]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/onenand/onenand_base.c
Merge tag 'binfmt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb...
[karo-tx-linux.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
34
35 #include <asm/io.h>
36
37 /*
38  * Multiblock erase if number of blocks to erase is 2 or more.
39  * Maximum number of blocks for simultaneous erase is 64.
40  */
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
43
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
46
47 module_param_array(flex_bdry, int, NULL, 0400);
48 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
49                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50                                 "DIE_BDRY: SLC boundary of the die"
51                                 "LOCK: Locking information for SLC boundary"
52                                 "    : 0->Set boundary in unlocked status"
53                                 "    : 1->Set boundary in locked status");
54
55 /* Default OneNAND/Flex-OneNAND OTP options*/
56 static int otp;
57
58 module_param(otp, int, 0400);
59 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
60                         "Syntax : otp=LOCK_TYPE"
61                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62                         "          : 0 -> Default (No Blocks Locked)"
63                         "          : 1 -> OTP Block lock"
64                         "          : 2 -> 1st Block lock"
65                         "          : 3 -> BOTH OTP Block and 1st Block lock");
66
67 /*
68  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
69  * For now, we expose only 64 out of 80 ecc bytes
70  */
71 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
72                                      struct mtd_oob_region *oobregion)
73 {
74         if (section > 7)
75                 return -ERANGE;
76
77         oobregion->offset = (section * 16) + 6;
78         oobregion->length = 10;
79
80         return 0;
81 }
82
83 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
84                                       struct mtd_oob_region *oobregion)
85 {
86         if (section > 7)
87                 return -ERANGE;
88
89         oobregion->offset = (section * 16) + 2;
90         oobregion->length = 4;
91
92         return 0;
93 }
94
95 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
96         .ecc = flexonenand_ooblayout_ecc,
97         .free = flexonenand_ooblayout_free,
98 };
99
100 /*
101  * onenand_oob_128 - oob info for OneNAND with 4KB page
102  *
103  * Based on specification:
104  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
105  *
106  */
107 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
108                                      struct mtd_oob_region *oobregion)
109 {
110         if (section > 7)
111                 return -ERANGE;
112
113         oobregion->offset = (section * 16) + 7;
114         oobregion->length = 9;
115
116         return 0;
117 }
118
119 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
120                                       struct mtd_oob_region *oobregion)
121 {
122         if (section >= 8)
123                 return -ERANGE;
124
125         /*
126          * free bytes are using the spare area fields marked as
127          * "Managed by internal ECC logic for Logical Sector Number area"
128          */
129         oobregion->offset = (section * 16) + 2;
130         oobregion->length = 3;
131
132         return 0;
133 }
134
135 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
136         .ecc = onenand_ooblayout_128_ecc,
137         .free = onenand_ooblayout_128_free,
138 };
139
140 /**
141  * onenand_oob_32_64 - oob info for large (2KB) page
142  */
143 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
144                                        struct mtd_oob_region *oobregion)
145 {
146         if (section > 3)
147                 return -ERANGE;
148
149         oobregion->offset = (section * 16) + 8;
150         oobregion->length = 5;
151
152         return 0;
153 }
154
155 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
156                                         struct mtd_oob_region *oobregion)
157 {
158         int sections = (mtd->oobsize / 32) * 2;
159
160         if (section >= sections)
161                 return -ERANGE;
162
163         if (section & 1) {
164                 oobregion->offset = ((section - 1) * 16) + 14;
165                 oobregion->length = 2;
166         } else  {
167                 oobregion->offset = (section * 16) + 2;
168                 oobregion->length = 3;
169         }
170
171         return 0;
172 }
173
174 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
175         .ecc = onenand_ooblayout_32_64_ecc,
176         .free = onenand_ooblayout_32_64_free,
177 };
178
179 static const unsigned char ffchars[] = {
180         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
181         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
182         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
183         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
184         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
185         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
186         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
187         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
188         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
189         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
190         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
191         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
192         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
193         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
194         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
195         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
196 };
197
198 /**
199  * onenand_readw - [OneNAND Interface] Read OneNAND register
200  * @param addr          address to read
201  *
202  * Read OneNAND register
203  */
204 static unsigned short onenand_readw(void __iomem *addr)
205 {
206         return readw(addr);
207 }
208
209 /**
210  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
211  * @param value         value to write
212  * @param addr          address to write
213  *
214  * Write OneNAND register with value
215  */
216 static void onenand_writew(unsigned short value, void __iomem *addr)
217 {
218         writew(value, addr);
219 }
220
221 /**
222  * onenand_block_address - [DEFAULT] Get block address
223  * @param this          onenand chip data structure
224  * @param block         the block
225  * @return              translated block address if DDP, otherwise same
226  *
227  * Setup Start Address 1 Register (F100h)
228  */
229 static int onenand_block_address(struct onenand_chip *this, int block)
230 {
231         /* Device Flash Core select, NAND Flash Block Address */
232         if (block & this->density_mask)
233                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
234
235         return block;
236 }
237
238 /**
239  * onenand_bufferram_address - [DEFAULT] Get bufferram address
240  * @param this          onenand chip data structure
241  * @param block         the block
242  * @return              set DBS value if DDP, otherwise 0
243  *
244  * Setup Start Address 2 Register (F101h) for DDP
245  */
246 static int onenand_bufferram_address(struct onenand_chip *this, int block)
247 {
248         /* Device BufferRAM Select */
249         if (block & this->density_mask)
250                 return ONENAND_DDP_CHIP1;
251
252         return ONENAND_DDP_CHIP0;
253 }
254
255 /**
256  * onenand_page_address - [DEFAULT] Get page address
257  * @param page          the page address
258  * @param sector        the sector address
259  * @return              combined page and sector address
260  *
261  * Setup Start Address 8 Register (F107h)
262  */
263 static int onenand_page_address(int page, int sector)
264 {
265         /* Flash Page Address, Flash Sector Address */
266         int fpa, fsa;
267
268         fpa = page & ONENAND_FPA_MASK;
269         fsa = sector & ONENAND_FSA_MASK;
270
271         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
272 }
273
274 /**
275  * onenand_buffer_address - [DEFAULT] Get buffer address
276  * @param dataram1      DataRAM index
277  * @param sectors       the sector address
278  * @param count         the number of sectors
279  * @return              the start buffer value
280  *
281  * Setup Start Buffer Register (F200h)
282  */
283 static int onenand_buffer_address(int dataram1, int sectors, int count)
284 {
285         int bsa, bsc;
286
287         /* BufferRAM Sector Address */
288         bsa = sectors & ONENAND_BSA_MASK;
289
290         if (dataram1)
291                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
292         else
293                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
294
295         /* BufferRAM Sector Count */
296         bsc = count & ONENAND_BSC_MASK;
297
298         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
299 }
300
301 /**
302  * flexonenand_block- For given address return block number
303  * @param this         - OneNAND device structure
304  * @param addr          - Address for which block number is needed
305  */
306 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
307 {
308         unsigned boundary, blk, die = 0;
309
310         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
311                 die = 1;
312                 addr -= this->diesize[0];
313         }
314
315         boundary = this->boundary[die];
316
317         blk = addr >> (this->erase_shift - 1);
318         if (blk > boundary)
319                 blk = (blk + boundary + 1) >> 1;
320
321         blk += die ? this->density_mask : 0;
322         return blk;
323 }
324
325 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
326 {
327         if (!FLEXONENAND(this))
328                 return addr >> this->erase_shift;
329         return flexonenand_block(this, addr);
330 }
331
332 /**
333  * flexonenand_addr - Return address of the block
334  * @this:               OneNAND device structure
335  * @block:              Block number on Flex-OneNAND
336  *
337  * Return address of the block
338  */
339 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
340 {
341         loff_t ofs = 0;
342         int die = 0, boundary;
343
344         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
345                 block -= this->density_mask;
346                 die = 1;
347                 ofs = this->diesize[0];
348         }
349
350         boundary = this->boundary[die];
351         ofs += (loff_t)block << (this->erase_shift - 1);
352         if (block > (boundary + 1))
353                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
354         return ofs;
355 }
356
357 loff_t onenand_addr(struct onenand_chip *this, int block)
358 {
359         if (!FLEXONENAND(this))
360                 return (loff_t)block << this->erase_shift;
361         return flexonenand_addr(this, block);
362 }
363 EXPORT_SYMBOL(onenand_addr);
364
365 /**
366  * onenand_get_density - [DEFAULT] Get OneNAND density
367  * @param dev_id        OneNAND device ID
368  *
369  * Get OneNAND density from device ID
370  */
371 static inline int onenand_get_density(int dev_id)
372 {
373         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
374         return (density & ONENAND_DEVICE_DENSITY_MASK);
375 }
376
377 /**
378  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
379  * @param mtd           MTD device structure
380  * @param addr          address whose erase region needs to be identified
381  */
382 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
383 {
384         int i;
385
386         for (i = 0; i < mtd->numeraseregions; i++)
387                 if (addr < mtd->eraseregions[i].offset)
388                         break;
389         return i - 1;
390 }
391 EXPORT_SYMBOL(flexonenand_region);
392
393 /**
394  * onenand_command - [DEFAULT] Send command to OneNAND device
395  * @param mtd           MTD device structure
396  * @param cmd           the command to be sent
397  * @param addr          offset to read from or write to
398  * @param len           number of bytes to read or write
399  *
400  * Send command to OneNAND device. This function is used for middle/large page
401  * devices (1KB/2KB Bytes per page)
402  */
403 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
404 {
405         struct onenand_chip *this = mtd->priv;
406         int value, block, page;
407
408         /* Address translation */
409         switch (cmd) {
410         case ONENAND_CMD_UNLOCK:
411         case ONENAND_CMD_LOCK:
412         case ONENAND_CMD_LOCK_TIGHT:
413         case ONENAND_CMD_UNLOCK_ALL:
414                 block = -1;
415                 page = -1;
416                 break;
417
418         case FLEXONENAND_CMD_PI_ACCESS:
419                 /* addr contains die index */
420                 block = addr * this->density_mask;
421                 page = -1;
422                 break;
423
424         case ONENAND_CMD_ERASE:
425         case ONENAND_CMD_MULTIBLOCK_ERASE:
426         case ONENAND_CMD_ERASE_VERIFY:
427         case ONENAND_CMD_BUFFERRAM:
428         case ONENAND_CMD_OTP_ACCESS:
429                 block = onenand_block(this, addr);
430                 page = -1;
431                 break;
432
433         case FLEXONENAND_CMD_READ_PI:
434                 cmd = ONENAND_CMD_READ;
435                 block = addr * this->density_mask;
436                 page = 0;
437                 break;
438
439         default:
440                 block = onenand_block(this, addr);
441                 if (FLEXONENAND(this))
442                         page = (int) (addr - onenand_addr(this, block))>>\
443                                 this->page_shift;
444                 else
445                         page = (int) (addr >> this->page_shift);
446                 if (ONENAND_IS_2PLANE(this)) {
447                         /* Make the even block number */
448                         block &= ~1;
449                         /* Is it the odd plane? */
450                         if (addr & this->writesize)
451                                 block++;
452                         page >>= 1;
453                 }
454                 page &= this->page_mask;
455                 break;
456         }
457
458         /* NOTE: The setting order of the registers is very important! */
459         if (cmd == ONENAND_CMD_BUFFERRAM) {
460                 /* Select DataRAM for DDP */
461                 value = onenand_bufferram_address(this, block);
462                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
463
464                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
465                         /* It is always BufferRAM0 */
466                         ONENAND_SET_BUFFERRAM0(this);
467                 else
468                         /* Switch to the next data buffer */
469                         ONENAND_SET_NEXT_BUFFERRAM(this);
470
471                 return 0;
472         }
473
474         if (block != -1) {
475                 /* Write 'DFS, FBA' of Flash */
476                 value = onenand_block_address(this, block);
477                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
478
479                 /* Select DataRAM for DDP */
480                 value = onenand_bufferram_address(this, block);
481                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
482         }
483
484         if (page != -1) {
485                 /* Now we use page size operation */
486                 int sectors = 0, count = 0;
487                 int dataram;
488
489                 switch (cmd) {
490                 case FLEXONENAND_CMD_RECOVER_LSB:
491                 case ONENAND_CMD_READ:
492                 case ONENAND_CMD_READOOB:
493                         if (ONENAND_IS_4KB_PAGE(this))
494                                 /* It is always BufferRAM0 */
495                                 dataram = ONENAND_SET_BUFFERRAM0(this);
496                         else
497                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
498                         break;
499
500                 default:
501                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
502                                 cmd = ONENAND_CMD_2X_PROG;
503                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
504                         break;
505                 }
506
507                 /* Write 'FPA, FSA' of Flash */
508                 value = onenand_page_address(page, sectors);
509                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
510
511                 /* Write 'BSA, BSC' of DataRAM */
512                 value = onenand_buffer_address(dataram, sectors, count);
513                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
514         }
515
516         /* Interrupt clear */
517         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
518
519         /* Write command */
520         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
521
522         return 0;
523 }
524
525 /**
526  * onenand_read_ecc - return ecc status
527  * @param this          onenand chip structure
528  */
529 static inline int onenand_read_ecc(struct onenand_chip *this)
530 {
531         int ecc, i, result = 0;
532
533         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
534                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
535
536         for (i = 0; i < 4; i++) {
537                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
538                 if (likely(!ecc))
539                         continue;
540                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
541                         return ONENAND_ECC_2BIT_ALL;
542                 else
543                         result = ONENAND_ECC_1BIT_ALL;
544         }
545
546         return result;
547 }
548
549 /**
550  * onenand_wait - [DEFAULT] wait until the command is done
551  * @param mtd           MTD device structure
552  * @param state         state to select the max. timeout value
553  *
554  * Wait for command done. This applies to all OneNAND command
555  * Read can take up to 30us, erase up to 2ms and program up to 350us
556  * according to general OneNAND specs
557  */
558 static int onenand_wait(struct mtd_info *mtd, int state)
559 {
560         struct onenand_chip * this = mtd->priv;
561         unsigned long timeout;
562         unsigned int flags = ONENAND_INT_MASTER;
563         unsigned int interrupt = 0;
564         unsigned int ctrl;
565
566         /* The 20 msec is enough */
567         timeout = jiffies + msecs_to_jiffies(20);
568         while (time_before(jiffies, timeout)) {
569                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
570
571                 if (interrupt & flags)
572                         break;
573
574                 if (state != FL_READING && state != FL_PREPARING_ERASE)
575                         cond_resched();
576         }
577         /* To get correct interrupt status in timeout case */
578         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
579
580         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
581
582         /*
583          * In the Spec. it checks the controller status first
584          * However if you get the correct information in case of
585          * power off recovery (POR) test, it should read ECC status first
586          */
587         if (interrupt & ONENAND_INT_READ) {
588                 int ecc = onenand_read_ecc(this);
589                 if (ecc) {
590                         if (ecc & ONENAND_ECC_2BIT_ALL) {
591                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
592                                         __func__, ecc);
593                                 mtd->ecc_stats.failed++;
594                                 return -EBADMSG;
595                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
596                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
597                                         __func__, ecc);
598                                 mtd->ecc_stats.corrected++;
599                         }
600                 }
601         } else if (state == FL_READING) {
602                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
603                         __func__, ctrl, interrupt);
604                 return -EIO;
605         }
606
607         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
608                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
609                        __func__, ctrl, interrupt);
610                 return -EIO;
611         }
612
613         if (!(interrupt & ONENAND_INT_MASTER)) {
614                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
615                        __func__, ctrl, interrupt);
616                 return -EIO;
617         }
618
619         /* If there's controller error, it's a real error */
620         if (ctrl & ONENAND_CTRL_ERROR) {
621                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
622                         __func__, ctrl);
623                 if (ctrl & ONENAND_CTRL_LOCK)
624                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
625                 return -EIO;
626         }
627
628         return 0;
629 }
630
631 /*
632  * onenand_interrupt - [DEFAULT] onenand interrupt handler
633  * @param irq           onenand interrupt number
634  * @param dev_id        interrupt data
635  *
636  * complete the work
637  */
638 static irqreturn_t onenand_interrupt(int irq, void *data)
639 {
640         struct onenand_chip *this = data;
641
642         /* To handle shared interrupt */
643         if (!this->complete.done)
644                 complete(&this->complete);
645
646         return IRQ_HANDLED;
647 }
648
649 /*
650  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
651  * @param mtd           MTD device structure
652  * @param state         state to select the max. timeout value
653  *
654  * Wait for command done.
655  */
656 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
657 {
658         struct onenand_chip *this = mtd->priv;
659
660         wait_for_completion(&this->complete);
661
662         return onenand_wait(mtd, state);
663 }
664
665 /*
666  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
667  * @param mtd           MTD device structure
668  * @param state         state to select the max. timeout value
669  *
670  * Try interrupt based wait (It is used one-time)
671  */
672 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
673 {
674         struct onenand_chip *this = mtd->priv;
675         unsigned long remain, timeout;
676
677         /* We use interrupt wait first */
678         this->wait = onenand_interrupt_wait;
679
680         timeout = msecs_to_jiffies(100);
681         remain = wait_for_completion_timeout(&this->complete, timeout);
682         if (!remain) {
683                 printk(KERN_INFO "OneNAND: There's no interrupt. "
684                                 "We use the normal wait\n");
685
686                 /* Release the irq */
687                 free_irq(this->irq, this);
688
689                 this->wait = onenand_wait;
690         }
691
692         return onenand_wait(mtd, state);
693 }
694
695 /*
696  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
697  * @param mtd           MTD device structure
698  *
699  * There's two method to wait onenand work
700  * 1. polling - read interrupt status register
701  * 2. interrupt - use the kernel interrupt method
702  */
703 static void onenand_setup_wait(struct mtd_info *mtd)
704 {
705         struct onenand_chip *this = mtd->priv;
706         int syscfg;
707
708         init_completion(&this->complete);
709
710         if (this->irq <= 0) {
711                 this->wait = onenand_wait;
712                 return;
713         }
714
715         if (request_irq(this->irq, &onenand_interrupt,
716                                 IRQF_SHARED, "onenand", this)) {
717                 /* If we can't get irq, use the normal wait */
718                 this->wait = onenand_wait;
719                 return;
720         }
721
722         /* Enable interrupt */
723         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
724         syscfg |= ONENAND_SYS_CFG1_IOBE;
725         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
726
727         this->wait = onenand_try_interrupt_wait;
728 }
729
730 /**
731  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
732  * @param mtd           MTD data structure
733  * @param area          BufferRAM area
734  * @return              offset given area
735  *
736  * Return BufferRAM offset given area
737  */
738 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
739 {
740         struct onenand_chip *this = mtd->priv;
741
742         if (ONENAND_CURRENT_BUFFERRAM(this)) {
743                 /* Note: the 'this->writesize' is a real page size */
744                 if (area == ONENAND_DATARAM)
745                         return this->writesize;
746                 if (area == ONENAND_SPARERAM)
747                         return mtd->oobsize;
748         }
749
750         return 0;
751 }
752
753 /**
754  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
755  * @param mtd           MTD data structure
756  * @param area          BufferRAM area
757  * @param buffer        the databuffer to put/get data
758  * @param offset        offset to read from or write to
759  * @param count         number of bytes to read/write
760  *
761  * Read the BufferRAM area
762  */
763 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
764                 unsigned char *buffer, int offset, size_t count)
765 {
766         struct onenand_chip *this = mtd->priv;
767         void __iomem *bufferram;
768
769         bufferram = this->base + area;
770
771         bufferram += onenand_bufferram_offset(mtd, area);
772
773         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
774                 unsigned short word;
775
776                 /* Align with word(16-bit) size */
777                 count--;
778
779                 /* Read word and save byte */
780                 word = this->read_word(bufferram + offset + count);
781                 buffer[count] = (word & 0xff);
782         }
783
784         memcpy(buffer, bufferram + offset, count);
785
786         return 0;
787 }
788
789 /**
790  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
791  * @param mtd           MTD data structure
792  * @param area          BufferRAM area
793  * @param buffer        the databuffer to put/get data
794  * @param offset        offset to read from or write to
795  * @param count         number of bytes to read/write
796  *
797  * Read the BufferRAM area with Sync. Burst Mode
798  */
799 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
800                 unsigned char *buffer, int offset, size_t count)
801 {
802         struct onenand_chip *this = mtd->priv;
803         void __iomem *bufferram;
804
805         bufferram = this->base + area;
806
807         bufferram += onenand_bufferram_offset(mtd, area);
808
809         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
810
811         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
812                 unsigned short word;
813
814                 /* Align with word(16-bit) size */
815                 count--;
816
817                 /* Read word and save byte */
818                 word = this->read_word(bufferram + offset + count);
819                 buffer[count] = (word & 0xff);
820         }
821
822         memcpy(buffer, bufferram + offset, count);
823
824         this->mmcontrol(mtd, 0);
825
826         return 0;
827 }
828
829 /**
830  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
831  * @param mtd           MTD data structure
832  * @param area          BufferRAM area
833  * @param buffer        the databuffer to put/get data
834  * @param offset        offset to read from or write to
835  * @param count         number of bytes to read/write
836  *
837  * Write the BufferRAM area
838  */
839 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
840                 const unsigned char *buffer, int offset, size_t count)
841 {
842         struct onenand_chip *this = mtd->priv;
843         void __iomem *bufferram;
844
845         bufferram = this->base + area;
846
847         bufferram += onenand_bufferram_offset(mtd, area);
848
849         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
850                 unsigned short word;
851                 int byte_offset;
852
853                 /* Align with word(16-bit) size */
854                 count--;
855
856                 /* Calculate byte access offset */
857                 byte_offset = offset + count;
858
859                 /* Read word and save byte */
860                 word = this->read_word(bufferram + byte_offset);
861                 word = (word & ~0xff) | buffer[count];
862                 this->write_word(word, bufferram + byte_offset);
863         }
864
865         memcpy(bufferram + offset, buffer, count);
866
867         return 0;
868 }
869
870 /**
871  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
872  * @param mtd           MTD data structure
873  * @param addr          address to check
874  * @return              blockpage address
875  *
876  * Get blockpage address at 2x program mode
877  */
878 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
879 {
880         struct onenand_chip *this = mtd->priv;
881         int blockpage, block, page;
882
883         /* Calculate the even block number */
884         block = (int) (addr >> this->erase_shift) & ~1;
885         /* Is it the odd plane? */
886         if (addr & this->writesize)
887                 block++;
888         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
889         blockpage = (block << 7) | page;
890
891         return blockpage;
892 }
893
894 /**
895  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
896  * @param mtd           MTD data structure
897  * @param addr          address to check
898  * @return              1 if there are valid data, otherwise 0
899  *
900  * Check bufferram if there is data we required
901  */
902 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
903 {
904         struct onenand_chip *this = mtd->priv;
905         int blockpage, found = 0;
906         unsigned int i;
907
908         if (ONENAND_IS_2PLANE(this))
909                 blockpage = onenand_get_2x_blockpage(mtd, addr);
910         else
911                 blockpage = (int) (addr >> this->page_shift);
912
913         /* Is there valid data? */
914         i = ONENAND_CURRENT_BUFFERRAM(this);
915         if (this->bufferram[i].blockpage == blockpage)
916                 found = 1;
917         else {
918                 /* Check another BufferRAM */
919                 i = ONENAND_NEXT_BUFFERRAM(this);
920                 if (this->bufferram[i].blockpage == blockpage) {
921                         ONENAND_SET_NEXT_BUFFERRAM(this);
922                         found = 1;
923                 }
924         }
925
926         if (found && ONENAND_IS_DDP(this)) {
927                 /* Select DataRAM for DDP */
928                 int block = onenand_block(this, addr);
929                 int value = onenand_bufferram_address(this, block);
930                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
931         }
932
933         return found;
934 }
935
936 /**
937  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
938  * @param mtd           MTD data structure
939  * @param addr          address to update
940  * @param valid         valid flag
941  *
942  * Update BufferRAM information
943  */
944 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
945                 int valid)
946 {
947         struct onenand_chip *this = mtd->priv;
948         int blockpage;
949         unsigned int i;
950
951         if (ONENAND_IS_2PLANE(this))
952                 blockpage = onenand_get_2x_blockpage(mtd, addr);
953         else
954                 blockpage = (int) (addr >> this->page_shift);
955
956         /* Invalidate another BufferRAM */
957         i = ONENAND_NEXT_BUFFERRAM(this);
958         if (this->bufferram[i].blockpage == blockpage)
959                 this->bufferram[i].blockpage = -1;
960
961         /* Update BufferRAM */
962         i = ONENAND_CURRENT_BUFFERRAM(this);
963         if (valid)
964                 this->bufferram[i].blockpage = blockpage;
965         else
966                 this->bufferram[i].blockpage = -1;
967 }
968
969 /**
970  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
971  * @param mtd           MTD data structure
972  * @param addr          start address to invalidate
973  * @param len           length to invalidate
974  *
975  * Invalidate BufferRAM information
976  */
977 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
978                 unsigned int len)
979 {
980         struct onenand_chip *this = mtd->priv;
981         int i;
982         loff_t end_addr = addr + len;
983
984         /* Invalidate BufferRAM */
985         for (i = 0; i < MAX_BUFFERRAM; i++) {
986                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
987                 if (buf_addr >= addr && buf_addr < end_addr)
988                         this->bufferram[i].blockpage = -1;
989         }
990 }
991
992 /**
993  * onenand_get_device - [GENERIC] Get chip for selected access
994  * @param mtd           MTD device structure
995  * @param new_state     the state which is requested
996  *
997  * Get the device and lock it for exclusive access
998  */
999 static int onenand_get_device(struct mtd_info *mtd, int new_state)
1000 {
1001         struct onenand_chip *this = mtd->priv;
1002         DECLARE_WAITQUEUE(wait, current);
1003
1004         /*
1005          * Grab the lock and see if the device is available
1006          */
1007         while (1) {
1008                 spin_lock(&this->chip_lock);
1009                 if (this->state == FL_READY) {
1010                         this->state = new_state;
1011                         spin_unlock(&this->chip_lock);
1012                         if (new_state != FL_PM_SUSPENDED && this->enable)
1013                                 this->enable(mtd);
1014                         break;
1015                 }
1016                 if (new_state == FL_PM_SUSPENDED) {
1017                         spin_unlock(&this->chip_lock);
1018                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1019                 }
1020                 set_current_state(TASK_UNINTERRUPTIBLE);
1021                 add_wait_queue(&this->wq, &wait);
1022                 spin_unlock(&this->chip_lock);
1023                 schedule();
1024                 remove_wait_queue(&this->wq, &wait);
1025         }
1026
1027         return 0;
1028 }
1029
1030 /**
1031  * onenand_release_device - [GENERIC] release chip
1032  * @param mtd           MTD device structure
1033  *
1034  * Deselect, release chip lock and wake up anyone waiting on the device
1035  */
1036 static void onenand_release_device(struct mtd_info *mtd)
1037 {
1038         struct onenand_chip *this = mtd->priv;
1039
1040         if (this->state != FL_PM_SUSPENDED && this->disable)
1041                 this->disable(mtd);
1042         /* Release the chip */
1043         spin_lock(&this->chip_lock);
1044         this->state = FL_READY;
1045         wake_up(&this->wq);
1046         spin_unlock(&this->chip_lock);
1047 }
1048
1049 /**
1050  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1051  * @param mtd           MTD device structure
1052  * @param buf           destination address
1053  * @param column        oob offset to read from
1054  * @param thislen       oob length to read
1055  */
1056 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1057                                 int thislen)
1058 {
1059         struct onenand_chip *this = mtd->priv;
1060         int ret;
1061
1062         this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1063                              mtd->oobsize);
1064         ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1065                                           column, thislen);
1066         if (ret)
1067                 return ret;
1068
1069         return 0;
1070 }
1071
1072 /**
1073  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1074  * @param mtd           MTD device structure
1075  * @param addr          address to recover
1076  * @param status        return value from onenand_wait / onenand_bbt_wait
1077  *
1078  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1079  * lower page address and MSB page has higher page address in paired pages.
1080  * If power off occurs during MSB page program, the paired LSB page data can
1081  * become corrupt. LSB page recovery read is a way to read LSB page though page
1082  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1083  * read after power up, issue LSB page recovery read.
1084  */
1085 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1086 {
1087         struct onenand_chip *this = mtd->priv;
1088         int i;
1089
1090         /* Recovery is only for Flex-OneNAND */
1091         if (!FLEXONENAND(this))
1092                 return status;
1093
1094         /* check if we failed due to uncorrectable error */
1095         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1096                 return status;
1097
1098         /* check if address lies in MLC region */
1099         i = flexonenand_region(mtd, addr);
1100         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1101                 return status;
1102
1103         /* We are attempting to reread, so decrement stats.failed
1104          * which was incremented by onenand_wait due to read failure
1105          */
1106         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1107                 __func__);
1108         mtd->ecc_stats.failed--;
1109
1110         /* Issue the LSB page recovery command */
1111         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1112         return this->wait(mtd, FL_READING);
1113 }
1114
1115 /**
1116  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1117  * @param mtd           MTD device structure
1118  * @param from          offset to read from
1119  * @param ops:          oob operation description structure
1120  *
1121  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1122  * So, read-while-load is not present.
1123  */
1124 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1125                                 struct mtd_oob_ops *ops)
1126 {
1127         struct onenand_chip *this = mtd->priv;
1128         struct mtd_ecc_stats stats;
1129         size_t len = ops->len;
1130         size_t ooblen = ops->ooblen;
1131         u_char *buf = ops->datbuf;
1132         u_char *oobbuf = ops->oobbuf;
1133         int read = 0, column, thislen;
1134         int oobread = 0, oobcolumn, thisooblen, oobsize;
1135         int ret = 0;
1136         int writesize = this->writesize;
1137
1138         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1139                         (int)len);
1140
1141         oobsize = mtd_oobavail(mtd, ops);
1142         oobcolumn = from & (mtd->oobsize - 1);
1143
1144         /* Do not allow reads past end of device */
1145         if (from + len > mtd->size) {
1146                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1147                         __func__);
1148                 ops->retlen = 0;
1149                 ops->oobretlen = 0;
1150                 return -EINVAL;
1151         }
1152
1153         stats = mtd->ecc_stats;
1154
1155         while (read < len) {
1156                 cond_resched();
1157
1158                 thislen = min_t(int, writesize, len - read);
1159
1160                 column = from & (writesize - 1);
1161                 if (column + thislen > writesize)
1162                         thislen = writesize - column;
1163
1164                 if (!onenand_check_bufferram(mtd, from)) {
1165                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1166
1167                         ret = this->wait(mtd, FL_READING);
1168                         if (unlikely(ret))
1169                                 ret = onenand_recover_lsb(mtd, from, ret);
1170                         onenand_update_bufferram(mtd, from, !ret);
1171                         if (mtd_is_eccerr(ret))
1172                                 ret = 0;
1173                         if (ret)
1174                                 break;
1175                 }
1176
1177                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1178                 if (oobbuf) {
1179                         thisooblen = oobsize - oobcolumn;
1180                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1181
1182                         if (ops->mode == MTD_OPS_AUTO_OOB)
1183                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1184                         else
1185                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1186                         oobread += thisooblen;
1187                         oobbuf += thisooblen;
1188                         oobcolumn = 0;
1189                 }
1190
1191                 read += thislen;
1192                 if (read == len)
1193                         break;
1194
1195                 from += thislen;
1196                 buf += thislen;
1197         }
1198
1199         /*
1200          * Return success, if no ECC failures, else -EBADMSG
1201          * fs driver will take care of that, because
1202          * retlen == desired len and result == -EBADMSG
1203          */
1204         ops->retlen = read;
1205         ops->oobretlen = oobread;
1206
1207         if (ret)
1208                 return ret;
1209
1210         if (mtd->ecc_stats.failed - stats.failed)
1211                 return -EBADMSG;
1212
1213         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1214         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1215 }
1216
1217 /**
1218  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1219  * @param mtd           MTD device structure
1220  * @param from          offset to read from
1221  * @param ops:          oob operation description structure
1222  *
1223  * OneNAND read main and/or out-of-band data
1224  */
1225 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1226                                 struct mtd_oob_ops *ops)
1227 {
1228         struct onenand_chip *this = mtd->priv;
1229         struct mtd_ecc_stats stats;
1230         size_t len = ops->len;
1231         size_t ooblen = ops->ooblen;
1232         u_char *buf = ops->datbuf;
1233         u_char *oobbuf = ops->oobbuf;
1234         int read = 0, column, thislen;
1235         int oobread = 0, oobcolumn, thisooblen, oobsize;
1236         int ret = 0, boundary = 0;
1237         int writesize = this->writesize;
1238
1239         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1240                         (int)len);
1241
1242         oobsize = mtd_oobavail(mtd, ops);
1243         oobcolumn = from & (mtd->oobsize - 1);
1244
1245         /* Do not allow reads past end of device */
1246         if ((from + len) > mtd->size) {
1247                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1248                         __func__);
1249                 ops->retlen = 0;
1250                 ops->oobretlen = 0;
1251                 return -EINVAL;
1252         }
1253
1254         stats = mtd->ecc_stats;
1255
1256         /* Read-while-load method */
1257
1258         /* Do first load to bufferRAM */
1259         if (read < len) {
1260                 if (!onenand_check_bufferram(mtd, from)) {
1261                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1262                         ret = this->wait(mtd, FL_READING);
1263                         onenand_update_bufferram(mtd, from, !ret);
1264                         if (mtd_is_eccerr(ret))
1265                                 ret = 0;
1266                 }
1267         }
1268
1269         thislen = min_t(int, writesize, len - read);
1270         column = from & (writesize - 1);
1271         if (column + thislen > writesize)
1272                 thislen = writesize - column;
1273
1274         while (!ret) {
1275                 /* If there is more to load then start next load */
1276                 from += thislen;
1277                 if (read + thislen < len) {
1278                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1279                         /*
1280                          * Chip boundary handling in DDP
1281                          * Now we issued chip 1 read and pointed chip 1
1282                          * bufferram so we have to point chip 0 bufferram.
1283                          */
1284                         if (ONENAND_IS_DDP(this) &&
1285                             unlikely(from == (this->chipsize >> 1))) {
1286                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1287                                 boundary = 1;
1288                         } else
1289                                 boundary = 0;
1290                         ONENAND_SET_PREV_BUFFERRAM(this);
1291                 }
1292                 /* While load is going, read from last bufferRAM */
1293                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1294
1295                 /* Read oob area if needed */
1296                 if (oobbuf) {
1297                         thisooblen = oobsize - oobcolumn;
1298                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1299
1300                         if (ops->mode == MTD_OPS_AUTO_OOB)
1301                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1302                         else
1303                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1304                         oobread += thisooblen;
1305                         oobbuf += thisooblen;
1306                         oobcolumn = 0;
1307                 }
1308
1309                 /* See if we are done */
1310                 read += thislen;
1311                 if (read == len)
1312                         break;
1313                 /* Set up for next read from bufferRAM */
1314                 if (unlikely(boundary))
1315                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1316                 ONENAND_SET_NEXT_BUFFERRAM(this);
1317                 buf += thislen;
1318                 thislen = min_t(int, writesize, len - read);
1319                 column = 0;
1320                 cond_resched();
1321                 /* Now wait for load */
1322                 ret = this->wait(mtd, FL_READING);
1323                 onenand_update_bufferram(mtd, from, !ret);
1324                 if (mtd_is_eccerr(ret))
1325                         ret = 0;
1326         }
1327
1328         /*
1329          * Return success, if no ECC failures, else -EBADMSG
1330          * fs driver will take care of that, because
1331          * retlen == desired len and result == -EBADMSG
1332          */
1333         ops->retlen = read;
1334         ops->oobretlen = oobread;
1335
1336         if (ret)
1337                 return ret;
1338
1339         if (mtd->ecc_stats.failed - stats.failed)
1340                 return -EBADMSG;
1341
1342         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1343         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1344 }
1345
1346 /**
1347  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1348  * @param mtd           MTD device structure
1349  * @param from          offset to read from
1350  * @param ops:          oob operation description structure
1351  *
1352  * OneNAND read out-of-band data from the spare area
1353  */
1354 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1355                         struct mtd_oob_ops *ops)
1356 {
1357         struct onenand_chip *this = mtd->priv;
1358         struct mtd_ecc_stats stats;
1359         int read = 0, thislen, column, oobsize;
1360         size_t len = ops->ooblen;
1361         unsigned int mode = ops->mode;
1362         u_char *buf = ops->oobbuf;
1363         int ret = 0, readcmd;
1364
1365         from += ops->ooboffs;
1366
1367         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1368                         (int)len);
1369
1370         /* Initialize return length value */
1371         ops->oobretlen = 0;
1372
1373         if (mode == MTD_OPS_AUTO_OOB)
1374                 oobsize = mtd->oobavail;
1375         else
1376                 oobsize = mtd->oobsize;
1377
1378         column = from & (mtd->oobsize - 1);
1379
1380         if (unlikely(column >= oobsize)) {
1381                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1382                         __func__);
1383                 return -EINVAL;
1384         }
1385
1386         /* Do not allow reads past end of device */
1387         if (unlikely(from >= mtd->size ||
1388                      column + len > ((mtd->size >> this->page_shift) -
1389                                      (from >> this->page_shift)) * oobsize)) {
1390                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1391                         __func__);
1392                 return -EINVAL;
1393         }
1394
1395         stats = mtd->ecc_stats;
1396
1397         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1398
1399         while (read < len) {
1400                 cond_resched();
1401
1402                 thislen = oobsize - column;
1403                 thislen = min_t(int, thislen, len);
1404
1405                 this->command(mtd, readcmd, from, mtd->oobsize);
1406
1407                 onenand_update_bufferram(mtd, from, 0);
1408
1409                 ret = this->wait(mtd, FL_READING);
1410                 if (unlikely(ret))
1411                         ret = onenand_recover_lsb(mtd, from, ret);
1412
1413                 if (ret && !mtd_is_eccerr(ret)) {
1414                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1415                                 __func__, ret);
1416                         break;
1417                 }
1418
1419                 if (mode == MTD_OPS_AUTO_OOB)
1420                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1421                 else
1422                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1423
1424                 read += thislen;
1425
1426                 if (read == len)
1427                         break;
1428
1429                 buf += thislen;
1430
1431                 /* Read more? */
1432                 if (read < len) {
1433                         /* Page size */
1434                         from += mtd->writesize;
1435                         column = 0;
1436                 }
1437         }
1438
1439         ops->oobretlen = read;
1440
1441         if (ret)
1442                 return ret;
1443
1444         if (mtd->ecc_stats.failed - stats.failed)
1445                 return -EBADMSG;
1446
1447         return 0;
1448 }
1449
1450 /**
1451  * onenand_read - [MTD Interface] Read data from flash
1452  * @param mtd           MTD device structure
1453  * @param from          offset to read from
1454  * @param len           number of bytes to read
1455  * @param retlen        pointer to variable to store the number of read bytes
1456  * @param buf           the databuffer to put data
1457  *
1458  * Read with ecc
1459 */
1460 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1461         size_t *retlen, u_char *buf)
1462 {
1463         struct onenand_chip *this = mtd->priv;
1464         struct mtd_oob_ops ops = {
1465                 .len    = len,
1466                 .ooblen = 0,
1467                 .datbuf = buf,
1468                 .oobbuf = NULL,
1469         };
1470         int ret;
1471
1472         onenand_get_device(mtd, FL_READING);
1473         ret = ONENAND_IS_4KB_PAGE(this) ?
1474                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1475                 onenand_read_ops_nolock(mtd, from, &ops);
1476         onenand_release_device(mtd);
1477
1478         *retlen = ops.retlen;
1479         return ret;
1480 }
1481
1482 /**
1483  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1484  * @param mtd:          MTD device structure
1485  * @param from:         offset to read from
1486  * @param ops:          oob operation description structure
1487
1488  * Read main and/or out-of-band
1489  */
1490 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1491                             struct mtd_oob_ops *ops)
1492 {
1493         struct onenand_chip *this = mtd->priv;
1494         int ret;
1495
1496         switch (ops->mode) {
1497         case MTD_OPS_PLACE_OOB:
1498         case MTD_OPS_AUTO_OOB:
1499                 break;
1500         case MTD_OPS_RAW:
1501                 /* Not implemented yet */
1502         default:
1503                 return -EINVAL;
1504         }
1505
1506         onenand_get_device(mtd, FL_READING);
1507         if (ops->datbuf)
1508                 ret = ONENAND_IS_4KB_PAGE(this) ?
1509                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1510                         onenand_read_ops_nolock(mtd, from, ops);
1511         else
1512                 ret = onenand_read_oob_nolock(mtd, from, ops);
1513         onenand_release_device(mtd);
1514
1515         return ret;
1516 }
1517
1518 /**
1519  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1520  * @param mtd           MTD device structure
1521  * @param state         state to select the max. timeout value
1522  *
1523  * Wait for command done.
1524  */
1525 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1526 {
1527         struct onenand_chip *this = mtd->priv;
1528         unsigned long timeout;
1529         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1530
1531         /* The 20 msec is enough */
1532         timeout = jiffies + msecs_to_jiffies(20);
1533         while (time_before(jiffies, timeout)) {
1534                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1535                 if (interrupt & ONENAND_INT_MASTER)
1536                         break;
1537         }
1538         /* To get correct interrupt status in timeout case */
1539         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1540         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1541         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1542         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1543
1544         if (interrupt & ONENAND_INT_READ) {
1545                 ecc = onenand_read_ecc(this);
1546                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1547                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1548                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1549                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1550                         return ONENAND_BBT_READ_ECC_ERROR;
1551                 }
1552         } else {
1553                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1554                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1555                        __func__, ctrl, interrupt, addr1, addr8);
1556                 return ONENAND_BBT_READ_FATAL_ERROR;
1557         }
1558
1559         /* Initial bad block case: 0x2400 or 0x0400 */
1560         if (ctrl & ONENAND_CTRL_ERROR) {
1561                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1562                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1563                 return ONENAND_BBT_READ_ERROR;
1564         }
1565
1566         return 0;
1567 }
1568
1569 /**
1570  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1571  * @param mtd           MTD device structure
1572  * @param from          offset to read from
1573  * @param ops           oob operation description structure
1574  *
1575  * OneNAND read out-of-band data from the spare area for bbt scan
1576  */
1577 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1578                             struct mtd_oob_ops *ops)
1579 {
1580         struct onenand_chip *this = mtd->priv;
1581         int read = 0, thislen, column;
1582         int ret = 0, readcmd;
1583         size_t len = ops->ooblen;
1584         u_char *buf = ops->oobbuf;
1585
1586         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1587                         len);
1588
1589         /* Initialize return value */
1590         ops->oobretlen = 0;
1591
1592         /* Do not allow reads past end of device */
1593         if (unlikely((from + len) > mtd->size)) {
1594                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1595                         __func__);
1596                 return ONENAND_BBT_READ_FATAL_ERROR;
1597         }
1598
1599         /* Grab the lock and see if the device is available */
1600         onenand_get_device(mtd, FL_READING);
1601
1602         column = from & (mtd->oobsize - 1);
1603
1604         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1605
1606         while (read < len) {
1607                 cond_resched();
1608
1609                 thislen = mtd->oobsize - column;
1610                 thislen = min_t(int, thislen, len);
1611
1612                 this->command(mtd, readcmd, from, mtd->oobsize);
1613
1614                 onenand_update_bufferram(mtd, from, 0);
1615
1616                 ret = this->bbt_wait(mtd, FL_READING);
1617                 if (unlikely(ret))
1618                         ret = onenand_recover_lsb(mtd, from, ret);
1619
1620                 if (ret)
1621                         break;
1622
1623                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1624                 read += thislen;
1625                 if (read == len)
1626                         break;
1627
1628                 buf += thislen;
1629
1630                 /* Read more? */
1631                 if (read < len) {
1632                         /* Update Page size */
1633                         from += this->writesize;
1634                         column = 0;
1635                 }
1636         }
1637
1638         /* Deselect and wake up anyone waiting on the device */
1639         onenand_release_device(mtd);
1640
1641         ops->oobretlen = read;
1642         return ret;
1643 }
1644
1645 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1646 /**
1647  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1648  * @param mtd           MTD device structure
1649  * @param buf           the databuffer to verify
1650  * @param to            offset to read from
1651  */
1652 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1653 {
1654         struct onenand_chip *this = mtd->priv;
1655         u_char *oob_buf = this->oob_buf;
1656         int status, i, readcmd;
1657
1658         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1659
1660         this->command(mtd, readcmd, to, mtd->oobsize);
1661         onenand_update_bufferram(mtd, to, 0);
1662         status = this->wait(mtd, FL_READING);
1663         if (status)
1664                 return status;
1665
1666         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1667         for (i = 0; i < mtd->oobsize; i++)
1668                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1669                         return -EBADMSG;
1670
1671         return 0;
1672 }
1673
1674 /**
1675  * onenand_verify - [GENERIC] verify the chip contents after a write
1676  * @param mtd          MTD device structure
1677  * @param buf          the databuffer to verify
1678  * @param addr         offset to read from
1679  * @param len          number of bytes to read and compare
1680  */
1681 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1682 {
1683         struct onenand_chip *this = mtd->priv;
1684         int ret = 0;
1685         int thislen, column;
1686
1687         column = addr & (this->writesize - 1);
1688
1689         while (len != 0) {
1690                 thislen = min_t(int, this->writesize - column, len);
1691
1692                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1693
1694                 onenand_update_bufferram(mtd, addr, 0);
1695
1696                 ret = this->wait(mtd, FL_READING);
1697                 if (ret)
1698                         return ret;
1699
1700                 onenand_update_bufferram(mtd, addr, 1);
1701
1702                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1703
1704                 if (memcmp(buf, this->verify_buf + column, thislen))
1705                         return -EBADMSG;
1706
1707                 len -= thislen;
1708                 buf += thislen;
1709                 addr += thislen;
1710                 column = 0;
1711         }
1712
1713         return 0;
1714 }
1715 #else
1716 #define onenand_verify(...)             (0)
1717 #define onenand_verify_oob(...)         (0)
1718 #endif
1719
1720 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1721
1722 static void onenand_panic_wait(struct mtd_info *mtd)
1723 {
1724         struct onenand_chip *this = mtd->priv;
1725         unsigned int interrupt;
1726         int i;
1727         
1728         for (i = 0; i < 2000; i++) {
1729                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1730                 if (interrupt & ONENAND_INT_MASTER)
1731                         break;
1732                 udelay(10);
1733         }
1734 }
1735
1736 /**
1737  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1738  * @param mtd           MTD device structure
1739  * @param to            offset to write to
1740  * @param len           number of bytes to write
1741  * @param retlen        pointer to variable to store the number of written bytes
1742  * @param buf           the data to write
1743  *
1744  * Write with ECC
1745  */
1746 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1747                          size_t *retlen, const u_char *buf)
1748 {
1749         struct onenand_chip *this = mtd->priv;
1750         int column, subpage;
1751         int written = 0;
1752
1753         if (this->state == FL_PM_SUSPENDED)
1754                 return -EBUSY;
1755
1756         /* Wait for any existing operation to clear */
1757         onenand_panic_wait(mtd);
1758
1759         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1760                         (int)len);
1761
1762         /* Reject writes, which are not page aligned */
1763         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1764                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1765                         __func__);
1766                 return -EINVAL;
1767         }
1768
1769         column = to & (mtd->writesize - 1);
1770
1771         /* Loop until all data write */
1772         while (written < len) {
1773                 int thislen = min_t(int, mtd->writesize - column, len - written);
1774                 u_char *wbuf = (u_char *) buf;
1775
1776                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1777
1778                 /* Partial page write */
1779                 subpage = thislen < mtd->writesize;
1780                 if (subpage) {
1781                         memset(this->page_buf, 0xff, mtd->writesize);
1782                         memcpy(this->page_buf + column, buf, thislen);
1783                         wbuf = this->page_buf;
1784                 }
1785
1786                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1787                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1788
1789                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1790
1791                 onenand_panic_wait(mtd);
1792
1793                 /* In partial page write we don't update bufferram */
1794                 onenand_update_bufferram(mtd, to, !subpage);
1795                 if (ONENAND_IS_2PLANE(this)) {
1796                         ONENAND_SET_BUFFERRAM1(this);
1797                         onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1798                 }
1799
1800                 written += thislen;
1801
1802                 if (written == len)
1803                         break;
1804
1805                 column = 0;
1806                 to += thislen;
1807                 buf += thislen;
1808         }
1809
1810         *retlen = written;
1811         return 0;
1812 }
1813
1814 /**
1815  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1816  * @param mtd           MTD device structure
1817  * @param oob_buf       oob buffer
1818  * @param buf           source address
1819  * @param column        oob offset to write to
1820  * @param thislen       oob length to write
1821  */
1822 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1823                                   const u_char *buf, int column, int thislen)
1824 {
1825         return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1826 }
1827
1828 /**
1829  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1830  * @param mtd           MTD device structure
1831  * @param to            offset to write to
1832  * @param ops           oob operation description structure
1833  *
1834  * Write main and/or oob with ECC
1835  */
1836 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1837                                 struct mtd_oob_ops *ops)
1838 {
1839         struct onenand_chip *this = mtd->priv;
1840         int written = 0, column, thislen = 0, subpage = 0;
1841         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1842         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1843         size_t len = ops->len;
1844         size_t ooblen = ops->ooblen;
1845         const u_char *buf = ops->datbuf;
1846         const u_char *oob = ops->oobbuf;
1847         u_char *oobbuf;
1848         int ret = 0, cmd;
1849
1850         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1851                         (int)len);
1852
1853         /* Initialize retlen, in case of early exit */
1854         ops->retlen = 0;
1855         ops->oobretlen = 0;
1856
1857         /* Reject writes, which are not page aligned */
1858         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1859                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1860                         __func__);
1861                 return -EINVAL;
1862         }
1863
1864         /* Check zero length */
1865         if (!len)
1866                 return 0;
1867         oobsize = mtd_oobavail(mtd, ops);
1868         oobcolumn = to & (mtd->oobsize - 1);
1869
1870         column = to & (mtd->writesize - 1);
1871
1872         /* Loop until all data write */
1873         while (1) {
1874                 if (written < len) {
1875                         u_char *wbuf = (u_char *) buf;
1876
1877                         thislen = min_t(int, mtd->writesize - column, len - written);
1878                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1879
1880                         cond_resched();
1881
1882                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1883
1884                         /* Partial page write */
1885                         subpage = thislen < mtd->writesize;
1886                         if (subpage) {
1887                                 memset(this->page_buf, 0xff, mtd->writesize);
1888                                 memcpy(this->page_buf + column, buf, thislen);
1889                                 wbuf = this->page_buf;
1890                         }
1891
1892                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1893
1894                         if (oob) {
1895                                 oobbuf = this->oob_buf;
1896
1897                                 /* We send data to spare ram with oobsize
1898                                  * to prevent byte access */
1899                                 memset(oobbuf, 0xff, mtd->oobsize);
1900                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1901                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1902                                 else
1903                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1904
1905                                 oobwritten += thisooblen;
1906                                 oob += thisooblen;
1907                                 oobcolumn = 0;
1908                         } else
1909                                 oobbuf = (u_char *) ffchars;
1910
1911                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1912                 } else
1913                         ONENAND_SET_NEXT_BUFFERRAM(this);
1914
1915                 /*
1916                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1917                  * write-while-program feature.
1918                  */
1919                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1920                         ONENAND_SET_PREV_BUFFERRAM(this);
1921
1922                         ret = this->wait(mtd, FL_WRITING);
1923
1924                         /* In partial page write we don't update bufferram */
1925                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1926                         if (ret) {
1927                                 written -= prevlen;
1928                                 printk(KERN_ERR "%s: write failed %d\n",
1929                                         __func__, ret);
1930                                 break;
1931                         }
1932
1933                         if (written == len) {
1934                                 /* Only check verify write turn on */
1935                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1936                                 if (ret)
1937                                         printk(KERN_ERR "%s: verify failed %d\n",
1938                                                 __func__, ret);
1939                                 break;
1940                         }
1941
1942                         ONENAND_SET_NEXT_BUFFERRAM(this);
1943                 }
1944
1945                 this->ongoing = 0;
1946                 cmd = ONENAND_CMD_PROG;
1947
1948                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1949                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1950                     likely(onenand_block(this, to) != 0) &&
1951                     ONENAND_IS_4KB_PAGE(this) &&
1952                     ((written + thislen) < len)) {
1953                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1954                         this->ongoing = 1;
1955                 }
1956
1957                 this->command(mtd, cmd, to, mtd->writesize);
1958
1959                 /*
1960                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1961                  */
1962                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1963                         ret = this->wait(mtd, FL_WRITING);
1964
1965                         /* In partial page write we don't update bufferram */
1966                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1967                         if (ret) {
1968                                 printk(KERN_ERR "%s: write failed %d\n",
1969                                         __func__, ret);
1970                                 break;
1971                         }
1972
1973                         /* Only check verify write turn on */
1974                         ret = onenand_verify(mtd, buf, to, thislen);
1975                         if (ret) {
1976                                 printk(KERN_ERR "%s: verify failed %d\n",
1977                                         __func__, ret);
1978                                 break;
1979                         }
1980
1981                         written += thislen;
1982
1983                         if (written == len)
1984                                 break;
1985
1986                 } else
1987                         written += thislen;
1988
1989                 column = 0;
1990                 prev_subpage = subpage;
1991                 prev = to;
1992                 prevlen = thislen;
1993                 to += thislen;
1994                 buf += thislen;
1995                 first = 0;
1996         }
1997
1998         /* In error case, clear all bufferrams */
1999         if (written != len)
2000                 onenand_invalidate_bufferram(mtd, 0, -1);
2001
2002         ops->retlen = written;
2003         ops->oobretlen = oobwritten;
2004
2005         return ret;
2006 }
2007
2008
2009 /**
2010  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
2011  * @param mtd           MTD device structure
2012  * @param to            offset to write to
2013  * @param len           number of bytes to write
2014  * @param retlen        pointer to variable to store the number of written bytes
2015  * @param buf           the data to write
2016  * @param mode          operation mode
2017  *
2018  * OneNAND write out-of-band
2019  */
2020 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2021                                     struct mtd_oob_ops *ops)
2022 {
2023         struct onenand_chip *this = mtd->priv;
2024         int column, ret = 0, oobsize;
2025         int written = 0, oobcmd;
2026         u_char *oobbuf;
2027         size_t len = ops->ooblen;
2028         const u_char *buf = ops->oobbuf;
2029         unsigned int mode = ops->mode;
2030
2031         to += ops->ooboffs;
2032
2033         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
2034                         (int)len);
2035
2036         /* Initialize retlen, in case of early exit */
2037         ops->oobretlen = 0;
2038
2039         if (mode == MTD_OPS_AUTO_OOB)
2040                 oobsize = mtd->oobavail;
2041         else
2042                 oobsize = mtd->oobsize;
2043
2044         column = to & (mtd->oobsize - 1);
2045
2046         if (unlikely(column >= oobsize)) {
2047                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2048                         __func__);
2049                 return -EINVAL;
2050         }
2051
2052         /* For compatibility with NAND: Do not allow write past end of page */
2053         if (unlikely(column + len > oobsize)) {
2054                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2055                         __func__);
2056                 return -EINVAL;
2057         }
2058
2059         /* Do not allow reads past end of device */
2060         if (unlikely(to >= mtd->size ||
2061                      column + len > ((mtd->size >> this->page_shift) -
2062                                      (to >> this->page_shift)) * oobsize)) {
2063                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2064                        __func__);
2065                 return -EINVAL;
2066         }
2067
2068         oobbuf = this->oob_buf;
2069
2070         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2071
2072         /* Loop until all data write */
2073         while (written < len) {
2074                 int thislen = min_t(int, oobsize, len - written);
2075
2076                 cond_resched();
2077
2078                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2079
2080                 /* We send data to spare ram with oobsize
2081                  * to prevent byte access */
2082                 memset(oobbuf, 0xff, mtd->oobsize);
2083                 if (mode == MTD_OPS_AUTO_OOB)
2084                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2085                 else
2086                         memcpy(oobbuf + column, buf, thislen);
2087                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2088
2089                 if (ONENAND_IS_4KB_PAGE(this)) {
2090                         /* Set main area of DataRAM to 0xff*/
2091                         memset(this->page_buf, 0xff, mtd->writesize);
2092                         this->write_bufferram(mtd, ONENAND_DATARAM,
2093                                          this->page_buf, 0, mtd->writesize);
2094                 }
2095
2096                 this->command(mtd, oobcmd, to, mtd->oobsize);
2097
2098                 onenand_update_bufferram(mtd, to, 0);
2099                 if (ONENAND_IS_2PLANE(this)) {
2100                         ONENAND_SET_BUFFERRAM1(this);
2101                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2102                 }
2103
2104                 ret = this->wait(mtd, FL_WRITING);
2105                 if (ret) {
2106                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2107                         break;
2108                 }
2109
2110                 ret = onenand_verify_oob(mtd, oobbuf, to);
2111                 if (ret) {
2112                         printk(KERN_ERR "%s: verify failed %d\n",
2113                                 __func__, ret);
2114                         break;
2115                 }
2116
2117                 written += thislen;
2118                 if (written == len)
2119                         break;
2120
2121                 to += mtd->writesize;
2122                 buf += thislen;
2123                 column = 0;
2124         }
2125
2126         ops->oobretlen = written;
2127
2128         return ret;
2129 }
2130
2131 /**
2132  * onenand_write - [MTD Interface] write buffer to FLASH
2133  * @param mtd           MTD device structure
2134  * @param to            offset to write to
2135  * @param len           number of bytes to write
2136  * @param retlen        pointer to variable to store the number of written bytes
2137  * @param buf           the data to write
2138  *
2139  * Write with ECC
2140  */
2141 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2142         size_t *retlen, const u_char *buf)
2143 {
2144         struct mtd_oob_ops ops = {
2145                 .len    = len,
2146                 .ooblen = 0,
2147                 .datbuf = (u_char *) buf,
2148                 .oobbuf = NULL,
2149         };
2150         int ret;
2151
2152         onenand_get_device(mtd, FL_WRITING);
2153         ret = onenand_write_ops_nolock(mtd, to, &ops);
2154         onenand_release_device(mtd);
2155
2156         *retlen = ops.retlen;
2157         return ret;
2158 }
2159
2160 /**
2161  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2162  * @param mtd:          MTD device structure
2163  * @param to:           offset to write
2164  * @param ops:          oob operation description structure
2165  */
2166 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2167                              struct mtd_oob_ops *ops)
2168 {
2169         int ret;
2170
2171         switch (ops->mode) {
2172         case MTD_OPS_PLACE_OOB:
2173         case MTD_OPS_AUTO_OOB:
2174                 break;
2175         case MTD_OPS_RAW:
2176                 /* Not implemented yet */
2177         default:
2178                 return -EINVAL;
2179         }
2180
2181         onenand_get_device(mtd, FL_WRITING);
2182         if (ops->datbuf)
2183                 ret = onenand_write_ops_nolock(mtd, to, ops);
2184         else
2185                 ret = onenand_write_oob_nolock(mtd, to, ops);
2186         onenand_release_device(mtd);
2187
2188         return ret;
2189 }
2190
2191 /**
2192  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2193  * @param mtd           MTD device structure
2194  * @param ofs           offset from device start
2195  * @param allowbbt      1, if its allowed to access the bbt area
2196  *
2197  * Check, if the block is bad. Either by reading the bad block table or
2198  * calling of the scan function.
2199  */
2200 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2201 {
2202         struct onenand_chip *this = mtd->priv;
2203         struct bbm_info *bbm = this->bbm;
2204
2205         /* Return info from the table */
2206         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2207 }
2208
2209
2210 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2211                                            struct erase_info *instr)
2212 {
2213         struct onenand_chip *this = mtd->priv;
2214         loff_t addr = instr->addr;
2215         int len = instr->len;
2216         unsigned int block_size = (1 << this->erase_shift);
2217         int ret = 0;
2218
2219         while (len) {
2220                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2221                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2222                 if (ret) {
2223                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2224                                __func__, onenand_block(this, addr));
2225                         instr->state = MTD_ERASE_FAILED;
2226                         instr->fail_addr = addr;
2227                         return -1;
2228                 }
2229                 len -= block_size;
2230                 addr += block_size;
2231         }
2232         return 0;
2233 }
2234
2235 /**
2236  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2237  * @param mtd           MTD device structure
2238  * @param instr         erase instruction
2239  * @param region        erase region
2240  *
2241  * Erase one or more blocks up to 64 block at a time
2242  */
2243 static int onenand_multiblock_erase(struct mtd_info *mtd,
2244                                     struct erase_info *instr,
2245                                     unsigned int block_size)
2246 {
2247         struct onenand_chip *this = mtd->priv;
2248         loff_t addr = instr->addr;
2249         int len = instr->len;
2250         int eb_count = 0;
2251         int ret = 0;
2252         int bdry_block = 0;
2253
2254         instr->state = MTD_ERASING;
2255
2256         if (ONENAND_IS_DDP(this)) {
2257                 loff_t bdry_addr = this->chipsize >> 1;
2258                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2259                         bdry_block = bdry_addr >> this->erase_shift;
2260         }
2261
2262         /* Pre-check bbs */
2263         while (len) {
2264                 /* Check if we have a bad block, we do not erase bad blocks */
2265                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2266                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2267                                "at addr 0x%012llx\n",
2268                                __func__, (unsigned long long) addr);
2269                         instr->state = MTD_ERASE_FAILED;
2270                         return -EIO;
2271                 }
2272                 len -= block_size;
2273                 addr += block_size;
2274         }
2275
2276         len = instr->len;
2277         addr = instr->addr;
2278
2279         /* loop over 64 eb batches */
2280         while (len) {
2281                 struct erase_info verify_instr = *instr;
2282                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2283
2284                 verify_instr.addr = addr;
2285                 verify_instr.len = 0;
2286
2287                 /* do not cross chip boundary */
2288                 if (bdry_block) {
2289                         int this_block = (addr >> this->erase_shift);
2290
2291                         if (this_block < bdry_block) {
2292                                 max_eb_count = min(max_eb_count,
2293                                                    (bdry_block - this_block));
2294                         }
2295                 }
2296
2297                 eb_count = 0;
2298
2299                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2300                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2301                                       addr, block_size);
2302                         onenand_invalidate_bufferram(mtd, addr, block_size);
2303
2304                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2305                         if (ret) {
2306                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2307                                        "block %d\n", __func__,
2308                                        onenand_block(this, addr));
2309                                 instr->state = MTD_ERASE_FAILED;
2310                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2311                                 return -EIO;
2312                         }
2313
2314                         len -= block_size;
2315                         addr += block_size;
2316                         eb_count++;
2317                 }
2318
2319                 /* last block of 64-eb series */
2320                 cond_resched();
2321                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2322                 onenand_invalidate_bufferram(mtd, addr, block_size);
2323
2324                 ret = this->wait(mtd, FL_ERASING);
2325                 /* Check if it is write protected */
2326                 if (ret) {
2327                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2328                                __func__, onenand_block(this, addr));
2329                         instr->state = MTD_ERASE_FAILED;
2330                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2331                         return -EIO;
2332                 }
2333
2334                 len -= block_size;
2335                 addr += block_size;
2336                 eb_count++;
2337
2338                 /* verify */
2339                 verify_instr.len = eb_count * block_size;
2340                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2341                         instr->state = verify_instr.state;
2342                         instr->fail_addr = verify_instr.fail_addr;
2343                         return -EIO;
2344                 }
2345
2346         }
2347         return 0;
2348 }
2349
2350
2351 /**
2352  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2353  * @param mtd           MTD device structure
2354  * @param instr         erase instruction
2355  * @param region        erase region
2356  * @param block_size    erase block size
2357  *
2358  * Erase one or more blocks one block at a time
2359  */
2360 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2361                                         struct erase_info *instr,
2362                                         struct mtd_erase_region_info *region,
2363                                         unsigned int block_size)
2364 {
2365         struct onenand_chip *this = mtd->priv;
2366         loff_t addr = instr->addr;
2367         int len = instr->len;
2368         loff_t region_end = 0;
2369         int ret = 0;
2370
2371         if (region) {
2372                 /* region is set for Flex-OneNAND */
2373                 region_end = region->offset + region->erasesize * region->numblocks;
2374         }
2375
2376         instr->state = MTD_ERASING;
2377
2378         /* Loop through the blocks */
2379         while (len) {
2380                 cond_resched();
2381
2382                 /* Check if we have a bad block, we do not erase bad blocks */
2383                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2384                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2385                                         "at addr 0x%012llx\n",
2386                                         __func__, (unsigned long long) addr);
2387                         instr->state = MTD_ERASE_FAILED;
2388                         return -EIO;
2389                 }
2390
2391                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2392
2393                 onenand_invalidate_bufferram(mtd, addr, block_size);
2394
2395                 ret = this->wait(mtd, FL_ERASING);
2396                 /* Check, if it is write protected */
2397                 if (ret) {
2398                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2399                                 __func__, onenand_block(this, addr));
2400                         instr->state = MTD_ERASE_FAILED;
2401                         instr->fail_addr = addr;
2402                         return -EIO;
2403                 }
2404
2405                 len -= block_size;
2406                 addr += block_size;
2407
2408                 if (region && addr == region_end) {
2409                         if (!len)
2410                                 break;
2411                         region++;
2412
2413                         block_size = region->erasesize;
2414                         region_end = region->offset + region->erasesize * region->numblocks;
2415
2416                         if (len & (block_size - 1)) {
2417                                 /* FIXME: This should be handled at MTD partitioning level. */
2418                                 printk(KERN_ERR "%s: Unaligned address\n",
2419                                         __func__);
2420                                 return -EIO;
2421                         }
2422                 }
2423         }
2424         return 0;
2425 }
2426
2427 /**
2428  * onenand_erase - [MTD Interface] erase block(s)
2429  * @param mtd           MTD device structure
2430  * @param instr         erase instruction
2431  *
2432  * Erase one or more blocks
2433  */
2434 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2435 {
2436         struct onenand_chip *this = mtd->priv;
2437         unsigned int block_size;
2438         loff_t addr = instr->addr;
2439         loff_t len = instr->len;
2440         int ret = 0;
2441         struct mtd_erase_region_info *region = NULL;
2442         loff_t region_offset = 0;
2443
2444         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2445                         (unsigned long long)instr->addr,
2446                         (unsigned long long)instr->len);
2447
2448         if (FLEXONENAND(this)) {
2449                 /* Find the eraseregion of this address */
2450                 int i = flexonenand_region(mtd, addr);
2451
2452                 region = &mtd->eraseregions[i];
2453                 block_size = region->erasesize;
2454
2455                 /* Start address within region must align on block boundary.
2456                  * Erase region's start offset is always block start address.
2457                  */
2458                 region_offset = region->offset;
2459         } else
2460                 block_size = 1 << this->erase_shift;
2461
2462         /* Start address must align on block boundary */
2463         if (unlikely((addr - region_offset) & (block_size - 1))) {
2464                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2465                 return -EINVAL;
2466         }
2467
2468         /* Length must align on block boundary */
2469         if (unlikely(len & (block_size - 1))) {
2470                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2471                 return -EINVAL;
2472         }
2473
2474         /* Grab the lock and see if the device is available */
2475         onenand_get_device(mtd, FL_ERASING);
2476
2477         if (ONENAND_IS_4KB_PAGE(this) || region ||
2478             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2479                 /* region is set for Flex-OneNAND (no mb erase) */
2480                 ret = onenand_block_by_block_erase(mtd, instr,
2481                                                    region, block_size);
2482         } else {
2483                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2484         }
2485
2486         /* Deselect and wake up anyone waiting on the device */
2487         onenand_release_device(mtd);
2488
2489         /* Do call back function */
2490         if (!ret) {
2491                 instr->state = MTD_ERASE_DONE;
2492                 mtd_erase_callback(instr);
2493         }
2494
2495         return ret;
2496 }
2497
2498 /**
2499  * onenand_sync - [MTD Interface] sync
2500  * @param mtd           MTD device structure
2501  *
2502  * Sync is actually a wait for chip ready function
2503  */
2504 static void onenand_sync(struct mtd_info *mtd)
2505 {
2506         pr_debug("%s: called\n", __func__);
2507
2508         /* Grab the lock and see if the device is available */
2509         onenand_get_device(mtd, FL_SYNCING);
2510
2511         /* Release it and go back */
2512         onenand_release_device(mtd);
2513 }
2514
2515 /**
2516  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2517  * @param mtd           MTD device structure
2518  * @param ofs           offset relative to mtd start
2519  *
2520  * Check whether the block is bad
2521  */
2522 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2523 {
2524         int ret;
2525
2526         onenand_get_device(mtd, FL_READING);
2527         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2528         onenand_release_device(mtd);
2529         return ret;
2530 }
2531
2532 /**
2533  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2534  * @param mtd           MTD device structure
2535  * @param ofs           offset from device start
2536  *
2537  * This is the default implementation, which can be overridden by
2538  * a hardware specific driver.
2539  */
2540 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2541 {
2542         struct onenand_chip *this = mtd->priv;
2543         struct bbm_info *bbm = this->bbm;
2544         u_char buf[2] = {0, 0};
2545         struct mtd_oob_ops ops = {
2546                 .mode = MTD_OPS_PLACE_OOB,
2547                 .ooblen = 2,
2548                 .oobbuf = buf,
2549                 .ooboffs = 0,
2550         };
2551         int block;
2552
2553         /* Get block number */
2554         block = onenand_block(this, ofs);
2555         if (bbm->bbt)
2556                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2557
2558         /* We write two bytes, so we don't have to mess with 16-bit access */
2559         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2560         /* FIXME : What to do when marking SLC block in partition
2561          *         with MLC erasesize? For now, it is not advisable to
2562          *         create partitions containing both SLC and MLC regions.
2563          */
2564         return onenand_write_oob_nolock(mtd, ofs, &ops);
2565 }
2566
2567 /**
2568  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2569  * @param mtd           MTD device structure
2570  * @param ofs           offset relative to mtd start
2571  *
2572  * Mark the block as bad
2573  */
2574 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2575 {
2576         struct onenand_chip *this = mtd->priv;
2577         int ret;
2578
2579         ret = onenand_block_isbad(mtd, ofs);
2580         if (ret) {
2581                 /* If it was bad already, return success and do nothing */
2582                 if (ret > 0)
2583                         return 0;
2584                 return ret;
2585         }
2586
2587         onenand_get_device(mtd, FL_WRITING);
2588         ret = this->block_markbad(mtd, ofs);
2589         onenand_release_device(mtd);
2590         return ret;
2591 }
2592
2593 /**
2594  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2595  * @param mtd           MTD device structure
2596  * @param ofs           offset relative to mtd start
2597  * @param len           number of bytes to lock or unlock
2598  * @param cmd           lock or unlock command
2599  *
2600  * Lock or unlock one or more blocks
2601  */
2602 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2603 {
2604         struct onenand_chip *this = mtd->priv;
2605         int start, end, block, value, status;
2606         int wp_status_mask;
2607
2608         start = onenand_block(this, ofs);
2609         end = onenand_block(this, ofs + len) - 1;
2610
2611         if (cmd == ONENAND_CMD_LOCK)
2612                 wp_status_mask = ONENAND_WP_LS;
2613         else
2614                 wp_status_mask = ONENAND_WP_US;
2615
2616         /* Continuous lock scheme */
2617         if (this->options & ONENAND_HAS_CONT_LOCK) {
2618                 /* Set start block address */
2619                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2620                 /* Set end block address */
2621                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2622                 /* Write lock command */
2623                 this->command(mtd, cmd, 0, 0);
2624
2625                 /* There's no return value */
2626                 this->wait(mtd, FL_LOCKING);
2627
2628                 /* Sanity check */
2629                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2630                     & ONENAND_CTRL_ONGO)
2631                         continue;
2632
2633                 /* Check lock status */
2634                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2635                 if (!(status & wp_status_mask))
2636                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2637                                 __func__, status);
2638
2639                 return 0;
2640         }
2641
2642         /* Block lock scheme */
2643         for (block = start; block < end + 1; block++) {
2644                 /* Set block address */
2645                 value = onenand_block_address(this, block);
2646                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2647                 /* Select DataRAM for DDP */
2648                 value = onenand_bufferram_address(this, block);
2649                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2650                 /* Set start block address */
2651                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2652                 /* Write lock command */
2653                 this->command(mtd, cmd, 0, 0);
2654
2655                 /* There's no return value */
2656                 this->wait(mtd, FL_LOCKING);
2657
2658                 /* Sanity check */
2659                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660                     & ONENAND_CTRL_ONGO)
2661                         continue;
2662
2663                 /* Check lock status */
2664                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2665                 if (!(status & wp_status_mask))
2666                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2667                                 __func__, block, status);
2668         }
2669
2670         return 0;
2671 }
2672
2673 /**
2674  * onenand_lock - [MTD Interface] Lock block(s)
2675  * @param mtd           MTD device structure
2676  * @param ofs           offset relative to mtd start
2677  * @param len           number of bytes to unlock
2678  *
2679  * Lock one or more blocks
2680  */
2681 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2682 {
2683         int ret;
2684
2685         onenand_get_device(mtd, FL_LOCKING);
2686         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2687         onenand_release_device(mtd);
2688         return ret;
2689 }
2690
2691 /**
2692  * onenand_unlock - [MTD Interface] Unlock block(s)
2693  * @param mtd           MTD device structure
2694  * @param ofs           offset relative to mtd start
2695  * @param len           number of bytes to unlock
2696  *
2697  * Unlock one or more blocks
2698  */
2699 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2700 {
2701         int ret;
2702
2703         onenand_get_device(mtd, FL_LOCKING);
2704         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2705         onenand_release_device(mtd);
2706         return ret;
2707 }
2708
2709 /**
2710  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2711  * @param this          onenand chip data structure
2712  *
2713  * Check lock status
2714  */
2715 static int onenand_check_lock_status(struct onenand_chip *this)
2716 {
2717         unsigned int value, block, status;
2718         unsigned int end;
2719
2720         end = this->chipsize >> this->erase_shift;
2721         for (block = 0; block < end; block++) {
2722                 /* Set block address */
2723                 value = onenand_block_address(this, block);
2724                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2725                 /* Select DataRAM for DDP */
2726                 value = onenand_bufferram_address(this, block);
2727                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2728                 /* Set start block address */
2729                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2730
2731                 /* Check lock status */
2732                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2733                 if (!(status & ONENAND_WP_US)) {
2734                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2735                                 __func__, block, status);
2736                         return 0;
2737                 }
2738         }
2739
2740         return 1;
2741 }
2742
2743 /**
2744  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2745  * @param mtd           MTD device structure
2746  *
2747  * Unlock all blocks
2748  */
2749 static void onenand_unlock_all(struct mtd_info *mtd)
2750 {
2751         struct onenand_chip *this = mtd->priv;
2752         loff_t ofs = 0;
2753         loff_t len = mtd->size;
2754
2755         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2756                 /* Set start block address */
2757                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2758                 /* Write unlock command */
2759                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2760
2761                 /* There's no return value */
2762                 this->wait(mtd, FL_LOCKING);
2763
2764                 /* Sanity check */
2765                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2766                     & ONENAND_CTRL_ONGO)
2767                         continue;
2768
2769                 /* Don't check lock status */
2770                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2771                         return;
2772
2773                 /* Check lock status */
2774                 if (onenand_check_lock_status(this))
2775                         return;
2776
2777                 /* Workaround for all block unlock in DDP */
2778                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2779                         /* All blocks on another chip */
2780                         ofs = this->chipsize >> 1;
2781                         len = this->chipsize >> 1;
2782                 }
2783         }
2784
2785         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2786 }
2787
2788 #ifdef CONFIG_MTD_ONENAND_OTP
2789
2790 /**
2791  * onenand_otp_command - Send OTP specific command to OneNAND device
2792  * @param mtd    MTD device structure
2793  * @param cmd    the command to be sent
2794  * @param addr   offset to read from or write to
2795  * @param len    number of bytes to read or write
2796  */
2797 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2798                                 size_t len)
2799 {
2800         struct onenand_chip *this = mtd->priv;
2801         int value, block, page;
2802
2803         /* Address translation */
2804         switch (cmd) {
2805         case ONENAND_CMD_OTP_ACCESS:
2806                 block = (int) (addr >> this->erase_shift);
2807                 page = -1;
2808                 break;
2809
2810         default:
2811                 block = (int) (addr >> this->erase_shift);
2812                 page = (int) (addr >> this->page_shift);
2813
2814                 if (ONENAND_IS_2PLANE(this)) {
2815                         /* Make the even block number */
2816                         block &= ~1;
2817                         /* Is it the odd plane? */
2818                         if (addr & this->writesize)
2819                                 block++;
2820                         page >>= 1;
2821                 }
2822                 page &= this->page_mask;
2823                 break;
2824         }
2825
2826         if (block != -1) {
2827                 /* Write 'DFS, FBA' of Flash */
2828                 value = onenand_block_address(this, block);
2829                 this->write_word(value, this->base +
2830                                 ONENAND_REG_START_ADDRESS1);
2831         }
2832
2833         if (page != -1) {
2834                 /* Now we use page size operation */
2835                 int sectors = 4, count = 4;
2836                 int dataram;
2837
2838                 switch (cmd) {
2839                 default:
2840                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2841                                 cmd = ONENAND_CMD_2X_PROG;
2842                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2843                         break;
2844                 }
2845
2846                 /* Write 'FPA, FSA' of Flash */
2847                 value = onenand_page_address(page, sectors);
2848                 this->write_word(value, this->base +
2849                                 ONENAND_REG_START_ADDRESS8);
2850
2851                 /* Write 'BSA, BSC' of DataRAM */
2852                 value = onenand_buffer_address(dataram, sectors, count);
2853                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2854         }
2855
2856         /* Interrupt clear */
2857         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2858
2859         /* Write command */
2860         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2861
2862         return 0;
2863 }
2864
2865 /**
2866  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2867  * @param mtd           MTD device structure
2868  * @param to            offset to write to
2869  * @param len           number of bytes to write
2870  * @param retlen        pointer to variable to store the number of written bytes
2871  * @param buf           the data to write
2872  *
2873  * OneNAND write out-of-band only for OTP
2874  */
2875 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2876                                     struct mtd_oob_ops *ops)
2877 {
2878         struct onenand_chip *this = mtd->priv;
2879         int column, ret = 0, oobsize;
2880         int written = 0;
2881         u_char *oobbuf;
2882         size_t len = ops->ooblen;
2883         const u_char *buf = ops->oobbuf;
2884         int block, value, status;
2885
2886         to += ops->ooboffs;
2887
2888         /* Initialize retlen, in case of early exit */
2889         ops->oobretlen = 0;
2890
2891         oobsize = mtd->oobsize;
2892
2893         column = to & (mtd->oobsize - 1);
2894
2895         oobbuf = this->oob_buf;
2896
2897         /* Loop until all data write */
2898         while (written < len) {
2899                 int thislen = min_t(int, oobsize, len - written);
2900
2901                 cond_resched();
2902
2903                 block = (int) (to >> this->erase_shift);
2904                 /*
2905                  * Write 'DFS, FBA' of Flash
2906                  * Add: F100h DQ=DFS, FBA
2907                  */
2908
2909                 value = onenand_block_address(this, block);
2910                 this->write_word(value, this->base +
2911                                 ONENAND_REG_START_ADDRESS1);
2912
2913                 /*
2914                  * Select DataRAM for DDP
2915                  * Add: F101h DQ=DBS
2916                  */
2917
2918                 value = onenand_bufferram_address(this, block);
2919                 this->write_word(value, this->base +
2920                                 ONENAND_REG_START_ADDRESS2);
2921                 ONENAND_SET_NEXT_BUFFERRAM(this);
2922
2923                 /*
2924                  * Enter OTP access mode
2925                  */
2926                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2927                 this->wait(mtd, FL_OTPING);
2928
2929                 /* We send data to spare ram with oobsize
2930                  * to prevent byte access */
2931                 memcpy(oobbuf + column, buf, thislen);
2932
2933                 /*
2934                  * Write Data into DataRAM
2935                  * Add: 8th Word
2936                  * in sector0/spare/page0
2937                  * DQ=XXFCh
2938                  */
2939                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2940                                         oobbuf, 0, mtd->oobsize);
2941
2942                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2943                 onenand_update_bufferram(mtd, to, 0);
2944                 if (ONENAND_IS_2PLANE(this)) {
2945                         ONENAND_SET_BUFFERRAM1(this);
2946                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2947                 }
2948
2949                 ret = this->wait(mtd, FL_WRITING);
2950                 if (ret) {
2951                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2952                         break;
2953                 }
2954
2955                 /* Exit OTP access mode */
2956                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2957                 this->wait(mtd, FL_RESETING);
2958
2959                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2960                 status &= 0x60;
2961
2962                 if (status == 0x60) {
2963                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2964                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2965                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2966                 } else if (status == 0x20) {
2967                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2968                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2969                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2970                 } else if (status == 0x40) {
2971                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2972                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2973                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2974                 } else {
2975                         printk(KERN_DEBUG "Reboot to check\n");
2976                 }
2977
2978                 written += thislen;
2979                 if (written == len)
2980                         break;
2981
2982                 to += mtd->writesize;
2983                 buf += thislen;
2984                 column = 0;
2985         }
2986
2987         ops->oobretlen = written;
2988
2989         return ret;
2990 }
2991
2992 /* Internal OTP operation */
2993 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2994                 size_t *retlen, u_char *buf);
2995
2996 /**
2997  * do_otp_read - [DEFAULT] Read OTP block area
2998  * @param mtd           MTD device structure
2999  * @param from          The offset to read
3000  * @param len           number of bytes to read
3001  * @param retlen        pointer to variable to store the number of readbytes
3002  * @param buf           the databuffer to put/get data
3003  *
3004  * Read OTP block area.
3005  */
3006 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3007                 size_t *retlen, u_char *buf)
3008 {
3009         struct onenand_chip *this = mtd->priv;
3010         struct mtd_oob_ops ops = {
3011                 .len    = len,
3012                 .ooblen = 0,
3013                 .datbuf = buf,
3014                 .oobbuf = NULL,
3015         };
3016         int ret;
3017
3018         /* Enter OTP access mode */
3019         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3020         this->wait(mtd, FL_OTPING);
3021
3022         ret = ONENAND_IS_4KB_PAGE(this) ?
3023                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3024                 onenand_read_ops_nolock(mtd, from, &ops);
3025
3026         /* Exit OTP access mode */
3027         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3028         this->wait(mtd, FL_RESETING);
3029
3030         return ret;
3031 }
3032
3033 /**
3034  * do_otp_write - [DEFAULT] Write OTP block area
3035  * @param mtd           MTD device structure
3036  * @param to            The offset to write
3037  * @param len           number of bytes to write
3038  * @param retlen        pointer to variable to store the number of write bytes
3039  * @param buf           the databuffer to put/get data
3040  *
3041  * Write OTP block area.
3042  */
3043 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3044                 size_t *retlen, u_char *buf)
3045 {
3046         struct onenand_chip *this = mtd->priv;
3047         unsigned char *pbuf = buf;
3048         int ret;
3049         struct mtd_oob_ops ops;
3050
3051         /* Force buffer page aligned */
3052         if (len < mtd->writesize) {
3053                 memcpy(this->page_buf, buf, len);
3054                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3055                 pbuf = this->page_buf;
3056                 len = mtd->writesize;
3057         }
3058
3059         /* Enter OTP access mode */
3060         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3061         this->wait(mtd, FL_OTPING);
3062
3063         ops.len = len;
3064         ops.ooblen = 0;
3065         ops.datbuf = pbuf;
3066         ops.oobbuf = NULL;
3067         ret = onenand_write_ops_nolock(mtd, to, &ops);
3068         *retlen = ops.retlen;
3069
3070         /* Exit OTP access mode */
3071         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3072         this->wait(mtd, FL_RESETING);
3073
3074         return ret;
3075 }
3076
3077 /**
3078  * do_otp_lock - [DEFAULT] Lock OTP block area
3079  * @param mtd           MTD device structure
3080  * @param from          The offset to lock
3081  * @param len           number of bytes to lock
3082  * @param retlen        pointer to variable to store the number of lock bytes
3083  * @param buf           the databuffer to put/get data
3084  *
3085  * Lock OTP block area.
3086  */
3087 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3088                 size_t *retlen, u_char *buf)
3089 {
3090         struct onenand_chip *this = mtd->priv;
3091         struct mtd_oob_ops ops;
3092         int ret;
3093
3094         if (FLEXONENAND(this)) {
3095
3096                 /* Enter OTP access mode */
3097                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3098                 this->wait(mtd, FL_OTPING);
3099                 /*
3100                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3101                  * main area of page 49.
3102                  */
3103                 ops.len = mtd->writesize;
3104                 ops.ooblen = 0;
3105                 ops.datbuf = buf;
3106                 ops.oobbuf = NULL;
3107                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3108                 *retlen = ops.retlen;
3109
3110                 /* Exit OTP access mode */
3111                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3112                 this->wait(mtd, FL_RESETING);
3113         } else {
3114                 ops.mode = MTD_OPS_PLACE_OOB;
3115                 ops.ooblen = len;
3116                 ops.oobbuf = buf;
3117                 ops.ooboffs = 0;
3118                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3119                 *retlen = ops.oobretlen;
3120         }
3121
3122         return ret;
3123 }
3124
3125 /**
3126  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3127  * @param mtd           MTD device structure
3128  * @param from          The offset to read/write
3129  * @param len           number of bytes to read/write
3130  * @param retlen        pointer to variable to store the number of read bytes
3131  * @param buf           the databuffer to put/get data
3132  * @param action        do given action
3133  * @param mode          specify user and factory
3134  *
3135  * Handle OTP operation.
3136  */
3137 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3138                         size_t *retlen, u_char *buf,
3139                         otp_op_t action, int mode)
3140 {
3141         struct onenand_chip *this = mtd->priv;
3142         int otp_pages;
3143         int density;
3144         int ret = 0;
3145
3146         *retlen = 0;
3147
3148         density = onenand_get_density(this->device_id);
3149         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3150                 otp_pages = 20;
3151         else
3152                 otp_pages = 50;
3153
3154         if (mode == MTD_OTP_FACTORY) {
3155                 from += mtd->writesize * otp_pages;
3156                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3157         }
3158
3159         /* Check User/Factory boundary */
3160         if (mode == MTD_OTP_USER) {
3161                 if (mtd->writesize * otp_pages < from + len)
3162                         return 0;
3163         } else {
3164                 if (mtd->writesize * otp_pages <  len)
3165                         return 0;
3166         }
3167
3168         onenand_get_device(mtd, FL_OTPING);
3169         while (len > 0 && otp_pages > 0) {
3170                 if (!action) {  /* OTP Info functions */
3171                         struct otp_info *otpinfo;
3172
3173                         len -= sizeof(struct otp_info);
3174                         if (len <= 0) {
3175                                 ret = -ENOSPC;
3176                                 break;
3177                         }
3178
3179                         otpinfo = (struct otp_info *) buf;
3180                         otpinfo->start = from;
3181                         otpinfo->length = mtd->writesize;
3182                         otpinfo->locked = 0;
3183
3184                         from += mtd->writesize;
3185                         buf += sizeof(struct otp_info);
3186                         *retlen += sizeof(struct otp_info);
3187                 } else {
3188                         size_t tmp_retlen;
3189
3190                         ret = action(mtd, from, len, &tmp_retlen, buf);
3191                         if (ret)
3192                                 break;
3193
3194                         buf += tmp_retlen;
3195                         len -= tmp_retlen;
3196                         *retlen += tmp_retlen;
3197
3198                 }
3199                 otp_pages--;
3200         }
3201         onenand_release_device(mtd);
3202
3203         return ret;
3204 }
3205
3206 /**
3207  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3208  * @param mtd           MTD device structure
3209  * @param len           number of bytes to read
3210  * @param retlen        pointer to variable to store the number of read bytes
3211  * @param buf           the databuffer to put/get data
3212  *
3213  * Read factory OTP info.
3214  */
3215 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3216                                       size_t *retlen, struct otp_info *buf)
3217 {
3218         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3219                                 MTD_OTP_FACTORY);
3220 }
3221
3222 /**
3223  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3224  * @param mtd           MTD device structure
3225  * @param from          The offset to read
3226  * @param len           number of bytes to read
3227  * @param retlen        pointer to variable to store the number of read bytes
3228  * @param buf           the databuffer to put/get data
3229  *
3230  * Read factory OTP area.
3231  */
3232 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3233                         size_t len, size_t *retlen, u_char *buf)
3234 {
3235         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3236 }
3237
3238 /**
3239  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3240  * @param mtd           MTD device structure
3241  * @param retlen        pointer to variable to store the number of read bytes
3242  * @param len           number of bytes to read
3243  * @param buf           the databuffer to put/get data
3244  *
3245  * Read user OTP info.
3246  */
3247 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3248                                       size_t *retlen, struct otp_info *buf)
3249 {
3250         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3251                                 MTD_OTP_USER);
3252 }
3253
3254 /**
3255  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3256  * @param mtd           MTD device structure
3257  * @param from          The offset to read
3258  * @param len           number of bytes to read
3259  * @param retlen        pointer to variable to store the number of read bytes
3260  * @param buf           the databuffer to put/get data
3261  *
3262  * Read user OTP area.
3263  */
3264 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3265                         size_t len, size_t *retlen, u_char *buf)
3266 {
3267         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3268 }
3269
3270 /**
3271  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3272  * @param mtd           MTD device structure
3273  * @param from          The offset to write
3274  * @param len           number of bytes to write
3275  * @param retlen        pointer to variable to store the number of write bytes
3276  * @param buf           the databuffer to put/get data
3277  *
3278  * Write user OTP area.
3279  */
3280 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3281                         size_t len, size_t *retlen, u_char *buf)
3282 {
3283         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3284 }
3285
3286 /**
3287  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3288  * @param mtd           MTD device structure
3289  * @param from          The offset to lock
3290  * @param len           number of bytes to unlock
3291  *
3292  * Write lock mark on spare area in page 0 in OTP block
3293  */
3294 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3295                         size_t len)
3296 {
3297         struct onenand_chip *this = mtd->priv;
3298         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3299         size_t retlen;
3300         int ret;
3301         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3302
3303         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3304                                                  : mtd->oobsize);
3305         /*
3306          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3307          * We write 16 bytes spare area instead of 2 bytes.
3308          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3309          * main area of page 49.
3310          */
3311
3312         from = 0;
3313         len = FLEXONENAND(this) ? mtd->writesize : 16;
3314
3315         /*
3316          * Note: OTP lock operation
3317          *       OTP block : 0xXXFC                     XX 1111 1100
3318          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3319          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3320          */
3321         if (FLEXONENAND(this))
3322                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3323
3324         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3325         if (otp == 1)
3326                 buf[otp_lock_offset] = 0xFC;
3327         else if (otp == 2)
3328                 buf[otp_lock_offset] = 0xF3;
3329         else if (otp == 3)
3330                 buf[otp_lock_offset] = 0xF0;
3331         else if (otp != 0)
3332                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3333
3334         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3335
3336         return ret ? : retlen;
3337 }
3338
3339 #endif  /* CONFIG_MTD_ONENAND_OTP */
3340
3341 /**
3342  * onenand_check_features - Check and set OneNAND features
3343  * @param mtd           MTD data structure
3344  *
3345  * Check and set OneNAND features
3346  * - lock scheme
3347  * - two plane
3348  */
3349 static void onenand_check_features(struct mtd_info *mtd)
3350 {
3351         struct onenand_chip *this = mtd->priv;
3352         unsigned int density, process, numbufs;
3353
3354         /* Lock scheme depends on density and process */
3355         density = onenand_get_density(this->device_id);
3356         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3357         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3358
3359         /* Lock scheme */
3360         switch (density) {
3361         case ONENAND_DEVICE_DENSITY_4Gb:
3362                 if (ONENAND_IS_DDP(this))
3363                         this->options |= ONENAND_HAS_2PLANE;
3364                 else if (numbufs == 1) {
3365                         this->options |= ONENAND_HAS_4KB_PAGE;
3366                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3367                         /*
3368                          * There are two different 4KiB pagesize chips
3369                          * and no way to detect it by H/W config values.
3370                          *
3371                          * To detect the correct NOP for each chips,
3372                          * It should check the version ID as workaround.
3373                          *
3374                          * Now it has as following
3375                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3376                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3377                          */
3378                         if ((this->version_id & 0xf) == 0xe)
3379                                 this->options |= ONENAND_HAS_NOP_1;
3380                 }
3381
3382         case ONENAND_DEVICE_DENSITY_2Gb:
3383                 /* 2Gb DDP does not have 2 plane */
3384                 if (!ONENAND_IS_DDP(this))
3385                         this->options |= ONENAND_HAS_2PLANE;
3386                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3387
3388         case ONENAND_DEVICE_DENSITY_1Gb:
3389                 /* A-Die has all block unlock */
3390                 if (process)
3391                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3392                 break;
3393
3394         default:
3395                 /* Some OneNAND has continuous lock scheme */
3396                 if (!process)
3397                         this->options |= ONENAND_HAS_CONT_LOCK;
3398                 break;
3399         }
3400
3401         /* The MLC has 4KiB pagesize. */
3402         if (ONENAND_IS_MLC(this))
3403                 this->options |= ONENAND_HAS_4KB_PAGE;
3404
3405         if (ONENAND_IS_4KB_PAGE(this))
3406                 this->options &= ~ONENAND_HAS_2PLANE;
3407
3408         if (FLEXONENAND(this)) {
3409                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3410                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3411         }
3412
3413         if (this->options & ONENAND_HAS_CONT_LOCK)
3414                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3415         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3416                 printk(KERN_DEBUG "Chip support all block unlock\n");
3417         if (this->options & ONENAND_HAS_2PLANE)
3418                 printk(KERN_DEBUG "Chip has 2 plane\n");
3419         if (this->options & ONENAND_HAS_4KB_PAGE)
3420                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3421         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3422                 printk(KERN_DEBUG "Chip has cache program feature\n");
3423 }
3424
3425 /**
3426  * onenand_print_device_info - Print device & version ID
3427  * @param device        device ID
3428  * @param version       version ID
3429  *
3430  * Print device & version ID
3431  */
3432 static void onenand_print_device_info(int device, int version)
3433 {
3434         int vcc, demuxed, ddp, density, flexonenand;
3435
3436         vcc = device & ONENAND_DEVICE_VCC_MASK;
3437         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3438         ddp = device & ONENAND_DEVICE_IS_DDP;
3439         density = onenand_get_density(device);
3440         flexonenand = device & DEVICE_IS_FLEXONENAND;
3441         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3442                 demuxed ? "" : "Muxed ",
3443                 flexonenand ? "Flex-" : "",
3444                 ddp ? "(DDP)" : "",
3445                 (16 << density),
3446                 vcc ? "2.65/3.3" : "1.8",
3447                 device);
3448         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3449 }
3450
3451 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3452         {ONENAND_MFR_SAMSUNG, "Samsung"},
3453         {ONENAND_MFR_NUMONYX, "Numonyx"},
3454 };
3455
3456 /**
3457  * onenand_check_maf - Check manufacturer ID
3458  * @param manuf         manufacturer ID
3459  *
3460  * Check manufacturer ID
3461  */
3462 static int onenand_check_maf(int manuf)
3463 {
3464         int size = ARRAY_SIZE(onenand_manuf_ids);
3465         char *name;
3466         int i;
3467
3468         for (i = 0; i < size; i++)
3469                 if (manuf == onenand_manuf_ids[i].id)
3470                         break;
3471
3472         if (i < size)
3473                 name = onenand_manuf_ids[i].name;
3474         else
3475                 name = "Unknown";
3476
3477         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3478
3479         return (i == size);
3480 }
3481
3482 /**
3483 * flexonenand_get_boundary      - Reads the SLC boundary
3484 * @param onenand_info           - onenand info structure
3485 **/
3486 static int flexonenand_get_boundary(struct mtd_info *mtd)
3487 {
3488         struct onenand_chip *this = mtd->priv;
3489         unsigned die, bdry;
3490         int syscfg, locked;
3491
3492         /* Disable ECC */
3493         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3494         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3495
3496         for (die = 0; die < this->dies; die++) {
3497                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3498                 this->wait(mtd, FL_SYNCING);
3499
3500                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3501                 this->wait(mtd, FL_READING);
3502
3503                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3504                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3505                         locked = 0;
3506                 else
3507                         locked = 1;
3508                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3509
3510                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3511                 this->wait(mtd, FL_RESETING);
3512
3513                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3514                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3515         }
3516
3517         /* Enable ECC */
3518         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3519         return 0;
3520 }
3521
3522 /**
3523  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3524  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3525  * @param mtd           - MTD device structure
3526  */
3527 static void flexonenand_get_size(struct mtd_info *mtd)
3528 {
3529         struct onenand_chip *this = mtd->priv;
3530         int die, i, eraseshift, density;
3531         int blksperdie, maxbdry;
3532         loff_t ofs;
3533
3534         density = onenand_get_density(this->device_id);
3535         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3536         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3537         maxbdry = blksperdie - 1;
3538         eraseshift = this->erase_shift - 1;
3539
3540         mtd->numeraseregions = this->dies << 1;
3541
3542         /* This fills up the device boundary */
3543         flexonenand_get_boundary(mtd);
3544         die = ofs = 0;
3545         i = -1;
3546         for (; die < this->dies; die++) {
3547                 if (!die || this->boundary[die-1] != maxbdry) {
3548                         i++;
3549                         mtd->eraseregions[i].offset = ofs;
3550                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3551                         mtd->eraseregions[i].numblocks =
3552                                                         this->boundary[die] + 1;
3553                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3554                         eraseshift++;
3555                 } else {
3556                         mtd->numeraseregions -= 1;
3557                         mtd->eraseregions[i].numblocks +=
3558                                                         this->boundary[die] + 1;
3559                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3560                 }
3561                 if (this->boundary[die] != maxbdry) {
3562                         i++;
3563                         mtd->eraseregions[i].offset = ofs;
3564                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3565                         mtd->eraseregions[i].numblocks = maxbdry ^
3566                                                          this->boundary[die];
3567                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3568                         eraseshift--;
3569                 } else
3570                         mtd->numeraseregions -= 1;
3571         }
3572
3573         /* Expose MLC erase size except when all blocks are SLC */
3574         mtd->erasesize = 1 << this->erase_shift;
3575         if (mtd->numeraseregions == 1)
3576                 mtd->erasesize >>= 1;
3577
3578         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3579         for (i = 0; i < mtd->numeraseregions; i++)
3580                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3581                         " numblocks: %04u]\n",
3582                         (unsigned int) mtd->eraseregions[i].offset,
3583                         mtd->eraseregions[i].erasesize,
3584                         mtd->eraseregions[i].numblocks);
3585
3586         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3587                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3588                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3589                                                  << (this->erase_shift - 1);
3590                 mtd->size += this->diesize[die];
3591         }
3592 }
3593
3594 /**
3595  * flexonenand_check_blocks_erased - Check if blocks are erased
3596  * @param mtd_info      - mtd info structure
3597  * @param start         - first erase block to check
3598  * @param end           - last erase block to check
3599  *
3600  * Converting an unerased block from MLC to SLC
3601  * causes byte values to change. Since both data and its ECC
3602  * have changed, reads on the block give uncorrectable error.
3603  * This might lead to the block being detected as bad.
3604  *
3605  * Avoid this by ensuring that the block to be converted is
3606  * erased.
3607  */
3608 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3609 {
3610         struct onenand_chip *this = mtd->priv;
3611         int i, ret;
3612         int block;
3613         struct mtd_oob_ops ops = {
3614                 .mode = MTD_OPS_PLACE_OOB,
3615                 .ooboffs = 0,
3616                 .ooblen = mtd->oobsize,
3617                 .datbuf = NULL,
3618                 .oobbuf = this->oob_buf,
3619         };
3620         loff_t addr;
3621
3622         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3623
3624         for (block = start; block <= end; block++) {
3625                 addr = flexonenand_addr(this, block);
3626                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3627                         continue;
3628
3629                 /*
3630                  * Since main area write results in ECC write to spare,
3631                  * it is sufficient to check only ECC bytes for change.
3632                  */
3633                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3634                 if (ret)
3635                         return ret;
3636
3637                 for (i = 0; i < mtd->oobsize; i++)
3638                         if (this->oob_buf[i] != 0xff)
3639                                 break;
3640
3641                 if (i != mtd->oobsize) {
3642                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3643                                 __func__, block);
3644                         return 1;
3645                 }
3646         }
3647
3648         return 0;
3649 }
3650
3651 /**
3652  * flexonenand_set_boundary     - Writes the SLC boundary
3653  * @param mtd                   - mtd info structure
3654  */
3655 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3656                                     int boundary, int lock)
3657 {
3658         struct onenand_chip *this = mtd->priv;
3659         int ret, density, blksperdie, old, new, thisboundary;
3660         loff_t addr;
3661
3662         /* Change only once for SDP Flex-OneNAND */
3663         if (die && (!ONENAND_IS_DDP(this)))
3664                 return 0;
3665
3666         /* boundary value of -1 indicates no required change */
3667         if (boundary < 0 || boundary == this->boundary[die])
3668                 return 0;
3669
3670         density = onenand_get_density(this->device_id);
3671         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3672         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3673
3674         if (boundary >= blksperdie) {
3675                 printk(KERN_ERR "%s: Invalid boundary value. "
3676                                 "Boundary not changed.\n", __func__);
3677                 return -EINVAL;
3678         }
3679
3680         /* Check if converting blocks are erased */
3681         old = this->boundary[die] + (die * this->density_mask);
3682         new = boundary + (die * this->density_mask);
3683         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3684         if (ret) {
3685                 printk(KERN_ERR "%s: Please erase blocks "
3686                                 "before boundary change\n", __func__);
3687                 return ret;
3688         }
3689
3690         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3691         this->wait(mtd, FL_SYNCING);
3692
3693         /* Check is boundary is locked */
3694         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3695         this->wait(mtd, FL_READING);
3696
3697         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3698         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3699                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3700                 ret = 1;
3701                 goto out;
3702         }
3703
3704         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3705                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3706
3707         addr = die ? this->diesize[0] : 0;
3708
3709         boundary &= FLEXONENAND_PI_MASK;
3710         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3711
3712         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3713         ret = this->wait(mtd, FL_ERASING);
3714         if (ret) {
3715                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3716                        __func__, die);
3717                 goto out;
3718         }
3719
3720         this->write_word(boundary, this->base + ONENAND_DATARAM);
3721         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3722         ret = this->wait(mtd, FL_WRITING);
3723         if (ret) {
3724                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3725                         __func__, die);
3726                 goto out;
3727         }
3728
3729         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3730         ret = this->wait(mtd, FL_WRITING);
3731 out:
3732         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3733         this->wait(mtd, FL_RESETING);
3734         if (!ret)
3735                 /* Recalculate device size on boundary change*/
3736                 flexonenand_get_size(mtd);
3737
3738         return ret;
3739 }
3740
3741 /**
3742  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3743  * @param mtd           MTD device structure
3744  *
3745  * OneNAND detection method:
3746  *   Compare the values from command with ones from register
3747  */
3748 static int onenand_chip_probe(struct mtd_info *mtd)
3749 {
3750         struct onenand_chip *this = mtd->priv;
3751         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3752         int syscfg;
3753
3754         /* Save system configuration 1 */
3755         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3756         /* Clear Sync. Burst Read mode to read BootRAM */
3757         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3758
3759         /* Send the command for reading device ID from BootRAM */
3760         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3761
3762         /* Read manufacturer and device IDs from BootRAM */
3763         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3764         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3765
3766         /* Reset OneNAND to read default register values */
3767         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3768         /* Wait reset */
3769         this->wait(mtd, FL_RESETING);
3770
3771         /* Restore system configuration 1 */
3772         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3773
3774         /* Check manufacturer ID */
3775         if (onenand_check_maf(bram_maf_id))
3776                 return -ENXIO;
3777
3778         /* Read manufacturer and device IDs from Register */
3779         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3780         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3781
3782         /* Check OneNAND device */
3783         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3784                 return -ENXIO;
3785
3786         return 0;
3787 }
3788
3789 /**
3790  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3791  * @param mtd           MTD device structure
3792  */
3793 static int onenand_probe(struct mtd_info *mtd)
3794 {
3795         struct onenand_chip *this = mtd->priv;
3796         int dev_id, ver_id;
3797         int density;
3798         int ret;
3799
3800         ret = this->chip_probe(mtd);
3801         if (ret)
3802                 return ret;
3803
3804         /* Device and version IDs from Register */
3805         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3806         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3807         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3808
3809         /* Flash device information */
3810         onenand_print_device_info(dev_id, ver_id);
3811         this->device_id = dev_id;
3812         this->version_id = ver_id;
3813
3814         /* Check OneNAND features */
3815         onenand_check_features(mtd);
3816
3817         density = onenand_get_density(dev_id);
3818         if (FLEXONENAND(this)) {
3819                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3820                 /* Maximum possible erase regions */
3821                 mtd->numeraseregions = this->dies << 1;
3822                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3823                                         * (this->dies << 1), GFP_KERNEL);
3824                 if (!mtd->eraseregions)
3825                         return -ENOMEM;
3826         }
3827
3828         /*
3829          * For Flex-OneNAND, chipsize represents maximum possible device size.
3830          * mtd->size represents the actual device size.
3831          */
3832         this->chipsize = (16 << density) << 20;
3833
3834         /* OneNAND page size & block size */
3835         /* The data buffer size is equal to page size */
3836         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3837         /* We use the full BufferRAM */
3838         if (ONENAND_IS_4KB_PAGE(this))
3839                 mtd->writesize <<= 1;
3840
3841         mtd->oobsize = mtd->writesize >> 5;
3842         /* Pages per a block are always 64 in OneNAND */
3843         mtd->erasesize = mtd->writesize << 6;
3844         /*
3845          * Flex-OneNAND SLC area has 64 pages per block.
3846          * Flex-OneNAND MLC area has 128 pages per block.
3847          * Expose MLC erase size to find erase_shift and page_mask.
3848          */
3849         if (FLEXONENAND(this))
3850                 mtd->erasesize <<= 1;
3851
3852         this->erase_shift = ffs(mtd->erasesize) - 1;
3853         this->page_shift = ffs(mtd->writesize) - 1;
3854         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3855         /* Set density mask. it is used for DDP */
3856         if (ONENAND_IS_DDP(this))
3857                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3858         /* It's real page size */
3859         this->writesize = mtd->writesize;
3860
3861         /* REVISIT: Multichip handling */
3862
3863         if (FLEXONENAND(this))
3864                 flexonenand_get_size(mtd);
3865         else
3866                 mtd->size = this->chipsize;
3867
3868         /*
3869          * We emulate the 4KiB page and 256KiB erase block size
3870          * But oobsize is still 64 bytes.
3871          * It is only valid if you turn on 2X program support,
3872          * Otherwise it will be ignored by compiler.
3873          */
3874         if (ONENAND_IS_2PLANE(this)) {
3875                 mtd->writesize <<= 1;
3876                 mtd->erasesize <<= 1;
3877         }
3878
3879         return 0;
3880 }
3881
3882 /**
3883  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3884  * @param mtd           MTD device structure
3885  */
3886 static int onenand_suspend(struct mtd_info *mtd)
3887 {
3888         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3889 }
3890
3891 /**
3892  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3893  * @param mtd           MTD device structure
3894  */
3895 static void onenand_resume(struct mtd_info *mtd)
3896 {
3897         struct onenand_chip *this = mtd->priv;
3898
3899         if (this->state == FL_PM_SUSPENDED)
3900                 onenand_release_device(mtd);
3901         else
3902                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3903                                 "in suspended state\n", __func__);
3904 }
3905
3906 /**
3907  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3908  * @param mtd           MTD device structure
3909  * @param maxchips      Number of chips to scan for
3910  *
3911  * This fills out all the not initialized function pointers
3912  * with the defaults.
3913  * The flash ID is read and the mtd/chip structures are
3914  * filled with the appropriate values.
3915  */
3916 int onenand_scan(struct mtd_info *mtd, int maxchips)
3917 {
3918         int i, ret;
3919         struct onenand_chip *this = mtd->priv;
3920
3921         if (!this->read_word)
3922                 this->read_word = onenand_readw;
3923         if (!this->write_word)
3924                 this->write_word = onenand_writew;
3925
3926         if (!this->command)
3927                 this->command = onenand_command;
3928         if (!this->wait)
3929                 onenand_setup_wait(mtd);
3930         if (!this->bbt_wait)
3931                 this->bbt_wait = onenand_bbt_wait;
3932         if (!this->unlock_all)
3933                 this->unlock_all = onenand_unlock_all;
3934
3935         if (!this->chip_probe)
3936                 this->chip_probe = onenand_chip_probe;
3937
3938         if (!this->read_bufferram)
3939                 this->read_bufferram = onenand_read_bufferram;
3940         if (!this->write_bufferram)
3941                 this->write_bufferram = onenand_write_bufferram;
3942
3943         if (!this->block_markbad)
3944                 this->block_markbad = onenand_default_block_markbad;
3945         if (!this->scan_bbt)
3946                 this->scan_bbt = onenand_default_bbt;
3947
3948         if (onenand_probe(mtd))
3949                 return -ENXIO;
3950
3951         /* Set Sync. Burst Read after probing */
3952         if (this->mmcontrol) {
3953                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3954                 this->read_bufferram = onenand_sync_read_bufferram;
3955         }
3956
3957         /* Allocate buffers, if necessary */
3958         if (!this->page_buf) {
3959                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3960                 if (!this->page_buf)
3961                         return -ENOMEM;
3962 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3963                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3964                 if (!this->verify_buf) {
3965                         kfree(this->page_buf);
3966                         return -ENOMEM;
3967                 }
3968 #endif
3969                 this->options |= ONENAND_PAGEBUF_ALLOC;
3970         }
3971         if (!this->oob_buf) {
3972                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3973                 if (!this->oob_buf) {
3974                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3975                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3976                                 kfree(this->page_buf);
3977                         }
3978                         return -ENOMEM;
3979                 }
3980                 this->options |= ONENAND_OOBBUF_ALLOC;
3981         }
3982
3983         this->state = FL_READY;
3984         init_waitqueue_head(&this->wq);
3985         spin_lock_init(&this->chip_lock);
3986
3987         /*
3988          * Allow subpage writes up to oobsize.
3989          */
3990         switch (mtd->oobsize) {
3991         case 128:
3992                 if (FLEXONENAND(this)) {
3993                         mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3994                         mtd->subpage_sft = 0;
3995                 } else {
3996                         mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3997                         mtd->subpage_sft = 2;
3998                 }
3999                 if (ONENAND_IS_NOP_1(this))
4000                         mtd->subpage_sft = 0;
4001                 break;
4002         case 64:
4003                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
4004                 mtd->subpage_sft = 2;
4005                 break;
4006
4007         case 32:
4008                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
4009                 mtd->subpage_sft = 1;
4010                 break;
4011
4012         default:
4013                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4014                         __func__, mtd->oobsize);
4015                 mtd->subpage_sft = 0;
4016                 /* To prevent kernel oops */
4017                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
4018                 break;
4019         }
4020
4021         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4022
4023         /*
4024          * The number of bytes available for a client to place data into
4025          * the out of band area
4026          */
4027         ret = mtd_ooblayout_count_freebytes(mtd);
4028         if (ret < 0)
4029                 ret = 0;
4030
4031         mtd->oobavail = ret;
4032
4033         mtd->ecc_strength = 1;
4034
4035         /* Fill in remaining MTD driver data */
4036         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4037         mtd->flags = MTD_CAP_NANDFLASH;
4038         mtd->_erase = onenand_erase;
4039         mtd->_point = NULL;
4040         mtd->_unpoint = NULL;
4041         mtd->_read = onenand_read;
4042         mtd->_write = onenand_write;
4043         mtd->_read_oob = onenand_read_oob;
4044         mtd->_write_oob = onenand_write_oob;
4045         mtd->_panic_write = onenand_panic_write;
4046 #ifdef CONFIG_MTD_ONENAND_OTP
4047         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4048         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4049         mtd->_get_user_prot_info = onenand_get_user_prot_info;
4050         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4051         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4052         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
4053 #endif
4054         mtd->_sync = onenand_sync;
4055         mtd->_lock = onenand_lock;
4056         mtd->_unlock = onenand_unlock;
4057         mtd->_suspend = onenand_suspend;
4058         mtd->_resume = onenand_resume;
4059         mtd->_block_isbad = onenand_block_isbad;
4060         mtd->_block_markbad = onenand_block_markbad;
4061         mtd->owner = THIS_MODULE;
4062         mtd->writebufsize = mtd->writesize;
4063
4064         /* Unlock whole block */
4065         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4066                 this->unlock_all(mtd);
4067
4068         ret = this->scan_bbt(mtd);
4069         if ((!FLEXONENAND(this)) || ret)
4070                 return ret;
4071
4072         /* Change Flex-OneNAND boundaries if required */
4073         for (i = 0; i < MAX_DIES; i++)
4074                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4075                                                  flex_bdry[(2 * i) + 1]);
4076
4077         return 0;
4078 }
4079
4080 /**
4081  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4082  * @param mtd           MTD device structure
4083  */
4084 void onenand_release(struct mtd_info *mtd)
4085 {
4086         struct onenand_chip *this = mtd->priv;
4087
4088         /* Deregister partitions */
4089         mtd_device_unregister(mtd);
4090
4091         /* Free bad block table memory, if allocated */
4092         if (this->bbm) {
4093                 struct bbm_info *bbm = this->bbm;
4094                 kfree(bbm->bbt);
4095                 kfree(this->bbm);
4096         }
4097         /* Buffers allocated by onenand_scan */
4098         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4099                 kfree(this->page_buf);
4100 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4101                 kfree(this->verify_buf);
4102 #endif
4103         }
4104         if (this->options & ONENAND_OOBBUF_ALLOC)
4105                 kfree(this->oob_buf);
4106         kfree(mtd->eraseregions);
4107 }
4108
4109 EXPORT_SYMBOL_GPL(onenand_scan);
4110 EXPORT_SYMBOL_GPL(onenand_release);
4111
4112 MODULE_LICENSE("GPL");
4113 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4114 MODULE_DESCRIPTION("Generic OneNAND flash driver code");