currently can only take over a raid5.  We map the
7766          * personality to an equivalent raid6 personality
7767          * with the Q block at the end.
7768          */
7769         int new_layout;
7770
7771         if (mddev->pers != &raid5_personality)
7772                 return ERR_PTR(-EINVAL);
7773         if (mddev->degraded > 1)
7774                 return ERR_PTR(-EINVAL);
7775         if (mddev->raid_disks > 253)
7776                 return ERR_PTR(-EINVAL);
7777         if (mddev->raid_disks < 3)
7778                 return ERR_PTR(-EINVAL);
7779
7780         switch (mddev->layout) {
7781         case ALGORITHM_LEFT_ASYMMETRIC:
7782                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7783                 break;
7784         case ALGORITHM_RIGHT_ASYMMETRIC:
7785                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7786                 break;
7787         case ALGORITHM_LEFT_SYMMETRIC:
7788                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7789                 break;
7790         case ALGORITHM_RIGHT_SYMMETRIC:
7791                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7792                 break;
7793         case ALGORITHM_PARITY_0:
7794                 new_layout = ALGORITHM_PARITY_0_6;
7795                 break;
7796         case ALGORITHM_PARITY_N:
7797                 new_layout = ALGORITHM_PARITY_N;
7798                 break;
7799         default:
7800                 return ERR_PTR(-EINVAL);
7801         }
7802         mddev->new_level = 6;
7803         mddev->new_layout = new_layout;
7804         mddev->delta_disks = 1;
7805         mddev->raid_disks += 1;
7806         return setup_conf(mddev);
7807 }
7808
7809 static struct md_personality raid6_personality =
7810 {
7811         .name           = "raid6",
7812         .level          = 6,
7813         .owner          = THIS_MODULE,
7814         .make_request   = make_request,
7815         .run            = run,
7816         .free           = raid5_free,
7817         .status         = status,
7818         .error_handler  = error,
7819         .hot_add_disk   = raid5_add_disk,
7820         .hot_remove_disk= raid5_remove_disk,
7821         .spare_active   = raid5_spare_active,
7822         .sync_request   = sync_request,
7823         .resize         = raid5_resize,
7824         .size           = raid5_size,
7825         .check_reshape  = raid6_check_reshape,
7826         .start_reshape  = raid5_start_reshape,
7827         .finish_reshape = raid5_finish_reshape,
7828         .quiesce        = raid5_quiesce,
7829         .takeover       = raid6_takeover,
7830         .congested      = raid5_congested,
7831 };
7832 static struct md_personality raid5_personality =
7833 {
7834         .name           = "raid5",
7835         .level          = 5,
7836         .owner          = THIS_MODULE,
7837         .make_request   = make_request,
7838         .run            = run,
7839         .free           = raid5_free,
7840         .status         = status,
7841         .error_handler  = error,
7842         .hot_add_disk   = raid5_add_disk,
7843         .hot_remove_disk= raid5_remove_disk,
7844         .spare_active   = raid5_spare_active,
7845         .sync_request   = sync_request,
7846         .resize         = raid5_resize,
7847         .size           = raid5_size,
7848         .check_reshape  = raid5_check_reshape,
7849         .start_reshape  = raid5_start_reshape,
7850         .finish_reshape = raid5_finish_reshape,
7851         .quiesce        = raid5_quiesce,
7852         .takeover       = raid5_takeover,
7853         .congested      = raid5_congested,
7854 };
7855
7856 static struct md_personality raid4_personality =
7857 {
7858         .name           = "raid4",
7859         .level          = 4,
7860         .owner          = THIS_MODULE,
7861         .make_request   = make_request,
7862         .run            = run,
7863         .free           = raid5_free,
7864         .status         = status,
7865         .error_handler  = error,
7866         .hot_add_disk   = raid5_add_disk,
7867         .hot_remove_disk= raid5_remove_disk,
7868         .spare_active   = raid5_spare_active,
7869         .sync_request   = sync_request,
7870         .resize         = raid5_resize,
7871         .size           = raid5_size,
7872         .check_reshape  = raid5_check_reshape,
7873         .start_reshape  = raid5_start_reshape,
7874         .finish_reshape = raid5_finish_reshape,
7875         .quiesce        = raid5_quiesce,
7876         .takeover       = raid4_takeover,
7877         .congested      = raid5_congested,
7878 };
7879
7880 static int __init raid5_init(void)
7881 {
7882         raid5_wq = alloc_workqueue("raid5wq",
7883                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7884         if (!raid5_wq)
7885                 return -ENOMEM;
7886         register_md_personality(&raid6_personality);
7887         register_md_personality(&raid5_personality);
7888         register_md_personality(&raid4_personality);
7889         return 0;
7890 }
7891
7892 static void raid5_exit(void)
7893 {
7894         unregister_md_personality(&raid6_personality);
7895         unregister_md_personality(&raid5_personality);
7896         unregister_md_personality(&raid4_personality);
7897         destroy_workqueue(raid5_wq);
7898 }
7899
7900 module_init(raid5_init);
7901 module_exit(raid5_exit);
7902 MODULE_LICENSE("GPL");
7903 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7904 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7905 MODULE_ALIAS("md-raid5");
7906 MODULE_ALIAS("md-raid4");
7907 MODULE_ALIAS("md-level-5");
7908 MODULE_ALIAS("md-level-4");
7909 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7910 MODULE_ALIAS("md-raid6");
7911 MODULE_ALIAS("md-level-6");
7912
7913 /* This used to be two separate modules, they were: */
7914 MODULE_ALIAS("raid5");
7915 MODULE_ALIAS("raid6");