]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
b1dcece2cd64c35d0604153fcdb8d6a083d9edab
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <linux/rtc.h>
36 #include <net/ip.h>
37 #include <net/tcp.h>
38 #include <net/udp.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <net/udp_tunnel.h>
42 #ifdef CONFIG_NET_RX_BUSY_POLL
43 #include <net/busy_poll.h>
44 #endif
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52
53 #include "bnxt_hsi.h"
54 #include "bnxt.h"
55 #include "bnxt_sriov.h"
56 #include "bnxt_ethtool.h"
57
58 #define BNXT_TX_TIMEOUT         (5 * HZ)
59
60 static const char version[] =
61         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
62
63 MODULE_LICENSE("GPL");
64 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
65 MODULE_VERSION(DRV_MODULE_VERSION);
66
67 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
68 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
69 #define BNXT_RX_COPY_THRESH 256
70
71 #define BNXT_TX_PUSH_THRESH 164
72
73 enum board_idx {
74         BCM57301,
75         BCM57302,
76         BCM57304,
77         BCM57417_NPAR,
78         BCM58700,
79         BCM57311,
80         BCM57312,
81         BCM57402,
82         BCM57404,
83         BCM57406,
84         BCM57402_NPAR,
85         BCM57407,
86         BCM57412,
87         BCM57414,
88         BCM57416,
89         BCM57417,
90         BCM57412_NPAR,
91         BCM57314,
92         BCM57417_SFP,
93         BCM57416_SFP,
94         BCM57404_NPAR,
95         BCM57406_NPAR,
96         BCM57407_SFP,
97         BCM57407_NPAR,
98         BCM57414_NPAR,
99         BCM57416_NPAR,
100         NETXTREME_E_VF,
101         NETXTREME_C_VF,
102 };
103
104 /* indexed by enum above */
105 static const struct {
106         char *name;
107 } board_info[] = {
108         { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
109         { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
110         { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
111         { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
112         { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
113         { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
114         { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
115         { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
116         { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
117         { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
118         { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
119         { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
120         { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
121         { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
122         { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
123         { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
124         { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
125         { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
126         { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
127         { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
128         { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
129         { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
130         { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
131         { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
132         { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
133         { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
134         { "Broadcom NetXtreme-E Ethernet Virtual Function" },
135         { "Broadcom NetXtreme-C Ethernet Virtual Function" },
136 };
137
138 static const struct pci_device_id bnxt_pci_tbl[] = {
139         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
140         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
141         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
142         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
143         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
144         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
145         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
146         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
147         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
148         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
149         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
150         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
151         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
152         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
153         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
154         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
155         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
156         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
157         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
158         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
159         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
160         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
161         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
162         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
163         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
164         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
165         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
166         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
167         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
168         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
169 #ifdef CONFIG_BNXT_SRIOV
170         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
171         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
172         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
173         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
174         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
175         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
176 #endif
177         { 0 }
178 };
179
180 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
181
182 static const u16 bnxt_vf_req_snif[] = {
183         HWRM_FUNC_CFG,
184         HWRM_PORT_PHY_QCFG,
185         HWRM_CFA_L2_FILTER_ALLOC,
186 };
187
188 static const u16 bnxt_async_events_arr[] = {
189         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
190         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
191         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
192         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
193         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
194 };
195
196 static bool bnxt_vf_pciid(enum board_idx idx)
197 {
198         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
199 }
200
201 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
202 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
203 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
204
205 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
206                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
207
208 #define BNXT_CP_DB(db, raw_cons)                                        \
209                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
210
211 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
212                 writel(DB_CP_IRQ_DIS_FLAGS, db)
213
214 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
215 {
216         /* Tell compiler to fetch tx indices from memory. */
217         barrier();
218
219         return bp->tx_ring_size -
220                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
221 }
222
223 static const u16 bnxt_lhint_arr[] = {
224         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
225         TX_BD_FLAGS_LHINT_512_TO_1023,
226         TX_BD_FLAGS_LHINT_1024_TO_2047,
227         TX_BD_FLAGS_LHINT_1024_TO_2047,
228         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
243 };
244
245 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
246 {
247         struct bnxt *bp = netdev_priv(dev);
248         struct tx_bd *txbd;
249         struct tx_bd_ext *txbd1;
250         struct netdev_queue *txq;
251         int i;
252         dma_addr_t mapping;
253         unsigned int length, pad = 0;
254         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
255         u16 prod, last_frag;
256         struct pci_dev *pdev = bp->pdev;
257         struct bnxt_tx_ring_info *txr;
258         struct bnxt_sw_tx_bd *tx_buf;
259
260         i = skb_get_queue_mapping(skb);
261         if (unlikely(i >= bp->tx_nr_rings)) {
262                 dev_kfree_skb_any(skb);
263                 return NETDEV_TX_OK;
264         }
265
266         txr = &bp->tx_ring[i];
267         txq = netdev_get_tx_queue(dev, i);
268         prod = txr->tx_prod;
269
270         free_size = bnxt_tx_avail(bp, txr);
271         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
272                 netif_tx_stop_queue(txq);
273                 return NETDEV_TX_BUSY;
274         }
275
276         length = skb->len;
277         len = skb_headlen(skb);
278         last_frag = skb_shinfo(skb)->nr_frags;
279
280         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
281
282         txbd->tx_bd_opaque = prod;
283
284         tx_buf = &txr->tx_buf_ring[prod];
285         tx_buf->skb = skb;
286         tx_buf->nr_frags = last_frag;
287
288         vlan_tag_flags = 0;
289         cfa_action = 0;
290         if (skb_vlan_tag_present(skb)) {
291                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
292                                  skb_vlan_tag_get(skb);
293                 /* Currently supports 8021Q, 8021AD vlan offloads
294                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
295                  */
296                 if (skb->vlan_proto == htons(ETH_P_8021Q))
297                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
298         }
299
300         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
301                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
302                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
303                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
304                 void *pdata = tx_push_buf->data;
305                 u64 *end;
306                 int j, push_len;
307
308                 /* Set COAL_NOW to be ready quickly for the next push */
309                 tx_push->tx_bd_len_flags_type =
310                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
311                                         TX_BD_TYPE_LONG_TX_BD |
312                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
313                                         TX_BD_FLAGS_COAL_NOW |
314                                         TX_BD_FLAGS_PACKET_END |
315                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
316
317                 if (skb->ip_summed == CHECKSUM_PARTIAL)
318                         tx_push1->tx_bd_hsize_lflags =
319                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
320                 else
321                         tx_push1->tx_bd_hsize_lflags = 0;
322
323                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
324                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
325
326                 end = pdata + length;
327                 end = PTR_ALIGN(end, 8) - 1;
328                 *end = 0;
329
330                 skb_copy_from_linear_data(skb, pdata, len);
331                 pdata += len;
332                 for (j = 0; j < last_frag; j++) {
333                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
334                         void *fptr;
335
336                         fptr = skb_frag_address_safe(frag);
337                         if (!fptr)
338                                 goto normal_tx;
339
340                         memcpy(pdata, fptr, skb_frag_size(frag));
341                         pdata += skb_frag_size(frag);
342                 }
343
344                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
345                 txbd->tx_bd_haddr = txr->data_mapping;
346                 prod = NEXT_TX(prod);
347                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
348                 memcpy(txbd, tx_push1, sizeof(*txbd));
349                 prod = NEXT_TX(prod);
350                 tx_push->doorbell =
351                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
352                 txr->tx_prod = prod;
353
354                 tx_buf->is_push = 1;
355                 netdev_tx_sent_queue(txq, skb->len);
356                 wmb();  /* Sync is_push and byte queue before pushing data */
357
358                 push_len = (length + sizeof(*tx_push) + 7) / 8;
359                 if (push_len > 16) {
360                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
361                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
362                                          (push_len - 16) << 1);
363                 } else {
364                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
365                                          push_len);
366                 }
367
368                 goto tx_done;
369         }
370
371 normal_tx:
372         if (length < BNXT_MIN_PKT_SIZE) {
373                 pad = BNXT_MIN_PKT_SIZE - length;
374                 if (skb_pad(skb, pad)) {
375                         /* SKB already freed. */
376                         tx_buf->skb = NULL;
377                         return NETDEV_TX_OK;
378                 }
379                 length = BNXT_MIN_PKT_SIZE;
380         }
381
382         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
383
384         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
385                 dev_kfree_skb_any(skb);
386                 tx_buf->skb = NULL;
387                 return NETDEV_TX_OK;
388         }
389
390         dma_unmap_addr_set(tx_buf, mapping, mapping);
391         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
392                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
393
394         txbd->tx_bd_haddr = cpu_to_le64(mapping);
395
396         prod = NEXT_TX(prod);
397         txbd1 = (struct tx_bd_ext *)
398                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
399
400         txbd1->tx_bd_hsize_lflags = 0;
401         if (skb_is_gso(skb)) {
402                 u32 hdr_len;
403
404                 if (skb->encapsulation)
405                         hdr_len = skb_inner_network_offset(skb) +
406                                 skb_inner_network_header_len(skb) +
407                                 inner_tcp_hdrlen(skb);
408                 else
409                         hdr_len = skb_transport_offset(skb) +
410                                 tcp_hdrlen(skb);
411
412                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
413                                         TX_BD_FLAGS_T_IPID |
414                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
415                 length = skb_shinfo(skb)->gso_size;
416                 txbd1->tx_bd_mss = cpu_to_le32(length);
417                 length += hdr_len;
418         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
419                 txbd1->tx_bd_hsize_lflags =
420                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
421                 txbd1->tx_bd_mss = 0;
422         }
423
424         length >>= 9;
425         flags |= bnxt_lhint_arr[length];
426         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
427
428         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
429         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
430         for (i = 0; i < last_frag; i++) {
431                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
432
433                 prod = NEXT_TX(prod);
434                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
435
436                 len = skb_frag_size(frag);
437                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
438                                            DMA_TO_DEVICE);
439
440                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
441                         goto tx_dma_error;
442
443                 tx_buf = &txr->tx_buf_ring[prod];
444                 dma_unmap_addr_set(tx_buf, mapping, mapping);
445
446                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
447
448                 flags = len << TX_BD_LEN_SHIFT;
449                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
450         }
451
452         flags &= ~TX_BD_LEN;
453         txbd->tx_bd_len_flags_type =
454                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
455                             TX_BD_FLAGS_PACKET_END);
456
457         netdev_tx_sent_queue(txq, skb->len);
458
459         /* Sync BD data before updating doorbell */
460         wmb();
461
462         prod = NEXT_TX(prod);
463         txr->tx_prod = prod;
464
465         writel(DB_KEY_TX | prod, txr->tx_doorbell);
466         writel(DB_KEY_TX | prod, txr->tx_doorbell);
467
468 tx_done:
469
470         mmiowb();
471
472         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
473                 netif_tx_stop_queue(txq);
474
475                 /* netif_tx_stop_queue() must be done before checking
476                  * tx index in bnxt_tx_avail() below, because in
477                  * bnxt_tx_int(), we update tx index before checking for
478                  * netif_tx_queue_stopped().
479                  */
480                 smp_mb();
481                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
482                         netif_tx_wake_queue(txq);
483         }
484         return NETDEV_TX_OK;
485
486 tx_dma_error:
487         last_frag = i;
488
489         /* start back at beginning and unmap skb */
490         prod = txr->tx_prod;
491         tx_buf = &txr->tx_buf_ring[prod];
492         tx_buf->skb = NULL;
493         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
494                          skb_headlen(skb), PCI_DMA_TODEVICE);
495         prod = NEXT_TX(prod);
496
497         /* unmap remaining mapped pages */
498         for (i = 0; i < last_frag; i++) {
499                 prod = NEXT_TX(prod);
500                 tx_buf = &txr->tx_buf_ring[prod];
501                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
502                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
503                                PCI_DMA_TODEVICE);
504         }
505
506         dev_kfree_skb_any(skb);
507         return NETDEV_TX_OK;
508 }
509
510 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
511 {
512         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
513         int index = txr - &bp->tx_ring[0];
514         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
515         u16 cons = txr->tx_cons;
516         struct pci_dev *pdev = bp->pdev;
517         int i;
518         unsigned int tx_bytes = 0;
519
520         for (i = 0; i < nr_pkts; i++) {
521                 struct bnxt_sw_tx_bd *tx_buf;
522                 struct sk_buff *skb;
523                 int j, last;
524
525                 tx_buf = &txr->tx_buf_ring[cons];
526                 cons = NEXT_TX(cons);
527                 skb = tx_buf->skb;
528                 tx_buf->skb = NULL;
529
530                 if (tx_buf->is_push) {
531                         tx_buf->is_push = 0;
532                         goto next_tx_int;
533                 }
534
535                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
536                                  skb_headlen(skb), PCI_DMA_TODEVICE);
537                 last = tx_buf->nr_frags;
538
539                 for (j = 0; j < last; j++) {
540                         cons = NEXT_TX(cons);
541                         tx_buf = &txr->tx_buf_ring[cons];
542                         dma_unmap_page(
543                                 &pdev->dev,
544                                 dma_unmap_addr(tx_buf, mapping),
545                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
546                                 PCI_DMA_TODEVICE);
547                 }
548
549 next_tx_int:
550                 cons = NEXT_TX(cons);
551
552                 tx_bytes += skb->len;
553                 dev_kfree_skb_any(skb);
554         }
555
556         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
557         txr->tx_cons = cons;
558
559         /* Need to make the tx_cons update visible to bnxt_start_xmit()
560          * before checking for netif_tx_queue_stopped().  Without the
561          * memory barrier, there is a small possibility that bnxt_start_xmit()
562          * will miss it and cause the queue to be stopped forever.
563          */
564         smp_mb();
565
566         if (unlikely(netif_tx_queue_stopped(txq)) &&
567             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
568                 __netif_tx_lock(txq, smp_processor_id());
569                 if (netif_tx_queue_stopped(txq) &&
570                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
571                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
572                         netif_tx_wake_queue(txq);
573                 __netif_tx_unlock(txq);
574         }
575 }
576
577 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
578                                        gfp_t gfp)
579 {
580         u8 *data;
581         struct pci_dev *pdev = bp->pdev;
582
583         data = kmalloc(bp->rx_buf_size, gfp);
584         if (!data)
585                 return NULL;
586
587         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
588                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
589
590         if (dma_mapping_error(&pdev->dev, *mapping)) {
591                 kfree(data);
592                 data = NULL;
593         }
594         return data;
595 }
596
597 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
598                                      struct bnxt_rx_ring_info *rxr,
599                                      u16 prod, gfp_t gfp)
600 {
601         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
602         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
603         u8 *data;
604         dma_addr_t mapping;
605
606         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
607         if (!data)
608                 return -ENOMEM;
609
610         rx_buf->data = data;
611         dma_unmap_addr_set(rx_buf, mapping, mapping);
612
613         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
614
615         return 0;
616 }
617
618 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
619                                u8 *data)
620 {
621         u16 prod = rxr->rx_prod;
622         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
623         struct rx_bd *cons_bd, *prod_bd;
624
625         prod_rx_buf = &rxr->rx_buf_ring[prod];
626         cons_rx_buf = &rxr->rx_buf_ring[cons];
627
628         prod_rx_buf->data = data;
629
630         dma_unmap_addr_set(prod_rx_buf, mapping,
631                            dma_unmap_addr(cons_rx_buf, mapping));
632
633         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
634         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
635
636         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
637 }
638
639 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
640 {
641         u16 next, max = rxr->rx_agg_bmap_size;
642
643         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
644         if (next >= max)
645                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
646         return next;
647 }
648
649 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
650                                      struct bnxt_rx_ring_info *rxr,
651                                      u16 prod, gfp_t gfp)
652 {
653         struct rx_bd *rxbd =
654                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
655         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
656         struct pci_dev *pdev = bp->pdev;
657         struct page *page;
658         dma_addr_t mapping;
659         u16 sw_prod = rxr->rx_sw_agg_prod;
660         unsigned int offset = 0;
661
662         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
663                 page = rxr->rx_page;
664                 if (!page) {
665                         page = alloc_page(gfp);
666                         if (!page)
667                                 return -ENOMEM;
668                         rxr->rx_page = page;
669                         rxr->rx_page_offset = 0;
670                 }
671                 offset = rxr->rx_page_offset;
672                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
673                 if (rxr->rx_page_offset == PAGE_SIZE)
674                         rxr->rx_page = NULL;
675                 else
676                         get_page(page);
677         } else {
678                 page = alloc_page(gfp);
679                 if (!page)
680                         return -ENOMEM;
681         }
682
683         mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
684                                PCI_DMA_FROMDEVICE);
685         if (dma_mapping_error(&pdev->dev, mapping)) {
686                 __free_page(page);
687                 return -EIO;
688         }
689
690         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
691                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
692
693         __set_bit(sw_prod, rxr->rx_agg_bmap);
694         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
695         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
696
697         rx_agg_buf->page = page;
698         rx_agg_buf->offset = offset;
699         rx_agg_buf->mapping = mapping;
700         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
701         rxbd->rx_bd_opaque = sw_prod;
702         return 0;
703 }
704
705 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
706                                    u32 agg_bufs)
707 {
708         struct bnxt *bp = bnapi->bp;
709         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
710         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
711         u16 prod = rxr->rx_agg_prod;
712         u16 sw_prod = rxr->rx_sw_agg_prod;
713         u32 i;
714
715         for (i = 0; i < agg_bufs; i++) {
716                 u16 cons;
717                 struct rx_agg_cmp *agg;
718                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
719                 struct rx_bd *prod_bd;
720                 struct page *page;
721
722                 agg = (struct rx_agg_cmp *)
723                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
724                 cons = agg->rx_agg_cmp_opaque;
725                 __clear_bit(cons, rxr->rx_agg_bmap);
726
727                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
728                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
729
730                 __set_bit(sw_prod, rxr->rx_agg_bmap);
731                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
732                 cons_rx_buf = &rxr->rx_agg_ring[cons];
733
734                 /* It is possible for sw_prod to be equal to cons, so
735                  * set cons_rx_buf->page to NULL first.
736                  */
737                 page = cons_rx_buf->page;
738                 cons_rx_buf->page = NULL;
739                 prod_rx_buf->page = page;
740                 prod_rx_buf->offset = cons_rx_buf->offset;
741
742                 prod_rx_buf->mapping = cons_rx_buf->mapping;
743
744                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
745
746                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
747                 prod_bd->rx_bd_opaque = sw_prod;
748
749                 prod = NEXT_RX_AGG(prod);
750                 sw_prod = NEXT_RX_AGG(sw_prod);
751                 cp_cons = NEXT_CMP(cp_cons);
752         }
753         rxr->rx_agg_prod = prod;
754         rxr->rx_sw_agg_prod = sw_prod;
755 }
756
757 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
758                                    struct bnxt_rx_ring_info *rxr, u16 cons,
759                                    u16 prod, u8 *data, dma_addr_t dma_addr,
760                                    unsigned int len)
761 {
762         int err;
763         struct sk_buff *skb;
764
765         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
766         if (unlikely(err)) {
767                 bnxt_reuse_rx_data(rxr, cons, data);
768                 return NULL;
769         }
770
771         skb = build_skb(data, 0);
772         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
773                          PCI_DMA_FROMDEVICE);
774         if (!skb) {
775                 kfree(data);
776                 return NULL;
777         }
778
779         skb_reserve(skb, BNXT_RX_OFFSET);
780         skb_put(skb, len);
781         return skb;
782 }
783
784 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
785                                      struct sk_buff *skb, u16 cp_cons,
786                                      u32 agg_bufs)
787 {
788         struct pci_dev *pdev = bp->pdev;
789         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
790         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
791         u16 prod = rxr->rx_agg_prod;
792         u32 i;
793
794         for (i = 0; i < agg_bufs; i++) {
795                 u16 cons, frag_len;
796                 struct rx_agg_cmp *agg;
797                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
798                 struct page *page;
799                 dma_addr_t mapping;
800
801                 agg = (struct rx_agg_cmp *)
802                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
803                 cons = agg->rx_agg_cmp_opaque;
804                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
805                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
806
807                 cons_rx_buf = &rxr->rx_agg_ring[cons];
808                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
809                                    cons_rx_buf->offset, frag_len);
810                 __clear_bit(cons, rxr->rx_agg_bmap);
811
812                 /* It is possible for bnxt_alloc_rx_page() to allocate
813                  * a sw_prod index that equals the cons index, so we
814                  * need to clear the cons entry now.
815                  */
816                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
817                 page = cons_rx_buf->page;
818                 cons_rx_buf->page = NULL;
819
820                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
821                         struct skb_shared_info *shinfo;
822                         unsigned int nr_frags;
823
824                         shinfo = skb_shinfo(skb);
825                         nr_frags = --shinfo->nr_frags;
826                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
827
828                         dev_kfree_skb(skb);
829
830                         cons_rx_buf->page = page;
831
832                         /* Update prod since possibly some pages have been
833                          * allocated already.
834                          */
835                         rxr->rx_agg_prod = prod;
836                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
837                         return NULL;
838                 }
839
840                 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
841                                PCI_DMA_FROMDEVICE);
842
843                 skb->data_len += frag_len;
844                 skb->len += frag_len;
845                 skb->truesize += PAGE_SIZE;
846
847                 prod = NEXT_RX_AGG(prod);
848                 cp_cons = NEXT_CMP(cp_cons);
849         }
850         rxr->rx_agg_prod = prod;
851         return skb;
852 }
853
854 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
855                                u8 agg_bufs, u32 *raw_cons)
856 {
857         u16 last;
858         struct rx_agg_cmp *agg;
859
860         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
861         last = RING_CMP(*raw_cons);
862         agg = (struct rx_agg_cmp *)
863                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
864         return RX_AGG_CMP_VALID(agg, *raw_cons);
865 }
866
867 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
868                                             unsigned int len,
869                                             dma_addr_t mapping)
870 {
871         struct bnxt *bp = bnapi->bp;
872         struct pci_dev *pdev = bp->pdev;
873         struct sk_buff *skb;
874
875         skb = napi_alloc_skb(&bnapi->napi, len);
876         if (!skb)
877                 return NULL;
878
879         dma_sync_single_for_cpu(&pdev->dev, mapping,
880                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
881
882         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
883
884         dma_sync_single_for_device(&pdev->dev, mapping,
885                                    bp->rx_copy_thresh,
886                                    PCI_DMA_FROMDEVICE);
887
888         skb_put(skb, len);
889         return skb;
890 }
891
892 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
893                            u32 *raw_cons, void *cmp)
894 {
895         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
896         struct rx_cmp *rxcmp = cmp;
897         u32 tmp_raw_cons = *raw_cons;
898         u8 cmp_type, agg_bufs = 0;
899
900         cmp_type = RX_CMP_TYPE(rxcmp);
901
902         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
903                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
904                             RX_CMP_AGG_BUFS) >>
905                            RX_CMP_AGG_BUFS_SHIFT;
906         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
907                 struct rx_tpa_end_cmp *tpa_end = cmp;
908
909                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
910                             RX_TPA_END_CMP_AGG_BUFS) >>
911                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
912         }
913
914         if (agg_bufs) {
915                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
916                         return -EBUSY;
917         }
918         *raw_cons = tmp_raw_cons;
919         return 0;
920 }
921
922 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
923 {
924         if (!rxr->bnapi->in_reset) {
925                 rxr->bnapi->in_reset = true;
926                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
927                 schedule_work(&bp->sp_task);
928         }
929         rxr->rx_next_cons = 0xffff;
930 }
931
932 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
933                            struct rx_tpa_start_cmp *tpa_start,
934                            struct rx_tpa_start_cmp_ext *tpa_start1)
935 {
936         u8 agg_id = TPA_START_AGG_ID(tpa_start);
937         u16 cons, prod;
938         struct bnxt_tpa_info *tpa_info;
939         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
940         struct rx_bd *prod_bd;
941         dma_addr_t mapping;
942
943         cons = tpa_start->rx_tpa_start_cmp_opaque;
944         prod = rxr->rx_prod;
945         cons_rx_buf = &rxr->rx_buf_ring[cons];
946         prod_rx_buf = &rxr->rx_buf_ring[prod];
947         tpa_info = &rxr->rx_tpa[agg_id];
948
949         if (unlikely(cons != rxr->rx_next_cons)) {
950                 bnxt_sched_reset(bp, rxr);
951                 return;
952         }
953
954         prod_rx_buf->data = tpa_info->data;
955
956         mapping = tpa_info->mapping;
957         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
958
959         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
960
961         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
962
963         tpa_info->data = cons_rx_buf->data;
964         cons_rx_buf->data = NULL;
965         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
966
967         tpa_info->len =
968                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
969                                 RX_TPA_START_CMP_LEN_SHIFT;
970         if (likely(TPA_START_HASH_VALID(tpa_start))) {
971                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
972
973                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
974                 tpa_info->gso_type = SKB_GSO_TCPV4;
975                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
976                 if (hash_type == 3)
977                         tpa_info->gso_type = SKB_GSO_TCPV6;
978                 tpa_info->rss_hash =
979                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
980         } else {
981                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
982                 tpa_info->gso_type = 0;
983                 if (netif_msg_rx_err(bp))
984                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
985         }
986         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
987         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
988         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
989
990         rxr->rx_prod = NEXT_RX(prod);
991         cons = NEXT_RX(cons);
992         rxr->rx_next_cons = NEXT_RX(cons);
993         cons_rx_buf = &rxr->rx_buf_ring[cons];
994
995         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
996         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
997         cons_rx_buf->data = NULL;
998 }
999
1000 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1001                            u16 cp_cons, u32 agg_bufs)
1002 {
1003         if (agg_bufs)
1004                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1005 }
1006
1007 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1008                                            int payload_off, int tcp_ts,
1009                                            struct sk_buff *skb)
1010 {
1011 #ifdef CONFIG_INET
1012         struct tcphdr *th;
1013         int len, nw_off;
1014         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1015         u32 hdr_info = tpa_info->hdr_info;
1016         bool loopback = false;
1017
1018         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1019         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1020         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1021
1022         /* If the packet is an internal loopback packet, the offsets will
1023          * have an extra 4 bytes.
1024          */
1025         if (inner_mac_off == 4) {
1026                 loopback = true;
1027         } else if (inner_mac_off > 4) {
1028                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1029                                             ETH_HLEN - 2));
1030
1031                 /* We only support inner iPv4/ipv6.  If we don't see the
1032                  * correct protocol ID, it must be a loopback packet where
1033                  * the offsets are off by 4.
1034                  */
1035                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1036                         loopback = true;
1037         }
1038         if (loopback) {
1039                 /* internal loopback packet, subtract all offsets by 4 */
1040                 inner_ip_off -= 4;
1041                 inner_mac_off -= 4;
1042                 outer_ip_off -= 4;
1043         }
1044
1045         nw_off = inner_ip_off - ETH_HLEN;
1046         skb_set_network_header(skb, nw_off);
1047         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1048                 struct ipv6hdr *iph = ipv6_hdr(skb);
1049
1050                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1051                 len = skb->len - skb_transport_offset(skb);
1052                 th = tcp_hdr(skb);
1053                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1054         } else {
1055                 struct iphdr *iph = ip_hdr(skb);
1056
1057                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1058                 len = skb->len - skb_transport_offset(skb);
1059                 th = tcp_hdr(skb);
1060                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1061         }
1062
1063         if (inner_mac_off) { /* tunnel */
1064                 struct udphdr *uh = NULL;
1065                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1066                                             ETH_HLEN - 2));
1067
1068                 if (proto == htons(ETH_P_IP)) {
1069                         struct iphdr *iph = (struct iphdr *)skb->data;
1070
1071                         if (iph->protocol == IPPROTO_UDP)
1072                                 uh = (struct udphdr *)(iph + 1);
1073                 } else {
1074                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1075
1076                         if (iph->nexthdr == IPPROTO_UDP)
1077                                 uh = (struct udphdr *)(iph + 1);
1078                 }
1079                 if (uh) {
1080                         if (uh->check)
1081                                 skb_shinfo(skb)->gso_type |=
1082                                         SKB_GSO_UDP_TUNNEL_CSUM;
1083                         else
1084                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1085                 }
1086         }
1087 #endif
1088         return skb;
1089 }
1090
1091 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1092 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1093
1094 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1095                                            int payload_off, int tcp_ts,
1096                                            struct sk_buff *skb)
1097 {
1098 #ifdef CONFIG_INET
1099         struct tcphdr *th;
1100         int len, nw_off, tcp_opt_len;
1101
1102         if (tcp_ts)
1103                 tcp_opt_len = 12;
1104
1105         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1106                 struct iphdr *iph;
1107
1108                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1109                          ETH_HLEN;
1110                 skb_set_network_header(skb, nw_off);
1111                 iph = ip_hdr(skb);
1112                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1113                 len = skb->len - skb_transport_offset(skb);
1114                 th = tcp_hdr(skb);
1115                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1116         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1117                 struct ipv6hdr *iph;
1118
1119                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1120                          ETH_HLEN;
1121                 skb_set_network_header(skb, nw_off);
1122                 iph = ipv6_hdr(skb);
1123                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1124                 len = skb->len - skb_transport_offset(skb);
1125                 th = tcp_hdr(skb);
1126                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1127         } else {
1128                 dev_kfree_skb_any(skb);
1129                 return NULL;
1130         }
1131         tcp_gro_complete(skb);
1132
1133         if (nw_off) { /* tunnel */
1134                 struct udphdr *uh = NULL;
1135
1136                 if (skb->protocol == htons(ETH_P_IP)) {
1137                         struct iphdr *iph = (struct iphdr *)skb->data;
1138
1139                         if (iph->protocol == IPPROTO_UDP)
1140                                 uh = (struct udphdr *)(iph + 1);
1141                 } else {
1142                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1143
1144                         if (iph->nexthdr == IPPROTO_UDP)
1145                                 uh = (struct udphdr *)(iph + 1);
1146                 }
1147                 if (uh) {
1148                         if (uh->check)
1149                                 skb_shinfo(skb)->gso_type |=
1150                                         SKB_GSO_UDP_TUNNEL_CSUM;
1151                         else
1152                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1153                 }
1154         }
1155 #endif
1156         return skb;
1157 }
1158
1159 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1160                                            struct bnxt_tpa_info *tpa_info,
1161                                            struct rx_tpa_end_cmp *tpa_end,
1162                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1163                                            struct sk_buff *skb)
1164 {
1165 #ifdef CONFIG_INET
1166         int payload_off;
1167         u16 segs;
1168
1169         segs = TPA_END_TPA_SEGS(tpa_end);
1170         if (segs == 1)
1171                 return skb;
1172
1173         NAPI_GRO_CB(skb)->count = segs;
1174         skb_shinfo(skb)->gso_size =
1175                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1176         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1177         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1178                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1179                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1180         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1181 #endif
1182         return skb;
1183 }
1184
1185 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1186                                            struct bnxt_napi *bnapi,
1187                                            u32 *raw_cons,
1188                                            struct rx_tpa_end_cmp *tpa_end,
1189                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1190                                            bool *agg_event)
1191 {
1192         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1193         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1194         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1195         u8 *data, agg_bufs;
1196         u16 cp_cons = RING_CMP(*raw_cons);
1197         unsigned int len;
1198         struct bnxt_tpa_info *tpa_info;
1199         dma_addr_t mapping;
1200         struct sk_buff *skb;
1201
1202         if (unlikely(bnapi->in_reset)) {
1203                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1204
1205                 if (rc < 0)
1206                         return ERR_PTR(-EBUSY);
1207                 return NULL;
1208         }
1209
1210         tpa_info = &rxr->rx_tpa[agg_id];
1211         data = tpa_info->data;
1212         prefetch(data);
1213         len = tpa_info->len;
1214         mapping = tpa_info->mapping;
1215
1216         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1217                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1218
1219         if (agg_bufs) {
1220                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1221                         return ERR_PTR(-EBUSY);
1222
1223                 *agg_event = true;
1224                 cp_cons = NEXT_CMP(cp_cons);
1225         }
1226
1227         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1228                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1229                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1230                             agg_bufs, (int)MAX_SKB_FRAGS);
1231                 return NULL;
1232         }
1233
1234         if (len <= bp->rx_copy_thresh) {
1235                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1236                 if (!skb) {
1237                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1238                         return NULL;
1239                 }
1240         } else {
1241                 u8 *new_data;
1242                 dma_addr_t new_mapping;
1243
1244                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1245                 if (!new_data) {
1246                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1247                         return NULL;
1248                 }
1249
1250                 tpa_info->data = new_data;
1251                 tpa_info->mapping = new_mapping;
1252
1253                 skb = build_skb(data, 0);
1254                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1255                                  PCI_DMA_FROMDEVICE);
1256
1257                 if (!skb) {
1258                         kfree(data);
1259                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1260                         return NULL;
1261                 }
1262                 skb_reserve(skb, BNXT_RX_OFFSET);
1263                 skb_put(skb, len);
1264         }
1265
1266         if (agg_bufs) {
1267                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1268                 if (!skb) {
1269                         /* Page reuse already handled by bnxt_rx_pages(). */
1270                         return NULL;
1271                 }
1272         }
1273         skb->protocol = eth_type_trans(skb, bp->dev);
1274
1275         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1276                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1277
1278         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1279             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1280                 u16 vlan_proto = tpa_info->metadata >>
1281                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1282                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1283
1284                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1285         }
1286
1287         skb_checksum_none_assert(skb);
1288         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1289                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1290                 skb->csum_level =
1291                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1292         }
1293
1294         if (TPA_END_GRO(tpa_end))
1295                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1296
1297         return skb;
1298 }
1299
1300 /* returns the following:
1301  * 1       - 1 packet successfully received
1302  * 0       - successful TPA_START, packet not completed yet
1303  * -EBUSY  - completion ring does not have all the agg buffers yet
1304  * -ENOMEM - packet aborted due to out of memory
1305  * -EIO    - packet aborted due to hw error indicated in BD
1306  */
1307 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1308                        bool *agg_event)
1309 {
1310         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1311         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1312         struct net_device *dev = bp->dev;
1313         struct rx_cmp *rxcmp;
1314         struct rx_cmp_ext *rxcmp1;
1315         u32 tmp_raw_cons = *raw_cons;
1316         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1317         struct bnxt_sw_rx_bd *rx_buf;
1318         unsigned int len;
1319         u8 *data, agg_bufs, cmp_type;
1320         dma_addr_t dma_addr;
1321         struct sk_buff *skb;
1322         int rc = 0;
1323
1324         rxcmp = (struct rx_cmp *)
1325                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1326
1327         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1328         cp_cons = RING_CMP(tmp_raw_cons);
1329         rxcmp1 = (struct rx_cmp_ext *)
1330                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1331
1332         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1333                 return -EBUSY;
1334
1335         cmp_type = RX_CMP_TYPE(rxcmp);
1336
1337         prod = rxr->rx_prod;
1338
1339         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1340                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1341                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1342
1343                 goto next_rx_no_prod;
1344
1345         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1346                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1347                                    (struct rx_tpa_end_cmp *)rxcmp,
1348                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1349                                    agg_event);
1350
1351                 if (unlikely(IS_ERR(skb)))
1352                         return -EBUSY;
1353
1354                 rc = -ENOMEM;
1355                 if (likely(skb)) {
1356                         skb_record_rx_queue(skb, bnapi->index);
1357                         skb_mark_napi_id(skb, &bnapi->napi);
1358                         if (bnxt_busy_polling(bnapi))
1359                                 netif_receive_skb(skb);
1360                         else
1361                                 napi_gro_receive(&bnapi->napi, skb);
1362                         rc = 1;
1363                 }
1364                 goto next_rx_no_prod;
1365         }
1366
1367         cons = rxcmp->rx_cmp_opaque;
1368         rx_buf = &rxr->rx_buf_ring[cons];
1369         data = rx_buf->data;
1370         if (unlikely(cons != rxr->rx_next_cons)) {
1371                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1372
1373                 bnxt_sched_reset(bp, rxr);
1374                 return rc1;
1375         }
1376         prefetch(data);
1377
1378         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1379                                 RX_CMP_AGG_BUFS_SHIFT;
1380
1381         if (agg_bufs) {
1382                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1383                         return -EBUSY;
1384
1385                 cp_cons = NEXT_CMP(cp_cons);
1386                 *agg_event = true;
1387         }
1388
1389         rx_buf->data = NULL;
1390         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1391                 bnxt_reuse_rx_data(rxr, cons, data);
1392                 if (agg_bufs)
1393                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1394
1395                 rc = -EIO;
1396                 goto next_rx;
1397         }
1398
1399         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1400         dma_addr = dma_unmap_addr(rx_buf, mapping);
1401
1402         if (len <= bp->rx_copy_thresh) {
1403                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1404                 bnxt_reuse_rx_data(rxr, cons, data);
1405                 if (!skb) {
1406                         rc = -ENOMEM;
1407                         goto next_rx;
1408                 }
1409         } else {
1410                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1411                 if (!skb) {
1412                         rc = -ENOMEM;
1413                         goto next_rx;
1414                 }
1415         }
1416
1417         if (agg_bufs) {
1418                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1419                 if (!skb) {
1420                         rc = -ENOMEM;
1421                         goto next_rx;
1422                 }
1423         }
1424
1425         if (RX_CMP_HASH_VALID(rxcmp)) {
1426                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1427                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1428
1429                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1430                 if (hash_type != 1 && hash_type != 3)
1431                         type = PKT_HASH_TYPE_L3;
1432                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1433         }
1434
1435         skb->protocol = eth_type_trans(skb, dev);
1436
1437         if ((rxcmp1->rx_cmp_flags2 &
1438              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1439             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1440                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1441                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1442                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443
1444                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1445         }
1446
1447         skb_checksum_none_assert(skb);
1448         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1449                 if (dev->features & NETIF_F_RXCSUM) {
1450                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1451                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1452                 }
1453         } else {
1454                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1455                         if (dev->features & NETIF_F_RXCSUM)
1456                                 cpr->rx_l4_csum_errors++;
1457                 }
1458         }
1459
1460         skb_record_rx_queue(skb, bnapi->index);
1461         skb_mark_napi_id(skb, &bnapi->napi);
1462         if (bnxt_busy_polling(bnapi))
1463                 netif_receive_skb(skb);
1464         else
1465                 napi_gro_receive(&bnapi->napi, skb);
1466         rc = 1;
1467
1468 next_rx:
1469         rxr->rx_prod = NEXT_RX(prod);
1470         rxr->rx_next_cons = NEXT_RX(cons);
1471
1472 next_rx_no_prod:
1473         *raw_cons = tmp_raw_cons;
1474
1475         return rc;
1476 }
1477
1478 #define BNXT_GET_EVENT_PORT(data)       \
1479         ((data) &                               \
1480          HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1481
1482 static int bnxt_async_event_process(struct bnxt *bp,
1483                                     struct hwrm_async_event_cmpl *cmpl)
1484 {
1485         u16 event_id = le16_to_cpu(cmpl->event_id);
1486
1487         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1488         switch (event_id) {
1489         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1490                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1491                 struct bnxt_link_info *link_info = &bp->link_info;
1492
1493                 if (BNXT_VF(bp))
1494                         goto async_event_process_exit;
1495                 if (data1 & 0x20000) {
1496                         u16 fw_speed = link_info->force_link_speed;
1497                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1498
1499                         netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1500                                     speed);
1501                 }
1502                 /* fall thru */
1503         }
1504         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1505                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1506                 break;
1507         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1508                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1509                 break;
1510         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1511                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1512                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1513
1514                 if (BNXT_VF(bp))
1515                         break;
1516
1517                 if (bp->pf.port_id != port_id)
1518                         break;
1519
1520                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1521                 break;
1522         }
1523         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1524                 if (BNXT_PF(bp))
1525                         goto async_event_process_exit;
1526                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1527                 break;
1528         default:
1529                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1530                            event_id);
1531                 goto async_event_process_exit;
1532         }
1533         schedule_work(&bp->sp_task);
1534 async_event_process_exit:
1535         return 0;
1536 }
1537
1538 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1539 {
1540         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1541         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1542         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1543                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1544
1545         switch (cmpl_type) {
1546         case CMPL_BASE_TYPE_HWRM_DONE:
1547                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1548                 if (seq_id == bp->hwrm_intr_seq_id)
1549                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1550                 else
1551                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1552                 break;
1553
1554         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1555                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1556
1557                 if ((vf_id < bp->pf.first_vf_id) ||
1558                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1559                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1560                                    vf_id);
1561                         return -EINVAL;
1562                 }
1563
1564                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1565                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1566                 schedule_work(&bp->sp_task);
1567                 break;
1568
1569         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1570                 bnxt_async_event_process(bp,
1571                                          (struct hwrm_async_event_cmpl *)txcmp);
1572
1573         default:
1574                 break;
1575         }
1576
1577         return 0;
1578 }
1579
1580 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1581 {
1582         struct bnxt_napi *bnapi = dev_instance;
1583         struct bnxt *bp = bnapi->bp;
1584         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1585         u32 cons = RING_CMP(cpr->cp_raw_cons);
1586
1587         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1588         napi_schedule(&bnapi->napi);
1589         return IRQ_HANDLED;
1590 }
1591
1592 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1593 {
1594         u32 raw_cons = cpr->cp_raw_cons;
1595         u16 cons = RING_CMP(raw_cons);
1596         struct tx_cmp *txcmp;
1597
1598         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1599
1600         return TX_CMP_VALID(txcmp, raw_cons);
1601 }
1602
1603 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1604 {
1605         struct bnxt_napi *bnapi = dev_instance;
1606         struct bnxt *bp = bnapi->bp;
1607         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1608         u32 cons = RING_CMP(cpr->cp_raw_cons);
1609         u32 int_status;
1610
1611         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1612
1613         if (!bnxt_has_work(bp, cpr)) {
1614                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1615                 /* return if erroneous interrupt */
1616                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1617                         return IRQ_NONE;
1618         }
1619
1620         /* disable ring IRQ */
1621         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1622
1623         /* Return here if interrupt is shared and is disabled. */
1624         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1625                 return IRQ_HANDLED;
1626
1627         napi_schedule(&bnapi->napi);
1628         return IRQ_HANDLED;
1629 }
1630
1631 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1632 {
1633         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1634         u32 raw_cons = cpr->cp_raw_cons;
1635         u32 cons;
1636         int tx_pkts = 0;
1637         int rx_pkts = 0;
1638         bool rx_event = false;
1639         bool agg_event = false;
1640         struct tx_cmp *txcmp;
1641
1642         while (1) {
1643                 int rc;
1644
1645                 cons = RING_CMP(raw_cons);
1646                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1647
1648                 if (!TX_CMP_VALID(txcmp, raw_cons))
1649                         break;
1650
1651                 /* The valid test of the entry must be done first before
1652                  * reading any further.
1653                  */
1654                 dma_rmb();
1655                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1656                         tx_pkts++;
1657                         /* return full budget so NAPI will complete. */
1658                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1659                                 rx_pkts = budget;
1660                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1661                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1662                         if (likely(rc >= 0))
1663                                 rx_pkts += rc;
1664                         else if (rc == -EBUSY)  /* partial completion */
1665                                 break;
1666                         rx_event = true;
1667                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1668                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1669                                     (TX_CMP_TYPE(txcmp) ==
1670                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1671                                     (TX_CMP_TYPE(txcmp) ==
1672                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1673                         bnxt_hwrm_handler(bp, txcmp);
1674                 }
1675                 raw_cons = NEXT_RAW_CMP(raw_cons);
1676
1677                 if (rx_pkts == budget)
1678                         break;
1679         }
1680
1681         cpr->cp_raw_cons = raw_cons;
1682         /* ACK completion ring before freeing tx ring and producing new
1683          * buffers in rx/agg rings to prevent overflowing the completion
1684          * ring.
1685          */
1686         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1687
1688         if (tx_pkts)
1689                 bnxt_tx_int(bp, bnapi, tx_pkts);
1690
1691         if (rx_event) {
1692                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1693
1694                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1695                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1696                 if (agg_event) {
1697                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1698                                rxr->rx_agg_doorbell);
1699                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1700                                rxr->rx_agg_doorbell);
1701                 }
1702         }
1703         return rx_pkts;
1704 }
1705
1706 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1707 {
1708         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1709         struct bnxt *bp = bnapi->bp;
1710         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1711         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1712         struct tx_cmp *txcmp;
1713         struct rx_cmp_ext *rxcmp1;
1714         u32 cp_cons, tmp_raw_cons;
1715         u32 raw_cons = cpr->cp_raw_cons;
1716         u32 rx_pkts = 0;
1717         bool agg_event = false;
1718
1719         while (1) {
1720                 int rc;
1721
1722                 cp_cons = RING_CMP(raw_cons);
1723                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1724
1725                 if (!TX_CMP_VALID(txcmp, raw_cons))
1726                         break;
1727
1728                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1729                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1730                         cp_cons = RING_CMP(tmp_raw_cons);
1731                         rxcmp1 = (struct rx_cmp_ext *)
1732                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1733
1734                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1735                                 break;
1736
1737                         /* force an error to recycle the buffer */
1738                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1739                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1740
1741                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1742                         if (likely(rc == -EIO))
1743                                 rx_pkts++;
1744                         else if (rc == -EBUSY)  /* partial completion */
1745                                 break;
1746                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1747                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1748                         bnxt_hwrm_handler(bp, txcmp);
1749                 } else {
1750                         netdev_err(bp->dev,
1751                                    "Invalid completion received on special ring\n");
1752                 }
1753                 raw_cons = NEXT_RAW_CMP(raw_cons);
1754
1755                 if (rx_pkts == budget)
1756                         break;
1757         }
1758
1759         cpr->cp_raw_cons = raw_cons;
1760         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1761         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1762         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1763
1764         if (agg_event) {
1765                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1766                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1767         }
1768
1769         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1770                 napi_complete(napi);
1771                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1772         }
1773         return rx_pkts;
1774 }
1775
1776 static int bnxt_poll(struct napi_struct *napi, int budget)
1777 {
1778         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1779         struct bnxt *bp = bnapi->bp;
1780         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1781         int work_done = 0;
1782
1783         if (!bnxt_lock_napi(bnapi))
1784                 return budget;
1785
1786         while (1) {
1787                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1788
1789                 if (work_done >= budget)
1790                         break;
1791
1792                 if (!bnxt_has_work(bp, cpr)) {
1793                         napi_complete(napi);
1794                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1795                         break;
1796                 }
1797         }
1798         mmiowb();
1799         bnxt_unlock_napi(bnapi);
1800         return work_done;
1801 }
1802
1803 #ifdef CONFIG_NET_RX_BUSY_POLL
1804 static int bnxt_busy_poll(struct napi_struct *napi)
1805 {
1806         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1807         struct bnxt *bp = bnapi->bp;
1808         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1809         int rx_work, budget = 4;
1810
1811         if (atomic_read(&bp->intr_sem) != 0)
1812                 return LL_FLUSH_FAILED;
1813
1814         if (!bnxt_lock_poll(bnapi))
1815                 return LL_FLUSH_BUSY;
1816
1817         rx_work = bnxt_poll_work(bp, bnapi, budget);
1818
1819         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1820
1821         bnxt_unlock_poll(bnapi);
1822         return rx_work;
1823 }
1824 #endif
1825
1826 static void bnxt_free_tx_skbs(struct bnxt *bp)
1827 {
1828         int i, max_idx;
1829         struct pci_dev *pdev = bp->pdev;
1830
1831         if (!bp->tx_ring)
1832                 return;
1833
1834         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1835         for (i = 0; i < bp->tx_nr_rings; i++) {
1836                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1837                 int j;
1838
1839                 for (j = 0; j < max_idx;) {
1840                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1841                         struct sk_buff *skb = tx_buf->skb;
1842                         int k, last;
1843
1844                         if (!skb) {
1845                                 j++;
1846                                 continue;
1847                         }
1848
1849                         tx_buf->skb = NULL;
1850
1851                         if (tx_buf->is_push) {
1852                                 dev_kfree_skb(skb);
1853                                 j += 2;
1854                                 continue;
1855                         }
1856
1857                         dma_unmap_single(&pdev->dev,
1858                                          dma_unmap_addr(tx_buf, mapping),
1859                                          skb_headlen(skb),
1860                                          PCI_DMA_TODEVICE);
1861
1862                         last = tx_buf->nr_frags;
1863                         j += 2;
1864                         for (k = 0; k < last; k++, j++) {
1865                                 int ring_idx = j & bp->tx_ring_mask;
1866                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1867
1868                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1869                                 dma_unmap_page(
1870                                         &pdev->dev,
1871                                         dma_unmap_addr(tx_buf, mapping),
1872                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1873                         }
1874                         dev_kfree_skb(skb);
1875                 }
1876                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1877         }
1878 }
1879
1880 static void bnxt_free_rx_skbs(struct bnxt *bp)
1881 {
1882         int i, max_idx, max_agg_idx;
1883         struct pci_dev *pdev = bp->pdev;
1884
1885         if (!bp->rx_ring)
1886                 return;
1887
1888         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1889         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1890         for (i = 0; i < bp->rx_nr_rings; i++) {
1891                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1892                 int j;
1893
1894                 if (rxr->rx_tpa) {
1895                         for (j = 0; j < MAX_TPA; j++) {
1896                                 struct bnxt_tpa_info *tpa_info =
1897                                                         &rxr->rx_tpa[j];
1898                                 u8 *data = tpa_info->data;
1899
1900                                 if (!data)
1901                                         continue;
1902
1903                                 dma_unmap_single(
1904                                         &pdev->dev,
1905                                         dma_unmap_addr(tpa_info, mapping),
1906                                         bp->rx_buf_use_size,
1907                                         PCI_DMA_FROMDEVICE);
1908
1909                                 tpa_info->data = NULL;
1910
1911                                 kfree(data);
1912                         }
1913                 }
1914
1915                 for (j = 0; j < max_idx; j++) {
1916                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1917                         u8 *data = rx_buf->data;
1918
1919                         if (!data)
1920                                 continue;
1921
1922                         dma_unmap_single(&pdev->dev,
1923                                          dma_unmap_addr(rx_buf, mapping),
1924                                          bp->rx_buf_use_size,
1925                                          PCI_DMA_FROMDEVICE);
1926
1927                         rx_buf->data = NULL;
1928
1929                         kfree(data);
1930                 }
1931
1932                 for (j = 0; j < max_agg_idx; j++) {
1933                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1934                                 &rxr->rx_agg_ring[j];
1935                         struct page *page = rx_agg_buf->page;
1936
1937                         if (!page)
1938                                 continue;
1939
1940                         dma_unmap_page(&pdev->dev,
1941                                        dma_unmap_addr(rx_agg_buf, mapping),
1942                                        BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1943
1944                         rx_agg_buf->page = NULL;
1945                         __clear_bit(j, rxr->rx_agg_bmap);
1946
1947                         __free_page(page);
1948                 }
1949                 if (rxr->rx_page) {
1950                         __free_page(rxr->rx_page);
1951                         rxr->rx_page = NULL;
1952                 }
1953         }
1954 }
1955
1956 static void bnxt_free_skbs(struct bnxt *bp)
1957 {
1958         bnxt_free_tx_skbs(bp);
1959         bnxt_free_rx_skbs(bp);
1960 }
1961
1962 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1963 {
1964         struct pci_dev *pdev = bp->pdev;
1965         int i;
1966
1967         for (i = 0; i < ring->nr_pages; i++) {
1968                 if (!ring->pg_arr[i])
1969                         continue;
1970
1971                 dma_free_coherent(&pdev->dev, ring->page_size,
1972                                   ring->pg_arr[i], ring->dma_arr[i]);
1973
1974                 ring->pg_arr[i] = NULL;
1975         }
1976         if (ring->pg_tbl) {
1977                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1978                                   ring->pg_tbl, ring->pg_tbl_map);
1979                 ring->pg_tbl = NULL;
1980         }
1981         if (ring->vmem_size && *ring->vmem) {
1982                 vfree(*ring->vmem);
1983                 *ring->vmem = NULL;
1984         }
1985 }
1986
1987 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1988 {
1989         int i;
1990         struct pci_dev *pdev = bp->pdev;
1991
1992         if (ring->nr_pages > 1) {
1993                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1994                                                   ring->nr_pages * 8,
1995                                                   &ring->pg_tbl_map,
1996                                                   GFP_KERNEL);
1997                 if (!ring->pg_tbl)
1998                         return -ENOMEM;
1999         }
2000
2001         for (i = 0; i < ring->nr_pages; i++) {
2002                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2003                                                      ring->page_size,
2004                                                      &ring->dma_arr[i],
2005                                                      GFP_KERNEL);
2006                 if (!ring->pg_arr[i])
2007                         return -ENOMEM;
2008
2009                 if (ring->nr_pages > 1)
2010                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2011         }
2012
2013         if (ring->vmem_size) {
2014                 *ring->vmem = vzalloc(ring->vmem_size);
2015                 if (!(*ring->vmem))
2016                         return -ENOMEM;
2017         }
2018         return 0;
2019 }
2020
2021 static void bnxt_free_rx_rings(struct bnxt *bp)
2022 {
2023         int i;
2024
2025         if (!bp->rx_ring)
2026                 return;
2027
2028         for (i = 0; i < bp->rx_nr_rings; i++) {
2029                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2030                 struct bnxt_ring_struct *ring;
2031
2032                 kfree(rxr->rx_tpa);
2033                 rxr->rx_tpa = NULL;
2034
2035                 kfree(rxr->rx_agg_bmap);
2036                 rxr->rx_agg_bmap = NULL;
2037
2038                 ring = &rxr->rx_ring_struct;
2039                 bnxt_free_ring(bp, ring);
2040
2041                 ring = &rxr->rx_agg_ring_struct;
2042                 bnxt_free_ring(bp, ring);
2043         }
2044 }
2045
2046 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2047 {
2048         int i, rc, agg_rings = 0, tpa_rings = 0;
2049
2050         if (!bp->rx_ring)
2051                 return -ENOMEM;
2052
2053         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2054                 agg_rings = 1;
2055
2056         if (bp->flags & BNXT_FLAG_TPA)
2057                 tpa_rings = 1;
2058
2059         for (i = 0; i < bp->rx_nr_rings; i++) {
2060                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2061                 struct bnxt_ring_struct *ring;
2062
2063                 ring = &rxr->rx_ring_struct;
2064
2065                 rc = bnxt_alloc_ring(bp, ring);
2066                 if (rc)
2067                         return rc;
2068
2069                 if (agg_rings) {
2070                         u16 mem_size;
2071
2072                         ring = &rxr->rx_agg_ring_struct;
2073                         rc = bnxt_alloc_ring(bp, ring);
2074                         if (rc)
2075                                 return rc;
2076
2077                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2078                         mem_size = rxr->rx_agg_bmap_size / 8;
2079                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2080                         if (!rxr->rx_agg_bmap)
2081                                 return -ENOMEM;
2082
2083                         if (tpa_rings) {
2084                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2085                                                 sizeof(struct bnxt_tpa_info),
2086                                                 GFP_KERNEL);
2087                                 if (!rxr->rx_tpa)
2088                                         return -ENOMEM;
2089                         }
2090                 }
2091         }
2092         return 0;
2093 }
2094
2095 static void bnxt_free_tx_rings(struct bnxt *bp)
2096 {
2097         int i;
2098         struct pci_dev *pdev = bp->pdev;
2099
2100         if (!bp->tx_ring)
2101                 return;
2102
2103         for (i = 0; i < bp->tx_nr_rings; i++) {
2104                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2105                 struct bnxt_ring_struct *ring;
2106
2107                 if (txr->tx_push) {
2108                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2109                                           txr->tx_push, txr->tx_push_mapping);
2110                         txr->tx_push = NULL;
2111                 }
2112
2113                 ring = &txr->tx_ring_struct;
2114
2115                 bnxt_free_ring(bp, ring);
2116         }
2117 }
2118
2119 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2120 {
2121         int i, j, rc;
2122         struct pci_dev *pdev = bp->pdev;
2123
2124         bp->tx_push_size = 0;
2125         if (bp->tx_push_thresh) {
2126                 int push_size;
2127
2128                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2129                                         bp->tx_push_thresh);
2130
2131                 if (push_size > 256) {
2132                         push_size = 0;
2133                         bp->tx_push_thresh = 0;
2134                 }
2135
2136                 bp->tx_push_size = push_size;
2137         }
2138
2139         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2140                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2141                 struct bnxt_ring_struct *ring;
2142
2143                 ring = &txr->tx_ring_struct;
2144
2145                 rc = bnxt_alloc_ring(bp, ring);
2146                 if (rc)
2147                         return rc;
2148
2149                 if (bp->tx_push_size) {
2150                         dma_addr_t mapping;
2151
2152                         /* One pre-allocated DMA buffer to backup
2153                          * TX push operation
2154                          */
2155                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2156                                                 bp->tx_push_size,
2157                                                 &txr->tx_push_mapping,
2158                                                 GFP_KERNEL);
2159
2160                         if (!txr->tx_push)
2161                                 return -ENOMEM;
2162
2163                         mapping = txr->tx_push_mapping +
2164                                 sizeof(struct tx_push_bd);
2165                         txr->data_mapping = cpu_to_le64(mapping);
2166
2167                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2168                 }
2169                 ring->queue_id = bp->q_info[j].queue_id;
2170                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2171                         j++;
2172         }
2173         return 0;
2174 }
2175
2176 static void bnxt_free_cp_rings(struct bnxt *bp)
2177 {
2178         int i;
2179
2180         if (!bp->bnapi)
2181                 return;
2182
2183         for (i = 0; i < bp->cp_nr_rings; i++) {
2184                 struct bnxt_napi *bnapi = bp->bnapi[i];
2185                 struct bnxt_cp_ring_info *cpr;
2186                 struct bnxt_ring_struct *ring;
2187
2188                 if (!bnapi)
2189                         continue;
2190
2191                 cpr = &bnapi->cp_ring;
2192                 ring = &cpr->cp_ring_struct;
2193
2194                 bnxt_free_ring(bp, ring);
2195         }
2196 }
2197
2198 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2199 {
2200         int i, rc;
2201
2202         for (i = 0; i < bp->cp_nr_rings; i++) {
2203                 struct bnxt_napi *bnapi = bp->bnapi[i];
2204                 struct bnxt_cp_ring_info *cpr;
2205                 struct bnxt_ring_struct *ring;
2206
2207                 if (!bnapi)
2208                         continue;
2209
2210                 cpr = &bnapi->cp_ring;
2211                 ring = &cpr->cp_ring_struct;
2212
2213                 rc = bnxt_alloc_ring(bp, ring);
2214                 if (rc)
2215                         return rc;
2216         }
2217         return 0;
2218 }
2219
2220 static void bnxt_init_ring_struct(struct bnxt *bp)
2221 {
2222         int i;
2223
2224         for (i = 0; i < bp->cp_nr_rings; i++) {
2225                 struct bnxt_napi *bnapi = bp->bnapi[i];
2226                 struct bnxt_cp_ring_info *cpr;
2227                 struct bnxt_rx_ring_info *rxr;
2228                 struct bnxt_tx_ring_info *txr;
2229                 struct bnxt_ring_struct *ring;
2230
2231                 if (!bnapi)
2232                         continue;
2233
2234                 cpr = &bnapi->cp_ring;
2235                 ring = &cpr->cp_ring_struct;
2236                 ring->nr_pages = bp->cp_nr_pages;
2237                 ring->page_size = HW_CMPD_RING_SIZE;
2238                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2239                 ring->dma_arr = cpr->cp_desc_mapping;
2240                 ring->vmem_size = 0;
2241
2242                 rxr = bnapi->rx_ring;
2243                 if (!rxr)
2244                         goto skip_rx;
2245
2246                 ring = &rxr->rx_ring_struct;
2247                 ring->nr_pages = bp->rx_nr_pages;
2248                 ring->page_size = HW_RXBD_RING_SIZE;
2249                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2250                 ring->dma_arr = rxr->rx_desc_mapping;
2251                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2252                 ring->vmem = (void **)&rxr->rx_buf_ring;
2253
2254                 ring = &rxr->rx_agg_ring_struct;
2255                 ring->nr_pages = bp->rx_agg_nr_pages;
2256                 ring->page_size = HW_RXBD_RING_SIZE;
2257                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2258                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2259                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2260                 ring->vmem = (void **)&rxr->rx_agg_ring;
2261
2262 skip_rx:
2263                 txr = bnapi->tx_ring;
2264                 if (!txr)
2265                         continue;
2266
2267                 ring = &txr->tx_ring_struct;
2268                 ring->nr_pages = bp->tx_nr_pages;
2269                 ring->page_size = HW_RXBD_RING_SIZE;
2270                 ring->pg_arr = (void **)txr->tx_desc_ring;
2271                 ring->dma_arr = txr->tx_desc_mapping;
2272                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2273                 ring->vmem = (void **)&txr->tx_buf_ring;
2274         }
2275 }
2276
2277 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2278 {
2279         int i;
2280         u32 prod;
2281         struct rx_bd **rx_buf_ring;
2282
2283         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2284         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2285                 int j;
2286                 struct rx_bd *rxbd;
2287
2288                 rxbd = rx_buf_ring[i];
2289                 if (!rxbd)
2290                         continue;
2291
2292                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2293                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2294                         rxbd->rx_bd_opaque = prod;
2295                 }
2296         }
2297 }
2298
2299 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2300 {
2301         struct net_device *dev = bp->dev;
2302         struct bnxt_rx_ring_info *rxr;
2303         struct bnxt_ring_struct *ring;
2304         u32 prod, type;
2305         int i;
2306
2307         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2308                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2309
2310         if (NET_IP_ALIGN == 2)
2311                 type |= RX_BD_FLAGS_SOP;
2312
2313         rxr = &bp->rx_ring[ring_nr];
2314         ring = &rxr->rx_ring_struct;
2315         bnxt_init_rxbd_pages(ring, type);
2316
2317         prod = rxr->rx_prod;
2318         for (i = 0; i < bp->rx_ring_size; i++) {
2319                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2320                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2321                                     ring_nr, i, bp->rx_ring_size);
2322                         break;
2323                 }
2324                 prod = NEXT_RX(prod);
2325         }
2326         rxr->rx_prod = prod;
2327         ring->fw_ring_id = INVALID_HW_RING_ID;
2328
2329         ring = &rxr->rx_agg_ring_struct;
2330         ring->fw_ring_id = INVALID_HW_RING_ID;
2331
2332         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2333                 return 0;
2334
2335         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2336                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2337
2338         bnxt_init_rxbd_pages(ring, type);
2339
2340         prod = rxr->rx_agg_prod;
2341         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2342                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2343                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2344                                     ring_nr, i, bp->rx_ring_size);
2345                         break;
2346                 }
2347                 prod = NEXT_RX_AGG(prod);
2348         }
2349         rxr->rx_agg_prod = prod;
2350
2351         if (bp->flags & BNXT_FLAG_TPA) {
2352                 if (rxr->rx_tpa) {
2353                         u8 *data;
2354                         dma_addr_t mapping;
2355
2356                         for (i = 0; i < MAX_TPA; i++) {
2357                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2358                                                             GFP_KERNEL);
2359                                 if (!data)
2360                                         return -ENOMEM;
2361
2362                                 rxr->rx_tpa[i].data = data;
2363                                 rxr->rx_tpa[i].mapping = mapping;
2364                         }
2365                 } else {
2366                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2367                         return -ENOMEM;
2368                 }
2369         }
2370
2371         return 0;
2372 }
2373
2374 static int bnxt_init_rx_rings(struct bnxt *bp)
2375 {
2376         int i, rc = 0;
2377
2378         for (i = 0; i < bp->rx_nr_rings; i++) {
2379                 rc = bnxt_init_one_rx_ring(bp, i);
2380                 if (rc)
2381                         break;
2382         }
2383
2384         return rc;
2385 }
2386
2387 static int bnxt_init_tx_rings(struct bnxt *bp)
2388 {
2389         u16 i;
2390
2391         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2392                                    MAX_SKB_FRAGS + 1);
2393
2394         for (i = 0; i < bp->tx_nr_rings; i++) {
2395                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2396                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2397
2398                 ring->fw_ring_id = INVALID_HW_RING_ID;
2399         }
2400
2401         return 0;
2402 }
2403
2404 static void bnxt_free_ring_grps(struct bnxt *bp)
2405 {
2406         kfree(bp->grp_info);
2407         bp->grp_info = NULL;
2408 }
2409
2410 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2411 {
2412         int i;
2413
2414         if (irq_re_init) {
2415                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2416                                        sizeof(struct bnxt_ring_grp_info),
2417                                        GFP_KERNEL);
2418                 if (!bp->grp_info)
2419                         return -ENOMEM;
2420         }
2421         for (i = 0; i < bp->cp_nr_rings; i++) {
2422                 if (irq_re_init)
2423                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2424                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2425                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2426                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2427                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2428         }
2429         return 0;
2430 }
2431
2432 static void bnxt_free_vnics(struct bnxt *bp)
2433 {
2434         kfree(bp->vnic_info);
2435         bp->vnic_info = NULL;
2436         bp->nr_vnics = 0;
2437 }
2438
2439 static int bnxt_alloc_vnics(struct bnxt *bp)
2440 {
2441         int num_vnics = 1;
2442
2443 #ifdef CONFIG_RFS_ACCEL
2444         if (bp->flags & BNXT_FLAG_RFS)
2445                 num_vnics += bp->rx_nr_rings;
2446 #endif
2447
2448         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2449                 num_vnics++;
2450
2451         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2452                                 GFP_KERNEL);
2453         if (!bp->vnic_info)
2454                 return -ENOMEM;
2455
2456         bp->nr_vnics = num_vnics;
2457         return 0;
2458 }
2459
2460 static void bnxt_init_vnics(struct bnxt *bp)
2461 {
2462         int i;
2463
2464         for (i = 0; i < bp->nr_vnics; i++) {
2465                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2466
2467                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2468                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2469                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2470                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2471
2472                 if (bp->vnic_info[i].rss_hash_key) {
2473                         if (i == 0)
2474                                 prandom_bytes(vnic->rss_hash_key,
2475                                               HW_HASH_KEY_SIZE);
2476                         else
2477                                 memcpy(vnic->rss_hash_key,
2478                                        bp->vnic_info[0].rss_hash_key,
2479                                        HW_HASH_KEY_SIZE);
2480                 }
2481         }
2482 }
2483
2484 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2485 {
2486         int pages;
2487
2488         pages = ring_size / desc_per_pg;
2489
2490         if (!pages)
2491                 return 1;
2492
2493         pages++;
2494
2495         while (pages & (pages - 1))
2496                 pages++;
2497
2498         return pages;
2499 }
2500
2501 static void bnxt_set_tpa_flags(struct bnxt *bp)
2502 {
2503         bp->flags &= ~BNXT_FLAG_TPA;
2504         if (bp->dev->features & NETIF_F_LRO)
2505                 bp->flags |= BNXT_FLAG_LRO;
2506         if (bp->dev->features & NETIF_F_GRO)
2507                 bp->flags |= BNXT_FLAG_GRO;
2508 }
2509
2510 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2511  * be set on entry.
2512  */
2513 void bnxt_set_ring_params(struct bnxt *bp)
2514 {
2515         u32 ring_size, rx_size, rx_space;
2516         u32 agg_factor = 0, agg_ring_size = 0;
2517
2518         /* 8 for CRC and VLAN */
2519         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2520
2521         rx_space = rx_size + NET_SKB_PAD +
2522                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2523
2524         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2525         ring_size = bp->rx_ring_size;
2526         bp->rx_agg_ring_size = 0;
2527         bp->rx_agg_nr_pages = 0;
2528
2529         if (bp->flags & BNXT_FLAG_TPA)
2530                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2531
2532         bp->flags &= ~BNXT_FLAG_JUMBO;
2533         if (rx_space > PAGE_SIZE) {
2534                 u32 jumbo_factor;
2535
2536                 bp->flags |= BNXT_FLAG_JUMBO;
2537                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2538                 if (jumbo_factor > agg_factor)
2539                         agg_factor = jumbo_factor;
2540         }
2541         agg_ring_size = ring_size * agg_factor;
2542
2543         if (agg_ring_size) {
2544                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2545                                                         RX_DESC_CNT);
2546                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2547                         u32 tmp = agg_ring_size;
2548
2549                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2550                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2551                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2552                                     tmp, agg_ring_size);
2553                 }
2554                 bp->rx_agg_ring_size = agg_ring_size;
2555                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2556                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2557                 rx_space = rx_size + NET_SKB_PAD +
2558                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2559         }
2560
2561         bp->rx_buf_use_size = rx_size;
2562         bp->rx_buf_size = rx_space;
2563
2564         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2565         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2566
2567         ring_size = bp->tx_ring_size;
2568         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2569         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2570
2571         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2572         bp->cp_ring_size = ring_size;
2573
2574         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2575         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2576                 bp->cp_nr_pages = MAX_CP_PAGES;
2577                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2578                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2579                             ring_size, bp->cp_ring_size);
2580         }
2581         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2582         bp->cp_ring_mask = bp->cp_bit - 1;
2583 }
2584
2585 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2586 {
2587         int i;
2588         struct bnxt_vnic_info *vnic;
2589         struct pci_dev *pdev = bp->pdev;
2590
2591         if (!bp->vnic_info)
2592                 return;
2593
2594         for (i = 0; i < bp->nr_vnics; i++) {
2595                 vnic = &bp->vnic_info[i];
2596
2597                 kfree(vnic->fw_grp_ids);
2598                 vnic->fw_grp_ids = NULL;
2599
2600                 kfree(vnic->uc_list);
2601                 vnic->uc_list = NULL;
2602
2603                 if (vnic->mc_list) {
2604                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2605                                           vnic->mc_list, vnic->mc_list_mapping);
2606                         vnic->mc_list = NULL;
2607                 }
2608
2609                 if (vnic->rss_table) {
2610                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2611                                           vnic->rss_table,
2612                                           vnic->rss_table_dma_addr);
2613                         vnic->rss_table = NULL;
2614                 }
2615
2616                 vnic->rss_hash_key = NULL;
2617                 vnic->flags = 0;
2618         }
2619 }
2620
2621 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2622 {
2623         int i, rc = 0, size;
2624         struct bnxt_vnic_info *vnic;
2625         struct pci_dev *pdev = bp->pdev;
2626         int max_rings;
2627
2628         for (i = 0; i < bp->nr_vnics; i++) {
2629                 vnic = &bp->vnic_info[i];
2630
2631                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2632                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2633
2634                         if (mem_size > 0) {
2635                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2636                                 if (!vnic->uc_list) {
2637                                         rc = -ENOMEM;
2638                                         goto out;
2639                                 }
2640                         }
2641                 }
2642
2643                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2644                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2645                         vnic->mc_list =
2646                                 dma_alloc_coherent(&pdev->dev,
2647                                                    vnic->mc_list_size,
2648                                                    &vnic->mc_list_mapping,
2649                                                    GFP_KERNEL);
2650                         if (!vnic->mc_list) {
2651                                 rc = -ENOMEM;
2652                                 goto out;
2653                         }
2654                 }
2655
2656                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2657                         max_rings = bp->rx_nr_rings;
2658                 else
2659                         max_rings = 1;
2660
2661                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2662                 if (!vnic->fw_grp_ids) {
2663                         rc = -ENOMEM;
2664                         goto out;
2665                 }
2666
2667                 /* Allocate rss table and hash key */
2668                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2669                                                      &vnic->rss_table_dma_addr,
2670                                                      GFP_KERNEL);
2671                 if (!vnic->rss_table) {
2672                         rc = -ENOMEM;
2673                         goto out;
2674                 }
2675
2676                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2677
2678                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2679                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2680         }
2681         return 0;
2682
2683 out:
2684         return rc;
2685 }
2686
2687 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2688 {
2689         struct pci_dev *pdev = bp->pdev;
2690
2691         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2692                           bp->hwrm_cmd_resp_dma_addr);
2693
2694         bp->hwrm_cmd_resp_addr = NULL;
2695         if (bp->hwrm_dbg_resp_addr) {
2696                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2697                                   bp->hwrm_dbg_resp_addr,
2698                                   bp->hwrm_dbg_resp_dma_addr);
2699
2700                 bp->hwrm_dbg_resp_addr = NULL;
2701         }
2702 }
2703
2704 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2705 {
2706         struct pci_dev *pdev = bp->pdev;
2707
2708         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2709                                                    &bp->hwrm_cmd_resp_dma_addr,
2710                                                    GFP_KERNEL);
2711         if (!bp->hwrm_cmd_resp_addr)
2712                 return -ENOMEM;
2713         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2714                                                     HWRM_DBG_REG_BUF_SIZE,
2715                                                     &bp->hwrm_dbg_resp_dma_addr,
2716                                                     GFP_KERNEL);
2717         if (!bp->hwrm_dbg_resp_addr)
2718                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2719
2720         return 0;
2721 }
2722
2723 static void bnxt_free_stats(struct bnxt *bp)
2724 {
2725         u32 size, i;
2726         struct pci_dev *pdev = bp->pdev;
2727
2728         if (bp->hw_rx_port_stats) {
2729                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2730                                   bp->hw_rx_port_stats,
2731                                   bp->hw_rx_port_stats_map);
2732                 bp->hw_rx_port_stats = NULL;
2733                 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2734         }
2735
2736         if (!bp->bnapi)
2737                 return;
2738
2739         size = sizeof(struct ctx_hw_stats);
2740
2741         for (i = 0; i < bp->cp_nr_rings; i++) {
2742                 struct bnxt_napi *bnapi = bp->bnapi[i];
2743                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2744
2745                 if (cpr->hw_stats) {
2746                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2747                                           cpr->hw_stats_map);
2748                         cpr->hw_stats = NULL;
2749                 }
2750         }
2751 }
2752
2753 static int bnxt_alloc_stats(struct bnxt *bp)
2754 {
2755         u32 size, i;
2756         struct pci_dev *pdev = bp->pdev;
2757
2758         size = sizeof(struct ctx_hw_stats);
2759
2760         for (i = 0; i < bp->cp_nr_rings; i++) {
2761                 struct bnxt_napi *bnapi = bp->bnapi[i];
2762                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2763
2764                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2765                                                    &cpr->hw_stats_map,
2766                                                    GFP_KERNEL);
2767                 if (!cpr->hw_stats)
2768                         return -ENOMEM;
2769
2770                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2771         }
2772
2773         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2774                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2775                                          sizeof(struct tx_port_stats) + 1024;
2776
2777                 bp->hw_rx_port_stats =
2778                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2779                                            &bp->hw_rx_port_stats_map,
2780                                            GFP_KERNEL);
2781                 if (!bp->hw_rx_port_stats)
2782                         return -ENOMEM;
2783
2784                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2785                                        512;
2786                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2787                                            sizeof(struct rx_port_stats) + 512;
2788                 bp->flags |= BNXT_FLAG_PORT_STATS;
2789         }
2790         return 0;
2791 }
2792
2793 static void bnxt_clear_ring_indices(struct bnxt *bp)
2794 {
2795         int i;
2796
2797         if (!bp->bnapi)
2798                 return;
2799
2800         for (i = 0; i < bp->cp_nr_rings; i++) {
2801                 struct bnxt_napi *bnapi = bp->bnapi[i];
2802                 struct bnxt_cp_ring_info *cpr;
2803                 struct bnxt_rx_ring_info *rxr;
2804                 struct bnxt_tx_ring_info *txr;
2805
2806                 if (!bnapi)
2807                         continue;
2808
2809                 cpr = &bnapi->cp_ring;
2810                 cpr->cp_raw_cons = 0;
2811
2812                 txr = bnapi->tx_ring;
2813                 if (txr) {
2814                         txr->tx_prod = 0;
2815                         txr->tx_cons = 0;
2816                 }
2817
2818                 rxr = bnapi->rx_ring;
2819                 if (rxr) {
2820                         rxr->rx_prod = 0;
2821                         rxr->rx_agg_prod = 0;
2822                         rxr->rx_sw_agg_prod = 0;
2823                         rxr->rx_next_cons = 0;
2824                 }
2825         }
2826 }
2827
2828 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2829 {
2830 #ifdef CONFIG_RFS_ACCEL
2831         int i;
2832
2833         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2834          * safe to delete the hash table.
2835          */
2836         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2837                 struct hlist_head *head;
2838                 struct hlist_node *tmp;
2839                 struct bnxt_ntuple_filter *fltr;
2840
2841                 head = &bp->ntp_fltr_hash_tbl[i];
2842                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2843                         hlist_del(&fltr->hash);
2844                         kfree(fltr);
2845                 }
2846         }
2847         if (irq_reinit) {
2848                 kfree(bp->ntp_fltr_bmap);
2849                 bp->ntp_fltr_bmap = NULL;
2850         }
2851         bp->ntp_fltr_count = 0;
2852 #endif
2853 }
2854
2855 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2856 {
2857 #ifdef CONFIG_RFS_ACCEL
2858         int i, rc = 0;
2859
2860         if (!(bp->flags & BNXT_FLAG_RFS))
2861                 return 0;
2862
2863         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2864                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2865
2866         bp->ntp_fltr_count = 0;
2867         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2868                                     GFP_KERNEL);
2869
2870         if (!bp->ntp_fltr_bmap)
2871                 rc = -ENOMEM;
2872
2873         return rc;
2874 #else
2875         return 0;
2876 #endif
2877 }
2878
2879 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2880 {
2881         bnxt_free_vnic_attributes(bp);
2882         bnxt_free_tx_rings(bp);
2883         bnxt_free_rx_rings(bp);
2884         bnxt_free_cp_rings(bp);
2885         bnxt_free_ntp_fltrs(bp, irq_re_init);
2886         if (irq_re_init) {
2887                 bnxt_free_stats(bp);
2888                 bnxt_free_ring_grps(bp);
2889                 bnxt_free_vnics(bp);
2890                 kfree(bp->tx_ring);
2891                 bp->tx_ring = NULL;
2892                 kfree(bp->rx_ring);
2893                 bp->rx_ring = NULL;
2894                 kfree(bp->bnapi);
2895                 bp->bnapi = NULL;
2896         } else {
2897                 bnxt_clear_ring_indices(bp);
2898         }
2899 }
2900
2901 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2902 {
2903         int i, j, rc, size, arr_size;
2904         void *bnapi;
2905
2906         if (irq_re_init) {
2907                 /* Allocate bnapi mem pointer array and mem block for
2908                  * all queues
2909                  */
2910                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2911                                 bp->cp_nr_rings);
2912                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2913                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2914                 if (!bnapi)
2915                         return -ENOMEM;
2916
2917                 bp->bnapi = bnapi;
2918                 bnapi += arr_size;
2919                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2920                         bp->bnapi[i] = bnapi;
2921                         bp->bnapi[i]->index = i;
2922                         bp->bnapi[i]->bp = bp;
2923                 }
2924
2925                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2926                                       sizeof(struct bnxt_rx_ring_info),
2927                                       GFP_KERNEL);
2928                 if (!bp->rx_ring)
2929                         return -ENOMEM;
2930
2931                 for (i = 0; i < bp->rx_nr_rings; i++) {
2932                         bp->rx_ring[i].bnapi = bp->bnapi[i];
2933                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2934                 }
2935
2936                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2937                                       sizeof(struct bnxt_tx_ring_info),
2938                                       GFP_KERNEL);
2939                 if (!bp->tx_ring)
2940                         return -ENOMEM;
2941
2942                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2943                         j = 0;
2944                 else
2945                         j = bp->rx_nr_rings;
2946
2947                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2948                         bp->tx_ring[i].bnapi = bp->bnapi[j];
2949                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2950                 }
2951
2952                 rc = bnxt_alloc_stats(bp);
2953                 if (rc)
2954                         goto alloc_mem_err;
2955
2956                 rc = bnxt_alloc_ntp_fltrs(bp);
2957                 if (rc)
2958                         goto alloc_mem_err;
2959
2960                 rc = bnxt_alloc_vnics(bp);
2961                 if (rc)
2962                         goto alloc_mem_err;
2963         }
2964
2965         bnxt_init_ring_struct(bp);
2966
2967         rc = bnxt_alloc_rx_rings(bp);
2968         if (rc)
2969                 goto alloc_mem_err;
2970
2971         rc = bnxt_alloc_tx_rings(bp);
2972         if (rc)
2973                 goto alloc_mem_err;
2974
2975         rc = bnxt_alloc_cp_rings(bp);
2976         if (rc)
2977                 goto alloc_mem_err;
2978
2979         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2980                                   BNXT_VNIC_UCAST_FLAG;
2981         rc = bnxt_alloc_vnic_attributes(bp);
2982         if (rc)
2983                 goto alloc_mem_err;
2984         return 0;
2985
2986 alloc_mem_err:
2987         bnxt_free_mem(bp, true);
2988         return rc;
2989 }
2990
2991 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2992                             u16 cmpl_ring, u16 target_id)
2993 {
2994         struct input *req = request;
2995
2996         req->req_type = cpu_to_le16(req_type);
2997         req->cmpl_ring = cpu_to_le16(cmpl_ring);
2998         req->target_id = cpu_to_le16(target_id);
2999         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3000 }
3001
3002 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3003                                  int timeout, bool silent)
3004 {
3005         int i, intr_process, rc, tmo_count;
3006         struct input *req = msg;
3007         u32 *data = msg;
3008         __le32 *resp_len, *valid;
3009         u16 cp_ring_id, len = 0;
3010         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3011
3012         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3013         memset(resp, 0, PAGE_SIZE);
3014         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3015         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3016
3017         /* Write request msg to hwrm channel */
3018         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3019
3020         for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3021                 writel(0, bp->bar0 + i);
3022
3023         /* currently supports only one outstanding message */
3024         if (intr_process)
3025                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3026
3027         /* Ring channel doorbell */
3028         writel(1, bp->bar0 + 0x100);
3029
3030         if (!timeout)
3031                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3032
3033         i = 0;
3034         tmo_count = timeout * 40;
3035         if (intr_process) {
3036                 /* Wait until hwrm response cmpl interrupt is processed */
3037                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3038                        i++ < tmo_count) {
3039                         usleep_range(25, 40);
3040                 }
3041
3042                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3043                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3044                                    le16_to_cpu(req->req_type));
3045                         return -1;
3046                 }
3047         } else {
3048                 /* Check if response len is updated */
3049                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3050                 for (i = 0; i < tmo_count; i++) {
3051                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3052                               HWRM_RESP_LEN_SFT;
3053                         if (len)
3054                                 break;
3055                         usleep_range(25, 40);
3056                 }
3057
3058                 if (i >= tmo_count) {
3059                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3060                                    timeout, le16_to_cpu(req->req_type),
3061                                    le16_to_cpu(req->seq_id), len);
3062                         return -1;
3063                 }
3064
3065                 /* Last word of resp contains valid bit */
3066                 valid = bp->hwrm_cmd_resp_addr + len - 4;
3067                 for (i = 0; i < 5; i++) {
3068                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3069                                 break;
3070                         udelay(1);
3071                 }
3072
3073                 if (i >= 5) {
3074                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3075                                    timeout, le16_to_cpu(req->req_type),
3076                                    le16_to_cpu(req->seq_id), len, *valid);
3077                         return -1;
3078                 }
3079         }
3080
3081         rc = le16_to_cpu(resp->error_code);
3082         if (rc && !silent)
3083                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3084                            le16_to_cpu(resp->req_type),
3085                            le16_to_cpu(resp->seq_id), rc);
3086         return rc;
3087 }
3088
3089 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3090 {
3091         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3092 }
3093
3094 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3095 {
3096         int rc;
3097
3098         mutex_lock(&bp->hwrm_cmd_lock);
3099         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3100         mutex_unlock(&bp->hwrm_cmd_lock);
3101         return rc;
3102 }
3103
3104 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3105                              int timeout)
3106 {
3107         int rc;
3108
3109         mutex_lock(&bp->hwrm_cmd_lock);
3110         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3111         mutex_unlock(&bp->hwrm_cmd_lock);
3112         return rc;
3113 }
3114
3115 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3116 {
3117         struct hwrm_func_drv_rgtr_input req = {0};
3118         int i;
3119         DECLARE_BITMAP(async_events_bmap, 256);
3120         u32 *events = (u32 *)async_events_bmap;
3121
3122         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3123
3124         req.enables =
3125                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3126                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
3127                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3128
3129         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3130         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3131                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3132
3133         for (i = 0; i < 8; i++)
3134                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3135
3136         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3137         req.ver_maj = DRV_VER_MAJ;
3138         req.ver_min = DRV_VER_MIN;
3139         req.ver_upd = DRV_VER_UPD;
3140
3141         if (BNXT_PF(bp)) {
3142                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
3143                 u32 *data = (u32 *)vf_req_snif_bmap;
3144
3145                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3146                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3147                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3148
3149                 for (i = 0; i < 8; i++)
3150                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3151
3152                 req.enables |=
3153                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3154         }
3155
3156         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3157 }
3158
3159 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3160 {
3161         struct hwrm_func_drv_unrgtr_input req = {0};
3162
3163         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3164         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3165 }
3166
3167 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3168 {
3169         u32 rc = 0;
3170         struct hwrm_tunnel_dst_port_free_input req = {0};
3171
3172         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3173         req.tunnel_type = tunnel_type;
3174
3175         switch (tunnel_type) {
3176         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3177                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3178                 break;
3179         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3180                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3181                 break;
3182         default:
3183                 break;
3184         }
3185
3186         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3187         if (rc)
3188                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3189                            rc);
3190         return rc;
3191 }
3192
3193 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3194                                            u8 tunnel_type)
3195 {
3196         u32 rc = 0;
3197         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3198         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3199
3200         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3201
3202         req.tunnel_type = tunnel_type;
3203         req.tunnel_dst_port_val = port;
3204
3205         mutex_lock(&bp->hwrm_cmd_lock);
3206         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3207         if (rc) {
3208                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3209                            rc);
3210                 goto err_out;
3211         }
3212
3213         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
3214                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3215
3216         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
3217                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3218 err_out:
3219         mutex_unlock(&bp->hwrm_cmd_lock);
3220         return rc;
3221 }
3222
3223 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3224 {
3225         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3226         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3227
3228         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3229         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3230
3231         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3232         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3233         req.mask = cpu_to_le32(vnic->rx_mask);
3234         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3235 }
3236
3237 #ifdef CONFIG_RFS_ACCEL
3238 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3239                                             struct bnxt_ntuple_filter *fltr)
3240 {
3241         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3242
3243         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3244         req.ntuple_filter_id = fltr->filter_id;
3245         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3246 }
3247
3248 #define BNXT_NTP_FLTR_FLAGS                                     \
3249         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3250          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3251          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3252          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3253          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3254          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3255          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3256          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3257          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3258          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3259          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3260          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3261          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3262          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3263
3264 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3265                                              struct bnxt_ntuple_filter *fltr)
3266 {
3267         int rc = 0;
3268         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3269         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3270                 bp->hwrm_cmd_resp_addr;
3271         struct flow_keys *keys = &fltr->fkeys;
3272         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3273
3274         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3275         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3276
3277         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3278
3279         req.ethertype = htons(ETH_P_IP);
3280         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3281         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3282         req.ip_protocol = keys->basic.ip_proto;
3283
3284         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3285         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3286         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3287         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3288
3289         req.src_port = keys->ports.src;
3290         req.src_port_mask = cpu_to_be16(0xffff);
3291         req.dst_port = keys->ports.dst;
3292         req.dst_port_mask = cpu_to_be16(0xffff);
3293
3294         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3295         mutex_lock(&bp->hwrm_cmd_lock);
3296         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3297         if (!rc)
3298                 fltr->filter_id = resp->ntuple_filter_id;
3299         mutex_unlock(&bp->hwrm_cmd_lock);
3300         return rc;
3301 }
3302 #endif
3303
3304 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3305                                      u8 *mac_addr)
3306 {
3307         u32 rc = 0;
3308         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3309         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3310
3311         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3312         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3313         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3314                 req.flags |=
3315                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3316         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3317         req.enables =
3318                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3319                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3320                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3321         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3322         req.l2_addr_mask[0] = 0xff;
3323         req.l2_addr_mask[1] = 0xff;
3324         req.l2_addr_mask[2] = 0xff;
3325         req.l2_addr_mask[3] = 0xff;
3326         req.l2_addr_mask[4] = 0xff;
3327         req.l2_addr_mask[5] = 0xff;
3328
3329         mutex_lock(&bp->hwrm_cmd_lock);
3330         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3331         if (!rc)
3332                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3333                                                         resp->l2_filter_id;
3334         mutex_unlock(&bp->hwrm_cmd_lock);
3335         return rc;
3336 }
3337
3338 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3339 {
3340         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3341         int rc = 0;
3342
3343         /* Any associated ntuple filters will also be cleared by firmware. */
3344         mutex_lock(&bp->hwrm_cmd_lock);
3345         for (i = 0; i < num_of_vnics; i++) {
3346                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3347
3348                 for (j = 0; j < vnic->uc_filter_count; j++) {
3349                         struct hwrm_cfa_l2_filter_free_input req = {0};
3350
3351                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3352                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3353
3354                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3355
3356                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3357                                                 HWRM_CMD_TIMEOUT);
3358                 }
3359                 vnic->uc_filter_count = 0;
3360         }
3361         mutex_unlock(&bp->hwrm_cmd_lock);
3362
3363         return rc;
3364 }
3365
3366 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3367 {
3368         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3369         struct hwrm_vnic_tpa_cfg_input req = {0};
3370
3371         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3372
3373         if (tpa_flags) {
3374                 u16 mss = bp->dev->mtu - 40;
3375                 u32 nsegs, n, segs = 0, flags;
3376
3377                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3378                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3379                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3380                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3381                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3382                 if (tpa_flags & BNXT_FLAG_GRO)
3383                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3384
3385                 req.flags = cpu_to_le32(flags);
3386
3387                 req.enables =
3388                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3389                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3390                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3391
3392                 /* Number of segs are log2 units, and first packet is not
3393                  * included as part of this units.
3394                  */
3395                 if (mss <= BNXT_RX_PAGE_SIZE) {
3396                         n = BNXT_RX_PAGE_SIZE / mss;
3397                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3398                 } else {
3399                         n = mss / BNXT_RX_PAGE_SIZE;
3400                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3401                                 n++;
3402                         nsegs = (MAX_SKB_FRAGS - n) / n;
3403                 }
3404
3405                 segs = ilog2(nsegs);
3406                 req.max_agg_segs = cpu_to_le16(segs);
3407                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3408
3409                 req.min_agg_len = cpu_to_le32(512);
3410         }
3411         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3412
3413         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3414 }
3415
3416 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3417 {
3418         u32 i, j, max_rings;
3419         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3420         struct hwrm_vnic_rss_cfg_input req = {0};
3421
3422         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3423                 return 0;
3424
3425         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3426         if (set_rss) {
3427                 vnic->hash_type = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
3428                                   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
3429                                   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
3430                                   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
3431
3432                 req.hash_type = cpu_to_le32(vnic->hash_type);
3433
3434                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3435                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3436                                 max_rings = bp->rx_nr_rings - 1;
3437                         else
3438                                 max_rings = bp->rx_nr_rings;
3439                 } else {
3440                         max_rings = 1;
3441                 }
3442
3443                 /* Fill the RSS indirection table with ring group ids */
3444                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3445                         if (j == max_rings)
3446                                 j = 0;
3447                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3448                 }
3449
3450                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3451                 req.hash_key_tbl_addr =
3452                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3453         }
3454         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3455         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3456 }
3457
3458 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3459 {
3460         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3461         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3462
3463         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3464         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3465                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3466                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3467         req.enables =
3468                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3469                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3470         /* thresholds not implemented in firmware yet */
3471         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3472         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3473         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3474         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3475 }
3476
3477 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3478                                         u16 ctx_idx)
3479 {
3480         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3481
3482         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3483         req.rss_cos_lb_ctx_id =
3484                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3485
3486         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3487         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3488 }
3489
3490 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3491 {
3492         int i, j;
3493
3494         for (i = 0; i < bp->nr_vnics; i++) {
3495                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3496
3497                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3498                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3499                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3500                 }
3501         }
3502         bp->rsscos_nr_ctxs = 0;
3503 }
3504
3505 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3506 {
3507         int rc;
3508         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3509         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3510                                                 bp->hwrm_cmd_resp_addr;
3511
3512         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3513                                -1);
3514
3515         mutex_lock(&bp->hwrm_cmd_lock);
3516         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3517         if (!rc)
3518                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3519                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3520         mutex_unlock(&bp->hwrm_cmd_lock);
3521
3522         return rc;
3523 }
3524
3525 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3526 {
3527         unsigned int ring = 0, grp_idx;
3528         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3529         struct hwrm_vnic_cfg_input req = {0};
3530         u16 def_vlan = 0;
3531
3532         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3533
3534         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3535         /* Only RSS support for now TBD: COS & LB */
3536         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3537                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3538                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3539                                            VNIC_CFG_REQ_ENABLES_MRU);
3540         } else {
3541                 req.rss_rule = cpu_to_le16(0xffff);
3542         }
3543
3544         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3545             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3546                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3547                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3548         } else {
3549                 req.cos_rule = cpu_to_le16(0xffff);
3550         }
3551
3552         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3553                 ring = 0;
3554         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3555                 ring = vnic_id - 1;
3556         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3557                 ring = bp->rx_nr_rings - 1;
3558
3559         grp_idx = bp->rx_ring[ring].bnapi->index;
3560         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3561         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3562
3563         req.lb_rule = cpu_to_le16(0xffff);
3564         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3565                               VLAN_HLEN);
3566
3567 #ifdef CONFIG_BNXT_SRIOV
3568         if (BNXT_VF(bp))
3569                 def_vlan = bp->vf.vlan;
3570 #endif
3571         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3572                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3573
3574         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3575 }
3576
3577 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3578 {
3579         u32 rc = 0;
3580
3581         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3582                 struct hwrm_vnic_free_input req = {0};
3583
3584                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3585                 req.vnic_id =
3586                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3587
3588                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3589                 if (rc)
3590                         return rc;
3591                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3592         }
3593         return rc;
3594 }
3595
3596 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3597 {
3598         u16 i;
3599
3600         for (i = 0; i < bp->nr_vnics; i++)
3601                 bnxt_hwrm_vnic_free_one(bp, i);
3602 }
3603
3604 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3605                                 unsigned int start_rx_ring_idx,
3606                                 unsigned int nr_rings)
3607 {
3608         int rc = 0;
3609         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3610         struct hwrm_vnic_alloc_input req = {0};
3611         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3612
3613         /* map ring groups to this vnic */
3614         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3615                 grp_idx = bp->rx_ring[i].bnapi->index;
3616                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3617                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3618                                    j, nr_rings);
3619                         break;
3620                 }
3621                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3622                                         bp->grp_info[grp_idx].fw_grp_id;
3623         }
3624
3625         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3626         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3627         if (vnic_id == 0)
3628                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3629
3630         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3631
3632         mutex_lock(&bp->hwrm_cmd_lock);
3633         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3634         if (!rc)
3635                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3636         mutex_unlock(&bp->hwrm_cmd_lock);
3637         return rc;
3638 }
3639
3640 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3641 {
3642         u16 i;
3643         u32 rc = 0;
3644
3645         mutex_lock(&bp->hwrm_cmd_lock);
3646         for (i = 0; i < bp->rx_nr_rings; i++) {
3647                 struct hwrm_ring_grp_alloc_input req = {0};
3648                 struct hwrm_ring_grp_alloc_output *resp =
3649                                         bp->hwrm_cmd_resp_addr;
3650                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3651
3652                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3653
3654                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3655                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3656                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3657                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3658
3659                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3660                                         HWRM_CMD_TIMEOUT);
3661                 if (rc)
3662                         break;
3663
3664                 bp->grp_info[grp_idx].fw_grp_id =
3665                         le32_to_cpu(resp->ring_group_id);
3666         }
3667         mutex_unlock(&bp->hwrm_cmd_lock);
3668         return rc;
3669 }
3670
3671 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3672 {
3673         u16 i;
3674         u32 rc = 0;
3675         struct hwrm_ring_grp_free_input req = {0};
3676
3677         if (!bp->grp_info)
3678                 return 0;
3679
3680         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3681
3682         mutex_lock(&bp->hwrm_cmd_lock);
3683         for (i = 0; i < bp->cp_nr_rings; i++) {
3684                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3685                         continue;
3686                 req.ring_group_id =
3687                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3688
3689                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3690                                         HWRM_CMD_TIMEOUT);
3691                 if (rc)
3692                         break;
3693                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3694         }
3695         mutex_unlock(&bp->hwrm_cmd_lock);
3696         return rc;
3697 }
3698
3699 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3700                                     struct bnxt_ring_struct *ring,
3701                                     u32 ring_type, u32 map_index,
3702                                     u32 stats_ctx_id)
3703 {
3704         int rc = 0, err = 0;
3705         struct hwrm_ring_alloc_input req = {0};
3706         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3707         u16 ring_id;
3708
3709         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3710
3711         req.enables = 0;
3712         if (ring->nr_pages > 1) {
3713                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3714                 /* Page size is in log2 units */
3715                 req.page_size = BNXT_PAGE_SHIFT;
3716                 req.page_tbl_depth = 1;
3717         } else {
3718                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3719         }
3720         req.fbo = 0;
3721         /* Association of ring index with doorbell index and MSIX number */
3722         req.logical_id = cpu_to_le16(map_index);
3723
3724         switch (ring_type) {
3725         case HWRM_RING_ALLOC_TX:
3726                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3727                 /* Association of transmit ring with completion ring */
3728                 req.cmpl_ring_id =
3729                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3730                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3731                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3732                 req.queue_id = cpu_to_le16(ring->queue_id);
3733                 break;
3734         case HWRM_RING_ALLOC_RX:
3735                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3736                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3737                 break;
3738         case HWRM_RING_ALLOC_AGG:
3739                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3740                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3741                 break;
3742         case HWRM_RING_ALLOC_CMPL:
3743                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3744                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3745                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3746                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3747                 break;
3748         default:
3749                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3750                            ring_type);
3751                 return -1;
3752         }
3753
3754         mutex_lock(&bp->hwrm_cmd_lock);
3755         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3756         err = le16_to_cpu(resp->error_code);
3757         ring_id = le16_to_cpu(resp->ring_id);
3758         mutex_unlock(&bp->hwrm_cmd_lock);
3759
3760         if (rc || err) {
3761                 switch (ring_type) {
3762                 case RING_FREE_REQ_RING_TYPE_CMPL:
3763                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3764                                    rc, err);
3765                         return -1;
3766
3767                 case RING_FREE_REQ_RING_TYPE_RX:
3768                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3769                                    rc, err);
3770                         return -1;
3771
3772                 case RING_FREE_REQ_RING_TYPE_TX:
3773                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3774                                    rc, err);
3775                         return -1;
3776
3777                 default:
3778                         netdev_err(bp->dev, "Invalid ring\n");
3779                         return -1;
3780                 }
3781         }
3782         ring->fw_ring_id = ring_id;
3783         return rc;
3784 }
3785
3786 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3787 {
3788         int i, rc = 0;
3789
3790         for (i = 0; i < bp->cp_nr_rings; i++) {
3791                 struct bnxt_napi *bnapi = bp->bnapi[i];
3792                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3793                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3794
3795                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3796                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3797                                               INVALID_STATS_CTX_ID);
3798                 if (rc)
3799                         goto err_out;
3800                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3801                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3802         }
3803
3804         for (i = 0; i < bp->tx_nr_rings; i++) {
3805                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3806                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3807                 u32 map_idx = txr->bnapi->index;
3808                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3809
3810                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3811                                               map_idx, fw_stats_ctx);
3812                 if (rc)
3813                         goto err_out;
3814                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3815         }
3816
3817         for (i = 0; i < bp->rx_nr_rings; i++) {
3818                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3819                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3820                 u32 map_idx = rxr->bnapi->index;
3821
3822                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3823                                               map_idx, INVALID_STATS_CTX_ID);
3824                 if (rc)
3825                         goto err_out;
3826                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3827                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3828                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3829         }
3830
3831         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3832                 for (i = 0; i < bp->rx_nr_rings; i++) {
3833                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3834                         struct bnxt_ring_struct *ring =
3835                                                 &rxr->rx_agg_ring_struct;
3836                         u32 grp_idx = rxr->bnapi->index;
3837                         u32 map_idx = grp_idx + bp->rx_nr_rings;
3838
3839                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3840                                                       HWRM_RING_ALLOC_AGG,
3841                                                       map_idx,
3842                                                       INVALID_STATS_CTX_ID);
3843                         if (rc)
3844                                 goto err_out;
3845
3846                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3847                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3848                                rxr->rx_agg_doorbell);
3849                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3850                 }
3851         }
3852 err_out:
3853         return rc;
3854 }
3855
3856 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3857                                    struct bnxt_ring_struct *ring,
3858                                    u32 ring_type, int cmpl_ring_id)
3859 {
3860         int rc;
3861         struct hwrm_ring_free_input req = {0};
3862         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3863         u16 error_code;
3864
3865         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3866         req.ring_type = ring_type;
3867         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3868
3869         mutex_lock(&bp->hwrm_cmd_lock);
3870         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3871         error_code = le16_to_cpu(resp->error_code);
3872         mutex_unlock(&bp->hwrm_cmd_lock);
3873
3874         if (rc || error_code) {
3875                 switch (ring_type) {
3876                 case RING_FREE_REQ_RING_TYPE_CMPL:
3877                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3878                                    rc);
3879                         return rc;
3880                 case RING_FREE_REQ_RING_TYPE_RX:
3881                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3882                                    rc);
3883                         return rc;
3884                 case RING_FREE_REQ_RING_TYPE_TX:
3885                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3886                                    rc);
3887                         return rc;
3888                 default:
3889                         netdev_err(bp->dev, "Invalid ring\n");
3890                         return -1;
3891                 }
3892         }
3893         return 0;
3894 }
3895
3896 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3897 {
3898         int i;
3899
3900         if (!bp->bnapi)
3901                 return;
3902
3903         for (i = 0; i < bp->tx_nr_rings; i++) {
3904                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3905                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3906                 u32 grp_idx = txr->bnapi->index;
3907                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3908
3909                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3910                         hwrm_ring_free_send_msg(bp, ring,
3911                                                 RING_FREE_REQ_RING_TYPE_TX,
3912                                                 close_path ? cmpl_ring_id :
3913                                                 INVALID_HW_RING_ID);
3914                         ring->fw_ring_id = INVALID_HW_RING_ID;
3915                 }
3916         }
3917
3918         for (i = 0; i < bp->rx_nr_rings; i++) {
3919                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3920                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3921                 u32 grp_idx = rxr->bnapi->index;
3922                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3923
3924                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3925                         hwrm_ring_free_send_msg(bp, ring,
3926                                                 RING_FREE_REQ_RING_TYPE_RX,
3927                                                 close_path ? cmpl_ring_id :
3928                                                 INVALID_HW_RING_ID);
3929                         ring->fw_ring_id = INVALID_HW_RING_ID;
3930                         bp->grp_info[grp_idx].rx_fw_ring_id =
3931                                 INVALID_HW_RING_ID;
3932                 }
3933         }
3934
3935         for (i = 0; i < bp->rx_nr_rings; i++) {
3936                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3937                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3938                 u32 grp_idx = rxr->bnapi->index;
3939                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3940
3941                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3942                         hwrm_ring_free_send_msg(bp, ring,
3943                                                 RING_FREE_REQ_RING_TYPE_RX,
3944                                                 close_path ? cmpl_ring_id :
3945                                                 INVALID_HW_RING_ID);
3946                         ring->fw_ring_id = INVALID_HW_RING_ID;
3947                         bp->grp_info[grp_idx].agg_fw_ring_id =
3948                                 INVALID_HW_RING_ID;
3949                 }
3950         }
3951
3952         for (i = 0; i < bp->cp_nr_rings; i++) {
3953                 struct bnxt_napi *bnapi = bp->bnapi[i];
3954                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3955                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3956
3957                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3958                         hwrm_ring_free_send_msg(bp, ring,
3959                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3960                                                 INVALID_HW_RING_ID);
3961                         ring->fw_ring_id = INVALID_HW_RING_ID;
3962                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3963                 }
3964         }
3965 }
3966
3967 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3968         u32 buf_tmrs, u16 flags,
3969         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3970 {
3971         req->flags = cpu_to_le16(flags);
3972         req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3973         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3974         req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3975         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3976         /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3977         req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3978         req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3979         req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3980 }
3981
3982 int bnxt_hwrm_set_coal(struct bnxt *bp)
3983 {
3984         int i, rc = 0;
3985         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3986                                                            req_tx = {0}, *req;
3987         u16 max_buf, max_buf_irq;
3988         u16 buf_tmr, buf_tmr_irq;
3989         u32 flags;
3990
3991         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3992                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3993         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3994                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3995
3996         /* Each rx completion (2 records) should be DMAed immediately.
3997          * DMA 1/4 of the completion buffers at a time.
3998          */
3999         max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4000         /* max_buf must not be zero */
4001         max_buf = clamp_t(u16, max_buf, 1, 63);
4002         max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4003         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4004         /* buf timer set to 1/4 of interrupt timer */
4005         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4006         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4007         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4008
4009         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4010
4011         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
4012          * if coal_ticks is less than 25 us.
4013          */
4014         if (bp->rx_coal_ticks < 25)
4015                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4016
4017         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4018                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4019
4020         /* max_buf must not be zero */
4021         max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4022         max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4023         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4024         /* buf timer set to 1/4 of interrupt timer */
4025         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4026         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4027         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4028
4029         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4030         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4031                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4032
4033         mutex_lock(&bp->hwrm_cmd_lock);
4034         for (i = 0; i < bp->cp_nr_rings; i++) {
4035                 struct bnxt_napi *bnapi = bp->bnapi[i];
4036
4037                 req = &req_rx;
4038                 if (!bnapi->rx_ring)
4039                         req = &req_tx;
4040                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4041
4042                 rc = _hwrm_send_message(bp, req, sizeof(*req),
4043                                         HWRM_CMD_TIMEOUT);
4044                 if (rc)
4045                         break;
4046         }
4047         mutex_unlock(&bp->hwrm_cmd_lock);
4048         return rc;
4049 }
4050
4051 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4052 {
4053         int rc = 0, i;
4054         struct hwrm_stat_ctx_free_input req = {0};
4055
4056         if (!bp->bnapi)
4057                 return 0;
4058
4059         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4060                 return 0;
4061
4062         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4063
4064         mutex_lock(&bp->hwrm_cmd_lock);
4065         for (i = 0; i < bp->cp_nr_rings; i++) {
4066                 struct bnxt_napi *bnapi = bp->bnapi[i];
4067                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4068
4069                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4070                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4071
4072                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4073                                                 HWRM_CMD_TIMEOUT);
4074                         if (rc)
4075                                 break;
4076
4077                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4078                 }
4079         }
4080         mutex_unlock(&bp->hwrm_cmd_lock);
4081         return rc;
4082 }
4083
4084 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4085 {
4086         int rc = 0, i;
4087         struct hwrm_stat_ctx_alloc_input req = {0};
4088         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4089
4090         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4091                 return 0;
4092
4093         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4094
4095         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4096
4097         mutex_lock(&bp->hwrm_cmd_lock);
4098         for (i = 0; i < bp->cp_nr_rings; i++) {
4099                 struct bnxt_napi *bnapi = bp->bnapi[i];
4100                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4101
4102                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4103
4104                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4105                                         HWRM_CMD_TIMEOUT);
4106                 if (rc)
4107                         break;
4108
4109                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4110
4111                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4112         }
4113         mutex_unlock(&bp->hwrm_cmd_lock);
4114         return 0;
4115 }
4116
4117 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4118 {
4119         struct hwrm_func_qcfg_input req = {0};
4120         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4121         int rc;
4122
4123         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4124         req.fid = cpu_to_le16(0xffff);
4125         mutex_lock(&bp->hwrm_cmd_lock);
4126         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4127         if (rc)
4128                 goto func_qcfg_exit;
4129
4130 #ifdef CONFIG_BNXT_SRIOV
4131         if (BNXT_VF(bp)) {
4132                 struct bnxt_vf_info *vf = &bp->vf;
4133
4134                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4135         }
4136 #endif
4137         switch (resp->port_partition_type) {
4138         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4139         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4140         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4141                 bp->port_partition_type = resp->port_partition_type;
4142                 break;
4143         }
4144
4145 func_qcfg_exit:
4146         mutex_unlock(&bp->hwrm_cmd_lock);
4147         return rc;
4148 }
4149
4150 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4151 {
4152         int rc = 0;
4153         struct hwrm_func_qcaps_input req = {0};
4154         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4155
4156         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4157         req.fid = cpu_to_le16(0xffff);
4158
4159         mutex_lock(&bp->hwrm_cmd_lock);
4160         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4161         if (rc)
4162                 goto hwrm_func_qcaps_exit;
4163
4164         bp->tx_push_thresh = 0;
4165         if (resp->flags &
4166             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4167                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4168
4169         if (BNXT_PF(bp)) {
4170                 struct bnxt_pf_info *pf = &bp->pf;
4171
4172                 pf->fw_fid = le16_to_cpu(resp->fid);
4173                 pf->port_id = le16_to_cpu(resp->port_id);
4174                 bp->dev->dev_port = pf->port_id;
4175                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4176                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4177                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4178                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4179                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4180                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4181                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4182                 if (!pf->max_hw_ring_grps)
4183                         pf->max_hw_ring_grps = pf->max_tx_rings;
4184                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4185                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4186                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4187                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4188                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4189                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4190                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4191                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4192                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4193                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4194                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4195         } else {
4196 #ifdef CONFIG_BNXT_SRIOV
4197                 struct bnxt_vf_info *vf = &bp->vf;
4198
4199                 vf->fw_fid = le16_to_cpu(resp->fid);
4200
4201                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4202                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4203                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4204                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4205                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4206                 if (!vf->max_hw_ring_grps)
4207                         vf->max_hw_ring_grps = vf->max_tx_rings;
4208                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4209                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4210                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4211
4212                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4213                 if (is_valid_ether_addr(vf->mac_addr))
4214                         /* overwrite netdev dev_adr with admin VF MAC */
4215                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4216                 else
4217                         random_ether_addr(bp->dev->dev_addr);
4218 #endif
4219         }
4220
4221 hwrm_func_qcaps_exit:
4222         mutex_unlock(&bp->hwrm_cmd_lock);
4223         return rc;
4224 }
4225
4226 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4227 {
4228         struct hwrm_func_reset_input req = {0};
4229
4230         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4231         req.enables = 0;
4232
4233         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4234 }
4235
4236 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4237 {
4238         int rc = 0;
4239         struct hwrm_queue_qportcfg_input req = {0};
4240         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4241         u8 i, *qptr;
4242
4243         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4244
4245         mutex_lock(&bp->hwrm_cmd_lock);
4246         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4247         if (rc)
4248                 goto qportcfg_exit;
4249
4250         if (!resp->max_configurable_queues) {
4251                 rc = -EINVAL;
4252                 goto qportcfg_exit;
4253         }
4254         bp->max_tc = resp->max_configurable_queues;
4255         if (bp->max_tc > BNXT_MAX_QUEUE)
4256                 bp->max_tc = BNXT_MAX_QUEUE;
4257
4258         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4259                 bp->max_tc = 1;
4260
4261         qptr = &resp->queue_id0;
4262         for (i = 0; i < bp->max_tc; i++) {
4263                 bp->q_info[i].queue_id = *qptr++;
4264                 bp->q_info[i].queue_profile = *qptr++;
4265         }
4266
4267 qportcfg_exit:
4268         mutex_unlock(&bp->hwrm_cmd_lock);
4269         return rc;
4270 }
4271
4272 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4273 {
4274         int rc;
4275         struct hwrm_ver_get_input req = {0};
4276         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4277
4278         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4279         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4280         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4281         req.hwrm_intf_min = HWRM_VERSION_MINOR;
4282         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4283         mutex_lock(&bp->hwrm_cmd_lock);
4284         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4285         if (rc)
4286                 goto hwrm_ver_get_exit;
4287
4288         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4289
4290         bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4291                              resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4292         if (resp->hwrm_intf_maj < 1) {
4293                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4294                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
4295                             resp->hwrm_intf_upd);
4296                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4297         }
4298         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4299                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4300                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4301
4302         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4303         if (!bp->hwrm_cmd_timeout)
4304                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4305
4306         if (resp->hwrm_intf_maj >= 1)
4307                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4308
4309         bp->chip_num = le16_to_cpu(resp->chip_num);
4310         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4311             !resp->chip_metal)
4312                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4313
4314 hwrm_ver_get_exit:
4315         mutex_unlock(&bp->hwrm_cmd_lock);
4316         return rc;
4317 }
4318
4319 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4320 {
4321         struct hwrm_fw_set_time_input req = {0};
4322         struct rtc_time tm;
4323         struct timeval tv;
4324
4325         if (bp->hwrm_spec_code < 0x10400)
4326                 return -EOPNOTSUPP;
4327
4328         do_gettimeofday(&tv);
4329         rtc_time_to_tm(tv.tv_sec, &tm);
4330         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4331         req.year = cpu_to_le16(1900 + tm.tm_year);
4332         req.month = 1 + tm.tm_mon;
4333         req.day = tm.tm_mday;
4334         req.hour = tm.tm_hour;
4335         req.minute = tm.tm_min;
4336         req.second = tm.tm_sec;
4337         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4338 }
4339
4340 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4341 {
4342         int rc;
4343         struct bnxt_pf_info *pf = &bp->pf;
4344         struct hwrm_port_qstats_input req = {0};
4345
4346         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4347                 return 0;
4348
4349         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4350         req.port_id = cpu_to_le16(pf->port_id);
4351         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4352         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4353         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4354         return rc;
4355 }
4356
4357 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4358 {
4359         if (bp->vxlan_port_cnt) {
4360                 bnxt_hwrm_tunnel_dst_port_free(
4361                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4362         }
4363         bp->vxlan_port_cnt = 0;
4364         if (bp->nge_port_cnt) {
4365                 bnxt_hwrm_tunnel_dst_port_free(
4366                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4367         }
4368         bp->nge_port_cnt = 0;
4369 }
4370
4371 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4372 {
4373         int rc, i;
4374         u32 tpa_flags = 0;
4375
4376         if (set_tpa)
4377                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4378         for (i = 0; i < bp->nr_vnics; i++) {
4379                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4380                 if (rc) {
4381                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4382                                    rc, i);
4383                         return rc;
4384                 }
4385         }
4386         return 0;
4387 }
4388
4389 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4390 {
4391         int i;
4392
4393         for (i = 0; i < bp->nr_vnics; i++)
4394                 bnxt_hwrm_vnic_set_rss(bp, i, false);
4395 }
4396
4397 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4398                                     bool irq_re_init)
4399 {
4400         if (bp->vnic_info) {
4401                 bnxt_hwrm_clear_vnic_filter(bp);
4402                 /* clear all RSS setting before free vnic ctx */
4403                 bnxt_hwrm_clear_vnic_rss(bp);
4404                 bnxt_hwrm_vnic_ctx_free(bp);
4405                 /* before free the vnic, undo the vnic tpa settings */
4406                 if (bp->flags & BNXT_FLAG_TPA)
4407                         bnxt_set_tpa(bp, false);
4408                 bnxt_hwrm_vnic_free(bp);
4409         }
4410         bnxt_hwrm_ring_free(bp, close_path);
4411         bnxt_hwrm_ring_grp_free(bp);
4412         if (irq_re_init) {
4413                 bnxt_hwrm_stat_ctx_free(bp);
4414                 bnxt_hwrm_free_tunnel_ports(bp);
4415         }
4416 }
4417
4418 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4419 {
4420         int rc;
4421
4422         /* allocate context for vnic */
4423         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4424         if (rc) {
4425                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4426                            vnic_id, rc);
4427                 goto vnic_setup_err;
4428         }
4429         bp->rsscos_nr_ctxs++;
4430
4431         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4432                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4433                 if (rc) {
4434                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4435                                    vnic_id, rc);
4436                         goto vnic_setup_err;
4437                 }
4438                 bp->rsscos_nr_ctxs++;
4439         }
4440
4441         /* configure default vnic, ring grp */
4442         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4443         if (rc) {
4444                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4445                            vnic_id, rc);
4446                 goto vnic_setup_err;
4447         }
4448
4449         /* Enable RSS hashing on vnic */
4450         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4451         if (rc) {
4452                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4453                            vnic_id, rc);
4454                 goto vnic_setup_err;
4455         }
4456
4457         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4458                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4459                 if (rc) {
4460                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4461                                    vnic_id, rc);
4462                 }
4463         }
4464
4465 vnic_setup_err:
4466         return rc;
4467 }
4468
4469 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4470 {
4471 #ifdef CONFIG_RFS_ACCEL
4472         int i, rc = 0;
4473
4474         for (i = 0; i < bp->rx_nr_rings; i++) {
4475                 u16 vnic_id = i + 1;
4476                 u16 ring_id = i;
4477
4478                 if (vnic_id >= bp->nr_vnics)
4479                         break;
4480
4481                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4482                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4483                 if (rc) {
4484                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4485                                    vnic_id, rc);
4486                         break;
4487                 }
4488                 rc = bnxt_setup_vnic(bp, vnic_id);
4489                 if (rc)
4490                         break;
4491         }
4492         return rc;
4493 #else
4494         return 0;
4495 #endif
4496 }
4497
4498 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4499 static bool bnxt_promisc_ok(struct bnxt *bp)
4500 {
4501 #ifdef CONFIG_BNXT_SRIOV
4502         if (BNXT_VF(bp) && !bp->vf.vlan)
4503                 return false;
4504 #endif
4505         return true;
4506 }
4507
4508 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4509 {
4510         unsigned int rc = 0;
4511
4512         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4513         if (rc) {
4514                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4515                            rc);
4516                 return rc;
4517         }
4518
4519         rc = bnxt_hwrm_vnic_cfg(bp, 1);
4520         if (rc) {
4521                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4522                            rc);
4523                 return rc;
4524         }
4525         return rc;
4526 }
4527
4528 static int bnxt_cfg_rx_mode(struct bnxt *);
4529 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4530
4531 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4532 {
4533         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4534         int rc = 0;
4535         unsigned int rx_nr_rings = bp->rx_nr_rings;
4536
4537         if (irq_re_init) {
4538                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4539                 if (rc) {
4540                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4541                                    rc);
4542                         goto err_out;
4543                 }
4544         }
4545
4546         rc = bnxt_hwrm_ring_alloc(bp);
4547         if (rc) {
4548                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4549                 goto err_out;
4550         }
4551
4552         rc = bnxt_hwrm_ring_grp_alloc(bp);
4553         if (rc) {
4554                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4555                 goto err_out;
4556         }
4557
4558         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4559                 rx_nr_rings--;
4560
4561         /* default vnic 0 */
4562         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4563         if (rc) {
4564                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4565                 goto err_out;
4566         }
4567
4568         rc = bnxt_setup_vnic(bp, 0);
4569         if (rc)
4570                 goto err_out;
4571
4572         if (bp->flags & BNXT_FLAG_RFS) {
4573                 rc = bnxt_alloc_rfs_vnics(bp);
4574                 if (rc)
4575                         goto err_out;
4576         }
4577
4578         if (bp->flags & BNXT_FLAG_TPA) {
4579                 rc = bnxt_set_tpa(bp, true);
4580                 if (rc)
4581                         goto err_out;
4582         }
4583
4584         if (BNXT_VF(bp))
4585                 bnxt_update_vf_mac(bp);
4586
4587         /* Filter for default vnic 0 */
4588         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4589         if (rc) {
4590                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4591                 goto err_out;
4592         }
4593         vnic->uc_filter_count = 1;
4594
4595         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4596
4597         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4598                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4599
4600         if (bp->dev->flags & IFF_ALLMULTI) {
4601                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4602                 vnic->mc_list_count = 0;
4603         } else {
4604                 u32 mask = 0;
4605
4606                 bnxt_mc_list_updated(bp, &mask);
4607                 vnic->rx_mask |= mask;
4608         }
4609
4610         rc = bnxt_cfg_rx_mode(bp);
4611         if (rc)
4612                 goto err_out;
4613
4614         rc = bnxt_hwrm_set_coal(bp);
4615         if (rc)
4616                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4617                                 rc);
4618
4619         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4620                 rc = bnxt_setup_nitroa0_vnic(bp);
4621                 if (rc)
4622                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4623                                    rc);
4624         }
4625
4626         if (BNXT_VF(bp)) {
4627                 bnxt_hwrm_func_qcfg(bp);
4628                 netdev_update_features(bp->dev);
4629         }
4630
4631         return 0;
4632
4633 err_out:
4634         bnxt_hwrm_resource_free(bp, 0, true);
4635
4636         return rc;
4637 }
4638
4639 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4640 {
4641         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4642         return 0;
4643 }
4644
4645 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4646 {
4647         bnxt_init_rx_rings(bp);
4648         bnxt_init_tx_rings(bp);
4649         bnxt_init_ring_grps(bp, irq_re_init);
4650         bnxt_init_vnics(bp);
4651
4652         return bnxt_init_chip(bp, irq_re_init);
4653 }
4654
4655 static void bnxt_disable_int(struct bnxt *bp)
4656 {
4657         int i;
4658
4659         if (!bp->bnapi)
4660                 return;
4661
4662         for (i = 0; i < bp->cp_nr_rings; i++) {
4663                 struct bnxt_napi *bnapi = bp->bnapi[i];
4664                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4665
4666                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4667         }
4668 }
4669
4670 static void bnxt_enable_int(struct bnxt *bp)
4671 {
4672         int i;
4673
4674         atomic_set(&bp->intr_sem, 0);
4675         for (i = 0; i < bp->cp_nr_rings; i++) {
4676                 struct bnxt_napi *bnapi = bp->bnapi[i];
4677                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4678
4679                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4680         }
4681 }
4682
4683 static int bnxt_set_real_num_queues(struct bnxt *bp)
4684 {
4685         int rc;
4686         struct net_device *dev = bp->dev;
4687
4688         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4689         if (rc)
4690                 return rc;
4691
4692         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4693         if (rc)
4694                 return rc;
4695
4696 #ifdef CONFIG_RFS_ACCEL
4697         if (bp->flags & BNXT_FLAG_RFS)
4698                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4699 #endif
4700
4701         return rc;
4702 }
4703
4704 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4705                            bool shared)
4706 {
4707         int _rx = *rx, _tx = *tx;
4708
4709         if (shared) {
4710                 *rx = min_t(int, _rx, max);
4711                 *tx = min_t(int, _tx, max);
4712         } else {
4713                 if (max < 2)
4714                         return -ENOMEM;
4715
4716                 while (_rx + _tx > max) {
4717                         if (_rx > _tx && _rx > 1)
4718                                 _rx--;
4719                         else if (_tx > 1)
4720                                 _tx--;
4721                 }
4722                 *rx = _rx;
4723                 *tx = _tx;
4724         }
4725         return 0;
4726 }
4727
4728 static int bnxt_setup_msix(struct bnxt *bp)
4729 {
4730         struct msix_entry *msix_ent;
4731         struct net_device *dev = bp->dev;
4732         int i, total_vecs, rc = 0, min = 1;
4733         const int len = sizeof(bp->irq_tbl[0].name);
4734
4735         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4736         total_vecs = bp->cp_nr_rings;
4737
4738         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4739         if (!msix_ent)
4740                 return -ENOMEM;
4741
4742         for (i = 0; i < total_vecs; i++) {
4743                 msix_ent[i].entry = i;
4744                 msix_ent[i].vector = 0;
4745         }
4746
4747         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4748                 min = 2;
4749
4750         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4751         if (total_vecs < 0) {
4752                 rc = -ENODEV;
4753                 goto msix_setup_exit;
4754         }
4755
4756         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4757         if (bp->irq_tbl) {
4758                 int tcs;
4759
4760                 /* Trim rings based upon num of vectors allocated */
4761                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4762                                      total_vecs, min == 1);
4763                 if (rc)
4764                         goto msix_setup_exit;
4765
4766                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4767                 tcs = netdev_get_num_tc(dev);
4768                 if (tcs > 1) {
4769                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4770                         if (bp->tx_nr_rings_per_tc == 0) {
4771                                 netdev_reset_tc(dev);
4772                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4773                         } else {
4774                                 int i, off, count;
4775
4776                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4777                                 for (i = 0; i < tcs; i++) {
4778                                         count = bp->tx_nr_rings_per_tc;
4779                                         off = i * count;
4780                                         netdev_set_tc_queue(dev, i, count, off);
4781                                 }
4782                         }
4783                 }
4784                 bp->cp_nr_rings = total_vecs;
4785
4786                 for (i = 0; i < bp->cp_nr_rings; i++) {
4787                         char *attr;
4788
4789                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4790                         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4791                                 attr = "TxRx";
4792                         else if (i < bp->rx_nr_rings)
4793                                 attr = "rx";
4794                         else
4795                                 attr = "tx";
4796
4797                         snprintf(bp->irq_tbl[i].name, len,
4798                                  "%s-%s-%d", dev->name, attr, i);
4799                         bp->irq_tbl[i].handler = bnxt_msix;
4800                 }
4801                 rc = bnxt_set_real_num_queues(bp);
4802                 if (rc)
4803                         goto msix_setup_exit;
4804         } else {
4805                 rc = -ENOMEM;
4806                 goto msix_setup_exit;
4807         }
4808         bp->flags |= BNXT_FLAG_USING_MSIX;
4809         kfree(msix_ent);
4810         return 0;
4811
4812 msix_setup_exit:
4813         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4814         pci_disable_msix(bp->pdev);
4815         kfree(msix_ent);
4816         return rc;
4817 }
4818
4819 static int bnxt_setup_inta(struct bnxt *bp)
4820 {
4821         int rc;
4822         const int len = sizeof(bp->irq_tbl[0].name);
4823
4824         if (netdev_get_num_tc(bp->dev))
4825                 netdev_reset_tc(bp->dev);
4826
4827         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4828         if (!bp->irq_tbl) {
4829                 rc = -ENOMEM;
4830                 return rc;
4831         }
4832         bp->rx_nr_rings = 1;
4833         bp->tx_nr_rings = 1;
4834         bp->cp_nr_rings = 1;
4835         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4836         bp->flags |= BNXT_FLAG_SHARED_RINGS;
4837         bp->irq_tbl[0].vector = bp->pdev->irq;
4838         snprintf(bp->irq_tbl[0].name, len,
4839                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4840         bp->irq_tbl[0].handler = bnxt_inta;
4841         rc = bnxt_set_real_num_queues(bp);
4842         return rc;
4843 }
4844
4845 static int bnxt_setup_int_mode(struct bnxt *bp)
4846 {
4847         int rc = 0;
4848
4849         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4850                 rc = bnxt_setup_msix(bp);
4851
4852         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4853                 /* fallback to INTA */
4854                 rc = bnxt_setup_inta(bp);
4855         }
4856         return rc;
4857 }
4858
4859 static void bnxt_free_irq(struct bnxt *bp)
4860 {
4861         struct bnxt_irq *irq;
4862         int i;
4863
4864 #ifdef CONFIG_RFS_ACCEL
4865         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4866         bp->dev->rx_cpu_rmap = NULL;
4867 #endif
4868         if (!bp->irq_tbl)
4869                 return;
4870
4871         for (i = 0; i < bp->cp_nr_rings; i++) {
4872                 irq = &bp->irq_tbl[i];
4873                 if (irq->requested)
4874                         free_irq(irq->vector, bp->bnapi[i]);
4875                 irq->requested = 0;
4876         }
4877         if (bp->flags & BNXT_FLAG_USING_MSIX)
4878                 pci_disable_msix(bp->pdev);
4879         kfree(bp->irq_tbl);
4880         bp->irq_tbl = NULL;
4881 }
4882
4883 static int bnxt_request_irq(struct bnxt *bp)
4884 {
4885         int i, j, rc = 0;
4886         unsigned long flags = 0;
4887 #ifdef CONFIG_RFS_ACCEL
4888         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4889 #endif
4890
4891         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4892                 flags = IRQF_SHARED;
4893
4894         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4895                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4896 #ifdef CONFIG_RFS_ACCEL
4897                 if (rmap && bp->bnapi[i]->rx_ring) {
4898                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4899                         if (rc)
4900                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4901                                             j);
4902                         j++;
4903                 }
4904 #endif
4905                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4906                                  bp->bnapi[i]);
4907                 if (rc)
4908                         break;
4909
4910                 irq->requested = 1;
4911         }
4912         return rc;
4913 }
4914
4915 static void bnxt_del_napi(struct bnxt *bp)
4916 {
4917         int i;
4918
4919         if (!bp->bnapi)
4920                 return;
4921
4922         for (i = 0; i < bp->cp_nr_rings; i++) {
4923                 struct bnxt_napi *bnapi = bp->bnapi[i];
4924
4925                 napi_hash_del(&bnapi->napi);
4926                 netif_napi_del(&bnapi->napi);
4927         }
4928 }
4929
4930 static void bnxt_init_napi(struct bnxt *bp)
4931 {
4932         int i;
4933         unsigned int cp_nr_rings = bp->cp_nr_rings;
4934         struct bnxt_napi *bnapi;
4935
4936         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4937                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4938                         cp_nr_rings--;
4939                 for (i = 0; i < cp_nr_rings; i++) {
4940                         bnapi = bp->bnapi[i];
4941                         netif_napi_add(bp->dev, &bnapi->napi,
4942                                        bnxt_poll, 64);
4943                 }
4944                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4945                         bnapi = bp->bnapi[cp_nr_rings];
4946                         netif_napi_add(bp->dev, &bnapi->napi,
4947                                        bnxt_poll_nitroa0, 64);
4948                         napi_hash_add(&bnapi->napi);
4949                 }
4950         } else {
4951                 bnapi = bp->bnapi[0];
4952                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4953         }
4954 }
4955
4956 static void bnxt_disable_napi(struct bnxt *bp)
4957 {
4958         int i;
4959
4960         if (!bp->bnapi)
4961                 return;
4962
4963         for (i = 0; i < bp->cp_nr_rings; i++) {
4964                 napi_disable(&bp->bnapi[i]->napi);
4965                 bnxt_disable_poll(bp->bnapi[i]);
4966         }
4967 }
4968
4969 static void bnxt_enable_napi(struct bnxt *bp)
4970 {
4971         int i;
4972
4973         for (i = 0; i < bp->cp_nr_rings; i++) {
4974                 bp->bnapi[i]->in_reset = false;
4975                 bnxt_enable_poll(bp->bnapi[i]);
4976                 napi_enable(&bp->bnapi[i]->napi);
4977         }
4978 }
4979
4980 static void bnxt_tx_disable(struct bnxt *bp)
4981 {
4982         int i;
4983         struct bnxt_tx_ring_info *txr;
4984         struct netdev_queue *txq;
4985
4986         if (bp->tx_ring) {
4987                 for (i = 0; i < bp->tx_nr_rings; i++) {
4988                         txr = &bp->tx_ring[i];
4989                         txq = netdev_get_tx_queue(bp->dev, i);
4990                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4991                 }
4992         }
4993         /* Stop all TX queues */
4994         netif_tx_disable(bp->dev);
4995         netif_carrier_off(bp->dev);
4996 }
4997
4998 static void bnxt_tx_enable(struct bnxt *bp)
4999 {
5000         int i;
5001         struct bnxt_tx_ring_info *txr;
5002         struct netdev_queue *txq;
5003
5004         for (i = 0; i < bp->tx_nr_rings; i++) {
5005                 txr = &bp->tx_ring[i];
5006                 txq = netdev_get_tx_queue(bp->dev, i);
5007                 txr->dev_state = 0;
5008         }
5009         netif_tx_wake_all_queues(bp->dev);
5010         if (bp->link_info.link_up)
5011                 netif_carrier_on(bp->dev);
5012 }
5013
5014 static void bnxt_report_link(struct bnxt *bp)
5015 {
5016         if (bp->link_info.link_up) {
5017                 const char *duplex;
5018                 const char *flow_ctrl;
5019                 u16 speed;
5020
5021                 netif_carrier_on(bp->dev);
5022                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5023                         duplex = "full";
5024                 else
5025                         duplex = "half";
5026                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5027                         flow_ctrl = "ON - receive & transmit";
5028                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5029                         flow_ctrl = "ON - transmit";
5030                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5031                         flow_ctrl = "ON - receive";
5032                 else
5033                         flow_ctrl = "none";
5034                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5035                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5036                             speed, duplex, flow_ctrl);
5037                 if (bp->flags & BNXT_FLAG_EEE_CAP)
5038                         netdev_info(bp->dev, "EEE is %s\n",
5039                                     bp->eee.eee_active ? "active" :
5040                                                          "not active");
5041         } else {
5042                 netif_carrier_off(bp->dev);
5043                 netdev_err(bp->dev, "NIC Link is Down\n");
5044         }
5045 }
5046
5047 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5048 {
5049         int rc = 0;
5050         struct hwrm_port_phy_qcaps_input req = {0};
5051         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5052         struct bnxt_link_info *link_info = &bp->link_info;
5053
5054         if (bp->hwrm_spec_code < 0x10201)
5055                 return 0;
5056
5057         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5058
5059         mutex_lock(&bp->hwrm_cmd_lock);
5060         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5061         if (rc)
5062                 goto hwrm_phy_qcaps_exit;
5063
5064         if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5065                 struct ethtool_eee *eee = &bp->eee;
5066                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5067
5068                 bp->flags |= BNXT_FLAG_EEE_CAP;
5069                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5070                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5071                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5072                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5073                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5074         }
5075         link_info->support_auto_speeds =
5076                 le16_to_cpu(resp->supported_speeds_auto_mode);
5077
5078 hwrm_phy_qcaps_exit:
5079         mutex_unlock(&bp->hwrm_cmd_lock);
5080         return rc;
5081 }
5082
5083 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5084 {
5085         int rc = 0;
5086         struct bnxt_link_info *link_info = &bp->link_info;
5087         struct hwrm_port_phy_qcfg_input req = {0};
5088         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5089         u8 link_up = link_info->link_up;
5090
5091         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5092
5093         mutex_lock(&bp->hwrm_cmd_lock);
5094         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5095         if (rc) {
5096                 mutex_unlock(&bp->hwrm_cmd_lock);
5097                 return rc;
5098         }
5099
5100         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5101         link_info->phy_link_status = resp->link;
5102         link_info->duplex =  resp->duplex;
5103         link_info->pause = resp->pause;
5104         link_info->auto_mode = resp->auto_mode;
5105         link_info->auto_pause_setting = resp->auto_pause;
5106         link_info->lp_pause = resp->link_partner_adv_pause;
5107         link_info->force_pause_setting = resp->force_pause;
5108         link_info->duplex_setting = resp->duplex;
5109         if (link_info->phy_link_status == BNXT_LINK_LINK)
5110                 link_info->link_speed = le16_to_cpu(resp->link_speed);
5111         else
5112                 link_info->link_speed = 0;
5113         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5114         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5115         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5116         link_info->lp_auto_link_speeds =
5117                 le16_to_cpu(resp->link_partner_adv_speeds);
5118         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5119         link_info->phy_ver[0] = resp->phy_maj;
5120         link_info->phy_ver[1] = resp->phy_min;
5121         link_info->phy_ver[2] = resp->phy_bld;
5122         link_info->media_type = resp->media_type;
5123         link_info->phy_type = resp->phy_type;
5124         link_info->transceiver = resp->xcvr_pkg_type;
5125         link_info->phy_addr = resp->eee_config_phy_addr &
5126                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5127         link_info->module_status = resp->module_status;
5128
5129         if (bp->flags & BNXT_FLAG_EEE_CAP) {
5130                 struct ethtool_eee *eee = &bp->eee;
5131                 u16 fw_speeds;
5132
5133                 eee->eee_active = 0;
5134                 if (resp->eee_config_phy_addr &
5135                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5136                         eee->eee_active = 1;
5137                         fw_speeds = le16_to_cpu(
5138                                 resp->link_partner_adv_eee_link_speed_mask);
5139                         eee->lp_advertised =
5140                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5141                 }
5142
5143                 /* Pull initial EEE config */
5144                 if (!chng_link_state) {
5145                         if (resp->eee_config_phy_addr &
5146                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5147                                 eee->eee_enabled = 1;
5148
5149                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5150                         eee->advertised =
5151                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5152
5153                         if (resp->eee_config_phy_addr &
5154                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5155                                 __le32 tmr;
5156
5157                                 eee->tx_lpi_enabled = 1;
5158                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5159                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5160                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5161                         }
5162                 }
5163         }
5164         /* TODO: need to add more logic to report VF link */
5165         if (chng_link_state) {
5166                 if (link_info->phy_link_status == BNXT_LINK_LINK)
5167                         link_info->link_up = 1;
5168                 else
5169                         link_info->link_up = 0;
5170                 if (link_up != link_info->link_up)
5171                         bnxt_report_link(bp);
5172         } else {
5173                 /* alwasy link down if not require to update link state */
5174                 link_info->link_up = 0;
5175         }
5176         mutex_unlock(&bp->hwrm_cmd_lock);
5177         return 0;
5178 }
5179
5180 static void bnxt_get_port_module_status(struct bnxt *bp)
5181 {
5182         struct bnxt_link_info *link_info = &bp->link_info;
5183         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5184         u8 module_status;
5185
5186         if (bnxt_update_link(bp, true))
5187                 return;
5188
5189         module_status = link_info->module_status;
5190         switch (module_status) {
5191         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5192         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5193         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5194                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5195                             bp->pf.port_id);
5196                 if (bp->hwrm_spec_code >= 0x10201) {
5197                         netdev_warn(bp->dev, "Module part number %s\n",
5198                                     resp->phy_vendor_partnumber);
5199                 }
5200                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5201                         netdev_warn(bp->dev, "TX is disabled\n");
5202                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5203                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5204         }
5205 }
5206
5207 static void
5208 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5209 {
5210         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5211                 if (bp->hwrm_spec_code >= 0x10201)
5212                         req->auto_pause =
5213                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5214                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5215                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5216                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5217                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5218                 req->enables |=
5219                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5220         } else {
5221                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5222                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5223                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5224                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5225                 req->enables |=
5226                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5227                 if (bp->hwrm_spec_code >= 0x10201) {
5228                         req->auto_pause = req->force_pause;
5229                         req->enables |= cpu_to_le32(
5230                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5231                 }
5232         }
5233 }
5234
5235 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5236                                       struct hwrm_port_phy_cfg_input *req)
5237 {
5238         u8 autoneg = bp->link_info.autoneg;
5239         u16 fw_link_speed = bp->link_info.req_link_speed;
5240         u32 advertising = bp->link_info.advertising;
5241
5242         if (autoneg & BNXT_AUTONEG_SPEED) {
5243                 req->auto_mode |=
5244                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5245
5246                 req->enables |= cpu_to_le32(
5247                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5248                 req->auto_link_speed_mask = cpu_to_le16(advertising);
5249
5250                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5251                 req->flags |=
5252                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5253         } else {
5254                 req->force_link_speed = cpu_to_le16(fw_link_speed);
5255                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5256         }
5257
5258         /* tell chimp that the setting takes effect immediately */
5259         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5260 }
5261
5262 int bnxt_hwrm_set_pause(struct bnxt *bp)
5263 {
5264         struct hwrm_port_phy_cfg_input req = {0};
5265         int rc;
5266
5267         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5268         bnxt_hwrm_set_pause_common(bp, &req);
5269
5270         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5271             bp->link_info.force_link_chng)
5272                 bnxt_hwrm_set_link_common(bp, &req);
5273
5274         mutex_lock(&bp->hwrm_cmd_lock);
5275         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5276         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5277                 /* since changing of pause setting doesn't trigger any link
5278                  * change event, the driver needs to update the current pause
5279                  * result upon successfully return of the phy_cfg command
5280                  */
5281                 bp->link_info.pause =
5282                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5283                 bp->link_info.auto_pause_setting = 0;
5284                 if (!bp->link_info.force_link_chng)
5285                         bnxt_report_link(bp);
5286         }
5287         bp->link_info.force_link_chng = false;
5288         mutex_unlock(&bp->hwrm_cmd_lock);
5289         return rc;
5290 }
5291
5292 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5293                               struct hwrm_port_phy_cfg_input *req)
5294 {
5295         struct ethtool_eee *eee = &bp->eee;
5296
5297         if (eee->eee_enabled) {
5298                 u16 eee_speeds;
5299                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5300
5301                 if (eee->tx_lpi_enabled)
5302                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5303                 else
5304                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5305
5306                 req->flags |= cpu_to_le32(flags);
5307                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5308                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5309                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5310         } else {
5311                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5312         }
5313 }
5314
5315 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5316 {
5317         struct hwrm_port_phy_cfg_input req = {0};
5318
5319         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5320         if (set_pause)
5321                 bnxt_hwrm_set_pause_common(bp, &req);
5322
5323         bnxt_hwrm_set_link_common(bp, &req);
5324
5325         if (set_eee)
5326                 bnxt_hwrm_set_eee(bp, &req);
5327         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5328 }
5329
5330 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5331 {
5332         struct hwrm_port_phy_cfg_input req = {0};
5333
5334         if (!BNXT_SINGLE_PF(bp))
5335                 return 0;
5336
5337         if (pci_num_vf(bp->pdev))
5338                 return 0;
5339
5340         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5341         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
5342         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5343 }
5344
5345 static bool bnxt_eee_config_ok(struct bnxt *bp)
5346 {
5347         struct ethtool_eee *eee = &bp->eee;
5348         struct bnxt_link_info *link_info = &bp->link_info;
5349
5350         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5351                 return true;
5352
5353         if (eee->eee_enabled) {
5354                 u32 advertising =
5355                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5356
5357                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5358                         eee->eee_enabled = 0;
5359                         return false;
5360                 }
5361                 if (eee->advertised & ~advertising) {
5362                         eee->advertised = advertising & eee->supported;
5363                         return false;
5364                 }
5365         }
5366         return true;
5367 }
5368
5369 static int bnxt_update_phy_setting(struct bnxt *bp)
5370 {
5371         int rc;
5372         bool update_link = false;
5373         bool update_pause = false;
5374         bool update_eee = false;
5375         struct bnxt_link_info *link_info = &bp->link_info;
5376
5377         rc = bnxt_update_link(bp, true);
5378         if (rc) {
5379                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5380                            rc);
5381                 return rc;
5382         }
5383         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5384             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5385             link_info->req_flow_ctrl)
5386                 update_pause = true;
5387         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5388             link_info->force_pause_setting != link_info->req_flow_ctrl)
5389                 update_pause = true;
5390         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5391                 if (BNXT_AUTO_MODE(link_info->auto_mode))
5392                         update_link = true;
5393                 if (link_info->req_link_speed != link_info->force_link_speed)
5394                         update_link = true;
5395                 if (link_info->req_duplex != link_info->duplex_setting)
5396                         update_link = true;
5397         } else {
5398                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5399                         update_link = true;
5400                 if (link_info->advertising != link_info->auto_link_speeds)
5401                         update_link = true;
5402         }
5403
5404         if (!bnxt_eee_config_ok(bp))
5405                 update_eee = true;
5406
5407         if (update_link)
5408                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5409         else if (update_pause)
5410                 rc = bnxt_hwrm_set_pause(bp);
5411         if (rc) {
5412                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5413                            rc);
5414                 return rc;
5415         }
5416
5417         return rc;
5418 }
5419
5420 /* Common routine to pre-map certain register block to different GRC window.
5421  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5422  * in PF and 3 windows in VF that can be customized to map in different
5423  * register blocks.
5424  */
5425 static void bnxt_preset_reg_win(struct bnxt *bp)
5426 {
5427         if (BNXT_PF(bp)) {
5428                 /* CAG registers map to GRC window #4 */
5429                 writel(BNXT_CAG_REG_BASE,
5430                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5431         }
5432 }
5433
5434 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5435 {
5436         int rc = 0;
5437
5438         bnxt_preset_reg_win(bp);
5439         netif_carrier_off(bp->dev);
5440         if (irq_re_init) {
5441                 rc = bnxt_setup_int_mode(bp);
5442                 if (rc) {
5443                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5444                                    rc);
5445                         return rc;
5446                 }
5447         }
5448         if ((bp->flags & BNXT_FLAG_RFS) &&
5449             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5450                 /* disable RFS if falling back to INTA */
5451                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5452                 bp->flags &= ~BNXT_FLAG_RFS;
5453         }
5454
5455         rc = bnxt_alloc_mem(bp, irq_re_init);
5456         if (rc) {
5457                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5458                 goto open_err_free_mem;
5459         }
5460
5461         if (irq_re_init) {
5462                 bnxt_init_napi(bp);
5463                 rc = bnxt_request_irq(bp);
5464                 if (rc) {
5465                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5466                         goto open_err;
5467                 }
5468         }
5469
5470         bnxt_enable_napi(bp);
5471
5472         rc = bnxt_init_nic(bp, irq_re_init);
5473         if (rc) {
5474                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5475                 goto open_err;
5476         }
5477
5478         if (link_re_init) {
5479                 rc = bnxt_update_phy_setting(bp);
5480                 if (rc)
5481                         netdev_warn(bp->dev, "failed to update phy settings\n");
5482         }
5483
5484         if (irq_re_init)
5485                 udp_tunnel_get_rx_info(bp->dev);
5486
5487         set_bit(BNXT_STATE_OPEN, &bp->state);
5488         bnxt_enable_int(bp);
5489         /* Enable TX queues */
5490         bnxt_tx_enable(bp);
5491         mod_timer(&bp->timer, jiffies + bp->current_interval);
5492         /* Poll link status and check for SFP+ module status */
5493         bnxt_get_port_module_status(bp);
5494
5495         return 0;
5496
5497 open_err:
5498         bnxt_disable_napi(bp);
5499         bnxt_del_napi(bp);
5500
5501 open_err_free_mem:
5502         bnxt_free_skbs(bp);
5503         bnxt_free_irq(bp);
5504         bnxt_free_mem(bp, true);
5505         return rc;
5506 }
5507
5508 /* rtnl_lock held */
5509 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5510 {
5511         int rc = 0;
5512
5513         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5514         if (rc) {
5515                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5516                 dev_close(bp->dev);
5517         }
5518         return rc;
5519 }
5520
5521 static int bnxt_open(struct net_device *dev)
5522 {
5523         struct bnxt *bp = netdev_priv(dev);
5524         int rc = 0;
5525
5526         if (!test_bit(BNXT_STATE_FN_RST_DONE, &bp->state)) {
5527                 rc = bnxt_hwrm_func_reset(bp);
5528                 if (rc) {
5529                         netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5530                                    rc);
5531                         rc = -EBUSY;
5532                         return rc;
5533                 }
5534                 /* Do func_reset during the 1st PF open only to prevent killing
5535                  * the VFs when the PF is brought down and up.
5536                  */
5537                 if (BNXT_PF(bp))
5538                         set_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
5539         }
5540         return __bnxt_open_nic(bp, true, true);
5541 }
5542
5543 static void bnxt_disable_int_sync(struct bnxt *bp)
5544 {
5545         int i;
5546
5547         atomic_inc(&bp->intr_sem);
5548         if (!netif_running(bp->dev))
5549                 return;
5550
5551         bnxt_disable_int(bp);
5552         for (i = 0; i < bp->cp_nr_rings; i++)
5553                 synchronize_irq(bp->irq_tbl[i].vector);
5554 }
5555
5556 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5557 {
5558         int rc = 0;
5559
5560 #ifdef CONFIG_BNXT_SRIOV
5561         if (bp->sriov_cfg) {
5562                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5563                                                       !bp->sriov_cfg,
5564                                                       BNXT_SRIOV_CFG_WAIT_TMO);
5565                 if (rc)
5566                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5567         }
5568 #endif
5569         /* Change device state to avoid TX queue wake up's */
5570         bnxt_tx_disable(bp);
5571
5572         clear_bit(BNXT_STATE_OPEN, &bp->state);
5573         smp_mb__after_atomic();
5574         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5575                 msleep(20);
5576
5577         /* Flush rings before disabling interrupts */
5578         bnxt_shutdown_nic(bp, irq_re_init);
5579
5580         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5581
5582         bnxt_disable_napi(bp);
5583         bnxt_disable_int_sync(bp);
5584         del_timer_sync(&bp->timer);
5585         bnxt_free_skbs(bp);
5586
5587         if (irq_re_init) {
5588                 bnxt_free_irq(bp);
5589                 bnxt_del_napi(bp);
5590         }
5591         bnxt_free_mem(bp, irq_re_init);
5592         return rc;
5593 }
5594
5595 static int bnxt_close(struct net_device *dev)
5596 {
5597         struct bnxt *bp = netdev_priv(dev);
5598
5599         bnxt_close_nic(bp, true, true);
5600         bnxt_hwrm_shutdown_link(bp);
5601         return 0;
5602 }
5603
5604 /* rtnl_lock held */
5605 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5606 {
5607         switch (cmd) {
5608         case SIOCGMIIPHY:
5609                 /* fallthru */
5610         case SIOCGMIIREG: {
5611                 if (!netif_running(dev))
5612                         return -EAGAIN;
5613
5614                 return 0;
5615         }
5616
5617         case SIOCSMIIREG:
5618                 if (!netif_running(dev))
5619                         return -EAGAIN;
5620
5621                 return 0;
5622
5623         default:
5624                 /* do nothing */
5625                 break;
5626         }
5627         return -EOPNOTSUPP;
5628 }
5629
5630 static struct rtnl_link_stats64 *
5631 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5632 {
5633         u32 i;
5634         struct bnxt *bp = netdev_priv(dev);
5635
5636         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5637
5638         if (!bp->bnapi)
5639                 return stats;
5640
5641         /* TODO check if we need to synchronize with bnxt_close path */
5642         for (i = 0; i < bp->cp_nr_rings; i++) {
5643                 struct bnxt_napi *bnapi = bp->bnapi[i];
5644                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5645                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5646
5647                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5648                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5649                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5650
5651                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5652                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5653                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5654
5655                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5656                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5657                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5658
5659                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5660                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5661                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5662
5663                 stats->rx_missed_errors +=
5664                         le64_to_cpu(hw_stats->rx_discard_pkts);
5665
5666                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5667
5668                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5669         }
5670
5671         if (bp->flags & BNXT_FLAG_PORT_STATS) {
5672                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5673                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5674
5675                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5676                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5677                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5678                                           le64_to_cpu(rx->rx_ovrsz_frames) +
5679                                           le64_to_cpu(rx->rx_runt_frames);
5680                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5681                                    le64_to_cpu(rx->rx_jbr_frames);
5682                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5683                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5684                 stats->tx_errors = le64_to_cpu(tx->tx_err);
5685         }
5686
5687         return stats;
5688 }
5689
5690 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5691 {
5692         struct net_device *dev = bp->dev;
5693         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5694         struct netdev_hw_addr *ha;
5695         u8 *haddr;
5696         int mc_count = 0;
5697         bool update = false;
5698         int off = 0;
5699
5700         netdev_for_each_mc_addr(ha, dev) {
5701                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5702                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5703                         vnic->mc_list_count = 0;
5704                         return false;
5705                 }
5706                 haddr = ha->addr;
5707                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5708                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5709                         update = true;
5710                 }
5711                 off += ETH_ALEN;
5712                 mc_count++;
5713         }
5714         if (mc_count)
5715                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5716
5717         if (mc_count != vnic->mc_list_count) {
5718                 vnic->mc_list_count = mc_count;
5719                 update = true;
5720         }
5721         return update;
5722 }
5723
5724 static bool bnxt_uc_list_updated(struct bnxt *bp)
5725 {
5726         struct net_device *dev = bp->dev;
5727         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5728         struct netdev_hw_addr *ha;
5729         int off = 0;
5730
5731         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5732                 return true;
5733
5734         netdev_for_each_uc_addr(ha, dev) {
5735                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5736                         return true;
5737
5738                 off += ETH_ALEN;
5739         }
5740         return false;
5741 }
5742
5743 static void bnxt_set_rx_mode(struct net_device *dev)
5744 {
5745         struct bnxt *bp = netdev_priv(dev);
5746         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5747         u32 mask = vnic->rx_mask;
5748         bool mc_update = false;
5749         bool uc_update;
5750
5751         if (!netif_running(dev))
5752                 return;
5753
5754         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5755                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5756                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5757
5758         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5759                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5760
5761         uc_update = bnxt_uc_list_updated(bp);
5762
5763         if (dev->flags & IFF_ALLMULTI) {
5764                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5765                 vnic->mc_list_count = 0;
5766         } else {
5767                 mc_update = bnxt_mc_list_updated(bp, &mask);
5768         }
5769
5770         if (mask != vnic->rx_mask || uc_update || mc_update) {
5771                 vnic->rx_mask = mask;
5772
5773                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5774                 schedule_work(&bp->sp_task);
5775         }
5776 }
5777
5778 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5779 {
5780         struct net_device *dev = bp->dev;
5781         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5782         struct netdev_hw_addr *ha;
5783         int i, off = 0, rc;
5784         bool uc_update;
5785
5786         netif_addr_lock_bh(dev);
5787         uc_update = bnxt_uc_list_updated(bp);
5788         netif_addr_unlock_bh(dev);
5789
5790         if (!uc_update)
5791                 goto skip_uc;
5792
5793         mutex_lock(&bp->hwrm_cmd_lock);
5794         for (i = 1; i < vnic->uc_filter_count; i++) {
5795                 struct hwrm_cfa_l2_filter_free_input req = {0};
5796
5797                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5798                                        -1);
5799
5800                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5801
5802                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5803                                         HWRM_CMD_TIMEOUT);
5804         }
5805         mutex_unlock(&bp->hwrm_cmd_lock);
5806
5807         vnic->uc_filter_count = 1;
5808
5809         netif_addr_lock_bh(dev);
5810         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5811                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5812         } else {
5813                 netdev_for_each_uc_addr(ha, dev) {
5814                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5815                         off += ETH_ALEN;
5816                         vnic->uc_filter_count++;
5817                 }
5818         }
5819         netif_addr_unlock_bh(dev);
5820
5821         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5822                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5823                 if (rc) {
5824                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5825                                    rc);
5826                         vnic->uc_filter_count = i;
5827                         return rc;
5828                 }
5829         }
5830
5831 skip_uc:
5832         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5833         if (rc)
5834                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5835                            rc);
5836
5837         return rc;
5838 }
5839
5840 static bool bnxt_rfs_capable(struct bnxt *bp)
5841 {
5842 #ifdef CONFIG_RFS_ACCEL
5843         struct bnxt_pf_info *pf = &bp->pf;
5844         int vnics;
5845
5846         if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5847                 return false;
5848
5849         vnics = 1 + bp->rx_nr_rings;
5850         if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) {
5851                 netdev_warn(bp->dev,
5852                             "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
5853                             min(pf->max_rsscos_ctxs - 1, pf->max_vnics - 1));
5854                 return false;
5855         }
5856
5857         return true;
5858 #else
5859         return false;
5860 #endif
5861 }
5862
5863 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5864                                            netdev_features_t features)
5865 {
5866         struct bnxt *bp = netdev_priv(dev);
5867
5868         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
5869                 features &= ~NETIF_F_NTUPLE;
5870
5871         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
5872          * turned on or off together.
5873          */
5874         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
5875             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
5876                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
5877                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5878                                       NETIF_F_HW_VLAN_STAG_RX);
5879                 else
5880                         features |= NETIF_F_HW_VLAN_CTAG_RX |
5881                                     NETIF_F_HW_VLAN_STAG_RX;
5882         }
5883 #ifdef CONFIG_BNXT_SRIOV
5884         if (BNXT_VF(bp)) {
5885                 if (bp->vf.vlan) {
5886                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5887                                       NETIF_F_HW_VLAN_STAG_RX);
5888                 }
5889         }
5890 #endif
5891         return features;
5892 }
5893
5894 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5895 {
5896         struct bnxt *bp = netdev_priv(dev);
5897         u32 flags = bp->flags;
5898         u32 changes;
5899         int rc = 0;
5900         bool re_init = false;
5901         bool update_tpa = false;
5902
5903         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5904         if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
5905                 flags |= BNXT_FLAG_GRO;
5906         if (features & NETIF_F_LRO)
5907                 flags |= BNXT_FLAG_LRO;
5908
5909         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5910                 flags |= BNXT_FLAG_STRIP_VLAN;
5911
5912         if (features & NETIF_F_NTUPLE)
5913                 flags |= BNXT_FLAG_RFS;
5914
5915         changes = flags ^ bp->flags;
5916         if (changes & BNXT_FLAG_TPA) {
5917                 update_tpa = true;
5918                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5919                     (flags & BNXT_FLAG_TPA) == 0)
5920                         re_init = true;
5921         }
5922
5923         if (changes & ~BNXT_FLAG_TPA)
5924                 re_init = true;
5925
5926         if (flags != bp->flags) {
5927                 u32 old_flags = bp->flags;
5928
5929                 bp->flags = flags;
5930
5931                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5932                         if (update_tpa)
5933                                 bnxt_set_ring_params(bp);
5934                         return rc;
5935                 }
5936
5937                 if (re_init) {
5938                         bnxt_close_nic(bp, false, false);
5939                         if (update_tpa)
5940                                 bnxt_set_ring_params(bp);
5941
5942                         return bnxt_open_nic(bp, false, false);
5943                 }
5944                 if (update_tpa) {
5945                         rc = bnxt_set_tpa(bp,
5946                                           (flags & BNXT_FLAG_TPA) ?
5947                                           true : false);
5948                         if (rc)
5949                                 bp->flags = old_flags;
5950                 }
5951         }
5952         return rc;
5953 }
5954
5955 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5956 {
5957         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5958         int i = bnapi->index;
5959
5960         if (!txr)
5961                 return;
5962
5963         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5964                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5965                     txr->tx_cons);
5966 }
5967
5968 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5969 {
5970         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5971         int i = bnapi->index;
5972
5973         if (!rxr)
5974                 return;
5975
5976         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5977                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5978                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5979                     rxr->rx_sw_agg_prod);
5980 }
5981
5982 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5983 {
5984         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5985         int i = bnapi->index;
5986
5987         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5988                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5989 }
5990
5991 static void bnxt_dbg_dump_states(struct bnxt *bp)
5992 {
5993         int i;
5994         struct bnxt_napi *bnapi;
5995
5996         for (i = 0; i < bp->cp_nr_rings; i++) {
5997                 bnapi = bp->bnapi[i];
5998                 if (netif_msg_drv(bp)) {
5999                         bnxt_dump_tx_sw_state(bnapi);
6000                         bnxt_dump_rx_sw_state(bnapi);
6001                         bnxt_dump_cp_sw_state(bnapi);
6002                 }
6003         }
6004 }
6005
6006 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6007 {
6008         if (!silent)
6009                 bnxt_dbg_dump_states(bp);
6010         if (netif_running(bp->dev)) {
6011                 bnxt_close_nic(bp, false, false);
6012                 bnxt_open_nic(bp, false, false);
6013         }
6014 }
6015
6016 static void bnxt_tx_timeout(struct net_device *dev)
6017 {
6018         struct bnxt *bp = netdev_priv(dev);
6019
6020         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6021         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6022         schedule_work(&bp->sp_task);
6023 }
6024
6025 #ifdef CONFIG_NET_POLL_CONTROLLER
6026 static void bnxt_poll_controller(struct net_device *dev)
6027 {
6028         struct bnxt *bp = netdev_priv(dev);
6029         int i;
6030
6031         for (i = 0; i < bp->cp_nr_rings; i++) {
6032                 struct bnxt_irq *irq = &bp->irq_tbl[i];
6033
6034                 disable_irq(irq->vector);
6035                 irq->handler(irq->vector, bp->bnapi[i]);
6036                 enable_irq(irq->vector);
6037         }
6038 }
6039 #endif
6040
6041 static void bnxt_timer(unsigned long data)
6042 {
6043         struct bnxt *bp = (struct bnxt *)data;
6044         struct net_device *dev = bp->dev;
6045
6046         if (!netif_running(dev))
6047                 return;
6048
6049         if (atomic_read(&bp->intr_sem) != 0)
6050                 goto bnxt_restart_timer;
6051
6052         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6053                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6054                 schedule_work(&bp->sp_task);
6055         }
6056 bnxt_restart_timer:
6057         mod_timer(&bp->timer, jiffies + bp->current_interval);
6058 }
6059
6060 /* Only called from bnxt_sp_task() */
6061 static void bnxt_reset(struct bnxt *bp, bool silent)
6062 {
6063         /* bnxt_reset_task() calls bnxt_close_nic() which waits
6064          * for BNXT_STATE_IN_SP_TASK to clear.
6065          * If there is a parallel dev_close(), bnxt_close() may be holding
6066          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6067          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6068          */
6069         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6070         rtnl_lock();
6071         if (test_bit(BNXT_STATE_OPEN, &bp->state))
6072                 bnxt_reset_task(bp, silent);
6073         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6074         rtnl_unlock();
6075 }
6076
6077 static void bnxt_cfg_ntp_filters(struct bnxt *);
6078
6079 static void bnxt_sp_task(struct work_struct *work)
6080 {
6081         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6082         int rc;
6083
6084         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6085         smp_mb__after_atomic();
6086         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6087                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6088                 return;
6089         }
6090
6091         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6092                 bnxt_cfg_rx_mode(bp);
6093
6094         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6095                 bnxt_cfg_ntp_filters(bp);
6096         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6097                 rc = bnxt_update_link(bp, true);
6098                 if (rc)
6099                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6100                                    rc);
6101         }
6102         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6103                 bnxt_hwrm_exec_fwd_req(bp);
6104         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6105                 bnxt_hwrm_tunnel_dst_port_alloc(
6106                         bp, bp->vxlan_port,
6107                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6108         }
6109         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6110                 bnxt_hwrm_tunnel_dst_port_free(
6111                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6112         }
6113         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6114                 bnxt_hwrm_tunnel_dst_port_alloc(
6115                         bp, bp->nge_port,
6116                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6117         }
6118         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6119                 bnxt_hwrm_tunnel_dst_port_free(
6120                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6121         }
6122         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6123                 bnxt_reset(bp, false);
6124
6125         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6126                 bnxt_reset(bp, true);
6127
6128         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
6129                 bnxt_get_port_module_status(bp);
6130
6131         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6132                 bnxt_hwrm_port_qstats(bp);
6133
6134         smp_mb__before_atomic();
6135         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6136 }
6137
6138 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6139 {
6140         int rc;
6141         struct bnxt *bp = netdev_priv(dev);
6142
6143         SET_NETDEV_DEV(dev, &pdev->dev);
6144
6145         /* enable device (incl. PCI PM wakeup), and bus-mastering */
6146         rc = pci_enable_device(pdev);
6147         if (rc) {
6148                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6149                 goto init_err;
6150         }
6151
6152         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6153                 dev_err(&pdev->dev,
6154                         "Cannot find PCI device base address, aborting\n");
6155                 rc = -ENODEV;
6156                 goto init_err_disable;
6157         }
6158
6159         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6160         if (rc) {
6161                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6162                 goto init_err_disable;
6163         }
6164
6165         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6166             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6167                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6168                 goto init_err_disable;
6169         }
6170
6171         pci_set_master(pdev);
6172
6173         bp->dev = dev;
6174         bp->pdev = pdev;
6175
6176         bp->bar0 = pci_ioremap_bar(pdev, 0);
6177         if (!bp->bar0) {
6178                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6179                 rc = -ENOMEM;
6180                 goto init_err_release;
6181         }
6182
6183         bp->bar1 = pci_ioremap_bar(pdev, 2);
6184         if (!bp->bar1) {
6185                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6186                 rc = -ENOMEM;
6187                 goto init_err_release;
6188         }
6189
6190         bp->bar2 = pci_ioremap_bar(pdev, 4);
6191         if (!bp->bar2) {
6192                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6193                 rc = -ENOMEM;
6194                 goto init_err_release;
6195         }
6196
6197         pci_enable_pcie_error_reporting(pdev);
6198
6199         INIT_WORK(&bp->sp_task, bnxt_sp_task);
6200
6201         spin_lock_init(&bp->ntp_fltr_lock);
6202
6203         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6204         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6205
6206         /* tick values in micro seconds */
6207         bp->rx_coal_ticks = 12;
6208         bp->rx_coal_bufs = 30;
6209         bp->rx_coal_ticks_irq = 1;
6210         bp->rx_coal_bufs_irq = 2;
6211
6212         bp->tx_coal_ticks = 25;
6213         bp->tx_coal_bufs = 30;
6214         bp->tx_coal_ticks_irq = 2;
6215         bp->tx_coal_bufs_irq = 2;
6216
6217         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6218
6219         init_timer(&bp->timer);
6220         bp->timer.data = (unsigned long)bp;
6221         bp->timer.function = bnxt_timer;
6222         bp->current_interval = BNXT_TIMER_INTERVAL;
6223
6224         clear_bit(BNXT_STATE_OPEN, &bp->state);
6225
6226         return 0;
6227
6228 init_err_release:
6229         if (bp->bar2) {
6230                 pci_iounmap(pdev, bp->bar2);
6231                 bp->bar2 = NULL;
6232         }
6233
6234         if (bp->bar1) {
6235                 pci_iounmap(pdev, bp->bar1);
6236                 bp->bar1 = NULL;
6237         }
6238
6239         if (bp->bar0) {
6240                 pci_iounmap(pdev, bp->bar0);
6241                 bp->bar0 = NULL;
6242         }
6243
6244         pci_release_regions(pdev);
6245
6246 init_err_disable:
6247         pci_disable_device(pdev);
6248
6249 init_err:
6250         return rc;
6251 }
6252
6253 /* rtnl_lock held */
6254 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6255 {
6256         struct sockaddr *addr = p;
6257         struct bnxt *bp = netdev_priv(dev);
6258         int rc = 0;
6259
6260         if (!is_valid_ether_addr(addr->sa_data))
6261                 return -EADDRNOTAVAIL;
6262
6263         rc = bnxt_approve_mac(bp, addr->sa_data);
6264         if (rc)
6265                 return rc;
6266
6267         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6268                 return 0;
6269
6270         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6271         if (netif_running(dev)) {
6272                 bnxt_close_nic(bp, false, false);
6273                 rc = bnxt_open_nic(bp, false, false);
6274         }
6275
6276         return rc;
6277 }
6278
6279 /* rtnl_lock held */
6280 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6281 {
6282         struct bnxt *bp = netdev_priv(dev);
6283
6284         if (new_mtu < 60 || new_mtu > 9500)
6285                 return -EINVAL;
6286
6287         if (netif_running(dev))
6288                 bnxt_close_nic(bp, false, false);
6289
6290         dev->mtu = new_mtu;
6291         bnxt_set_ring_params(bp);
6292
6293         if (netif_running(dev))
6294                 return bnxt_open_nic(bp, false, false);
6295
6296         return 0;
6297 }
6298
6299 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6300                          struct tc_to_netdev *ntc)
6301 {
6302         struct bnxt *bp = netdev_priv(dev);
6303         u8 tc;
6304
6305         if (ntc->type != TC_SETUP_MQPRIO)
6306                 return -EINVAL;
6307
6308         tc = ntc->tc;
6309
6310         if (tc > bp->max_tc) {
6311                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
6312                            tc, bp->max_tc);
6313                 return -EINVAL;
6314         }
6315
6316         if (netdev_get_num_tc(dev) == tc)
6317                 return 0;
6318
6319         if (tc) {
6320                 int max_rx_rings, max_tx_rings, rc;
6321                 bool sh = false;
6322
6323                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6324                         sh = true;
6325
6326                 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6327                 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
6328                         return -ENOMEM;
6329         }
6330
6331         /* Needs to close the device and do hw resource re-allocations */
6332         if (netif_running(bp->dev))
6333                 bnxt_close_nic(bp, true, false);
6334
6335         if (tc) {
6336                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6337                 netdev_set_num_tc(dev, tc);
6338         } else {
6339                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6340                 netdev_reset_tc(dev);
6341         }
6342         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
6343         bp->num_stat_ctxs = bp->cp_nr_rings;
6344
6345         if (netif_running(bp->dev))
6346                 return bnxt_open_nic(bp, true, false);
6347
6348         return 0;
6349 }
6350
6351 #ifdef CONFIG_RFS_ACCEL
6352 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6353                             struct bnxt_ntuple_filter *f2)
6354 {
6355         struct flow_keys *keys1 = &f1->fkeys;
6356         struct flow_keys *keys2 = &f2->fkeys;
6357
6358         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6359             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6360             keys1->ports.ports == keys2->ports.ports &&
6361             keys1->basic.ip_proto == keys2->basic.ip_proto &&
6362             keys1->basic.n_proto == keys2->basic.n_proto &&
6363             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6364             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6365                 return true;
6366
6367         return false;
6368 }
6369
6370 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6371                               u16 rxq_index, u32 flow_id)
6372 {
6373         struct bnxt *bp = netdev_priv(dev);
6374         struct bnxt_ntuple_filter *fltr, *new_fltr;
6375         struct flow_keys *fkeys;
6376         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6377         int rc = 0, idx, bit_id, l2_idx = 0;
6378         struct hlist_head *head;
6379
6380         if (skb->encapsulation)
6381                 return -EPROTONOSUPPORT;
6382
6383         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6384                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6385                 int off = 0, j;
6386
6387                 netif_addr_lock_bh(dev);
6388                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6389                         if (ether_addr_equal(eth->h_dest,
6390                                              vnic->uc_list + off)) {
6391                                 l2_idx = j + 1;
6392                                 break;
6393                         }
6394                 }
6395                 netif_addr_unlock_bh(dev);
6396                 if (!l2_idx)
6397                         return -EINVAL;
6398         }
6399         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6400         if (!new_fltr)
6401                 return -ENOMEM;
6402
6403         fkeys = &new_fltr->fkeys;
6404         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6405                 rc = -EPROTONOSUPPORT;
6406                 goto err_free;
6407         }
6408
6409         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
6410             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6411              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6412                 rc = -EPROTONOSUPPORT;
6413                 goto err_free;
6414         }
6415
6416         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6417         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6418
6419         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6420         head = &bp->ntp_fltr_hash_tbl[idx];
6421         rcu_read_lock();
6422         hlist_for_each_entry_rcu(fltr, head, hash) {
6423                 if (bnxt_fltr_match(fltr, new_fltr)) {
6424                         rcu_read_unlock();
6425                         rc = 0;
6426                         goto err_free;
6427                 }
6428         }
6429         rcu_read_unlock();
6430
6431         spin_lock_bh(&bp->ntp_fltr_lock);
6432         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6433                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
6434         if (bit_id < 0) {
6435                 spin_unlock_bh(&bp->ntp_fltr_lock);
6436                 rc = -ENOMEM;
6437                 goto err_free;
6438         }
6439
6440         new_fltr->sw_id = (u16)bit_id;
6441         new_fltr->flow_id = flow_id;
6442         new_fltr->l2_fltr_idx = l2_idx;
6443         new_fltr->rxq = rxq_index;
6444         hlist_add_head_rcu(&new_fltr->hash, head);
6445         bp->ntp_fltr_count++;
6446         spin_unlock_bh(&bp->ntp_fltr_lock);
6447
6448         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
6449         schedule_work(&bp->sp_task);
6450
6451         return new_fltr->sw_id;
6452
6453 err_free:
6454         kfree(new_fltr);
6455         return rc;
6456 }
6457
6458 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6459 {
6460         int i;
6461
6462         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6463                 struct hlist_head *head;
6464                 struct hlist_node *tmp;
6465                 struct bnxt_ntuple_filter *fltr;
6466                 int rc;
6467
6468                 head = &bp->ntp_fltr_hash_tbl[i];
6469                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6470                         bool del = false;
6471
6472                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6473                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
6474                                                         fltr->flow_id,
6475                                                         fltr->sw_id)) {
6476                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
6477                                                                          fltr);
6478                                         del = true;
6479                                 }
6480                         } else {
6481                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6482                                                                        fltr);
6483                                 if (rc)
6484                                         del = true;
6485                                 else
6486                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
6487                         }
6488
6489                         if (del) {
6490                                 spin_lock_bh(&bp->ntp_fltr_lock);
6491                                 hlist_del_rcu(&fltr->hash);
6492                                 bp->ntp_fltr_count--;
6493                                 spin_unlock_bh(&bp->ntp_fltr_lock);
6494                                 synchronize_rcu();
6495                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6496                                 kfree(fltr);
6497                         }
6498                 }
6499         }
6500         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6501                 netdev_info(bp->dev, "Receive PF driver unload event!");
6502 }
6503
6504 #else
6505
6506 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6507 {
6508 }
6509
6510 #endif /* CONFIG_RFS_ACCEL */
6511
6512 static void bnxt_udp_tunnel_add(struct net_device *dev,
6513                                 struct udp_tunnel_info *ti)
6514 {
6515         struct bnxt *bp = netdev_priv(dev);
6516
6517         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6518                 return;
6519
6520         if (!netif_running(dev))
6521                 return;
6522
6523         switch (ti->type) {
6524         case UDP_TUNNEL_TYPE_VXLAN:
6525                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
6526                         return;
6527
6528                 bp->vxlan_port_cnt++;
6529                 if (bp->vxlan_port_cnt == 1) {
6530                         bp->vxlan_port = ti->port;
6531                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6532                         schedule_work(&bp->sp_task);
6533                 }
6534                 break;
6535         case UDP_TUNNEL_TYPE_GENEVE:
6536                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
6537                         return;
6538
6539                 bp->nge_port_cnt++;
6540                 if (bp->nge_port_cnt == 1) {
6541                         bp->nge_port = ti->port;
6542                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
6543                 }
6544                 break;
6545         default:
6546                 return;
6547         }
6548
6549         schedule_work(&bp->sp_task);
6550 }
6551
6552 static void bnxt_udp_tunnel_del(struct net_device *dev,
6553                                 struct udp_tunnel_info *ti)
6554 {
6555         struct bnxt *bp = netdev_priv(dev);
6556
6557         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6558                 return;
6559
6560         if (!netif_running(dev))
6561                 return;
6562
6563         switch (ti->type) {
6564         case UDP_TUNNEL_TYPE_VXLAN:
6565                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
6566                         return;
6567                 bp->vxlan_port_cnt--;
6568
6569                 if (bp->vxlan_port_cnt != 0)
6570                         return;
6571
6572                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6573                 break;
6574         case UDP_TUNNEL_TYPE_GENEVE:
6575                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
6576                         return;
6577                 bp->nge_port_cnt--;
6578
6579                 if (bp->nge_port_cnt != 0)
6580                         return;
6581
6582                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
6583                 break;
6584         default:
6585                 return;
6586         }
6587
6588         schedule_work(&bp->sp_task);
6589 }
6590
6591 static const struct net_device_ops bnxt_netdev_ops = {
6592         .ndo_open               = bnxt_open,
6593         .ndo_start_xmit         = bnxt_start_xmit,
6594         .ndo_stop               = bnxt_close,
6595         .ndo_get_stats64        = bnxt_get_stats64,
6596         .ndo_set_rx_mode        = bnxt_set_rx_mode,
6597         .ndo_do_ioctl           = bnxt_ioctl,
6598         .ndo_validate_addr      = eth_validate_addr,
6599         .ndo_set_mac_address    = bnxt_change_mac_addr,
6600         .ndo_change_mtu         = bnxt_change_mtu,
6601         .ndo_fix_features       = bnxt_fix_features,
6602         .ndo_set_features       = bnxt_set_features,
6603         .ndo_tx_timeout         = bnxt_tx_timeout,
6604 #ifdef CONFIG_BNXT_SRIOV
6605         .ndo_get_vf_config      = bnxt_get_vf_config,
6606         .ndo_set_vf_mac         = bnxt_set_vf_mac,
6607         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
6608         .ndo_set_vf_rate        = bnxt_set_vf_bw,
6609         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
6610         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
6611 #endif
6612 #ifdef CONFIG_NET_POLL_CONTROLLER
6613         .ndo_poll_controller    = bnxt_poll_controller,
6614 #endif
6615         .ndo_setup_tc           = bnxt_setup_tc,
6616 #ifdef CONFIG_RFS_ACCEL
6617         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
6618 #endif
6619         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
6620         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
6621 #ifdef CONFIG_NET_RX_BUSY_POLL
6622         .ndo_busy_poll          = bnxt_busy_poll,
6623 #endif
6624 };
6625
6626 static void bnxt_remove_one(struct pci_dev *pdev)
6627 {
6628         struct net_device *dev = pci_get_drvdata(pdev);
6629         struct bnxt *bp = netdev_priv(dev);
6630
6631         if (BNXT_PF(bp))
6632                 bnxt_sriov_disable(bp);
6633
6634         pci_disable_pcie_error_reporting(pdev);
6635         unregister_netdev(dev);
6636         cancel_work_sync(&bp->sp_task);
6637         bp->sp_event = 0;
6638
6639         bnxt_hwrm_func_drv_unrgtr(bp);
6640         bnxt_free_hwrm_resources(bp);
6641         pci_iounmap(pdev, bp->bar2);
6642         pci_iounmap(pdev, bp->bar1);
6643         pci_iounmap(pdev, bp->bar0);
6644         free_netdev(dev);
6645
6646         pci_release_regions(pdev);
6647         pci_disable_device(pdev);
6648 }
6649
6650 static int bnxt_probe_phy(struct bnxt *bp)
6651 {
6652         int rc = 0;
6653         struct bnxt_link_info *link_info = &bp->link_info;
6654
6655         rc = bnxt_hwrm_phy_qcaps(bp);
6656         if (rc) {
6657                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6658                            rc);
6659                 return rc;
6660         }
6661
6662         rc = bnxt_update_link(bp, false);
6663         if (rc) {
6664                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6665                            rc);
6666                 return rc;
6667         }
6668
6669         /* Older firmware does not have supported_auto_speeds, so assume
6670          * that all supported speeds can be autonegotiated.
6671          */
6672         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
6673                 link_info->support_auto_speeds = link_info->support_speeds;
6674
6675         /*initialize the ethool setting copy with NVM settings */
6676         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6677                 link_info->autoneg = BNXT_AUTONEG_SPEED;
6678                 if (bp->hwrm_spec_code >= 0x10201) {
6679                         if (link_info->auto_pause_setting &
6680                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6681                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6682                 } else {
6683                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6684                 }
6685                 link_info->advertising = link_info->auto_link_speeds;
6686         } else {
6687                 link_info->req_link_speed = link_info->force_link_speed;
6688                 link_info->req_duplex = link_info->duplex_setting;
6689         }
6690         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6691                 link_info->req_flow_ctrl =
6692                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6693         else
6694                 link_info->req_flow_ctrl = link_info->force_pause_setting;
6695         return rc;
6696 }
6697
6698 static int bnxt_get_max_irq(struct pci_dev *pdev)
6699 {
6700         u16 ctrl;
6701
6702         if (!pdev->msix_cap)
6703                 return 1;
6704
6705         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6706         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6707 }
6708
6709 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6710                                 int *max_cp)
6711 {
6712         int max_ring_grps = 0;
6713
6714 #ifdef CONFIG_BNXT_SRIOV
6715         if (!BNXT_PF(bp)) {
6716                 *max_tx = bp->vf.max_tx_rings;
6717                 *max_rx = bp->vf.max_rx_rings;
6718                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6719                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6720                 max_ring_grps = bp->vf.max_hw_ring_grps;
6721         } else
6722 #endif
6723         {
6724                 *max_tx = bp->pf.max_tx_rings;
6725                 *max_rx = bp->pf.max_rx_rings;
6726                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6727                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6728                 max_ring_grps = bp->pf.max_hw_ring_grps;
6729         }
6730         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
6731                 *max_cp -= 1;
6732                 *max_rx -= 2;
6733         }
6734         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6735                 *max_rx >>= 1;
6736         *max_rx = min_t(int, *max_rx, max_ring_grps);
6737 }
6738
6739 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6740 {
6741         int rx, tx, cp;
6742
6743         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
6744         if (!rx || !tx || !cp)
6745                 return -ENOMEM;
6746
6747         *max_rx = rx;
6748         *max_tx = tx;
6749         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6750 }
6751
6752 static int bnxt_set_dflt_rings(struct bnxt *bp)
6753 {
6754         int dflt_rings, max_rx_rings, max_tx_rings, rc;
6755         bool sh = true;
6756
6757         if (sh)
6758                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6759         dflt_rings = netif_get_num_default_rss_queues();
6760         rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6761         if (rc)
6762                 return rc;
6763         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6764         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6765         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6766         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6767                                bp->tx_nr_rings + bp->rx_nr_rings;
6768         bp->num_stat_ctxs = bp->cp_nr_rings;
6769         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6770                 bp->rx_nr_rings++;
6771                 bp->cp_nr_rings++;
6772         }
6773         return rc;
6774 }
6775
6776 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6777 {
6778         enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6779         enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6780
6781         if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6782             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6783                 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6784         else
6785                 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6786                             speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6787                             speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6788                             speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6789                             "Unknown", width);
6790 }
6791
6792 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6793 {
6794         static int version_printed;
6795         struct net_device *dev;
6796         struct bnxt *bp;
6797         int rc, max_irqs;
6798
6799         if (pdev->device == 0x16cd && pci_is_bridge(pdev))
6800                 return -ENODEV;
6801
6802         if (version_printed++ == 0)
6803                 pr_info("%s", version);
6804
6805         max_irqs = bnxt_get_max_irq(pdev);
6806         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6807         if (!dev)
6808                 return -ENOMEM;
6809
6810         bp = netdev_priv(dev);
6811
6812         if (bnxt_vf_pciid(ent->driver_data))
6813                 bp->flags |= BNXT_FLAG_VF;
6814
6815         if (pdev->msix_cap)
6816                 bp->flags |= BNXT_FLAG_MSIX_CAP;
6817
6818         rc = bnxt_init_board(pdev, dev);
6819         if (rc < 0)
6820                 goto init_err_free;
6821
6822         dev->netdev_ops = &bnxt_netdev_ops;
6823         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6824         dev->ethtool_ops = &bnxt_ethtool_ops;
6825
6826         pci_set_drvdata(pdev, dev);
6827
6828         rc = bnxt_alloc_hwrm_resources(bp);
6829         if (rc)
6830                 goto init_err;
6831
6832         mutex_init(&bp->hwrm_cmd_lock);
6833         rc = bnxt_hwrm_ver_get(bp);
6834         if (rc)
6835                 goto init_err;
6836
6837         bnxt_hwrm_fw_set_time(bp);
6838
6839         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6840                            NETIF_F_TSO | NETIF_F_TSO6 |
6841                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6842                            NETIF_F_GSO_IPXIP4 |
6843                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6844                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6845                            NETIF_F_RXCSUM | NETIF_F_GRO;
6846
6847         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
6848                 dev->hw_features |= NETIF_F_LRO;
6849
6850         dev->hw_enc_features =
6851                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6852                         NETIF_F_TSO | NETIF_F_TSO6 |
6853                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6854                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6855                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6856         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6857                                     NETIF_F_GSO_GRE_CSUM;
6858         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6859         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6860                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6861         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6862         dev->priv_flags |= IFF_UNICAST_FLT;
6863
6864 #ifdef CONFIG_BNXT_SRIOV
6865         init_waitqueue_head(&bp->sriov_cfg_wait);
6866 #endif
6867         bp->gro_func = bnxt_gro_func_5730x;
6868         if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
6869                 bp->gro_func = bnxt_gro_func_5731x;
6870
6871         rc = bnxt_hwrm_func_drv_rgtr(bp);
6872         if (rc)
6873                 goto init_err;
6874
6875         /* Get the MAX capabilities for this function */
6876         rc = bnxt_hwrm_func_qcaps(bp);
6877         if (rc) {
6878                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6879                            rc);
6880                 rc = -1;
6881                 goto init_err;
6882         }
6883
6884         rc = bnxt_hwrm_queue_qportcfg(bp);
6885         if (rc) {
6886                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6887                            rc);
6888                 rc = -1;
6889                 goto init_err;
6890         }
6891
6892         bnxt_hwrm_func_qcfg(bp);
6893
6894         bnxt_set_tpa_flags(bp);
6895         bnxt_set_ring_params(bp);
6896         if (BNXT_PF(bp))
6897                 bp->pf.max_irqs = max_irqs;
6898 #if defined(CONFIG_BNXT_SRIOV)
6899         else
6900                 bp->vf.max_irqs = max_irqs;
6901 #endif
6902         bnxt_set_dflt_rings(bp);
6903
6904         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6905                 dev->hw_features |= NETIF_F_NTUPLE;
6906                 if (bnxt_rfs_capable(bp)) {
6907                         bp->flags |= BNXT_FLAG_RFS;
6908                         dev->features |= NETIF_F_NTUPLE;
6909                 }
6910         }
6911
6912         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6913                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6914
6915         rc = bnxt_probe_phy(bp);
6916         if (rc)
6917                 goto init_err;
6918
6919         rc = register_netdev(dev);
6920         if (rc)
6921                 goto init_err;
6922
6923         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6924                     board_info[ent->driver_data].name,
6925                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
6926
6927         bnxt_parse_log_pcie_link(bp);
6928
6929         return 0;
6930
6931 init_err:
6932         pci_iounmap(pdev, bp->bar0);
6933         pci_release_regions(pdev);
6934         pci_disable_device(pdev);
6935
6936 init_err_free:
6937         free_netdev(dev);
6938         return rc;
6939 }
6940
6941 /**
6942  * bnxt_io_error_detected - called when PCI error is detected
6943  * @pdev: Pointer to PCI device
6944  * @state: The current pci connection state
6945  *
6946  * This function is called after a PCI bus error affecting
6947  * this device has been detected.
6948  */
6949 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6950                                                pci_channel_state_t state)
6951 {
6952         struct net_device *netdev = pci_get_drvdata(pdev);
6953         struct bnxt *bp = netdev_priv(netdev);
6954
6955         netdev_info(netdev, "PCI I/O error detected\n");
6956
6957         rtnl_lock();
6958         netif_device_detach(netdev);
6959
6960         if (state == pci_channel_io_perm_failure) {
6961                 rtnl_unlock();
6962                 return PCI_ERS_RESULT_DISCONNECT;
6963         }
6964
6965         if (netif_running(netdev))
6966                 bnxt_close(netdev);
6967
6968         /* So that func_reset will be done during slot_reset */
6969         clear_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
6970         pci_disable_device(pdev);
6971         rtnl_unlock();
6972
6973         /* Request a slot slot reset. */
6974         return PCI_ERS_RESULT_NEED_RESET;
6975 }
6976
6977 /**
6978  * bnxt_io_slot_reset - called after the pci bus has been reset.
6979  * @pdev: Pointer to PCI device
6980  *
6981  * Restart the card from scratch, as if from a cold-boot.
6982  * At this point, the card has exprienced a hard reset,
6983  * followed by fixups by BIOS, and has its config space
6984  * set up identically to what it was at cold boot.
6985  */
6986 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6987 {
6988         struct net_device *netdev = pci_get_drvdata(pdev);
6989         struct bnxt *bp = netdev_priv(netdev);
6990         int err = 0;
6991         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6992
6993         netdev_info(bp->dev, "PCI Slot Reset\n");
6994
6995         rtnl_lock();
6996
6997         if (pci_enable_device(pdev)) {
6998                 dev_err(&pdev->dev,
6999                         "Cannot re-enable PCI device after reset.\n");
7000         } else {
7001                 pci_set_master(pdev);
7002
7003                 if (netif_running(netdev))
7004                         err = bnxt_open(netdev);
7005
7006                 if (!err)
7007                         result = PCI_ERS_RESULT_RECOVERED;
7008         }
7009
7010         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7011                 dev_close(netdev);
7012
7013         rtnl_unlock();
7014
7015         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7016         if (err) {
7017                 dev_err(&pdev->dev,
7018                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7019                          err); /* non-fatal, continue */
7020         }
7021
7022         return PCI_ERS_RESULT_RECOVERED;
7023 }
7024
7025 /**
7026  * bnxt_io_resume - called when traffic can start flowing again.
7027  * @pdev: Pointer to PCI device
7028  *
7029  * This callback is called when the error recovery driver tells
7030  * us that its OK to resume normal operation.
7031  */
7032 static void bnxt_io_resume(struct pci_dev *pdev)
7033 {
7034         struct net_device *netdev = pci_get_drvdata(pdev);
7035
7036         rtnl_lock();
7037
7038         netif_device_attach(netdev);
7039
7040         rtnl_unlock();
7041 }
7042
7043 static const struct pci_error_handlers bnxt_err_handler = {
7044         .error_detected = bnxt_io_error_detected,
7045         .slot_reset     = bnxt_io_slot_reset,
7046         .resume         = bnxt_io_resume
7047 };
7048
7049 static struct pci_driver bnxt_pci_driver = {
7050         .name           = DRV_MODULE_NAME,
7051         .id_table       = bnxt_pci_tbl,
7052         .probe          = bnxt_init_one,
7053         .remove         = bnxt_remove_one,
7054         .err_handler    = &bnxt_err_handler,
7055 #if defined(CONFIG_BNXT_SRIOV)
7056         .sriov_configure = bnxt_sriov_configure,
7057 #endif
7058 };
7059
7060 module_pci_driver(bnxt_pci_driver);