]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/e1000e/ich8lan.c
06ff884bc2c74bc178970d1e611e642c084daff7
[karo-tx-linux.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES           7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118                            ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
125
126 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL              PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL                 PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK     0x6000
142
143 /* EMI Registers */
144 #define I82579_EMI_ADDR         0x10
145 #define I82579_EMI_DATA         0x11
146 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
147
148 /* Strapping Option Register - RO */
149 #define E1000_STRAP                     0x0000C
150 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
151 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
152
153 /* OEM Bits Phy Register */
154 #define HV_OEM_BITS            PHY_REG(768, 25)
155 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
156 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
157 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
158
159 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
160 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
161
162 /* KMRN Mode Control */
163 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
164 #define HV_KMRN_MDIO_SLOW      0x0400
165
166 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
167 /* Offset 04h HSFSTS */
168 union ich8_hws_flash_status {
169         struct ich8_hsfsts {
170                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
171                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
172                 u16 dael       :1; /* bit 2 Direct Access error Log */
173                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
174                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
175                 u16 reserved1  :2; /* bit 13:6 Reserved */
176                 u16 reserved2  :6; /* bit 13:6 Reserved */
177                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
178                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
179         } hsf_status;
180         u16 regval;
181 };
182
183 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
184 /* Offset 06h FLCTL */
185 union ich8_hws_flash_ctrl {
186         struct ich8_hsflctl {
187                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
188                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
189                 u16 reserved   :5;   /* 7:3 Reserved  */
190                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
191                 u16 flockdn    :6;   /* 15:10 Reserved */
192         } hsf_ctrl;
193         u16 regval;
194 };
195
196 /* ICH Flash Region Access Permissions */
197 union ich8_hws_flash_regacc {
198         struct ich8_flracc {
199                 u32 grra      :8; /* 0:7 GbE region Read Access */
200                 u32 grwa      :8; /* 8:15 GbE region Write Access */
201                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
202                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
203         } hsf_flregacc;
204         u16 regval;
205 };
206
207 /* ICH Flash Protected Region */
208 union ich8_flash_protected_range {
209         struct ich8_pr {
210                 u32 base:13;     /* 0:12 Protected Range Base */
211                 u32 reserved1:2; /* 13:14 Reserved */
212                 u32 rpe:1;       /* 15 Read Protection Enable */
213                 u32 limit:13;    /* 16:28 Protected Range Limit */
214                 u32 reserved2:2; /* 29:30 Reserved */
215                 u32 wpe:1;       /* 31 Write Protection Enable */
216         } range;
217         u32 regval;
218 };
219
220 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
221 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
222 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
223 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
224 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
225                                                 u32 offset, u8 byte);
226 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
227                                          u8 *data);
228 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
229                                          u16 *data);
230 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
231                                          u8 size, u16 *data);
232 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
233 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
234 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
235 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
236 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
237 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
238 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
239 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
240 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
241 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
242 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
243 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
244 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
245 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
246 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
247 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
248 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
249 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
250 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
252
253 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
254 {
255         return readw(hw->flash_address + reg);
256 }
257
258 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
259 {
260         return readl(hw->flash_address + reg);
261 }
262
263 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
264 {
265         writew(val, hw->flash_address + reg);
266 }
267
268 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
269 {
270         writel(val, hw->flash_address + reg);
271 }
272
273 #define er16flash(reg)          __er16flash(hw, (reg))
274 #define er32flash(reg)          __er32flash(hw, (reg))
275 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
276 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
277
278 /**
279  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
280  *  @hw: pointer to the HW structure
281  *
282  *  Initialize family-specific PHY parameters and function pointers.
283  **/
284 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
285 {
286         struct e1000_phy_info *phy = &hw->phy;
287         u32 ctrl, fwsm;
288         s32 ret_val = 0;
289
290         phy->addr                     = 1;
291         phy->reset_delay_us           = 100;
292
293         phy->ops.read_reg             = e1000_read_phy_reg_hv;
294         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
295         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
296         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
297         phy->ops.write_reg            = e1000_write_phy_reg_hv;
298         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
299         phy->ops.power_up             = e1000_power_up_phy_copper;
300         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
301         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
302
303         /*
304          * The MAC-PHY interconnect may still be in SMBus mode
305          * after Sx->S0.  If the manageability engine (ME) is
306          * disabled, then toggle the LANPHYPC Value bit to force
307          * the interconnect to PCIe mode.
308          */
309         fwsm = er32(FWSM);
310         if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
311                 ctrl = er32(CTRL);
312                 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
313                 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
314                 ew32(CTRL, ctrl);
315                 udelay(10);
316                 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
317                 ew32(CTRL, ctrl);
318                 msleep(50);
319
320                 /*
321                  * Gate automatic PHY configuration by hardware on
322                  * non-managed 82579
323                  */
324                 if (hw->mac.type == e1000_pch2lan)
325                         e1000_gate_hw_phy_config_ich8lan(hw, true);
326         }
327
328         /*
329          * Reset the PHY before any access to it.  Doing so, ensures that
330          * the PHY is in a known good state before we read/write PHY registers.
331          * The generic reset is sufficient here, because we haven't determined
332          * the PHY type yet.
333          */
334         ret_val = e1000e_phy_hw_reset_generic(hw);
335         if (ret_val)
336                 goto out;
337
338         /* Ungate automatic PHY configuration on non-managed 82579 */
339         if ((hw->mac.type == e1000_pch2lan) &&
340             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
341                 usleep_range(10000, 20000);
342                 e1000_gate_hw_phy_config_ich8lan(hw, false);
343         }
344
345         phy->id = e1000_phy_unknown;
346         switch (hw->mac.type) {
347         default:
348                 ret_val = e1000e_get_phy_id(hw);
349                 if (ret_val)
350                         goto out;
351                 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
352                         break;
353                 /* fall-through */
354         case e1000_pch2lan:
355                 /*
356                  * In case the PHY needs to be in mdio slow mode,
357                  * set slow mode and try to get the PHY id again.
358                  */
359                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
360                 if (ret_val)
361                         goto out;
362                 ret_val = e1000e_get_phy_id(hw);
363                 if (ret_val)
364                         goto out;
365                 break;
366         }
367         phy->type = e1000e_get_phy_type_from_id(phy->id);
368
369         switch (phy->type) {
370         case e1000_phy_82577:
371         case e1000_phy_82579:
372                 phy->ops.check_polarity = e1000_check_polarity_82577;
373                 phy->ops.force_speed_duplex =
374                     e1000_phy_force_speed_duplex_82577;
375                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
376                 phy->ops.get_info = e1000_get_phy_info_82577;
377                 phy->ops.commit = e1000e_phy_sw_reset;
378                 break;
379         case e1000_phy_82578:
380                 phy->ops.check_polarity = e1000_check_polarity_m88;
381                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
382                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
383                 phy->ops.get_info = e1000e_get_phy_info_m88;
384                 break;
385         default:
386                 ret_val = -E1000_ERR_PHY;
387                 break;
388         }
389
390 out:
391         return ret_val;
392 }
393
394 /**
395  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
396  *  @hw: pointer to the HW structure
397  *
398  *  Initialize family-specific PHY parameters and function pointers.
399  **/
400 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
401 {
402         struct e1000_phy_info *phy = &hw->phy;
403         s32 ret_val;
404         u16 i = 0;
405
406         phy->addr                       = 1;
407         phy->reset_delay_us             = 100;
408
409         phy->ops.power_up               = e1000_power_up_phy_copper;
410         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
411
412         /*
413          * We may need to do this twice - once for IGP and if that fails,
414          * we'll set BM func pointers and try again
415          */
416         ret_val = e1000e_determine_phy_address(hw);
417         if (ret_val) {
418                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
419                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
420                 ret_val = e1000e_determine_phy_address(hw);
421                 if (ret_val) {
422                         e_dbg("Cannot determine PHY addr. Erroring out\n");
423                         return ret_val;
424                 }
425         }
426
427         phy->id = 0;
428         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
429                (i++ < 100)) {
430                 usleep_range(1000, 2000);
431                 ret_val = e1000e_get_phy_id(hw);
432                 if (ret_val)
433                         return ret_val;
434         }
435
436         /* Verify phy id */
437         switch (phy->id) {
438         case IGP03E1000_E_PHY_ID:
439                 phy->type = e1000_phy_igp_3;
440                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
441                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
442                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
443                 phy->ops.get_info = e1000e_get_phy_info_igp;
444                 phy->ops.check_polarity = e1000_check_polarity_igp;
445                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
446                 break;
447         case IFE_E_PHY_ID:
448         case IFE_PLUS_E_PHY_ID:
449         case IFE_C_E_PHY_ID:
450                 phy->type = e1000_phy_ife;
451                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
452                 phy->ops.get_info = e1000_get_phy_info_ife;
453                 phy->ops.check_polarity = e1000_check_polarity_ife;
454                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
455                 break;
456         case BME1000_E_PHY_ID:
457                 phy->type = e1000_phy_bm;
458                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
460                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
461                 phy->ops.commit = e1000e_phy_sw_reset;
462                 phy->ops.get_info = e1000e_get_phy_info_m88;
463                 phy->ops.check_polarity = e1000_check_polarity_m88;
464                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
465                 break;
466         default:
467                 return -E1000_ERR_PHY;
468                 break;
469         }
470
471         return 0;
472 }
473
474 /**
475  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
476  *  @hw: pointer to the HW structure
477  *
478  *  Initialize family-specific NVM parameters and function
479  *  pointers.
480  **/
481 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
482 {
483         struct e1000_nvm_info *nvm = &hw->nvm;
484         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
485         u32 gfpreg, sector_base_addr, sector_end_addr;
486         u16 i;
487
488         /* Can't read flash registers if the register set isn't mapped. */
489         if (!hw->flash_address) {
490                 e_dbg("ERROR: Flash registers not mapped\n");
491                 return -E1000_ERR_CONFIG;
492         }
493
494         nvm->type = e1000_nvm_flash_sw;
495
496         gfpreg = er32flash(ICH_FLASH_GFPREG);
497
498         /*
499          * sector_X_addr is a "sector"-aligned address (4096 bytes)
500          * Add 1 to sector_end_addr since this sector is included in
501          * the overall size.
502          */
503         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
504         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
505
506         /* flash_base_addr is byte-aligned */
507         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
508
509         /*
510          * find total size of the NVM, then cut in half since the total
511          * size represents two separate NVM banks.
512          */
513         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
514                                 << FLASH_SECTOR_ADDR_SHIFT;
515         nvm->flash_bank_size /= 2;
516         /* Adjust to word count */
517         nvm->flash_bank_size /= sizeof(u16);
518
519         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
520
521         /* Clear shadow ram */
522         for (i = 0; i < nvm->word_size; i++) {
523                 dev_spec->shadow_ram[i].modified = false;
524                 dev_spec->shadow_ram[i].value    = 0xFFFF;
525         }
526
527         return 0;
528 }
529
530 /**
531  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
532  *  @hw: pointer to the HW structure
533  *
534  *  Initialize family-specific MAC parameters and function
535  *  pointers.
536  **/
537 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
538 {
539         struct e1000_hw *hw = &adapter->hw;
540         struct e1000_mac_info *mac = &hw->mac;
541
542         /* Set media type function pointer */
543         hw->phy.media_type = e1000_media_type_copper;
544
545         /* Set mta register count */
546         mac->mta_reg_count = 32;
547         /* Set rar entry count */
548         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
549         if (mac->type == e1000_ich8lan)
550                 mac->rar_entry_count--;
551         /* FWSM register */
552         mac->has_fwsm = true;
553         /* ARC subsystem not supported */
554         mac->arc_subsystem_valid = false;
555         /* Adaptive IFS supported */
556         mac->adaptive_ifs = true;
557
558         /* LED operations */
559         switch (mac->type) {
560         case e1000_ich8lan:
561         case e1000_ich9lan:
562         case e1000_ich10lan:
563                 /* check management mode */
564                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
565                 /* ID LED init */
566                 mac->ops.id_led_init = e1000e_id_led_init;
567                 /* setup LED */
568                 mac->ops.setup_led = e1000e_setup_led_generic;
569                 /* cleanup LED */
570                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
571                 /* turn on/off LED */
572                 mac->ops.led_on = e1000_led_on_ich8lan;
573                 mac->ops.led_off = e1000_led_off_ich8lan;
574                 break;
575         case e1000_pchlan:
576         case e1000_pch2lan:
577                 /* check management mode */
578                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
579                 /* ID LED init */
580                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
581                 /* setup LED */
582                 mac->ops.setup_led = e1000_setup_led_pchlan;
583                 /* cleanup LED */
584                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
585                 /* turn on/off LED */
586                 mac->ops.led_on = e1000_led_on_pchlan;
587                 mac->ops.led_off = e1000_led_off_pchlan;
588                 break;
589         default:
590                 break;
591         }
592
593         /* Enable PCS Lock-loss workaround for ICH8 */
594         if (mac->type == e1000_ich8lan)
595                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
596
597         /* Gate automatic PHY configuration by hardware on managed 82579 */
598         if ((mac->type == e1000_pch2lan) &&
599             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
600                 e1000_gate_hw_phy_config_ich8lan(hw, true);
601
602         return 0;
603 }
604
605 /**
606  *  e1000_set_eee_pchlan - Enable/disable EEE support
607  *  @hw: pointer to the HW structure
608  *
609  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
610  *  the LPI Control register will remain set only if/when link is up.
611  **/
612 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
613 {
614         s32 ret_val = 0;
615         u16 phy_reg;
616
617         if (hw->phy.type != e1000_phy_82579)
618                 goto out;
619
620         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
621         if (ret_val)
622                 goto out;
623
624         if (hw->dev_spec.ich8lan.eee_disable)
625                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
626         else
627                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
628
629         ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
630 out:
631         return ret_val;
632 }
633
634 /**
635  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
636  *  @hw: pointer to the HW structure
637  *
638  *  Checks to see of the link status of the hardware has changed.  If a
639  *  change in link status has been detected, then we read the PHY registers
640  *  to get the current speed/duplex if link exists.
641  **/
642 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
643 {
644         struct e1000_mac_info *mac = &hw->mac;
645         s32 ret_val;
646         bool link;
647
648         /*
649          * We only want to go out to the PHY registers to see if Auto-Neg
650          * has completed and/or if our link status has changed.  The
651          * get_link_status flag is set upon receiving a Link Status
652          * Change or Rx Sequence Error interrupt.
653          */
654         if (!mac->get_link_status) {
655                 ret_val = 0;
656                 goto out;
657         }
658
659         /*
660          * First we want to see if the MII Status Register reports
661          * link.  If so, then we want to get the current speed/duplex
662          * of the PHY.
663          */
664         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
665         if (ret_val)
666                 goto out;
667
668         if (hw->mac.type == e1000_pchlan) {
669                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
670                 if (ret_val)
671                         goto out;
672         }
673
674         if (!link)
675                 goto out; /* No link detected */
676
677         mac->get_link_status = false;
678
679         if (hw->phy.type == e1000_phy_82578) {
680                 ret_val = e1000_link_stall_workaround_hv(hw);
681                 if (ret_val)
682                         goto out;
683         }
684
685         if (hw->mac.type == e1000_pch2lan) {
686                 ret_val = e1000_k1_workaround_lv(hw);
687                 if (ret_val)
688                         goto out;
689         }
690
691         /*
692          * Check if there was DownShift, must be checked
693          * immediately after link-up
694          */
695         e1000e_check_downshift(hw);
696
697         /* Enable/Disable EEE after link up */
698         ret_val = e1000_set_eee_pchlan(hw);
699         if (ret_val)
700                 goto out;
701
702         /*
703          * If we are forcing speed/duplex, then we simply return since
704          * we have already determined whether we have link or not.
705          */
706         if (!mac->autoneg) {
707                 ret_val = -E1000_ERR_CONFIG;
708                 goto out;
709         }
710
711         /*
712          * Auto-Neg is enabled.  Auto Speed Detection takes care
713          * of MAC speed/duplex configuration.  So we only need to
714          * configure Collision Distance in the MAC.
715          */
716         e1000e_config_collision_dist(hw);
717
718         /*
719          * Configure Flow Control now that Auto-Neg has completed.
720          * First, we need to restore the desired flow control
721          * settings because we may have had to re-autoneg with a
722          * different link partner.
723          */
724         ret_val = e1000e_config_fc_after_link_up(hw);
725         if (ret_val)
726                 e_dbg("Error configuring flow control\n");
727
728 out:
729         return ret_val;
730 }
731
732 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
733 {
734         struct e1000_hw *hw = &adapter->hw;
735         s32 rc;
736
737         rc = e1000_init_mac_params_ich8lan(adapter);
738         if (rc)
739                 return rc;
740
741         rc = e1000_init_nvm_params_ich8lan(hw);
742         if (rc)
743                 return rc;
744
745         switch (hw->mac.type) {
746         case e1000_ich8lan:
747         case e1000_ich9lan:
748         case e1000_ich10lan:
749                 rc = e1000_init_phy_params_ich8lan(hw);
750                 break;
751         case e1000_pchlan:
752         case e1000_pch2lan:
753                 rc = e1000_init_phy_params_pchlan(hw);
754                 break;
755         default:
756                 break;
757         }
758         if (rc)
759                 return rc;
760
761         /*
762          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
763          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
764          */
765         if ((adapter->hw.phy.type == e1000_phy_ife) ||
766             ((adapter->hw.mac.type >= e1000_pch2lan) &&
767              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
768                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
769                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
770         }
771
772         if ((adapter->hw.mac.type == e1000_ich8lan) &&
773             (adapter->hw.phy.type == e1000_phy_igp_3))
774                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
775
776         /* Disable EEE by default until IEEE802.3az spec is finalized */
777         if (adapter->flags2 & FLAG2_HAS_EEE)
778                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
779
780         return 0;
781 }
782
783 static DEFINE_MUTEX(nvm_mutex);
784
785 /**
786  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
787  *  @hw: pointer to the HW structure
788  *
789  *  Acquires the mutex for performing NVM operations.
790  **/
791 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
792 {
793         mutex_lock(&nvm_mutex);
794
795         return 0;
796 }
797
798 /**
799  *  e1000_release_nvm_ich8lan - Release NVM mutex
800  *  @hw: pointer to the HW structure
801  *
802  *  Releases the mutex used while performing NVM operations.
803  **/
804 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
805 {
806         mutex_unlock(&nvm_mutex);
807 }
808
809 static DEFINE_MUTEX(swflag_mutex);
810
811 /**
812  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
813  *  @hw: pointer to the HW structure
814  *
815  *  Acquires the software control flag for performing PHY and select
816  *  MAC CSR accesses.
817  **/
818 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
819 {
820         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
821         s32 ret_val = 0;
822
823         mutex_lock(&swflag_mutex);
824
825         while (timeout) {
826                 extcnf_ctrl = er32(EXTCNF_CTRL);
827                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
828                         break;
829
830                 mdelay(1);
831                 timeout--;
832         }
833
834         if (!timeout) {
835                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
836                 ret_val = -E1000_ERR_CONFIG;
837                 goto out;
838         }
839
840         timeout = SW_FLAG_TIMEOUT;
841
842         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
843         ew32(EXTCNF_CTRL, extcnf_ctrl);
844
845         while (timeout) {
846                 extcnf_ctrl = er32(EXTCNF_CTRL);
847                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
848                         break;
849
850                 mdelay(1);
851                 timeout--;
852         }
853
854         if (!timeout) {
855                 e_dbg("Failed to acquire the semaphore.\n");
856                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
857                 ew32(EXTCNF_CTRL, extcnf_ctrl);
858                 ret_val = -E1000_ERR_CONFIG;
859                 goto out;
860         }
861
862 out:
863         if (ret_val)
864                 mutex_unlock(&swflag_mutex);
865
866         return ret_val;
867 }
868
869 /**
870  *  e1000_release_swflag_ich8lan - Release software control flag
871  *  @hw: pointer to the HW structure
872  *
873  *  Releases the software control flag for performing PHY and select
874  *  MAC CSR accesses.
875  **/
876 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
877 {
878         u32 extcnf_ctrl;
879
880         extcnf_ctrl = er32(EXTCNF_CTRL);
881         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
882         ew32(EXTCNF_CTRL, extcnf_ctrl);
883
884         mutex_unlock(&swflag_mutex);
885 }
886
887 /**
888  *  e1000_check_mng_mode_ich8lan - Checks management mode
889  *  @hw: pointer to the HW structure
890  *
891  *  This checks if the adapter has any manageability enabled.
892  *  This is a function pointer entry point only called by read/write
893  *  routines for the PHY and NVM parts.
894  **/
895 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
896 {
897         u32 fwsm;
898
899         fwsm = er32(FWSM);
900         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
901                ((fwsm & E1000_FWSM_MODE_MASK) ==
902                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
903 }
904
905 /**
906  *  e1000_check_mng_mode_pchlan - Checks management mode
907  *  @hw: pointer to the HW structure
908  *
909  *  This checks if the adapter has iAMT enabled.
910  *  This is a function pointer entry point only called by read/write
911  *  routines for the PHY and NVM parts.
912  **/
913 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
914 {
915         u32 fwsm;
916
917         fwsm = er32(FWSM);
918         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
919                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
920 }
921
922 /**
923  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
924  *  @hw: pointer to the HW structure
925  *
926  *  Checks if firmware is blocking the reset of the PHY.
927  *  This is a function pointer entry point only called by
928  *  reset routines.
929  **/
930 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
931 {
932         u32 fwsm;
933
934         fwsm = er32(FWSM);
935
936         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
937 }
938
939 /**
940  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
941  *  @hw: pointer to the HW structure
942  *
943  *  Assumes semaphore already acquired.
944  *
945  **/
946 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
947 {
948         u16 phy_data;
949         u32 strap = er32(STRAP);
950         s32 ret_val = 0;
951
952         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
953
954         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
955         if (ret_val)
956                 goto out;
957
958         phy_data &= ~HV_SMB_ADDR_MASK;
959         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
960         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
961         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
962
963 out:
964         return ret_val;
965 }
966
967 /**
968  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
969  *  @hw:   pointer to the HW structure
970  *
971  *  SW should configure the LCD from the NVM extended configuration region
972  *  as a workaround for certain parts.
973  **/
974 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
975 {
976         struct e1000_phy_info *phy = &hw->phy;
977         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
978         s32 ret_val = 0;
979         u16 word_addr, reg_data, reg_addr, phy_page = 0;
980
981         /*
982          * Initialize the PHY from the NVM on ICH platforms.  This
983          * is needed due to an issue where the NVM configuration is
984          * not properly autoloaded after power transitions.
985          * Therefore, after each PHY reset, we will load the
986          * configuration data out of the NVM manually.
987          */
988         switch (hw->mac.type) {
989         case e1000_ich8lan:
990                 if (phy->type != e1000_phy_igp_3)
991                         return ret_val;
992
993                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
994                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
995                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
996                         break;
997                 }
998                 /* Fall-thru */
999         case e1000_pchlan:
1000         case e1000_pch2lan:
1001                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1002                 break;
1003         default:
1004                 return ret_val;
1005         }
1006
1007         ret_val = hw->phy.ops.acquire(hw);
1008         if (ret_val)
1009                 return ret_val;
1010
1011         data = er32(FEXTNVM);
1012         if (!(data & sw_cfg_mask))
1013                 goto out;
1014
1015         /*
1016          * Make sure HW does not configure LCD from PHY
1017          * extended configuration before SW configuration
1018          */
1019         data = er32(EXTCNF_CTRL);
1020         if (!(hw->mac.type == e1000_pch2lan)) {
1021                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1022                         goto out;
1023         }
1024
1025         cnf_size = er32(EXTCNF_SIZE);
1026         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1027         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1028         if (!cnf_size)
1029                 goto out;
1030
1031         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1032         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1033
1034         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1035             (hw->mac.type == e1000_pchlan)) ||
1036              (hw->mac.type == e1000_pch2lan)) {
1037                 /*
1038                  * HW configures the SMBus address and LEDs when the
1039                  * OEM and LCD Write Enable bits are set in the NVM.
1040                  * When both NVM bits are cleared, SW will configure
1041                  * them instead.
1042                  */
1043                 ret_val = e1000_write_smbus_addr(hw);
1044                 if (ret_val)
1045                         goto out;
1046
1047                 data = er32(LEDCTL);
1048                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1049                                                         (u16)data);
1050                 if (ret_val)
1051                         goto out;
1052         }
1053
1054         /* Configure LCD from extended configuration region. */
1055
1056         /* cnf_base_addr is in DWORD */
1057         word_addr = (u16)(cnf_base_addr << 1);
1058
1059         for (i = 0; i < cnf_size; i++) {
1060                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1061                                          &reg_data);
1062                 if (ret_val)
1063                         goto out;
1064
1065                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1066                                          1, &reg_addr);
1067                 if (ret_val)
1068                         goto out;
1069
1070                 /* Save off the PHY page for future writes. */
1071                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1072                         phy_page = reg_data;
1073                         continue;
1074                 }
1075
1076                 reg_addr &= PHY_REG_MASK;
1077                 reg_addr |= phy_page;
1078
1079                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1080                                                     reg_data);
1081                 if (ret_val)
1082                         goto out;
1083         }
1084
1085 out:
1086         hw->phy.ops.release(hw);
1087         return ret_val;
1088 }
1089
1090 /**
1091  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1092  *  @hw:   pointer to the HW structure
1093  *  @link: link up bool flag
1094  *
1095  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1096  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1097  *  If link is down, the function will restore the default K1 setting located
1098  *  in the NVM.
1099  **/
1100 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1101 {
1102         s32 ret_val = 0;
1103         u16 status_reg = 0;
1104         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1105
1106         if (hw->mac.type != e1000_pchlan)
1107                 goto out;
1108
1109         /* Wrap the whole flow with the sw flag */
1110         ret_val = hw->phy.ops.acquire(hw);
1111         if (ret_val)
1112                 goto out;
1113
1114         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1115         if (link) {
1116                 if (hw->phy.type == e1000_phy_82578) {
1117                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1118                                                                   &status_reg);
1119                         if (ret_val)
1120                                 goto release;
1121
1122                         status_reg &= BM_CS_STATUS_LINK_UP |
1123                                       BM_CS_STATUS_RESOLVED |
1124                                       BM_CS_STATUS_SPEED_MASK;
1125
1126                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1127                                            BM_CS_STATUS_RESOLVED |
1128                                            BM_CS_STATUS_SPEED_1000))
1129                                 k1_enable = false;
1130                 }
1131
1132                 if (hw->phy.type == e1000_phy_82577) {
1133                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1134                                                                   &status_reg);
1135                         if (ret_val)
1136                                 goto release;
1137
1138                         status_reg &= HV_M_STATUS_LINK_UP |
1139                                       HV_M_STATUS_AUTONEG_COMPLETE |
1140                                       HV_M_STATUS_SPEED_MASK;
1141
1142                         if (status_reg == (HV_M_STATUS_LINK_UP |
1143                                            HV_M_STATUS_AUTONEG_COMPLETE |
1144                                            HV_M_STATUS_SPEED_1000))
1145                                 k1_enable = false;
1146                 }
1147
1148                 /* Link stall fix for link up */
1149                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1150                                                            0x0100);
1151                 if (ret_val)
1152                         goto release;
1153
1154         } else {
1155                 /* Link stall fix for link down */
1156                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1157                                                            0x4100);
1158                 if (ret_val)
1159                         goto release;
1160         }
1161
1162         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1163
1164 release:
1165         hw->phy.ops.release(hw);
1166 out:
1167         return ret_val;
1168 }
1169
1170 /**
1171  *  e1000_configure_k1_ich8lan - Configure K1 power state
1172  *  @hw: pointer to the HW structure
1173  *  @enable: K1 state to configure
1174  *
1175  *  Configure the K1 power state based on the provided parameter.
1176  *  Assumes semaphore already acquired.
1177  *
1178  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1179  **/
1180 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1181 {
1182         s32 ret_val = 0;
1183         u32 ctrl_reg = 0;
1184         u32 ctrl_ext = 0;
1185         u32 reg = 0;
1186         u16 kmrn_reg = 0;
1187
1188         ret_val = e1000e_read_kmrn_reg_locked(hw,
1189                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1190                                              &kmrn_reg);
1191         if (ret_val)
1192                 goto out;
1193
1194         if (k1_enable)
1195                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1196         else
1197                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1198
1199         ret_val = e1000e_write_kmrn_reg_locked(hw,
1200                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1201                                               kmrn_reg);
1202         if (ret_val)
1203                 goto out;
1204
1205         udelay(20);
1206         ctrl_ext = er32(CTRL_EXT);
1207         ctrl_reg = er32(CTRL);
1208
1209         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1210         reg |= E1000_CTRL_FRCSPD;
1211         ew32(CTRL, reg);
1212
1213         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1214         udelay(20);
1215         ew32(CTRL, ctrl_reg);
1216         ew32(CTRL_EXT, ctrl_ext);
1217         udelay(20);
1218
1219 out:
1220         return ret_val;
1221 }
1222
1223 /**
1224  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1225  *  @hw:       pointer to the HW structure
1226  *  @d0_state: boolean if entering d0 or d3 device state
1227  *
1228  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1229  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1230  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1231  **/
1232 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1233 {
1234         s32 ret_val = 0;
1235         u32 mac_reg;
1236         u16 oem_reg;
1237
1238         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1239                 return ret_val;
1240
1241         ret_val = hw->phy.ops.acquire(hw);
1242         if (ret_val)
1243                 return ret_val;
1244
1245         if (!(hw->mac.type == e1000_pch2lan)) {
1246                 mac_reg = er32(EXTCNF_CTRL);
1247                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1248                         goto out;
1249         }
1250
1251         mac_reg = er32(FEXTNVM);
1252         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1253                 goto out;
1254
1255         mac_reg = er32(PHY_CTRL);
1256
1257         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1258         if (ret_val)
1259                 goto out;
1260
1261         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1262
1263         if (d0_state) {
1264                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1265                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1266
1267                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1268                         oem_reg |= HV_OEM_BITS_LPLU;
1269         } else {
1270                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1271                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1272
1273                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1274                         oem_reg |= HV_OEM_BITS_LPLU;
1275         }
1276         /* Restart auto-neg to activate the bits */
1277         if (!e1000_check_reset_block(hw))
1278                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1279         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1280
1281 out:
1282         hw->phy.ops.release(hw);
1283
1284         return ret_val;
1285 }
1286
1287
1288 /**
1289  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1290  *  @hw:   pointer to the HW structure
1291  **/
1292 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1293 {
1294         s32 ret_val;
1295         u16 data;
1296
1297         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1298         if (ret_val)
1299                 return ret_val;
1300
1301         data |= HV_KMRN_MDIO_SLOW;
1302
1303         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1304
1305         return ret_val;
1306 }
1307
1308 /**
1309  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1310  *  done after every PHY reset.
1311  **/
1312 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1313 {
1314         s32 ret_val = 0;
1315         u16 phy_data;
1316
1317         if (hw->mac.type != e1000_pchlan)
1318                 return ret_val;
1319
1320         /* Set MDIO slow mode before any other MDIO access */
1321         if (hw->phy.type == e1000_phy_82577) {
1322                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1323                 if (ret_val)
1324                         goto out;
1325         }
1326
1327         if (((hw->phy.type == e1000_phy_82577) &&
1328              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1329             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1330                 /* Disable generation of early preamble */
1331                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1332                 if (ret_val)
1333                         return ret_val;
1334
1335                 /* Preamble tuning for SSC */
1336                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1337                 if (ret_val)
1338                         return ret_val;
1339         }
1340
1341         if (hw->phy.type == e1000_phy_82578) {
1342                 /*
1343                  * Return registers to default by doing a soft reset then
1344                  * writing 0x3140 to the control register.
1345                  */
1346                 if (hw->phy.revision < 2) {
1347                         e1000e_phy_sw_reset(hw);
1348                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1349                 }
1350         }
1351
1352         /* Select page 0 */
1353         ret_val = hw->phy.ops.acquire(hw);
1354         if (ret_val)
1355                 return ret_val;
1356
1357         hw->phy.addr = 1;
1358         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1359         hw->phy.ops.release(hw);
1360         if (ret_val)
1361                 goto out;
1362
1363         /*
1364          * Configure the K1 Si workaround during phy reset assuming there is
1365          * link so that it disables K1 if link is in 1Gbps.
1366          */
1367         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1368         if (ret_val)
1369                 goto out;
1370
1371         /* Workaround for link disconnects on a busy hub in half duplex */
1372         ret_val = hw->phy.ops.acquire(hw);
1373         if (ret_val)
1374                 goto out;
1375         ret_val = hw->phy.ops.read_reg_locked(hw,
1376                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1377                                               &phy_data);
1378         if (ret_val)
1379                 goto release;
1380         ret_val = hw->phy.ops.write_reg_locked(hw,
1381                                                PHY_REG(BM_PORT_CTRL_PAGE, 17),
1382                                                phy_data & 0x00FF);
1383 release:
1384         hw->phy.ops.release(hw);
1385 out:
1386         return ret_val;
1387 }
1388
1389 /**
1390  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1391  *  @hw:   pointer to the HW structure
1392  **/
1393 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1394 {
1395         u32 mac_reg;
1396         u16 i;
1397
1398         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1399         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1400                 mac_reg = er32(RAL(i));
1401                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1402                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1403                 mac_reg = er32(RAH(i));
1404                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1405                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1406         }
1407 }
1408
1409 /**
1410  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1411  *  with 82579 PHY
1412  *  @hw: pointer to the HW structure
1413  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1414  **/
1415 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1416 {
1417         s32 ret_val = 0;
1418         u16 phy_reg, data;
1419         u32 mac_reg;
1420         u16 i;
1421
1422         if (hw->mac.type != e1000_pch2lan)
1423                 goto out;
1424
1425         /* disable Rx path while enabling/disabling workaround */
1426         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1427         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1428         if (ret_val)
1429                 goto out;
1430
1431         if (enable) {
1432                 /*
1433                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1434                  * SHRAL/H) and initial CRC values to the MAC
1435                  */
1436                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1437                         u8 mac_addr[ETH_ALEN] = {0};
1438                         u32 addr_high, addr_low;
1439
1440                         addr_high = er32(RAH(i));
1441                         if (!(addr_high & E1000_RAH_AV))
1442                                 continue;
1443                         addr_low = er32(RAL(i));
1444                         mac_addr[0] = (addr_low & 0xFF);
1445                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1446                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1447                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1448                         mac_addr[4] = (addr_high & 0xFF);
1449                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1450
1451                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1452                 }
1453
1454                 /* Write Rx addresses to the PHY */
1455                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1456
1457                 /* Enable jumbo frame workaround in the MAC */
1458                 mac_reg = er32(FFLT_DBG);
1459                 mac_reg &= ~(1 << 14);
1460                 mac_reg |= (7 << 15);
1461                 ew32(FFLT_DBG, mac_reg);
1462
1463                 mac_reg = er32(RCTL);
1464                 mac_reg |= E1000_RCTL_SECRC;
1465                 ew32(RCTL, mac_reg);
1466
1467                 ret_val = e1000e_read_kmrn_reg(hw,
1468                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1469                                                 &data);
1470                 if (ret_val)
1471                         goto out;
1472                 ret_val = e1000e_write_kmrn_reg(hw,
1473                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1474                                                 data | (1 << 0));
1475                 if (ret_val)
1476                         goto out;
1477                 ret_val = e1000e_read_kmrn_reg(hw,
1478                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1479                                                 &data);
1480                 if (ret_val)
1481                         goto out;
1482                 data &= ~(0xF << 8);
1483                 data |= (0xB << 8);
1484                 ret_val = e1000e_write_kmrn_reg(hw,
1485                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1486                                                 data);
1487                 if (ret_val)
1488                         goto out;
1489
1490                 /* Enable jumbo frame workaround in the PHY */
1491                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1492                 data &= ~(0x7F << 5);
1493                 data |= (0x37 << 5);
1494                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1495                 if (ret_val)
1496                         goto out;
1497                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1498                 data &= ~(1 << 13);
1499                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1500                 if (ret_val)
1501                         goto out;
1502                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1503                 data &= ~(0x3FF << 2);
1504                 data |= (0x1A << 2);
1505                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1506                 if (ret_val)
1507                         goto out;
1508                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1509                 if (ret_val)
1510                         goto out;
1511                 e1e_rphy(hw, HV_PM_CTRL, &data);
1512                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1513                 if (ret_val)
1514                         goto out;
1515         } else {
1516                 /* Write MAC register values back to h/w defaults */
1517                 mac_reg = er32(FFLT_DBG);
1518                 mac_reg &= ~(0xF << 14);
1519                 ew32(FFLT_DBG, mac_reg);
1520
1521                 mac_reg = er32(RCTL);
1522                 mac_reg &= ~E1000_RCTL_SECRC;
1523                 ew32(RCTL, mac_reg);
1524
1525                 ret_val = e1000e_read_kmrn_reg(hw,
1526                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1527                                                 &data);
1528                 if (ret_val)
1529                         goto out;
1530                 ret_val = e1000e_write_kmrn_reg(hw,
1531                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1532                                                 data & ~(1 << 0));
1533                 if (ret_val)
1534                         goto out;
1535                 ret_val = e1000e_read_kmrn_reg(hw,
1536                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1537                                                 &data);
1538                 if (ret_val)
1539                         goto out;
1540                 data &= ~(0xF << 8);
1541                 data |= (0xB << 8);
1542                 ret_val = e1000e_write_kmrn_reg(hw,
1543                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1544                                                 data);
1545                 if (ret_val)
1546                         goto out;
1547
1548                 /* Write PHY register values back to h/w defaults */
1549                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1550                 data &= ~(0x7F << 5);
1551                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1552                 if (ret_val)
1553                         goto out;
1554                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1555                 data |= (1 << 13);
1556                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1557                 if (ret_val)
1558                         goto out;
1559                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1560                 data &= ~(0x3FF << 2);
1561                 data |= (0x8 << 2);
1562                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1563                 if (ret_val)
1564                         goto out;
1565                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1566                 if (ret_val)
1567                         goto out;
1568                 e1e_rphy(hw, HV_PM_CTRL, &data);
1569                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1570                 if (ret_val)
1571                         goto out;
1572         }
1573
1574         /* re-enable Rx path after enabling/disabling workaround */
1575         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1576
1577 out:
1578         return ret_val;
1579 }
1580
1581 /**
1582  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1583  *  done after every PHY reset.
1584  **/
1585 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1586 {
1587         s32 ret_val = 0;
1588
1589         if (hw->mac.type != e1000_pch2lan)
1590                 goto out;
1591
1592         /* Set MDIO slow mode before any other MDIO access */
1593         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1594
1595 out:
1596         return ret_val;
1597 }
1598
1599 /**
1600  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1601  *  @hw:   pointer to the HW structure
1602  *
1603  *  Workaround to set the K1 beacon duration for 82579 parts
1604  **/
1605 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1606 {
1607         s32 ret_val = 0;
1608         u16 status_reg = 0;
1609         u32 mac_reg;
1610
1611         if (hw->mac.type != e1000_pch2lan)
1612                 goto out;
1613
1614         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1615         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1616         if (ret_val)
1617                 goto out;
1618
1619         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1620             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1621                 mac_reg = er32(FEXTNVM4);
1622                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1623
1624                 if (status_reg & HV_M_STATUS_SPEED_1000)
1625                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1626                 else
1627                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1628
1629                 ew32(FEXTNVM4, mac_reg);
1630         }
1631
1632 out:
1633         return ret_val;
1634 }
1635
1636 /**
1637  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1638  *  @hw:   pointer to the HW structure
1639  *  @gate: boolean set to true to gate, false to ungate
1640  *
1641  *  Gate/ungate the automatic PHY configuration via hardware; perform
1642  *  the configuration via software instead.
1643  **/
1644 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1645 {
1646         u32 extcnf_ctrl;
1647
1648         if (hw->mac.type != e1000_pch2lan)
1649                 return;
1650
1651         extcnf_ctrl = er32(EXTCNF_CTRL);
1652
1653         if (gate)
1654                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1655         else
1656                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1657
1658         ew32(EXTCNF_CTRL, extcnf_ctrl);
1659         return;
1660 }
1661
1662 /**
1663  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1664  *  @hw: pointer to the HW structure
1665  *
1666  *  Check the appropriate indication the MAC has finished configuring the
1667  *  PHY after a software reset.
1668  **/
1669 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1670 {
1671         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1672
1673         /* Wait for basic configuration completes before proceeding */
1674         do {
1675                 data = er32(STATUS);
1676                 data &= E1000_STATUS_LAN_INIT_DONE;
1677                 udelay(100);
1678         } while ((!data) && --loop);
1679
1680         /*
1681          * If basic configuration is incomplete before the above loop
1682          * count reaches 0, loading the configuration from NVM will
1683          * leave the PHY in a bad state possibly resulting in no link.
1684          */
1685         if (loop == 0)
1686                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1687
1688         /* Clear the Init Done bit for the next init event */
1689         data = er32(STATUS);
1690         data &= ~E1000_STATUS_LAN_INIT_DONE;
1691         ew32(STATUS, data);
1692 }
1693
1694 /**
1695  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1696  *  @hw: pointer to the HW structure
1697  **/
1698 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1699 {
1700         s32 ret_val = 0;
1701         u16 reg;
1702
1703         if (e1000_check_reset_block(hw))
1704                 goto out;
1705
1706         /* Allow time for h/w to get to quiescent state after reset */
1707         usleep_range(10000, 20000);
1708
1709         /* Perform any necessary post-reset workarounds */
1710         switch (hw->mac.type) {
1711         case e1000_pchlan:
1712                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1713                 if (ret_val)
1714                         goto out;
1715                 break;
1716         case e1000_pch2lan:
1717                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1718                 if (ret_val)
1719                         goto out;
1720                 break;
1721         default:
1722                 break;
1723         }
1724
1725         /* Dummy read to clear the phy wakeup bit after lcd reset */
1726         if (hw->mac.type >= e1000_pchlan)
1727                 e1e_rphy(hw, BM_WUC, &reg);
1728
1729         /* Configure the LCD with the extended configuration region in NVM */
1730         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1731         if (ret_val)
1732                 goto out;
1733
1734         /* Configure the LCD with the OEM bits in NVM */
1735         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1736
1737         if (hw->mac.type == e1000_pch2lan) {
1738                 /* Ungate automatic PHY configuration on non-managed 82579 */
1739                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1740                         usleep_range(10000, 20000);
1741                         e1000_gate_hw_phy_config_ich8lan(hw, false);
1742                 }
1743
1744                 /* Set EEE LPI Update Timer to 200usec */
1745                 ret_val = hw->phy.ops.acquire(hw);
1746                 if (ret_val)
1747                         goto out;
1748                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1749                                                        I82579_LPI_UPDATE_TIMER);
1750                 if (ret_val)
1751                         goto release;
1752                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1753                                                        0x1387);
1754 release:
1755                 hw->phy.ops.release(hw);
1756         }
1757
1758 out:
1759         return ret_val;
1760 }
1761
1762 /**
1763  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1764  *  @hw: pointer to the HW structure
1765  *
1766  *  Resets the PHY
1767  *  This is a function pointer entry point called by drivers
1768  *  or other shared routines.
1769  **/
1770 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1771 {
1772         s32 ret_val = 0;
1773
1774         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1775         if ((hw->mac.type == e1000_pch2lan) &&
1776             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777                 e1000_gate_hw_phy_config_ich8lan(hw, true);
1778
1779         ret_val = e1000e_phy_hw_reset_generic(hw);
1780         if (ret_val)
1781                 goto out;
1782
1783         ret_val = e1000_post_phy_reset_ich8lan(hw);
1784
1785 out:
1786         return ret_val;
1787 }
1788
1789 /**
1790  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1791  *  @hw: pointer to the HW structure
1792  *  @active: true to enable LPLU, false to disable
1793  *
1794  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1795  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1796  *  the phy speed. This function will manually set the LPLU bit and restart
1797  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1798  *  since it configures the same bit.
1799  **/
1800 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1801 {
1802         s32 ret_val = 0;
1803         u16 oem_reg;
1804
1805         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1806         if (ret_val)
1807                 goto out;
1808
1809         if (active)
1810                 oem_reg |= HV_OEM_BITS_LPLU;
1811         else
1812                 oem_reg &= ~HV_OEM_BITS_LPLU;
1813
1814         oem_reg |= HV_OEM_BITS_RESTART_AN;
1815         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1816
1817 out:
1818         return ret_val;
1819 }
1820
1821 /**
1822  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1823  *  @hw: pointer to the HW structure
1824  *  @active: true to enable LPLU, false to disable
1825  *
1826  *  Sets the LPLU D0 state according to the active flag.  When
1827  *  activating LPLU this function also disables smart speed
1828  *  and vice versa.  LPLU will not be activated unless the
1829  *  device autonegotiation advertisement meets standards of
1830  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1831  *  This is a function pointer entry point only called by
1832  *  PHY setup routines.
1833  **/
1834 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1835 {
1836         struct e1000_phy_info *phy = &hw->phy;
1837         u32 phy_ctrl;
1838         s32 ret_val = 0;
1839         u16 data;
1840
1841         if (phy->type == e1000_phy_ife)
1842                 return ret_val;
1843
1844         phy_ctrl = er32(PHY_CTRL);
1845
1846         if (active) {
1847                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1848                 ew32(PHY_CTRL, phy_ctrl);
1849
1850                 if (phy->type != e1000_phy_igp_3)
1851                         return 0;
1852
1853                 /*
1854                  * Call gig speed drop workaround on LPLU before accessing
1855                  * any PHY registers
1856                  */
1857                 if (hw->mac.type == e1000_ich8lan)
1858                         e1000e_gig_downshift_workaround_ich8lan(hw);
1859
1860                 /* When LPLU is enabled, we should disable SmartSpeed */
1861                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1862                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1863                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1864                 if (ret_val)
1865                         return ret_val;
1866         } else {
1867                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1868                 ew32(PHY_CTRL, phy_ctrl);
1869
1870                 if (phy->type != e1000_phy_igp_3)
1871                         return 0;
1872
1873                 /*
1874                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1875                  * during Dx states where the power conservation is most
1876                  * important.  During driver activity we should enable
1877                  * SmartSpeed, so performance is maintained.
1878                  */
1879                 if (phy->smart_speed == e1000_smart_speed_on) {
1880                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1881                                            &data);
1882                         if (ret_val)
1883                                 return ret_val;
1884
1885                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1886                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1887                                            data);
1888                         if (ret_val)
1889                                 return ret_val;
1890                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1891                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1892                                            &data);
1893                         if (ret_val)
1894                                 return ret_val;
1895
1896                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1897                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1898                                            data);
1899                         if (ret_val)
1900                                 return ret_val;
1901                 }
1902         }
1903
1904         return 0;
1905 }
1906
1907 /**
1908  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1909  *  @hw: pointer to the HW structure
1910  *  @active: true to enable LPLU, false to disable
1911  *
1912  *  Sets the LPLU D3 state according to the active flag.  When
1913  *  activating LPLU this function also disables smart speed
1914  *  and vice versa.  LPLU will not be activated unless the
1915  *  device autonegotiation advertisement meets standards of
1916  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1917  *  This is a function pointer entry point only called by
1918  *  PHY setup routines.
1919  **/
1920 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1921 {
1922         struct e1000_phy_info *phy = &hw->phy;
1923         u32 phy_ctrl;
1924         s32 ret_val;
1925         u16 data;
1926
1927         phy_ctrl = er32(PHY_CTRL);
1928
1929         if (!active) {
1930                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1931                 ew32(PHY_CTRL, phy_ctrl);
1932
1933                 if (phy->type != e1000_phy_igp_3)
1934                         return 0;
1935
1936                 /*
1937                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1938                  * during Dx states where the power conservation is most
1939                  * important.  During driver activity we should enable
1940                  * SmartSpeed, so performance is maintained.
1941                  */
1942                 if (phy->smart_speed == e1000_smart_speed_on) {
1943                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1944                                            &data);
1945                         if (ret_val)
1946                                 return ret_val;
1947
1948                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1949                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1950                                            data);
1951                         if (ret_val)
1952                                 return ret_val;
1953                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1954                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1955                                            &data);
1956                         if (ret_val)
1957                                 return ret_val;
1958
1959                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1960                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1961                                            data);
1962                         if (ret_val)
1963                                 return ret_val;
1964                 }
1965         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1966                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1967                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1968                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1969                 ew32(PHY_CTRL, phy_ctrl);
1970
1971                 if (phy->type != e1000_phy_igp_3)
1972                         return 0;
1973
1974                 /*
1975                  * Call gig speed drop workaround on LPLU before accessing
1976                  * any PHY registers
1977                  */
1978                 if (hw->mac.type == e1000_ich8lan)
1979                         e1000e_gig_downshift_workaround_ich8lan(hw);
1980
1981                 /* When LPLU is enabled, we should disable SmartSpeed */
1982                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1983                 if (ret_val)
1984                         return ret_val;
1985
1986                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1987                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1988         }
1989
1990         return 0;
1991 }
1992
1993 /**
1994  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1995  *  @hw: pointer to the HW structure
1996  *  @bank:  pointer to the variable that returns the active bank
1997  *
1998  *  Reads signature byte from the NVM using the flash access registers.
1999  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2000  **/
2001 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2002 {
2003         u32 eecd;
2004         struct e1000_nvm_info *nvm = &hw->nvm;
2005         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2006         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2007         u8 sig_byte = 0;
2008         s32 ret_val = 0;
2009
2010         switch (hw->mac.type) {
2011         case e1000_ich8lan:
2012         case e1000_ich9lan:
2013                 eecd = er32(EECD);
2014                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2015                     E1000_EECD_SEC1VAL_VALID_MASK) {
2016                         if (eecd & E1000_EECD_SEC1VAL)
2017                                 *bank = 1;
2018                         else
2019                                 *bank = 0;
2020
2021                         return 0;
2022                 }
2023                 e_dbg("Unable to determine valid NVM bank via EEC - "
2024                        "reading flash signature\n");
2025                 /* fall-thru */
2026         default:
2027                 /* set bank to 0 in case flash read fails */
2028                 *bank = 0;
2029
2030                 /* Check bank 0 */
2031                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2032                                                         &sig_byte);
2033                 if (ret_val)
2034                         return ret_val;
2035                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2036                     E1000_ICH_NVM_SIG_VALUE) {
2037                         *bank = 0;
2038                         return 0;
2039                 }
2040
2041                 /* Check bank 1 */
2042                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2043                                                         bank1_offset,
2044                                                         &sig_byte);
2045                 if (ret_val)
2046                         return ret_val;
2047                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2048                     E1000_ICH_NVM_SIG_VALUE) {
2049                         *bank = 1;
2050                         return 0;
2051                 }
2052
2053                 e_dbg("ERROR: No valid NVM bank present\n");
2054                 return -E1000_ERR_NVM;
2055         }
2056
2057         return 0;
2058 }
2059
2060 /**
2061  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2062  *  @hw: pointer to the HW structure
2063  *  @offset: The offset (in bytes) of the word(s) to read.
2064  *  @words: Size of data to read in words
2065  *  @data: Pointer to the word(s) to read at offset.
2066  *
2067  *  Reads a word(s) from the NVM using the flash access registers.
2068  **/
2069 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2070                                   u16 *data)
2071 {
2072         struct e1000_nvm_info *nvm = &hw->nvm;
2073         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2074         u32 act_offset;
2075         s32 ret_val = 0;
2076         u32 bank = 0;
2077         u16 i, word;
2078
2079         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2080             (words == 0)) {
2081                 e_dbg("nvm parameter(s) out of bounds\n");
2082                 ret_val = -E1000_ERR_NVM;
2083                 goto out;
2084         }
2085
2086         nvm->ops.acquire(hw);
2087
2088         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2089         if (ret_val) {
2090                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2091                 bank = 0;
2092         }
2093
2094         act_offset = (bank) ? nvm->flash_bank_size : 0;
2095         act_offset += offset;
2096
2097         ret_val = 0;
2098         for (i = 0; i < words; i++) {
2099                 if ((dev_spec->shadow_ram) &&
2100                     (dev_spec->shadow_ram[offset+i].modified)) {
2101                         data[i] = dev_spec->shadow_ram[offset+i].value;
2102                 } else {
2103                         ret_val = e1000_read_flash_word_ich8lan(hw,
2104                                                                 act_offset + i,
2105                                                                 &word);
2106                         if (ret_val)
2107                                 break;
2108                         data[i] = word;
2109                 }
2110         }
2111
2112         nvm->ops.release(hw);
2113
2114 out:
2115         if (ret_val)
2116                 e_dbg("NVM read error: %d\n", ret_val);
2117
2118         return ret_val;
2119 }
2120
2121 /**
2122  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2123  *  @hw: pointer to the HW structure
2124  *
2125  *  This function does initial flash setup so that a new read/write/erase cycle
2126  *  can be started.
2127  **/
2128 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2129 {
2130         union ich8_hws_flash_status hsfsts;
2131         s32 ret_val = -E1000_ERR_NVM;
2132
2133         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2134
2135         /* Check if the flash descriptor is valid */
2136         if (hsfsts.hsf_status.fldesvalid == 0) {
2137                 e_dbg("Flash descriptor invalid.  "
2138                          "SW Sequencing must be used.\n");
2139                 return -E1000_ERR_NVM;
2140         }
2141
2142         /* Clear FCERR and DAEL in hw status by writing 1 */
2143         hsfsts.hsf_status.flcerr = 1;
2144         hsfsts.hsf_status.dael = 1;
2145
2146         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2147
2148         /*
2149          * Either we should have a hardware SPI cycle in progress
2150          * bit to check against, in order to start a new cycle or
2151          * FDONE bit should be changed in the hardware so that it
2152          * is 1 after hardware reset, which can then be used as an
2153          * indication whether a cycle is in progress or has been
2154          * completed.
2155          */
2156
2157         if (hsfsts.hsf_status.flcinprog == 0) {
2158                 /*
2159                  * There is no cycle running at present,
2160                  * so we can start a cycle.
2161                  * Begin by setting Flash Cycle Done.
2162                  */
2163                 hsfsts.hsf_status.flcdone = 1;
2164                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2165                 ret_val = 0;
2166         } else {
2167                 s32 i = 0;
2168
2169                 /*
2170                  * Otherwise poll for sometime so the current
2171                  * cycle has a chance to end before giving up.
2172                  */
2173                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2174                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2175                         if (hsfsts.hsf_status.flcinprog == 0) {
2176                                 ret_val = 0;
2177                                 break;
2178                         }
2179                         udelay(1);
2180                 }
2181                 if (ret_val == 0) {
2182                         /*
2183                          * Successful in waiting for previous cycle to timeout,
2184                          * now set the Flash Cycle Done.
2185                          */
2186                         hsfsts.hsf_status.flcdone = 1;
2187                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2188                 } else {
2189                         e_dbg("Flash controller busy, cannot get access\n");
2190                 }
2191         }
2192
2193         return ret_val;
2194 }
2195
2196 /**
2197  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2198  *  @hw: pointer to the HW structure
2199  *  @timeout: maximum time to wait for completion
2200  *
2201  *  This function starts a flash cycle and waits for its completion.
2202  **/
2203 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2204 {
2205         union ich8_hws_flash_ctrl hsflctl;
2206         union ich8_hws_flash_status hsfsts;
2207         s32 ret_val = -E1000_ERR_NVM;
2208         u32 i = 0;
2209
2210         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2211         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2212         hsflctl.hsf_ctrl.flcgo = 1;
2213         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2214
2215         /* wait till FDONE bit is set to 1 */
2216         do {
2217                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2218                 if (hsfsts.hsf_status.flcdone == 1)
2219                         break;
2220                 udelay(1);
2221         } while (i++ < timeout);
2222
2223         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2224                 return 0;
2225
2226         return ret_val;
2227 }
2228
2229 /**
2230  *  e1000_read_flash_word_ich8lan - Read word from flash
2231  *  @hw: pointer to the HW structure
2232  *  @offset: offset to data location
2233  *  @data: pointer to the location for storing the data
2234  *
2235  *  Reads the flash word at offset into data.  Offset is converted
2236  *  to bytes before read.
2237  **/
2238 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2239                                          u16 *data)
2240 {
2241         /* Must convert offset into bytes. */
2242         offset <<= 1;
2243
2244         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2245 }
2246
2247 /**
2248  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2249  *  @hw: pointer to the HW structure
2250  *  @offset: The offset of the byte to read.
2251  *  @data: Pointer to a byte to store the value read.
2252  *
2253  *  Reads a single byte from the NVM using the flash access registers.
2254  **/
2255 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2256                                          u8 *data)
2257 {
2258         s32 ret_val;
2259         u16 word = 0;
2260
2261         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2262         if (ret_val)
2263                 return ret_val;
2264
2265         *data = (u8)word;
2266
2267         return 0;
2268 }
2269
2270 /**
2271  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2272  *  @hw: pointer to the HW structure
2273  *  @offset: The offset (in bytes) of the byte or word to read.
2274  *  @size: Size of data to read, 1=byte 2=word
2275  *  @data: Pointer to the word to store the value read.
2276  *
2277  *  Reads a byte or word from the NVM using the flash access registers.
2278  **/
2279 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2280                                          u8 size, u16 *data)
2281 {
2282         union ich8_hws_flash_status hsfsts;
2283         union ich8_hws_flash_ctrl hsflctl;
2284         u32 flash_linear_addr;
2285         u32 flash_data = 0;
2286         s32 ret_val = -E1000_ERR_NVM;
2287         u8 count = 0;
2288
2289         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2290                 return -E1000_ERR_NVM;
2291
2292         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2293                             hw->nvm.flash_base_addr;
2294
2295         do {
2296                 udelay(1);
2297                 /* Steps */
2298                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2299                 if (ret_val != 0)
2300                         break;
2301
2302                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2303                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2304                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2305                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2306                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2307
2308                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2309
2310                 ret_val = e1000_flash_cycle_ich8lan(hw,
2311                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2312
2313                 /*
2314                  * Check if FCERR is set to 1, if set to 1, clear it
2315                  * and try the whole sequence a few more times, else
2316                  * read in (shift in) the Flash Data0, the order is
2317                  * least significant byte first msb to lsb
2318                  */
2319                 if (ret_val == 0) {
2320                         flash_data = er32flash(ICH_FLASH_FDATA0);
2321                         if (size == 1)
2322                                 *data = (u8)(flash_data & 0x000000FF);
2323                         else if (size == 2)
2324                                 *data = (u16)(flash_data & 0x0000FFFF);
2325                         break;
2326                 } else {
2327                         /*
2328                          * If we've gotten here, then things are probably
2329                          * completely hosed, but if the error condition is
2330                          * detected, it won't hurt to give it another try...
2331                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2332                          */
2333                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2334                         if (hsfsts.hsf_status.flcerr == 1) {
2335                                 /* Repeat for some time before giving up. */
2336                                 continue;
2337                         } else if (hsfsts.hsf_status.flcdone == 0) {
2338                                 e_dbg("Timeout error - flash cycle "
2339                                          "did not complete.\n");
2340                                 break;
2341                         }
2342                 }
2343         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2344
2345         return ret_val;
2346 }
2347
2348 /**
2349  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2350  *  @hw: pointer to the HW structure
2351  *  @offset: The offset (in bytes) of the word(s) to write.
2352  *  @words: Size of data to write in words
2353  *  @data: Pointer to the word(s) to write at offset.
2354  *
2355  *  Writes a byte or word to the NVM using the flash access registers.
2356  **/
2357 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2358                                    u16 *data)
2359 {
2360         struct e1000_nvm_info *nvm = &hw->nvm;
2361         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2362         u16 i;
2363
2364         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2365             (words == 0)) {
2366                 e_dbg("nvm parameter(s) out of bounds\n");
2367                 return -E1000_ERR_NVM;
2368         }
2369
2370         nvm->ops.acquire(hw);
2371
2372         for (i = 0; i < words; i++) {
2373                 dev_spec->shadow_ram[offset+i].modified = true;
2374                 dev_spec->shadow_ram[offset+i].value = data[i];
2375         }
2376
2377         nvm->ops.release(hw);
2378
2379         return 0;
2380 }
2381
2382 /**
2383  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2384  *  @hw: pointer to the HW structure
2385  *
2386  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2387  *  which writes the checksum to the shadow ram.  The changes in the shadow
2388  *  ram are then committed to the EEPROM by processing each bank at a time
2389  *  checking for the modified bit and writing only the pending changes.
2390  *  After a successful commit, the shadow ram is cleared and is ready for
2391  *  future writes.
2392  **/
2393 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2394 {
2395         struct e1000_nvm_info *nvm = &hw->nvm;
2396         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2397         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2398         s32 ret_val;
2399         u16 data;
2400
2401         ret_val = e1000e_update_nvm_checksum_generic(hw);
2402         if (ret_val)
2403                 goto out;
2404
2405         if (nvm->type != e1000_nvm_flash_sw)
2406                 goto out;
2407
2408         nvm->ops.acquire(hw);
2409
2410         /*
2411          * We're writing to the opposite bank so if we're on bank 1,
2412          * write to bank 0 etc.  We also need to erase the segment that
2413          * is going to be written
2414          */
2415         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2416         if (ret_val) {
2417                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2418                 bank = 0;
2419         }
2420
2421         if (bank == 0) {
2422                 new_bank_offset = nvm->flash_bank_size;
2423                 old_bank_offset = 0;
2424                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2425                 if (ret_val)
2426                         goto release;
2427         } else {
2428                 old_bank_offset = nvm->flash_bank_size;
2429                 new_bank_offset = 0;
2430                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2431                 if (ret_val)
2432                         goto release;
2433         }
2434
2435         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2436                 /*
2437                  * Determine whether to write the value stored
2438                  * in the other NVM bank or a modified value stored
2439                  * in the shadow RAM
2440                  */
2441                 if (dev_spec->shadow_ram[i].modified) {
2442                         data = dev_spec->shadow_ram[i].value;
2443                 } else {
2444                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2445                                                                 old_bank_offset,
2446                                                                 &data);
2447                         if (ret_val)
2448                                 break;
2449                 }
2450
2451                 /*
2452                  * If the word is 0x13, then make sure the signature bits
2453                  * (15:14) are 11b until the commit has completed.
2454                  * This will allow us to write 10b which indicates the
2455                  * signature is valid.  We want to do this after the write
2456                  * has completed so that we don't mark the segment valid
2457                  * while the write is still in progress
2458                  */
2459                 if (i == E1000_ICH_NVM_SIG_WORD)
2460                         data |= E1000_ICH_NVM_SIG_MASK;
2461
2462                 /* Convert offset to bytes. */
2463                 act_offset = (i + new_bank_offset) << 1;
2464
2465                 udelay(100);
2466                 /* Write the bytes to the new bank. */
2467                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2468                                                                act_offset,
2469                                                                (u8)data);
2470                 if (ret_val)
2471                         break;
2472
2473                 udelay(100);
2474                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2475                                                           act_offset + 1,
2476                                                           (u8)(data >> 8));
2477                 if (ret_val)
2478                         break;
2479         }
2480
2481         /*
2482          * Don't bother writing the segment valid bits if sector
2483          * programming failed.
2484          */
2485         if (ret_val) {
2486                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2487                 e_dbg("Flash commit failed.\n");
2488                 goto release;
2489         }
2490
2491         /*
2492          * Finally validate the new segment by setting bit 15:14
2493          * to 10b in word 0x13 , this can be done without an
2494          * erase as well since these bits are 11 to start with
2495          * and we need to change bit 14 to 0b
2496          */
2497         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2498         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2499         if (ret_val)
2500                 goto release;
2501
2502         data &= 0xBFFF;
2503         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2504                                                        act_offset * 2 + 1,
2505                                                        (u8)(data >> 8));
2506         if (ret_val)
2507                 goto release;
2508
2509         /*
2510          * And invalidate the previously valid segment by setting
2511          * its signature word (0x13) high_byte to 0b. This can be
2512          * done without an erase because flash erase sets all bits
2513          * to 1's. We can write 1's to 0's without an erase
2514          */
2515         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2516         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2517         if (ret_val)
2518                 goto release;
2519
2520         /* Great!  Everything worked, we can now clear the cached entries. */
2521         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2522                 dev_spec->shadow_ram[i].modified = false;
2523                 dev_spec->shadow_ram[i].value = 0xFFFF;
2524         }
2525
2526 release:
2527         nvm->ops.release(hw);
2528
2529         /*
2530          * Reload the EEPROM, or else modifications will not appear
2531          * until after the next adapter reset.
2532          */
2533         if (!ret_val) {
2534                 e1000e_reload_nvm(hw);
2535                 usleep_range(10000, 20000);
2536         }
2537
2538 out:
2539         if (ret_val)
2540                 e_dbg("NVM update error: %d\n", ret_val);
2541
2542         return ret_val;
2543 }
2544
2545 /**
2546  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2547  *  @hw: pointer to the HW structure
2548  *
2549  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2550  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2551  *  calculated, in which case we need to calculate the checksum and set bit 6.
2552  **/
2553 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2554 {
2555         s32 ret_val;
2556         u16 data;
2557
2558         /*
2559          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2560          * needs to be fixed.  This bit is an indication that the NVM
2561          * was prepared by OEM software and did not calculate the
2562          * checksum...a likely scenario.
2563          */
2564         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2565         if (ret_val)
2566                 return ret_val;
2567
2568         if ((data & 0x40) == 0) {
2569                 data |= 0x40;
2570                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2571                 if (ret_val)
2572                         return ret_val;
2573                 ret_val = e1000e_update_nvm_checksum(hw);
2574                 if (ret_val)
2575                         return ret_val;
2576         }
2577
2578         return e1000e_validate_nvm_checksum_generic(hw);
2579 }
2580
2581 /**
2582  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2583  *  @hw: pointer to the HW structure
2584  *
2585  *  To prevent malicious write/erase of the NVM, set it to be read-only
2586  *  so that the hardware ignores all write/erase cycles of the NVM via
2587  *  the flash control registers.  The shadow-ram copy of the NVM will
2588  *  still be updated, however any updates to this copy will not stick
2589  *  across driver reloads.
2590  **/
2591 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2592 {
2593         struct e1000_nvm_info *nvm = &hw->nvm;
2594         union ich8_flash_protected_range pr0;
2595         union ich8_hws_flash_status hsfsts;
2596         u32 gfpreg;
2597
2598         nvm->ops.acquire(hw);
2599
2600         gfpreg = er32flash(ICH_FLASH_GFPREG);
2601
2602         /* Write-protect GbE Sector of NVM */
2603         pr0.regval = er32flash(ICH_FLASH_PR0);
2604         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2605         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2606         pr0.range.wpe = true;
2607         ew32flash(ICH_FLASH_PR0, pr0.regval);
2608
2609         /*
2610          * Lock down a subset of GbE Flash Control Registers, e.g.
2611          * PR0 to prevent the write-protection from being lifted.
2612          * Once FLOCKDN is set, the registers protected by it cannot
2613          * be written until FLOCKDN is cleared by a hardware reset.
2614          */
2615         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2616         hsfsts.hsf_status.flockdn = true;
2617         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2618
2619         nvm->ops.release(hw);
2620 }
2621
2622 /**
2623  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2624  *  @hw: pointer to the HW structure
2625  *  @offset: The offset (in bytes) of the byte/word to read.
2626  *  @size: Size of data to read, 1=byte 2=word
2627  *  @data: The byte(s) to write to the NVM.
2628  *
2629  *  Writes one/two bytes to the NVM using the flash access registers.
2630  **/
2631 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2632                                           u8 size, u16 data)
2633 {
2634         union ich8_hws_flash_status hsfsts;
2635         union ich8_hws_flash_ctrl hsflctl;
2636         u32 flash_linear_addr;
2637         u32 flash_data = 0;
2638         s32 ret_val;
2639         u8 count = 0;
2640
2641         if (size < 1 || size > 2 || data > size * 0xff ||
2642             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2643                 return -E1000_ERR_NVM;
2644
2645         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2646                             hw->nvm.flash_base_addr;
2647
2648         do {
2649                 udelay(1);
2650                 /* Steps */
2651                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2652                 if (ret_val)
2653                         break;
2654
2655                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2656                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2657                 hsflctl.hsf_ctrl.fldbcount = size -1;
2658                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2659                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2660
2661                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2662
2663                 if (size == 1)
2664                         flash_data = (u32)data & 0x00FF;
2665                 else
2666                         flash_data = (u32)data;
2667
2668                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2669
2670                 /*
2671                  * check if FCERR is set to 1 , if set to 1, clear it
2672                  * and try the whole sequence a few more times else done
2673                  */
2674                 ret_val = e1000_flash_cycle_ich8lan(hw,
2675                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2676                 if (!ret_val)
2677                         break;
2678
2679                 /*
2680                  * If we're here, then things are most likely
2681                  * completely hosed, but if the error condition
2682                  * is detected, it won't hurt to give it another
2683                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2684                  */
2685                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2686                 if (hsfsts.hsf_status.flcerr == 1)
2687                         /* Repeat for some time before giving up. */
2688                         continue;
2689                 if (hsfsts.hsf_status.flcdone == 0) {
2690                         e_dbg("Timeout error - flash cycle "
2691                                  "did not complete.");
2692                         break;
2693                 }
2694         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2695
2696         return ret_val;
2697 }
2698
2699 /**
2700  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2701  *  @hw: pointer to the HW structure
2702  *  @offset: The index of the byte to read.
2703  *  @data: The byte to write to the NVM.
2704  *
2705  *  Writes a single byte to the NVM using the flash access registers.
2706  **/
2707 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2708                                           u8 data)
2709 {
2710         u16 word = (u16)data;
2711
2712         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2713 }
2714
2715 /**
2716  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2717  *  @hw: pointer to the HW structure
2718  *  @offset: The offset of the byte to write.
2719  *  @byte: The byte to write to the NVM.
2720  *
2721  *  Writes a single byte to the NVM using the flash access registers.
2722  *  Goes through a retry algorithm before giving up.
2723  **/
2724 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2725                                                 u32 offset, u8 byte)
2726 {
2727         s32 ret_val;
2728         u16 program_retries;
2729
2730         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2731         if (!ret_val)
2732                 return ret_val;
2733
2734         for (program_retries = 0; program_retries < 100; program_retries++) {
2735                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2736                 udelay(100);
2737                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2738                 if (!ret_val)
2739                         break;
2740         }
2741         if (program_retries == 100)
2742                 return -E1000_ERR_NVM;
2743
2744         return 0;
2745 }
2746
2747 /**
2748  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2749  *  @hw: pointer to the HW structure
2750  *  @bank: 0 for first bank, 1 for second bank, etc.
2751  *
2752  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2753  *  bank N is 4096 * N + flash_reg_addr.
2754  **/
2755 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2756 {
2757         struct e1000_nvm_info *nvm = &hw->nvm;
2758         union ich8_hws_flash_status hsfsts;
2759         union ich8_hws_flash_ctrl hsflctl;
2760         u32 flash_linear_addr;
2761         /* bank size is in 16bit words - adjust to bytes */
2762         u32 flash_bank_size = nvm->flash_bank_size * 2;
2763         s32 ret_val;
2764         s32 count = 0;
2765         s32 j, iteration, sector_size;
2766
2767         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2768
2769         /*
2770          * Determine HW Sector size: Read BERASE bits of hw flash status
2771          * register
2772          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2773          *     consecutive sectors.  The start index for the nth Hw sector
2774          *     can be calculated as = bank * 4096 + n * 256
2775          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2776          *     The start index for the nth Hw sector can be calculated
2777          *     as = bank * 4096
2778          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2779          *     (ich9 only, otherwise error condition)
2780          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2781          */
2782         switch (hsfsts.hsf_status.berasesz) {
2783         case 0:
2784                 /* Hw sector size 256 */
2785                 sector_size = ICH_FLASH_SEG_SIZE_256;
2786                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2787                 break;
2788         case 1:
2789                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2790                 iteration = 1;
2791                 break;
2792         case 2:
2793                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2794                 iteration = 1;
2795                 break;
2796         case 3:
2797                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2798                 iteration = 1;
2799                 break;
2800         default:
2801                 return -E1000_ERR_NVM;
2802         }
2803
2804         /* Start with the base address, then add the sector offset. */
2805         flash_linear_addr = hw->nvm.flash_base_addr;
2806         flash_linear_addr += (bank) ? flash_bank_size : 0;
2807
2808         for (j = 0; j < iteration ; j++) {
2809                 do {
2810                         /* Steps */
2811                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2812                         if (ret_val)
2813                                 return ret_val;
2814
2815                         /*
2816                          * Write a value 11 (block Erase) in Flash
2817                          * Cycle field in hw flash control
2818                          */
2819                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2820                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2821                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2822
2823                         /*
2824                          * Write the last 24 bits of an index within the
2825                          * block into Flash Linear address field in Flash
2826                          * Address.
2827                          */
2828                         flash_linear_addr += (j * sector_size);
2829                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2830
2831                         ret_val = e1000_flash_cycle_ich8lan(hw,
2832                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2833                         if (ret_val == 0)
2834                                 break;
2835
2836                         /*
2837                          * Check if FCERR is set to 1.  If 1,
2838                          * clear it and try the whole sequence
2839                          * a few more times else Done
2840                          */
2841                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2842                         if (hsfsts.hsf_status.flcerr == 1)
2843                                 /* repeat for some time before giving up */
2844                                 continue;
2845                         else if (hsfsts.hsf_status.flcdone == 0)
2846                                 return ret_val;
2847                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2848         }
2849
2850         return 0;
2851 }
2852
2853 /**
2854  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2855  *  @hw: pointer to the HW structure
2856  *  @data: Pointer to the LED settings
2857  *
2858  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2859  *  settings is all 0's or F's, set the LED default to a valid LED default
2860  *  setting.
2861  **/
2862 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2863 {
2864         s32 ret_val;
2865
2866         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2867         if (ret_val) {
2868                 e_dbg("NVM Read Error\n");
2869                 return ret_val;
2870         }
2871
2872         if (*data == ID_LED_RESERVED_0000 ||
2873             *data == ID_LED_RESERVED_FFFF)
2874                 *data = ID_LED_DEFAULT_ICH8LAN;
2875
2876         return 0;
2877 }
2878
2879 /**
2880  *  e1000_id_led_init_pchlan - store LED configurations
2881  *  @hw: pointer to the HW structure
2882  *
2883  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2884  *  the PHY LED configuration register.
2885  *
2886  *  PCH also does not have an "always on" or "always off" mode which
2887  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2888  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2889  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2890  *  link based on logic in e1000_led_[on|off]_pchlan().
2891  **/
2892 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2893 {
2894         struct e1000_mac_info *mac = &hw->mac;
2895         s32 ret_val;
2896         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2897         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2898         u16 data, i, temp, shift;
2899
2900         /* Get default ID LED modes */
2901         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2902         if (ret_val)
2903                 goto out;
2904
2905         mac->ledctl_default = er32(LEDCTL);
2906         mac->ledctl_mode1 = mac->ledctl_default;
2907         mac->ledctl_mode2 = mac->ledctl_default;
2908
2909         for (i = 0; i < 4; i++) {
2910                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2911                 shift = (i * 5);
2912                 switch (temp) {
2913                 case ID_LED_ON1_DEF2:
2914                 case ID_LED_ON1_ON2:
2915                 case ID_LED_ON1_OFF2:
2916                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2917                         mac->ledctl_mode1 |= (ledctl_on << shift);
2918                         break;
2919                 case ID_LED_OFF1_DEF2:
2920                 case ID_LED_OFF1_ON2:
2921                 case ID_LED_OFF1_OFF2:
2922                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2923                         mac->ledctl_mode1 |= (ledctl_off << shift);
2924                         break;
2925                 default:
2926                         /* Do nothing */
2927                         break;
2928                 }
2929                 switch (temp) {
2930                 case ID_LED_DEF1_ON2:
2931                 case ID_LED_ON1_ON2:
2932                 case ID_LED_OFF1_ON2:
2933                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2934                         mac->ledctl_mode2 |= (ledctl_on << shift);
2935                         break;
2936                 case ID_LED_DEF1_OFF2:
2937                 case ID_LED_ON1_OFF2:
2938                 case ID_LED_OFF1_OFF2:
2939                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2940                         mac->ledctl_mode2 |= (ledctl_off << shift);
2941                         break;
2942                 default:
2943                         /* Do nothing */
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         return ret_val;
2950 }
2951
2952 /**
2953  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2954  *  @hw: pointer to the HW structure
2955  *
2956  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2957  *  register, so the the bus width is hard coded.
2958  **/
2959 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2960 {
2961         struct e1000_bus_info *bus = &hw->bus;
2962         s32 ret_val;
2963
2964         ret_val = e1000e_get_bus_info_pcie(hw);
2965
2966         /*
2967          * ICH devices are "PCI Express"-ish.  They have
2968          * a configuration space, but do not contain
2969          * PCI Express Capability registers, so bus width
2970          * must be hardcoded.
2971          */
2972         if (bus->width == e1000_bus_width_unknown)
2973                 bus->width = e1000_bus_width_pcie_x1;
2974
2975         return ret_val;
2976 }
2977
2978 /**
2979  *  e1000_reset_hw_ich8lan - Reset the hardware
2980  *  @hw: pointer to the HW structure
2981  *
2982  *  Does a full reset of the hardware which includes a reset of the PHY and
2983  *  MAC.
2984  **/
2985 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2986 {
2987         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2988         u16 reg;
2989         u32 ctrl, kab;
2990         s32 ret_val;
2991
2992         /*
2993          * Prevent the PCI-E bus from sticking if there is no TLP connection
2994          * on the last TLP read/write transaction when MAC is reset.
2995          */
2996         ret_val = e1000e_disable_pcie_master(hw);
2997         if (ret_val)
2998                 e_dbg("PCI-E Master disable polling has failed.\n");
2999
3000         e_dbg("Masking off all interrupts\n");
3001         ew32(IMC, 0xffffffff);
3002
3003         /*
3004          * Disable the Transmit and Receive units.  Then delay to allow
3005          * any pending transactions to complete before we hit the MAC
3006          * with the global reset.
3007          */
3008         ew32(RCTL, 0);
3009         ew32(TCTL, E1000_TCTL_PSP);
3010         e1e_flush();
3011
3012         usleep_range(10000, 20000);
3013
3014         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3015         if (hw->mac.type == e1000_ich8lan) {
3016                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3017                 ew32(PBA, E1000_PBA_8K);
3018                 /* Set Packet Buffer Size to 16k. */
3019                 ew32(PBS, E1000_PBS_16K);
3020         }
3021
3022         if (hw->mac.type == e1000_pchlan) {
3023                 /* Save the NVM K1 bit setting*/
3024                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3025                 if (ret_val)
3026                         return ret_val;
3027
3028                 if (reg & E1000_NVM_K1_ENABLE)
3029                         dev_spec->nvm_k1_enabled = true;
3030                 else
3031                         dev_spec->nvm_k1_enabled = false;
3032         }
3033
3034         ctrl = er32(CTRL);
3035
3036         if (!e1000_check_reset_block(hw)) {
3037                 /*
3038                  * Full-chip reset requires MAC and PHY reset at the same
3039                  * time to make sure the interface between MAC and the
3040                  * external PHY is reset.
3041                  */
3042                 ctrl |= E1000_CTRL_PHY_RST;
3043
3044                 /*
3045                  * Gate automatic PHY configuration by hardware on
3046                  * non-managed 82579
3047                  */
3048                 if ((hw->mac.type == e1000_pch2lan) &&
3049                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3050                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3051         }
3052         ret_val = e1000_acquire_swflag_ich8lan(hw);
3053         e_dbg("Issuing a global reset to ich8lan\n");
3054         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3055         msleep(20);
3056
3057         if (!ret_val)
3058                 e1000_release_swflag_ich8lan(hw);
3059
3060         if (ctrl & E1000_CTRL_PHY_RST) {
3061                 ret_val = hw->phy.ops.get_cfg_done(hw);
3062                 if (ret_val)
3063                         goto out;
3064
3065                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3066                 if (ret_val)
3067                         goto out;
3068         }
3069
3070         /*
3071          * For PCH, this write will make sure that any noise
3072          * will be detected as a CRC error and be dropped rather than show up
3073          * as a bad packet to the DMA engine.
3074          */
3075         if (hw->mac.type == e1000_pchlan)
3076                 ew32(CRC_OFFSET, 0x65656565);
3077
3078         ew32(IMC, 0xffffffff);
3079         er32(ICR);
3080
3081         kab = er32(KABGTXD);
3082         kab |= E1000_KABGTXD_BGSQLBIAS;
3083         ew32(KABGTXD, kab);
3084
3085 out:
3086         return ret_val;
3087 }
3088
3089 /**
3090  *  e1000_init_hw_ich8lan - Initialize the hardware
3091  *  @hw: pointer to the HW structure
3092  *
3093  *  Prepares the hardware for transmit and receive by doing the following:
3094  *   - initialize hardware bits
3095  *   - initialize LED identification
3096  *   - setup receive address registers
3097  *   - setup flow control
3098  *   - setup transmit descriptors
3099  *   - clear statistics
3100  **/
3101 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3102 {
3103         struct e1000_mac_info *mac = &hw->mac;
3104         u32 ctrl_ext, txdctl, snoop;
3105         s32 ret_val;
3106         u16 i;
3107
3108         e1000_initialize_hw_bits_ich8lan(hw);
3109
3110         /* Initialize identification LED */
3111         ret_val = mac->ops.id_led_init(hw);
3112         if (ret_val)
3113                 e_dbg("Error initializing identification LED\n");
3114                 /* This is not fatal and we should not stop init due to this */
3115
3116         /* Setup the receive address. */
3117         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3118
3119         /* Zero out the Multicast HASH table */
3120         e_dbg("Zeroing the MTA\n");
3121         for (i = 0; i < mac->mta_reg_count; i++)
3122                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3123
3124         /*
3125          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3126          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
3127          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3128          */
3129         if (hw->phy.type == e1000_phy_82578) {
3130                 e1e_rphy(hw, BM_WUC, &i);
3131                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3132                 if (ret_val)
3133                         return ret_val;
3134         }
3135
3136         /* Setup link and flow control */
3137         ret_val = e1000_setup_link_ich8lan(hw);
3138
3139         /* Set the transmit descriptor write-back policy for both queues */
3140         txdctl = er32(TXDCTL(0));
3141         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3142                  E1000_TXDCTL_FULL_TX_DESC_WB;
3143         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3144                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3145         ew32(TXDCTL(0), txdctl);
3146         txdctl = er32(TXDCTL(1));
3147         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3148                  E1000_TXDCTL_FULL_TX_DESC_WB;
3149         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3150                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3151         ew32(TXDCTL(1), txdctl);
3152
3153         /*
3154          * ICH8 has opposite polarity of no_snoop bits.
3155          * By default, we should use snoop behavior.
3156          */
3157         if (mac->type == e1000_ich8lan)
3158                 snoop = PCIE_ICH8_SNOOP_ALL;
3159         else
3160                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3161         e1000e_set_pcie_no_snoop(hw, snoop);
3162
3163         ctrl_ext = er32(CTRL_EXT);
3164         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3165         ew32(CTRL_EXT, ctrl_ext);
3166
3167         /*
3168          * Clear all of the statistics registers (clear on read).  It is
3169          * important that we do this after we have tried to establish link
3170          * because the symbol error count will increment wildly if there
3171          * is no link.
3172          */
3173         e1000_clear_hw_cntrs_ich8lan(hw);
3174
3175         return 0;
3176 }
3177 /**
3178  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3179  *  @hw: pointer to the HW structure
3180  *
3181  *  Sets/Clears required hardware bits necessary for correctly setting up the
3182  *  hardware for transmit and receive.
3183  **/
3184 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3185 {
3186         u32 reg;
3187
3188         /* Extended Device Control */
3189         reg = er32(CTRL_EXT);
3190         reg |= (1 << 22);
3191         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3192         if (hw->mac.type >= e1000_pchlan)
3193                 reg |= E1000_CTRL_EXT_PHYPDEN;
3194         ew32(CTRL_EXT, reg);
3195
3196         /* Transmit Descriptor Control 0 */
3197         reg = er32(TXDCTL(0));
3198         reg |= (1 << 22);
3199         ew32(TXDCTL(0), reg);
3200
3201         /* Transmit Descriptor Control 1 */
3202         reg = er32(TXDCTL(1));
3203         reg |= (1 << 22);
3204         ew32(TXDCTL(1), reg);
3205
3206         /* Transmit Arbitration Control 0 */
3207         reg = er32(TARC(0));
3208         if (hw->mac.type == e1000_ich8lan)
3209                 reg |= (1 << 28) | (1 << 29);
3210         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3211         ew32(TARC(0), reg);
3212
3213         /* Transmit Arbitration Control 1 */
3214         reg = er32(TARC(1));
3215         if (er32(TCTL) & E1000_TCTL_MULR)
3216                 reg &= ~(1 << 28);
3217         else
3218                 reg |= (1 << 28);
3219         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3220         ew32(TARC(1), reg);
3221
3222         /* Device Status */
3223         if (hw->mac.type == e1000_ich8lan) {
3224                 reg = er32(STATUS);
3225                 reg &= ~(1 << 31);
3226                 ew32(STATUS, reg);
3227         }
3228
3229         /*
3230          * work-around descriptor data corruption issue during nfs v2 udp
3231          * traffic, just disable the nfs filtering capability
3232          */
3233         reg = er32(RFCTL);
3234         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3235         ew32(RFCTL, reg);
3236 }
3237
3238 /**
3239  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3240  *  @hw: pointer to the HW structure
3241  *
3242  *  Determines which flow control settings to use, then configures flow
3243  *  control.  Calls the appropriate media-specific link configuration
3244  *  function.  Assuming the adapter has a valid link partner, a valid link
3245  *  should be established.  Assumes the hardware has previously been reset
3246  *  and the transmitter and receiver are not enabled.
3247  **/
3248 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3249 {
3250         s32 ret_val;
3251
3252         if (e1000_check_reset_block(hw))
3253                 return 0;
3254
3255         /*
3256          * ICH parts do not have a word in the NVM to determine
3257          * the default flow control setting, so we explicitly
3258          * set it to full.
3259          */
3260         if (hw->fc.requested_mode == e1000_fc_default) {
3261                 /* Workaround h/w hang when Tx flow control enabled */
3262                 if (hw->mac.type == e1000_pchlan)
3263                         hw->fc.requested_mode = e1000_fc_rx_pause;
3264                 else
3265                         hw->fc.requested_mode = e1000_fc_full;
3266         }
3267
3268         /*
3269          * Save off the requested flow control mode for use later.  Depending
3270          * on the link partner's capabilities, we may or may not use this mode.
3271          */
3272         hw->fc.current_mode = hw->fc.requested_mode;
3273
3274         e_dbg("After fix-ups FlowControl is now = %x\n",
3275                 hw->fc.current_mode);
3276
3277         /* Continue to configure the copper link. */
3278         ret_val = e1000_setup_copper_link_ich8lan(hw);
3279         if (ret_val)
3280                 return ret_val;
3281
3282         ew32(FCTTV, hw->fc.pause_time);
3283         if ((hw->phy.type == e1000_phy_82578) ||
3284             (hw->phy.type == e1000_phy_82579) ||
3285             (hw->phy.type == e1000_phy_82577)) {
3286                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3287
3288                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3289                                    hw->fc.pause_time);
3290                 if (ret_val)
3291                         return ret_val;
3292         }
3293
3294         return e1000e_set_fc_watermarks(hw);
3295 }
3296
3297 /**
3298  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3299  *  @hw: pointer to the HW structure
3300  *
3301  *  Configures the kumeran interface to the PHY to wait the appropriate time
3302  *  when polling the PHY, then call the generic setup_copper_link to finish
3303  *  configuring the copper link.
3304  **/
3305 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3306 {
3307         u32 ctrl;
3308         s32 ret_val;
3309         u16 reg_data;
3310
3311         ctrl = er32(CTRL);
3312         ctrl |= E1000_CTRL_SLU;
3313         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3314         ew32(CTRL, ctrl);
3315
3316         /*
3317          * Set the mac to wait the maximum time between each iteration
3318          * and increase the max iterations when polling the phy;
3319          * this fixes erroneous timeouts at 10Mbps.
3320          */
3321         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3322         if (ret_val)
3323                 return ret_val;
3324         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3325                                        &reg_data);
3326         if (ret_val)
3327                 return ret_val;
3328         reg_data |= 0x3F;
3329         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3330                                         reg_data);
3331         if (ret_val)
3332                 return ret_val;
3333
3334         switch (hw->phy.type) {
3335         case e1000_phy_igp_3:
3336                 ret_val = e1000e_copper_link_setup_igp(hw);
3337                 if (ret_val)
3338                         return ret_val;
3339                 break;
3340         case e1000_phy_bm:
3341         case e1000_phy_82578:
3342                 ret_val = e1000e_copper_link_setup_m88(hw);
3343                 if (ret_val)
3344                         return ret_val;
3345                 break;
3346         case e1000_phy_82577:
3347         case e1000_phy_82579:
3348                 ret_val = e1000_copper_link_setup_82577(hw);
3349                 if (ret_val)
3350                         return ret_val;
3351                 break;
3352         case e1000_phy_ife:
3353                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3354                 if (ret_val)
3355                         return ret_val;
3356
3357                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3358
3359                 switch (hw->phy.mdix) {
3360                 case 1:
3361                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3362                         break;
3363                 case 2:
3364                         reg_data |= IFE_PMC_FORCE_MDIX;
3365                         break;
3366                 case 0:
3367                 default:
3368                         reg_data |= IFE_PMC_AUTO_MDIX;
3369                         break;
3370                 }
3371                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3372                 if (ret_val)
3373                         return ret_val;
3374                 break;
3375         default:
3376                 break;
3377         }
3378         return e1000e_setup_copper_link(hw);
3379 }
3380
3381 /**
3382  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3383  *  @hw: pointer to the HW structure
3384  *  @speed: pointer to store current link speed
3385  *  @duplex: pointer to store the current link duplex
3386  *
3387  *  Calls the generic get_speed_and_duplex to retrieve the current link
3388  *  information and then calls the Kumeran lock loss workaround for links at
3389  *  gigabit speeds.
3390  **/
3391 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3392                                           u16 *duplex)
3393 {
3394         s32 ret_val;
3395
3396         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3397         if (ret_val)
3398                 return ret_val;
3399
3400         if ((hw->mac.type == e1000_ich8lan) &&
3401             (hw->phy.type == e1000_phy_igp_3) &&
3402             (*speed == SPEED_1000)) {
3403                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3404         }
3405
3406         return ret_val;
3407 }
3408
3409 /**
3410  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3411  *  @hw: pointer to the HW structure
3412  *
3413  *  Work-around for 82566 Kumeran PCS lock loss:
3414  *  On link status change (i.e. PCI reset, speed change) and link is up and
3415  *  speed is gigabit-
3416  *    0) if workaround is optionally disabled do nothing
3417  *    1) wait 1ms for Kumeran link to come up
3418  *    2) check Kumeran Diagnostic register PCS lock loss bit
3419  *    3) if not set the link is locked (all is good), otherwise...
3420  *    4) reset the PHY
3421  *    5) repeat up to 10 times
3422  *  Note: this is only called for IGP3 copper when speed is 1gb.
3423  **/
3424 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3425 {
3426         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3427         u32 phy_ctrl;
3428         s32 ret_val;
3429         u16 i, data;
3430         bool link;
3431
3432         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3433                 return 0;
3434
3435         /*
3436          * Make sure link is up before proceeding.  If not just return.
3437          * Attempting this while link is negotiating fouled up link
3438          * stability
3439          */
3440         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3441         if (!link)
3442                 return 0;
3443
3444         for (i = 0; i < 10; i++) {
3445                 /* read once to clear */
3446                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3447                 if (ret_val)
3448                         return ret_val;
3449                 /* and again to get new status */
3450                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3451                 if (ret_val)
3452                         return ret_val;
3453
3454                 /* check for PCS lock */
3455                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3456                         return 0;
3457
3458                 /* Issue PHY reset */
3459                 e1000_phy_hw_reset(hw);
3460                 mdelay(5);
3461         }
3462         /* Disable GigE link negotiation */
3463         phy_ctrl = er32(PHY_CTRL);
3464         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3465                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3466         ew32(PHY_CTRL, phy_ctrl);
3467
3468         /*
3469          * Call gig speed drop workaround on Gig disable before accessing
3470          * any PHY registers
3471          */
3472         e1000e_gig_downshift_workaround_ich8lan(hw);
3473
3474         /* unable to acquire PCS lock */
3475         return -E1000_ERR_PHY;
3476 }
3477
3478 /**
3479  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3480  *  @hw: pointer to the HW structure
3481  *  @state: boolean value used to set the current Kumeran workaround state
3482  *
3483  *  If ICH8, set the current Kumeran workaround state (enabled - true
3484  *  /disabled - false).
3485  **/
3486 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3487                                                  bool state)
3488 {
3489         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3490
3491         if (hw->mac.type != e1000_ich8lan) {
3492                 e_dbg("Workaround applies to ICH8 only.\n");
3493                 return;
3494         }
3495
3496         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3497 }
3498
3499 /**
3500  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3501  *  @hw: pointer to the HW structure
3502  *
3503  *  Workaround for 82566 power-down on D3 entry:
3504  *    1) disable gigabit link
3505  *    2) write VR power-down enable
3506  *    3) read it back
3507  *  Continue if successful, else issue LCD reset and repeat
3508  **/
3509 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3510 {
3511         u32 reg;
3512         u16 data;
3513         u8  retry = 0;
3514
3515         if (hw->phy.type != e1000_phy_igp_3)
3516                 return;
3517
3518         /* Try the workaround twice (if needed) */
3519         do {
3520                 /* Disable link */
3521                 reg = er32(PHY_CTRL);
3522                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3523                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3524                 ew32(PHY_CTRL, reg);
3525
3526                 /*
3527                  * Call gig speed drop workaround on Gig disable before
3528                  * accessing any PHY registers
3529                  */
3530                 if (hw->mac.type == e1000_ich8lan)
3531                         e1000e_gig_downshift_workaround_ich8lan(hw);
3532
3533                 /* Write VR power-down enable */
3534                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3535                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3536                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3537
3538                 /* Read it back and test */
3539                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3540                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3541                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3542                         break;
3543
3544                 /* Issue PHY reset and repeat at most one more time */
3545                 reg = er32(CTRL);
3546                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3547                 retry++;
3548         } while (retry);
3549 }
3550
3551 /**
3552  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3553  *  @hw: pointer to the HW structure
3554  *
3555  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3556  *  LPLU, Gig disable, MDIC PHY reset):
3557  *    1) Set Kumeran Near-end loopback
3558  *    2) Clear Kumeran Near-end loopback
3559  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3560  **/
3561 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3562 {
3563         s32 ret_val;
3564         u16 reg_data;
3565
3566         if ((hw->mac.type != e1000_ich8lan) ||
3567             (hw->phy.type != e1000_phy_igp_3))
3568                 return;
3569
3570         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3571                                       &reg_data);
3572         if (ret_val)
3573                 return;
3574         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3575         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3576                                        reg_data);
3577         if (ret_val)
3578                 return;
3579         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3580         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3581                                        reg_data);
3582 }
3583
3584 /**
3585  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3586  *  @hw: pointer to the HW structure
3587  *
3588  *  During S0 to Sx transition, it is possible the link remains at gig
3589  *  instead of negotiating to a lower speed.  Before going to Sx, set
3590  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3591  *  to a lower speed.
3592  *
3593  *  Should only be called for applicable parts.
3594  **/
3595 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3596 {
3597         u32 phy_ctrl;
3598         s32 ret_val;
3599
3600         phy_ctrl = er32(PHY_CTRL);
3601         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3602         ew32(PHY_CTRL, phy_ctrl);
3603
3604         if (hw->mac.type >= e1000_pchlan) {
3605                 e1000_oem_bits_config_ich8lan(hw, false);
3606                 ret_val = hw->phy.ops.acquire(hw);
3607                 if (ret_val)
3608                         return;
3609                 e1000_write_smbus_addr(hw);
3610                 hw->phy.ops.release(hw);
3611         }
3612 }
3613
3614 /**
3615  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3616  *  @hw: pointer to the HW structure
3617  *
3618  *  Return the LED back to the default configuration.
3619  **/
3620 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3621 {
3622         if (hw->phy.type == e1000_phy_ife)
3623                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3624
3625         ew32(LEDCTL, hw->mac.ledctl_default);
3626         return 0;
3627 }
3628
3629 /**
3630  *  e1000_led_on_ich8lan - Turn LEDs on
3631  *  @hw: pointer to the HW structure
3632  *
3633  *  Turn on the LEDs.
3634  **/
3635 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3636 {
3637         if (hw->phy.type == e1000_phy_ife)
3638                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3639                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3640
3641         ew32(LEDCTL, hw->mac.ledctl_mode2);
3642         return 0;
3643 }
3644
3645 /**
3646  *  e1000_led_off_ich8lan - Turn LEDs off
3647  *  @hw: pointer to the HW structure
3648  *
3649  *  Turn off the LEDs.
3650  **/
3651 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3652 {
3653         if (hw->phy.type == e1000_phy_ife)
3654                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3655                                 (IFE_PSCL_PROBE_MODE |
3656                                  IFE_PSCL_PROBE_LEDS_OFF));
3657
3658         ew32(LEDCTL, hw->mac.ledctl_mode1);
3659         return 0;
3660 }
3661
3662 /**
3663  *  e1000_setup_led_pchlan - Configures SW controllable LED
3664  *  @hw: pointer to the HW structure
3665  *
3666  *  This prepares the SW controllable LED for use.
3667  **/
3668 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3669 {
3670         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3671 }
3672
3673 /**
3674  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3675  *  @hw: pointer to the HW structure
3676  *
3677  *  Return the LED back to the default configuration.
3678  **/
3679 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3680 {
3681         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3682 }
3683
3684 /**
3685  *  e1000_led_on_pchlan - Turn LEDs on
3686  *  @hw: pointer to the HW structure
3687  *
3688  *  Turn on the LEDs.
3689  **/
3690 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3691 {
3692         u16 data = (u16)hw->mac.ledctl_mode2;
3693         u32 i, led;
3694
3695         /*
3696          * If no link, then turn LED on by setting the invert bit
3697          * for each LED that's mode is "link_up" in ledctl_mode2.
3698          */
3699         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3700                 for (i = 0; i < 3; i++) {
3701                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3702                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3703                             E1000_LEDCTL_MODE_LINK_UP)
3704                                 continue;
3705                         if (led & E1000_PHY_LED0_IVRT)
3706                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3707                         else
3708                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3709                 }
3710         }
3711
3712         return e1e_wphy(hw, HV_LED_CONFIG, data);
3713 }
3714
3715 /**
3716  *  e1000_led_off_pchlan - Turn LEDs off
3717  *  @hw: pointer to the HW structure
3718  *
3719  *  Turn off the LEDs.
3720  **/
3721 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3722 {
3723         u16 data = (u16)hw->mac.ledctl_mode1;
3724         u32 i, led;
3725
3726         /*
3727          * If no link, then turn LED off by clearing the invert bit
3728          * for each LED that's mode is "link_up" in ledctl_mode1.
3729          */
3730         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3731                 for (i = 0; i < 3; i++) {
3732                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3733                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3734                             E1000_LEDCTL_MODE_LINK_UP)
3735                                 continue;
3736                         if (led & E1000_PHY_LED0_IVRT)
3737                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3738                         else
3739                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3740                 }
3741         }
3742
3743         return e1e_wphy(hw, HV_LED_CONFIG, data);
3744 }
3745
3746 /**
3747  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3748  *  @hw: pointer to the HW structure
3749  *
3750  *  Read appropriate register for the config done bit for completion status
3751  *  and configure the PHY through s/w for EEPROM-less parts.
3752  *
3753  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3754  *  config done bit, so only an error is logged and continues.  If we were
3755  *  to return with error, EEPROM-less silicon would not be able to be reset
3756  *  or change link.
3757  **/
3758 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3759 {
3760         s32 ret_val = 0;
3761         u32 bank = 0;
3762         u32 status;
3763
3764         e1000e_get_cfg_done(hw);
3765
3766         /* Wait for indication from h/w that it has completed basic config */
3767         if (hw->mac.type >= e1000_ich10lan) {
3768                 e1000_lan_init_done_ich8lan(hw);
3769         } else {
3770                 ret_val = e1000e_get_auto_rd_done(hw);
3771                 if (ret_val) {
3772                         /*
3773                          * When auto config read does not complete, do not
3774                          * return with an error. This can happen in situations
3775                          * where there is no eeprom and prevents getting link.
3776                          */
3777                         e_dbg("Auto Read Done did not complete\n");
3778                         ret_val = 0;
3779                 }
3780         }
3781
3782         /* Clear PHY Reset Asserted bit */
3783         status = er32(STATUS);
3784         if (status & E1000_STATUS_PHYRA)
3785                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3786         else
3787                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3788
3789         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3790         if (hw->mac.type <= e1000_ich9lan) {
3791                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3792                     (hw->phy.type == e1000_phy_igp_3)) {
3793                         e1000e_phy_init_script_igp3(hw);
3794                 }
3795         } else {
3796                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3797                         /* Maybe we should do a basic PHY config */
3798                         e_dbg("EEPROM not present\n");
3799                         ret_val = -E1000_ERR_CONFIG;
3800                 }
3801         }
3802
3803         return ret_val;
3804 }
3805
3806 /**
3807  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3808  * @hw: pointer to the HW structure
3809  *
3810  * In the case of a PHY power down to save power, or to turn off link during a
3811  * driver unload, or wake on lan is not enabled, remove the link.
3812  **/
3813 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3814 {
3815         /* If the management interface is not enabled, then power down */
3816         if (!(hw->mac.ops.check_mng_mode(hw) ||
3817               hw->phy.ops.check_reset_block(hw)))
3818                 e1000_power_down_phy_copper(hw);
3819 }
3820
3821 /**
3822  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3823  *  @hw: pointer to the HW structure
3824  *
3825  *  Clears hardware counters specific to the silicon family and calls
3826  *  clear_hw_cntrs_generic to clear all general purpose counters.
3827  **/
3828 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3829 {
3830         u16 phy_data;
3831
3832         e1000e_clear_hw_cntrs_base(hw);
3833
3834         er32(ALGNERRC);
3835         er32(RXERRC);
3836         er32(TNCRS);
3837         er32(CEXTERR);
3838         er32(TSCTC);
3839         er32(TSCTFC);
3840
3841         er32(MGTPRC);
3842         er32(MGTPDC);
3843         er32(MGTPTC);
3844
3845         er32(IAC);
3846         er32(ICRXOC);
3847
3848         /* Clear PHY statistics registers */
3849         if ((hw->phy.type == e1000_phy_82578) ||
3850             (hw->phy.type == e1000_phy_82579) ||
3851             (hw->phy.type == e1000_phy_82577)) {
3852                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3853                 e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3854                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3855                 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3856                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3857                 e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3858                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3859                 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3860                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3861                 e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3862                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3863                 e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3864                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3865                 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3866         }
3867 }
3868
3869 static struct e1000_mac_operations ich8_mac_ops = {
3870         .id_led_init            = e1000e_id_led_init,
3871         /* check_mng_mode dependent on mac type */
3872         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3873         /* cleanup_led dependent on mac type */
3874         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3875         .get_bus_info           = e1000_get_bus_info_ich8lan,
3876         .set_lan_id             = e1000_set_lan_id_single_port,
3877         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3878         /* led_on dependent on mac type */
3879         /* led_off dependent on mac type */
3880         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3881         .reset_hw               = e1000_reset_hw_ich8lan,
3882         .init_hw                = e1000_init_hw_ich8lan,
3883         .setup_link             = e1000_setup_link_ich8lan,
3884         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3885         /* id_led_init dependent on mac type */
3886 };
3887
3888 static struct e1000_phy_operations ich8_phy_ops = {
3889         .acquire                = e1000_acquire_swflag_ich8lan,
3890         .check_reset_block      = e1000_check_reset_block_ich8lan,
3891         .commit                 = NULL,
3892         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3893         .get_cable_length       = e1000e_get_cable_length_igp_2,
3894         .read_reg               = e1000e_read_phy_reg_igp,
3895         .release                = e1000_release_swflag_ich8lan,
3896         .reset                  = e1000_phy_hw_reset_ich8lan,
3897         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3898         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3899         .write_reg              = e1000e_write_phy_reg_igp,
3900 };
3901
3902 static struct e1000_nvm_operations ich8_nvm_ops = {
3903         .acquire                = e1000_acquire_nvm_ich8lan,
3904         .read                   = e1000_read_nvm_ich8lan,
3905         .release                = e1000_release_nvm_ich8lan,
3906         .update                 = e1000_update_nvm_checksum_ich8lan,
3907         .valid_led_default      = e1000_valid_led_default_ich8lan,
3908         .validate               = e1000_validate_nvm_checksum_ich8lan,
3909         .write                  = e1000_write_nvm_ich8lan,
3910 };
3911
3912 struct e1000_info e1000_ich8_info = {
3913         .mac                    = e1000_ich8lan,
3914         .flags                  = FLAG_HAS_WOL
3915                                   | FLAG_IS_ICH
3916                                   | FLAG_RX_CSUM_ENABLED
3917                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3918                                   | FLAG_HAS_AMT
3919                                   | FLAG_HAS_FLASH
3920                                   | FLAG_APME_IN_WUC,
3921         .pba                    = 8,
3922         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3923         .get_variants           = e1000_get_variants_ich8lan,
3924         .mac_ops                = &ich8_mac_ops,
3925         .phy_ops                = &ich8_phy_ops,
3926         .nvm_ops                = &ich8_nvm_ops,
3927 };
3928
3929 struct e1000_info e1000_ich9_info = {
3930         .mac                    = e1000_ich9lan,
3931         .flags                  = FLAG_HAS_JUMBO_FRAMES
3932                                   | FLAG_IS_ICH
3933                                   | FLAG_HAS_WOL
3934                                   | FLAG_RX_CSUM_ENABLED
3935                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3936                                   | FLAG_HAS_AMT
3937                                   | FLAG_HAS_ERT
3938                                   | FLAG_HAS_FLASH
3939                                   | FLAG_APME_IN_WUC,
3940         .pba                    = 10,
3941         .max_hw_frame_size      = DEFAULT_JUMBO,
3942         .get_variants           = e1000_get_variants_ich8lan,
3943         .mac_ops                = &ich8_mac_ops,
3944         .phy_ops                = &ich8_phy_ops,
3945         .nvm_ops                = &ich8_nvm_ops,
3946 };
3947
3948 struct e1000_info e1000_ich10_info = {
3949         .mac                    = e1000_ich10lan,
3950         .flags                  = FLAG_HAS_JUMBO_FRAMES
3951                                   | FLAG_IS_ICH
3952                                   | FLAG_HAS_WOL
3953                                   | FLAG_RX_CSUM_ENABLED
3954                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3955                                   | FLAG_HAS_AMT
3956                                   | FLAG_HAS_ERT
3957                                   | FLAG_HAS_FLASH
3958                                   | FLAG_APME_IN_WUC,
3959         .pba                    = 10,
3960         .max_hw_frame_size      = DEFAULT_JUMBO,
3961         .get_variants           = e1000_get_variants_ich8lan,
3962         .mac_ops                = &ich8_mac_ops,
3963         .phy_ops                = &ich8_phy_ops,
3964         .nvm_ops                = &ich8_nvm_ops,
3965 };
3966
3967 struct e1000_info e1000_pch_info = {
3968         .mac                    = e1000_pchlan,
3969         .flags                  = FLAG_IS_ICH
3970                                   | FLAG_HAS_WOL
3971                                   | FLAG_RX_CSUM_ENABLED
3972                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3973                                   | FLAG_HAS_AMT
3974                                   | FLAG_HAS_FLASH
3975                                   | FLAG_HAS_JUMBO_FRAMES
3976                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3977                                   | FLAG_APME_IN_WUC,
3978         .flags2                 = FLAG2_HAS_PHY_STATS,
3979         .pba                    = 26,
3980         .max_hw_frame_size      = 4096,
3981         .get_variants           = e1000_get_variants_ich8lan,
3982         .mac_ops                = &ich8_mac_ops,
3983         .phy_ops                = &ich8_phy_ops,
3984         .nvm_ops                = &ich8_nvm_ops,
3985 };
3986
3987 struct e1000_info e1000_pch2_info = {
3988         .mac                    = e1000_pch2lan,
3989         .flags                  = FLAG_IS_ICH
3990                                   | FLAG_HAS_WOL
3991                                   | FLAG_RX_CSUM_ENABLED
3992                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3993                                   | FLAG_HAS_AMT
3994                                   | FLAG_HAS_FLASH
3995                                   | FLAG_HAS_JUMBO_FRAMES
3996                                   | FLAG_APME_IN_WUC,
3997         .flags2                 = FLAG2_HAS_PHY_STATS
3998                                   | FLAG2_HAS_EEE,
3999         .pba                    = 26,
4000         .max_hw_frame_size      = DEFAULT_JUMBO,
4001         .get_variants           = e1000_get_variants_ich8lan,
4002         .mac_ops                = &ich8_mac_ops,
4003         .phy_ops                = &ich8_phy_ops,
4004         .nvm_ops                = &ich8_nvm_ops,
4005 };