]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt_sriov.c
0b8cd7443843241efcff2e632869c6ccc7a40fbe
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt_sriov.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/etherdevice.h>
16 #include "bnxt_hsi.h"
17 #include "bnxt.h"
18 #include "bnxt_ulp.h"
19 #include "bnxt_sriov.h"
20 #include "bnxt_ethtool.h"
21
22 #ifdef CONFIG_BNXT_SRIOV
23 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
24                                           struct bnxt_vf_info *vf, u16 event_id)
25 {
26         struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr;
27         struct hwrm_fwd_async_event_cmpl_input req = {0};
28         struct hwrm_async_event_cmpl *async_cmpl;
29         int rc = 0;
30
31         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
32         if (vf)
33                 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
34         else
35                 /* broadcast this async event to all VFs */
36                 req.encap_async_event_target_id = cpu_to_le16(0xffff);
37         async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
38         async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
39         async_cmpl->event_id = cpu_to_le16(event_id);
40
41         mutex_lock(&bp->hwrm_cmd_lock);
42         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43
44         if (rc) {
45                 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
46                            rc);
47                 goto fwd_async_event_cmpl_exit;
48         }
49
50         if (resp->error_code) {
51                 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n",
52                            resp->error_code);
53                 rc = -1;
54         }
55
56 fwd_async_event_cmpl_exit:
57         mutex_unlock(&bp->hwrm_cmd_lock);
58         return rc;
59 }
60
61 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
62 {
63         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
64                 netdev_err(bp->dev, "vf ndo called though PF is down\n");
65                 return -EINVAL;
66         }
67         if (!bp->pf.active_vfs) {
68                 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
69                 return -EINVAL;
70         }
71         if (vf_id >= bp->pf.max_vfs) {
72                 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
73                 return -EINVAL;
74         }
75         return 0;
76 }
77
78 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
79 {
80         struct hwrm_func_cfg_input req = {0};
81         struct bnxt *bp = netdev_priv(dev);
82         struct bnxt_vf_info *vf;
83         bool old_setting = false;
84         u32 func_flags;
85         int rc;
86
87         rc = bnxt_vf_ndo_prep(bp, vf_id);
88         if (rc)
89                 return rc;
90
91         vf = &bp->pf.vf[vf_id];
92         if (vf->flags & BNXT_VF_SPOOFCHK)
93                 old_setting = true;
94         if (old_setting == setting)
95                 return 0;
96
97         func_flags = vf->func_flags;
98         if (setting)
99                 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
100         else
101                 func_flags &= ~FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK;
102         /*TODO: if the driver supports VLAN filter on guest VLAN,
103          * the spoof check should also include vlan anti-spoofing
104          */
105         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
106         req.fid = cpu_to_le16(vf->fw_fid);
107         req.flags = cpu_to_le32(func_flags);
108         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
109         if (!rc) {
110                 vf->func_flags = func_flags;
111                 if (setting)
112                         vf->flags |= BNXT_VF_SPOOFCHK;
113                 else
114                         vf->flags &= ~BNXT_VF_SPOOFCHK;
115         }
116         return rc;
117 }
118
119 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
120                        struct ifla_vf_info *ivi)
121 {
122         struct bnxt *bp = netdev_priv(dev);
123         struct bnxt_vf_info *vf;
124         int rc;
125
126         rc = bnxt_vf_ndo_prep(bp, vf_id);
127         if (rc)
128                 return rc;
129
130         ivi->vf = vf_id;
131         vf = &bp->pf.vf[vf_id];
132
133         memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
134         ivi->max_tx_rate = vf->max_tx_rate;
135         ivi->min_tx_rate = vf->min_tx_rate;
136         ivi->vlan = vf->vlan;
137         ivi->qos = vf->flags & BNXT_VF_QOS;
138         ivi->spoofchk = vf->flags & BNXT_VF_SPOOFCHK;
139         if (!(vf->flags & BNXT_VF_LINK_FORCED))
140                 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
141         else if (vf->flags & BNXT_VF_LINK_UP)
142                 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
143         else
144                 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
145
146         return 0;
147 }
148
149 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
150 {
151         struct hwrm_func_cfg_input req = {0};
152         struct bnxt *bp = netdev_priv(dev);
153         struct bnxt_vf_info *vf;
154         int rc;
155
156         rc = bnxt_vf_ndo_prep(bp, vf_id);
157         if (rc)
158                 return rc;
159         /* reject bc or mc mac addr, zero mac addr means allow
160          * VF to use its own mac addr
161          */
162         if (is_multicast_ether_addr(mac)) {
163                 netdev_err(dev, "Invalid VF ethernet address\n");
164                 return -EINVAL;
165         }
166         vf = &bp->pf.vf[vf_id];
167
168         memcpy(vf->mac_addr, mac, ETH_ALEN);
169         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
170         req.fid = cpu_to_le16(vf->fw_fid);
171         req.flags = cpu_to_le32(vf->func_flags);
172         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
173         memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
174         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
175 }
176
177 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
178                      __be16 vlan_proto)
179 {
180         struct hwrm_func_cfg_input req = {0};
181         struct bnxt *bp = netdev_priv(dev);
182         struct bnxt_vf_info *vf;
183         u16 vlan_tag;
184         int rc;
185
186         if (bp->hwrm_spec_code < 0x10201)
187                 return -ENOTSUPP;
188
189         if (vlan_proto != htons(ETH_P_8021Q))
190                 return -EPROTONOSUPPORT;
191
192         rc = bnxt_vf_ndo_prep(bp, vf_id);
193         if (rc)
194                 return rc;
195
196         /* TODO: needed to implement proper handling of user priority,
197          * currently fail the command if there is valid priority
198          */
199         if (vlan_id > 4095 || qos)
200                 return -EINVAL;
201
202         vf = &bp->pf.vf[vf_id];
203         vlan_tag = vlan_id;
204         if (vlan_tag == vf->vlan)
205                 return 0;
206
207         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
208         req.fid = cpu_to_le16(vf->fw_fid);
209         req.flags = cpu_to_le32(vf->func_flags);
210         req.dflt_vlan = cpu_to_le16(vlan_tag);
211         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
212         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
213         if (!rc)
214                 vf->vlan = vlan_tag;
215         return rc;
216 }
217
218 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
219                    int max_tx_rate)
220 {
221         struct hwrm_func_cfg_input req = {0};
222         struct bnxt *bp = netdev_priv(dev);
223         struct bnxt_vf_info *vf;
224         u32 pf_link_speed;
225         int rc;
226
227         rc = bnxt_vf_ndo_prep(bp, vf_id);
228         if (rc)
229                 return rc;
230
231         vf = &bp->pf.vf[vf_id];
232         pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
233         if (max_tx_rate > pf_link_speed) {
234                 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
235                             max_tx_rate, vf_id);
236                 return -EINVAL;
237         }
238
239         if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
240                 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
241                             min_tx_rate, vf_id);
242                 return -EINVAL;
243         }
244         if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
245                 return 0;
246         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
247         req.fid = cpu_to_le16(vf->fw_fid);
248         req.flags = cpu_to_le32(vf->func_flags);
249         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
250         req.max_bw = cpu_to_le32(max_tx_rate);
251         req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
252         req.min_bw = cpu_to_le32(min_tx_rate);
253         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
254         if (!rc) {
255                 vf->min_tx_rate = min_tx_rate;
256                 vf->max_tx_rate = max_tx_rate;
257         }
258         return rc;
259 }
260
261 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
262 {
263         struct bnxt *bp = netdev_priv(dev);
264         struct bnxt_vf_info *vf;
265         int rc;
266
267         rc = bnxt_vf_ndo_prep(bp, vf_id);
268         if (rc)
269                 return rc;
270
271         vf = &bp->pf.vf[vf_id];
272
273         vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
274         switch (link) {
275         case IFLA_VF_LINK_STATE_AUTO:
276                 vf->flags |= BNXT_VF_LINK_UP;
277                 break;
278         case IFLA_VF_LINK_STATE_DISABLE:
279                 vf->flags |= BNXT_VF_LINK_FORCED;
280                 break;
281         case IFLA_VF_LINK_STATE_ENABLE:
282                 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
283                 break;
284         default:
285                 netdev_err(bp->dev, "Invalid link option\n");
286                 rc = -EINVAL;
287                 break;
288         }
289         if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
290                 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
291                         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
292         return rc;
293 }
294
295 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
296 {
297         int i;
298         struct bnxt_vf_info *vf;
299
300         for (i = 0; i < num_vfs; i++) {
301                 vf = &bp->pf.vf[i];
302                 memset(vf, 0, sizeof(*vf));
303                 vf->flags = BNXT_VF_QOS | BNXT_VF_LINK_UP;
304         }
305         return 0;
306 }
307
308 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
309 {
310         int i, rc = 0;
311         struct bnxt_pf_info *pf = &bp->pf;
312         struct hwrm_func_vf_resc_free_input req = {0};
313
314         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
315
316         mutex_lock(&bp->hwrm_cmd_lock);
317         for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
318                 req.vf_id = cpu_to_le16(i);
319                 rc = _hwrm_send_message(bp, &req, sizeof(req),
320                                         HWRM_CMD_TIMEOUT);
321                 if (rc)
322                         break;
323         }
324         mutex_unlock(&bp->hwrm_cmd_lock);
325         return rc;
326 }
327
328 static void bnxt_free_vf_resources(struct bnxt *bp)
329 {
330         struct pci_dev *pdev = bp->pdev;
331         int i;
332
333         kfree(bp->pf.vf_event_bmap);
334         bp->pf.vf_event_bmap = NULL;
335
336         for (i = 0; i < 4; i++) {
337                 if (bp->pf.hwrm_cmd_req_addr[i]) {
338                         dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
339                                           bp->pf.hwrm_cmd_req_addr[i],
340                                           bp->pf.hwrm_cmd_req_dma_addr[i]);
341                         bp->pf.hwrm_cmd_req_addr[i] = NULL;
342                 }
343         }
344
345         kfree(bp->pf.vf);
346         bp->pf.vf = NULL;
347 }
348
349 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
350 {
351         struct pci_dev *pdev = bp->pdev;
352         u32 nr_pages, size, i, j, k = 0;
353
354         bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
355         if (!bp->pf.vf)
356                 return -ENOMEM;
357
358         bnxt_set_vf_attr(bp, num_vfs);
359
360         size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
361         nr_pages = size / BNXT_PAGE_SIZE;
362         if (size & (BNXT_PAGE_SIZE - 1))
363                 nr_pages++;
364
365         for (i = 0; i < nr_pages; i++) {
366                 bp->pf.hwrm_cmd_req_addr[i] =
367                         dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
368                                            &bp->pf.hwrm_cmd_req_dma_addr[i],
369                                            GFP_KERNEL);
370
371                 if (!bp->pf.hwrm_cmd_req_addr[i])
372                         return -ENOMEM;
373
374                 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
375                         struct bnxt_vf_info *vf = &bp->pf.vf[k];
376
377                         vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
378                                                 j * BNXT_HWRM_REQ_MAX_SIZE;
379                         vf->hwrm_cmd_req_dma_addr =
380                                 bp->pf.hwrm_cmd_req_dma_addr[i] + j *
381                                 BNXT_HWRM_REQ_MAX_SIZE;
382                         k++;
383                 }
384         }
385
386         /* Max 128 VF's */
387         bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
388         if (!bp->pf.vf_event_bmap)
389                 return -ENOMEM;
390
391         bp->pf.hwrm_cmd_req_pages = nr_pages;
392         return 0;
393 }
394
395 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
396 {
397         struct hwrm_func_buf_rgtr_input req = {0};
398
399         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
400
401         req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
402         req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
403         req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
404         req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
405         req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
406         req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
407         req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
408
409         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
410 }
411
412 /* only call by PF to reserve resources for VF */
413 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
414 {
415         u32 rc = 0, mtu, i;
416         u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
417         u16 vf_ring_grps;
418         struct hwrm_func_cfg_input req = {0};
419         struct bnxt_pf_info *pf = &bp->pf;
420         int total_vf_tx_rings = 0;
421
422         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
423
424         /* Remaining rings are distributed equally amongs VF's for now */
425         vf_cp_rings = (pf->max_cp_rings - bp->cp_nr_rings) / num_vfs;
426         vf_stat_ctx = (pf->max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
427         if (bp->flags & BNXT_FLAG_AGG_RINGS)
428                 vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings * 2) /
429                               num_vfs;
430         else
431                 vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings) / num_vfs;
432         vf_ring_grps = (bp->pf.max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
433         vf_tx_rings = (pf->max_tx_rings - bp->tx_nr_rings) / num_vfs;
434         vf_vnics = (pf->max_vnics - bp->nr_vnics) / num_vfs;
435         vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
436
437         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
438                                   FUNC_CFG_REQ_ENABLES_MRU |
439                                   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
440                                   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
441                                   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
442                                   FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
443                                   FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
444                                   FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
445                                   FUNC_CFG_REQ_ENABLES_NUM_VNICS |
446                                   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
447
448         mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
449         req.mru = cpu_to_le16(mtu);
450         req.mtu = cpu_to_le16(mtu);
451
452         req.num_rsscos_ctxs = cpu_to_le16(1);
453         req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
454         req.num_tx_rings = cpu_to_le16(vf_tx_rings);
455         req.num_rx_rings = cpu_to_le16(vf_rx_rings);
456         req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
457         req.num_l2_ctxs = cpu_to_le16(4);
458
459         req.num_vnics = cpu_to_le16(vf_vnics);
460         /* FIXME spec currently uses 1 bit for stats ctx */
461         req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
462
463         mutex_lock(&bp->hwrm_cmd_lock);
464         for (i = 0; i < num_vfs; i++) {
465                 int vf_tx_rsvd = vf_tx_rings;
466
467                 req.fid = cpu_to_le16(pf->first_vf_id + i);
468                 rc = _hwrm_send_message(bp, &req, sizeof(req),
469                                         HWRM_CMD_TIMEOUT);
470                 if (rc)
471                         break;
472                 pf->active_vfs = i + 1;
473                 pf->vf[i].fw_fid = le16_to_cpu(req.fid);
474                 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
475                                               &vf_tx_rsvd);
476                 if (rc)
477                         break;
478                 total_vf_tx_rings += vf_tx_rsvd;
479         }
480         mutex_unlock(&bp->hwrm_cmd_lock);
481         if (!rc) {
482                 pf->max_tx_rings -= total_vf_tx_rings;
483                 pf->max_rx_rings -= vf_rx_rings * num_vfs;
484                 pf->max_hw_ring_grps -= vf_ring_grps * num_vfs;
485                 pf->max_cp_rings -= vf_cp_rings * num_vfs;
486                 pf->max_rsscos_ctxs -= num_vfs;
487                 pf->max_stat_ctxs -= vf_stat_ctx * num_vfs;
488                 pf->max_vnics -= vf_vnics * num_vfs;
489         }
490         return rc;
491 }
492
493 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
494 {
495         int rc = 0, vfs_supported;
496         int min_rx_rings, min_tx_rings, min_rss_ctxs;
497         int tx_ok = 0, rx_ok = 0, rss_ok = 0;
498
499         /* Check if we can enable requested num of vf's. At a mininum
500          * we require 1 RX 1 TX rings for each VF. In this minimum conf
501          * features like TPA will not be available.
502          */
503         vfs_supported = *num_vfs;
504
505         while (vfs_supported) {
506                 min_rx_rings = vfs_supported;
507                 min_tx_rings = vfs_supported;
508                 min_rss_ctxs = vfs_supported;
509
510                 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
511                         if (bp->pf.max_rx_rings - bp->rx_nr_rings * 2 >=
512                             min_rx_rings)
513                                 rx_ok = 1;
514                 } else {
515                         if (bp->pf.max_rx_rings - bp->rx_nr_rings >=
516                             min_rx_rings)
517                                 rx_ok = 1;
518                 }
519                 if (bp->pf.max_vnics - bp->nr_vnics < min_rx_rings)
520                         rx_ok = 0;
521
522                 if (bp->pf.max_tx_rings - bp->tx_nr_rings >= min_tx_rings)
523                         tx_ok = 1;
524
525                 if (bp->pf.max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs)
526                         rss_ok = 1;
527
528                 if (tx_ok && rx_ok && rss_ok)
529                         break;
530
531                 vfs_supported--;
532         }
533
534         if (!vfs_supported) {
535                 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
536                 return -EINVAL;
537         }
538
539         if (vfs_supported != *num_vfs) {
540                 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
541                             *num_vfs, vfs_supported);
542                 *num_vfs = vfs_supported;
543         }
544
545         rc = bnxt_alloc_vf_resources(bp, *num_vfs);
546         if (rc)
547                 goto err_out1;
548
549         /* Reserve resources for VFs */
550         rc = bnxt_hwrm_func_cfg(bp, *num_vfs);
551         if (rc)
552                 goto err_out2;
553
554         /* Register buffers for VFs */
555         rc = bnxt_hwrm_func_buf_rgtr(bp);
556         if (rc)
557                 goto err_out2;
558
559         bnxt_ulp_sriov_cfg(bp, *num_vfs);
560
561         rc = pci_enable_sriov(bp->pdev, *num_vfs);
562         if (rc)
563                 goto err_out2;
564
565         return 0;
566
567 err_out2:
568         /* Free the resources reserved for various VF's */
569         bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
570
571 err_out1:
572         bnxt_free_vf_resources(bp);
573
574         return rc;
575 }
576
577 void bnxt_sriov_disable(struct bnxt *bp)
578 {
579         u16 num_vfs = pci_num_vf(bp->pdev);
580
581         if (!num_vfs)
582                 return;
583
584         if (pci_vfs_assigned(bp->pdev)) {
585                 bnxt_hwrm_fwd_async_event_cmpl(
586                         bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
587                 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
588                             num_vfs);
589         } else {
590                 pci_disable_sriov(bp->pdev);
591                 /* Free the HW resources reserved for various VF's */
592                 bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
593         }
594
595         bnxt_free_vf_resources(bp);
596
597         bp->pf.active_vfs = 0;
598         /* Reclaim all resources for the PF. */
599         rtnl_lock();
600         bnxt_restore_pf_fw_resources(bp);
601         rtnl_unlock();
602
603         bnxt_ulp_sriov_cfg(bp, 0);
604 }
605
606 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
607 {
608         struct net_device *dev = pci_get_drvdata(pdev);
609         struct bnxt *bp = netdev_priv(dev);
610
611         if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
612                 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
613                 return 0;
614         }
615
616         rtnl_lock();
617         if (!netif_running(dev)) {
618                 netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
619                 rtnl_unlock();
620                 return 0;
621         }
622         bp->sriov_cfg = true;
623         rtnl_unlock();
624
625         if (pci_vfs_assigned(bp->pdev)) {
626                 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
627                 num_vfs = 0;
628                 goto sriov_cfg_exit;
629         }
630
631         /* Check if enabled VFs is same as requested */
632         if (num_vfs && num_vfs == bp->pf.active_vfs)
633                 goto sriov_cfg_exit;
634
635         /* if there are previous existing VFs, clean them up */
636         bnxt_sriov_disable(bp);
637         if (!num_vfs)
638                 goto sriov_cfg_exit;
639
640         bnxt_sriov_enable(bp, &num_vfs);
641
642 sriov_cfg_exit:
643         bp->sriov_cfg = false;
644         wake_up(&bp->sriov_cfg_wait);
645
646         return num_vfs;
647 }
648
649 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
650                               void *encap_resp, __le64 encap_resp_addr,
651                               __le16 encap_resp_cpr, u32 msg_size)
652 {
653         int rc = 0;
654         struct hwrm_fwd_resp_input req = {0};
655         struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
656
657         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
658
659         /* Set the new target id */
660         req.target_id = cpu_to_le16(vf->fw_fid);
661         req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
662         req.encap_resp_len = cpu_to_le16(msg_size);
663         req.encap_resp_addr = encap_resp_addr;
664         req.encap_resp_cmpl_ring = encap_resp_cpr;
665         memcpy(req.encap_resp, encap_resp, msg_size);
666
667         mutex_lock(&bp->hwrm_cmd_lock);
668         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
669
670         if (rc) {
671                 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
672                 goto fwd_resp_exit;
673         }
674
675         if (resp->error_code) {
676                 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
677                            resp->error_code);
678                 rc = -1;
679         }
680
681 fwd_resp_exit:
682         mutex_unlock(&bp->hwrm_cmd_lock);
683         return rc;
684 }
685
686 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
687                                   u32 msg_size)
688 {
689         int rc = 0;
690         struct hwrm_reject_fwd_resp_input req = {0};
691         struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
692
693         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
694         /* Set the new target id */
695         req.target_id = cpu_to_le16(vf->fw_fid);
696         req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
697         memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
698
699         mutex_lock(&bp->hwrm_cmd_lock);
700         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
701
702         if (rc) {
703                 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
704                 goto fwd_err_resp_exit;
705         }
706
707         if (resp->error_code) {
708                 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
709                            resp->error_code);
710                 rc = -1;
711         }
712
713 fwd_err_resp_exit:
714         mutex_unlock(&bp->hwrm_cmd_lock);
715         return rc;
716 }
717
718 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
719                                    u32 msg_size)
720 {
721         int rc = 0;
722         struct hwrm_exec_fwd_resp_input req = {0};
723         struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
724
725         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
726         /* Set the new target id */
727         req.target_id = cpu_to_le16(vf->fw_fid);
728         req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
729         memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
730
731         mutex_lock(&bp->hwrm_cmd_lock);
732         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
733
734         if (rc) {
735                 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
736                 goto exec_fwd_resp_exit;
737         }
738
739         if (resp->error_code) {
740                 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
741                            resp->error_code);
742                 rc = -1;
743         }
744
745 exec_fwd_resp_exit:
746         mutex_unlock(&bp->hwrm_cmd_lock);
747         return rc;
748 }
749
750 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
751 {
752         u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
753         struct hwrm_cfa_l2_filter_alloc_input *req =
754                 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
755
756         if (!is_valid_ether_addr(vf->mac_addr) ||
757             ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
758                 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
759         else
760                 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
761 }
762
763 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
764 {
765         int rc = 0;
766
767         if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
768                 /* real link */
769                 rc = bnxt_hwrm_exec_fwd_resp(
770                         bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
771         } else {
772                 struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
773                 struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
774
775                 phy_qcfg_req =
776                 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
777                 mutex_lock(&bp->hwrm_cmd_lock);
778                 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
779                        sizeof(phy_qcfg_resp));
780                 mutex_unlock(&bp->hwrm_cmd_lock);
781                 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
782
783                 if (vf->flags & BNXT_VF_LINK_UP) {
784                         /* if physical link is down, force link up on VF */
785                         if (phy_qcfg_resp.link !=
786                             PORT_PHY_QCFG_RESP_LINK_LINK) {
787                                 phy_qcfg_resp.link =
788                                         PORT_PHY_QCFG_RESP_LINK_LINK;
789                                 phy_qcfg_resp.link_speed = cpu_to_le16(
790                                         PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
791                                 phy_qcfg_resp.duplex =
792                                         PORT_PHY_QCFG_RESP_DUPLEX_FULL;
793                                 phy_qcfg_resp.pause =
794                                         (PORT_PHY_QCFG_RESP_PAUSE_TX |
795                                          PORT_PHY_QCFG_RESP_PAUSE_RX);
796                         }
797                 } else {
798                         /* force link down */
799                         phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
800                         phy_qcfg_resp.link_speed = 0;
801                         phy_qcfg_resp.duplex = PORT_PHY_QCFG_RESP_DUPLEX_HALF;
802                         phy_qcfg_resp.pause = 0;
803                 }
804                 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
805                                         phy_qcfg_req->resp_addr,
806                                         phy_qcfg_req->cmpl_ring,
807                                         sizeof(phy_qcfg_resp));
808         }
809         return rc;
810 }
811
812 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
813 {
814         int rc = 0;
815         struct input *encap_req = vf->hwrm_cmd_req_addr;
816         u32 req_type = le16_to_cpu(encap_req->req_type);
817
818         switch (req_type) {
819         case HWRM_CFA_L2_FILTER_ALLOC:
820                 rc = bnxt_vf_validate_set_mac(bp, vf);
821                 break;
822         case HWRM_FUNC_CFG:
823                 /* TODO Validate if VF is allowed to change mac address,
824                  * mtu, num of rings etc
825                  */
826                 rc = bnxt_hwrm_exec_fwd_resp(
827                         bp, vf, sizeof(struct hwrm_func_cfg_input));
828                 break;
829         case HWRM_PORT_PHY_QCFG:
830                 rc = bnxt_vf_set_link(bp, vf);
831                 break;
832         default:
833                 break;
834         }
835         return rc;
836 }
837
838 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
839 {
840         u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
841
842         /* Scan through VF's and process commands */
843         while (1) {
844                 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
845                 if (vf_id >= active_vfs)
846                         break;
847
848                 clear_bit(vf_id, bp->pf.vf_event_bmap);
849                 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
850                 i = vf_id + 1;
851         }
852 }
853
854 void bnxt_update_vf_mac(struct bnxt *bp)
855 {
856         struct hwrm_func_qcaps_input req = {0};
857         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
858
859         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
860         req.fid = cpu_to_le16(0xffff);
861
862         mutex_lock(&bp->hwrm_cmd_lock);
863         if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
864                 goto update_vf_mac_exit;
865
866         /* Store MAC address from the firmware.  There are 2 cases:
867          * 1. MAC address is valid.  It is assigned from the PF and we
868          *    need to override the current VF MAC address with it.
869          * 2. MAC address is zero.  The VF will use a random MAC address by
870          *    default but the stored zero MAC will allow the VF user to change
871          *    the random MAC address using ndo_set_mac_address() if he wants.
872          */
873         if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
874                 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
875
876         /* overwrite netdev dev_addr with admin VF MAC */
877         if (is_valid_ether_addr(bp->vf.mac_addr))
878                 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
879 update_vf_mac_exit:
880         mutex_unlock(&bp->hwrm_cmd_lock);
881 }
882
883 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
884 {
885         struct hwrm_func_vf_cfg_input req = {0};
886         int rc = 0;
887
888         if (!BNXT_VF(bp))
889                 return 0;
890
891         if (bp->hwrm_spec_code < 0x10202) {
892                 if (is_valid_ether_addr(bp->vf.mac_addr))
893                         rc = -EADDRNOTAVAIL;
894                 goto mac_done;
895         }
896         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
897         req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
898         memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
899         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
900 mac_done:
901         if (rc) {
902                 rc = -EADDRNOTAVAIL;
903                 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
904                             mac);
905         }
906         return rc;
907 }
908 #else
909
910 void bnxt_sriov_disable(struct bnxt *bp)
911 {
912 }
913
914 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
915 {
916         netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
917 }
918
919 void bnxt_update_vf_mac(struct bnxt *bp)
920 {
921 }
922
923 int bnxt_approve_mac(struct bnxt *bp, u8 *mac)
924 {
925         return 0;
926 }
927 #endif