]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/amd/au1000_eth.c
Merge tag 'v3.15-rc1' into patchwork
[karo-tx-linux.git] / drivers / net / ethernet / amd / au1000_eth.c
1 /*
2  *
3  * Alchemy Au1x00 ethernet driver
4  *
5  * Copyright 2001-2003, 2006 MontaVista Software Inc.
6  * Copyright 2002 TimeSys Corp.
7  * Added ethtool/mii-tool support,
8  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10  * or riemer@riemer-nt.de: fixed the link beat detection with
11  * ioctls (SIOCGMIIPHY)
12  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13  *  converted to use linux-2.6.x's PHY framework
14  *
15  * Author: MontaVista Software, Inc.
16  *              ppopov@mvista.com or source@mvista.com
17  *
18  * ########################################################################
19  *
20  *  This program is free software; you can distribute it and/or modify it
21  *  under the terms of the GNU General Public License (Version 2) as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope it will be useful, but WITHOUT
25  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27  *  for more details.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, see <http://www.gnu.org/licenses/>.
31  *
32  * ########################################################################
33  *
34  *
35  */
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/capability.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/errno.h>
45 #include <linux/in.h>
46 #include <linux/ioport.h>
47 #include <linux/bitops.h>
48 #include <linux/slab.h>
49 #include <linux/interrupt.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59 #include <linux/cpu.h>
60 #include <linux/io.h>
61
62 #include <asm/mipsregs.h>
63 #include <asm/irq.h>
64 #include <asm/processor.h>
65
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
69
70 #include "au1000_eth.h"
71
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
77
78 #define AU1000_DEF_MSG_ENABLE   (NETIF_MSG_DRV  | \
79                                 NETIF_MSG_PROBE | \
80                                 NETIF_MSG_LINK)
81
82 #define DRV_NAME        "au1000_eth"
83 #define DRV_VERSION     "1.7"
84 #define DRV_AUTHOR      "Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC        "Au1xxx on-chip Ethernet driver"
86
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92 /*
93  * Theory of operation
94  *
95  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
96  * There are four receive and four transmit descriptors.  These
97  * descriptors are not in memory; rather, they are just a set of
98  * hardware registers.
99  *
100  * Since the Au1000 has a coherent data cache, the receive and
101  * transmit buffers are allocated from the KSEG0 segment. The
102  * hardware registers, however, are still mapped at KSEG1 to
103  * make sure there's no out-of-order writes, and that all writes
104  * complete immediately.
105  */
106
107 /*
108  * board-specific configurations
109  *
110  * PHY detection algorithm
111  *
112  * If phy_static_config is undefined, the PHY setup is
113  * autodetected:
114  *
115  * mii_probe() first searches the current MAC's MII bus for a PHY,
116  * selecting the first (or last, if phy_search_highest_addr is
117  * defined) PHY address not already claimed by another netdev.
118  *
119  * If nothing was found that way when searching for the 2nd ethernet
120  * controller's PHY and phy1_search_mac0 is defined, then
121  * the first MII bus is searched as well for an unclaimed PHY; this is
122  * needed in case of a dual-PHY accessible only through the MAC0's MII
123  * bus.
124  *
125  * Finally, if no PHY is found, then the corresponding ethernet
126  * controller is not registered to the network subsystem.
127  */
128
129 /* autodetection defaults: phy1_search_mac0 */
130
131 /* static PHY setup
132  *
133  * most boards PHY setup should be detectable properly with the
134  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
135  * you have a switch attached, or want to use the PHY's interrupt
136  * notification capabilities) you can provide a static PHY
137  * configuration here
138  *
139  * IRQs may only be set, if a PHY address was configured
140  * If a PHY address is given, also a bus id is required to be set
141  *
142  * ps: make sure the used irqs are configured properly in the board
143  * specific irq-map
144  */
145
146 static void au1000_enable_mac(struct net_device *dev, int force_reset)
147 {
148         unsigned long flags;
149         struct au1000_private *aup = netdev_priv(dev);
150
151         spin_lock_irqsave(&aup->lock, flags);
152
153         if (force_reset || (!aup->mac_enabled)) {
154                 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
155                 au_sync_delay(2);
156                 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
157                                 | MAC_EN_CLOCK_ENABLE), aup->enable);
158                 au_sync_delay(2);
159
160                 aup->mac_enabled = 1;
161         }
162
163         spin_unlock_irqrestore(&aup->lock, flags);
164 }
165
166 /*
167  * MII operations
168  */
169 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
170 {
171         struct au1000_private *aup = netdev_priv(dev);
172         u32 *const mii_control_reg = &aup->mac->mii_control;
173         u32 *const mii_data_reg = &aup->mac->mii_data;
174         u32 timedout = 20;
175         u32 mii_control;
176
177         while (readl(mii_control_reg) & MAC_MII_BUSY) {
178                 mdelay(1);
179                 if (--timedout == 0) {
180                         netdev_err(dev, "read_MII busy timeout!!\n");
181                         return -1;
182                 }
183         }
184
185         mii_control = MAC_SET_MII_SELECT_REG(reg) |
186                 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
187
188         writel(mii_control, mii_control_reg);
189
190         timedout = 20;
191         while (readl(mii_control_reg) & MAC_MII_BUSY) {
192                 mdelay(1);
193                 if (--timedout == 0) {
194                         netdev_err(dev, "mdio_read busy timeout!!\n");
195                         return -1;
196                 }
197         }
198         return readl(mii_data_reg);
199 }
200
201 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
202                               int reg, u16 value)
203 {
204         struct au1000_private *aup = netdev_priv(dev);
205         u32 *const mii_control_reg = &aup->mac->mii_control;
206         u32 *const mii_data_reg = &aup->mac->mii_data;
207         u32 timedout = 20;
208         u32 mii_control;
209
210         while (readl(mii_control_reg) & MAC_MII_BUSY) {
211                 mdelay(1);
212                 if (--timedout == 0) {
213                         netdev_err(dev, "mdio_write busy timeout!!\n");
214                         return;
215                 }
216         }
217
218         mii_control = MAC_SET_MII_SELECT_REG(reg) |
219                 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
220
221         writel(value, mii_data_reg);
222         writel(mii_control, mii_control_reg);
223 }
224
225 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
226 {
227         /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
228          * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
229          */
230         struct net_device *const dev = bus->priv;
231
232         /* make sure the MAC associated with this
233          * mii_bus is enabled
234          */
235         au1000_enable_mac(dev, 0);
236
237         return au1000_mdio_read(dev, phy_addr, regnum);
238 }
239
240 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
241                                 u16 value)
242 {
243         struct net_device *const dev = bus->priv;
244
245         /* make sure the MAC associated with this
246          * mii_bus is enabled
247          */
248         au1000_enable_mac(dev, 0);
249
250         au1000_mdio_write(dev, phy_addr, regnum, value);
251         return 0;
252 }
253
254 static int au1000_mdiobus_reset(struct mii_bus *bus)
255 {
256         struct net_device *const dev = bus->priv;
257
258         /* make sure the MAC associated with this
259          * mii_bus is enabled
260          */
261         au1000_enable_mac(dev, 0);
262
263         return 0;
264 }
265
266 static void au1000_hard_stop(struct net_device *dev)
267 {
268         struct au1000_private *aup = netdev_priv(dev);
269         u32 reg;
270
271         netif_dbg(aup, drv, dev, "hard stop\n");
272
273         reg = readl(&aup->mac->control);
274         reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
275         writel(reg, &aup->mac->control);
276         au_sync_delay(10);
277 }
278
279 static void au1000_enable_rx_tx(struct net_device *dev)
280 {
281         struct au1000_private *aup = netdev_priv(dev);
282         u32 reg;
283
284         netif_dbg(aup, hw, dev, "enable_rx_tx\n");
285
286         reg = readl(&aup->mac->control);
287         reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
288         writel(reg, &aup->mac->control);
289         au_sync_delay(10);
290 }
291
292 static void
293 au1000_adjust_link(struct net_device *dev)
294 {
295         struct au1000_private *aup = netdev_priv(dev);
296         struct phy_device *phydev = aup->phy_dev;
297         unsigned long flags;
298         u32 reg;
299
300         int status_change = 0;
301
302         BUG_ON(!aup->phy_dev);
303
304         spin_lock_irqsave(&aup->lock, flags);
305
306         if (phydev->link && (aup->old_speed != phydev->speed)) {
307                 /* speed changed */
308
309                 switch (phydev->speed) {
310                 case SPEED_10:
311                 case SPEED_100:
312                         break;
313                 default:
314                         netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
315                                                         phydev->speed);
316                         break;
317                 }
318
319                 aup->old_speed = phydev->speed;
320
321                 status_change = 1;
322         }
323
324         if (phydev->link && (aup->old_duplex != phydev->duplex)) {
325                 /* duplex mode changed */
326
327                 /* switching duplex mode requires to disable rx and tx! */
328                 au1000_hard_stop(dev);
329
330                 reg = readl(&aup->mac->control);
331                 if (DUPLEX_FULL == phydev->duplex) {
332                         reg |= MAC_FULL_DUPLEX;
333                         reg &= ~MAC_DISABLE_RX_OWN;
334                 } else {
335                         reg &= ~MAC_FULL_DUPLEX;
336                         reg |= MAC_DISABLE_RX_OWN;
337                 }
338                 writel(reg, &aup->mac->control);
339                 au_sync_delay(1);
340
341                 au1000_enable_rx_tx(dev);
342                 aup->old_duplex = phydev->duplex;
343
344                 status_change = 1;
345         }
346
347         if (phydev->link != aup->old_link) {
348                 /* link state changed */
349
350                 if (!phydev->link) {
351                         /* link went down */
352                         aup->old_speed = 0;
353                         aup->old_duplex = -1;
354                 }
355
356                 aup->old_link = phydev->link;
357                 status_change = 1;
358         }
359
360         spin_unlock_irqrestore(&aup->lock, flags);
361
362         if (status_change) {
363                 if (phydev->link)
364                         netdev_info(dev, "link up (%d/%s)\n",
365                                phydev->speed,
366                                DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
367                 else
368                         netdev_info(dev, "link down\n");
369         }
370 }
371
372 static int au1000_mii_probe(struct net_device *dev)
373 {
374         struct au1000_private *const aup = netdev_priv(dev);
375         struct phy_device *phydev = NULL;
376         int phy_addr;
377
378         if (aup->phy_static_config) {
379                 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
380
381                 if (aup->phy_addr)
382                         phydev = aup->mii_bus->phy_map[aup->phy_addr];
383                 else
384                         netdev_info(dev, "using PHY-less setup\n");
385                 return 0;
386         }
387
388         /* find the first (lowest address) PHY
389          * on the current MAC's MII bus
390          */
391         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
392                 if (aup->mii_bus->phy_map[phy_addr]) {
393                         phydev = aup->mii_bus->phy_map[phy_addr];
394                         if (!aup->phy_search_highest_addr)
395                                 /* break out with first one found */
396                                 break;
397                 }
398
399         if (aup->phy1_search_mac0) {
400                 /* try harder to find a PHY */
401                 if (!phydev && (aup->mac_id == 1)) {
402                         /* no PHY found, maybe we have a dual PHY? */
403                         dev_info(&dev->dev, ": no PHY found on MAC1, "
404                                 "let's see if it's attached to MAC0...\n");
405
406                         /* find the first (lowest address) non-attached
407                          * PHY on the MAC0 MII bus
408                          */
409                         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
410                                 struct phy_device *const tmp_phydev =
411                                         aup->mii_bus->phy_map[phy_addr];
412
413                                 if (aup->mac_id == 1)
414                                         break;
415
416                                 /* no PHY here... */
417                                 if (!tmp_phydev)
418                                         continue;
419
420                                 /* already claimed by MAC0 */
421                                 if (tmp_phydev->attached_dev)
422                                         continue;
423
424                                 phydev = tmp_phydev;
425                                 break; /* found it */
426                         }
427                 }
428         }
429
430         if (!phydev) {
431                 netdev_err(dev, "no PHY found\n");
432                 return -1;
433         }
434
435         /* now we are supposed to have a proper phydev, to attach to... */
436         BUG_ON(phydev->attached_dev);
437
438         phydev = phy_connect(dev, dev_name(&phydev->dev),
439                              &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
440
441         if (IS_ERR(phydev)) {
442                 netdev_err(dev, "Could not attach to PHY\n");
443                 return PTR_ERR(phydev);
444         }
445
446         /* mask with MAC supported features */
447         phydev->supported &= (SUPPORTED_10baseT_Half
448                               | SUPPORTED_10baseT_Full
449                               | SUPPORTED_100baseT_Half
450                               | SUPPORTED_100baseT_Full
451                               | SUPPORTED_Autoneg
452                               /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
453                               | SUPPORTED_MII
454                               | SUPPORTED_TP);
455
456         phydev->advertising = phydev->supported;
457
458         aup->old_link = 0;
459         aup->old_speed = 0;
460         aup->old_duplex = -1;
461         aup->phy_dev = phydev;
462
463         netdev_info(dev, "attached PHY driver [%s] "
464                "(mii_bus:phy_addr=%s, irq=%d)\n",
465                phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
466
467         return 0;
468 }
469
470
471 /*
472  * Buffer allocation/deallocation routines. The buffer descriptor returned
473  * has the virtual and dma address of a buffer suitable for
474  * both, receive and transmit operations.
475  */
476 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
477 {
478         struct db_dest *pDB;
479         pDB = aup->pDBfree;
480
481         if (pDB)
482                 aup->pDBfree = pDB->pnext;
483
484         return pDB;
485 }
486
487 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
488 {
489         struct db_dest *pDBfree = aup->pDBfree;
490         if (pDBfree)
491                 pDBfree->pnext = pDB;
492         aup->pDBfree = pDB;
493 }
494
495 static void au1000_reset_mac_unlocked(struct net_device *dev)
496 {
497         struct au1000_private *const aup = netdev_priv(dev);
498         int i;
499
500         au1000_hard_stop(dev);
501
502         writel(MAC_EN_CLOCK_ENABLE, aup->enable);
503         au_sync_delay(2);
504         writel(0, aup->enable);
505         au_sync_delay(2);
506
507         aup->tx_full = 0;
508         for (i = 0; i < NUM_RX_DMA; i++) {
509                 /* reset control bits */
510                 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
511         }
512         for (i = 0; i < NUM_TX_DMA; i++) {
513                 /* reset control bits */
514                 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
515         }
516
517         aup->mac_enabled = 0;
518
519 }
520
521 static void au1000_reset_mac(struct net_device *dev)
522 {
523         struct au1000_private *const aup = netdev_priv(dev);
524         unsigned long flags;
525
526         netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
527                                         (unsigned)aup);
528
529         spin_lock_irqsave(&aup->lock, flags);
530
531         au1000_reset_mac_unlocked(dev);
532
533         spin_unlock_irqrestore(&aup->lock, flags);
534 }
535
536 /*
537  * Setup the receive and transmit "rings".  These pointers are the addresses
538  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
539  * these are not descriptors sitting in memory.
540  */
541 static void
542 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
543 {
544         int i;
545
546         for (i = 0; i < NUM_RX_DMA; i++) {
547                 aup->rx_dma_ring[i] = (struct rx_dma *)
548                         (tx_base + 0x100 + sizeof(struct rx_dma) * i);
549         }
550         for (i = 0; i < NUM_TX_DMA; i++) {
551                 aup->tx_dma_ring[i] = (struct tx_dma *)
552                         (tx_base + sizeof(struct tx_dma) * i);
553         }
554 }
555
556 /*
557  * ethtool operations
558  */
559
560 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
561 {
562         struct au1000_private *aup = netdev_priv(dev);
563
564         if (aup->phy_dev)
565                 return phy_ethtool_gset(aup->phy_dev, cmd);
566
567         return -EINVAL;
568 }
569
570 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
571 {
572         struct au1000_private *aup = netdev_priv(dev);
573
574         if (!capable(CAP_NET_ADMIN))
575                 return -EPERM;
576
577         if (aup->phy_dev)
578                 return phy_ethtool_sset(aup->phy_dev, cmd);
579
580         return -EINVAL;
581 }
582
583 static void
584 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
585 {
586         struct au1000_private *aup = netdev_priv(dev);
587
588         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
589         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
590         snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
591                  aup->mac_id);
592         info->regdump_len = 0;
593 }
594
595 static void au1000_set_msglevel(struct net_device *dev, u32 value)
596 {
597         struct au1000_private *aup = netdev_priv(dev);
598         aup->msg_enable = value;
599 }
600
601 static u32 au1000_get_msglevel(struct net_device *dev)
602 {
603         struct au1000_private *aup = netdev_priv(dev);
604         return aup->msg_enable;
605 }
606
607 static const struct ethtool_ops au1000_ethtool_ops = {
608         .get_settings = au1000_get_settings,
609         .set_settings = au1000_set_settings,
610         .get_drvinfo = au1000_get_drvinfo,
611         .get_link = ethtool_op_get_link,
612         .get_msglevel = au1000_get_msglevel,
613         .set_msglevel = au1000_set_msglevel,
614 };
615
616
617 /*
618  * Initialize the interface.
619  *
620  * When the device powers up, the clocks are disabled and the
621  * mac is in reset state.  When the interface is closed, we
622  * do the same -- reset the device and disable the clocks to
623  * conserve power. Thus, whenever au1000_init() is called,
624  * the device should already be in reset state.
625  */
626 static int au1000_init(struct net_device *dev)
627 {
628         struct au1000_private *aup = netdev_priv(dev);
629         unsigned long flags;
630         int i;
631         u32 control;
632
633         netif_dbg(aup, hw, dev, "au1000_init\n");
634
635         /* bring the device out of reset */
636         au1000_enable_mac(dev, 1);
637
638         spin_lock_irqsave(&aup->lock, flags);
639
640         writel(0, &aup->mac->control);
641         aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
642         aup->tx_tail = aup->tx_head;
643         aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
644
645         writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
646                                         &aup->mac->mac_addr_high);
647         writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
648                 dev->dev_addr[1]<<8 | dev->dev_addr[0],
649                                         &aup->mac->mac_addr_low);
650
651
652         for (i = 0; i < NUM_RX_DMA; i++)
653                 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
654
655         au_sync();
656
657         control = MAC_RX_ENABLE | MAC_TX_ENABLE;
658 #ifndef CONFIG_CPU_LITTLE_ENDIAN
659         control |= MAC_BIG_ENDIAN;
660 #endif
661         if (aup->phy_dev) {
662                 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
663                         control |= MAC_FULL_DUPLEX;
664                 else
665                         control |= MAC_DISABLE_RX_OWN;
666         } else { /* PHY-less op, assume full-duplex */
667                 control |= MAC_FULL_DUPLEX;
668         }
669
670         writel(control, &aup->mac->control);
671         writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
672         au_sync();
673
674         spin_unlock_irqrestore(&aup->lock, flags);
675         return 0;
676 }
677
678 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
679 {
680         struct net_device_stats *ps = &dev->stats;
681
682         ps->rx_packets++;
683         if (status & RX_MCAST_FRAME)
684                 ps->multicast++;
685
686         if (status & RX_ERROR) {
687                 ps->rx_errors++;
688                 if (status & RX_MISSED_FRAME)
689                         ps->rx_missed_errors++;
690                 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
691                         ps->rx_length_errors++;
692                 if (status & RX_CRC_ERROR)
693                         ps->rx_crc_errors++;
694                 if (status & RX_COLL)
695                         ps->collisions++;
696         } else
697                 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
698
699 }
700
701 /*
702  * Au1000 receive routine.
703  */
704 static int au1000_rx(struct net_device *dev)
705 {
706         struct au1000_private *aup = netdev_priv(dev);
707         struct sk_buff *skb;
708         struct rx_dma *prxd;
709         u32 buff_stat, status;
710         struct db_dest *pDB;
711         u32     frmlen;
712
713         netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
714
715         prxd = aup->rx_dma_ring[aup->rx_head];
716         buff_stat = prxd->buff_stat;
717         while (buff_stat & RX_T_DONE)  {
718                 status = prxd->status;
719                 pDB = aup->rx_db_inuse[aup->rx_head];
720                 au1000_update_rx_stats(dev, status);
721                 if (!(status & RX_ERROR))  {
722
723                         /* good frame */
724                         frmlen = (status & RX_FRAME_LEN_MASK);
725                         frmlen -= 4; /* Remove FCS */
726                         skb = netdev_alloc_skb(dev, frmlen + 2);
727                         if (skb == NULL) {
728                                 dev->stats.rx_dropped++;
729                                 continue;
730                         }
731                         skb_reserve(skb, 2);    /* 16 byte IP header align */
732                         skb_copy_to_linear_data(skb,
733                                 (unsigned char *)pDB->vaddr, frmlen);
734                         skb_put(skb, frmlen);
735                         skb->protocol = eth_type_trans(skb, dev);
736                         netif_rx(skb);  /* pass the packet to upper layers */
737                 } else {
738                         if (au1000_debug > 4) {
739                                 pr_err("rx_error(s):");
740                                 if (status & RX_MISSED_FRAME)
741                                         pr_cont(" miss");
742                                 if (status & RX_WDOG_TIMER)
743                                         pr_cont(" wdog");
744                                 if (status & RX_RUNT)
745                                         pr_cont(" runt");
746                                 if (status & RX_OVERLEN)
747                                         pr_cont(" overlen");
748                                 if (status & RX_COLL)
749                                         pr_cont(" coll");
750                                 if (status & RX_MII_ERROR)
751                                         pr_cont(" mii error");
752                                 if (status & RX_CRC_ERROR)
753                                         pr_cont(" crc error");
754                                 if (status & RX_LEN_ERROR)
755                                         pr_cont(" len error");
756                                 if (status & RX_U_CNTRL_FRAME)
757                                         pr_cont(" u control frame");
758                                 pr_cont("\n");
759                         }
760                 }
761                 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
762                 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
763                 au_sync();
764
765                 /* next descriptor */
766                 prxd = aup->rx_dma_ring[aup->rx_head];
767                 buff_stat = prxd->buff_stat;
768         }
769         return 0;
770 }
771
772 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
773 {
774         struct au1000_private *aup = netdev_priv(dev);
775         struct net_device_stats *ps = &dev->stats;
776
777         if (status & TX_FRAME_ABORTED) {
778                 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
779                         if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
780                                 /* any other tx errors are only valid
781                                  * in half duplex mode
782                                  */
783                                 ps->tx_errors++;
784                                 ps->tx_aborted_errors++;
785                         }
786                 } else {
787                         ps->tx_errors++;
788                         ps->tx_aborted_errors++;
789                         if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
790                                 ps->tx_carrier_errors++;
791                 }
792         }
793 }
794
795 /*
796  * Called from the interrupt service routine to acknowledge
797  * the TX DONE bits.  This is a must if the irq is setup as
798  * edge triggered.
799  */
800 static void au1000_tx_ack(struct net_device *dev)
801 {
802         struct au1000_private *aup = netdev_priv(dev);
803         struct tx_dma *ptxd;
804
805         ptxd = aup->tx_dma_ring[aup->tx_tail];
806
807         while (ptxd->buff_stat & TX_T_DONE) {
808                 au1000_update_tx_stats(dev, ptxd->status);
809                 ptxd->buff_stat &= ~TX_T_DONE;
810                 ptxd->len = 0;
811                 au_sync();
812
813                 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
814                 ptxd = aup->tx_dma_ring[aup->tx_tail];
815
816                 if (aup->tx_full) {
817                         aup->tx_full = 0;
818                         netif_wake_queue(dev);
819                 }
820         }
821 }
822
823 /*
824  * Au1000 interrupt service routine.
825  */
826 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
827 {
828         struct net_device *dev = dev_id;
829
830         /* Handle RX interrupts first to minimize chance of overrun */
831
832         au1000_rx(dev);
833         au1000_tx_ack(dev);
834         return IRQ_RETVAL(1);
835 }
836
837 static int au1000_open(struct net_device *dev)
838 {
839         int retval;
840         struct au1000_private *aup = netdev_priv(dev);
841
842         netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
843
844         retval = request_irq(dev->irq, au1000_interrupt, 0,
845                                         dev->name, dev);
846         if (retval) {
847                 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
848                 return retval;
849         }
850
851         retval = au1000_init(dev);
852         if (retval) {
853                 netdev_err(dev, "error in au1000_init\n");
854                 free_irq(dev->irq, dev);
855                 return retval;
856         }
857
858         if (aup->phy_dev) {
859                 /* cause the PHY state machine to schedule a link state check */
860                 aup->phy_dev->state = PHY_CHANGELINK;
861                 phy_start(aup->phy_dev);
862         }
863
864         netif_start_queue(dev);
865
866         netif_dbg(aup, drv, dev, "open: Initialization done.\n");
867
868         return 0;
869 }
870
871 static int au1000_close(struct net_device *dev)
872 {
873         unsigned long flags;
874         struct au1000_private *const aup = netdev_priv(dev);
875
876         netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
877
878         if (aup->phy_dev)
879                 phy_stop(aup->phy_dev);
880
881         spin_lock_irqsave(&aup->lock, flags);
882
883         au1000_reset_mac_unlocked(dev);
884
885         /* stop the device */
886         netif_stop_queue(dev);
887
888         /* disable the interrupt */
889         free_irq(dev->irq, dev);
890         spin_unlock_irqrestore(&aup->lock, flags);
891
892         return 0;
893 }
894
895 /*
896  * Au1000 transmit routine.
897  */
898 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
899 {
900         struct au1000_private *aup = netdev_priv(dev);
901         struct net_device_stats *ps = &dev->stats;
902         struct tx_dma *ptxd;
903         u32 buff_stat;
904         struct db_dest *pDB;
905         int i;
906
907         netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
908                                 (unsigned)aup, skb->len,
909                                 skb->data, aup->tx_head);
910
911         ptxd = aup->tx_dma_ring[aup->tx_head];
912         buff_stat = ptxd->buff_stat;
913         if (buff_stat & TX_DMA_ENABLE) {
914                 /* We've wrapped around and the transmitter is still busy */
915                 netif_stop_queue(dev);
916                 aup->tx_full = 1;
917                 return NETDEV_TX_BUSY;
918         } else if (buff_stat & TX_T_DONE) {
919                 au1000_update_tx_stats(dev, ptxd->status);
920                 ptxd->len = 0;
921         }
922
923         if (aup->tx_full) {
924                 aup->tx_full = 0;
925                 netif_wake_queue(dev);
926         }
927
928         pDB = aup->tx_db_inuse[aup->tx_head];
929         skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
930         if (skb->len < ETH_ZLEN) {
931                 for (i = skb->len; i < ETH_ZLEN; i++)
932                         ((char *)pDB->vaddr)[i] = 0;
933
934                 ptxd->len = ETH_ZLEN;
935         } else
936                 ptxd->len = skb->len;
937
938         ps->tx_packets++;
939         ps->tx_bytes += ptxd->len;
940
941         ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
942         au_sync();
943         dev_kfree_skb(skb);
944         aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
945         return NETDEV_TX_OK;
946 }
947
948 /*
949  * The Tx ring has been full longer than the watchdog timeout
950  * value. The transmitter must be hung?
951  */
952 static void au1000_tx_timeout(struct net_device *dev)
953 {
954         netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
955         au1000_reset_mac(dev);
956         au1000_init(dev);
957         dev->trans_start = jiffies; /* prevent tx timeout */
958         netif_wake_queue(dev);
959 }
960
961 static void au1000_multicast_list(struct net_device *dev)
962 {
963         struct au1000_private *aup = netdev_priv(dev);
964         u32 reg;
965
966         netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
967         reg = readl(&aup->mac->control);
968         if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
969                 reg |= MAC_PROMISCUOUS;
970         } else if ((dev->flags & IFF_ALLMULTI)  ||
971                            netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
972                 reg |= MAC_PASS_ALL_MULTI;
973                 reg &= ~MAC_PROMISCUOUS;
974                 netdev_info(dev, "Pass all multicast\n");
975         } else {
976                 struct netdev_hw_addr *ha;
977                 u32 mc_filter[2];       /* Multicast hash filter */
978
979                 mc_filter[1] = mc_filter[0] = 0;
980                 netdev_for_each_mc_addr(ha, dev)
981                         set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
982                                         (long *)mc_filter);
983                 writel(mc_filter[1], &aup->mac->multi_hash_high);
984                 writel(mc_filter[0], &aup->mac->multi_hash_low);
985                 reg &= ~MAC_PROMISCUOUS;
986                 reg |= MAC_HASH_MODE;
987         }
988         writel(reg, &aup->mac->control);
989 }
990
991 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
992 {
993         struct au1000_private *aup = netdev_priv(dev);
994
995         if (!netif_running(dev))
996                 return -EINVAL;
997
998         if (!aup->phy_dev)
999                 return -EINVAL; /* PHY not controllable */
1000
1001         return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1002 }
1003
1004 static const struct net_device_ops au1000_netdev_ops = {
1005         .ndo_open               = au1000_open,
1006         .ndo_stop               = au1000_close,
1007         .ndo_start_xmit         = au1000_tx,
1008         .ndo_set_rx_mode        = au1000_multicast_list,
1009         .ndo_do_ioctl           = au1000_ioctl,
1010         .ndo_tx_timeout         = au1000_tx_timeout,
1011         .ndo_set_mac_address    = eth_mac_addr,
1012         .ndo_validate_addr      = eth_validate_addr,
1013         .ndo_change_mtu         = eth_change_mtu,
1014 };
1015
1016 static int au1000_probe(struct platform_device *pdev)
1017 {
1018         static unsigned version_printed;
1019         struct au1000_private *aup = NULL;
1020         struct au1000_eth_platform_data *pd;
1021         struct net_device *dev = NULL;
1022         struct db_dest *pDB, *pDBfree;
1023         int irq, i, err = 0;
1024         struct resource *base, *macen, *macdma;
1025
1026         base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1027         if (!base) {
1028                 dev_err(&pdev->dev, "failed to retrieve base register\n");
1029                 err = -ENODEV;
1030                 goto out;
1031         }
1032
1033         macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1034         if (!macen) {
1035                 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1036                 err = -ENODEV;
1037                 goto out;
1038         }
1039
1040         irq = platform_get_irq(pdev, 0);
1041         if (irq < 0) {
1042                 dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1043                 err = -ENODEV;
1044                 goto out;
1045         }
1046
1047         macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1048         if (!macdma) {
1049                 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1050                 err = -ENODEV;
1051                 goto out;
1052         }
1053
1054         if (!request_mem_region(base->start, resource_size(base),
1055                                                         pdev->name)) {
1056                 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1057                 err = -ENXIO;
1058                 goto out;
1059         }
1060
1061         if (!request_mem_region(macen->start, resource_size(macen),
1062                                                         pdev->name)) {
1063                 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1064                 err = -ENXIO;
1065                 goto err_request;
1066         }
1067
1068         if (!request_mem_region(macdma->start, resource_size(macdma),
1069                                                         pdev->name)) {
1070                 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1071                 err = -ENXIO;
1072                 goto err_macdma;
1073         }
1074
1075         dev = alloc_etherdev(sizeof(struct au1000_private));
1076         if (!dev) {
1077                 err = -ENOMEM;
1078                 goto err_alloc;
1079         }
1080
1081         SET_NETDEV_DEV(dev, &pdev->dev);
1082         platform_set_drvdata(pdev, dev);
1083         aup = netdev_priv(dev);
1084
1085         spin_lock_init(&aup->lock);
1086         aup->msg_enable = (au1000_debug < 4 ?
1087                                 AU1000_DEF_MSG_ENABLE : au1000_debug);
1088
1089         /* Allocate the data buffers
1090          * Snooping works fine with eth on all au1xxx
1091          */
1092         aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1093                                                 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1094                                                 &aup->dma_addr, 0);
1095         if (!aup->vaddr) {
1096                 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1097                 err = -ENOMEM;
1098                 goto err_vaddr;
1099         }
1100
1101         /* aup->mac is the base address of the MAC's registers */
1102         aup->mac = (struct mac_reg *)
1103                         ioremap_nocache(base->start, resource_size(base));
1104         if (!aup->mac) {
1105                 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1106                 err = -ENXIO;
1107                 goto err_remap1;
1108         }
1109
1110         /* Setup some variables for quick register address access */
1111         aup->enable = (u32 *)ioremap_nocache(macen->start,
1112                                                 resource_size(macen));
1113         if (!aup->enable) {
1114                 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1115                 err = -ENXIO;
1116                 goto err_remap2;
1117         }
1118         aup->mac_id = pdev->id;
1119
1120         aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1121         if (!aup->macdma) {
1122                 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1123                 err = -ENXIO;
1124                 goto err_remap3;
1125         }
1126
1127         au1000_setup_hw_rings(aup, aup->macdma);
1128
1129         writel(0, aup->enable);
1130         aup->mac_enabled = 0;
1131
1132         pd = dev_get_platdata(&pdev->dev);
1133         if (!pd) {
1134                 dev_info(&pdev->dev, "no platform_data passed,"
1135                                         " PHY search on MAC0\n");
1136                 aup->phy1_search_mac0 = 1;
1137         } else {
1138                 if (is_valid_ether_addr(pd->mac)) {
1139                         memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1140                 } else {
1141                         /* Set a random MAC since no valid provided by platform_data. */
1142                         eth_hw_addr_random(dev);
1143                 }
1144
1145                 aup->phy_static_config = pd->phy_static_config;
1146                 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1147                 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1148                 aup->phy_addr = pd->phy_addr;
1149                 aup->phy_busid = pd->phy_busid;
1150                 aup->phy_irq = pd->phy_irq;
1151         }
1152
1153         if (aup->phy_busid && aup->phy_busid > 0) {
1154                 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1155                 err = -ENODEV;
1156                 goto err_mdiobus_alloc;
1157         }
1158
1159         aup->mii_bus = mdiobus_alloc();
1160         if (aup->mii_bus == NULL) {
1161                 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1162                 err = -ENOMEM;
1163                 goto err_mdiobus_alloc;
1164         }
1165
1166         aup->mii_bus->priv = dev;
1167         aup->mii_bus->read = au1000_mdiobus_read;
1168         aup->mii_bus->write = au1000_mdiobus_write;
1169         aup->mii_bus->reset = au1000_mdiobus_reset;
1170         aup->mii_bus->name = "au1000_eth_mii";
1171         snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1172                 pdev->name, aup->mac_id);
1173         aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1174         if (aup->mii_bus->irq == NULL) {
1175                 err = -ENOMEM;
1176                 goto err_out;
1177         }
1178
1179         for (i = 0; i < PHY_MAX_ADDR; ++i)
1180                 aup->mii_bus->irq[i] = PHY_POLL;
1181         /* if known, set corresponding PHY IRQs */
1182         if (aup->phy_static_config)
1183                 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1184                         aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1185
1186         err = mdiobus_register(aup->mii_bus);
1187         if (err) {
1188                 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1189                 goto err_mdiobus_reg;
1190         }
1191
1192         err = au1000_mii_probe(dev);
1193         if (err != 0)
1194                 goto err_out;
1195
1196         pDBfree = NULL;
1197         /* setup the data buffer descriptors and attach a buffer to each one */
1198         pDB = aup->db;
1199         for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1200                 pDB->pnext = pDBfree;
1201                 pDBfree = pDB;
1202                 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1203                 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1204                 pDB++;
1205         }
1206         aup->pDBfree = pDBfree;
1207
1208         err = -ENODEV;
1209         for (i = 0; i < NUM_RX_DMA; i++) {
1210                 pDB = au1000_GetFreeDB(aup);
1211                 if (!pDB)
1212                         goto err_out;
1213
1214                 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1215                 aup->rx_db_inuse[i] = pDB;
1216         }
1217
1218         err = -ENODEV;
1219         for (i = 0; i < NUM_TX_DMA; i++) {
1220                 pDB = au1000_GetFreeDB(aup);
1221                 if (!pDB)
1222                         goto err_out;
1223
1224                 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1225                 aup->tx_dma_ring[i]->len = 0;
1226                 aup->tx_db_inuse[i] = pDB;
1227         }
1228
1229         dev->base_addr = base->start;
1230         dev->irq = irq;
1231         dev->netdev_ops = &au1000_netdev_ops;
1232         SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1233         dev->watchdog_timeo = ETH_TX_TIMEOUT;
1234
1235         /*
1236          * The boot code uses the ethernet controller, so reset it to start
1237          * fresh.  au1000_init() expects that the device is in reset state.
1238          */
1239         au1000_reset_mac(dev);
1240
1241         err = register_netdev(dev);
1242         if (err) {
1243                 netdev_err(dev, "Cannot register net device, aborting.\n");
1244                 goto err_out;
1245         }
1246
1247         netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1248                         (unsigned long)base->start, irq);
1249         if (version_printed++ == 0)
1250                 pr_info("%s version %s %s\n",
1251                                         DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1252
1253         return 0;
1254
1255 err_out:
1256         if (aup->mii_bus != NULL)
1257                 mdiobus_unregister(aup->mii_bus);
1258
1259         /* here we should have a valid dev plus aup-> register addresses
1260          * so we can reset the mac properly.
1261          */
1262         au1000_reset_mac(dev);
1263
1264         for (i = 0; i < NUM_RX_DMA; i++) {
1265                 if (aup->rx_db_inuse[i])
1266                         au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1267         }
1268         for (i = 0; i < NUM_TX_DMA; i++) {
1269                 if (aup->tx_db_inuse[i])
1270                         au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1271         }
1272 err_mdiobus_reg:
1273         mdiobus_free(aup->mii_bus);
1274 err_mdiobus_alloc:
1275         iounmap(aup->macdma);
1276 err_remap3:
1277         iounmap(aup->enable);
1278 err_remap2:
1279         iounmap(aup->mac);
1280 err_remap1:
1281         dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1282                              (void *)aup->vaddr, aup->dma_addr);
1283 err_vaddr:
1284         free_netdev(dev);
1285 err_alloc:
1286         release_mem_region(macdma->start, resource_size(macdma));
1287 err_macdma:
1288         release_mem_region(macen->start, resource_size(macen));
1289 err_request:
1290         release_mem_region(base->start, resource_size(base));
1291 out:
1292         return err;
1293 }
1294
1295 static int au1000_remove(struct platform_device *pdev)
1296 {
1297         struct net_device *dev = platform_get_drvdata(pdev);
1298         struct au1000_private *aup = netdev_priv(dev);
1299         int i;
1300         struct resource *base, *macen;
1301
1302         unregister_netdev(dev);
1303         mdiobus_unregister(aup->mii_bus);
1304         mdiobus_free(aup->mii_bus);
1305
1306         for (i = 0; i < NUM_RX_DMA; i++)
1307                 if (aup->rx_db_inuse[i])
1308                         au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1309
1310         for (i = 0; i < NUM_TX_DMA; i++)
1311                 if (aup->tx_db_inuse[i])
1312                         au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1313
1314         dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1315                         (NUM_TX_BUFFS + NUM_RX_BUFFS),
1316                         (void *)aup->vaddr, aup->dma_addr);
1317
1318         iounmap(aup->macdma);
1319         iounmap(aup->mac);
1320         iounmap(aup->enable);
1321
1322         base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1323         release_mem_region(base->start, resource_size(base));
1324
1325         base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1326         release_mem_region(base->start, resource_size(base));
1327
1328         macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1329         release_mem_region(macen->start, resource_size(macen));
1330
1331         free_netdev(dev);
1332
1333         return 0;
1334 }
1335
1336 static struct platform_driver au1000_eth_driver = {
1337         .probe  = au1000_probe,
1338         .remove = au1000_remove,
1339         .driver = {
1340                 .name   = "au1000-eth",
1341                 .owner  = THIS_MODULE,
1342         },
1343 };
1344
1345 module_platform_driver(au1000_eth_driver);
1346
1347 MODULE_ALIAS("platform:au1000-eth");