]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/omap2.c
mtd: orion_nand: convert to mtd_device_register()
[karo-tx-linux.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
26
27 #define DRIVER_NAME     "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS    5000
29
30 #define NAND_Ecc_P1e            (1 << 0)
31 #define NAND_Ecc_P2e            (1 << 1)
32 #define NAND_Ecc_P4e            (1 << 2)
33 #define NAND_Ecc_P8e            (1 << 3)
34 #define NAND_Ecc_P16e           (1 << 4)
35 #define NAND_Ecc_P32e           (1 << 5)
36 #define NAND_Ecc_P64e           (1 << 6)
37 #define NAND_Ecc_P128e          (1 << 7)
38 #define NAND_Ecc_P256e          (1 << 8)
39 #define NAND_Ecc_P512e          (1 << 9)
40 #define NAND_Ecc_P1024e         (1 << 10)
41 #define NAND_Ecc_P2048e         (1 << 11)
42
43 #define NAND_Ecc_P1o            (1 << 16)
44 #define NAND_Ecc_P2o            (1 << 17)
45 #define NAND_Ecc_P4o            (1 << 18)
46 #define NAND_Ecc_P8o            (1 << 19)
47 #define NAND_Ecc_P16o           (1 << 20)
48 #define NAND_Ecc_P32o           (1 << 21)
49 #define NAND_Ecc_P64o           (1 << 22)
50 #define NAND_Ecc_P128o          (1 << 23)
51 #define NAND_Ecc_P256o          (1 << 24)
52 #define NAND_Ecc_P512o          (1 << 25)
53 #define NAND_Ecc_P1024o         (1 << 26)
54 #define NAND_Ecc_P2048o         (1 << 27)
55
56 #define TF(value)       (value ? 1 : 0)
57
58 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
59 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
60 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
61 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
62 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
63 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
64 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
65 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
66
67 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
68 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
69 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
70 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
71 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
72 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
73 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
74 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
75
76 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
77 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
78 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
79 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
80 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
81 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
82 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
83 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
84
85 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
86 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
87 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
88 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
89 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
90 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
91 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
92 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
93
94 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
95 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
96
97 static const char *part_probes[] = { "cmdlinepart", NULL };
98
99 /* oob info generated runtime depending on ecc algorithm and layout selected */
100 static struct nand_ecclayout omap_oobinfo;
101 /* Define some generic bad / good block scan pattern which are used
102  * while scanning a device for factory marked good / bad blocks
103  */
104 static uint8_t scan_ff_pattern[] = { 0xff };
105 static struct nand_bbt_descr bb_descrip_flashbased = {
106         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
107         .offs = 0,
108         .len = 1,
109         .pattern = scan_ff_pattern,
110 };
111
112
113 struct omap_nand_info {
114         struct nand_hw_control          controller;
115         struct omap_nand_platform_data  *pdata;
116         struct mtd_info                 mtd;
117         struct mtd_partition            *parts;
118         struct nand_chip                nand;
119         struct platform_device          *pdev;
120
121         int                             gpmc_cs;
122         unsigned long                   phys_base;
123         struct completion               comp;
124         int                             dma_ch;
125         int                             gpmc_irq;
126         enum {
127                 OMAP_NAND_IO_READ = 0,  /* read */
128                 OMAP_NAND_IO_WRITE,     /* write */
129         } iomode;
130         u_char                          *buf;
131         int                                     buf_len;
132 };
133
134 /**
135  * omap_hwcontrol - hardware specific access to control-lines
136  * @mtd: MTD device structure
137  * @cmd: command to device
138  * @ctrl:
139  * NAND_NCE: bit 0 -> don't care
140  * NAND_CLE: bit 1 -> Command Latch
141  * NAND_ALE: bit 2 -> Address Latch
142  *
143  * NOTE: boards may use different bits for these!!
144  */
145 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
146 {
147         struct omap_nand_info *info = container_of(mtd,
148                                         struct omap_nand_info, mtd);
149
150         if (cmd != NAND_CMD_NONE) {
151                 if (ctrl & NAND_CLE)
152                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
153
154                 else if (ctrl & NAND_ALE)
155                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
156
157                 else /* NAND_NCE */
158                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
159         }
160 }
161
162 /**
163  * omap_read_buf8 - read data from NAND controller into buffer
164  * @mtd: MTD device structure
165  * @buf: buffer to store date
166  * @len: number of bytes to read
167  */
168 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
169 {
170         struct nand_chip *nand = mtd->priv;
171
172         ioread8_rep(nand->IO_ADDR_R, buf, len);
173 }
174
175 /**
176  * omap_write_buf8 - write buffer to NAND controller
177  * @mtd: MTD device structure
178  * @buf: data buffer
179  * @len: number of bytes to write
180  */
181 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
182 {
183         struct omap_nand_info *info = container_of(mtd,
184                                                 struct omap_nand_info, mtd);
185         u_char *p = (u_char *)buf;
186         u32     status = 0;
187
188         while (len--) {
189                 iowrite8(*p++, info->nand.IO_ADDR_W);
190                 /* wait until buffer is available for write */
191                 do {
192                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
193                 } while (!status);
194         }
195 }
196
197 /**
198  * omap_read_buf16 - read data from NAND controller into buffer
199  * @mtd: MTD device structure
200  * @buf: buffer to store date
201  * @len: number of bytes to read
202  */
203 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
204 {
205         struct nand_chip *nand = mtd->priv;
206
207         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
208 }
209
210 /**
211  * omap_write_buf16 - write buffer to NAND controller
212  * @mtd: MTD device structure
213  * @buf: data buffer
214  * @len: number of bytes to write
215  */
216 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
217 {
218         struct omap_nand_info *info = container_of(mtd,
219                                                 struct omap_nand_info, mtd);
220         u16 *p = (u16 *) buf;
221         u32     status = 0;
222         /* FIXME try bursts of writesw() or DMA ... */
223         len >>= 1;
224
225         while (len--) {
226                 iowrite16(*p++, info->nand.IO_ADDR_W);
227                 /* wait until buffer is available for write */
228                 do {
229                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
230                 } while (!status);
231         }
232 }
233
234 /**
235  * omap_read_buf_pref - read data from NAND controller into buffer
236  * @mtd: MTD device structure
237  * @buf: buffer to store date
238  * @len: number of bytes to read
239  */
240 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
241 {
242         struct omap_nand_info *info = container_of(mtd,
243                                                 struct omap_nand_info, mtd);
244         uint32_t r_count = 0;
245         int ret = 0;
246         u32 *p = (u32 *)buf;
247
248         /* take care of subpage reads */
249         if (len % 4) {
250                 if (info->nand.options & NAND_BUSWIDTH_16)
251                         omap_read_buf16(mtd, buf, len % 4);
252                 else
253                         omap_read_buf8(mtd, buf, len % 4);
254                 p = (u32 *) (buf + len % 4);
255                 len -= len % 4;
256         }
257
258         /* configure and start prefetch transfer */
259         ret = gpmc_prefetch_enable(info->gpmc_cs,
260                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
261         if (ret) {
262                 /* PFPW engine is busy, use cpu copy method */
263                 if (info->nand.options & NAND_BUSWIDTH_16)
264                         omap_read_buf16(mtd, (u_char *)p, len);
265                 else
266                         omap_read_buf8(mtd, (u_char *)p, len);
267         } else {
268                 do {
269                         r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
270                         r_count = r_count >> 2;
271                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
272                         p += r_count;
273                         len -= r_count << 2;
274                 } while (len);
275                 /* disable and stop the PFPW engine */
276                 gpmc_prefetch_reset(info->gpmc_cs);
277         }
278 }
279
280 /**
281  * omap_write_buf_pref - write buffer to NAND controller
282  * @mtd: MTD device structure
283  * @buf: data buffer
284  * @len: number of bytes to write
285  */
286 static void omap_write_buf_pref(struct mtd_info *mtd,
287                                         const u_char *buf, int len)
288 {
289         struct omap_nand_info *info = container_of(mtd,
290                                                 struct omap_nand_info, mtd);
291         uint32_t w_count = 0;
292         int i = 0, ret = 0;
293         u16 *p = (u16 *)buf;
294         unsigned long tim, limit;
295
296         /* take care of subpage writes */
297         if (len % 2 != 0) {
298                 writeb(*buf, info->nand.IO_ADDR_W);
299                 p = (u16 *)(buf + 1);
300                 len--;
301         }
302
303         /*  configure and start prefetch transfer */
304         ret = gpmc_prefetch_enable(info->gpmc_cs,
305                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
306         if (ret) {
307                 /* PFPW engine is busy, use cpu copy method */
308                 if (info->nand.options & NAND_BUSWIDTH_16)
309                         omap_write_buf16(mtd, (u_char *)p, len);
310                 else
311                         omap_write_buf8(mtd, (u_char *)p, len);
312         } else {
313                 while (len) {
314                         w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
315                         w_count = w_count >> 1;
316                         for (i = 0; (i < w_count) && len; i++, len -= 2)
317                                 iowrite16(*p++, info->nand.IO_ADDR_W);
318                 }
319                 /* wait for data to flushed-out before reset the prefetch */
320                 tim = 0;
321                 limit = (loops_per_jiffy *
322                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
323                 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
324                         cpu_relax();
325
326                 /* disable and stop the PFPW engine */
327                 gpmc_prefetch_reset(info->gpmc_cs);
328         }
329 }
330
331 /*
332  * omap_nand_dma_cb: callback on the completion of dma transfer
333  * @lch: logical channel
334  * @ch_satuts: channel status
335  * @data: pointer to completion data structure
336  */
337 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
338 {
339         complete((struct completion *) data);
340 }
341
342 /*
343  * omap_nand_dma_transfer: configer and start dma transfer
344  * @mtd: MTD device structure
345  * @addr: virtual address in RAM of source/destination
346  * @len: number of data bytes to be transferred
347  * @is_write: flag for read/write operation
348  */
349 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
350                                         unsigned int len, int is_write)
351 {
352         struct omap_nand_info *info = container_of(mtd,
353                                         struct omap_nand_info, mtd);
354         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
355                                                         DMA_FROM_DEVICE;
356         dma_addr_t dma_addr;
357         int ret;
358         unsigned long tim, limit;
359
360         /* The fifo depth is 64 bytes max.
361          * But configure the FIFO-threahold to 32 to get a sync at each frame
362          * and frame length is 32 bytes.
363          */
364         int buf_len = len >> 6;
365
366         if (addr >= high_memory) {
367                 struct page *p1;
368
369                 if (((size_t)addr & PAGE_MASK) !=
370                         ((size_t)(addr + len - 1) & PAGE_MASK))
371                         goto out_copy;
372                 p1 = vmalloc_to_page(addr);
373                 if (!p1)
374                         goto out_copy;
375                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
376         }
377
378         dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
379         if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
380                 dev_err(&info->pdev->dev,
381                         "Couldn't DMA map a %d byte buffer\n", len);
382                 goto out_copy;
383         }
384
385         if (is_write) {
386             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
387                                                 info->phys_base, 0, 0);
388             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
389                                                         dma_addr, 0, 0);
390             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
391                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
392                                         OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
393         } else {
394             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
395                                                 info->phys_base, 0, 0);
396             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
397                                                         dma_addr, 0, 0);
398             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
399                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
400                                         OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
401         }
402         /*  configure and start prefetch transfer */
403         ret = gpmc_prefetch_enable(info->gpmc_cs,
404                         PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
405         if (ret)
406                 /* PFPW engine is busy, use cpu copy method */
407                 goto out_copy;
408
409         init_completion(&info->comp);
410
411         omap_start_dma(info->dma_ch);
412
413         /* setup and start DMA using dma_addr */
414         wait_for_completion(&info->comp);
415         tim = 0;
416         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
417         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
418                 cpu_relax();
419
420         /* disable and stop the PFPW engine */
421         gpmc_prefetch_reset(info->gpmc_cs);
422
423         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
424         return 0;
425
426 out_copy:
427         if (info->nand.options & NAND_BUSWIDTH_16)
428                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
429                         : omap_write_buf16(mtd, (u_char *) addr, len);
430         else
431                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
432                         : omap_write_buf8(mtd, (u_char *) addr, len);
433         return 0;
434 }
435
436 /**
437  * omap_read_buf_dma_pref - read data from NAND controller into buffer
438  * @mtd: MTD device structure
439  * @buf: buffer to store date
440  * @len: number of bytes to read
441  */
442 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
443 {
444         if (len <= mtd->oobsize)
445                 omap_read_buf_pref(mtd, buf, len);
446         else
447                 /* start transfer in DMA mode */
448                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
449 }
450
451 /**
452  * omap_write_buf_dma_pref - write buffer to NAND controller
453  * @mtd: MTD device structure
454  * @buf: data buffer
455  * @len: number of bytes to write
456  */
457 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
458                                         const u_char *buf, int len)
459 {
460         if (len <= mtd->oobsize)
461                 omap_write_buf_pref(mtd, buf, len);
462         else
463                 /* start transfer in DMA mode */
464                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
465 }
466
467 /*
468  * omap_nand_irq - GMPC irq handler
469  * @this_irq: gpmc irq number
470  * @dev: omap_nand_info structure pointer is passed here
471  */
472 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
473 {
474         struct omap_nand_info *info = (struct omap_nand_info *) dev;
475         u32 bytes;
476         u32 irq_stat;
477
478         irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
479         bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
480         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
481         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
482                 if (irq_stat & 0x2)
483                         goto done;
484
485                 if (info->buf_len && (info->buf_len < bytes))
486                         bytes = info->buf_len;
487                 else if (!info->buf_len)
488                         bytes = 0;
489                 iowrite32_rep(info->nand.IO_ADDR_W,
490                                                 (u32 *)info->buf, bytes >> 2);
491                 info->buf = info->buf + bytes;
492                 info->buf_len -= bytes;
493
494         } else {
495                 ioread32_rep(info->nand.IO_ADDR_R,
496                                                 (u32 *)info->buf, bytes >> 2);
497                 info->buf = info->buf + bytes;
498
499                 if (irq_stat & 0x2)
500                         goto done;
501         }
502         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
503
504         return IRQ_HANDLED;
505
506 done:
507         complete(&info->comp);
508         /* disable irq */
509         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
510
511         /* clear status */
512         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
513
514         return IRQ_HANDLED;
515 }
516
517 /*
518  * omap_read_buf_irq_pref - read data from NAND controller into buffer
519  * @mtd: MTD device structure
520  * @buf: buffer to store date
521  * @len: number of bytes to read
522  */
523 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
524 {
525         struct omap_nand_info *info = container_of(mtd,
526                                                 struct omap_nand_info, mtd);
527         int ret = 0;
528
529         if (len <= mtd->oobsize) {
530                 omap_read_buf_pref(mtd, buf, len);
531                 return;
532         }
533
534         info->iomode = OMAP_NAND_IO_READ;
535         info->buf = buf;
536         init_completion(&info->comp);
537
538         /*  configure and start prefetch transfer */
539         ret = gpmc_prefetch_enable(info->gpmc_cs,
540                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
541         if (ret)
542                 /* PFPW engine is busy, use cpu copy method */
543                 goto out_copy;
544
545         info->buf_len = len;
546         /* enable irq */
547         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
548                 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
549
550         /* waiting for read to complete */
551         wait_for_completion(&info->comp);
552
553         /* disable and stop the PFPW engine */
554         gpmc_prefetch_reset(info->gpmc_cs);
555         return;
556
557 out_copy:
558         if (info->nand.options & NAND_BUSWIDTH_16)
559                 omap_read_buf16(mtd, buf, len);
560         else
561                 omap_read_buf8(mtd, buf, len);
562 }
563
564 /*
565  * omap_write_buf_irq_pref - write buffer to NAND controller
566  * @mtd: MTD device structure
567  * @buf: data buffer
568  * @len: number of bytes to write
569  */
570 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
571                                         const u_char *buf, int len)
572 {
573         struct omap_nand_info *info = container_of(mtd,
574                                                 struct omap_nand_info, mtd);
575         int ret = 0;
576         unsigned long tim, limit;
577
578         if (len <= mtd->oobsize) {
579                 omap_write_buf_pref(mtd, buf, len);
580                 return;
581         }
582
583         info->iomode = OMAP_NAND_IO_WRITE;
584         info->buf = (u_char *) buf;
585         init_completion(&info->comp);
586
587         /* configure and start prefetch transfer : size=24 */
588         ret = gpmc_prefetch_enable(info->gpmc_cs,
589                         (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
590         if (ret)
591                 /* PFPW engine is busy, use cpu copy method */
592                 goto out_copy;
593
594         info->buf_len = len;
595         /* enable irq */
596         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
597                         (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
598
599         /* waiting for write to complete */
600         wait_for_completion(&info->comp);
601         /* wait for data to flushed-out before reset the prefetch */
602         tim = 0;
603         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
604         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
605                 cpu_relax();
606
607         /* disable and stop the PFPW engine */
608         gpmc_prefetch_reset(info->gpmc_cs);
609         return;
610
611 out_copy:
612         if (info->nand.options & NAND_BUSWIDTH_16)
613                 omap_write_buf16(mtd, buf, len);
614         else
615                 omap_write_buf8(mtd, buf, len);
616 }
617
618 /**
619  * omap_verify_buf - Verify chip data against buffer
620  * @mtd: MTD device structure
621  * @buf: buffer containing the data to compare
622  * @len: number of bytes to compare
623  */
624 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
625 {
626         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
627                                                         mtd);
628         u16 *p = (u16 *) buf;
629
630         len >>= 1;
631         while (len--) {
632                 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
633                         return -EFAULT;
634         }
635
636         return 0;
637 }
638
639 /**
640  * gen_true_ecc - This function will generate true ECC value
641  * @ecc_buf: buffer to store ecc code
642  *
643  * This generated true ECC value can be used when correcting
644  * data read from NAND flash memory core
645  */
646 static void gen_true_ecc(u8 *ecc_buf)
647 {
648         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
649                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
650
651         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
652                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
653         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
654                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
655         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
656                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
657 }
658
659 /**
660  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
661  * @ecc_data1:  ecc code from nand spare area
662  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
663  * @page_data:  page data
664  *
665  * This function compares two ECC's and indicates if there is an error.
666  * If the error can be corrected it will be corrected to the buffer.
667  * If there is no error, %0 is returned. If there is an error but it
668  * was corrected, %1 is returned. Otherwise, %-1 is returned.
669  */
670 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
671                             u8 *ecc_data2,      /* read from register */
672                             u8 *page_data)
673 {
674         uint    i;
675         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
676         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
677         u8      ecc_bit[24];
678         u8      ecc_sum = 0;
679         u8      find_bit = 0;
680         uint    find_byte = 0;
681         int     isEccFF;
682
683         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
684
685         gen_true_ecc(ecc_data1);
686         gen_true_ecc(ecc_data2);
687
688         for (i = 0; i <= 2; i++) {
689                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
690                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
691         }
692
693         for (i = 0; i < 8; i++) {
694                 tmp0_bit[i]     = *ecc_data1 % 2;
695                 *ecc_data1      = *ecc_data1 / 2;
696         }
697
698         for (i = 0; i < 8; i++) {
699                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
700                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
701         }
702
703         for (i = 0; i < 8; i++) {
704                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
705                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
706         }
707
708         for (i = 0; i < 8; i++) {
709                 comp0_bit[i]     = *ecc_data2 % 2;
710                 *ecc_data2       = *ecc_data2 / 2;
711         }
712
713         for (i = 0; i < 8; i++) {
714                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
715                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
716         }
717
718         for (i = 0; i < 8; i++) {
719                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
720                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
721         }
722
723         for (i = 0; i < 6; i++)
724                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
725
726         for (i = 0; i < 8; i++)
727                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
728
729         for (i = 0; i < 8; i++)
730                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
731
732         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
733         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
734
735         for (i = 0; i < 24; i++)
736                 ecc_sum += ecc_bit[i];
737
738         switch (ecc_sum) {
739         case 0:
740                 /* Not reached because this function is not called if
741                  *  ECC values are equal
742                  */
743                 return 0;
744
745         case 1:
746                 /* Uncorrectable error */
747                 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
748                 return -1;
749
750         case 11:
751                 /* UN-Correctable error */
752                 DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
753                 return -1;
754
755         case 12:
756                 /* Correctable error */
757                 find_byte = (ecc_bit[23] << 8) +
758                             (ecc_bit[21] << 7) +
759                             (ecc_bit[19] << 6) +
760                             (ecc_bit[17] << 5) +
761                             (ecc_bit[15] << 4) +
762                             (ecc_bit[13] << 3) +
763                             (ecc_bit[11] << 2) +
764                             (ecc_bit[9]  << 1) +
765                             ecc_bit[7];
766
767                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
768
769                 DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
770                                 "offset: %d, bit: %d\n", find_byte, find_bit);
771
772                 page_data[find_byte] ^= (1 << find_bit);
773
774                 return 1;
775         default:
776                 if (isEccFF) {
777                         if (ecc_data2[0] == 0 &&
778                             ecc_data2[1] == 0 &&
779                             ecc_data2[2] == 0)
780                                 return 0;
781                 }
782                 DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
783                 return -1;
784         }
785 }
786
787 /**
788  * omap_correct_data - Compares the ECC read with HW generated ECC
789  * @mtd: MTD device structure
790  * @dat: page data
791  * @read_ecc: ecc read from nand flash
792  * @calc_ecc: ecc read from HW ECC registers
793  *
794  * Compares the ecc read from nand spare area with ECC registers values
795  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
796  * detection and correction. If there are no errors, %0 is returned. If
797  * there were errors and all of the errors were corrected, the number of
798  * corrected errors is returned. If uncorrectable errors exist, %-1 is
799  * returned.
800  */
801 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
802                                 u_char *read_ecc, u_char *calc_ecc)
803 {
804         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
805                                                         mtd);
806         int blockCnt = 0, i = 0, ret = 0;
807         int stat = 0;
808
809         /* Ex NAND_ECC_HW12_2048 */
810         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
811                         (info->nand.ecc.size  == 2048))
812                 blockCnt = 4;
813         else
814                 blockCnt = 1;
815
816         for (i = 0; i < blockCnt; i++) {
817                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
818                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
819                         if (ret < 0)
820                                 return ret;
821                         /* keep track of the number of corrected errors */
822                         stat += ret;
823                 }
824                 read_ecc += 3;
825                 calc_ecc += 3;
826                 dat      += 512;
827         }
828         return stat;
829 }
830
831 /**
832  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
833  * @mtd: MTD device structure
834  * @dat: The pointer to data on which ecc is computed
835  * @ecc_code: The ecc_code buffer
836  *
837  * Using noninverted ECC can be considered ugly since writing a blank
838  * page ie. padding will clear the ECC bytes. This is no problem as long
839  * nobody is trying to write data on the seemingly unused page. Reading
840  * an erased page will produce an ECC mismatch between generated and read
841  * ECC bytes that has to be dealt with separately.
842  */
843 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
844                                 u_char *ecc_code)
845 {
846         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
847                                                         mtd);
848         return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
849 }
850
851 /**
852  * omap_enable_hwecc - This function enables the hardware ecc functionality
853  * @mtd: MTD device structure
854  * @mode: Read/Write mode
855  */
856 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
857 {
858         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
859                                                         mtd);
860         struct nand_chip *chip = mtd->priv;
861         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
862
863         gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
864 }
865
866 /**
867  * omap_wait - wait until the command is done
868  * @mtd: MTD device structure
869  * @chip: NAND Chip structure
870  *
871  * Wait function is called during Program and erase operations and
872  * the way it is called from MTD layer, we should wait till the NAND
873  * chip is ready after the programming/erase operation has completed.
874  *
875  * Erase can take up to 400ms and program up to 20ms according to
876  * general NAND and SmartMedia specs
877  */
878 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
879 {
880         struct nand_chip *this = mtd->priv;
881         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
882                                                         mtd);
883         unsigned long timeo = jiffies;
884         int status = NAND_STATUS_FAIL, state = this->state;
885
886         if (state == FL_ERASING)
887                 timeo += (HZ * 400) / 1000;
888         else
889                 timeo += (HZ * 20) / 1000;
890
891         gpmc_nand_write(info->gpmc_cs,
892                         GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
893         while (time_before(jiffies, timeo)) {
894                 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
895                 if (status & NAND_STATUS_READY)
896                         break;
897                 cond_resched();
898         }
899         return status;
900 }
901
902 /**
903  * omap_dev_ready - calls the platform specific dev_ready function
904  * @mtd: MTD device structure
905  */
906 static int omap_dev_ready(struct mtd_info *mtd)
907 {
908         unsigned int val = 0;
909         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
910                                                         mtd);
911
912         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
913         if ((val & 0x100) == 0x100) {
914                 /* Clear IRQ Interrupt */
915                 val |= 0x100;
916                 val &= ~(0x0);
917                 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
918         } else {
919                 unsigned int cnt = 0;
920                 while (cnt++ < 0x1FF) {
921                         if  ((val & 0x100) == 0x100)
922                                 return 0;
923                         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924                 }
925         }
926
927         return 1;
928 }
929
930 static int __devinit omap_nand_probe(struct platform_device *pdev)
931 {
932         struct omap_nand_info           *info;
933         struct omap_nand_platform_data  *pdata;
934         int                             err;
935         int                             i, offset;
936
937         pdata = pdev->dev.platform_data;
938         if (pdata == NULL) {
939                 dev_err(&pdev->dev, "platform data missing\n");
940                 return -ENODEV;
941         }
942
943         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
944         if (!info)
945                 return -ENOMEM;
946
947         platform_set_drvdata(pdev, info);
948
949         spin_lock_init(&info->controller.lock);
950         init_waitqueue_head(&info->controller.wq);
951
952         info->pdev = pdev;
953
954         info->gpmc_cs           = pdata->cs;
955         info->phys_base         = pdata->phys_base;
956
957         info->mtd.priv          = &info->nand;
958         info->mtd.name          = dev_name(&pdev->dev);
959         info->mtd.owner         = THIS_MODULE;
960
961         info->nand.options      = pdata->devsize;
962         info->nand.options      |= NAND_SKIP_BBTSCAN;
963
964         /* NAND write protect off */
965         gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
966
967         if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
968                                 pdev->dev.driver->name)) {
969                 err = -EBUSY;
970                 goto out_free_info;
971         }
972
973         info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
974         if (!info->nand.IO_ADDR_R) {
975                 err = -ENOMEM;
976                 goto out_release_mem_region;
977         }
978
979         info->nand.controller = &info->controller;
980
981         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
982         info->nand.cmd_ctrl  = omap_hwcontrol;
983
984         /*
985          * If RDY/BSY line is connected to OMAP then use the omap ready
986          * funcrtion and the generic nand_wait function which reads the status
987          * register after monitoring the RDY/BSY line.Otherwise use a standard
988          * chip delay which is slightly more than tR (AC Timing) of the NAND
989          * device and read status register until you get a failure or success
990          */
991         if (pdata->dev_ready) {
992                 info->nand.dev_ready = omap_dev_ready;
993                 info->nand.chip_delay = 0;
994         } else {
995                 info->nand.waitfunc = omap_wait;
996                 info->nand.chip_delay = 50;
997         }
998
999         switch (pdata->xfer_type) {
1000         case NAND_OMAP_PREFETCH_POLLED:
1001                 info->nand.read_buf   = omap_read_buf_pref;
1002                 info->nand.write_buf  = omap_write_buf_pref;
1003                 break;
1004
1005         case NAND_OMAP_POLLED:
1006                 if (info->nand.options & NAND_BUSWIDTH_16) {
1007                         info->nand.read_buf   = omap_read_buf16;
1008                         info->nand.write_buf  = omap_write_buf16;
1009                 } else {
1010                         info->nand.read_buf   = omap_read_buf8;
1011                         info->nand.write_buf  = omap_write_buf8;
1012                 }
1013                 break;
1014
1015         case NAND_OMAP_PREFETCH_DMA:
1016                 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1017                                 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1018                 if (err < 0) {
1019                         info->dma_ch = -1;
1020                         dev_err(&pdev->dev, "DMA request failed!\n");
1021                         goto out_release_mem_region;
1022                 } else {
1023                         omap_set_dma_dest_burst_mode(info->dma_ch,
1024                                         OMAP_DMA_DATA_BURST_16);
1025                         omap_set_dma_src_burst_mode(info->dma_ch,
1026                                         OMAP_DMA_DATA_BURST_16);
1027
1028                         info->nand.read_buf   = omap_read_buf_dma_pref;
1029                         info->nand.write_buf  = omap_write_buf_dma_pref;
1030                 }
1031                 break;
1032
1033         case NAND_OMAP_PREFETCH_IRQ:
1034                 err = request_irq(pdata->gpmc_irq,
1035                                 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1036                 if (err) {
1037                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1038                                                         pdata->gpmc_irq, err);
1039                         goto out_release_mem_region;
1040                 } else {
1041                         info->gpmc_irq       = pdata->gpmc_irq;
1042                         info->nand.read_buf  = omap_read_buf_irq_pref;
1043                         info->nand.write_buf = omap_write_buf_irq_pref;
1044                 }
1045                 break;
1046
1047         default:
1048                 dev_err(&pdev->dev,
1049                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1050                 err = -EINVAL;
1051                 goto out_release_mem_region;
1052         }
1053
1054         info->nand.verify_buf = omap_verify_buf;
1055
1056         /* selsect the ecc type */
1057         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1058                 info->nand.ecc.mode = NAND_ECC_SOFT;
1059         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1060                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1061                 info->nand.ecc.bytes            = 3;
1062                 info->nand.ecc.size             = 512;
1063                 info->nand.ecc.calculate        = omap_calculate_ecc;
1064                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1065                 info->nand.ecc.correct          = omap_correct_data;
1066                 info->nand.ecc.mode             = NAND_ECC_HW;
1067         }
1068
1069         /* DIP switches on some boards change between 8 and 16 bit
1070          * bus widths for flash.  Try the other width if the first try fails.
1071          */
1072         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073                 info->nand.options ^= NAND_BUSWIDTH_16;
1074                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1075                         err = -ENXIO;
1076                         goto out_release_mem_region;
1077                 }
1078         }
1079
1080         /* rom code layout */
1081         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1082
1083                 if (info->nand.options & NAND_BUSWIDTH_16)
1084                         offset = 2;
1085                 else {
1086                         offset = 1;
1087                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1088                 }
1089                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1090                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1091                         omap_oobinfo.eccpos[i] = i+offset;
1092
1093                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1094                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1095                                         (offset + omap_oobinfo.eccbytes);
1096
1097                 info->nand.ecc.layout = &omap_oobinfo;
1098         }
1099
1100         /* second phase scan */
1101         if (nand_scan_tail(&info->mtd)) {
1102                 err = -ENXIO;
1103                 goto out_release_mem_region;
1104         }
1105
1106         err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1107         if (err > 0)
1108                 mtd_device_register(&info->mtd, info->parts, err);
1109         else if (pdata->parts)
1110                 mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1111         else
1112                 mtd_device_register(&info->mtd, NULL, 0);
1113
1114         platform_set_drvdata(pdev, &info->mtd);
1115
1116         return 0;
1117
1118 out_release_mem_region:
1119         release_mem_region(info->phys_base, NAND_IO_SIZE);
1120 out_free_info:
1121         kfree(info);
1122
1123         return err;
1124 }
1125
1126 static int omap_nand_remove(struct platform_device *pdev)
1127 {
1128         struct mtd_info *mtd = platform_get_drvdata(pdev);
1129         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130                                                         mtd);
1131
1132         platform_set_drvdata(pdev, NULL);
1133         if (info->dma_ch != -1)
1134                 omap_free_dma(info->dma_ch);
1135
1136         if (info->gpmc_irq)
1137                 free_irq(info->gpmc_irq, info);
1138
1139         /* Release NAND device, its internal structures and partitions */
1140         nand_release(&info->mtd);
1141         iounmap(info->nand.IO_ADDR_R);
1142         kfree(&info->mtd);
1143         return 0;
1144 }
1145
1146 static struct platform_driver omap_nand_driver = {
1147         .probe          = omap_nand_probe,
1148         .remove         = omap_nand_remove,
1149         .driver         = {
1150                 .name   = DRIVER_NAME,
1151                 .owner  = THIS_MODULE,
1152         },
1153 };
1154
1155 static int __init omap_nand_init(void)
1156 {
1157         pr_info("%s driver initializing\n", DRIVER_NAME);
1158
1159         return platform_driver_register(&omap_nand_driver);
1160 }
1161
1162 static void __exit omap_nand_exit(void)
1163 {
1164         platform_driver_unregister(&omap_nand_driver);
1165 }
1166
1167 module_init(omap_nand_init);
1168 module_exit(omap_nand_exit);
1169
1170 MODULE_ALIAS("platform:" DRIVER_NAME);
1171 MODULE_LICENSE("GPL");
1172 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");