]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/media/platform/omap/omap_vout_vrfb.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / drivers / media / platform / omap / omap_vout_vrfb.c
1 /*
2  * omap_vout_vrfb.c
3  *
4  * Copyright (C) 2010 Texas Instruments.
5  *
6  * This file is licensed under the terms of the GNU General Public License
7  * version 2. This program is licensed "as is" without any warranty of any
8  * kind, whether express or implied.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15
16 #include <media/videobuf-dma-contig.h>
17 #include <media/v4l2-device.h>
18
19 #include <linux/omap-dma.h>
20 #include <video/omapvrfb.h>
21
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24
25 #define OMAP_DMA_NO_DEVICE      0
26
27 /*
28  * Function for allocating video buffers
29  */
30 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
31                 unsigned int *count, int startindex)
32 {
33         int i, j;
34
35         for (i = 0; i < *count; i++) {
36                 if (!vout->smsshado_virt_addr[i]) {
37                         vout->smsshado_virt_addr[i] =
38                                 omap_vout_alloc_buffer(vout->smsshado_size,
39                                                 &vout->smsshado_phy_addr[i]);
40                 }
41                 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
42                         if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
43                                 break;
44                 }
45                 if (!vout->smsshado_virt_addr[i]) {
46                         for (j = 0; j < i; j++) {
47                                 omap_vout_free_buffer(
48                                                 vout->smsshado_virt_addr[j],
49                                                 vout->smsshado_size);
50                                 vout->smsshado_virt_addr[j] = 0;
51                                 vout->smsshado_phy_addr[j] = 0;
52                         }
53                         *count = 0;
54                         return -ENOMEM;
55                 }
56                 memset((void *) vout->smsshado_virt_addr[i], 0,
57                                 vout->smsshado_size);
58         }
59         return 0;
60 }
61
62 /*
63  * Wakes up the application once the DMA transfer to VRFB space is completed.
64  */
65 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
66 {
67         struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
68
69         t->tx_status = 1;
70         wake_up_interruptible(&t->wait);
71 }
72
73 /*
74  * Free VRFB buffers
75  */
76 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
77 {
78         int j;
79
80         for (j = 0; j < VRFB_NUM_BUFS; j++) {
81                 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
82                                 vout->smsshado_size);
83                 vout->smsshado_virt_addr[j] = 0;
84                 vout->smsshado_phy_addr[j] = 0;
85         }
86 }
87
88 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
89                               bool static_vrfb_allocation)
90 {
91         int ret = 0, i, j;
92         struct omap_vout_device *vout;
93         struct video_device *vfd;
94         int image_width, image_height;
95         int vrfb_num_bufs = VRFB_NUM_BUFS;
96         struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
97         struct omap2video_device *vid_dev =
98                 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
99
100         vout = vid_dev->vouts[vid_num];
101         vfd = vout->vfd;
102
103         for (i = 0; i < VRFB_NUM_BUFS; i++) {
104                 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
105                         dev_info(&pdev->dev, ": VRFB allocation failed\n");
106                         for (j = 0; j < i; j++)
107                                 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
108                         ret = -ENOMEM;
109                         goto free_buffers;
110                 }
111         }
112
113         /* Calculate VRFB memory size */
114         /* allocate for worst case size */
115         image_width = VID_MAX_WIDTH / TILE_SIZE;
116         if (VID_MAX_WIDTH % TILE_SIZE)
117                 image_width++;
118
119         image_width = image_width * TILE_SIZE;
120         image_height = VID_MAX_HEIGHT / TILE_SIZE;
121
122         if (VID_MAX_HEIGHT % TILE_SIZE)
123                 image_height++;
124
125         image_height = image_height * TILE_SIZE;
126         vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
127
128         /*
129          * Request and Initialize DMA, for DMA based VRFB transfer
130          */
131         vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
132         vout->vrfb_dma_tx.dma_ch = -1;
133         vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
134         ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
135                         omap_vout_vrfb_dma_tx_callback,
136                         (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
137         if (ret < 0) {
138                 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
139                 dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
140                                 " video%d\n", vfd->minor);
141         }
142         init_waitqueue_head(&vout->vrfb_dma_tx.wait);
143
144         /* statically allocated the VRFB buffer is done through
145            commands line aruments */
146         if (static_vrfb_allocation) {
147                 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
148                         ret =  -ENOMEM;
149                         goto release_vrfb_ctx;
150                 }
151                 vout->vrfb_static_allocation = 1;
152         }
153         return 0;
154
155 release_vrfb_ctx:
156         for (j = 0; j < VRFB_NUM_BUFS; j++)
157                 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
158 free_buffers:
159         omap_vout_free_buffers(vout);
160
161         return ret;
162 }
163
164 /*
165  * Release the VRFB context once the module exits
166  */
167 void omap_vout_release_vrfb(struct omap_vout_device *vout)
168 {
169         int i;
170
171         for (i = 0; i < VRFB_NUM_BUFS; i++)
172                 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
173
174         if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
175                 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
176                 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
177         }
178 }
179
180 /*
181  * Allocate the buffers for the VRFB space.  Data is copied from V4L2
182  * buffers to the VRFB buffers using the DMA engine.
183  */
184 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
185                           unsigned int *count, unsigned int startindex)
186 {
187         int i;
188         bool yuv_mode;
189
190         if (!is_rotation_enabled(vout))
191                 return 0;
192
193         /* If rotation is enabled, allocate memory for VRFB space also */
194         *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
195
196         /* Allocate the VRFB buffers only if the buffers are not
197          * allocated during init time.
198          */
199         if (!vout->vrfb_static_allocation)
200                 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
201                         return -ENOMEM;
202
203         if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
204                         vout->dss_mode == OMAP_DSS_COLOR_UYVY)
205                 yuv_mode = true;
206         else
207                 yuv_mode = false;
208
209         for (i = 0; i < *count; i++)
210                 omap_vrfb_setup(&vout->vrfb_context[i],
211                                 vout->smsshado_phy_addr[i], vout->pix.width,
212                                 vout->pix.height, vout->bpp, yuv_mode);
213
214         return 0;
215 }
216
217 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
218                                 struct videobuf_buffer *vb)
219 {
220         dma_addr_t dmabuf;
221         struct vid_vrfb_dma *tx;
222         enum dss_rotation rotation;
223         u32 dest_frame_index = 0, src_element_index = 0;
224         u32 dest_element_index = 0, src_frame_index = 0;
225         u32 elem_count = 0, frame_count = 0, pixsize = 2;
226
227         if (!is_rotation_enabled(vout))
228                 return 0;
229
230         dmabuf = vout->buf_phy_addr[vb->i];
231         /* If rotation is enabled, copy input buffer into VRFB
232          * memory space using DMA. We are copying input buffer
233          * into VRFB memory space of desired angle and DSS will
234          * read image VRFB memory for 0 degree angle
235          */
236         pixsize = vout->bpp * vout->vrfb_bpp;
237         /*
238          * DMA transfer in double index mode
239          */
240
241         /* Frame index */
242         dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
243                         (vout->pix.width * vout->bpp)) + 1;
244
245         /* Source and destination parameters */
246         src_element_index = 0;
247         src_frame_index = 0;
248         dest_element_index = 1;
249         /* Number of elements per frame */
250         elem_count = vout->pix.width * vout->bpp;
251         frame_count = vout->pix.height;
252         tx = &vout->vrfb_dma_tx;
253         tx->tx_status = 0;
254         omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
255                         (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
256                         tx->dev_id, 0x0);
257         /* src_port required only for OMAP1 */
258         omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
259                         dmabuf, src_element_index, src_frame_index);
260         /*set dma source burst mode for VRFB */
261         omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
262         rotation = calc_rotation(vout);
263
264         /* dest_port required only for OMAP1 */
265         omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
266                         vout->vrfb_context[vb->i].paddr[0], dest_element_index,
267                         dest_frame_index);
268         /*set dma dest burst mode for VRFB */
269         omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
270         omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
271
272         omap_start_dma(tx->dma_ch);
273         interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
274
275         if (tx->tx_status == 0) {
276                 omap_stop_dma(tx->dma_ch);
277                 return -EINVAL;
278         }
279         /* Store buffers physical address into an array. Addresses
280          * from this array will be used to configure DSS */
281         vout->queued_buf_addr[vb->i] = (u8 *)
282                 vout->vrfb_context[vb->i].paddr[rotation];
283         return 0;
284 }
285
286 /*
287  * Calculate the buffer offsets from which the streaming should
288  * start. This offset calculation is mainly required because of
289  * the VRFB 32 pixels alignment with rotation.
290  */
291 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
292 {
293         enum dss_rotation rotation;
294         bool mirroring = vout->mirror;
295         struct v4l2_rect *crop = &vout->crop;
296         struct v4l2_pix_format *pix = &vout->pix;
297         int *cropped_offset = &vout->cropped_offset;
298         int vr_ps = 1, ps = 2, temp_ps = 2;
299         int offset = 0, ctop = 0, cleft = 0, line_length = 0;
300
301         rotation = calc_rotation(vout);
302
303         if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
304                         V4L2_PIX_FMT_UYVY == pix->pixelformat) {
305                 if (is_rotation_enabled(vout)) {
306                         /*
307                          * ps    - Actual pixel size for YUYV/UYVY for
308                          *         VRFB/Mirroring is 4 bytes
309                          * vr_ps - Virtually pixel size for YUYV/UYVY is
310                          *         2 bytes
311                          */
312                         ps = 4;
313                         vr_ps = 2;
314                 } else {
315                         ps = 2; /* otherwise the pixel size is 2 byte */
316                 }
317         } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
318                 ps = 4;
319         } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
320                 ps = 3;
321         }
322         vout->ps = ps;
323         vout->vr_ps = vr_ps;
324
325         if (is_rotation_enabled(vout)) {
326                 line_length = MAX_PIXELS_PER_LINE;
327                 ctop = (pix->height - crop->height) - crop->top;
328                 cleft = (pix->width - crop->width) - crop->left;
329         } else {
330                 line_length = pix->width;
331         }
332         vout->line_length = line_length;
333         switch (rotation) {
334         case dss_rotation_90_degree:
335                 offset = vout->vrfb_context[0].yoffset *
336                         vout->vrfb_context[0].bytespp;
337                 temp_ps = ps / vr_ps;
338                 if (mirroring == 0) {
339                         *cropped_offset = offset + line_length *
340                                 temp_ps * cleft + crop->top * temp_ps;
341                 } else {
342                         *cropped_offset = offset + line_length * temp_ps *
343                                 cleft + crop->top * temp_ps + (line_length *
344                                 ((crop->width / (vr_ps)) - 1) * ps);
345                 }
346                 break;
347         case dss_rotation_180_degree:
348                 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
349                         vout->vrfb_context[0].bytespp) +
350                         (vout->vrfb_context[0].xoffset *
351                         vout->vrfb_context[0].bytespp));
352                 if (mirroring == 0) {
353                         *cropped_offset = offset + (line_length * ps * ctop) +
354                                 (cleft / vr_ps) * ps;
355
356                 } else {
357                         *cropped_offset = offset + (line_length * ps * ctop) +
358                                 (cleft / vr_ps) * ps + (line_length *
359                                 (crop->height - 1) * ps);
360                 }
361                 break;
362         case dss_rotation_270_degree:
363                 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
364                         vout->vrfb_context[0].bytespp;
365                 temp_ps = ps / vr_ps;
366                 if (mirroring == 0) {
367                         *cropped_offset = offset + line_length *
368                             temp_ps * crop->left + ctop * ps;
369                 } else {
370                         *cropped_offset = offset + line_length *
371                                 temp_ps * crop->left + ctop * ps +
372                                 (line_length * ((crop->width / vr_ps) - 1) *
373                                  ps);
374                 }
375                 break;
376         case dss_rotation_0_degree:
377                 if (mirroring == 0) {
378                         *cropped_offset = (line_length * ps) *
379                                 crop->top + (crop->left / vr_ps) * ps;
380                 } else {
381                         *cropped_offset = (line_length * ps) *
382                                 crop->top + (crop->left / vr_ps) * ps +
383                                 (line_length * (crop->height - 1) * ps);
384                 }
385                 break;
386         default:
387                 *cropped_offset = (line_length * ps * crop->top) /
388                         vr_ps + (crop->left * ps) / vr_ps +
389                         ((crop->width / vr_ps) - 1) * ps;
390                 break;
391         }
392 }