]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
Merge branch 'net/rds/4.3-v3' of git://git.kernel.org/pub/scm/linux/kernel/git/ssanto...
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229         dev_err(adap->pdev_dev,
230                 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231                 (unsigned long long)t4_read_reg64(adap, data_reg),
232                 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233                 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234                 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235                 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236                 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237                 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238                 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240
241 /**
242  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *      @adap: the adapter
244  *      @mbox: index of the mailbox to use
245  *      @cmd: the command to write
246  *      @size: command length in bytes
247  *      @rpl: where to optionally store the reply
248  *      @sleep_ok: if true we may sleep while awaiting command completion
249  *      @timeout: time to wait for command to finish before timing out
250  *
251  *      Sends the given command to FW through the selected mailbox and waits
252  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *      store the FW's reply to the command.  The command and its optional
254  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *      the response.  If sleeping is allowed we use progressive backoff
257  *      otherwise we spin.
258  *
259  *      The return value is 0 on success or a negative errno on failure.  A
260  *      failure can happen either because we are not able to execute the
261  *      command or FW executes it but signals an error.  In the latter case
262  *      the return value is the error code indicated by FW (negated).
263  */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265                             int size, void *rpl, bool sleep_ok, int timeout)
266 {
267         static const int delay[] = {
268                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269         };
270
271         u32 v;
272         u64 res;
273         int i, ms, delay_idx;
274         const __be64 *p = cmd;
275         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278         if ((size & 15) || size > MBOX_LEN)
279                 return -EINVAL;
280
281         /*
282          * If the device is off-line, as in EEH, commands will time out.
283          * Fail them early so we don't waste time waiting.
284          */
285         if (adap->pdev->error_state != pci_channel_io_normal)
286                 return -EIO;
287
288         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292         if (v != MBOX_OWNER_DRV)
293                 return v ? -EBUSY : -ETIMEDOUT;
294
295         for (i = 0; i < size; i += 8)
296                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299         t4_read_reg(adap, ctl_reg);          /* flush write */
300
301         delay_idx = 0;
302         ms = delay[0];
303
304         for (i = 0; i < timeout; i += ms) {
305                 if (sleep_ok) {
306                         ms = delay[delay_idx];  /* last element may repeat */
307                         if (delay_idx < ARRAY_SIZE(delay) - 1)
308                                 delay_idx++;
309                         msleep(ms);
310                 } else
311                         mdelay(ms);
312
313                 v = t4_read_reg(adap, ctl_reg);
314                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315                         if (!(v & MBMSGVALID_F)) {
316                                 t4_write_reg(adap, ctl_reg, 0);
317                                 continue;
318                         }
319
320                         res = t4_read_reg64(adap, data_reg);
321                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322                                 fw_asrt(adap, data_reg);
323                                 res = FW_CMD_RETVAL_V(EIO);
324                         } else if (rpl) {
325                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
326                         }
327
328                         if (FW_CMD_RETVAL_G((int)res))
329                                 dump_mbox(adap, mbox, data_reg);
330                         t4_write_reg(adap, ctl_reg, 0);
331                         return -FW_CMD_RETVAL_G((int)res);
332                 }
333         }
334
335         dump_mbox(adap, mbox, data_reg);
336         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337                 *(const u8 *)cmd, mbox);
338         t4_report_fw_error(adap);
339         return -ETIMEDOUT;
340 }
341
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343                     void *rpl, bool sleep_ok)
344 {
345         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346                                        FW_CMD_MAX_TIMEOUT);
347 }
348
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351         u32 edc_ecc_err_addr_reg;
352         u32 rdata_reg;
353
354         if (is_t4(adap->params.chip)) {
355                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356                 return 0;
357         }
358         if (idx != 0 && idx != 1) {
359                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360                 return 0;
361         }
362
363         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366         CH_WARN(adap,
367                 "edc%d err addr 0x%x: 0x%x.\n",
368                 idx, edc_ecc_err_addr_reg,
369                 t4_read_reg(adap, edc_ecc_err_addr_reg));
370         CH_WARN(adap,
371                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372                 rdata_reg,
373                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383         return 0;
384 }
385
386 /**
387  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *      @adap: the adapter
389  *      @win: PCI-E Memory Window to use
390  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *      @addr: address within indicated memory type
392  *      @len: amount of memory to transfer
393  *      @hbuf: host memory buffer
394  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *      firmware memory address and host buffer must be aligned on 32-bit
398  *      boudaries; the length may be arbitrary.  The memory is transferred as
399  *      a raw byte sequence from/to the firmware's memory.  If this memory
400  *      contains data structures which contain multi-byte integers, it's the
401  *      caller's responsibility to perform appropriate byte order conversions.
402  */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404                  u32 len, void *hbuf, int dir)
405 {
406         u32 pos, offset, resid, memoffset;
407         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408         u32 *buf;
409
410         /* Argument sanity checks ...
411          */
412         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413                 return -EINVAL;
414         buf = (u32 *)hbuf;
415
416         /* It's convenient to be able to handle lengths which aren't a
417          * multiple of 32-bits because we often end up transferring files to
418          * the firmware.  So we'll handle that by normalizing the length here
419          * and then handling any residual transfer at the end.
420          */
421         resid = len & 0x3;
422         len -= resid;
423
424         /* Offset into the region of memory which is being accessed
425          * MEM_EDC0 = 0
426          * MEM_EDC1 = 1
427          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429          */
430         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431         if (mtype != MEM_MC1)
432                 memoffset = (mtype * (edc_size * 1024 * 1024));
433         else {
434                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435                                                       MA_EXT_MEMORY0_BAR_A));
436                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437         }
438
439         /* Determine the PCIE_MEM_ACCESS_OFFSET */
440         addr = addr + memoffset;
441
442         /* Each PCI-E Memory Window is programmed with a window size -- or
443          * "aperture" -- which controls the granularity of its mapping onto
444          * adapter memory.  We need to grab that aperture in order to know
445          * how to use the specified window.  The window is also programmed
446          * with the base address of the Memory Window in BAR0's address
447          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448          * the address is relative to BAR0.
449          */
450         mem_reg = t4_read_reg(adap,
451                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452                                                   win));
453         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455         if (is_t4(adap->params.chip))
456                 mem_base -= adap->t4_bar0;
457         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459         /* Calculate our initial PCI-E Memory Window Position and Offset into
460          * that Window.
461          */
462         pos = addr & ~(mem_aperture-1);
463         offset = addr - pos;
464
465         /* Set up initial PCI-E Memory Window to cover the start of our
466          * transfer.  (Read it back to ensure that changes propagate before we
467          * attempt to use the new value.)
468          */
469         t4_write_reg(adap,
470                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471                      pos | win_pf);
472         t4_read_reg(adap,
473                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475         /* Transfer data to/from the adapter as long as there's an integral
476          * number of 32-bit transfers to complete.
477          *
478          * A note on Endianness issues:
479          *
480          * The "register" reads and writes below from/to the PCI-E Memory
481          * Window invoke the standard adapter Big-Endian to PCI-E Link
482          * Little-Endian "swizzel."  As a result, if we have the following
483          * data in adapter memory:
484          *
485          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486          *     Address:      i+0  i+1  i+2  i+3
487          *
488          * Then a read of the adapter memory via the PCI-E Memory Window
489          * will yield:
490          *
491          *     x = readl(i)
492          *         31                  0
493          *         [ b3 | b2 | b1 | b0 ]
494          *
495          * If this value is stored into local memory on a Little-Endian system
496          * it will show up correctly in local memory as:
497          *
498          *     ( ..., b0, b1, b2, b3, ... )
499          *
500          * But on a Big-Endian system, the store will show up in memory
501          * incorrectly swizzled as:
502          *
503          *     ( ..., b3, b2, b1, b0, ... )
504          *
505          * So we need to account for this in the reads and writes to the
506          * PCI-E Memory Window below by undoing the register read/write
507          * swizzels.
508          */
509         while (len > 0) {
510                 if (dir == T4_MEMORY_READ)
511                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512                                                 mem_base + offset));
513                 else
514                         t4_write_reg(adap, mem_base + offset,
515                                      (__force u32)cpu_to_le32(*buf++));
516                 offset += sizeof(__be32);
517                 len -= sizeof(__be32);
518
519                 /* If we've reached the end of our current window aperture,
520                  * move the PCI-E Memory Window on to the next.  Note that
521                  * doing this here after "len" may be 0 allows us to set up
522                  * the PCI-E Memory Window for a possible final residual
523                  * transfer below ...
524                  */
525                 if (offset == mem_aperture) {
526                         pos += mem_aperture;
527                         offset = 0;
528                         t4_write_reg(adap,
529                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530                                                     win), pos | win_pf);
531                         t4_read_reg(adap,
532                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533                                                     win));
534                 }
535         }
536
537         /* If the original transfer had a length which wasn't a multiple of
538          * 32-bits, now's where we need to finish off the transfer of the
539          * residual amount.  The PCI-E Memory Window has already been moved
540          * above (if necessary) to cover this final transfer.
541          */
542         if (resid) {
543                 union {
544                         u32 word;
545                         char byte[4];
546                 } last;
547                 unsigned char *bp;
548                 int i;
549
550                 if (dir == T4_MEMORY_READ) {
551                         last.word = le32_to_cpu(
552                                         (__force __le32)t4_read_reg(adap,
553                                                 mem_base + offset));
554                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555                                 bp[i] = last.byte[i];
556                 } else {
557                         last.word = *buf;
558                         for (i = resid; i < 4; i++)
559                                 last.byte[i] = 0;
560                         t4_write_reg(adap, mem_base + offset,
561                                      (__force u32)cpu_to_le32(last.word));
562                 }
563         }
564
565         return 0;
566 }
567
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575         u32 val, ldst_addrspace;
576
577         /* If fw_attach != 0, construct and send the Firmware LDST Command to
578          * retrieve the specified PCI-E Configuration Space register.
579          */
580         struct fw_ldst_cmd ldst_cmd;
581         int ret;
582
583         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586                                                FW_CMD_REQUEST_F |
587                                                FW_CMD_READ_F |
588                                                ldst_addrspace);
589         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591         ldst_cmd.u.pcie.ctrl_to_fn =
592                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593         ldst_cmd.u.pcie.r = reg;
594
595         /* If the LDST Command succeeds, return the result, otherwise
596          * fall through to reading it directly ourselves ...
597          */
598         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599                          &ldst_cmd);
600         if (ret == 0)
601                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602         else
603                 /* Read the desired Configuration Space register via the PCI-E
604                  * Backdoor mechanism.
605                  */
606                 t4_hw_pci_read_cfg4(adap, reg, &val);
607         return val;
608 }
609
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615                          u32 memwin_base)
616 {
617         u32 ret;
618
619         if (is_t4(adap->params.chip)) {
620                 u32 bar0;
621
622                 /* Truncation intentional: we only read the bottom 32-bits of
623                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624                  * mechanism to read BAR0 instead of using
625                  * pci_resource_start() because we could be operating from
626                  * within a Virtual Machine which is trapping our accesses to
627                  * our Configuration Space and we need to set up the PCI-E
628                  * Memory Window decoders with the actual addresses which will
629                  * be coming across the PCI-E link.
630                  */
631                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632                 bar0 &= pci_mask;
633                 adap->t4_bar0 = bar0;
634
635                 ret = bar0 + memwin_base;
636         } else {
637                 /* For T5, only relative offset inside the PCIe BAR is passed */
638                 ret = memwin_base;
639         }
640         return ret;
641 }
642
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656         t4_write_reg(adap,
657                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658                      memwin_base | BIR_V(0) |
659                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660         t4_read_reg(adap,
661                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663
664 /**
665  *      t4_get_regs_len - return the size of the chips register set
666  *      @adapter: the adapter
667  *
668  *      Returns the size of the chip's BAR0 register space.
669  */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674         switch (chip_version) {
675         case CHELSIO_T4:
676                 return T4_REGMAP_SIZE;
677
678         case CHELSIO_T5:
679         case CHELSIO_T6:
680                 return T5_REGMAP_SIZE;
681         }
682
683         dev_err(adapter->pdev_dev,
684                 "Unsupported chip version %d\n", chip_version);
685         return 0;
686 }
687
688 /**
689  *      t4_get_regs - read chip registers into provided buffer
690  *      @adap: the adapter
691  *      @buf: register buffer
692  *      @buf_size: size (in bytes) of register buffer
693  *
694  *      If the provided register buffer isn't large enough for the chip's
695  *      full register range, the register dump will be truncated to the
696  *      register buffer's size.
697  */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700         static const unsigned int t4_reg_ranges[] = {
701                 0x1008, 0x1108,
702                 0x1180, 0x1184,
703                 0x1190, 0x1194,
704                 0x11a0, 0x11a4,
705                 0x11b0, 0x11b4,
706                 0x11fc, 0x123c,
707                 0x1300, 0x173c,
708                 0x1800, 0x18fc,
709                 0x3000, 0x30d8,
710                 0x30e0, 0x30e4,
711                 0x30ec, 0x5910,
712                 0x5920, 0x5924,
713                 0x5960, 0x5960,
714                 0x5968, 0x5968,
715                 0x5970, 0x5970,
716                 0x5978, 0x5978,
717                 0x5980, 0x5980,
718                 0x5988, 0x5988,
719                 0x5990, 0x5990,
720                 0x5998, 0x5998,
721                 0x59a0, 0x59d4,
722                 0x5a00, 0x5ae0,
723                 0x5ae8, 0x5ae8,
724                 0x5af0, 0x5af0,
725                 0x5af8, 0x5af8,
726                 0x6000, 0x6098,
727                 0x6100, 0x6150,
728                 0x6200, 0x6208,
729                 0x6240, 0x6248,
730                 0x6280, 0x62b0,
731                 0x62c0, 0x6338,
732                 0x6370, 0x638c,
733                 0x6400, 0x643c,
734                 0x6500, 0x6524,
735                 0x6a00, 0x6a04,
736                 0x6a14, 0x6a38,
737                 0x6a60, 0x6a70,
738                 0x6a78, 0x6a78,
739                 0x6b00, 0x6b0c,
740                 0x6b1c, 0x6b84,
741                 0x6bf0, 0x6bf8,
742                 0x6c00, 0x6c0c,
743                 0x6c1c, 0x6c84,
744                 0x6cf0, 0x6cf8,
745                 0x6d00, 0x6d0c,
746                 0x6d1c, 0x6d84,
747                 0x6df0, 0x6df8,
748                 0x6e00, 0x6e0c,
749                 0x6e1c, 0x6e84,
750                 0x6ef0, 0x6ef8,
751                 0x6f00, 0x6f0c,
752                 0x6f1c, 0x6f84,
753                 0x6ff0, 0x6ff8,
754                 0x7000, 0x700c,
755                 0x701c, 0x7084,
756                 0x70f0, 0x70f8,
757                 0x7100, 0x710c,
758                 0x711c, 0x7184,
759                 0x71f0, 0x71f8,
760                 0x7200, 0x720c,
761                 0x721c, 0x7284,
762                 0x72f0, 0x72f8,
763                 0x7300, 0x730c,
764                 0x731c, 0x7384,
765                 0x73f0, 0x73f8,
766                 0x7400, 0x7450,
767                 0x7500, 0x7530,
768                 0x7600, 0x760c,
769                 0x7614, 0x761c,
770                 0x7680, 0x76cc,
771                 0x7700, 0x7798,
772                 0x77c0, 0x77fc,
773                 0x7900, 0x79fc,
774                 0x7b00, 0x7b58,
775                 0x7b60, 0x7b84,
776                 0x7b8c, 0x7c38,
777                 0x7d00, 0x7d38,
778                 0x7d40, 0x7d80,
779                 0x7d8c, 0x7ddc,
780                 0x7de4, 0x7e04,
781                 0x7e10, 0x7e1c,
782                 0x7e24, 0x7e38,
783                 0x7e40, 0x7e44,
784                 0x7e4c, 0x7e78,
785                 0x7e80, 0x7ea4,
786                 0x7eac, 0x7edc,
787                 0x7ee8, 0x7efc,
788                 0x8dc0, 0x8e04,
789                 0x8e10, 0x8e1c,
790                 0x8e30, 0x8e78,
791                 0x8ea0, 0x8eb8,
792                 0x8ec0, 0x8f6c,
793                 0x8fc0, 0x9008,
794                 0x9010, 0x9058,
795                 0x9060, 0x9060,
796                 0x9068, 0x9074,
797                 0x90fc, 0x90fc,
798                 0x9400, 0x9408,
799                 0x9410, 0x9458,
800                 0x9600, 0x9600,
801                 0x9608, 0x9638,
802                 0x9640, 0x96bc,
803                 0x9800, 0x9808,
804                 0x9820, 0x983c,
805                 0x9850, 0x9864,
806                 0x9c00, 0x9c6c,
807                 0x9c80, 0x9cec,
808                 0x9d00, 0x9d6c,
809                 0x9d80, 0x9dec,
810                 0x9e00, 0x9e6c,
811                 0x9e80, 0x9eec,
812                 0x9f00, 0x9f6c,
813                 0x9f80, 0x9fec,
814                 0xd004, 0xd004,
815                 0xd010, 0xd03c,
816                 0xdfc0, 0xdfe0,
817                 0xe000, 0xea7c,
818                 0xf000, 0x11190,
819                 0x19040, 0x1906c,
820                 0x19078, 0x19080,
821                 0x1908c, 0x190e4,
822                 0x190f0, 0x190f8,
823                 0x19100, 0x19110,
824                 0x19120, 0x19124,
825                 0x19150, 0x19194,
826                 0x1919c, 0x191b0,
827                 0x191d0, 0x191e8,
828                 0x19238, 0x1924c,
829                 0x193f8, 0x1943c,
830                 0x1944c, 0x19474,
831                 0x19490, 0x194e0,
832                 0x194f0, 0x194f8,
833                 0x19800, 0x19c08,
834                 0x19c10, 0x19c90,
835                 0x19ca0, 0x19ce4,
836                 0x19cf0, 0x19d40,
837                 0x19d50, 0x19d94,
838                 0x19da0, 0x19de8,
839                 0x19df0, 0x19e40,
840                 0x19e50, 0x19e90,
841                 0x19ea0, 0x19f4c,
842                 0x1a000, 0x1a004,
843                 0x1a010, 0x1a06c,
844                 0x1a0b0, 0x1a0e4,
845                 0x1a0ec, 0x1a0f4,
846                 0x1a100, 0x1a108,
847                 0x1a114, 0x1a120,
848                 0x1a128, 0x1a130,
849                 0x1a138, 0x1a138,
850                 0x1a190, 0x1a1c4,
851                 0x1a1fc, 0x1a1fc,
852                 0x1e040, 0x1e04c,
853                 0x1e284, 0x1e28c,
854                 0x1e2c0, 0x1e2c0,
855                 0x1e2e0, 0x1e2e0,
856                 0x1e300, 0x1e384,
857                 0x1e3c0, 0x1e3c8,
858                 0x1e440, 0x1e44c,
859                 0x1e684, 0x1e68c,
860                 0x1e6c0, 0x1e6c0,
861                 0x1e6e0, 0x1e6e0,
862                 0x1e700, 0x1e784,
863                 0x1e7c0, 0x1e7c8,
864                 0x1e840, 0x1e84c,
865                 0x1ea84, 0x1ea8c,
866                 0x1eac0, 0x1eac0,
867                 0x1eae0, 0x1eae0,
868                 0x1eb00, 0x1eb84,
869                 0x1ebc0, 0x1ebc8,
870                 0x1ec40, 0x1ec4c,
871                 0x1ee84, 0x1ee8c,
872                 0x1eec0, 0x1eec0,
873                 0x1eee0, 0x1eee0,
874                 0x1ef00, 0x1ef84,
875                 0x1efc0, 0x1efc8,
876                 0x1f040, 0x1f04c,
877                 0x1f284, 0x1f28c,
878                 0x1f2c0, 0x1f2c0,
879                 0x1f2e0, 0x1f2e0,
880                 0x1f300, 0x1f384,
881                 0x1f3c0, 0x1f3c8,
882                 0x1f440, 0x1f44c,
883                 0x1f684, 0x1f68c,
884                 0x1f6c0, 0x1f6c0,
885                 0x1f6e0, 0x1f6e0,
886                 0x1f700, 0x1f784,
887                 0x1f7c0, 0x1f7c8,
888                 0x1f840, 0x1f84c,
889                 0x1fa84, 0x1fa8c,
890                 0x1fac0, 0x1fac0,
891                 0x1fae0, 0x1fae0,
892                 0x1fb00, 0x1fb84,
893                 0x1fbc0, 0x1fbc8,
894                 0x1fc40, 0x1fc4c,
895                 0x1fe84, 0x1fe8c,
896                 0x1fec0, 0x1fec0,
897                 0x1fee0, 0x1fee0,
898                 0x1ff00, 0x1ff84,
899                 0x1ffc0, 0x1ffc8,
900                 0x20000, 0x2002c,
901                 0x20100, 0x2013c,
902                 0x20190, 0x201a0,
903                 0x201a8, 0x201b8,
904                 0x201c4, 0x201c8,
905                 0x20200, 0x20318,
906                 0x20400, 0x204b4,
907                 0x204c0, 0x20528,
908                 0x20540, 0x20614,
909                 0x21000, 0x21040,
910                 0x2104c, 0x21060,
911                 0x210c0, 0x210ec,
912                 0x21200, 0x21268,
913                 0x21270, 0x21284,
914                 0x212fc, 0x21388,
915                 0x21400, 0x21404,
916                 0x21500, 0x21500,
917                 0x21510, 0x21518,
918                 0x2152c, 0x21530,
919                 0x2153c, 0x2153c,
920                 0x21550, 0x21554,
921                 0x21600, 0x21600,
922                 0x21608, 0x2161c,
923                 0x21624, 0x21628,
924                 0x21630, 0x21634,
925                 0x2163c, 0x2163c,
926                 0x21700, 0x2171c,
927                 0x21780, 0x2178c,
928                 0x21800, 0x21818,
929                 0x21820, 0x21828,
930                 0x21830, 0x21848,
931                 0x21850, 0x21854,
932                 0x21860, 0x21868,
933                 0x21870, 0x21870,
934                 0x21878, 0x21898,
935                 0x218a0, 0x218a8,
936                 0x218b0, 0x218c8,
937                 0x218d0, 0x218d4,
938                 0x218e0, 0x218e8,
939                 0x218f0, 0x218f0,
940                 0x218f8, 0x21a18,
941                 0x21a20, 0x21a28,
942                 0x21a30, 0x21a48,
943                 0x21a50, 0x21a54,
944                 0x21a60, 0x21a68,
945                 0x21a70, 0x21a70,
946                 0x21a78, 0x21a98,
947                 0x21aa0, 0x21aa8,
948                 0x21ab0, 0x21ac8,
949                 0x21ad0, 0x21ad4,
950                 0x21ae0, 0x21ae8,
951                 0x21af0, 0x21af0,
952                 0x21af8, 0x21c18,
953                 0x21c20, 0x21c20,
954                 0x21c28, 0x21c30,
955                 0x21c38, 0x21c38,
956                 0x21c80, 0x21c98,
957                 0x21ca0, 0x21ca8,
958                 0x21cb0, 0x21cc8,
959                 0x21cd0, 0x21cd4,
960                 0x21ce0, 0x21ce8,
961                 0x21cf0, 0x21cf0,
962                 0x21cf8, 0x21d7c,
963                 0x21e00, 0x21e04,
964                 0x22000, 0x2202c,
965                 0x22100, 0x2213c,
966                 0x22190, 0x221a0,
967                 0x221a8, 0x221b8,
968                 0x221c4, 0x221c8,
969                 0x22200, 0x22318,
970                 0x22400, 0x224b4,
971                 0x224c0, 0x22528,
972                 0x22540, 0x22614,
973                 0x23000, 0x23040,
974                 0x2304c, 0x23060,
975                 0x230c0, 0x230ec,
976                 0x23200, 0x23268,
977                 0x23270, 0x23284,
978                 0x232fc, 0x23388,
979                 0x23400, 0x23404,
980                 0x23500, 0x23500,
981                 0x23510, 0x23518,
982                 0x2352c, 0x23530,
983                 0x2353c, 0x2353c,
984                 0x23550, 0x23554,
985                 0x23600, 0x23600,
986                 0x23608, 0x2361c,
987                 0x23624, 0x23628,
988                 0x23630, 0x23634,
989                 0x2363c, 0x2363c,
990                 0x23700, 0x2371c,
991                 0x23780, 0x2378c,
992                 0x23800, 0x23818,
993                 0x23820, 0x23828,
994                 0x23830, 0x23848,
995                 0x23850, 0x23854,
996                 0x23860, 0x23868,
997                 0x23870, 0x23870,
998                 0x23878, 0x23898,
999                 0x238a0, 0x238a8,
1000                 0x238b0, 0x238c8,
1001                 0x238d0, 0x238d4,
1002                 0x238e0, 0x238e8,
1003                 0x238f0, 0x238f0,
1004                 0x238f8, 0x23a18,
1005                 0x23a20, 0x23a28,
1006                 0x23a30, 0x23a48,
1007                 0x23a50, 0x23a54,
1008                 0x23a60, 0x23a68,
1009                 0x23a70, 0x23a70,
1010                 0x23a78, 0x23a98,
1011                 0x23aa0, 0x23aa8,
1012                 0x23ab0, 0x23ac8,
1013                 0x23ad0, 0x23ad4,
1014                 0x23ae0, 0x23ae8,
1015                 0x23af0, 0x23af0,
1016                 0x23af8, 0x23c18,
1017                 0x23c20, 0x23c20,
1018                 0x23c28, 0x23c30,
1019                 0x23c38, 0x23c38,
1020                 0x23c80, 0x23c98,
1021                 0x23ca0, 0x23ca8,
1022                 0x23cb0, 0x23cc8,
1023                 0x23cd0, 0x23cd4,
1024                 0x23ce0, 0x23ce8,
1025                 0x23cf0, 0x23cf0,
1026                 0x23cf8, 0x23d7c,
1027                 0x23e00, 0x23e04,
1028                 0x24000, 0x2402c,
1029                 0x24100, 0x2413c,
1030                 0x24190, 0x241a0,
1031                 0x241a8, 0x241b8,
1032                 0x241c4, 0x241c8,
1033                 0x24200, 0x24318,
1034                 0x24400, 0x244b4,
1035                 0x244c0, 0x24528,
1036                 0x24540, 0x24614,
1037                 0x25000, 0x25040,
1038                 0x2504c, 0x25060,
1039                 0x250c0, 0x250ec,
1040                 0x25200, 0x25268,
1041                 0x25270, 0x25284,
1042                 0x252fc, 0x25388,
1043                 0x25400, 0x25404,
1044                 0x25500, 0x25500,
1045                 0x25510, 0x25518,
1046                 0x2552c, 0x25530,
1047                 0x2553c, 0x2553c,
1048                 0x25550, 0x25554,
1049                 0x25600, 0x25600,
1050                 0x25608, 0x2561c,
1051                 0x25624, 0x25628,
1052                 0x25630, 0x25634,
1053                 0x2563c, 0x2563c,
1054                 0x25700, 0x2571c,
1055                 0x25780, 0x2578c,
1056                 0x25800, 0x25818,
1057                 0x25820, 0x25828,
1058                 0x25830, 0x25848,
1059                 0x25850, 0x25854,
1060                 0x25860, 0x25868,
1061                 0x25870, 0x25870,
1062                 0x25878, 0x25898,
1063                 0x258a0, 0x258a8,
1064                 0x258b0, 0x258c8,
1065                 0x258d0, 0x258d4,
1066                 0x258e0, 0x258e8,
1067                 0x258f0, 0x258f0,
1068                 0x258f8, 0x25a18,
1069                 0x25a20, 0x25a28,
1070                 0x25a30, 0x25a48,
1071                 0x25a50, 0x25a54,
1072                 0x25a60, 0x25a68,
1073                 0x25a70, 0x25a70,
1074                 0x25a78, 0x25a98,
1075                 0x25aa0, 0x25aa8,
1076                 0x25ab0, 0x25ac8,
1077                 0x25ad0, 0x25ad4,
1078                 0x25ae0, 0x25ae8,
1079                 0x25af0, 0x25af0,
1080                 0x25af8, 0x25c18,
1081                 0x25c20, 0x25c20,
1082                 0x25c28, 0x25c30,
1083                 0x25c38, 0x25c38,
1084                 0x25c80, 0x25c98,
1085                 0x25ca0, 0x25ca8,
1086                 0x25cb0, 0x25cc8,
1087                 0x25cd0, 0x25cd4,
1088                 0x25ce0, 0x25ce8,
1089                 0x25cf0, 0x25cf0,
1090                 0x25cf8, 0x25d7c,
1091                 0x25e00, 0x25e04,
1092                 0x26000, 0x2602c,
1093                 0x26100, 0x2613c,
1094                 0x26190, 0x261a0,
1095                 0x261a8, 0x261b8,
1096                 0x261c4, 0x261c8,
1097                 0x26200, 0x26318,
1098                 0x26400, 0x264b4,
1099                 0x264c0, 0x26528,
1100                 0x26540, 0x26614,
1101                 0x27000, 0x27040,
1102                 0x2704c, 0x27060,
1103                 0x270c0, 0x270ec,
1104                 0x27200, 0x27268,
1105                 0x27270, 0x27284,
1106                 0x272fc, 0x27388,
1107                 0x27400, 0x27404,
1108                 0x27500, 0x27500,
1109                 0x27510, 0x27518,
1110                 0x2752c, 0x27530,
1111                 0x2753c, 0x2753c,
1112                 0x27550, 0x27554,
1113                 0x27600, 0x27600,
1114                 0x27608, 0x2761c,
1115                 0x27624, 0x27628,
1116                 0x27630, 0x27634,
1117                 0x2763c, 0x2763c,
1118                 0x27700, 0x2771c,
1119                 0x27780, 0x2778c,
1120                 0x27800, 0x27818,
1121                 0x27820, 0x27828,
1122                 0x27830, 0x27848,
1123                 0x27850, 0x27854,
1124                 0x27860, 0x27868,
1125                 0x27870, 0x27870,
1126                 0x27878, 0x27898,
1127                 0x278a0, 0x278a8,
1128                 0x278b0, 0x278c8,
1129                 0x278d0, 0x278d4,
1130                 0x278e0, 0x278e8,
1131                 0x278f0, 0x278f0,
1132                 0x278f8, 0x27a18,
1133                 0x27a20, 0x27a28,
1134                 0x27a30, 0x27a48,
1135                 0x27a50, 0x27a54,
1136                 0x27a60, 0x27a68,
1137                 0x27a70, 0x27a70,
1138                 0x27a78, 0x27a98,
1139                 0x27aa0, 0x27aa8,
1140                 0x27ab0, 0x27ac8,
1141                 0x27ad0, 0x27ad4,
1142                 0x27ae0, 0x27ae8,
1143                 0x27af0, 0x27af0,
1144                 0x27af8, 0x27c18,
1145                 0x27c20, 0x27c20,
1146                 0x27c28, 0x27c30,
1147                 0x27c38, 0x27c38,
1148                 0x27c80, 0x27c98,
1149                 0x27ca0, 0x27ca8,
1150                 0x27cb0, 0x27cc8,
1151                 0x27cd0, 0x27cd4,
1152                 0x27ce0, 0x27ce8,
1153                 0x27cf0, 0x27cf0,
1154                 0x27cf8, 0x27d7c,
1155                 0x27e00, 0x27e04,
1156         };
1157
1158         static const unsigned int t5_reg_ranges[] = {
1159                 0x1008, 0x10c0,
1160                 0x10cc, 0x10f8,
1161                 0x1100, 0x1100,
1162                 0x110c, 0x1148,
1163                 0x1180, 0x1184,
1164                 0x1190, 0x1194,
1165                 0x11a0, 0x11a4,
1166                 0x11b0, 0x11b4,
1167                 0x11fc, 0x123c,
1168                 0x1280, 0x173c,
1169                 0x1800, 0x18fc,
1170                 0x3000, 0x3028,
1171                 0x3060, 0x30b0,
1172                 0x30b8, 0x30d8,
1173                 0x30e0, 0x30fc,
1174                 0x3140, 0x357c,
1175                 0x35a8, 0x35cc,
1176                 0x35ec, 0x35ec,
1177                 0x3600, 0x5624,
1178                 0x56cc, 0x56ec,
1179                 0x56f4, 0x5720,
1180                 0x5728, 0x575c,
1181                 0x580c, 0x5814,
1182                 0x5890, 0x589c,
1183                 0x58a4, 0x58ac,
1184                 0x58b8, 0x58bc,
1185                 0x5940, 0x59c8,
1186                 0x59d0, 0x59dc,
1187                 0x59fc, 0x5a18,
1188                 0x5a60, 0x5a70,
1189                 0x5a80, 0x5a9c,
1190                 0x5b94, 0x5bfc,
1191                 0x6000, 0x6020,
1192                 0x6028, 0x6040,
1193                 0x6058, 0x609c,
1194                 0x60a8, 0x614c,
1195                 0x7700, 0x7798,
1196                 0x77c0, 0x78fc,
1197                 0x7b00, 0x7b58,
1198                 0x7b60, 0x7b84,
1199                 0x7b8c, 0x7c54,
1200                 0x7d00, 0x7d38,
1201                 0x7d40, 0x7d80,
1202                 0x7d8c, 0x7ddc,
1203                 0x7de4, 0x7e04,
1204                 0x7e10, 0x7e1c,
1205                 0x7e24, 0x7e38,
1206                 0x7e40, 0x7e44,
1207                 0x7e4c, 0x7e78,
1208                 0x7e80, 0x7edc,
1209                 0x7ee8, 0x7efc,
1210                 0x8dc0, 0x8de0,
1211                 0x8df8, 0x8e04,
1212                 0x8e10, 0x8e84,
1213                 0x8ea0, 0x8f84,
1214                 0x8fc0, 0x9058,
1215                 0x9060, 0x9060,
1216                 0x9068, 0x90f8,
1217                 0x9400, 0x9408,
1218                 0x9410, 0x9470,
1219                 0x9600, 0x9600,
1220                 0x9608, 0x9638,
1221                 0x9640, 0x96f4,
1222                 0x9800, 0x9808,
1223                 0x9820, 0x983c,
1224                 0x9850, 0x9864,
1225                 0x9c00, 0x9c6c,
1226                 0x9c80, 0x9cec,
1227                 0x9d00, 0x9d6c,
1228                 0x9d80, 0x9dec,
1229                 0x9e00, 0x9e6c,
1230                 0x9e80, 0x9eec,
1231                 0x9f00, 0x9f6c,
1232                 0x9f80, 0xa020,
1233                 0xd004, 0xd004,
1234                 0xd010, 0xd03c,
1235                 0xdfc0, 0xdfe0,
1236                 0xe000, 0x1106c,
1237                 0x11074, 0x11088,
1238                 0x1109c, 0x1117c,
1239                 0x11190, 0x11204,
1240                 0x19040, 0x1906c,
1241                 0x19078, 0x19080,
1242                 0x1908c, 0x190e8,
1243                 0x190f0, 0x190f8,
1244                 0x19100, 0x19110,
1245                 0x19120, 0x19124,
1246                 0x19150, 0x19194,
1247                 0x1919c, 0x191b0,
1248                 0x191d0, 0x191e8,
1249                 0x19238, 0x19290,
1250                 0x193f8, 0x19428,
1251                 0x19430, 0x19444,
1252                 0x1944c, 0x1946c,
1253                 0x19474, 0x19474,
1254                 0x19490, 0x194cc,
1255                 0x194f0, 0x194f8,
1256                 0x19c00, 0x19c08,
1257                 0x19c10, 0x19c60,
1258                 0x19c94, 0x19ce4,
1259                 0x19cf0, 0x19d40,
1260                 0x19d50, 0x19d94,
1261                 0x19da0, 0x19de8,
1262                 0x19df0, 0x19e10,
1263                 0x19e50, 0x19e90,
1264                 0x19ea0, 0x19f24,
1265                 0x19f34, 0x19f34,
1266                 0x19f40, 0x19f50,
1267                 0x19f90, 0x19fb4,
1268                 0x19fc4, 0x19fe4,
1269                 0x1a000, 0x1a004,
1270                 0x1a010, 0x1a06c,
1271                 0x1a0b0, 0x1a0e4,
1272                 0x1a0ec, 0x1a0f8,
1273                 0x1a100, 0x1a108,
1274                 0x1a114, 0x1a120,
1275                 0x1a128, 0x1a130,
1276                 0x1a138, 0x1a138,
1277                 0x1a190, 0x1a1c4,
1278                 0x1a1fc, 0x1a1fc,
1279                 0x1e008, 0x1e00c,
1280                 0x1e040, 0x1e044,
1281                 0x1e04c, 0x1e04c,
1282                 0x1e284, 0x1e290,
1283                 0x1e2c0, 0x1e2c0,
1284                 0x1e2e0, 0x1e2e0,
1285                 0x1e300, 0x1e384,
1286                 0x1e3c0, 0x1e3c8,
1287                 0x1e408, 0x1e40c,
1288                 0x1e440, 0x1e444,
1289                 0x1e44c, 0x1e44c,
1290                 0x1e684, 0x1e690,
1291                 0x1e6c0, 0x1e6c0,
1292                 0x1e6e0, 0x1e6e0,
1293                 0x1e700, 0x1e784,
1294                 0x1e7c0, 0x1e7c8,
1295                 0x1e808, 0x1e80c,
1296                 0x1e840, 0x1e844,
1297                 0x1e84c, 0x1e84c,
1298                 0x1ea84, 0x1ea90,
1299                 0x1eac0, 0x1eac0,
1300                 0x1eae0, 0x1eae0,
1301                 0x1eb00, 0x1eb84,
1302                 0x1ebc0, 0x1ebc8,
1303                 0x1ec08, 0x1ec0c,
1304                 0x1ec40, 0x1ec44,
1305                 0x1ec4c, 0x1ec4c,
1306                 0x1ee84, 0x1ee90,
1307                 0x1eec0, 0x1eec0,
1308                 0x1eee0, 0x1eee0,
1309                 0x1ef00, 0x1ef84,
1310                 0x1efc0, 0x1efc8,
1311                 0x1f008, 0x1f00c,
1312                 0x1f040, 0x1f044,
1313                 0x1f04c, 0x1f04c,
1314                 0x1f284, 0x1f290,
1315                 0x1f2c0, 0x1f2c0,
1316                 0x1f2e0, 0x1f2e0,
1317                 0x1f300, 0x1f384,
1318                 0x1f3c0, 0x1f3c8,
1319                 0x1f408, 0x1f40c,
1320                 0x1f440, 0x1f444,
1321                 0x1f44c, 0x1f44c,
1322                 0x1f684, 0x1f690,
1323                 0x1f6c0, 0x1f6c0,
1324                 0x1f6e0, 0x1f6e0,
1325                 0x1f700, 0x1f784,
1326                 0x1f7c0, 0x1f7c8,
1327                 0x1f808, 0x1f80c,
1328                 0x1f840, 0x1f844,
1329                 0x1f84c, 0x1f84c,
1330                 0x1fa84, 0x1fa90,
1331                 0x1fac0, 0x1fac0,
1332                 0x1fae0, 0x1fae0,
1333                 0x1fb00, 0x1fb84,
1334                 0x1fbc0, 0x1fbc8,
1335                 0x1fc08, 0x1fc0c,
1336                 0x1fc40, 0x1fc44,
1337                 0x1fc4c, 0x1fc4c,
1338                 0x1fe84, 0x1fe90,
1339                 0x1fec0, 0x1fec0,
1340                 0x1fee0, 0x1fee0,
1341                 0x1ff00, 0x1ff84,
1342                 0x1ffc0, 0x1ffc8,
1343                 0x30000, 0x30030,
1344                 0x30038, 0x30038,
1345                 0x30040, 0x30040,
1346                 0x30100, 0x30144,
1347                 0x30190, 0x301a0,
1348                 0x301a8, 0x301b8,
1349                 0x301c4, 0x301c8,
1350                 0x301d0, 0x301d0,
1351                 0x30200, 0x30318,
1352                 0x30400, 0x304b4,
1353                 0x304c0, 0x3052c,
1354                 0x30540, 0x3061c,
1355                 0x30800, 0x30828,
1356                 0x30834, 0x30834,
1357                 0x308c0, 0x30908,
1358                 0x30910, 0x309ac,
1359                 0x30a00, 0x30a14,
1360                 0x30a1c, 0x30a2c,
1361                 0x30a44, 0x30a50,
1362                 0x30a74, 0x30a74,
1363                 0x30a7c, 0x30afc,
1364                 0x30b08, 0x30c24,
1365                 0x30d00, 0x30d00,
1366                 0x30d08, 0x30d14,
1367                 0x30d1c, 0x30d20,
1368                 0x30d3c, 0x30d3c,
1369                 0x30d48, 0x30d50,
1370                 0x31200, 0x3120c,
1371                 0x31220, 0x31220,
1372                 0x31240, 0x31240,
1373                 0x31600, 0x3160c,
1374                 0x31a00, 0x31a1c,
1375                 0x31e00, 0x31e20,
1376                 0x31e38, 0x31e3c,
1377                 0x31e80, 0x31e80,
1378                 0x31e88, 0x31ea8,
1379                 0x31eb0, 0x31eb4,
1380                 0x31ec8, 0x31ed4,
1381                 0x31fb8, 0x32004,
1382                 0x32200, 0x32200,
1383                 0x32208, 0x32240,
1384                 0x32248, 0x32280,
1385                 0x32288, 0x322c0,
1386                 0x322c8, 0x322fc,
1387                 0x32600, 0x32630,
1388                 0x32a00, 0x32abc,
1389                 0x32b00, 0x32b10,
1390                 0x32b20, 0x32b30,
1391                 0x32b40, 0x32b50,
1392                 0x32b60, 0x32b70,
1393                 0x33000, 0x33028,
1394                 0x33030, 0x33048,
1395                 0x33060, 0x33068,
1396                 0x33070, 0x3309c,
1397                 0x330f0, 0x33128,
1398                 0x33130, 0x33148,
1399                 0x33160, 0x33168,
1400                 0x33170, 0x3319c,
1401                 0x331f0, 0x33238,
1402                 0x33240, 0x33240,
1403                 0x33248, 0x33250,
1404                 0x3325c, 0x33264,
1405                 0x33270, 0x332b8,
1406                 0x332c0, 0x332e4,
1407                 0x332f8, 0x33338,
1408                 0x33340, 0x33340,
1409                 0x33348, 0x33350,
1410                 0x3335c, 0x33364,
1411                 0x33370, 0x333b8,
1412                 0x333c0, 0x333e4,
1413                 0x333f8, 0x33428,
1414                 0x33430, 0x33448,
1415                 0x33460, 0x33468,
1416                 0x33470, 0x3349c,
1417                 0x334f0, 0x33528,
1418                 0x33530, 0x33548,
1419                 0x33560, 0x33568,
1420                 0x33570, 0x3359c,
1421                 0x335f0, 0x33638,
1422                 0x33640, 0x33640,
1423                 0x33648, 0x33650,
1424                 0x3365c, 0x33664,
1425                 0x33670, 0x336b8,
1426                 0x336c0, 0x336e4,
1427                 0x336f8, 0x33738,
1428                 0x33740, 0x33740,
1429                 0x33748, 0x33750,
1430                 0x3375c, 0x33764,
1431                 0x33770, 0x337b8,
1432                 0x337c0, 0x337e4,
1433                 0x337f8, 0x337fc,
1434                 0x33814, 0x33814,
1435                 0x3382c, 0x3382c,
1436                 0x33880, 0x3388c,
1437                 0x338e8, 0x338ec,
1438                 0x33900, 0x33928,
1439                 0x33930, 0x33948,
1440                 0x33960, 0x33968,
1441                 0x33970, 0x3399c,
1442                 0x339f0, 0x33a38,
1443                 0x33a40, 0x33a40,
1444                 0x33a48, 0x33a50,
1445                 0x33a5c, 0x33a64,
1446                 0x33a70, 0x33ab8,
1447                 0x33ac0, 0x33ae4,
1448                 0x33af8, 0x33b10,
1449                 0x33b28, 0x33b28,
1450                 0x33b3c, 0x33b50,
1451                 0x33bf0, 0x33c10,
1452                 0x33c28, 0x33c28,
1453                 0x33c3c, 0x33c50,
1454                 0x33cf0, 0x33cfc,
1455                 0x34000, 0x34030,
1456                 0x34038, 0x34038,
1457                 0x34040, 0x34040,
1458                 0x34100, 0x34144,
1459                 0x34190, 0x341a0,
1460                 0x341a8, 0x341b8,
1461                 0x341c4, 0x341c8,
1462                 0x341d0, 0x341d0,
1463                 0x34200, 0x34318,
1464                 0x34400, 0x344b4,
1465                 0x344c0, 0x3452c,
1466                 0x34540, 0x3461c,
1467                 0x34800, 0x34828,
1468                 0x34834, 0x34834,
1469                 0x348c0, 0x34908,
1470                 0x34910, 0x349ac,
1471                 0x34a00, 0x34a14,
1472                 0x34a1c, 0x34a2c,
1473                 0x34a44, 0x34a50,
1474                 0x34a74, 0x34a74,
1475                 0x34a7c, 0x34afc,
1476                 0x34b08, 0x34c24,
1477                 0x34d00, 0x34d00,
1478                 0x34d08, 0x34d14,
1479                 0x34d1c, 0x34d20,
1480                 0x34d3c, 0x34d3c,
1481                 0x34d48, 0x34d50,
1482                 0x35200, 0x3520c,
1483                 0x35220, 0x35220,
1484                 0x35240, 0x35240,
1485                 0x35600, 0x3560c,
1486                 0x35a00, 0x35a1c,
1487                 0x35e00, 0x35e20,
1488                 0x35e38, 0x35e3c,
1489                 0x35e80, 0x35e80,
1490                 0x35e88, 0x35ea8,
1491                 0x35eb0, 0x35eb4,
1492                 0x35ec8, 0x35ed4,
1493                 0x35fb8, 0x36004,
1494                 0x36200, 0x36200,
1495                 0x36208, 0x36240,
1496                 0x36248, 0x36280,
1497                 0x36288, 0x362c0,
1498                 0x362c8, 0x362fc,
1499                 0x36600, 0x36630,
1500                 0x36a00, 0x36abc,
1501                 0x36b00, 0x36b10,
1502                 0x36b20, 0x36b30,
1503                 0x36b40, 0x36b50,
1504                 0x36b60, 0x36b70,
1505                 0x37000, 0x37028,
1506                 0x37030, 0x37048,
1507                 0x37060, 0x37068,
1508                 0x37070, 0x3709c,
1509                 0x370f0, 0x37128,
1510                 0x37130, 0x37148,
1511                 0x37160, 0x37168,
1512                 0x37170, 0x3719c,
1513                 0x371f0, 0x37238,
1514                 0x37240, 0x37240,
1515                 0x37248, 0x37250,
1516                 0x3725c, 0x37264,
1517                 0x37270, 0x372b8,
1518                 0x372c0, 0x372e4,
1519                 0x372f8, 0x37338,
1520                 0x37340, 0x37340,
1521                 0x37348, 0x37350,
1522                 0x3735c, 0x37364,
1523                 0x37370, 0x373b8,
1524                 0x373c0, 0x373e4,
1525                 0x373f8, 0x37428,
1526                 0x37430, 0x37448,
1527                 0x37460, 0x37468,
1528                 0x37470, 0x3749c,
1529                 0x374f0, 0x37528,
1530                 0x37530, 0x37548,
1531                 0x37560, 0x37568,
1532                 0x37570, 0x3759c,
1533                 0x375f0, 0x37638,
1534                 0x37640, 0x37640,
1535                 0x37648, 0x37650,
1536                 0x3765c, 0x37664,
1537                 0x37670, 0x376b8,
1538                 0x376c0, 0x376e4,
1539                 0x376f8, 0x37738,
1540                 0x37740, 0x37740,
1541                 0x37748, 0x37750,
1542                 0x3775c, 0x37764,
1543                 0x37770, 0x377b8,
1544                 0x377c0, 0x377e4,
1545                 0x377f8, 0x377fc,
1546                 0x37814, 0x37814,
1547                 0x3782c, 0x3782c,
1548                 0x37880, 0x3788c,
1549                 0x378e8, 0x378ec,
1550                 0x37900, 0x37928,
1551                 0x37930, 0x37948,
1552                 0x37960, 0x37968,
1553                 0x37970, 0x3799c,
1554                 0x379f0, 0x37a38,
1555                 0x37a40, 0x37a40,
1556                 0x37a48, 0x37a50,
1557                 0x37a5c, 0x37a64,
1558                 0x37a70, 0x37ab8,
1559                 0x37ac0, 0x37ae4,
1560                 0x37af8, 0x37b10,
1561                 0x37b28, 0x37b28,
1562                 0x37b3c, 0x37b50,
1563                 0x37bf0, 0x37c10,
1564                 0x37c28, 0x37c28,
1565                 0x37c3c, 0x37c50,
1566                 0x37cf0, 0x37cfc,
1567                 0x38000, 0x38030,
1568                 0x38038, 0x38038,
1569                 0x38040, 0x38040,
1570                 0x38100, 0x38144,
1571                 0x38190, 0x381a0,
1572                 0x381a8, 0x381b8,
1573                 0x381c4, 0x381c8,
1574                 0x381d0, 0x381d0,
1575                 0x38200, 0x38318,
1576                 0x38400, 0x384b4,
1577                 0x384c0, 0x3852c,
1578                 0x38540, 0x3861c,
1579                 0x38800, 0x38828,
1580                 0x38834, 0x38834,
1581                 0x388c0, 0x38908,
1582                 0x38910, 0x389ac,
1583                 0x38a00, 0x38a14,
1584                 0x38a1c, 0x38a2c,
1585                 0x38a44, 0x38a50,
1586                 0x38a74, 0x38a74,
1587                 0x38a7c, 0x38afc,
1588                 0x38b08, 0x38c24,
1589                 0x38d00, 0x38d00,
1590                 0x38d08, 0x38d14,
1591                 0x38d1c, 0x38d20,
1592                 0x38d3c, 0x38d3c,
1593                 0x38d48, 0x38d50,
1594                 0x39200, 0x3920c,
1595                 0x39220, 0x39220,
1596                 0x39240, 0x39240,
1597                 0x39600, 0x3960c,
1598                 0x39a00, 0x39a1c,
1599                 0x39e00, 0x39e20,
1600                 0x39e38, 0x39e3c,
1601                 0x39e80, 0x39e80,
1602                 0x39e88, 0x39ea8,
1603                 0x39eb0, 0x39eb4,
1604                 0x39ec8, 0x39ed4,
1605                 0x39fb8, 0x3a004,
1606                 0x3a200, 0x3a200,
1607                 0x3a208, 0x3a240,
1608                 0x3a248, 0x3a280,
1609                 0x3a288, 0x3a2c0,
1610                 0x3a2c8, 0x3a2fc,
1611                 0x3a600, 0x3a630,
1612                 0x3aa00, 0x3aabc,
1613                 0x3ab00, 0x3ab10,
1614                 0x3ab20, 0x3ab30,
1615                 0x3ab40, 0x3ab50,
1616                 0x3ab60, 0x3ab70,
1617                 0x3b000, 0x3b028,
1618                 0x3b030, 0x3b048,
1619                 0x3b060, 0x3b068,
1620                 0x3b070, 0x3b09c,
1621                 0x3b0f0, 0x3b128,
1622                 0x3b130, 0x3b148,
1623                 0x3b160, 0x3b168,
1624                 0x3b170, 0x3b19c,
1625                 0x3b1f0, 0x3b238,
1626                 0x3b240, 0x3b240,
1627                 0x3b248, 0x3b250,
1628                 0x3b25c, 0x3b264,
1629                 0x3b270, 0x3b2b8,
1630                 0x3b2c0, 0x3b2e4,
1631                 0x3b2f8, 0x3b338,
1632                 0x3b340, 0x3b340,
1633                 0x3b348, 0x3b350,
1634                 0x3b35c, 0x3b364,
1635                 0x3b370, 0x3b3b8,
1636                 0x3b3c0, 0x3b3e4,
1637                 0x3b3f8, 0x3b428,
1638                 0x3b430, 0x3b448,
1639                 0x3b460, 0x3b468,
1640                 0x3b470, 0x3b49c,
1641                 0x3b4f0, 0x3b528,
1642                 0x3b530, 0x3b548,
1643                 0x3b560, 0x3b568,
1644                 0x3b570, 0x3b59c,
1645                 0x3b5f0, 0x3b638,
1646                 0x3b640, 0x3b640,
1647                 0x3b648, 0x3b650,
1648                 0x3b65c, 0x3b664,
1649                 0x3b670, 0x3b6b8,
1650                 0x3b6c0, 0x3b6e4,
1651                 0x3b6f8, 0x3b738,
1652                 0x3b740, 0x3b740,
1653                 0x3b748, 0x3b750,
1654                 0x3b75c, 0x3b764,
1655                 0x3b770, 0x3b7b8,
1656                 0x3b7c0, 0x3b7e4,
1657                 0x3b7f8, 0x3b7fc,
1658                 0x3b814, 0x3b814,
1659                 0x3b82c, 0x3b82c,
1660                 0x3b880, 0x3b88c,
1661                 0x3b8e8, 0x3b8ec,
1662                 0x3b900, 0x3b928,
1663                 0x3b930, 0x3b948,
1664                 0x3b960, 0x3b968,
1665                 0x3b970, 0x3b99c,
1666                 0x3b9f0, 0x3ba38,
1667                 0x3ba40, 0x3ba40,
1668                 0x3ba48, 0x3ba50,
1669                 0x3ba5c, 0x3ba64,
1670                 0x3ba70, 0x3bab8,
1671                 0x3bac0, 0x3bae4,
1672                 0x3baf8, 0x3bb10,
1673                 0x3bb28, 0x3bb28,
1674                 0x3bb3c, 0x3bb50,
1675                 0x3bbf0, 0x3bc10,
1676                 0x3bc28, 0x3bc28,
1677                 0x3bc3c, 0x3bc50,
1678                 0x3bcf0, 0x3bcfc,
1679                 0x3c000, 0x3c030,
1680                 0x3c038, 0x3c038,
1681                 0x3c040, 0x3c040,
1682                 0x3c100, 0x3c144,
1683                 0x3c190, 0x3c1a0,
1684                 0x3c1a8, 0x3c1b8,
1685                 0x3c1c4, 0x3c1c8,
1686                 0x3c1d0, 0x3c1d0,
1687                 0x3c200, 0x3c318,
1688                 0x3c400, 0x3c4b4,
1689                 0x3c4c0, 0x3c52c,
1690                 0x3c540, 0x3c61c,
1691                 0x3c800, 0x3c828,
1692                 0x3c834, 0x3c834,
1693                 0x3c8c0, 0x3c908,
1694                 0x3c910, 0x3c9ac,
1695                 0x3ca00, 0x3ca14,
1696                 0x3ca1c, 0x3ca2c,
1697                 0x3ca44, 0x3ca50,
1698                 0x3ca74, 0x3ca74,
1699                 0x3ca7c, 0x3cafc,
1700                 0x3cb08, 0x3cc24,
1701                 0x3cd00, 0x3cd00,
1702                 0x3cd08, 0x3cd14,
1703                 0x3cd1c, 0x3cd20,
1704                 0x3cd3c, 0x3cd3c,
1705                 0x3cd48, 0x3cd50,
1706                 0x3d200, 0x3d20c,
1707                 0x3d220, 0x3d220,
1708                 0x3d240, 0x3d240,
1709                 0x3d600, 0x3d60c,
1710                 0x3da00, 0x3da1c,
1711                 0x3de00, 0x3de20,
1712                 0x3de38, 0x3de3c,
1713                 0x3de80, 0x3de80,
1714                 0x3de88, 0x3dea8,
1715                 0x3deb0, 0x3deb4,
1716                 0x3dec8, 0x3ded4,
1717                 0x3dfb8, 0x3e004,
1718                 0x3e200, 0x3e200,
1719                 0x3e208, 0x3e240,
1720                 0x3e248, 0x3e280,
1721                 0x3e288, 0x3e2c0,
1722                 0x3e2c8, 0x3e2fc,
1723                 0x3e600, 0x3e630,
1724                 0x3ea00, 0x3eabc,
1725                 0x3eb00, 0x3eb10,
1726                 0x3eb20, 0x3eb30,
1727                 0x3eb40, 0x3eb50,
1728                 0x3eb60, 0x3eb70,
1729                 0x3f000, 0x3f028,
1730                 0x3f030, 0x3f048,
1731                 0x3f060, 0x3f068,
1732                 0x3f070, 0x3f09c,
1733                 0x3f0f0, 0x3f128,
1734                 0x3f130, 0x3f148,
1735                 0x3f160, 0x3f168,
1736                 0x3f170, 0x3f19c,
1737                 0x3f1f0, 0x3f238,
1738                 0x3f240, 0x3f240,
1739                 0x3f248, 0x3f250,
1740                 0x3f25c, 0x3f264,
1741                 0x3f270, 0x3f2b8,
1742                 0x3f2c0, 0x3f2e4,
1743                 0x3f2f8, 0x3f338,
1744                 0x3f340, 0x3f340,
1745                 0x3f348, 0x3f350,
1746                 0x3f35c, 0x3f364,
1747                 0x3f370, 0x3f3b8,
1748                 0x3f3c0, 0x3f3e4,
1749                 0x3f3f8, 0x3f428,
1750                 0x3f430, 0x3f448,
1751                 0x3f460, 0x3f468,
1752                 0x3f470, 0x3f49c,
1753                 0x3f4f0, 0x3f528,
1754                 0x3f530, 0x3f548,
1755                 0x3f560, 0x3f568,
1756                 0x3f570, 0x3f59c,
1757                 0x3f5f0, 0x3f638,
1758                 0x3f640, 0x3f640,
1759                 0x3f648, 0x3f650,
1760                 0x3f65c, 0x3f664,
1761                 0x3f670, 0x3f6b8,
1762                 0x3f6c0, 0x3f6e4,
1763                 0x3f6f8, 0x3f738,
1764                 0x3f740, 0x3f740,
1765                 0x3f748, 0x3f750,
1766                 0x3f75c, 0x3f764,
1767                 0x3f770, 0x3f7b8,
1768                 0x3f7c0, 0x3f7e4,
1769                 0x3f7f8, 0x3f7fc,
1770                 0x3f814, 0x3f814,
1771                 0x3f82c, 0x3f82c,
1772                 0x3f880, 0x3f88c,
1773                 0x3f8e8, 0x3f8ec,
1774                 0x3f900, 0x3f928,
1775                 0x3f930, 0x3f948,
1776                 0x3f960, 0x3f968,
1777                 0x3f970, 0x3f99c,
1778                 0x3f9f0, 0x3fa38,
1779                 0x3fa40, 0x3fa40,
1780                 0x3fa48, 0x3fa50,
1781                 0x3fa5c, 0x3fa64,
1782                 0x3fa70, 0x3fab8,
1783                 0x3fac0, 0x3fae4,
1784                 0x3faf8, 0x3fb10,
1785                 0x3fb28, 0x3fb28,
1786                 0x3fb3c, 0x3fb50,
1787                 0x3fbf0, 0x3fc10,
1788                 0x3fc28, 0x3fc28,
1789                 0x3fc3c, 0x3fc50,
1790                 0x3fcf0, 0x3fcfc,
1791                 0x40000, 0x4000c,
1792                 0x40040, 0x40050,
1793                 0x40060, 0x40068,
1794                 0x4007c, 0x4008c,
1795                 0x40094, 0x400b0,
1796                 0x400c0, 0x40144,
1797                 0x40180, 0x4018c,
1798                 0x40200, 0x40254,
1799                 0x40260, 0x40264,
1800                 0x40270, 0x40288,
1801                 0x40290, 0x40298,
1802                 0x402ac, 0x402c8,
1803                 0x402d0, 0x402e0,
1804                 0x402f0, 0x402f0,
1805                 0x40300, 0x4033c,
1806                 0x403f8, 0x403fc,
1807                 0x41304, 0x413c4,
1808                 0x41400, 0x4140c,
1809                 0x41414, 0x4141c,
1810                 0x41480, 0x414d0,
1811                 0x44000, 0x44054,
1812                 0x4405c, 0x44078,
1813                 0x440c0, 0x44174,
1814                 0x44180, 0x441ac,
1815                 0x441b4, 0x441b8,
1816                 0x441c0, 0x44254,
1817                 0x4425c, 0x44278,
1818                 0x442c0, 0x44374,
1819                 0x44380, 0x443ac,
1820                 0x443b4, 0x443b8,
1821                 0x443c0, 0x44454,
1822                 0x4445c, 0x44478,
1823                 0x444c0, 0x44574,
1824                 0x44580, 0x445ac,
1825                 0x445b4, 0x445b8,
1826                 0x445c0, 0x44654,
1827                 0x4465c, 0x44678,
1828                 0x446c0, 0x44774,
1829                 0x44780, 0x447ac,
1830                 0x447b4, 0x447b8,
1831                 0x447c0, 0x44854,
1832                 0x4485c, 0x44878,
1833                 0x448c0, 0x44974,
1834                 0x44980, 0x449ac,
1835                 0x449b4, 0x449b8,
1836                 0x449c0, 0x449fc,
1837                 0x45000, 0x45004,
1838                 0x45010, 0x45030,
1839                 0x45040, 0x45060,
1840                 0x45068, 0x45068,
1841                 0x45080, 0x45084,
1842                 0x450a0, 0x450b0,
1843                 0x45200, 0x45204,
1844                 0x45210, 0x45230,
1845                 0x45240, 0x45260,
1846                 0x45268, 0x45268,
1847                 0x45280, 0x45284,
1848                 0x452a0, 0x452b0,
1849                 0x460c0, 0x460e4,
1850                 0x47000, 0x4703c,
1851                 0x47044, 0x4708c,
1852                 0x47200, 0x47250,
1853                 0x47400, 0x47408,
1854                 0x47414, 0x47420,
1855                 0x47600, 0x47618,
1856                 0x47800, 0x47814,
1857                 0x48000, 0x4800c,
1858                 0x48040, 0x48050,
1859                 0x48060, 0x48068,
1860                 0x4807c, 0x4808c,
1861                 0x48094, 0x480b0,
1862                 0x480c0, 0x48144,
1863                 0x48180, 0x4818c,
1864                 0x48200, 0x48254,
1865                 0x48260, 0x48264,
1866                 0x48270, 0x48288,
1867                 0x48290, 0x48298,
1868                 0x482ac, 0x482c8,
1869                 0x482d0, 0x482e0,
1870                 0x482f0, 0x482f0,
1871                 0x48300, 0x4833c,
1872                 0x483f8, 0x483fc,
1873                 0x49304, 0x493c4,
1874                 0x49400, 0x4940c,
1875                 0x49414, 0x4941c,
1876                 0x49480, 0x494d0,
1877                 0x4c000, 0x4c054,
1878                 0x4c05c, 0x4c078,
1879                 0x4c0c0, 0x4c174,
1880                 0x4c180, 0x4c1ac,
1881                 0x4c1b4, 0x4c1b8,
1882                 0x4c1c0, 0x4c254,
1883                 0x4c25c, 0x4c278,
1884                 0x4c2c0, 0x4c374,
1885                 0x4c380, 0x4c3ac,
1886                 0x4c3b4, 0x4c3b8,
1887                 0x4c3c0, 0x4c454,
1888                 0x4c45c, 0x4c478,
1889                 0x4c4c0, 0x4c574,
1890                 0x4c580, 0x4c5ac,
1891                 0x4c5b4, 0x4c5b8,
1892                 0x4c5c0, 0x4c654,
1893                 0x4c65c, 0x4c678,
1894                 0x4c6c0, 0x4c774,
1895                 0x4c780, 0x4c7ac,
1896                 0x4c7b4, 0x4c7b8,
1897                 0x4c7c0, 0x4c854,
1898                 0x4c85c, 0x4c878,
1899                 0x4c8c0, 0x4c974,
1900                 0x4c980, 0x4c9ac,
1901                 0x4c9b4, 0x4c9b8,
1902                 0x4c9c0, 0x4c9fc,
1903                 0x4d000, 0x4d004,
1904                 0x4d010, 0x4d030,
1905                 0x4d040, 0x4d060,
1906                 0x4d068, 0x4d068,
1907                 0x4d080, 0x4d084,
1908                 0x4d0a0, 0x4d0b0,
1909                 0x4d200, 0x4d204,
1910                 0x4d210, 0x4d230,
1911                 0x4d240, 0x4d260,
1912                 0x4d268, 0x4d268,
1913                 0x4d280, 0x4d284,
1914                 0x4d2a0, 0x4d2b0,
1915                 0x4e0c0, 0x4e0e4,
1916                 0x4f000, 0x4f03c,
1917                 0x4f044, 0x4f08c,
1918                 0x4f200, 0x4f250,
1919                 0x4f400, 0x4f408,
1920                 0x4f414, 0x4f420,
1921                 0x4f600, 0x4f618,
1922                 0x4f800, 0x4f814,
1923                 0x50000, 0x50084,
1924                 0x50090, 0x500cc,
1925                 0x50400, 0x50400,
1926                 0x50800, 0x50884,
1927                 0x50890, 0x508cc,
1928                 0x50c00, 0x50c00,
1929                 0x51000, 0x5101c,
1930                 0x51300, 0x51308,
1931         };
1932
1933         static const unsigned int t6_reg_ranges[] = {
1934                 0x1008, 0x101c,
1935                 0x1024, 0x10a8,
1936                 0x10b4, 0x10f8,
1937                 0x1100, 0x1114,
1938                 0x111c, 0x112c,
1939                 0x1138, 0x113c,
1940                 0x1144, 0x114c,
1941                 0x1180, 0x1184,
1942                 0x1190, 0x1194,
1943                 0x11a0, 0x11a4,
1944                 0x11b0, 0x11b4,
1945                 0x11fc, 0x1254,
1946                 0x1280, 0x133c,
1947                 0x1800, 0x18fc,
1948                 0x3000, 0x302c,
1949                 0x3060, 0x30b0,
1950                 0x30b8, 0x30d8,
1951                 0x30e0, 0x30fc,
1952                 0x3140, 0x357c,
1953                 0x35a8, 0x35cc,
1954                 0x35ec, 0x35ec,
1955                 0x3600, 0x5624,
1956                 0x56cc, 0x56ec,
1957                 0x56f4, 0x5720,
1958                 0x5728, 0x575c,
1959                 0x580c, 0x5814,
1960                 0x5890, 0x589c,
1961                 0x58a4, 0x58ac,
1962                 0x58b8, 0x58bc,
1963                 0x5940, 0x595c,
1964                 0x5980, 0x598c,
1965                 0x59b0, 0x59c8,
1966                 0x59d0, 0x59dc,
1967                 0x59fc, 0x5a18,
1968                 0x5a60, 0x5a6c,
1969                 0x5a80, 0x5a8c,
1970                 0x5a94, 0x5a9c,
1971                 0x5b94, 0x5bfc,
1972                 0x5c10, 0x5e48,
1973                 0x5e50, 0x5e94,
1974                 0x5ea0, 0x5eb0,
1975                 0x5ec0, 0x5ec0,
1976                 0x5ec8, 0x5ecc,
1977                 0x6000, 0x6020,
1978                 0x6028, 0x6040,
1979                 0x6058, 0x609c,
1980                 0x60a8, 0x619c,
1981                 0x7700, 0x7798,
1982                 0x77c0, 0x7880,
1983                 0x78cc, 0x78fc,
1984                 0x7b00, 0x7b58,
1985                 0x7b60, 0x7b84,
1986                 0x7b8c, 0x7c54,
1987                 0x7d00, 0x7d38,
1988                 0x7d40, 0x7d84,
1989                 0x7d8c, 0x7ddc,
1990                 0x7de4, 0x7e04,
1991                 0x7e10, 0x7e1c,
1992                 0x7e24, 0x7e38,
1993                 0x7e40, 0x7e44,
1994                 0x7e4c, 0x7e78,
1995                 0x7e80, 0x7edc,
1996                 0x7ee8, 0x7efc,
1997                 0x8dc0, 0x8de4,
1998                 0x8df8, 0x8e04,
1999                 0x8e10, 0x8e84,
2000                 0x8ea0, 0x8f88,
2001                 0x8fb8, 0x9058,
2002                 0x9060, 0x9060,
2003                 0x9068, 0x90f8,
2004                 0x9100, 0x9124,
2005                 0x9400, 0x9470,
2006                 0x9600, 0x9600,
2007                 0x9608, 0x9638,
2008                 0x9640, 0x9704,
2009                 0x9710, 0x971c,
2010                 0x9800, 0x9808,
2011                 0x9820, 0x983c,
2012                 0x9850, 0x9864,
2013                 0x9c00, 0x9c6c,
2014                 0x9c80, 0x9cec,
2015                 0x9d00, 0x9d6c,
2016                 0x9d80, 0x9dec,
2017                 0x9e00, 0x9e6c,
2018                 0x9e80, 0x9eec,
2019                 0x9f00, 0x9f6c,
2020                 0x9f80, 0xa020,
2021                 0xd004, 0xd03c,
2022                 0xd100, 0xd118,
2023                 0xd200, 0xd214,
2024                 0xd220, 0xd234,
2025                 0xd240, 0xd254,
2026                 0xd260, 0xd274,
2027                 0xd280, 0xd294,
2028                 0xd2a0, 0xd2b4,
2029                 0xd2c0, 0xd2d4,
2030                 0xd2e0, 0xd2f4,
2031                 0xd300, 0xd31c,
2032                 0xdfc0, 0xdfe0,
2033                 0xe000, 0xf008,
2034                 0x11000, 0x11014,
2035                 0x11048, 0x1106c,
2036                 0x11074, 0x11088,
2037                 0x11098, 0x11120,
2038                 0x1112c, 0x1117c,
2039                 0x11190, 0x112e0,
2040                 0x11300, 0x1130c,
2041                 0x12000, 0x1206c,
2042                 0x19040, 0x1906c,
2043                 0x19078, 0x19080,
2044                 0x1908c, 0x190e8,
2045                 0x190f0, 0x190f8,
2046                 0x19100, 0x19110,
2047                 0x19120, 0x19124,
2048                 0x19150, 0x19194,
2049                 0x1919c, 0x191b0,
2050                 0x191d0, 0x191e8,
2051                 0x19238, 0x192b0,
2052                 0x192bc, 0x192bc,
2053                 0x19348, 0x1934c,
2054                 0x193f8, 0x19418,
2055                 0x19420, 0x19428,
2056                 0x19430, 0x19444,
2057                 0x1944c, 0x1946c,
2058                 0x19474, 0x19474,
2059                 0x19490, 0x194cc,
2060                 0x194f0, 0x194f8,
2061                 0x19c00, 0x19c48,
2062                 0x19c50, 0x19c80,
2063                 0x19c94, 0x19c98,
2064                 0x19ca0, 0x19cbc,
2065                 0x19ce4, 0x19ce4,
2066                 0x19cf0, 0x19cf8,
2067                 0x19d00, 0x19d28,
2068                 0x19d50, 0x19d78,
2069                 0x19d94, 0x19d98,
2070                 0x19da0, 0x19dc8,
2071                 0x19df0, 0x19e10,
2072                 0x19e50, 0x19e6c,
2073                 0x19ea0, 0x19ebc,
2074                 0x19ec4, 0x19ef4,
2075                 0x19f04, 0x19f2c,
2076                 0x19f34, 0x19f34,
2077                 0x19f40, 0x19f50,
2078                 0x19f90, 0x19fac,
2079                 0x19fc4, 0x19fc8,
2080                 0x19fd0, 0x19fe4,
2081                 0x1a000, 0x1a004,
2082                 0x1a010, 0x1a06c,
2083                 0x1a0b0, 0x1a0e4,
2084                 0x1a0ec, 0x1a0f8,
2085                 0x1a100, 0x1a108,
2086                 0x1a114, 0x1a120,
2087                 0x1a128, 0x1a130,
2088                 0x1a138, 0x1a138,
2089                 0x1a190, 0x1a1c4,
2090                 0x1a1fc, 0x1a1fc,
2091                 0x1e008, 0x1e00c,
2092                 0x1e040, 0x1e044,
2093                 0x1e04c, 0x1e04c,
2094                 0x1e284, 0x1e290,
2095                 0x1e2c0, 0x1e2c0,
2096                 0x1e2e0, 0x1e2e0,
2097                 0x1e300, 0x1e384,
2098                 0x1e3c0, 0x1e3c8,
2099                 0x1e408, 0x1e40c,
2100                 0x1e440, 0x1e444,
2101                 0x1e44c, 0x1e44c,
2102                 0x1e684, 0x1e690,
2103                 0x1e6c0, 0x1e6c0,
2104                 0x1e6e0, 0x1e6e0,
2105                 0x1e700, 0x1e784,
2106                 0x1e7c0, 0x1e7c8,
2107                 0x1e808, 0x1e80c,
2108                 0x1e840, 0x1e844,
2109                 0x1e84c, 0x1e84c,
2110                 0x1ea84, 0x1ea90,
2111                 0x1eac0, 0x1eac0,
2112                 0x1eae0, 0x1eae0,
2113                 0x1eb00, 0x1eb84,
2114                 0x1ebc0, 0x1ebc8,
2115                 0x1ec08, 0x1ec0c,
2116                 0x1ec40, 0x1ec44,
2117                 0x1ec4c, 0x1ec4c,
2118                 0x1ee84, 0x1ee90,
2119                 0x1eec0, 0x1eec0,
2120                 0x1eee0, 0x1eee0,
2121                 0x1ef00, 0x1ef84,
2122                 0x1efc0, 0x1efc8,
2123                 0x1f008, 0x1f00c,
2124                 0x1f040, 0x1f044,
2125                 0x1f04c, 0x1f04c,
2126                 0x1f284, 0x1f290,
2127                 0x1f2c0, 0x1f2c0,
2128                 0x1f2e0, 0x1f2e0,
2129                 0x1f300, 0x1f384,
2130                 0x1f3c0, 0x1f3c8,
2131                 0x1f408, 0x1f40c,
2132                 0x1f440, 0x1f444,
2133                 0x1f44c, 0x1f44c,
2134                 0x1f684, 0x1f690,
2135                 0x1f6c0, 0x1f6c0,
2136                 0x1f6e0, 0x1f6e0,
2137                 0x1f700, 0x1f784,
2138                 0x1f7c0, 0x1f7c8,
2139                 0x1f808, 0x1f80c,
2140                 0x1f840, 0x1f844,
2141                 0x1f84c, 0x1f84c,
2142                 0x1fa84, 0x1fa90,
2143                 0x1fac0, 0x1fac0,
2144                 0x1fae0, 0x1fae0,
2145                 0x1fb00, 0x1fb84,
2146                 0x1fbc0, 0x1fbc8,
2147                 0x1fc08, 0x1fc0c,
2148                 0x1fc40, 0x1fc44,
2149                 0x1fc4c, 0x1fc4c,
2150                 0x1fe84, 0x1fe90,
2151                 0x1fec0, 0x1fec0,
2152                 0x1fee0, 0x1fee0,
2153                 0x1ff00, 0x1ff84,
2154                 0x1ffc0, 0x1ffc8,
2155                 0x30000, 0x30030,
2156                 0x30038, 0x30038,
2157                 0x30040, 0x30040,
2158                 0x30048, 0x30048,
2159                 0x30050, 0x30050,
2160                 0x3005c, 0x30060,
2161                 0x30068, 0x30068,
2162                 0x30070, 0x30070,
2163                 0x30100, 0x30168,
2164                 0x30190, 0x301a0,
2165                 0x301a8, 0x301b8,
2166                 0x301c4, 0x301c8,
2167                 0x301d0, 0x301d0,
2168                 0x30200, 0x30320,
2169                 0x30400, 0x304b4,
2170                 0x304c0, 0x3052c,
2171                 0x30540, 0x3061c,
2172                 0x30800, 0x308a0,
2173                 0x308c0, 0x30908,
2174                 0x30910, 0x309b8,
2175                 0x30a00, 0x30a04,
2176                 0x30a0c, 0x30a14,
2177                 0x30a1c, 0x30a2c,
2178                 0x30a44, 0x30a50,
2179                 0x30a74, 0x30a74,
2180                 0x30a7c, 0x30afc,
2181                 0x30b08, 0x30c24,
2182                 0x30d00, 0x30d14,
2183                 0x30d1c, 0x30d3c,
2184                 0x30d44, 0x30d4c,
2185                 0x30d54, 0x30d74,
2186                 0x30d7c, 0x30d7c,
2187                 0x30de0, 0x30de0,
2188                 0x30e00, 0x30ed4,
2189                 0x30f00, 0x30fa4,
2190                 0x30fc0, 0x30fc4,
2191                 0x31000, 0x31004,
2192                 0x31080, 0x310fc,
2193                 0x31208, 0x31220,
2194                 0x3123c, 0x31254,
2195                 0x31300, 0x31300,
2196                 0x31308, 0x3131c,
2197                 0x31338, 0x3133c,
2198                 0x31380, 0x31380,
2199                 0x31388, 0x313a8,
2200                 0x313b4, 0x313b4,
2201                 0x31400, 0x31420,
2202                 0x31438, 0x3143c,
2203                 0x31480, 0x31480,
2204                 0x314a8, 0x314a8,
2205                 0x314b0, 0x314b4,
2206                 0x314c8, 0x314d4,
2207                 0x31a40, 0x31a4c,
2208                 0x31af0, 0x31b20,
2209                 0x31b38, 0x31b3c,
2210                 0x31b80, 0x31b80,
2211                 0x31ba8, 0x31ba8,
2212                 0x31bb0, 0x31bb4,
2213                 0x31bc8, 0x31bd4,
2214                 0x32140, 0x3218c,
2215                 0x321f0, 0x321f4,
2216                 0x32200, 0x32200,
2217                 0x32218, 0x32218,
2218                 0x32400, 0x32400,
2219                 0x32408, 0x3241c,
2220                 0x32618, 0x32620,
2221                 0x32664, 0x32664,
2222                 0x326a8, 0x326a8,
2223                 0x326ec, 0x326ec,
2224                 0x32a00, 0x32abc,
2225                 0x32b00, 0x32b38,
2226                 0x32b40, 0x32b58,
2227                 0x32b60, 0x32b78,
2228                 0x32c00, 0x32c00,
2229                 0x32c08, 0x32c3c,
2230                 0x32e00, 0x32e2c,
2231                 0x32f00, 0x32f2c,
2232                 0x33000, 0x3302c,
2233                 0x33034, 0x33050,
2234                 0x33058, 0x33058,
2235                 0x33060, 0x3308c,
2236                 0x3309c, 0x330ac,
2237                 0x330c0, 0x330c0,
2238                 0x330c8, 0x330d0,
2239                 0x330d8, 0x330e0,
2240                 0x330ec, 0x3312c,
2241                 0x33134, 0x33150,
2242                 0x33158, 0x33158,
2243                 0x33160, 0x3318c,
2244                 0x3319c, 0x331ac,
2245                 0x331c0, 0x331c0,
2246                 0x331c8, 0x331d0,
2247                 0x331d8, 0x331e0,
2248                 0x331ec, 0x33290,
2249                 0x33298, 0x332c4,
2250                 0x332e4, 0x33390,
2251                 0x33398, 0x333c4,
2252                 0x333e4, 0x3342c,
2253                 0x33434, 0x33450,
2254                 0x33458, 0x33458,
2255                 0x33460, 0x3348c,
2256                 0x3349c, 0x334ac,
2257                 0x334c0, 0x334c0,
2258                 0x334c8, 0x334d0,
2259                 0x334d8, 0x334e0,
2260                 0x334ec, 0x3352c,
2261                 0x33534, 0x33550,
2262                 0x33558, 0x33558,
2263                 0x33560, 0x3358c,
2264                 0x3359c, 0x335ac,
2265                 0x335c0, 0x335c0,
2266                 0x335c8, 0x335d0,
2267                 0x335d8, 0x335e0,
2268                 0x335ec, 0x33690,
2269                 0x33698, 0x336c4,
2270                 0x336e4, 0x33790,
2271                 0x33798, 0x337c4,
2272                 0x337e4, 0x337fc,
2273                 0x33814, 0x33814,
2274                 0x33854, 0x33868,
2275                 0x33880, 0x3388c,
2276                 0x338c0, 0x338d0,
2277                 0x338e8, 0x338ec,
2278                 0x33900, 0x3392c,
2279                 0x33934, 0x33950,
2280                 0x33958, 0x33958,
2281                 0x33960, 0x3398c,
2282                 0x3399c, 0x339ac,
2283                 0x339c0, 0x339c0,
2284                 0x339c8, 0x339d0,
2285                 0x339d8, 0x339e0,
2286                 0x339ec, 0x33a90,
2287                 0x33a98, 0x33ac4,
2288                 0x33ae4, 0x33b10,
2289                 0x33b24, 0x33b28,
2290                 0x33b38, 0x33b50,
2291                 0x33bf0, 0x33c10,
2292                 0x33c24, 0x33c28,
2293                 0x33c38, 0x33c50,
2294                 0x33cf0, 0x33cfc,
2295                 0x34000, 0x34030,
2296                 0x34038, 0x34038,
2297                 0x34040, 0x34040,
2298                 0x34048, 0x34048,
2299                 0x34050, 0x34050,
2300                 0x3405c, 0x34060,
2301                 0x34068, 0x34068,
2302                 0x34070, 0x34070,
2303                 0x34100, 0x34168,
2304                 0x34190, 0x341a0,
2305                 0x341a8, 0x341b8,
2306                 0x341c4, 0x341c8,
2307                 0x341d0, 0x341d0,
2308                 0x34200, 0x34320,
2309                 0x34400, 0x344b4,
2310                 0x344c0, 0x3452c,
2311                 0x34540, 0x3461c,
2312                 0x34800, 0x348a0,
2313                 0x348c0, 0x34908,
2314                 0x34910, 0x349b8,
2315                 0x34a00, 0x34a04,
2316                 0x34a0c, 0x34a14,
2317                 0x34a1c, 0x34a2c,
2318                 0x34a44, 0x34a50,
2319                 0x34a74, 0x34a74,
2320                 0x34a7c, 0x34afc,
2321                 0x34b08, 0x34c24,
2322                 0x34d00, 0x34d14,
2323                 0x34d1c, 0x34d3c,
2324                 0x34d44, 0x34d4c,
2325                 0x34d54, 0x34d74,
2326                 0x34d7c, 0x34d7c,
2327                 0x34de0, 0x34de0,
2328                 0x34e00, 0x34ed4,
2329                 0x34f00, 0x34fa4,
2330                 0x34fc0, 0x34fc4,
2331                 0x35000, 0x35004,
2332                 0x35080, 0x350fc,
2333                 0x35208, 0x35220,
2334                 0x3523c, 0x35254,
2335                 0x35300, 0x35300,
2336                 0x35308, 0x3531c,
2337                 0x35338, 0x3533c,
2338                 0x35380, 0x35380,
2339                 0x35388, 0x353a8,
2340                 0x353b4, 0x353b4,
2341                 0x35400, 0x35420,
2342                 0x35438, 0x3543c,
2343                 0x35480, 0x35480,
2344                 0x354a8, 0x354a8,
2345                 0x354b0, 0x354b4,
2346                 0x354c8, 0x354d4,
2347                 0x35a40, 0x35a4c,
2348                 0x35af0, 0x35b20,
2349                 0x35b38, 0x35b3c,
2350                 0x35b80, 0x35b80,
2351                 0x35ba8, 0x35ba8,
2352                 0x35bb0, 0x35bb4,
2353                 0x35bc8, 0x35bd4,
2354                 0x36140, 0x3618c,
2355                 0x361f0, 0x361f4,
2356                 0x36200, 0x36200,
2357                 0x36218, 0x36218,
2358                 0x36400, 0x36400,
2359                 0x36408, 0x3641c,
2360                 0x36618, 0x36620,
2361                 0x36664, 0x36664,
2362                 0x366a8, 0x366a8,
2363                 0x366ec, 0x366ec,
2364                 0x36a00, 0x36abc,
2365                 0x36b00, 0x36b38,
2366                 0x36b40, 0x36b58,
2367                 0x36b60, 0x36b78,
2368                 0x36c00, 0x36c00,
2369                 0x36c08, 0x36c3c,
2370                 0x36e00, 0x36e2c,
2371                 0x36f00, 0x36f2c,
2372                 0x37000, 0x3702c,
2373                 0x37034, 0x37050,
2374                 0x37058, 0x37058,
2375                 0x37060, 0x3708c,
2376                 0x3709c, 0x370ac,
2377                 0x370c0, 0x370c0,
2378                 0x370c8, 0x370d0,
2379                 0x370d8, 0x370e0,
2380                 0x370ec, 0x3712c,
2381                 0x37134, 0x37150,
2382                 0x37158, 0x37158,
2383                 0x37160, 0x3718c,
2384                 0x3719c, 0x371ac,
2385                 0x371c0, 0x371c0,
2386                 0x371c8, 0x371d0,
2387                 0x371d8, 0x371e0,
2388                 0x371ec, 0x37290,
2389                 0x37298, 0x372c4,
2390                 0x372e4, 0x37390,
2391                 0x37398, 0x373c4,
2392                 0x373e4, 0x3742c,
2393                 0x37434, 0x37450,
2394                 0x37458, 0x37458,
2395                 0x37460, 0x3748c,
2396                 0x3749c, 0x374ac,
2397                 0x374c0, 0x374c0,
2398                 0x374c8, 0x374d0,
2399                 0x374d8, 0x374e0,
2400                 0x374ec, 0x3752c,
2401                 0x37534, 0x37550,
2402                 0x37558, 0x37558,
2403                 0x37560, 0x3758c,
2404                 0x3759c, 0x375ac,
2405                 0x375c0, 0x375c0,
2406                 0x375c8, 0x375d0,
2407                 0x375d8, 0x375e0,
2408                 0x375ec, 0x37690,
2409                 0x37698, 0x376c4,
2410                 0x376e4, 0x37790,
2411                 0x37798, 0x377c4,
2412                 0x377e4, 0x377fc,
2413                 0x37814, 0x37814,
2414                 0x37854, 0x37868,
2415                 0x37880, 0x3788c,
2416                 0x378c0, 0x378d0,
2417                 0x378e8, 0x378ec,
2418                 0x37900, 0x3792c,
2419                 0x37934, 0x37950,
2420                 0x37958, 0x37958,
2421                 0x37960, 0x3798c,
2422                 0x3799c, 0x379ac,
2423                 0x379c0, 0x379c0,
2424                 0x379c8, 0x379d0,
2425                 0x379d8, 0x379e0,
2426                 0x379ec, 0x37a90,
2427                 0x37a98, 0x37ac4,
2428                 0x37ae4, 0x37b10,
2429                 0x37b24, 0x37b28,
2430                 0x37b38, 0x37b50,
2431                 0x37bf0, 0x37c10,
2432                 0x37c24, 0x37c28,
2433                 0x37c38, 0x37c50,
2434                 0x37cf0, 0x37cfc,
2435                 0x40040, 0x40040,
2436                 0x40080, 0x40084,
2437                 0x40100, 0x40100,
2438                 0x40140, 0x401bc,
2439                 0x40200, 0x40214,
2440                 0x40228, 0x40228,
2441                 0x40240, 0x40258,
2442                 0x40280, 0x40280,
2443                 0x40304, 0x40304,
2444                 0x40330, 0x4033c,
2445                 0x41304, 0x413c8,
2446                 0x413d0, 0x413dc,
2447                 0x413f0, 0x413f0,
2448                 0x41400, 0x4140c,
2449                 0x41414, 0x4141c,
2450                 0x41480, 0x414d0,
2451                 0x44000, 0x4407c,
2452                 0x440c0, 0x441ac,
2453                 0x441b4, 0x4427c,
2454                 0x442c0, 0x443ac,
2455                 0x443b4, 0x4447c,
2456                 0x444c0, 0x445ac,
2457                 0x445b4, 0x4467c,
2458                 0x446c0, 0x447ac,
2459                 0x447b4, 0x4487c,
2460                 0x448c0, 0x449ac,
2461                 0x449b4, 0x44a7c,
2462                 0x44ac0, 0x44bac,
2463                 0x44bb4, 0x44c7c,
2464                 0x44cc0, 0x44dac,
2465                 0x44db4, 0x44e7c,
2466                 0x44ec0, 0x44fac,
2467                 0x44fb4, 0x4507c,
2468                 0x450c0, 0x451ac,
2469                 0x451b4, 0x451fc,
2470                 0x45800, 0x45804,
2471                 0x45810, 0x45830,
2472                 0x45840, 0x45860,
2473                 0x45868, 0x45868,
2474                 0x45880, 0x45884,
2475                 0x458a0, 0x458b0,
2476                 0x45a00, 0x45a04,
2477                 0x45a10, 0x45a30,
2478                 0x45a40, 0x45a60,
2479                 0x45a68, 0x45a68,
2480                 0x45a80, 0x45a84,
2481                 0x45aa0, 0x45ab0,
2482                 0x460c0, 0x460e4,
2483                 0x47000, 0x4703c,
2484                 0x47044, 0x4708c,
2485                 0x47200, 0x47250,
2486                 0x47400, 0x47408,
2487                 0x47414, 0x47420,
2488                 0x47600, 0x47618,
2489                 0x47800, 0x47814,
2490                 0x47820, 0x4782c,
2491                 0x50000, 0x50084,
2492                 0x50090, 0x500cc,
2493                 0x50300, 0x50384,
2494                 0x50400, 0x50400,
2495                 0x50800, 0x50884,
2496                 0x50890, 0x508cc,
2497                 0x50b00, 0x50b84,
2498                 0x50c00, 0x50c00,
2499                 0x51000, 0x51020,
2500                 0x51028, 0x510b0,
2501                 0x51300, 0x51324,
2502         };
2503
2504         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2505         const unsigned int *reg_ranges;
2506         int reg_ranges_size, range;
2507         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2508
2509         /* Select the right set of register ranges to dump depending on the
2510          * adapter chip type.
2511          */
2512         switch (chip_version) {
2513         case CHELSIO_T4:
2514                 reg_ranges = t4_reg_ranges;
2515                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2516                 break;
2517
2518         case CHELSIO_T5:
2519                 reg_ranges = t5_reg_ranges;
2520                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2521                 break;
2522
2523         case CHELSIO_T6:
2524                 reg_ranges = t6_reg_ranges;
2525                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2526                 break;
2527
2528         default:
2529                 dev_err(adap->pdev_dev,
2530                         "Unsupported chip version %d\n", chip_version);
2531                 return;
2532         }
2533
2534         /* Clear the register buffer and insert the appropriate register
2535          * values selected by the above register ranges.
2536          */
2537         memset(buf, 0, buf_size);
2538         for (range = 0; range < reg_ranges_size; range += 2) {
2539                 unsigned int reg = reg_ranges[range];
2540                 unsigned int last_reg = reg_ranges[range + 1];
2541                 u32 *bufp = (u32 *)((char *)buf + reg);
2542
2543                 /* Iterate across the register range filling in the register
2544                  * buffer but don't write past the end of the register buffer.
2545                  */
2546                 while (reg <= last_reg && bufp < buf_end) {
2547                         *bufp++ = t4_read_reg(adap, reg);
2548                         reg += sizeof(u32);
2549                 }
2550         }
2551 }
2552
2553 #define EEPROM_STAT_ADDR   0x7bfc
2554 #define VPD_BASE           0x400
2555 #define VPD_BASE_OLD       0
2556 #define VPD_LEN            1024
2557 #define CHELSIO_VPD_UNIQUE_ID 0x82
2558
2559 /**
2560  *      t4_seeprom_wp - enable/disable EEPROM write protection
2561  *      @adapter: the adapter
2562  *      @enable: whether to enable or disable write protection
2563  *
2564  *      Enables or disables write protection on the serial EEPROM.
2565  */
2566 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2567 {
2568         unsigned int v = enable ? 0xc : 0;
2569         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2570         return ret < 0 ? ret : 0;
2571 }
2572
2573 /**
2574  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2575  *      @adapter: adapter to read
2576  *      @p: where to store the parameters
2577  *
2578  *      Reads card parameters stored in VPD EEPROM.
2579  */
2580 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2581 {
2582         int i, ret = 0, addr;
2583         int ec, sn, pn, na;
2584         u8 *vpd, csum;
2585         unsigned int vpdr_len, kw_offset, id_len;
2586
2587         vpd = vmalloc(VPD_LEN);
2588         if (!vpd)
2589                 return -ENOMEM;
2590
2591         /* Card information normally starts at VPD_BASE but early cards had
2592          * it at 0.
2593          */
2594         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2595         if (ret < 0)
2596                 goto out;
2597
2598         /* The VPD shall have a unique identifier specified by the PCI SIG.
2599          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2600          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2601          * is expected to automatically put this entry at the
2602          * beginning of the VPD.
2603          */
2604         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2605
2606         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2607         if (ret < 0)
2608                 goto out;
2609
2610         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2611                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2612                 ret = -EINVAL;
2613                 goto out;
2614         }
2615
2616         id_len = pci_vpd_lrdt_size(vpd);
2617         if (id_len > ID_LEN)
2618                 id_len = ID_LEN;
2619
2620         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2621         if (i < 0) {
2622                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2623                 ret = -EINVAL;
2624                 goto out;
2625         }
2626
2627         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2628         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2629         if (vpdr_len + kw_offset > VPD_LEN) {
2630                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2631                 ret = -EINVAL;
2632                 goto out;
2633         }
2634
2635 #define FIND_VPD_KW(var, name) do { \
2636         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2637         if (var < 0) { \
2638                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2639                 ret = -EINVAL; \
2640                 goto out; \
2641         } \
2642         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2643 } while (0)
2644
2645         FIND_VPD_KW(i, "RV");
2646         for (csum = 0; i >= 0; i--)
2647                 csum += vpd[i];
2648
2649         if (csum) {
2650                 dev_err(adapter->pdev_dev,
2651                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2652                 ret = -EINVAL;
2653                 goto out;
2654         }
2655
2656         FIND_VPD_KW(ec, "EC");
2657         FIND_VPD_KW(sn, "SN");
2658         FIND_VPD_KW(pn, "PN");
2659         FIND_VPD_KW(na, "NA");
2660 #undef FIND_VPD_KW
2661
2662         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2663         strim(p->id);
2664         memcpy(p->ec, vpd + ec, EC_LEN);
2665         strim(p->ec);
2666         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2667         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2668         strim(p->sn);
2669         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2670         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2671         strim(p->pn);
2672         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2673         strim((char *)p->na);
2674
2675 out:
2676         vfree(vpd);
2677         return ret;
2678 }
2679
2680 /**
2681  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2682  *      @adapter: adapter to read
2683  *      @p: where to store the parameters
2684  *
2685  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2686  *      Clock.  This can only be called after a connection to the firmware
2687  *      is established.
2688  */
2689 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2690 {
2691         u32 cclk_param, cclk_val;
2692         int ret;
2693
2694         /* Grab the raw VPD parameters.
2695          */
2696         ret = t4_get_raw_vpd_params(adapter, p);
2697         if (ret)
2698                 return ret;
2699
2700         /* Ask firmware for the Core Clock since it knows how to translate the
2701          * Reference Clock ('V2') VPD field into a Core Clock value ...
2702          */
2703         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2704                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2705         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2706                               1, &cclk_param, &cclk_val);
2707
2708         if (ret)
2709                 return ret;
2710         p->cclk = cclk_val;
2711
2712         return 0;
2713 }
2714
2715 /* serial flash and firmware constants */
2716 enum {
2717         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2718
2719         /* flash command opcodes */
2720         SF_PROG_PAGE    = 2,          /* program page */
2721         SF_WR_DISABLE   = 4,          /* disable writes */
2722         SF_RD_STATUS    = 5,          /* read status register */
2723         SF_WR_ENABLE    = 6,          /* enable writes */
2724         SF_RD_DATA_FAST = 0xb,        /* read flash */
2725         SF_RD_ID        = 0x9f,       /* read ID */
2726         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2727
2728         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2729 };
2730
2731 /**
2732  *      sf1_read - read data from the serial flash
2733  *      @adapter: the adapter
2734  *      @byte_cnt: number of bytes to read
2735  *      @cont: whether another operation will be chained
2736  *      @lock: whether to lock SF for PL access only
2737  *      @valp: where to store the read data
2738  *
2739  *      Reads up to 4 bytes of data from the serial flash.  The location of
2740  *      the read needs to be specified prior to calling this by issuing the
2741  *      appropriate commands to the serial flash.
2742  */
2743 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2744                     int lock, u32 *valp)
2745 {
2746         int ret;
2747
2748         if (!byte_cnt || byte_cnt > 4)
2749                 return -EINVAL;
2750         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2751                 return -EBUSY;
2752         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2753                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2754         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2755         if (!ret)
2756                 *valp = t4_read_reg(adapter, SF_DATA_A);
2757         return ret;
2758 }
2759
2760 /**
2761  *      sf1_write - write data to the serial flash
2762  *      @adapter: the adapter
2763  *      @byte_cnt: number of bytes to write
2764  *      @cont: whether another operation will be chained
2765  *      @lock: whether to lock SF for PL access only
2766  *      @val: value to write
2767  *
2768  *      Writes up to 4 bytes of data to the serial flash.  The location of
2769  *      the write needs to be specified prior to calling this by issuing the
2770  *      appropriate commands to the serial flash.
2771  */
2772 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2773                      int lock, u32 val)
2774 {
2775         if (!byte_cnt || byte_cnt > 4)
2776                 return -EINVAL;
2777         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2778                 return -EBUSY;
2779         t4_write_reg(adapter, SF_DATA_A, val);
2780         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2781                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2782         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2783 }
2784
2785 /**
2786  *      flash_wait_op - wait for a flash operation to complete
2787  *      @adapter: the adapter
2788  *      @attempts: max number of polls of the status register
2789  *      @delay: delay between polls in ms
2790  *
2791  *      Wait for a flash operation to complete by polling the status register.
2792  */
2793 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2794 {
2795         int ret;
2796         u32 status;
2797
2798         while (1) {
2799                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2800                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2801                         return ret;
2802                 if (!(status & 1))
2803                         return 0;
2804                 if (--attempts == 0)
2805                         return -EAGAIN;
2806                 if (delay)
2807                         msleep(delay);
2808         }
2809 }
2810
2811 /**
2812  *      t4_read_flash - read words from serial flash
2813  *      @adapter: the adapter
2814  *      @addr: the start address for the read
2815  *      @nwords: how many 32-bit words to read
2816  *      @data: where to store the read data
2817  *      @byte_oriented: whether to store data as bytes or as words
2818  *
2819  *      Read the specified number of 32-bit words from the serial flash.
2820  *      If @byte_oriented is set the read data is stored as a byte array
2821  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2822  *      natural endianness.
2823  */
2824 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2825                   unsigned int nwords, u32 *data, int byte_oriented)
2826 {
2827         int ret;
2828
2829         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2830                 return -EINVAL;
2831
2832         addr = swab32(addr) | SF_RD_DATA_FAST;
2833
2834         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2835             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2836                 return ret;
2837
2838         for ( ; nwords; nwords--, data++) {
2839                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2840                 if (nwords == 1)
2841                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2842                 if (ret)
2843                         return ret;
2844                 if (byte_oriented)
2845                         *data = (__force __u32)(cpu_to_be32(*data));
2846         }
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_write_flash - write up to a page of data to the serial flash
2852  *      @adapter: the adapter
2853  *      @addr: the start address to write
2854  *      @n: length of data to write in bytes
2855  *      @data: the data to write
2856  *
2857  *      Writes up to a page of data (256 bytes) to the serial flash starting
2858  *      at the given address.  All the data must be written to the same page.
2859  */
2860 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2861                           unsigned int n, const u8 *data)
2862 {
2863         int ret;
2864         u32 buf[64];
2865         unsigned int i, c, left, val, offset = addr & 0xff;
2866
2867         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2868                 return -EINVAL;
2869
2870         val = swab32(addr) | SF_PROG_PAGE;
2871
2872         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2873             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2874                 goto unlock;
2875
2876         for (left = n; left; left -= c) {
2877                 c = min(left, 4U);
2878                 for (val = 0, i = 0; i < c; ++i)
2879                         val = (val << 8) + *data++;
2880
2881                 ret = sf1_write(adapter, c, c != left, 1, val);
2882                 if (ret)
2883                         goto unlock;
2884         }
2885         ret = flash_wait_op(adapter, 8, 1);
2886         if (ret)
2887                 goto unlock;
2888
2889         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2890
2891         /* Read the page to verify the write succeeded */
2892         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2893         if (ret)
2894                 return ret;
2895
2896         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2897                 dev_err(adapter->pdev_dev,
2898                         "failed to correctly write the flash page at %#x\n",
2899                         addr);
2900                 return -EIO;
2901         }
2902         return 0;
2903
2904 unlock:
2905         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906         return ret;
2907 }
2908
2909 /**
2910  *      t4_get_fw_version - read the firmware version
2911  *      @adapter: the adapter
2912  *      @vers: where to place the version
2913  *
2914  *      Reads the FW version from flash.
2915  */
2916 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2917 {
2918         return t4_read_flash(adapter, FLASH_FW_START +
2919                              offsetof(struct fw_hdr, fw_ver), 1,
2920                              vers, 0);
2921 }
2922
2923 /**
2924  *      t4_get_tp_version - read the TP microcode version
2925  *      @adapter: the adapter
2926  *      @vers: where to place the version
2927  *
2928  *      Reads the TP microcode version from flash.
2929  */
2930 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2931 {
2932         return t4_read_flash(adapter, FLASH_FW_START +
2933                              offsetof(struct fw_hdr, tp_microcode_ver),
2934                              1, vers, 0);
2935 }
2936
2937 /**
2938  *      t4_get_exprom_version - return the Expansion ROM version (if any)
2939  *      @adapter: the adapter
2940  *      @vers: where to place the version
2941  *
2942  *      Reads the Expansion ROM header from FLASH and returns the version
2943  *      number (if present) through the @vers return value pointer.  We return
2944  *      this in the Firmware Version Format since it's convenient.  Return
2945  *      0 on success, -ENOENT if no Expansion ROM is present.
2946  */
2947 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2948 {
2949         struct exprom_header {
2950                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2951                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2952         } *hdr;
2953         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2954                                            sizeof(u32))];
2955         int ret;
2956
2957         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2958                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2959                             0);
2960         if (ret)
2961                 return ret;
2962
2963         hdr = (struct exprom_header *)exprom_header_buf;
2964         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2965                 return -ENOENT;
2966
2967         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2968                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2969                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2970                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2971         return 0;
2972 }
2973
2974 /**
2975  *      t4_check_fw_version - check if the FW is supported with this driver
2976  *      @adap: the adapter
2977  *
2978  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
2979  *      if there's exact match, a negative error if the version could not be
2980  *      read or there's a major version mismatch
2981  */
2982 int t4_check_fw_version(struct adapter *adap)
2983 {
2984         int ret, major, minor, micro;
2985         int exp_major, exp_minor, exp_micro;
2986         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2987
2988         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2989         if (ret)
2990                 return ret;
2991
2992         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
2993         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
2994         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
2995
2996         switch (chip_version) {
2997         case CHELSIO_T4:
2998                 exp_major = T4FW_MIN_VERSION_MAJOR;
2999                 exp_minor = T4FW_MIN_VERSION_MINOR;
3000                 exp_micro = T4FW_MIN_VERSION_MICRO;
3001                 break;
3002         case CHELSIO_T5:
3003                 exp_major = T5FW_MIN_VERSION_MAJOR;
3004                 exp_minor = T5FW_MIN_VERSION_MINOR;
3005                 exp_micro = T5FW_MIN_VERSION_MICRO;
3006                 break;
3007         case CHELSIO_T6:
3008                 exp_major = T6FW_MIN_VERSION_MAJOR;
3009                 exp_minor = T6FW_MIN_VERSION_MINOR;
3010                 exp_micro = T6FW_MIN_VERSION_MICRO;
3011                 break;
3012         default:
3013                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3014                         adap->chip);
3015                 return -EINVAL;
3016         }
3017
3018         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3019             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3020                 dev_err(adap->pdev_dev,
3021                         "Card has firmware version %u.%u.%u, minimum "
3022                         "supported firmware is %u.%u.%u.\n", major, minor,
3023                         micro, exp_major, exp_minor, exp_micro);
3024                 return -EFAULT;
3025         }
3026         return 0;
3027 }
3028
3029 /* Is the given firmware API compatible with the one the driver was compiled
3030  * with?
3031  */
3032 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3033 {
3034
3035         /* short circuit if it's the exact same firmware version */
3036         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3037                 return 1;
3038
3039 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3040         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3041             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3042                 return 1;
3043 #undef SAME_INTF
3044
3045         return 0;
3046 }
3047
3048 /* The firmware in the filesystem is usable, but should it be installed?
3049  * This routine explains itself in detail if it indicates the filesystem
3050  * firmware should be installed.
3051  */
3052 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3053                                 int k, int c)
3054 {
3055         const char *reason;
3056
3057         if (!card_fw_usable) {
3058                 reason = "incompatible or unusable";
3059                 goto install;
3060         }
3061
3062         if (k > c) {
3063                 reason = "older than the version supported with this driver";
3064                 goto install;
3065         }
3066
3067         return 0;
3068
3069 install:
3070         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3071                 "installing firmware %u.%u.%u.%u on card.\n",
3072                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3073                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3074                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3075                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3076
3077         return 1;
3078 }
3079
3080 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3081                const u8 *fw_data, unsigned int fw_size,
3082                struct fw_hdr *card_fw, enum dev_state state,
3083                int *reset)
3084 {
3085         int ret, card_fw_usable, fs_fw_usable;
3086         const struct fw_hdr *fs_fw;
3087         const struct fw_hdr *drv_fw;
3088
3089         drv_fw = &fw_info->fw_hdr;
3090
3091         /* Read the header of the firmware on the card */
3092         ret = -t4_read_flash(adap, FLASH_FW_START,
3093                             sizeof(*card_fw) / sizeof(uint32_t),
3094                             (uint32_t *)card_fw, 1);
3095         if (ret == 0) {
3096                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3097         } else {
3098                 dev_err(adap->pdev_dev,
3099                         "Unable to read card's firmware header: %d\n", ret);
3100                 card_fw_usable = 0;
3101         }
3102
3103         if (fw_data != NULL) {
3104                 fs_fw = (const void *)fw_data;
3105                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3106         } else {
3107                 fs_fw = NULL;
3108                 fs_fw_usable = 0;
3109         }
3110
3111         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3112             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3113                 /* Common case: the firmware on the card is an exact match and
3114                  * the filesystem one is an exact match too, or the filesystem
3115                  * one is absent/incompatible.
3116                  */
3117         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3118                    should_install_fs_fw(adap, card_fw_usable,
3119                                         be32_to_cpu(fs_fw->fw_ver),
3120                                         be32_to_cpu(card_fw->fw_ver))) {
3121                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3122                                      fw_size, 0);
3123                 if (ret != 0) {
3124                         dev_err(adap->pdev_dev,
3125                                 "failed to install firmware: %d\n", ret);
3126                         goto bye;
3127                 }
3128
3129                 /* Installed successfully, update the cached header too. */
3130                 *card_fw = *fs_fw;
3131                 card_fw_usable = 1;
3132                 *reset = 0;     /* already reset as part of load_fw */
3133         }
3134
3135         if (!card_fw_usable) {
3136                 uint32_t d, c, k;
3137
3138                 d = be32_to_cpu(drv_fw->fw_ver);
3139                 c = be32_to_cpu(card_fw->fw_ver);
3140                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3141
3142                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3143                         "chip state %d, "
3144                         "driver compiled with %d.%d.%d.%d, "
3145                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3146                         state,
3147                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3148                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3149                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3150                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3151                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3152                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3153                 ret = EINVAL;
3154                 goto bye;
3155         }
3156
3157         /* We're using whatever's on the card and it's known to be good. */
3158         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3159         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3160
3161 bye:
3162         return ret;
3163 }
3164
3165 /**
3166  *      t4_flash_erase_sectors - erase a range of flash sectors
3167  *      @adapter: the adapter
3168  *      @start: the first sector to erase
3169  *      @end: the last sector to erase
3170  *
3171  *      Erases the sectors in the given inclusive range.
3172  */
3173 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3174 {
3175         int ret = 0;
3176
3177         if (end >= adapter->params.sf_nsec)
3178                 return -EINVAL;
3179
3180         while (start <= end) {
3181                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3182                     (ret = sf1_write(adapter, 4, 0, 1,
3183                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3184                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3185                         dev_err(adapter->pdev_dev,
3186                                 "erase of flash sector %d failed, error %d\n",
3187                                 start, ret);
3188                         break;
3189                 }
3190                 start++;
3191         }
3192         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3193         return ret;
3194 }
3195
3196 /**
3197  *      t4_flash_cfg_addr - return the address of the flash configuration file
3198  *      @adapter: the adapter
3199  *
3200  *      Return the address within the flash where the Firmware Configuration
3201  *      File is stored.
3202  */
3203 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3204 {
3205         if (adapter->params.sf_size == 0x100000)
3206                 return FLASH_FPGA_CFG_START;
3207         else
3208                 return FLASH_CFG_START;
3209 }
3210
3211 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3212  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3213  * and emit an error message for mismatched firmware to save our caller the
3214  * effort ...
3215  */
3216 static bool t4_fw_matches_chip(const struct adapter *adap,
3217                                const struct fw_hdr *hdr)
3218 {
3219         /* The expression below will return FALSE for any unsupported adapter
3220          * which will keep us "honest" in the future ...
3221          */
3222         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3223             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3224             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3225                 return true;
3226
3227         dev_err(adap->pdev_dev,
3228                 "FW image (%d) is not suitable for this adapter (%d)\n",
3229                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3230         return false;
3231 }
3232
3233 /**
3234  *      t4_load_fw - download firmware
3235  *      @adap: the adapter
3236  *      @fw_data: the firmware image to write
3237  *      @size: image size
3238  *
3239  *      Write the supplied firmware image to the card's serial flash.
3240  */
3241 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3242 {
3243         u32 csum;
3244         int ret, addr;
3245         unsigned int i;
3246         u8 first_page[SF_PAGE_SIZE];
3247         const __be32 *p = (const __be32 *)fw_data;
3248         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3249         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3250         unsigned int fw_img_start = adap->params.sf_fw_start;
3251         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3252
3253         if (!size) {
3254                 dev_err(adap->pdev_dev, "FW image has no data\n");
3255                 return -EINVAL;
3256         }
3257         if (size & 511) {
3258                 dev_err(adap->pdev_dev,
3259                         "FW image size not multiple of 512 bytes\n");
3260                 return -EINVAL;
3261         }
3262         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3263                 dev_err(adap->pdev_dev,
3264                         "FW image size differs from size in FW header\n");
3265                 return -EINVAL;
3266         }
3267         if (size > FW_MAX_SIZE) {
3268                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3269                         FW_MAX_SIZE);
3270                 return -EFBIG;
3271         }
3272         if (!t4_fw_matches_chip(adap, hdr))
3273                 return -EINVAL;
3274
3275         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3276                 csum += be32_to_cpu(p[i]);
3277
3278         if (csum != 0xffffffff) {
3279                 dev_err(adap->pdev_dev,
3280                         "corrupted firmware image, checksum %#x\n", csum);
3281                 return -EINVAL;
3282         }
3283
3284         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3285         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3286         if (ret)
3287                 goto out;
3288
3289         /*
3290          * We write the correct version at the end so the driver can see a bad
3291          * version if the FW write fails.  Start by writing a copy of the
3292          * first page with a bad version.
3293          */
3294         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3295         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3296         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3297         if (ret)
3298                 goto out;
3299
3300         addr = fw_img_start;
3301         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3302                 addr += SF_PAGE_SIZE;
3303                 fw_data += SF_PAGE_SIZE;
3304                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3305                 if (ret)
3306                         goto out;
3307         }
3308
3309         ret = t4_write_flash(adap,
3310                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3311                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3312 out:
3313         if (ret)
3314                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3315                         ret);
3316         else
3317                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3318         return ret;
3319 }
3320
3321 /**
3322  *      t4_phy_fw_ver - return current PHY firmware version
3323  *      @adap: the adapter
3324  *      @phy_fw_ver: return value buffer for PHY firmware version
3325  *
3326  *      Returns the current version of external PHY firmware on the
3327  *      adapter.
3328  */
3329 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3330 {
3331         u32 param, val;
3332         int ret;
3333
3334         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3335                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3336                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3337                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3338         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3339                               &param, &val);
3340         if (ret < 0)
3341                 return ret;
3342         *phy_fw_ver = val;
3343         return 0;
3344 }
3345
3346 /**
3347  *      t4_load_phy_fw - download port PHY firmware
3348  *      @adap: the adapter
3349  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3350  *      @win_lock: the lock to use to guard the memory copy
3351  *      @phy_fw_version: function to check PHY firmware versions
3352  *      @phy_fw_data: the PHY firmware image to write
3353  *      @phy_fw_size: image size
3354  *
3355  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3356  *      @phy_fw_version is supplied, then it will be used to determine if
3357  *      it's necessary to perform the transfer by comparing the version
3358  *      of any existing adapter PHY firmware with that of the passed in
3359  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3360  *      around the call to t4_memory_rw() which transfers the PHY firmware
3361  *      to the adapter.
3362  *
3363  *      A negative error number will be returned if an error occurs.  If
3364  *      version number support is available and there's no need to upgrade
3365  *      the firmware, 0 will be returned.  If firmware is successfully
3366  *      transferred to the adapter, 1 will be retured.
3367  *
3368  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3369  *      a result, a RESET of the adapter would cause that RAM to lose its
3370  *      contents.  Thus, loading PHY firmware on such adapters must happen
3371  *      after any FW_RESET_CMDs ...
3372  */
3373 int t4_load_phy_fw(struct adapter *adap,
3374                    int win, spinlock_t *win_lock,
3375                    int (*phy_fw_version)(const u8 *, size_t),
3376                    const u8 *phy_fw_data, size_t phy_fw_size)
3377 {
3378         unsigned long mtype = 0, maddr = 0;
3379         u32 param, val;
3380         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3381         int ret;
3382
3383         /* If we have version number support, then check to see if the adapter
3384          * already has up-to-date PHY firmware loaded.
3385          */
3386          if (phy_fw_version) {
3387                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3388                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3389                 if (ret < 0)
3390                         return ret;
3391
3392                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3393                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3394                                 "version %#x\n", cur_phy_fw_ver);
3395                         return 0;
3396                 }
3397         }
3398
3399         /* Ask the firmware where it wants us to copy the PHY firmware image.
3400          * The size of the file requires a special version of the READ coommand
3401          * which will pass the file size via the values field in PARAMS_CMD and
3402          * retrieve the return value from firmware and place it in the same
3403          * buffer values
3404          */
3405         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3406                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3407                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3408                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3409         val = phy_fw_size;
3410         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3411                                  &param, &val, 1);
3412         if (ret < 0)
3413                 return ret;
3414         mtype = val >> 8;
3415         maddr = (val & 0xff) << 16;
3416
3417         /* Copy the supplied PHY Firmware image to the adapter memory location
3418          * allocated by the adapter firmware.
3419          */
3420         if (win_lock)
3421                 spin_lock_bh(win_lock);
3422         ret = t4_memory_rw(adap, win, mtype, maddr,
3423                            phy_fw_size, (__be32 *)phy_fw_data,
3424                            T4_MEMORY_WRITE);
3425         if (win_lock)
3426                 spin_unlock_bh(win_lock);
3427         if (ret)
3428                 return ret;
3429
3430         /* Tell the firmware that the PHY firmware image has been written to
3431          * RAM and it can now start copying it over to the PHYs.  The chip
3432          * firmware will RESET the affected PHYs as part of this operation
3433          * leaving them running the new PHY firmware image.
3434          */
3435         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3436                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3437                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3438                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3439         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3440                                     &param, &val, 30000);
3441
3442         /* If we have version number support, then check to see that the new
3443          * firmware got loaded properly.
3444          */
3445         if (phy_fw_version) {
3446                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3447                 if (ret < 0)
3448                         return ret;
3449
3450                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3451                         CH_WARN(adap, "PHY Firmware did not update: "
3452                                 "version on adapter %#x, "
3453                                 "version flashed %#x\n",
3454                                 cur_phy_fw_ver, new_phy_fw_vers);
3455                         return -ENXIO;
3456                 }
3457         }
3458
3459         return 1;
3460 }
3461
3462 /**
3463  *      t4_fwcache - firmware cache operation
3464  *      @adap: the adapter
3465  *      @op  : the operation (flush or flush and invalidate)
3466  */
3467 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3468 {
3469         struct fw_params_cmd c;
3470
3471         memset(&c, 0, sizeof(c));
3472         c.op_to_vfn =
3473                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3474                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3475                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3476                             FW_PARAMS_CMD_VFN_V(0));
3477         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3478         c.param[0].mnem =
3479                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3480                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3481         c.param[0].val = (__force __be32)op;
3482
3483         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3484 }
3485
3486 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3487                         unsigned int *pif_req_wrptr,
3488                         unsigned int *pif_rsp_wrptr)
3489 {
3490         int i, j;
3491         u32 cfg, val, req, rsp;
3492
3493         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3494         if (cfg & LADBGEN_F)
3495                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3496
3497         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3498         req = POLADBGWRPTR_G(val);
3499         rsp = PILADBGWRPTR_G(val);
3500         if (pif_req_wrptr)
3501                 *pif_req_wrptr = req;
3502         if (pif_rsp_wrptr)
3503                 *pif_rsp_wrptr = rsp;
3504
3505         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3506                 for (j = 0; j < 6; j++) {
3507                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3508                                      PILADBGRDPTR_V(rsp));
3509                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3510                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3511                         req++;
3512                         rsp++;
3513                 }
3514                 req = (req + 2) & POLADBGRDPTR_M;
3515                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3516         }
3517         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3518 }
3519
3520 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3521 {
3522         u32 cfg;
3523         int i, j, idx;
3524
3525         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3526         if (cfg & LADBGEN_F)
3527                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3528
3529         for (i = 0; i < CIM_MALA_SIZE; i++) {
3530                 for (j = 0; j < 5; j++) {
3531                         idx = 8 * i + j;
3532                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3533                                      PILADBGRDPTR_V(idx));
3534                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3535                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3536                 }
3537         }
3538         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3539 }
3540
3541 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3542 {
3543         unsigned int i, j;
3544
3545         for (i = 0; i < 8; i++) {
3546                 u32 *p = la_buf + i;
3547
3548                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3549                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3550                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3551                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3552                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3553         }
3554 }
3555
3556 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3557                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3558                      FW_PORT_CAP_ANEG)
3559
3560 /**
3561  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3562  *      @phy: the PHY to setup
3563  *      @mac: the MAC to setup
3564  *      @lc: the requested link configuration
3565  *
3566  *      Set up a port's MAC and PHY according to a desired link configuration.
3567  *      - If the PHY can auto-negotiate first decide what to advertise, then
3568  *        enable/disable auto-negotiation as desired, and reset.
3569  *      - If the PHY does not auto-negotiate just reset it.
3570  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3571  *        otherwise do it later based on the outcome of auto-negotiation.
3572  */
3573 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3574                   struct link_config *lc)
3575 {
3576         struct fw_port_cmd c;
3577         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3578
3579         lc->link_ok = 0;
3580         if (lc->requested_fc & PAUSE_RX)
3581                 fc |= FW_PORT_CAP_FC_RX;
3582         if (lc->requested_fc & PAUSE_TX)
3583                 fc |= FW_PORT_CAP_FC_TX;
3584
3585         memset(&c, 0, sizeof(c));
3586         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3587                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3588                                      FW_PORT_CMD_PORTID_V(port));
3589         c.action_to_len16 =
3590                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3591                             FW_LEN16(c));
3592
3593         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3594                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3595                                              fc);
3596                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3597         } else if (lc->autoneg == AUTONEG_DISABLE) {
3598                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3599                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3600         } else
3601                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3602
3603         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3604 }
3605
3606 /**
3607  *      t4_restart_aneg - restart autonegotiation
3608  *      @adap: the adapter
3609  *      @mbox: mbox to use for the FW command
3610  *      @port: the port id
3611  *
3612  *      Restarts autonegotiation for the selected port.
3613  */
3614 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3615 {
3616         struct fw_port_cmd c;
3617
3618         memset(&c, 0, sizeof(c));
3619         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3620                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3621                                      FW_PORT_CMD_PORTID_V(port));
3622         c.action_to_len16 =
3623                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3624                             FW_LEN16(c));
3625         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3626         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3627 }
3628
3629 typedef void (*int_handler_t)(struct adapter *adap);
3630
3631 struct intr_info {
3632         unsigned int mask;       /* bits to check in interrupt status */
3633         const char *msg;         /* message to print or NULL */
3634         short stat_idx;          /* stat counter to increment or -1 */
3635         unsigned short fatal;    /* whether the condition reported is fatal */
3636         int_handler_t int_handler; /* platform-specific int handler */
3637 };
3638
3639 /**
3640  *      t4_handle_intr_status - table driven interrupt handler
3641  *      @adapter: the adapter that generated the interrupt
3642  *      @reg: the interrupt status register to process
3643  *      @acts: table of interrupt actions
3644  *
3645  *      A table driven interrupt handler that applies a set of masks to an
3646  *      interrupt status word and performs the corresponding actions if the
3647  *      interrupts described by the mask have occurred.  The actions include
3648  *      optionally emitting a warning or alert message.  The table is terminated
3649  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3650  *      conditions.
3651  */
3652 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3653                                  const struct intr_info *acts)
3654 {
3655         int fatal = 0;
3656         unsigned int mask = 0;
3657         unsigned int status = t4_read_reg(adapter, reg);
3658
3659         for ( ; acts->mask; ++acts) {
3660                 if (!(status & acts->mask))
3661                         continue;
3662                 if (acts->fatal) {
3663                         fatal++;
3664                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3665                                   status & acts->mask);
3666                 } else if (acts->msg && printk_ratelimit())
3667                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3668                                  status & acts->mask);
3669                 if (acts->int_handler)
3670                         acts->int_handler(adapter);
3671                 mask |= acts->mask;
3672         }
3673         status &= mask;
3674         if (status)                           /* clear processed interrupts */
3675                 t4_write_reg(adapter, reg, status);
3676         return fatal;
3677 }
3678
3679 /*
3680  * Interrupt handler for the PCIE module.
3681  */
3682 static void pcie_intr_handler(struct adapter *adapter)
3683 {
3684         static const struct intr_info sysbus_intr_info[] = {
3685                 { RNPP_F, "RXNP array parity error", -1, 1 },
3686                 { RPCP_F, "RXPC array parity error", -1, 1 },
3687                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3688                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3689                 { RFTP_F, "RXFT array parity error", -1, 1 },
3690                 { 0 }
3691         };
3692         static const struct intr_info pcie_port_intr_info[] = {
3693                 { TPCP_F, "TXPC array parity error", -1, 1 },
3694                 { TNPP_F, "TXNP array parity error", -1, 1 },
3695                 { TFTP_F, "TXFT array parity error", -1, 1 },
3696                 { TCAP_F, "TXCA array parity error", -1, 1 },
3697                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3698                 { RCAP_F, "RXCA array parity error", -1, 1 },
3699                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3700                 { RDPE_F, "Rx data parity error", -1, 1 },
3701                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3702                 { 0 }
3703         };
3704         static const struct intr_info pcie_intr_info[] = {
3705                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3706                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3707                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3708                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3709                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3710                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3711                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3712                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3713                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3714                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3715                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3716                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3717                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3718                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3719                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3720                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3721                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3722                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3723                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3724                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3725                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3726                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3727                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3728                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3729                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3730                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3731                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3732                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3733                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3734                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3735                   -1, 0 },
3736                 { 0 }
3737         };
3738
3739         static struct intr_info t5_pcie_intr_info[] = {
3740                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3741                   -1, 1 },
3742                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3743                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3744                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3745                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3746                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3747                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3748                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3749                   -1, 1 },
3750                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3751                   -1, 1 },
3752                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3753                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3754                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3755                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3756                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3757                   -1, 1 },
3758                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3759                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3760                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3761                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3762                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3763                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3764                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3765                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3766                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3767                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3768                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3769                   -1, 1 },
3770                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3771                   -1, 1 },
3772                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3773                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3774                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3775                 { READRSPERR_F, "Outbound read error", -1, 0 },
3776                 { 0 }
3777         };
3778
3779         int fat;
3780
3781         if (is_t4(adapter->params.chip))
3782                 fat = t4_handle_intr_status(adapter,
3783                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3784                                 sysbus_intr_info) +
3785                         t4_handle_intr_status(adapter,
3786                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3787                                         pcie_port_intr_info) +
3788                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3789                                               pcie_intr_info);
3790         else
3791                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3792                                             t5_pcie_intr_info);
3793
3794         if (fat)
3795                 t4_fatal_err(adapter);
3796 }
3797
3798 /*
3799  * TP interrupt handler.
3800  */
3801 static void tp_intr_handler(struct adapter *adapter)
3802 {
3803         static const struct intr_info tp_intr_info[] = {
3804                 { 0x3fffffff, "TP parity error", -1, 1 },
3805                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3806                 { 0 }
3807         };
3808
3809         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3810                 t4_fatal_err(adapter);
3811 }
3812
3813 /*
3814  * SGE interrupt handler.
3815  */
3816 static void sge_intr_handler(struct adapter *adapter)
3817 {
3818         u64 v;
3819         u32 err;
3820
3821         static const struct intr_info sge_intr_info[] = {
3822                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3823                   "SGE received CPL exceeding IQE size", -1, 1 },
3824                 { ERR_INVALID_CIDX_INC_F,
3825                   "SGE GTS CIDX increment too large", -1, 0 },
3826                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3827                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3828                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3829                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3830                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3831                   0 },
3832                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3833                   0 },
3834                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3835                   0 },
3836                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3837                   0 },
3838                 { ERR_ING_CTXT_PRIO_F,
3839                   "SGE too many priority ingress contexts", -1, 0 },
3840                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3841                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3842                 { 0 }
3843         };
3844
3845         static struct intr_info t4t5_sge_intr_info[] = {
3846                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3847                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3848                 { ERR_EGR_CTXT_PRIO_F,
3849                   "SGE too many priority egress contexts", -1, 0 },
3850                 { 0 }
3851         };
3852
3853         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3854                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3855         if (v) {
3856                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3857                                 (unsigned long long)v);
3858                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3859                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3860         }
3861
3862         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3863         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3864                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3865                                            t4t5_sge_intr_info);
3866
3867         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3868         if (err & ERROR_QID_VALID_F) {
3869                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3870                         ERROR_QID_G(err));
3871                 if (err & UNCAPTURED_ERROR_F)
3872                         dev_err(adapter->pdev_dev,
3873                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
3874                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3875                              UNCAPTURED_ERROR_F);
3876         }
3877
3878         if (v != 0)
3879                 t4_fatal_err(adapter);
3880 }
3881
3882 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3883                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3884 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3885                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3886
3887 /*
3888  * CIM interrupt handler.
3889  */
3890 static void cim_intr_handler(struct adapter *adapter)
3891 {
3892         static const struct intr_info cim_intr_info[] = {
3893                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3894                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3895                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3896                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3897                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3898                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3899                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3900                 { 0 }
3901         };
3902         static const struct intr_info cim_upintr_info[] = {
3903                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3904                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3905                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3906                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3907                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3908                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3909                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3910                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3911                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3912                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3913                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3914                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3915                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3916                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3917                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3918                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3919                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3920                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3921                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3922                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3923                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3924                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3925                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3926                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3927                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3928                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3929                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3930                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3931                 { 0 }
3932         };
3933
3934         int fat;
3935
3936         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3937                 t4_report_fw_error(adapter);
3938
3939         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3940                                     cim_intr_info) +
3941               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3942                                     cim_upintr_info);
3943         if (fat)
3944                 t4_fatal_err(adapter);
3945 }
3946
3947 /*
3948  * ULP RX interrupt handler.
3949  */
3950 static void ulprx_intr_handler(struct adapter *adapter)
3951 {
3952         static const struct intr_info ulprx_intr_info[] = {
3953                 { 0x1800000, "ULPRX context error", -1, 1 },
3954                 { 0x7fffff, "ULPRX parity error", -1, 1 },
3955                 { 0 }
3956         };
3957
3958         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3959                 t4_fatal_err(adapter);
3960 }
3961
3962 /*
3963  * ULP TX interrupt handler.
3964  */
3965 static void ulptx_intr_handler(struct adapter *adapter)
3966 {
3967         static const struct intr_info ulptx_intr_info[] = {
3968                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3969                   0 },
3970                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3971                   0 },
3972                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3973                   0 },
3974                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3975                   0 },
3976                 { 0xfffffff, "ULPTX parity error", -1, 1 },
3977                 { 0 }
3978         };
3979
3980         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3981                 t4_fatal_err(adapter);
3982 }
3983
3984 /*
3985  * PM TX interrupt handler.
3986  */
3987 static void pmtx_intr_handler(struct adapter *adapter)
3988 {
3989         static const struct intr_info pmtx_intr_info[] = {
3990                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3991                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3992                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3993                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3994                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3995                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3996                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3997                   -1, 1 },
3998                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3999                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4000                 { 0 }
4001         };
4002
4003         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4004                 t4_fatal_err(adapter);
4005 }
4006
4007 /*
4008  * PM RX interrupt handler.
4009  */
4010 static void pmrx_intr_handler(struct adapter *adapter)
4011 {
4012         static const struct intr_info pmrx_intr_info[] = {
4013                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4014                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4015                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4016                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4017                   -1, 1 },
4018                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4019                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4020                 { 0 }
4021         };
4022
4023         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4024                 t4_fatal_err(adapter);
4025 }
4026
4027 /*
4028  * CPL switch interrupt handler.
4029  */
4030 static void cplsw_intr_handler(struct adapter *adapter)
4031 {
4032         static const struct intr_info cplsw_intr_info[] = {
4033                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4034                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4035                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4036                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4037                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4038                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4039                 { 0 }
4040         };
4041
4042         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4043                 t4_fatal_err(adapter);
4044 }
4045
4046 /*
4047  * LE interrupt handler.
4048  */
4049 static void le_intr_handler(struct adapter *adap)
4050 {
4051         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4052         static const struct intr_info le_intr_info[] = {
4053                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4054                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4055                 { PARITYERR_F, "LE parity error", -1, 1 },
4056                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4057                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4058                 { 0 }
4059         };
4060
4061         static struct intr_info t6_le_intr_info[] = {
4062                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4063                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4064                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4065                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4066                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4067                 { 0 }
4068         };
4069
4070         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4071                                   (chip <= CHELSIO_T5) ?
4072                                   le_intr_info : t6_le_intr_info))
4073                 t4_fatal_err(adap);
4074 }
4075
4076 /*
4077  * MPS interrupt handler.
4078  */
4079 static void mps_intr_handler(struct adapter *adapter)
4080 {
4081         static const struct intr_info mps_rx_intr_info[] = {
4082                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4083                 { 0 }
4084         };
4085         static const struct intr_info mps_tx_intr_info[] = {
4086                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4087                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4088                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4089                   -1, 1 },
4090                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4091                   -1, 1 },
4092                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4093                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4094                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4095                 { 0 }
4096         };
4097         static const struct intr_info mps_trc_intr_info[] = {
4098                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4099                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4100                   -1, 1 },
4101                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4102                 { 0 }
4103         };
4104         static const struct intr_info mps_stat_sram_intr_info[] = {
4105                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4106                 { 0 }
4107         };
4108         static const struct intr_info mps_stat_tx_intr_info[] = {
4109                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4110                 { 0 }
4111         };
4112         static const struct intr_info mps_stat_rx_intr_info[] = {
4113                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4114                 { 0 }
4115         };
4116         static const struct intr_info mps_cls_intr_info[] = {
4117                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4118                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4119                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4120                 { 0 }
4121         };
4122
4123         int fat;
4124
4125         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4126                                     mps_rx_intr_info) +
4127               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4128                                     mps_tx_intr_info) +
4129               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4130                                     mps_trc_intr_info) +
4131               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4132                                     mps_stat_sram_intr_info) +
4133               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4134                                     mps_stat_tx_intr_info) +
4135               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4136                                     mps_stat_rx_intr_info) +
4137               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4138                                     mps_cls_intr_info);
4139
4140         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4141         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4142         if (fat)
4143                 t4_fatal_err(adapter);
4144 }
4145
4146 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4147                       ECC_UE_INT_CAUSE_F)
4148
4149 /*
4150  * EDC/MC interrupt handler.
4151  */
4152 static void mem_intr_handler(struct adapter *adapter, int idx)
4153 {
4154         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4155
4156         unsigned int addr, cnt_addr, v;
4157
4158         if (idx <= MEM_EDC1) {
4159                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4160                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4161         } else if (idx == MEM_MC) {
4162                 if (is_t4(adapter->params.chip)) {
4163                         addr = MC_INT_CAUSE_A;
4164                         cnt_addr = MC_ECC_STATUS_A;
4165                 } else {
4166                         addr = MC_P_INT_CAUSE_A;
4167                         cnt_addr = MC_P_ECC_STATUS_A;
4168                 }
4169         } else {
4170                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4171                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4172         }
4173
4174         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4175         if (v & PERR_INT_CAUSE_F)
4176                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4177                           name[idx]);
4178         if (v & ECC_CE_INT_CAUSE_F) {
4179                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4180
4181                 t4_edc_err_read(adapter, idx);
4182
4183                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4184                 if (printk_ratelimit())
4185                         dev_warn(adapter->pdev_dev,
4186                                  "%u %s correctable ECC data error%s\n",
4187                                  cnt, name[idx], cnt > 1 ? "s" : "");
4188         }
4189         if (v & ECC_UE_INT_CAUSE_F)
4190                 dev_alert(adapter->pdev_dev,
4191                           "%s uncorrectable ECC data error\n", name[idx]);
4192
4193         t4_write_reg(adapter, addr, v);
4194         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4195                 t4_fatal_err(adapter);
4196 }
4197
4198 /*
4199  * MA interrupt handler.
4200  */
4201 static void ma_intr_handler(struct adapter *adap)
4202 {
4203         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4204
4205         if (status & MEM_PERR_INT_CAUSE_F) {
4206                 dev_alert(adap->pdev_dev,
4207                           "MA parity error, parity status %#x\n",
4208                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4209                 if (is_t5(adap->params.chip))
4210                         dev_alert(adap->pdev_dev,
4211                                   "MA parity error, parity status %#x\n",
4212                                   t4_read_reg(adap,
4213                                               MA_PARITY_ERROR_STATUS2_A));
4214         }
4215         if (status & MEM_WRAP_INT_CAUSE_F) {
4216                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4217                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4218                           "client %u to address %#x\n",
4219                           MEM_WRAP_CLIENT_NUM_G(v),
4220                           MEM_WRAP_ADDRESS_G(v) << 4);
4221         }
4222         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4223         t4_fatal_err(adap);
4224 }
4225
4226 /*
4227  * SMB interrupt handler.
4228  */
4229 static void smb_intr_handler(struct adapter *adap)
4230 {
4231         static const struct intr_info smb_intr_info[] = {
4232                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4233                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4234                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4235                 { 0 }
4236         };
4237
4238         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4239                 t4_fatal_err(adap);
4240 }
4241
4242 /*
4243  * NC-SI interrupt handler.
4244  */
4245 static void ncsi_intr_handler(struct adapter *adap)
4246 {
4247         static const struct intr_info ncsi_intr_info[] = {
4248                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4249                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4250                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4251                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4252                 { 0 }
4253         };
4254
4255         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4256                 t4_fatal_err(adap);
4257 }
4258
4259 /*
4260  * XGMAC interrupt handler.
4261  */
4262 static void xgmac_intr_handler(struct adapter *adap, int port)
4263 {
4264         u32 v, int_cause_reg;
4265
4266         if (is_t4(adap->params.chip))
4267                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4268         else
4269                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4270
4271         v = t4_read_reg(adap, int_cause_reg);
4272
4273         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4274         if (!v)
4275                 return;
4276
4277         if (v & TXFIFO_PRTY_ERR_F)
4278                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4279                           port);
4280         if (v & RXFIFO_PRTY_ERR_F)
4281                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4282                           port);
4283         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4284         t4_fatal_err(adap);
4285 }
4286
4287 /*
4288  * PL interrupt handler.
4289  */
4290 static void pl_intr_handler(struct adapter *adap)
4291 {
4292         static const struct intr_info pl_intr_info[] = {
4293                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4294                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4295                 { 0 }
4296         };
4297
4298         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4299                 t4_fatal_err(adap);
4300 }
4301
4302 #define PF_INTR_MASK (PFSW_F)
4303 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4304                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4305                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4306
4307 /**
4308  *      t4_slow_intr_handler - control path interrupt handler
4309  *      @adapter: the adapter
4310  *
4311  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4312  *      The designation 'slow' is because it involves register reads, while
4313  *      data interrupts typically don't involve any MMIOs.
4314  */
4315 int t4_slow_intr_handler(struct adapter *adapter)
4316 {
4317         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4318
4319         if (!(cause & GLBL_INTR_MASK))
4320                 return 0;
4321         if (cause & CIM_F)
4322                 cim_intr_handler(adapter);
4323         if (cause & MPS_F)
4324                 mps_intr_handler(adapter);
4325         if (cause & NCSI_F)
4326                 ncsi_intr_handler(adapter);
4327         if (cause & PL_F)
4328                 pl_intr_handler(adapter);
4329         if (cause & SMB_F)
4330                 smb_intr_handler(adapter);
4331         if (cause & XGMAC0_F)
4332                 xgmac_intr_handler(adapter, 0);
4333         if (cause & XGMAC1_F)
4334                 xgmac_intr_handler(adapter, 1);
4335         if (cause & XGMAC_KR0_F)
4336                 xgmac_intr_handler(adapter, 2);
4337         if (cause & XGMAC_KR1_F)
4338                 xgmac_intr_handler(adapter, 3);
4339         if (cause & PCIE_F)
4340                 pcie_intr_handler(adapter);
4341         if (cause & MC_F)
4342                 mem_intr_handler(adapter, MEM_MC);
4343         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4344                 mem_intr_handler(adapter, MEM_MC1);
4345         if (cause & EDC0_F)
4346                 mem_intr_handler(adapter, MEM_EDC0);
4347         if (cause & EDC1_F)
4348                 mem_intr_handler(adapter, MEM_EDC1);
4349         if (cause & LE_F)
4350                 le_intr_handler(adapter);
4351         if (cause & TP_F)
4352                 tp_intr_handler(adapter);
4353         if (cause & MA_F)
4354                 ma_intr_handler(adapter);
4355         if (cause & PM_TX_F)
4356                 pmtx_intr_handler(adapter);
4357         if (cause & PM_RX_F)
4358                 pmrx_intr_handler(adapter);
4359         if (cause & ULP_RX_F)
4360                 ulprx_intr_handler(adapter);
4361         if (cause & CPL_SWITCH_F)
4362                 cplsw_intr_handler(adapter);
4363         if (cause & SGE_F)
4364                 sge_intr_handler(adapter);
4365         if (cause & ULP_TX_F)
4366                 ulptx_intr_handler(adapter);
4367
4368         /* Clear the interrupts just processed for which we are the master. */
4369         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4370         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4371         return 1;
4372 }
4373
4374 /**
4375  *      t4_intr_enable - enable interrupts
4376  *      @adapter: the adapter whose interrupts should be enabled
4377  *
4378  *      Enable PF-specific interrupts for the calling function and the top-level
4379  *      interrupt concentrator for global interrupts.  Interrupts are already
4380  *      enabled at each module, here we just enable the roots of the interrupt
4381  *      hierarchies.
4382  *
4383  *      Note: this function should be called only when the driver manages
4384  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4385  *      function at a time should be doing this.
4386  */
4387 void t4_intr_enable(struct adapter *adapter)
4388 {
4389         u32 val = 0;
4390         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4391         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4392                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4393
4394         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4395                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4396         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4397                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4398                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4399                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4400                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4401                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4402                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4403         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4404         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4405 }
4406
4407 /**
4408  *      t4_intr_disable - disable interrupts
4409  *      @adapter: the adapter whose interrupts should be disabled
4410  *
4411  *      Disable interrupts.  We only disable the top-level interrupt
4412  *      concentrators.  The caller must be a PCI function managing global
4413  *      interrupts.
4414  */
4415 void t4_intr_disable(struct adapter *adapter)
4416 {
4417         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4418         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4419                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4420
4421         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4422         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4423 }
4424
4425 /**
4426  *      hash_mac_addr - return the hash value of a MAC address
4427  *      @addr: the 48-bit Ethernet MAC address
4428  *
4429  *      Hashes a MAC address according to the hash function used by HW inexact
4430  *      (hash) address matching.
4431  */
4432 static int hash_mac_addr(const u8 *addr)
4433 {
4434         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4435         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4436         a ^= b;
4437         a ^= (a >> 12);
4438         a ^= (a >> 6);
4439         return a & 0x3f;
4440 }
4441
4442 /**
4443  *      t4_config_rss_range - configure a portion of the RSS mapping table
4444  *      @adapter: the adapter
4445  *      @mbox: mbox to use for the FW command
4446  *      @viid: virtual interface whose RSS subtable is to be written
4447  *      @start: start entry in the table to write
4448  *      @n: how many table entries to write
4449  *      @rspq: values for the response queue lookup table
4450  *      @nrspq: number of values in @rspq
4451  *
4452  *      Programs the selected part of the VI's RSS mapping table with the
4453  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4454  *      until the full table range is populated.
4455  *
4456  *      The caller must ensure the values in @rspq are in the range allowed for
4457  *      @viid.
4458  */
4459 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4460                         int start, int n, const u16 *rspq, unsigned int nrspq)
4461 {
4462         int ret;
4463         const u16 *rsp = rspq;
4464         const u16 *rsp_end = rspq + nrspq;
4465         struct fw_rss_ind_tbl_cmd cmd;
4466
4467         memset(&cmd, 0, sizeof(cmd));
4468         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4469                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4470                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4471         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4472
4473         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4474         while (n > 0) {
4475                 int nq = min(n, 32);
4476                 __be32 *qp = &cmd.iq0_to_iq2;
4477
4478                 cmd.niqid = cpu_to_be16(nq);
4479                 cmd.startidx = cpu_to_be16(start);
4480
4481                 start += nq;
4482                 n -= nq;
4483
4484                 while (nq > 0) {
4485                         unsigned int v;
4486
4487                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4488                         if (++rsp >= rsp_end)
4489                                 rsp = rspq;
4490                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4491                         if (++rsp >= rsp_end)
4492                                 rsp = rspq;
4493                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4494                         if (++rsp >= rsp_end)
4495                                 rsp = rspq;
4496
4497                         *qp++ = cpu_to_be32(v);
4498                         nq -= 3;
4499                 }
4500
4501                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4502                 if (ret)
4503                         return ret;
4504         }
4505         return 0;
4506 }
4507
4508 /**
4509  *      t4_config_glbl_rss - configure the global RSS mode
4510  *      @adapter: the adapter
4511  *      @mbox: mbox to use for the FW command
4512  *      @mode: global RSS mode
4513  *      @flags: mode-specific flags
4514  *
4515  *      Sets the global RSS mode.
4516  */
4517 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4518                        unsigned int flags)
4519 {
4520         struct fw_rss_glb_config_cmd c;
4521
4522         memset(&c, 0, sizeof(c));
4523         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4524                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4525         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4526         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4527                 c.u.manual.mode_pkd =
4528                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4529         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4530                 c.u.basicvirtual.mode_pkd =
4531                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4532                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4533         } else
4534                 return -EINVAL;
4535         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4536 }
4537
4538 /**
4539  *      t4_config_vi_rss - configure per VI RSS settings
4540  *      @adapter: the adapter
4541  *      @mbox: mbox to use for the FW command
4542  *      @viid: the VI id
4543  *      @flags: RSS flags
4544  *      @defq: id of the default RSS queue for the VI.
4545  *
4546  *      Configures VI-specific RSS properties.
4547  */
4548 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4549                      unsigned int flags, unsigned int defq)
4550 {
4551         struct fw_rss_vi_config_cmd c;
4552
4553         memset(&c, 0, sizeof(c));
4554         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4555                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4556                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4557         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4558         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4559                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4560         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4561 }
4562
4563 /* Read an RSS table row */
4564 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4565 {
4566         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4567         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4568                                    5, 0, val);
4569 }
4570
4571 /**
4572  *      t4_read_rss - read the contents of the RSS mapping table
4573  *      @adapter: the adapter
4574  *      @map: holds the contents of the RSS mapping table
4575  *
4576  *      Reads the contents of the RSS hash->queue mapping table.
4577  */
4578 int t4_read_rss(struct adapter *adapter, u16 *map)
4579 {
4580         u32 val;
4581         int i, ret;
4582
4583         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4584                 ret = rd_rss_row(adapter, i, &val);
4585                 if (ret)
4586                         return ret;
4587                 *map++ = LKPTBLQUEUE0_G(val);
4588                 *map++ = LKPTBLQUEUE1_G(val);
4589         }
4590         return 0;
4591 }
4592
4593 static unsigned int t4_use_ldst(struct adapter *adap)
4594 {
4595         return (adap->flags & FW_OK) || !adap->use_bd;
4596 }
4597
4598 /**
4599  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4600  *      @adap: the adapter
4601  *      @vals: where the indirect register values are stored/written
4602  *      @nregs: how many indirect registers to read/write
4603  *      @start_idx: index of first indirect register to read/write
4604  *      @rw: Read (1) or Write (0)
4605  *
4606  *      Access TP PIO registers through LDST
4607  */
4608 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4609                             unsigned int start_index, unsigned int rw)
4610 {
4611         int ret, i;
4612         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4613         struct fw_ldst_cmd c;
4614
4615         for (i = 0 ; i < nregs; i++) {
4616                 memset(&c, 0, sizeof(c));
4617                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4618                                                 FW_CMD_REQUEST_F |
4619                                                 (rw ? FW_CMD_READ_F :
4620                                                       FW_CMD_WRITE_F) |
4621                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4622                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4623
4624                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4625                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4626                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4627                 if (!ret && rw)
4628                         vals[i] = be32_to_cpu(c.u.addrval.val);
4629         }
4630 }
4631
4632 /**
4633  *      t4_read_rss_key - read the global RSS key
4634  *      @adap: the adapter
4635  *      @key: 10-entry array holding the 320-bit RSS key
4636  *
4637  *      Reads the global 320-bit RSS key.
4638  */
4639 void t4_read_rss_key(struct adapter *adap, u32 *key)
4640 {
4641         if (t4_use_ldst(adap))
4642                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4643         else
4644                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4645                                  TP_RSS_SECRET_KEY0_A);
4646 }
4647
4648 /**
4649  *      t4_write_rss_key - program one of the RSS keys
4650  *      @adap: the adapter
4651  *      @key: 10-entry array holding the 320-bit RSS key
4652  *      @idx: which RSS key to write
4653  *
4654  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4655  *      0..15 the corresponding entry in the RSS key table is written,
4656  *      otherwise the global RSS key is written.
4657  */
4658 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4659 {
4660         u8 rss_key_addr_cnt = 16;
4661         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4662
4663         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4664          * allows access to key addresses 16-63 by using KeyWrAddrX
4665          * as index[5:4](upper 2) into key table
4666          */
4667         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4668             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4669                 rss_key_addr_cnt = 32;
4670
4671         if (t4_use_ldst(adap))
4672                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4673         else
4674                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4675                                   TP_RSS_SECRET_KEY0_A);
4676
4677         if (idx >= 0 && idx < rss_key_addr_cnt) {
4678                 if (rss_key_addr_cnt > 16)
4679                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4680                                      KEYWRADDRX_V(idx >> 4) |
4681                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4682                 else
4683                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4684                                      KEYWRADDR_V(idx) | KEYWREN_F);
4685         }
4686 }
4687
4688 /**
4689  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4690  *      @adapter: the adapter
4691  *      @index: the entry in the PF RSS table to read
4692  *      @valp: where to store the returned value
4693  *
4694  *      Reads the PF RSS Configuration Table at the specified index and returns
4695  *      the value found there.
4696  */
4697 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4698                            u32 *valp)
4699 {
4700         if (t4_use_ldst(adapter))
4701                 t4_fw_tp_pio_rw(adapter, valp, 1,
4702                                 TP_RSS_PF0_CONFIG_A + index, 1);
4703         else
4704                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4705                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4706 }
4707
4708 /**
4709  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4710  *      @adapter: the adapter
4711  *      @index: the entry in the VF RSS table to read
4712  *      @vfl: where to store the returned VFL
4713  *      @vfh: where to store the returned VFH
4714  *
4715  *      Reads the VF RSS Configuration Table at the specified index and returns
4716  *      the (VFL, VFH) values found there.
4717  */
4718 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4719                            u32 *vfl, u32 *vfh)
4720 {
4721         u32 vrt, mask, data;
4722
4723         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4724                 mask = VFWRADDR_V(VFWRADDR_M);
4725                 data = VFWRADDR_V(index);
4726         } else {
4727                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4728                  data = T6_VFWRADDR_V(index);
4729         }
4730
4731         /* Request that the index'th VF Table values be read into VFL/VFH.
4732          */
4733         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4734         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4735         vrt |= data | VFRDEN_F;
4736         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4737
4738         /* Grab the VFL/VFH values ...
4739          */
4740         if (t4_use_ldst(adapter)) {
4741                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4742                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4743         } else {
4744                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4745                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4746                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4747                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4748         }
4749 }
4750
4751 /**
4752  *      t4_read_rss_pf_map - read PF RSS Map
4753  *      @adapter: the adapter
4754  *
4755  *      Reads the PF RSS Map register and returns its value.
4756  */
4757 u32 t4_read_rss_pf_map(struct adapter *adapter)
4758 {
4759         u32 pfmap;
4760
4761         if (t4_use_ldst(adapter))
4762                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4763         else
4764                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4765                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4766         return pfmap;
4767 }
4768
4769 /**
4770  *      t4_read_rss_pf_mask - read PF RSS Mask
4771  *      @adapter: the adapter
4772  *
4773  *      Reads the PF RSS Mask register and returns its value.
4774  */
4775 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4776 {
4777         u32 pfmask;
4778
4779         if (t4_use_ldst(adapter))
4780                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4781         else
4782                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4783                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4784         return pfmask;
4785 }
4786
4787 /**
4788  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4789  *      @adap: the adapter
4790  *      @v4: holds the TCP/IP counter values
4791  *      @v6: holds the TCP/IPv6 counter values
4792  *
4793  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4794  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4795  */
4796 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4797                          struct tp_tcp_stats *v6)
4798 {
4799         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4800
4801 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4802 #define STAT(x)     val[STAT_IDX(x)]
4803 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4804
4805         if (v4) {
4806                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4807                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4808                 v4->tcp_out_rsts = STAT(OUT_RST);
4809                 v4->tcp_in_segs  = STAT64(IN_SEG);
4810                 v4->tcp_out_segs = STAT64(OUT_SEG);
4811                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4812         }
4813         if (v6) {
4814                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4815                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4816                 v6->tcp_out_rsts = STAT(OUT_RST);
4817                 v6->tcp_in_segs  = STAT64(IN_SEG);
4818                 v6->tcp_out_segs = STAT64(OUT_SEG);
4819                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4820         }
4821 #undef STAT64
4822 #undef STAT
4823 #undef STAT_IDX
4824 }
4825
4826 /**
4827  *      t4_tp_get_err_stats - read TP's error MIB counters
4828  *      @adap: the adapter
4829  *      @st: holds the counter values
4830  *
4831  *      Returns the values of TP's error counters.
4832  */
4833 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4834 {
4835         int nchan = adap->params.arch.nchan;
4836
4837         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4838                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4839         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4840                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4841         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4842                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4843         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4844                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4845         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4846                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4847         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4849         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4851         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4853
4854         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4855                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4856 }
4857
4858 /**
4859  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4860  *      @adap: the adapter
4861  *      @st: holds the counter values
4862  *
4863  *      Returns the values of TP's CPL counters.
4864  */
4865 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4866 {
4867         int nchan = adap->params.arch.nchan;
4868
4869         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4870                          nchan, TP_MIB_CPL_IN_REQ_0_A);
4871         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4872                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
4873
4874 }
4875
4876 /**
4877  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4878  *      @adap: the adapter
4879  *      @st: holds the counter values
4880  *
4881  *      Returns the values of TP's RDMA counters.
4882  */
4883 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4884 {
4885         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4886                          2, TP_MIB_RQE_DFR_PKT_A);
4887 }
4888
4889 /**
4890  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4891  *      @adap: the adapter
4892  *      @idx: the port index
4893  *      @st: holds the counter values
4894  *
4895  *      Returns the values of TP's FCoE counters for the selected port.
4896  */
4897 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4898                        struct tp_fcoe_stats *st)
4899 {
4900         u32 val[2];
4901
4902         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4903                          1, TP_MIB_FCOE_DDP_0_A + idx);
4904         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4905                          1, TP_MIB_FCOE_DROP_0_A + idx);
4906         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4907                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4908         st->octets_ddp = ((u64)val[0] << 32) | val[1];
4909 }
4910
4911 /**
4912  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4913  *      @adap: the adapter
4914  *      @st: holds the counter values
4915  *
4916  *      Returns the values of TP's counters for non-TCP directly-placed packets.
4917  */
4918 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4919 {
4920         u32 val[4];
4921
4922         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4923                          TP_MIB_USM_PKTS_A);
4924         st->frames = val[0];
4925         st->drops = val[1];
4926         st->octets = ((u64)val[2] << 32) | val[3];
4927 }
4928
4929 /**
4930  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4931  *      @adap: the adapter
4932  *      @mtus: where to store the MTU values
4933  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4934  *
4935  *      Reads the HW path MTU table.
4936  */
4937 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4938 {
4939         u32 v;
4940         int i;
4941
4942         for (i = 0; i < NMTUS; ++i) {
4943                 t4_write_reg(adap, TP_MTU_TABLE_A,
4944                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
4945                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4946                 mtus[i] = MTUVALUE_G(v);
4947                 if (mtu_log)
4948                         mtu_log[i] = MTUWIDTH_G(v);
4949         }
4950 }
4951
4952 /**
4953  *      t4_read_cong_tbl - reads the congestion control table
4954  *      @adap: the adapter
4955  *      @incr: where to store the alpha values
4956  *
4957  *      Reads the additive increments programmed into the HW congestion
4958  *      control table.
4959  */
4960 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4961 {
4962         unsigned int mtu, w;
4963
4964         for (mtu = 0; mtu < NMTUS; ++mtu)
4965                 for (w = 0; w < NCCTRL_WIN; ++w) {
4966                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
4967                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
4968                         incr[mtu][w] = (u16)t4_read_reg(adap,
4969                                                 TP_CCTRL_TABLE_A) & 0x1fff;
4970                 }
4971 }
4972
4973 /**
4974  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4975  *      @adap: the adapter
4976  *      @addr: the indirect TP register address
4977  *      @mask: specifies the field within the register to modify
4978  *      @val: new value for the field
4979  *
4980  *      Sets a field of an indirect TP register to the given value.
4981  */
4982 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4983                             unsigned int mask, unsigned int val)
4984 {
4985         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4986         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4987         t4_write_reg(adap, TP_PIO_DATA_A, val);
4988 }
4989
4990 /**
4991  *      init_cong_ctrl - initialize congestion control parameters
4992  *      @a: the alpha values for congestion control
4993  *      @b: the beta values for congestion control
4994  *
4995  *      Initialize the congestion control parameters.
4996  */
4997 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4998 {
4999         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5000         a[9] = 2;
5001         a[10] = 3;
5002         a[11] = 4;
5003         a[12] = 5;
5004         a[13] = 6;
5005         a[14] = 7;
5006         a[15] = 8;
5007         a[16] = 9;
5008         a[17] = 10;
5009         a[18] = 14;
5010         a[19] = 17;
5011         a[20] = 21;
5012         a[21] = 25;
5013         a[22] = 30;
5014         a[23] = 35;
5015         a[24] = 45;
5016         a[25] = 60;
5017         a[26] = 80;
5018         a[27] = 100;
5019         a[28] = 200;
5020         a[29] = 300;
5021         a[30] = 400;
5022         a[31] = 500;
5023
5024         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5025         b[9] = b[10] = 1;
5026         b[11] = b[12] = 2;
5027         b[13] = b[14] = b[15] = b[16] = 3;
5028         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5029         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5030         b[28] = b[29] = 6;
5031         b[30] = b[31] = 7;
5032 }
5033
5034 /* The minimum additive increment value for the congestion control table */
5035 #define CC_MIN_INCR 2U
5036
5037 /**
5038  *      t4_load_mtus - write the MTU and congestion control HW tables
5039  *      @adap: the adapter
5040  *      @mtus: the values for the MTU table
5041  *      @alpha: the values for the congestion control alpha parameter
5042  *      @beta: the values for the congestion control beta parameter
5043  *
5044  *      Write the HW MTU table with the supplied MTUs and the high-speed
5045  *      congestion control table with the supplied alpha, beta, and MTUs.
5046  *      We write the two tables together because the additive increments
5047  *      depend on the MTUs.
5048  */
5049 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5050                   const unsigned short *alpha, const unsigned short *beta)
5051 {
5052         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5053                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5054                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5055                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5056         };
5057
5058         unsigned int i, w;
5059
5060         for (i = 0; i < NMTUS; ++i) {
5061                 unsigned int mtu = mtus[i];
5062                 unsigned int log2 = fls(mtu);
5063
5064                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5065                         log2--;
5066                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5067                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5068
5069                 for (w = 0; w < NCCTRL_WIN; ++w) {
5070                         unsigned int inc;
5071
5072                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5073                                   CC_MIN_INCR);
5074
5075                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5076                                      (w << 16) | (beta[w] << 13) | inc);
5077                 }
5078         }
5079 }
5080
5081 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5082  * clocks.  The formula is
5083  *
5084  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5085  *
5086  * which is equivalent to
5087  *
5088  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5089  */
5090 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5091 {
5092         u64 v = bytes256 * adap->params.vpd.cclk;
5093
5094         return v * 62 + v / 2;
5095 }
5096
5097 /**
5098  *      t4_get_chan_txrate - get the current per channel Tx rates
5099  *      @adap: the adapter
5100  *      @nic_rate: rates for NIC traffic
5101  *      @ofld_rate: rates for offloaded traffic
5102  *
5103  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5104  *      for each channel.
5105  */
5106 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5107 {
5108         u32 v;
5109
5110         v = t4_read_reg(adap, TP_TX_TRATE_A);
5111         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5112         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5113         if (adap->params.arch.nchan == NCHAN) {
5114                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5115                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5116         }
5117
5118         v = t4_read_reg(adap, TP_TX_ORATE_A);
5119         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5120         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5121         if (adap->params.arch.nchan == NCHAN) {
5122                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5123                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5124         }
5125 }
5126
5127 /**
5128  *      t4_set_trace_filter - configure one of the tracing filters
5129  *      @adap: the adapter
5130  *      @tp: the desired trace filter parameters
5131  *      @idx: which filter to configure
5132  *      @enable: whether to enable or disable the filter
5133  *
5134  *      Configures one of the tracing filters available in HW.  If @enable is
5135  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5136  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5137  */
5138 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5139                         int idx, int enable)
5140 {
5141         int i, ofst = idx * 4;
5142         u32 data_reg, mask_reg, cfg;
5143         u32 multitrc = TRCMULTIFILTER_F;
5144
5145         if (!enable) {
5146                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5147                 return 0;
5148         }
5149
5150         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5151         if (cfg & TRCMULTIFILTER_F) {
5152                 /* If multiple tracers are enabled, then maximum
5153                  * capture size is 2.5KB (FIFO size of a single channel)
5154                  * minus 2 flits for CPL_TRACE_PKT header.
5155                  */
5156                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5157                         return -EINVAL;
5158         } else {
5159                 /* If multiple tracers are disabled, to avoid deadlocks
5160                  * maximum packet capture size of 9600 bytes is recommended.
5161                  * Also in this mode, only trace0 can be enabled and running.
5162                  */
5163                 multitrc = 0;
5164                 if (tp->snap_len > 9600 || idx)
5165                         return -EINVAL;
5166         }
5167
5168         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5169             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5170             tp->min_len > TFMINPKTSIZE_M)
5171                 return -EINVAL;
5172
5173         /* stop the tracer we'll be changing */
5174         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5175
5176         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5177         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5178         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5179
5180         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5181                 t4_write_reg(adap, data_reg, tp->data[i]);
5182                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5183         }
5184         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5185                      TFCAPTUREMAX_V(tp->snap_len) |
5186                      TFMINPKTSIZE_V(tp->min_len));
5187         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5188                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5189                      (is_t4(adap->params.chip) ?
5190                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5191                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5192                      T5_TFINVERTMATCH_V(tp->invert)));
5193
5194         return 0;
5195 }
5196
5197 /**
5198  *      t4_get_trace_filter - query one of the tracing filters
5199  *      @adap: the adapter
5200  *      @tp: the current trace filter parameters
5201  *      @idx: which trace filter to query
5202  *      @enabled: non-zero if the filter is enabled
5203  *
5204  *      Returns the current settings of one of the HW tracing filters.
5205  */
5206 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5207                          int *enabled)
5208 {
5209         u32 ctla, ctlb;
5210         int i, ofst = idx * 4;
5211         u32 data_reg, mask_reg;
5212
5213         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5214         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5215
5216         if (is_t4(adap->params.chip)) {
5217                 *enabled = !!(ctla & TFEN_F);
5218                 tp->port =  TFPORT_G(ctla);
5219                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5220         } else {
5221                 *enabled = !!(ctla & T5_TFEN_F);
5222                 tp->port = T5_TFPORT_G(ctla);
5223                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5224         }
5225         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5226         tp->min_len = TFMINPKTSIZE_G(ctlb);
5227         tp->skip_ofst = TFOFFSET_G(ctla);
5228         tp->skip_len = TFLENGTH_G(ctla);
5229
5230         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5231         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5232         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5233
5234         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5235                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5236                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5237         }
5238 }
5239
5240 /**
5241  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5242  *      @adap: the adapter
5243  *      @cnt: where to store the count statistics
5244  *      @cycles: where to store the cycle statistics
5245  *
5246  *      Returns performance statistics from PMTX.
5247  */
5248 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5249 {
5250         int i;
5251         u32 data[2];
5252
5253         for (i = 0; i < PM_NSTATS; i++) {
5254                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5255                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5256                 if (is_t4(adap->params.chip)) {
5257                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5258                 } else {
5259                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5260                                          PM_TX_DBG_DATA_A, data, 2,
5261                                          PM_TX_DBG_STAT_MSB_A);
5262                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5263                 }
5264         }
5265 }
5266
5267 /**
5268  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5269  *      @adap: the adapter
5270  *      @cnt: where to store the count statistics
5271  *      @cycles: where to store the cycle statistics
5272  *
5273  *      Returns performance statistics from PMRX.
5274  */
5275 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5276 {
5277         int i;
5278         u32 data[2];
5279
5280         for (i = 0; i < PM_NSTATS; i++) {
5281                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5282                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5283                 if (is_t4(adap->params.chip)) {
5284                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5285                 } else {
5286                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5287                                          PM_RX_DBG_DATA_A, data, 2,
5288                                          PM_RX_DBG_STAT_MSB_A);
5289                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5290                 }
5291         }
5292 }
5293
5294 /**
5295  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5296  *      @adap: the adapter
5297  *      @idx: the port index
5298  *
5299  *      Returns a bitmap indicating which MPS buffer groups are associated
5300  *      with the given port.  Bit i is set if buffer group i is used by the
5301  *      port.
5302  */
5303 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5304 {
5305         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5306
5307         if (n == 0)
5308                 return idx == 0 ? 0xf : 0;
5309         if (n == 1)
5310                 return idx < 2 ? (3 << (2 * idx)) : 0;
5311         return 1 << idx;
5312 }
5313
5314 /**
5315  *      t4_get_port_type_description - return Port Type string description
5316  *      @port_type: firmware Port Type enumeration
5317  */
5318 const char *t4_get_port_type_description(enum fw_port_type port_type)
5319 {
5320         static const char *const port_type_description[] = {
5321                 "R XFI",
5322                 "R XAUI",
5323                 "T SGMII",
5324                 "T XFI",
5325                 "T XAUI",
5326                 "KX4",
5327                 "CX4",
5328                 "KX",
5329                 "KR",
5330                 "R SFP+",
5331                 "KR/KX",
5332                 "KR/KX/KX4",
5333                 "R QSFP_10G",
5334                 "R QSA",
5335                 "R QSFP",
5336                 "R BP40_BA",
5337         };
5338
5339         if (port_type < ARRAY_SIZE(port_type_description))
5340                 return port_type_description[port_type];
5341         return "UNKNOWN";
5342 }
5343
5344 /**
5345  *      t4_get_port_stats_offset - collect port stats relative to a previous
5346  *                                 snapshot
5347  *      @adap: The adapter
5348  *      @idx: The port
5349  *      @stats: Current stats to fill
5350  *      @offset: Previous stats snapshot
5351  */
5352 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5353                               struct port_stats *stats,
5354                               struct port_stats *offset)
5355 {
5356         u64 *s, *o;
5357         int i;
5358
5359         t4_get_port_stats(adap, idx, stats);
5360         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5361                         i < (sizeof(struct port_stats) / sizeof(u64));
5362                         i++, s++, o++)
5363                 *s -= *o;
5364 }
5365
5366 /**
5367  *      t4_get_port_stats - collect port statistics
5368  *      @adap: the adapter
5369  *      @idx: the port index
5370  *      @p: the stats structure to fill
5371  *
5372  *      Collect statistics related to the given port from HW.
5373  */
5374 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5375 {
5376         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5377
5378 #define GET_STAT(name) \
5379         t4_read_reg64(adap, \
5380         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5381         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5382 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5383
5384         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5385         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5386         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5387         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5388         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5389         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5390         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5391         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5392         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5393         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5394         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5395         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5396         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5397         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5398         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5399         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5400         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5401         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5402         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5403         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5404         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5405         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5406         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5407
5408         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5409         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5410         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5411         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5412         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5413         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5414         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5415         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5416         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5417         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5418         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5419         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5420         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5421         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5422         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5423         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5424         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5425         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5426         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5427         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5428         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5429         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5430         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5431         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5432         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5433         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5434         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5435
5436         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5437         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5438         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5439         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5440         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5441         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5442         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5443         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5444
5445 #undef GET_STAT
5446 #undef GET_STAT_COM
5447 }
5448
5449 /**
5450  *      t4_get_lb_stats - collect loopback port statistics
5451  *      @adap: the adapter
5452  *      @idx: the loopback port index
5453  *      @p: the stats structure to fill
5454  *
5455  *      Return HW statistics for the given loopback port.
5456  */
5457 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5458 {
5459         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5460
5461 #define GET_STAT(name) \
5462         t4_read_reg64(adap, \
5463         (is_t4(adap->params.chip) ? \
5464         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5465         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5466 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5467
5468         p->octets           = GET_STAT(BYTES);
5469         p->frames           = GET_STAT(FRAMES);
5470         p->bcast_frames     = GET_STAT(BCAST);
5471         p->mcast_frames     = GET_STAT(MCAST);
5472         p->ucast_frames     = GET_STAT(UCAST);
5473         p->error_frames     = GET_STAT(ERROR);
5474
5475         p->frames_64        = GET_STAT(64B);
5476         p->frames_65_127    = GET_STAT(65B_127B);
5477         p->frames_128_255   = GET_STAT(128B_255B);
5478         p->frames_256_511   = GET_STAT(256B_511B);
5479         p->frames_512_1023  = GET_STAT(512B_1023B);
5480         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5481         p->frames_1519_max  = GET_STAT(1519B_MAX);
5482         p->drop             = GET_STAT(DROP_FRAMES);
5483
5484         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5485         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5486         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5487         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5488         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5489         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5490         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5491         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5492
5493 #undef GET_STAT
5494 #undef GET_STAT_COM
5495 }
5496
5497 /*     t4_mk_filtdelwr - create a delete filter WR
5498  *     @ftid: the filter ID
5499  *     @wr: the filter work request to populate
5500  *     @qid: ingress queue to receive the delete notification
5501  *
5502  *     Creates a filter work request to delete the supplied filter.  If @qid is
5503  *     negative the delete notification is suppressed.
5504  */
5505 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5506 {
5507         memset(wr, 0, sizeof(*wr));
5508         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5509         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5510         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5511                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5512         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5513         if (qid >= 0)
5514                 wr->rx_chan_rx_rpl_iq =
5515                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5516 }
5517
5518 #define INIT_CMD(var, cmd, rd_wr) do { \
5519         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5520                                         FW_CMD_REQUEST_F | \
5521                                         FW_CMD_##rd_wr##_F); \
5522         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5523 } while (0)
5524
5525 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5526                           u32 addr, u32 val)
5527 {
5528         u32 ldst_addrspace;
5529         struct fw_ldst_cmd c;
5530
5531         memset(&c, 0, sizeof(c));
5532         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5533         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5534                                         FW_CMD_REQUEST_F |
5535                                         FW_CMD_WRITE_F |
5536                                         ldst_addrspace);
5537         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5538         c.u.addrval.addr = cpu_to_be32(addr);
5539         c.u.addrval.val = cpu_to_be32(val);
5540
5541         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5542 }
5543
5544 /**
5545  *      t4_mdio_rd - read a PHY register through MDIO
5546  *      @adap: the adapter
5547  *      @mbox: mailbox to use for the FW command
5548  *      @phy_addr: the PHY address
5549  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5550  *      @reg: the register to read
5551  *      @valp: where to store the value
5552  *
5553  *      Issues a FW command through the given mailbox to read a PHY register.
5554  */
5555 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5556                unsigned int mmd, unsigned int reg, u16 *valp)
5557 {
5558         int ret;
5559         u32 ldst_addrspace;
5560         struct fw_ldst_cmd c;
5561
5562         memset(&c, 0, sizeof(c));
5563         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5564         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5565                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5566                                         ldst_addrspace);
5567         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5568         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5569                                          FW_LDST_CMD_MMD_V(mmd));
5570         c.u.mdio.raddr = cpu_to_be16(reg);
5571
5572         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5573         if (ret == 0)
5574                 *valp = be16_to_cpu(c.u.mdio.rval);
5575         return ret;
5576 }
5577
5578 /**
5579  *      t4_mdio_wr - write a PHY register through MDIO
5580  *      @adap: the adapter
5581  *      @mbox: mailbox to use for the FW command
5582  *      @phy_addr: the PHY address
5583  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5584  *      @reg: the register to write
5585  *      @valp: value to write
5586  *
5587  *      Issues a FW command through the given mailbox to write a PHY register.
5588  */
5589 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5590                unsigned int mmd, unsigned int reg, u16 val)
5591 {
5592         u32 ldst_addrspace;
5593         struct fw_ldst_cmd c;
5594
5595         memset(&c, 0, sizeof(c));
5596         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5597         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5598                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5599                                         ldst_addrspace);
5600         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5601         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5602                                          FW_LDST_CMD_MMD_V(mmd));
5603         c.u.mdio.raddr = cpu_to_be16(reg);
5604         c.u.mdio.rval = cpu_to_be16(val);
5605
5606         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5607 }
5608
5609 /**
5610  *      t4_sge_decode_idma_state - decode the idma state
5611  *      @adap: the adapter
5612  *      @state: the state idma is stuck in
5613  */
5614 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5615 {
5616         static const char * const t4_decode[] = {
5617                 "IDMA_IDLE",
5618                 "IDMA_PUSH_MORE_CPL_FIFO",
5619                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5620                 "Not used",
5621                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5622                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5623                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5624                 "IDMA_SEND_FIFO_TO_IMSG",
5625                 "IDMA_FL_REQ_DATA_FL_PREP",
5626                 "IDMA_FL_REQ_DATA_FL",
5627                 "IDMA_FL_DROP",
5628                 "IDMA_FL_H_REQ_HEADER_FL",
5629                 "IDMA_FL_H_SEND_PCIEHDR",
5630                 "IDMA_FL_H_PUSH_CPL_FIFO",
5631                 "IDMA_FL_H_SEND_CPL",
5632                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5633                 "IDMA_FL_H_SEND_IP_HDR",
5634                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5635                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5636                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5637                 "IDMA_FL_D_SEND_PCIEHDR",
5638                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5639                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5640                 "IDMA_FL_SEND_PCIEHDR",
5641                 "IDMA_FL_PUSH_CPL_FIFO",
5642                 "IDMA_FL_SEND_CPL",
5643                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5644                 "IDMA_FL_SEND_PAYLOAD",
5645                 "IDMA_FL_REQ_NEXT_DATA_FL",
5646                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5647                 "IDMA_FL_SEND_PADDING",
5648                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5649                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5650                 "IDMA_FL_REQ_DATAFL_DONE",
5651                 "IDMA_FL_REQ_HEADERFL_DONE",
5652         };
5653         static const char * const t5_decode[] = {
5654                 "IDMA_IDLE",
5655                 "IDMA_ALMOST_IDLE",
5656                 "IDMA_PUSH_MORE_CPL_FIFO",
5657                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5658                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5659                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5660                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5661                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5662                 "IDMA_SEND_FIFO_TO_IMSG",
5663                 "IDMA_FL_REQ_DATA_FL",
5664                 "IDMA_FL_DROP",
5665                 "IDMA_FL_DROP_SEND_INC",
5666                 "IDMA_FL_H_REQ_HEADER_FL",
5667                 "IDMA_FL_H_SEND_PCIEHDR",
5668                 "IDMA_FL_H_PUSH_CPL_FIFO",
5669                 "IDMA_FL_H_SEND_CPL",
5670                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5671                 "IDMA_FL_H_SEND_IP_HDR",
5672                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5673                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5674                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5675                 "IDMA_FL_D_SEND_PCIEHDR",
5676                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5677                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5678                 "IDMA_FL_SEND_PCIEHDR",
5679                 "IDMA_FL_PUSH_CPL_FIFO",
5680                 "IDMA_FL_SEND_CPL",
5681                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5682                 "IDMA_FL_SEND_PAYLOAD",
5683                 "IDMA_FL_REQ_NEXT_DATA_FL",
5684                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5685                 "IDMA_FL_SEND_PADDING",
5686                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5687         };
5688         static const u32 sge_regs[] = {
5689                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5690                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5691                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5692         };
5693         const char **sge_idma_decode;
5694         int sge_idma_decode_nstates;
5695         int i;
5696
5697         if (is_t4(adapter->params.chip)) {
5698                 sge_idma_decode = (const char **)t4_decode;
5699                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5700         } else {
5701                 sge_idma_decode = (const char **)t5_decode;
5702                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5703         }
5704
5705         if (state < sge_idma_decode_nstates)
5706                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5707         else
5708                 CH_WARN(adapter, "idma state %d unknown\n", state);
5709
5710         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5711                 CH_WARN(adapter, "SGE register %#x value %#x\n",
5712                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5713 }
5714
5715 /**
5716  *      t4_sge_ctxt_flush - flush the SGE context cache
5717  *      @adap: the adapter
5718  *      @mbox: mailbox to use for the FW command
5719  *
5720  *      Issues a FW command through the given mailbox to flush the
5721  *      SGE context cache.
5722  */
5723 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5724 {
5725         int ret;
5726         u32 ldst_addrspace;
5727         struct fw_ldst_cmd c;
5728
5729         memset(&c, 0, sizeof(c));
5730         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5731         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5732                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5733                                         ldst_addrspace);
5734         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5735         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5736
5737         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5738         return ret;
5739 }
5740
5741 /**
5742  *      t4_fw_hello - establish communication with FW
5743  *      @adap: the adapter
5744  *      @mbox: mailbox to use for the FW command
5745  *      @evt_mbox: mailbox to receive async FW events
5746  *      @master: specifies the caller's willingness to be the device master
5747  *      @state: returns the current device state (if non-NULL)
5748  *
5749  *      Issues a command to establish communication with FW.  Returns either
5750  *      an error (negative integer) or the mailbox of the Master PF.
5751  */
5752 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5753                 enum dev_master master, enum dev_state *state)
5754 {
5755         int ret;
5756         struct fw_hello_cmd c;
5757         u32 v;
5758         unsigned int master_mbox;
5759         int retries = FW_CMD_HELLO_RETRIES;
5760
5761 retry:
5762         memset(&c, 0, sizeof(c));
5763         INIT_CMD(c, HELLO, WRITE);
5764         c.err_to_clearinit = cpu_to_be32(
5765                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5766                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5767                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5768                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
5769                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5770                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5771                 FW_HELLO_CMD_CLEARINIT_F);
5772
5773         /*
5774          * Issue the HELLO command to the firmware.  If it's not successful
5775          * but indicates that we got a "busy" or "timeout" condition, retry
5776          * the HELLO until we exhaust our retry limit.  If we do exceed our
5777          * retry limit, check to see if the firmware left us any error
5778          * information and report that if so.
5779          */
5780         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5781         if (ret < 0) {
5782                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5783                         goto retry;
5784                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5785                         t4_report_fw_error(adap);
5786                 return ret;
5787         }
5788
5789         v = be32_to_cpu(c.err_to_clearinit);
5790         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5791         if (state) {
5792                 if (v & FW_HELLO_CMD_ERR_F)
5793                         *state = DEV_STATE_ERR;
5794                 else if (v & FW_HELLO_CMD_INIT_F)
5795                         *state = DEV_STATE_INIT;
5796                 else
5797                         *state = DEV_STATE_UNINIT;
5798         }
5799
5800         /*
5801          * If we're not the Master PF then we need to wait around for the
5802          * Master PF Driver to finish setting up the adapter.
5803          *
5804          * Note that we also do this wait if we're a non-Master-capable PF and
5805          * there is no current Master PF; a Master PF may show up momentarily
5806          * and we wouldn't want to fail pointlessly.  (This can happen when an
5807          * OS loads lots of different drivers rapidly at the same time).  In
5808          * this case, the Master PF returned by the firmware will be
5809          * PCIE_FW_MASTER_M so the test below will work ...
5810          */
5811         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5812             master_mbox != mbox) {
5813                 int waiting = FW_CMD_HELLO_TIMEOUT;
5814
5815                 /*
5816                  * Wait for the firmware to either indicate an error or
5817                  * initialized state.  If we see either of these we bail out
5818                  * and report the issue to the caller.  If we exhaust the
5819                  * "hello timeout" and we haven't exhausted our retries, try
5820                  * again.  Otherwise bail with a timeout error.
5821                  */
5822                 for (;;) {
5823                         u32 pcie_fw;
5824
5825                         msleep(50);
5826                         waiting -= 50;
5827
5828                         /*
5829                          * If neither Error nor Initialialized are indicated
5830                          * by the firmware keep waiting till we exaust our
5831                          * timeout ... and then retry if we haven't exhausted
5832                          * our retries ...
5833                          */
5834                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5835                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5836                                 if (waiting <= 0) {
5837                                         if (retries-- > 0)
5838                                                 goto retry;
5839
5840                                         return -ETIMEDOUT;
5841                                 }
5842                                 continue;
5843                         }
5844
5845                         /*
5846                          * We either have an Error or Initialized condition
5847                          * report errors preferentially.
5848                          */
5849                         if (state) {
5850                                 if (pcie_fw & PCIE_FW_ERR_F)
5851                                         *state = DEV_STATE_ERR;
5852                                 else if (pcie_fw & PCIE_FW_INIT_F)
5853                                         *state = DEV_STATE_INIT;
5854                         }
5855
5856                         /*
5857                          * If we arrived before a Master PF was selected and
5858                          * there's not a valid Master PF, grab its identity
5859                          * for our caller.
5860                          */
5861                         if (master_mbox == PCIE_FW_MASTER_M &&
5862                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
5863                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5864                         break;
5865                 }
5866         }
5867
5868         return master_mbox;
5869 }
5870
5871 /**
5872  *      t4_fw_bye - end communication with FW
5873  *      @adap: the adapter
5874  *      @mbox: mailbox to use for the FW command
5875  *
5876  *      Issues a command to terminate communication with FW.
5877  */
5878 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5879 {
5880         struct fw_bye_cmd c;
5881
5882         memset(&c, 0, sizeof(c));
5883         INIT_CMD(c, BYE, WRITE);
5884         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5885 }
5886
5887 /**
5888  *      t4_init_cmd - ask FW to initialize the device
5889  *      @adap: the adapter
5890  *      @mbox: mailbox to use for the FW command
5891  *
5892  *      Issues a command to FW to partially initialize the device.  This
5893  *      performs initialization that generally doesn't depend on user input.
5894  */
5895 int t4_early_init(struct adapter *adap, unsigned int mbox)
5896 {
5897         struct fw_initialize_cmd c;
5898
5899         memset(&c, 0, sizeof(c));
5900         INIT_CMD(c, INITIALIZE, WRITE);
5901         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5902 }
5903
5904 /**
5905  *      t4_fw_reset - issue a reset to FW
5906  *      @adap: the adapter
5907  *      @mbox: mailbox to use for the FW command
5908  *      @reset: specifies the type of reset to perform
5909  *
5910  *      Issues a reset command of the specified type to FW.
5911  */
5912 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5913 {
5914         struct fw_reset_cmd c;
5915
5916         memset(&c, 0, sizeof(c));
5917         INIT_CMD(c, RESET, WRITE);
5918         c.val = cpu_to_be32(reset);
5919         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5920 }
5921
5922 /**
5923  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5924  *      @adap: the adapter
5925  *      @mbox: mailbox to use for the FW RESET command (if desired)
5926  *      @force: force uP into RESET even if FW RESET command fails
5927  *
5928  *      Issues a RESET command to firmware (if desired) with a HALT indication
5929  *      and then puts the microprocessor into RESET state.  The RESET command
5930  *      will only be issued if a legitimate mailbox is provided (mbox <=
5931  *      PCIE_FW_MASTER_M).
5932  *
5933  *      This is generally used in order for the host to safely manipulate the
5934  *      adapter without fear of conflicting with whatever the firmware might
5935  *      be doing.  The only way out of this state is to RESTART the firmware
5936  *      ...
5937  */
5938 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5939 {
5940         int ret = 0;
5941
5942         /*
5943          * If a legitimate mailbox is provided, issue a RESET command
5944          * with a HALT indication.
5945          */
5946         if (mbox <= PCIE_FW_MASTER_M) {
5947                 struct fw_reset_cmd c;
5948
5949                 memset(&c, 0, sizeof(c));
5950                 INIT_CMD(c, RESET, WRITE);
5951                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5952                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5953                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5954         }
5955
5956         /*
5957          * Normally we won't complete the operation if the firmware RESET
5958          * command fails but if our caller insists we'll go ahead and put the
5959          * uP into RESET.  This can be useful if the firmware is hung or even
5960          * missing ...  We'll have to take the risk of putting the uP into
5961          * RESET without the cooperation of firmware in that case.
5962          *
5963          * We also force the firmware's HALT flag to be on in case we bypassed
5964          * the firmware RESET command above or we're dealing with old firmware
5965          * which doesn't have the HALT capability.  This will serve as a flag
5966          * for the incoming firmware to know that it's coming out of a HALT
5967          * rather than a RESET ... if it's new enough to understand that ...
5968          */
5969         if (ret == 0 || force) {
5970                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5971                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5972                                  PCIE_FW_HALT_F);
5973         }
5974
5975         /*
5976          * And we always return the result of the firmware RESET command
5977          * even when we force the uP into RESET ...
5978          */
5979         return ret;
5980 }
5981
5982 /**
5983  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
5984  *      @adap: the adapter
5985  *      @reset: if we want to do a RESET to restart things
5986  *
5987  *      Restart firmware previously halted by t4_fw_halt().  On successful
5988  *      return the previous PF Master remains as the new PF Master and there
5989  *      is no need to issue a new HELLO command, etc.
5990  *
5991  *      We do this in two ways:
5992  *
5993  *       1. If we're dealing with newer firmware we'll simply want to take
5994  *          the chip's microprocessor out of RESET.  This will cause the
5995  *          firmware to start up from its start vector.  And then we'll loop
5996  *          until the firmware indicates it's started again (PCIE_FW.HALT
5997  *          reset to 0) or we timeout.
5998  *
5999  *       2. If we're dealing with older firmware then we'll need to RESET
6000  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6001  *          flag and automatically RESET itself on startup.
6002  */
6003 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6004 {
6005         if (reset) {
6006                 /*
6007                  * Since we're directing the RESET instead of the firmware
6008                  * doing it automatically, we need to clear the PCIE_FW.HALT
6009                  * bit.
6010                  */
6011                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6012
6013                 /*
6014                  * If we've been given a valid mailbox, first try to get the
6015                  * firmware to do the RESET.  If that works, great and we can
6016                  * return success.  Otherwise, if we haven't been given a
6017                  * valid mailbox or the RESET command failed, fall back to
6018                  * hitting the chip with a hammer.
6019                  */
6020                 if (mbox <= PCIE_FW_MASTER_M) {
6021                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6022                         msleep(100);
6023                         if (t4_fw_reset(adap, mbox,
6024                                         PIORST_F | PIORSTMODE_F) == 0)
6025                                 return 0;
6026                 }
6027
6028                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6029                 msleep(2000);
6030         } else {
6031                 int ms;
6032
6033                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6034                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6035                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6036                                 return 0;
6037                         msleep(100);
6038                         ms += 100;
6039                 }
6040                 return -ETIMEDOUT;
6041         }
6042         return 0;
6043 }
6044
6045 /**
6046  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6047  *      @adap: the adapter
6048  *      @mbox: mailbox to use for the FW RESET command (if desired)
6049  *      @fw_data: the firmware image to write
6050  *      @size: image size
6051  *      @force: force upgrade even if firmware doesn't cooperate
6052  *
6053  *      Perform all of the steps necessary for upgrading an adapter's
6054  *      firmware image.  Normally this requires the cooperation of the
6055  *      existing firmware in order to halt all existing activities
6056  *      but if an invalid mailbox token is passed in we skip that step
6057  *      (though we'll still put the adapter microprocessor into RESET in
6058  *      that case).
6059  *
6060  *      On successful return the new firmware will have been loaded and
6061  *      the adapter will have been fully RESET losing all previous setup
6062  *      state.  On unsuccessful return the adapter may be completely hosed ...
6063  *      positive errno indicates that the adapter is ~probably~ intact, a
6064  *      negative errno indicates that things are looking bad ...
6065  */
6066 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6067                   const u8 *fw_data, unsigned int size, int force)
6068 {
6069         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6070         int reset, ret;
6071
6072         if (!t4_fw_matches_chip(adap, fw_hdr))
6073                 return -EINVAL;
6074
6075         ret = t4_fw_halt(adap, mbox, force);
6076         if (ret < 0 && !force)
6077                 return ret;
6078
6079         ret = t4_load_fw(adap, fw_data, size);
6080         if (ret < 0)
6081                 return ret;
6082
6083         /*
6084          * Older versions of the firmware don't understand the new
6085          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6086          * restart.  So for newly loaded older firmware we'll have to do the
6087          * RESET for it so it starts up on a clean slate.  We can tell if
6088          * the newly loaded firmware will handle this right by checking
6089          * its header flags to see if it advertises the capability.
6090          */
6091         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6092         return t4_fw_restart(adap, mbox, reset);
6093 }
6094
6095 /**
6096  *      t4_fixup_host_params - fix up host-dependent parameters
6097  *      @adap: the adapter
6098  *      @page_size: the host's Base Page Size
6099  *      @cache_line_size: the host's Cache Line Size
6100  *
6101  *      Various registers in T4 contain values which are dependent on the
6102  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6103  *      those registers with the appropriate values as passed in ...
6104  */
6105 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6106                          unsigned int cache_line_size)
6107 {
6108         unsigned int page_shift = fls(page_size) - 1;
6109         unsigned int sge_hps = page_shift - 10;
6110         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6111         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6112         unsigned int fl_align_log = fls(fl_align) - 1;
6113
6114         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6115                      HOSTPAGESIZEPF0_V(sge_hps) |
6116                      HOSTPAGESIZEPF1_V(sge_hps) |
6117                      HOSTPAGESIZEPF2_V(sge_hps) |
6118                      HOSTPAGESIZEPF3_V(sge_hps) |
6119                      HOSTPAGESIZEPF4_V(sge_hps) |
6120                      HOSTPAGESIZEPF5_V(sge_hps) |
6121                      HOSTPAGESIZEPF6_V(sge_hps) |
6122                      HOSTPAGESIZEPF7_V(sge_hps));
6123
6124         if (is_t4(adap->params.chip)) {
6125                 t4_set_reg_field(adap, SGE_CONTROL_A,
6126                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6127                                  EGRSTATUSPAGESIZE_F,
6128                                  INGPADBOUNDARY_V(fl_align_log -
6129                                                   INGPADBOUNDARY_SHIFT_X) |
6130                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6131         } else {
6132                 /* T5 introduced the separation of the Free List Padding and
6133                  * Packing Boundaries.  Thus, we can select a smaller Padding
6134                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6135                  * Bandwidth, and use a Packing Boundary which is large enough
6136                  * to avoid false sharing between CPUs, etc.
6137                  *
6138                  * For the PCI Link, the smaller the Padding Boundary the
6139                  * better.  For the Memory Controller, a smaller Padding
6140                  * Boundary is better until we cross under the Memory Line
6141                  * Size (the minimum unit of transfer to/from Memory).  If we
6142                  * have a Padding Boundary which is smaller than the Memory
6143                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6144                  * Memory Controller which is never good.  For T5 the smallest
6145                  * Padding Boundary which we can select is 32 bytes which is
6146                  * larger than any known Memory Controller Line Size so we'll
6147                  * use that.
6148                  *
6149                  * T5 has a different interpretation of the "0" value for the
6150                  * Packing Boundary.  This corresponds to 16 bytes instead of
6151                  * the expected 32 bytes.  We never have a Packing Boundary
6152                  * less than 32 bytes so we can't use that special value but
6153                  * on the other hand, if we wanted 32 bytes, the best we can
6154                  * really do is 64 bytes.
6155                 */
6156                 if (fl_align <= 32) {
6157                         fl_align = 64;
6158                         fl_align_log = 6;
6159                 }
6160                 t4_set_reg_field(adap, SGE_CONTROL_A,
6161                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6162                                  EGRSTATUSPAGESIZE_F,
6163                                  INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
6164                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6165                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6166                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6167                                  INGPACKBOUNDARY_V(fl_align_log -
6168                                                    INGPACKBOUNDARY_SHIFT_X));
6169         }
6170         /*
6171          * Adjust various SGE Free List Host Buffer Sizes.
6172          *
6173          * This is something of a crock since we're using fixed indices into
6174          * the array which are also known by the sge.c code and the T4
6175          * Firmware Configuration File.  We need to come up with a much better
6176          * approach to managing this array.  For now, the first four entries
6177          * are:
6178          *
6179          *   0: Host Page Size
6180          *   1: 64KB
6181          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6182          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6183          *
6184          * For the single-MTU buffers in unpacked mode we need to include
6185          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6186          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6187          * Padding boundary.  All of these are accommodated in the Factory
6188          * Default Firmware Configuration File but we need to adjust it for
6189          * this host's cache line size.
6190          */
6191         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6192         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6193                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6194                      & ~(fl_align-1));
6195         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6196                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6197                      & ~(fl_align-1));
6198
6199         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6200
6201         return 0;
6202 }
6203
6204 /**
6205  *      t4_fw_initialize - ask FW to initialize the device
6206  *      @adap: the adapter
6207  *      @mbox: mailbox to use for the FW command
6208  *
6209  *      Issues a command to FW to partially initialize the device.  This
6210  *      performs initialization that generally doesn't depend on user input.
6211  */
6212 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6213 {
6214         struct fw_initialize_cmd c;
6215
6216         memset(&c, 0, sizeof(c));
6217         INIT_CMD(c, INITIALIZE, WRITE);
6218         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6219 }
6220
6221 /**
6222  *      t4_query_params_rw - query FW or device parameters
6223  *      @adap: the adapter
6224  *      @mbox: mailbox to use for the FW command
6225  *      @pf: the PF
6226  *      @vf: the VF
6227  *      @nparams: the number of parameters
6228  *      @params: the parameter names
6229  *      @val: the parameter values
6230  *      @rw: Write and read flag
6231  *
6232  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6233  *      queried at once.
6234  */
6235 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6236                        unsigned int vf, unsigned int nparams, const u32 *params,
6237                        u32 *val, int rw)
6238 {
6239         int i, ret;
6240         struct fw_params_cmd c;
6241         __be32 *p = &c.param[0].mnem;
6242
6243         if (nparams > 7)
6244                 return -EINVAL;
6245
6246         memset(&c, 0, sizeof(c));
6247         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6248                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6249                                   FW_PARAMS_CMD_PFN_V(pf) |
6250                                   FW_PARAMS_CMD_VFN_V(vf));
6251         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6252
6253         for (i = 0; i < nparams; i++) {
6254                 *p++ = cpu_to_be32(*params++);
6255                 if (rw)
6256                         *p = cpu_to_be32(*(val + i));
6257                 p++;
6258         }
6259
6260         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6261         if (ret == 0)
6262                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6263                         *val++ = be32_to_cpu(*p);
6264         return ret;
6265 }
6266
6267 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6268                     unsigned int vf, unsigned int nparams, const u32 *params,
6269                     u32 *val)
6270 {
6271         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6272 }
6273
6274 /**
6275  *      t4_set_params_timeout - sets FW or device parameters
6276  *      @adap: the adapter
6277  *      @mbox: mailbox to use for the FW command
6278  *      @pf: the PF
6279  *      @vf: the VF
6280  *      @nparams: the number of parameters
6281  *      @params: the parameter names
6282  *      @val: the parameter values
6283  *      @timeout: the timeout time
6284  *
6285  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6286  *      specified at once.
6287  */
6288 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6289                           unsigned int pf, unsigned int vf,
6290                           unsigned int nparams, const u32 *params,
6291                           const u32 *val, int timeout)
6292 {
6293         struct fw_params_cmd c;
6294         __be32 *p = &c.param[0].mnem;
6295
6296         if (nparams > 7)
6297                 return -EINVAL;
6298
6299         memset(&c, 0, sizeof(c));
6300         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6301                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6302                                   FW_PARAMS_CMD_PFN_V(pf) |
6303                                   FW_PARAMS_CMD_VFN_V(vf));
6304         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6305
6306         while (nparams--) {
6307                 *p++ = cpu_to_be32(*params++);
6308                 *p++ = cpu_to_be32(*val++);
6309         }
6310
6311         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6312 }
6313
6314 /**
6315  *      t4_set_params - sets FW or device parameters
6316  *      @adap: the adapter
6317  *      @mbox: mailbox to use for the FW command
6318  *      @pf: the PF
6319  *      @vf: the VF
6320  *      @nparams: the number of parameters
6321  *      @params: the parameter names
6322  *      @val: the parameter values
6323  *
6324  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6325  *      specified at once.
6326  */
6327 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6328                   unsigned int vf, unsigned int nparams, const u32 *params,
6329                   const u32 *val)
6330 {
6331         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6332                                      FW_CMD_MAX_TIMEOUT);
6333 }
6334
6335 /**
6336  *      t4_cfg_pfvf - configure PF/VF resource limits
6337  *      @adap: the adapter
6338  *      @mbox: mailbox to use for the FW command
6339  *      @pf: the PF being configured
6340  *      @vf: the VF being configured
6341  *      @txq: the max number of egress queues
6342  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6343  *      @rxqi: the max number of interrupt-capable ingress queues
6344  *      @rxq: the max number of interruptless ingress queues
6345  *      @tc: the PCI traffic class
6346  *      @vi: the max number of virtual interfaces
6347  *      @cmask: the channel access rights mask for the PF/VF
6348  *      @pmask: the port access rights mask for the PF/VF
6349  *      @nexact: the maximum number of exact MPS filters
6350  *      @rcaps: read capabilities
6351  *      @wxcaps: write/execute capabilities
6352  *
6353  *      Configures resource limits and capabilities for a physical or virtual
6354  *      function.
6355  */
6356 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6357                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6358                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6359                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6360                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6361 {
6362         struct fw_pfvf_cmd c;
6363
6364         memset(&c, 0, sizeof(c));
6365         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6366                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6367                                   FW_PFVF_CMD_VFN_V(vf));
6368         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6369         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6370                                      FW_PFVF_CMD_NIQ_V(rxq));
6371         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6372                                     FW_PFVF_CMD_PMASK_V(pmask) |
6373                                     FW_PFVF_CMD_NEQ_V(txq));
6374         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6375                                       FW_PFVF_CMD_NVI_V(vi) |
6376                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6377         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6378                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6379                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6380         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6381 }
6382
6383 /**
6384  *      t4_alloc_vi - allocate a virtual interface
6385  *      @adap: the adapter
6386  *      @mbox: mailbox to use for the FW command
6387  *      @port: physical port associated with the VI
6388  *      @pf: the PF owning the VI
6389  *      @vf: the VF owning the VI
6390  *      @nmac: number of MAC addresses needed (1 to 5)
6391  *      @mac: the MAC addresses of the VI
6392  *      @rss_size: size of RSS table slice associated with this VI
6393  *
6394  *      Allocates a virtual interface for the given physical port.  If @mac is
6395  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6396  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6397  *      stored consecutively so the space needed is @nmac * 6 bytes.
6398  *      Returns a negative error number or the non-negative VI id.
6399  */
6400 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6401                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6402                 unsigned int *rss_size)
6403 {
6404         int ret;
6405         struct fw_vi_cmd c;
6406
6407         memset(&c, 0, sizeof(c));
6408         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6409                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6410                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6411         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6412         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6413         c.nmac = nmac - 1;
6414
6415         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6416         if (ret)
6417                 return ret;
6418
6419         if (mac) {
6420                 memcpy(mac, c.mac, sizeof(c.mac));
6421                 switch (nmac) {
6422                 case 5:
6423                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6424                 case 4:
6425                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6426                 case 3:
6427                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6428                 case 2:
6429                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6430                 }
6431         }
6432         if (rss_size)
6433                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6434         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6435 }
6436
6437 /**
6438  *      t4_free_vi - free a virtual interface
6439  *      @adap: the adapter
6440  *      @mbox: mailbox to use for the FW command
6441  *      @pf: the PF owning the VI
6442  *      @vf: the VF owning the VI
6443  *      @viid: virtual interface identifiler
6444  *
6445  *      Free a previously allocated virtual interface.
6446  */
6447 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6448                unsigned int vf, unsigned int viid)
6449 {
6450         struct fw_vi_cmd c;
6451
6452         memset(&c, 0, sizeof(c));
6453         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6454                                   FW_CMD_REQUEST_F |
6455                                   FW_CMD_EXEC_F |
6456                                   FW_VI_CMD_PFN_V(pf) |
6457                                   FW_VI_CMD_VFN_V(vf));
6458         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6459         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6460
6461         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6462 }
6463
6464 /**
6465  *      t4_set_rxmode - set Rx properties of a virtual interface
6466  *      @adap: the adapter
6467  *      @mbox: mailbox to use for the FW command
6468  *      @viid: the VI id
6469  *      @mtu: the new MTU or -1
6470  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6471  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6472  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6473  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6474  *      @sleep_ok: if true we may sleep while awaiting command completion
6475  *
6476  *      Sets Rx properties of a virtual interface.
6477  */
6478 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6479                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6480                   bool sleep_ok)
6481 {
6482         struct fw_vi_rxmode_cmd c;
6483
6484         /* convert to FW values */
6485         if (mtu < 0)
6486                 mtu = FW_RXMODE_MTU_NO_CHG;
6487         if (promisc < 0)
6488                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6489         if (all_multi < 0)
6490                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6491         if (bcast < 0)
6492                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6493         if (vlanex < 0)
6494                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6495
6496         memset(&c, 0, sizeof(c));
6497         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6498                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6499                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6500         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6501         c.mtu_to_vlanexen =
6502                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6503                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6504                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6505                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6506                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6507         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6508 }
6509
6510 /**
6511  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6512  *      @adap: the adapter
6513  *      @mbox: mailbox to use for the FW command
6514  *      @viid: the VI id
6515  *      @free: if true any existing filters for this VI id are first removed
6516  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6517  *      @addr: the MAC address(es)
6518  *      @idx: where to store the index of each allocated filter
6519  *      @hash: pointer to hash address filter bitmap
6520  *      @sleep_ok: call is allowed to sleep
6521  *
6522  *      Allocates an exact-match filter for each of the supplied addresses and
6523  *      sets it to the corresponding address.  If @idx is not %NULL it should
6524  *      have at least @naddr entries, each of which will be set to the index of
6525  *      the filter allocated for the corresponding MAC address.  If a filter
6526  *      could not be allocated for an address its index is set to 0xffff.
6527  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6528  *      are hashed and update the hash filter bitmap pointed at by @hash.
6529  *
6530  *      Returns a negative error number or the number of filters allocated.
6531  */
6532 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6533                       unsigned int viid, bool free, unsigned int naddr,
6534                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6535 {
6536         int offset, ret = 0;
6537         struct fw_vi_mac_cmd c;
6538         unsigned int nfilters = 0;
6539         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6540         unsigned int rem = naddr;
6541
6542         if (naddr > max_naddr)
6543                 return -EINVAL;
6544
6545         for (offset = 0; offset < naddr ; /**/) {
6546                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6547                                          rem : ARRAY_SIZE(c.u.exact));
6548                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6549                                                      u.exact[fw_naddr]), 16);
6550                 struct fw_vi_mac_exact *p;
6551                 int i;
6552
6553                 memset(&c, 0, sizeof(c));
6554                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6555                                            FW_CMD_REQUEST_F |
6556                                            FW_CMD_WRITE_F |
6557                                            FW_CMD_EXEC_V(free) |
6558                                            FW_VI_MAC_CMD_VIID_V(viid));
6559                 c.freemacs_to_len16 =
6560                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6561                                     FW_CMD_LEN16_V(len16));
6562
6563                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6564                         p->valid_to_idx =
6565                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6566                                             FW_VI_MAC_CMD_IDX_V(
6567                                                     FW_VI_MAC_ADD_MAC));
6568                         memcpy(p->macaddr, addr[offset + i],
6569                                sizeof(p->macaddr));
6570                 }
6571
6572                 /* It's okay if we run out of space in our MAC address arena.
6573                  * Some of the addresses we submit may get stored so we need
6574                  * to run through the reply to see what the results were ...
6575                  */
6576                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6577                 if (ret && ret != -FW_ENOMEM)
6578                         break;
6579
6580                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6581                         u16 index = FW_VI_MAC_CMD_IDX_G(
6582                                         be16_to_cpu(p->valid_to_idx));
6583
6584                         if (idx)
6585                                 idx[offset + i] = (index >= max_naddr ?
6586                                                    0xffff : index);
6587                         if (index < max_naddr)
6588                                 nfilters++;
6589                         else if (hash)
6590                                 *hash |= (1ULL <<
6591                                           hash_mac_addr(addr[offset + i]));
6592                 }
6593
6594                 free = false;
6595                 offset += fw_naddr;
6596                 rem -= fw_naddr;
6597         }
6598
6599         if (ret == 0 || ret == -FW_ENOMEM)
6600                 ret = nfilters;
6601         return ret;
6602 }
6603
6604 /**
6605  *      t4_change_mac - modifies the exact-match filter for a MAC address
6606  *      @adap: the adapter
6607  *      @mbox: mailbox to use for the FW command
6608  *      @viid: the VI id
6609  *      @idx: index of existing filter for old value of MAC address, or -1
6610  *      @addr: the new MAC address value
6611  *      @persist: whether a new MAC allocation should be persistent
6612  *      @add_smt: if true also add the address to the HW SMT
6613  *
6614  *      Modifies an exact-match filter and sets it to the new MAC address.
6615  *      Note that in general it is not possible to modify the value of a given
6616  *      filter so the generic way to modify an address filter is to free the one
6617  *      being used by the old address value and allocate a new filter for the
6618  *      new address value.  @idx can be -1 if the address is a new addition.
6619  *
6620  *      Returns a negative error number or the index of the filter with the new
6621  *      MAC value.
6622  */
6623 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6624                   int idx, const u8 *addr, bool persist, bool add_smt)
6625 {
6626         int ret, mode;
6627         struct fw_vi_mac_cmd c;
6628         struct fw_vi_mac_exact *p = c.u.exact;
6629         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6630
6631         if (idx < 0)                             /* new allocation */
6632                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6633         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6634
6635         memset(&c, 0, sizeof(c));
6636         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6637                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6638                                    FW_VI_MAC_CMD_VIID_V(viid));
6639         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6640         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6641                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6642                                       FW_VI_MAC_CMD_IDX_V(idx));
6643         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6644
6645         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6646         if (ret == 0) {
6647                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6648                 if (ret >= max_mac_addr)
6649                         ret = -ENOMEM;
6650         }
6651         return ret;
6652 }
6653
6654 /**
6655  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6656  *      @adap: the adapter
6657  *      @mbox: mailbox to use for the FW command
6658  *      @viid: the VI id
6659  *      @ucast: whether the hash filter should also match unicast addresses
6660  *      @vec: the value to be written to the hash filter
6661  *      @sleep_ok: call is allowed to sleep
6662  *
6663  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6664  */
6665 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6666                      bool ucast, u64 vec, bool sleep_ok)
6667 {
6668         struct fw_vi_mac_cmd c;
6669
6670         memset(&c, 0, sizeof(c));
6671         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6672                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6673                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6674         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6675                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6676                                           FW_CMD_LEN16_V(1));
6677         c.u.hash.hashvec = cpu_to_be64(vec);
6678         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6679 }
6680
6681 /**
6682  *      t4_enable_vi_params - enable/disable a virtual interface
6683  *      @adap: the adapter
6684  *      @mbox: mailbox to use for the FW command
6685  *      @viid: the VI id
6686  *      @rx_en: 1=enable Rx, 0=disable Rx
6687  *      @tx_en: 1=enable Tx, 0=disable Tx
6688  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6689  *
6690  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6691  *      only makes sense when enabling a Virtual Interface ...
6692  */
6693 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6694                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6695 {
6696         struct fw_vi_enable_cmd c;
6697
6698         memset(&c, 0, sizeof(c));
6699         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6700                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6701                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6702         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6703                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6704                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6705                                      FW_LEN16(c));
6706         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6707 }
6708
6709 /**
6710  *      t4_enable_vi - enable/disable a virtual interface
6711  *      @adap: the adapter
6712  *      @mbox: mailbox to use for the FW command
6713  *      @viid: the VI id
6714  *      @rx_en: 1=enable Rx, 0=disable Rx
6715  *      @tx_en: 1=enable Tx, 0=disable Tx
6716  *
6717  *      Enables/disables a virtual interface.
6718  */
6719 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6720                  bool rx_en, bool tx_en)
6721 {
6722         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6723 }
6724
6725 /**
6726  *      t4_identify_port - identify a VI's port by blinking its LED
6727  *      @adap: the adapter
6728  *      @mbox: mailbox to use for the FW command
6729  *      @viid: the VI id
6730  *      @nblinks: how many times to blink LED at 2.5 Hz
6731  *
6732  *      Identifies a VI's port by blinking its LED.
6733  */
6734 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6735                      unsigned int nblinks)
6736 {
6737         struct fw_vi_enable_cmd c;
6738
6739         memset(&c, 0, sizeof(c));
6740         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6741                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6742                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6743         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6744         c.blinkdur = cpu_to_be16(nblinks);
6745         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6746 }
6747
6748 /**
6749  *      t4_iq_free - free an ingress queue and its FLs
6750  *      @adap: the adapter
6751  *      @mbox: mailbox to use for the FW command
6752  *      @pf: the PF owning the queues
6753  *      @vf: the VF owning the queues
6754  *      @iqtype: the ingress queue type
6755  *      @iqid: ingress queue id
6756  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6757  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6758  *
6759  *      Frees an ingress queue and its associated FLs, if any.
6760  */
6761 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6762                unsigned int vf, unsigned int iqtype, unsigned int iqid,
6763                unsigned int fl0id, unsigned int fl1id)
6764 {
6765         struct fw_iq_cmd c;
6766
6767         memset(&c, 0, sizeof(c));
6768         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6769                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6770                                   FW_IQ_CMD_VFN_V(vf));
6771         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6772         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6773         c.iqid = cpu_to_be16(iqid);
6774         c.fl0id = cpu_to_be16(fl0id);
6775         c.fl1id = cpu_to_be16(fl1id);
6776         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6777 }
6778
6779 /**
6780  *      t4_eth_eq_free - free an Ethernet egress queue
6781  *      @adap: the adapter
6782  *      @mbox: mailbox to use for the FW command
6783  *      @pf: the PF owning the queue
6784  *      @vf: the VF owning the queue
6785  *      @eqid: egress queue id
6786  *
6787  *      Frees an Ethernet egress queue.
6788  */
6789 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6790                    unsigned int vf, unsigned int eqid)
6791 {
6792         struct fw_eq_eth_cmd c;
6793
6794         memset(&c, 0, sizeof(c));
6795         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6796                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6797                                   FW_EQ_ETH_CMD_PFN_V(pf) |
6798                                   FW_EQ_ETH_CMD_VFN_V(vf));
6799         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6800         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6801         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6802 }
6803
6804 /**
6805  *      t4_ctrl_eq_free - free a control egress queue
6806  *      @adap: the adapter
6807  *      @mbox: mailbox to use for the FW command
6808  *      @pf: the PF owning the queue
6809  *      @vf: the VF owning the queue
6810  *      @eqid: egress queue id
6811  *
6812  *      Frees a control egress queue.
6813  */
6814 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6815                     unsigned int vf, unsigned int eqid)
6816 {
6817         struct fw_eq_ctrl_cmd c;
6818
6819         memset(&c, 0, sizeof(c));
6820         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6821                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6822                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
6823                                   FW_EQ_CTRL_CMD_VFN_V(vf));
6824         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6825         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6826         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6827 }
6828
6829 /**
6830  *      t4_ofld_eq_free - free an offload egress queue
6831  *      @adap: the adapter
6832  *      @mbox: mailbox to use for the FW command
6833  *      @pf: the PF owning the queue
6834  *      @vf: the VF owning the queue
6835  *      @eqid: egress queue id
6836  *
6837  *      Frees a control egress queue.
6838  */
6839 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6840                     unsigned int vf, unsigned int eqid)
6841 {
6842         struct fw_eq_ofld_cmd c;
6843
6844         memset(&c, 0, sizeof(c));
6845         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6846                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6847                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
6848                                   FW_EQ_OFLD_CMD_VFN_V(vf));
6849         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6850         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6851         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6852 }
6853
6854 /**
6855  *      t4_handle_fw_rpl - process a FW reply message
6856  *      @adap: the adapter
6857  *      @rpl: start of the FW message
6858  *
6859  *      Processes a FW message, such as link state change messages.
6860  */
6861 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6862 {
6863         u8 opcode = *(const u8 *)rpl;
6864
6865         if (opcode == FW_PORT_CMD) {    /* link/module state change message */
6866                 int speed = 0, fc = 0;
6867                 const struct fw_port_cmd *p = (void *)rpl;
6868                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6869                 int port = adap->chan_map[chan];
6870                 struct port_info *pi = adap2pinfo(adap, port);
6871                 struct link_config *lc = &pi->link_cfg;
6872                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6873                 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6874                 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6875
6876                 if (stat & FW_PORT_CMD_RXPAUSE_F)
6877                         fc |= PAUSE_RX;
6878                 if (stat & FW_PORT_CMD_TXPAUSE_F)
6879                         fc |= PAUSE_TX;
6880                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6881                         speed = 100;
6882                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6883                         speed = 1000;
6884                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6885                         speed = 10000;
6886                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6887                         speed = 40000;
6888
6889                 if (link_ok != lc->link_ok || speed != lc->speed ||
6890                     fc != lc->fc) {                    /* something changed */
6891                         lc->link_ok = link_ok;
6892                         lc->speed = speed;
6893                         lc->fc = fc;
6894                         lc->supported = be16_to_cpu(p->u.info.pcap);
6895                         t4_os_link_changed(adap, port, link_ok);
6896                 }
6897                 if (mod != pi->mod_type) {
6898                         pi->mod_type = mod;
6899                         t4_os_portmod_changed(adap, port);
6900                 }
6901         }
6902         return 0;
6903 }
6904
6905 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6906 {
6907         u16 val;
6908
6909         if (pci_is_pcie(adapter->pdev)) {
6910                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6911                 p->speed = val & PCI_EXP_LNKSTA_CLS;
6912                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6913         }
6914 }
6915
6916 /**
6917  *      init_link_config - initialize a link's SW state
6918  *      @lc: structure holding the link state
6919  *      @caps: link capabilities
6920  *
6921  *      Initializes the SW state maintained for each link, including the link's
6922  *      capabilities and default speed/flow-control/autonegotiation settings.
6923  */
6924 static void init_link_config(struct link_config *lc, unsigned int caps)
6925 {
6926         lc->supported = caps;
6927         lc->requested_speed = 0;
6928         lc->speed = 0;
6929         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6930         if (lc->supported & FW_PORT_CAP_ANEG) {
6931                 lc->advertising = lc->supported & ADVERT_MASK;
6932                 lc->autoneg = AUTONEG_ENABLE;
6933                 lc->requested_fc |= PAUSE_AUTONEG;
6934         } else {
6935                 lc->advertising = 0;
6936                 lc->autoneg = AUTONEG_DISABLE;
6937         }
6938 }
6939
6940 #define CIM_PF_NOACCESS 0xeeeeeeee
6941
6942 int t4_wait_dev_ready(void __iomem *regs)
6943 {
6944         u32 whoami;
6945
6946         whoami = readl(regs + PL_WHOAMI_A);
6947         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6948                 return 0;
6949
6950         msleep(500);
6951         whoami = readl(regs + PL_WHOAMI_A);
6952         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6953 }
6954
6955 struct flash_desc {
6956         u32 vendor_and_model_id;
6957         u32 size_mb;
6958 };
6959
6960 static int get_flash_params(struct adapter *adap)
6961 {
6962         /* Table for non-Numonix supported flash parts.  Numonix parts are left
6963          * to the preexisting code.  All flash parts have 64KB sectors.
6964          */
6965         static struct flash_desc supported_flash[] = {
6966                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
6967         };
6968
6969         int ret;
6970         u32 info;
6971
6972         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6973         if (!ret)
6974                 ret = sf1_read(adap, 3, 0, 1, &info);
6975         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6976         if (ret)
6977                 return ret;
6978
6979         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6980                 if (supported_flash[ret].vendor_and_model_id == info) {
6981                         adap->params.sf_size = supported_flash[ret].size_mb;
6982                         adap->params.sf_nsec =
6983                                 adap->params.sf_size / SF_SEC_SIZE;
6984                         return 0;
6985                 }
6986
6987         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
6988                 return -EINVAL;
6989         info >>= 16;                           /* log2 of size */
6990         if (info >= 0x14 && info < 0x18)
6991                 adap->params.sf_nsec = 1 << (info - 16);
6992         else if (info == 0x18)
6993                 adap->params.sf_nsec = 64;
6994         else
6995                 return -EINVAL;
6996         adap->params.sf_size = 1 << info;
6997         adap->params.sf_fw_start =
6998                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6999
7000         if (adap->params.sf_size < FLASH_MIN_SIZE)
7001                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7002                          adap->params.sf_size, FLASH_MIN_SIZE);
7003         return 0;
7004 }
7005
7006 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7007 {
7008         u16 val;
7009         u32 pcie_cap;
7010
7011         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7012         if (pcie_cap) {
7013                 pci_read_config_word(adapter->pdev,
7014                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7015                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7016                 val |= range;
7017                 pci_write_config_word(adapter->pdev,
7018                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7019         }
7020 }
7021
7022 /**
7023  *      t4_prep_adapter - prepare SW and HW for operation
7024  *      @adapter: the adapter
7025  *      @reset: if true perform a HW reset
7026  *
7027  *      Initialize adapter SW state for the various HW modules, set initial
7028  *      values for some adapter tunables, take PHYs out of reset, and
7029  *      initialize the MDIO interface.
7030  */
7031 int t4_prep_adapter(struct adapter *adapter)
7032 {
7033         int ret, ver;
7034         uint16_t device_id;
7035         u32 pl_rev;
7036
7037         get_pci_mode(adapter, &adapter->params.pci);
7038         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7039
7040         ret = get_flash_params(adapter);
7041         if (ret < 0) {
7042                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7043                 return ret;
7044         }
7045
7046         /* Retrieve adapter's device ID
7047          */
7048         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7049         ver = device_id >> 12;
7050         adapter->params.chip = 0;
7051         switch (ver) {
7052         case CHELSIO_T4:
7053                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7054                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7055                 adapter->params.arch.mps_tcam_size =
7056                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7057                 adapter->params.arch.mps_rplc_size = 128;
7058                 adapter->params.arch.nchan = NCHAN;
7059                 adapter->params.arch.vfcount = 128;
7060                 break;
7061         case CHELSIO_T5:
7062                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7063                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7064                 adapter->params.arch.mps_tcam_size =
7065                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7066                 adapter->params.arch.mps_rplc_size = 128;
7067                 adapter->params.arch.nchan = NCHAN;
7068                 adapter->params.arch.vfcount = 128;
7069                 break;
7070         case CHELSIO_T6:
7071                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7072                 adapter->params.arch.sge_fl_db = 0;
7073                 adapter->params.arch.mps_tcam_size =
7074                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7075                 adapter->params.arch.mps_rplc_size = 256;
7076                 adapter->params.arch.nchan = 2;
7077                 adapter->params.arch.vfcount = 256;
7078                 break;
7079         default:
7080                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7081                         device_id);
7082                 return -EINVAL;
7083         }
7084
7085         adapter->params.cim_la_size = CIMLA_SIZE;
7086         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7087
7088         /*
7089          * Default port for debugging in case we can't reach FW.
7090          */
7091         adapter->params.nports = 1;
7092         adapter->params.portvec = 1;
7093         adapter->params.vpd.cclk = 50000;
7094
7095         /* Set pci completion timeout value to 4 seconds. */
7096         set_pcie_completion_timeout(adapter, 0xd);
7097         return 0;
7098 }
7099
7100 /**
7101  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7102  *      @adapter: the adapter
7103  *      @qid: the Queue ID
7104  *      @qtype: the Ingress or Egress type for @qid
7105  *      @user: true if this request is for a user mode queue
7106  *      @pbar2_qoffset: BAR2 Queue Offset
7107  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7108  *
7109  *      Returns the BAR2 SGE Queue Registers information associated with the
7110  *      indicated Absolute Queue ID.  These are passed back in return value
7111  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7112  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7113  *
7114  *      This may return an error which indicates that BAR2 SGE Queue
7115  *      registers aren't available.  If an error is not returned, then the
7116  *      following values are returned:
7117  *
7118  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7119  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7120  *
7121  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7122  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7123  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7124  *      then these "Inferred Queue ID" register may not be used.
7125  */
7126 int t4_bar2_sge_qregs(struct adapter *adapter,
7127                       unsigned int qid,
7128                       enum t4_bar2_qtype qtype,
7129                       int user,
7130                       u64 *pbar2_qoffset,
7131                       unsigned int *pbar2_qid)
7132 {
7133         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7134         u64 bar2_page_offset, bar2_qoffset;
7135         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7136
7137         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7138         if (!user && is_t4(adapter->params.chip))
7139                 return -EINVAL;
7140
7141         /* Get our SGE Page Size parameters.
7142          */
7143         page_shift = adapter->params.sge.hps + 10;
7144         page_size = 1 << page_shift;
7145
7146         /* Get the right Queues per Page parameters for our Queue.
7147          */
7148         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7149                      ? adapter->params.sge.eq_qpp
7150                      : adapter->params.sge.iq_qpp);
7151         qpp_mask = (1 << qpp_shift) - 1;
7152
7153         /*  Calculate the basics of the BAR2 SGE Queue register area:
7154          *  o The BAR2 page the Queue registers will be in.
7155          *  o The BAR2 Queue ID.
7156          *  o The BAR2 Queue ID Offset into the BAR2 page.
7157          */
7158         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7159         bar2_qid = qid & qpp_mask;
7160         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7161
7162         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7163          * hardware will infer the Absolute Queue ID simply from the writes to
7164          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7165          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7166          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7167          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7168          * from the BAR2 Page and BAR2 Queue ID.
7169          *
7170          * One important censequence of this is that some BAR2 SGE registers
7171          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7172          * there.  But other registers synthesize the SGE Queue ID purely
7173          * from the writes to the registers -- the Write Combined Doorbell
7174          * Buffer is a good example.  These BAR2 SGE Registers are only
7175          * available for those BAR2 SGE Register areas where the SGE Absolute
7176          * Queue ID can be inferred from simple writes.
7177          */
7178         bar2_qoffset = bar2_page_offset;
7179         bar2_qinferred = (bar2_qid_offset < page_size);
7180         if (bar2_qinferred) {
7181                 bar2_qoffset += bar2_qid_offset;
7182                 bar2_qid = 0;
7183         }
7184
7185         *pbar2_qoffset = bar2_qoffset;
7186         *pbar2_qid = bar2_qid;
7187         return 0;
7188 }
7189
7190 /**
7191  *      t4_init_devlog_params - initialize adapter->params.devlog
7192  *      @adap: the adapter
7193  *
7194  *      Initialize various fields of the adapter's Firmware Device Log
7195  *      Parameters structure.
7196  */
7197 int t4_init_devlog_params(struct adapter *adap)
7198 {
7199         struct devlog_params *dparams = &adap->params.devlog;
7200         u32 pf_dparams;
7201         unsigned int devlog_meminfo;
7202         struct fw_devlog_cmd devlog_cmd;
7203         int ret;
7204
7205         /* If we're dealing with newer firmware, the Device Log Paramerters
7206          * are stored in a designated register which allows us to access the
7207          * Device Log even if we can't talk to the firmware.
7208          */
7209         pf_dparams =
7210                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7211         if (pf_dparams) {
7212                 unsigned int nentries, nentries128;
7213
7214                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7215                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7216
7217                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7218                 nentries = (nentries128 + 1) * 128;
7219                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7220
7221                 return 0;
7222         }
7223
7224         /* Otherwise, ask the firmware for it's Device Log Parameters.
7225          */
7226         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7227         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7228                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7229         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7230         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7231                          &devlog_cmd);
7232         if (ret)
7233                 return ret;
7234
7235         devlog_meminfo =
7236                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7237         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7238         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7239         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7240
7241         return 0;
7242 }
7243
7244 /**
7245  *      t4_init_sge_params - initialize adap->params.sge
7246  *      @adapter: the adapter
7247  *
7248  *      Initialize various fields of the adapter's SGE Parameters structure.
7249  */
7250 int t4_init_sge_params(struct adapter *adapter)
7251 {
7252         struct sge_params *sge_params = &adapter->params.sge;
7253         u32 hps, qpp;
7254         unsigned int s_hps, s_qpp;
7255
7256         /* Extract the SGE Page Size for our PF.
7257          */
7258         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7259         s_hps = (HOSTPAGESIZEPF0_S +
7260                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7261         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7262
7263         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7264          */
7265         s_qpp = (QUEUESPERPAGEPF0_S +
7266                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7267         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7268         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7269         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7270         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7271
7272         return 0;
7273 }
7274
7275 /**
7276  *      t4_init_tp_params - initialize adap->params.tp
7277  *      @adap: the adapter
7278  *
7279  *      Initialize various fields of the adapter's TP Parameters structure.
7280  */
7281 int t4_init_tp_params(struct adapter *adap)
7282 {
7283         int chan;
7284         u32 v;
7285
7286         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7287         adap->params.tp.tre = TIMERRESOLUTION_G(v);
7288         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7289
7290         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7291         for (chan = 0; chan < NCHAN; chan++)
7292                 adap->params.tp.tx_modq[chan] = chan;
7293
7294         /* Cache the adapter's Compressed Filter Mode and global Incress
7295          * Configuration.
7296          */
7297         if (t4_use_ldst(adap)) {
7298                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7299                                 TP_VLAN_PRI_MAP_A, 1);
7300                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7301                                 TP_INGRESS_CONFIG_A, 1);
7302         } else {
7303                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7304                                  &adap->params.tp.vlan_pri_map, 1,
7305                                  TP_VLAN_PRI_MAP_A);
7306                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7307                                  &adap->params.tp.ingress_config, 1,
7308                                  TP_INGRESS_CONFIG_A);
7309         }
7310
7311         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7312          * shift positions of several elements of the Compressed Filter Tuple
7313          * for this adapter which we need frequently ...
7314          */
7315         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7316         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7317         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7318         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7319                                                                PROTOCOL_F);
7320
7321         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7322          * represents the presence of an Outer VLAN instead of a VNIC ID.
7323          */
7324         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7325                 adap->params.tp.vnic_shift = -1;
7326
7327         return 0;
7328 }
7329
7330 /**
7331  *      t4_filter_field_shift - calculate filter field shift
7332  *      @adap: the adapter
7333  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7334  *
7335  *      Return the shift position of a filter field within the Compressed
7336  *      Filter Tuple.  The filter field is specified via its selection bit
7337  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7338  */
7339 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7340 {
7341         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7342         unsigned int sel;
7343         int field_shift;
7344
7345         if ((filter_mode & filter_sel) == 0)
7346                 return -1;
7347
7348         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7349                 switch (filter_mode & sel) {
7350                 case FCOE_F:
7351                         field_shift += FT_FCOE_W;
7352                         break;
7353                 case PORT_F:
7354                         field_shift += FT_PORT_W;
7355                         break;
7356                 case VNIC_ID_F:
7357                         field_shift += FT_VNIC_ID_W;
7358                         break;
7359                 case VLAN_F:
7360                         field_shift += FT_VLAN_W;
7361                         break;
7362                 case TOS_F:
7363                         field_shift += FT_TOS_W;
7364                         break;
7365                 case PROTOCOL_F:
7366                         field_shift += FT_PROTOCOL_W;
7367                         break;
7368                 case ETHERTYPE_F:
7369                         field_shift += FT_ETHERTYPE_W;
7370                         break;
7371                 case MACMATCH_F:
7372                         field_shift += FT_MACMATCH_W;
7373                         break;
7374                 case MPSHITTYPE_F:
7375                         field_shift += FT_MPSHITTYPE_W;
7376                         break;
7377                 case FRAGMENTATION_F:
7378                         field_shift += FT_FRAGMENTATION_W;
7379                         break;
7380                 }
7381         }
7382         return field_shift;
7383 }
7384
7385 int t4_init_rss_mode(struct adapter *adap, int mbox)
7386 {
7387         int i, ret;
7388         struct fw_rss_vi_config_cmd rvc;
7389
7390         memset(&rvc, 0, sizeof(rvc));
7391
7392         for_each_port(adap, i) {
7393                 struct port_info *p = adap2pinfo(adap, i);
7394
7395                 rvc.op_to_viid =
7396                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7397                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7398                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7399                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7400                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7401                 if (ret)
7402                         return ret;
7403                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7404         }
7405         return 0;
7406 }
7407
7408 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7409 {
7410         u8 addr[6];
7411         int ret, i, j = 0;
7412         struct fw_port_cmd c;
7413         struct fw_rss_vi_config_cmd rvc;
7414
7415         memset(&c, 0, sizeof(c));
7416         memset(&rvc, 0, sizeof(rvc));
7417
7418         for_each_port(adap, i) {
7419                 unsigned int rss_size;
7420                 struct port_info *p = adap2pinfo(adap, i);
7421
7422                 while ((adap->params.portvec & (1 << j)) == 0)
7423                         j++;
7424
7425                 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7426                                              FW_CMD_REQUEST_F | FW_CMD_READ_F |
7427                                              FW_PORT_CMD_PORTID_V(j));
7428                 c.action_to_len16 = cpu_to_be32(
7429                         FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7430                         FW_LEN16(c));
7431                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7432                 if (ret)
7433                         return ret;
7434
7435                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7436                 if (ret < 0)
7437                         return ret;
7438
7439                 p->viid = ret;
7440                 p->tx_chan = j;
7441                 p->lport = j;
7442                 p->rss_size = rss_size;
7443                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7444                 adap->port[i]->dev_port = j;
7445
7446                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7447                 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7448                         FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7449                 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7450                 p->mod_type = FW_PORT_MOD_TYPE_NA;
7451
7452                 rvc.op_to_viid =
7453                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7454                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7455                                     FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7456                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7457                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7458                 if (ret)
7459                         return ret;
7460                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7461
7462                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7463                 j++;
7464         }
7465         return 0;
7466 }
7467
7468 /**
7469  *      t4_read_cimq_cfg - read CIM queue configuration
7470  *      @adap: the adapter
7471  *      @base: holds the queue base addresses in bytes
7472  *      @size: holds the queue sizes in bytes
7473  *      @thres: holds the queue full thresholds in bytes
7474  *
7475  *      Returns the current configuration of the CIM queues, starting with
7476  *      the IBQs, then the OBQs.
7477  */
7478 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7479 {
7480         unsigned int i, v;
7481         int cim_num_obq = is_t4(adap->params.chip) ?
7482                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7483
7484         for (i = 0; i < CIM_NUM_IBQ; i++) {
7485                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7486                              QUENUMSELECT_V(i));
7487                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7488                 /* value is in 256-byte units */
7489                 *base++ = CIMQBASE_G(v) * 256;
7490                 *size++ = CIMQSIZE_G(v) * 256;
7491                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7492         }
7493         for (i = 0; i < cim_num_obq; i++) {
7494                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7495                              QUENUMSELECT_V(i));
7496                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7497                 /* value is in 256-byte units */
7498                 *base++ = CIMQBASE_G(v) * 256;
7499                 *size++ = CIMQSIZE_G(v) * 256;
7500         }
7501 }
7502
7503 /**
7504  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7505  *      @adap: the adapter
7506  *      @qid: the queue index
7507  *      @data: where to store the queue contents
7508  *      @n: capacity of @data in 32-bit words
7509  *
7510  *      Reads the contents of the selected CIM queue starting at address 0 up
7511  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7512  *      error and the number of 32-bit words actually read on success.
7513  */
7514 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7515 {
7516         int i, err, attempts;
7517         unsigned int addr;
7518         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7519
7520         if (qid > 5 || (n & 3))
7521                 return -EINVAL;
7522
7523         addr = qid * nwords;
7524         if (n > nwords)
7525                 n = nwords;
7526
7527         /* It might take 3-10ms before the IBQ debug read access is allowed.
7528          * Wait for 1 Sec with a delay of 1 usec.
7529          */
7530         attempts = 1000000;
7531
7532         for (i = 0; i < n; i++, addr++) {
7533                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7534                              IBQDBGEN_F);
7535                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7536                                       attempts, 1);
7537                 if (err)
7538                         return err;
7539                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7540         }
7541         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7542         return i;
7543 }
7544
7545 /**
7546  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7547  *      @adap: the adapter
7548  *      @qid: the queue index
7549  *      @data: where to store the queue contents
7550  *      @n: capacity of @data in 32-bit words
7551  *
7552  *      Reads the contents of the selected CIM queue starting at address 0 up
7553  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7554  *      error and the number of 32-bit words actually read on success.
7555  */
7556 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7557 {
7558         int i, err;
7559         unsigned int addr, v, nwords;
7560         int cim_num_obq = is_t4(adap->params.chip) ?
7561                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7562
7563         if ((qid > (cim_num_obq - 1)) || (n & 3))
7564                 return -EINVAL;
7565
7566         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7567                      QUENUMSELECT_V(qid));
7568         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7569
7570         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7571         nwords = CIMQSIZE_G(v) * 64;  /* same */
7572         if (n > nwords)
7573                 n = nwords;
7574
7575         for (i = 0; i < n; i++, addr++) {
7576                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7577                              OBQDBGEN_F);
7578                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7579                                       2, 1);
7580                 if (err)
7581                         return err;
7582                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7583         }
7584         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7585         return i;
7586 }
7587
7588 /**
7589  *      t4_cim_read - read a block from CIM internal address space
7590  *      @adap: the adapter
7591  *      @addr: the start address within the CIM address space
7592  *      @n: number of words to read
7593  *      @valp: where to store the result
7594  *
7595  *      Reads a block of 4-byte words from the CIM intenal address space.
7596  */
7597 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7598                 unsigned int *valp)
7599 {
7600         int ret = 0;
7601
7602         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7603                 return -EBUSY;
7604
7605         for ( ; !ret && n--; addr += 4) {
7606                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7607                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7608                                       0, 5, 2);
7609                 if (!ret)
7610                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7611         }
7612         return ret;
7613 }
7614
7615 /**
7616  *      t4_cim_write - write a block into CIM internal address space
7617  *      @adap: the adapter
7618  *      @addr: the start address within the CIM address space
7619  *      @n: number of words to write
7620  *      @valp: set of values to write
7621  *
7622  *      Writes a block of 4-byte words into the CIM intenal address space.
7623  */
7624 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7625                  const unsigned int *valp)
7626 {
7627         int ret = 0;
7628
7629         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7630                 return -EBUSY;
7631
7632         for ( ; !ret && n--; addr += 4) {
7633                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7634                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7635                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7636                                       0, 5, 2);
7637         }
7638         return ret;
7639 }
7640
7641 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7642                          unsigned int val)
7643 {
7644         return t4_cim_write(adap, addr, 1, &val);
7645 }
7646
7647 /**
7648  *      t4_cim_read_la - read CIM LA capture buffer
7649  *      @adap: the adapter
7650  *      @la_buf: where to store the LA data
7651  *      @wrptr: the HW write pointer within the capture buffer
7652  *
7653  *      Reads the contents of the CIM LA buffer with the most recent entry at
7654  *      the end of the returned data and with the entry at @wrptr first.
7655  *      We try to leave the LA in the running state we find it in.
7656  */
7657 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7658 {
7659         int i, ret;
7660         unsigned int cfg, val, idx;
7661
7662         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7663         if (ret)
7664                 return ret;
7665
7666         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
7667                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7668                 if (ret)
7669                         return ret;
7670         }
7671
7672         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7673         if (ret)
7674                 goto restart;
7675
7676         idx = UPDBGLAWRPTR_G(val);
7677         if (wrptr)
7678                 *wrptr = idx;
7679
7680         for (i = 0; i < adap->params.cim_la_size; i++) {
7681                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7682                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7683                 if (ret)
7684                         break;
7685                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7686                 if (ret)
7687                         break;
7688                 if (val & UPDBGLARDEN_F) {
7689                         ret = -ETIMEDOUT;
7690                         break;
7691                 }
7692                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7693                 if (ret)
7694                         break;
7695                 idx = (idx + 1) & UPDBGLARDPTR_M;
7696         }
7697 restart:
7698         if (cfg & UPDBGLAEN_F) {
7699                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7700                                       cfg & ~UPDBGLARDEN_F);
7701                 if (!ret)
7702                         ret = r;
7703         }
7704         return ret;
7705 }
7706
7707 /**
7708  *      t4_tp_read_la - read TP LA capture buffer
7709  *      @adap: the adapter
7710  *      @la_buf: where to store the LA data
7711  *      @wrptr: the HW write pointer within the capture buffer
7712  *
7713  *      Reads the contents of the TP LA buffer with the most recent entry at
7714  *      the end of the returned data and with the entry at @wrptr first.
7715  *      We leave the LA in the running state we find it in.
7716  */
7717 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7718 {
7719         bool last_incomplete;
7720         unsigned int i, cfg, val, idx;
7721
7722         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7723         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
7724                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7725                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7726
7727         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7728         idx = DBGLAWPTR_G(val);
7729         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7730         if (last_incomplete)
7731                 idx = (idx + 1) & DBGLARPTR_M;
7732         if (wrptr)
7733                 *wrptr = idx;
7734
7735         val &= 0xffff;
7736         val &= ~DBGLARPTR_V(DBGLARPTR_M);
7737         val |= adap->params.tp.la_mask;
7738
7739         for (i = 0; i < TPLA_SIZE; i++) {
7740                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7741                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7742                 idx = (idx + 1) & DBGLARPTR_M;
7743         }
7744
7745         /* Wipe out last entry if it isn't valid */
7746         if (last_incomplete)
7747                 la_buf[TPLA_SIZE - 1] = ~0ULL;
7748
7749         if (cfg & DBGLAENABLE_F)                    /* restore running state */
7750                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7751                              cfg | adap->params.tp.la_mask);
7752 }
7753
7754 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7755  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
7756  * state for more than the Warning Threshold then we'll issue a warning about
7757  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
7758  * appears to be hung every Warning Repeat second till the situation clears.
7759  * If the situation clears, we'll note that as well.
7760  */
7761 #define SGE_IDMA_WARN_THRESH 1
7762 #define SGE_IDMA_WARN_REPEAT 300
7763
7764 /**
7765  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7766  *      @adapter: the adapter
7767  *      @idma: the adapter IDMA Monitor state
7768  *
7769  *      Initialize the state of an SGE Ingress DMA Monitor.
7770  */
7771 void t4_idma_monitor_init(struct adapter *adapter,
7772                           struct sge_idma_monitor_state *idma)
7773 {
7774         /* Initialize the state variables for detecting an SGE Ingress DMA
7775          * hang.  The SGE has internal counters which count up on each clock
7776          * tick whenever the SGE finds its Ingress DMA State Engines in the
7777          * same state they were on the previous clock tick.  The clock used is
7778          * the Core Clock so we have a limit on the maximum "time" they can
7779          * record; typically a very small number of seconds.  For instance,
7780          * with a 600MHz Core Clock, we can only count up to a bit more than
7781          * 7s.  So we'll synthesize a larger counter in order to not run the
7782          * risk of having the "timers" overflow and give us the flexibility to
7783          * maintain a Hung SGE State Machine of our own which operates across
7784          * a longer time frame.
7785          */
7786         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7787         idma->idma_stalled[0] = 0;
7788         idma->idma_stalled[1] = 0;
7789 }
7790
7791 /**
7792  *      t4_idma_monitor - monitor SGE Ingress DMA state
7793  *      @adapter: the adapter
7794  *      @idma: the adapter IDMA Monitor state
7795  *      @hz: number of ticks/second
7796  *      @ticks: number of ticks since the last IDMA Monitor call
7797  */
7798 void t4_idma_monitor(struct adapter *adapter,
7799                      struct sge_idma_monitor_state *idma,
7800                      int hz, int ticks)
7801 {
7802         int i, idma_same_state_cnt[2];
7803
7804          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
7805           * are counters inside the SGE which count up on each clock when the
7806           * SGE finds its Ingress DMA State Engines in the same states they
7807           * were in the previous clock.  The counters will peg out at
7808           * 0xffffffff without wrapping around so once they pass the 1s
7809           * threshold they'll stay above that till the IDMA state changes.
7810           */
7811         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7812         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7813         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7814
7815         for (i = 0; i < 2; i++) {
7816                 u32 debug0, debug11;
7817
7818                 /* If the Ingress DMA Same State Counter ("timer") is less
7819                  * than 1s, then we can reset our synthesized Stall Timer and
7820                  * continue.  If we have previously emitted warnings about a
7821                  * potential stalled Ingress Queue, issue a note indicating
7822                  * that the Ingress Queue has resumed forward progress.
7823                  */
7824                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7825                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7826                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7827                                          "resumed after %d seconds\n",
7828                                          i, idma->idma_qid[i],
7829                                          idma->idma_stalled[i] / hz);
7830                         idma->idma_stalled[i] = 0;
7831                         continue;
7832                 }
7833
7834                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7835                  * domain.  The first time we get here it'll be because we
7836                  * passed the 1s Threshold; each additional time it'll be
7837                  * because the RX Timer Callback is being fired on its regular
7838                  * schedule.
7839                  *
7840                  * If the stall is below our Potential Hung Ingress Queue
7841                  * Warning Threshold, continue.
7842                  */
7843                 if (idma->idma_stalled[i] == 0) {
7844                         idma->idma_stalled[i] = hz;
7845                         idma->idma_warn[i] = 0;
7846                 } else {
7847                         idma->idma_stalled[i] += ticks;
7848                         idma->idma_warn[i] -= ticks;
7849                 }
7850
7851                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7852                         continue;
7853
7854                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7855                  */
7856                 if (idma->idma_warn[i] > 0)
7857                         continue;
7858                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7859
7860                 /* Read and save the SGE IDMA State and Queue ID information.
7861                  * We do this every time in case it changes across time ...
7862                  * can't be too careful ...
7863                  */
7864                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7865                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7866                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7867
7868                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7869                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7870                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7871
7872                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7873                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7874                          i, idma->idma_qid[i], idma->idma_state[i],
7875                          idma->idma_stalled[i] / hz,
7876                          debug0, debug11);
7877                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7878         }
7879 }