]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/82571.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82571EB Gigabit Ethernet Controller
30  * 82571EB Gigabit Ethernet Controller (Copper)
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  * 82574L Gigabit Network Connection
42  * 82583V Gigabit Network Connection
43  */
44
45 #include "e1000.h"
46
47 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
48 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
49 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
50 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
51 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
52                                       u16 words, u16 *data);
53 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
54 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
55 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
56 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
57 static s32 e1000_led_on_82574(struct e1000_hw *hw);
58 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
59 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
60 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
61 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
62 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
63 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
64 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
65
66 /**
67  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
68  *  @hw: pointer to the HW structure
69  **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71 {
72         struct e1000_phy_info *phy = &hw->phy;
73         s32 ret_val;
74
75         if (hw->phy.media_type != e1000_media_type_copper) {
76                 phy->type = e1000_phy_none;
77                 return 0;
78         }
79
80         phy->addr = 1;
81         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82         phy->reset_delay_us = 100;
83
84         phy->ops.power_up = e1000_power_up_phy_copper;
85         phy->ops.power_down = e1000_power_down_phy_copper_82571;
86
87         switch (hw->mac.type) {
88         case e1000_82571:
89         case e1000_82572:
90                 phy->type = e1000_phy_igp_2;
91                 break;
92         case e1000_82573:
93                 phy->type = e1000_phy_m88;
94                 break;
95         case e1000_82574:
96         case e1000_82583:
97                 phy->type = e1000_phy_bm;
98                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
99                 phy->ops.release = e1000_put_hw_semaphore_82574;
100                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
101                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
102                 break;
103         default:
104                 return -E1000_ERR_PHY;
105                 break;
106         }
107
108         /* This can only be done after all function pointers are setup. */
109         ret_val = e1000_get_phy_id_82571(hw);
110         if (ret_val) {
111                 e_dbg("Error getting PHY ID\n");
112                 return ret_val;
113         }
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         ret_val = -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         ret_val = -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         ret_val = -E1000_ERR_PHY;
130                 break;
131         default:
132                 ret_val = -E1000_ERR_PHY;
133                 break;
134         }
135
136         if (ret_val)
137                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
138
139         return ret_val;
140 }
141
142 /**
143  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  **/
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 {
148         struct e1000_nvm_info *nvm = &hw->nvm;
149         u32 eecd = er32(EECD);
150         u16 size;
151
152         nvm->opcode_bits = 8;
153         nvm->delay_usec = 1;
154         switch (nvm->override) {
155         case e1000_nvm_override_spi_large:
156                 nvm->page_size = 32;
157                 nvm->address_bits = 16;
158                 break;
159         case e1000_nvm_override_spi_small:
160                 nvm->page_size = 8;
161                 nvm->address_bits = 8;
162                 break;
163         default:
164                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166                 break;
167         }
168
169         switch (hw->mac.type) {
170         case e1000_82573:
171         case e1000_82574:
172         case e1000_82583:
173                 if (((eecd >> 15) & 0x3) == 0x3) {
174                         nvm->type = e1000_nvm_flash_hw;
175                         nvm->word_size = 2048;
176                         /* Autonomous Flash update bit must be cleared due
177                          * to Flash update issue.
178                          */
179                         eecd &= ~E1000_EECD_AUPDEN;
180                         ew32(EECD, eecd);
181                         break;
182                 }
183                 /* Fall Through */
184         default:
185                 nvm->type = e1000_nvm_eeprom_spi;
186                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187                              E1000_EECD_SIZE_EX_SHIFT);
188                 /* Added to a constant, "size" becomes the left-shift value
189                  * for setting word_size.
190                  */
191                 size += NVM_WORD_SIZE_BASE_SHIFT;
192
193                 /* EEPROM access above 16k is unsupported */
194                 if (size > 14)
195                         size = 14;
196                 nvm->word_size = 1 << size;
197                 break;
198         }
199
200         /* Function Pointers */
201         switch (hw->mac.type) {
202         case e1000_82574:
203         case e1000_82583:
204                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
205                 nvm->ops.release = e1000_put_hw_semaphore_82574;
206                 break;
207         default:
208                 break;
209         }
210
211         return 0;
212 }
213
214 /**
215  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
216  *  @hw: pointer to the HW structure
217  **/
218 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
219 {
220         struct e1000_mac_info *mac = &hw->mac;
221         u32 swsm = 0;
222         u32 swsm2 = 0;
223         bool force_clear_smbi = false;
224
225         /* Set media type and media-dependent function pointers */
226         switch (hw->adapter->pdev->device) {
227         case E1000_DEV_ID_82571EB_FIBER:
228         case E1000_DEV_ID_82572EI_FIBER:
229         case E1000_DEV_ID_82571EB_QUAD_FIBER:
230                 hw->phy.media_type = e1000_media_type_fiber;
231                 mac->ops.setup_physical_interface =
232                     e1000_setup_fiber_serdes_link_82571;
233                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
234                 mac->ops.get_link_up_info =
235                     e1000e_get_speed_and_duplex_fiber_serdes;
236                 break;
237         case E1000_DEV_ID_82571EB_SERDES:
238         case E1000_DEV_ID_82571EB_SERDES_DUAL:
239         case E1000_DEV_ID_82571EB_SERDES_QUAD:
240         case E1000_DEV_ID_82572EI_SERDES:
241                 hw->phy.media_type = e1000_media_type_internal_serdes;
242                 mac->ops.setup_physical_interface =
243                     e1000_setup_fiber_serdes_link_82571;
244                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
245                 mac->ops.get_link_up_info =
246                     e1000e_get_speed_and_duplex_fiber_serdes;
247                 break;
248         default:
249                 hw->phy.media_type = e1000_media_type_copper;
250                 mac->ops.setup_physical_interface =
251                     e1000_setup_copper_link_82571;
252                 mac->ops.check_for_link = e1000e_check_for_copper_link;
253                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
254                 break;
255         }
256
257         /* Set mta register count */
258         mac->mta_reg_count = 128;
259         /* Set rar entry count */
260         mac->rar_entry_count = E1000_RAR_ENTRIES;
261         /* Adaptive IFS supported */
262         mac->adaptive_ifs = true;
263
264         /* MAC-specific function pointers */
265         switch (hw->mac.type) {
266         case e1000_82573:
267                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
268                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
269                 mac->ops.led_on = e1000e_led_on_generic;
270                 mac->ops.blink_led = e1000e_blink_led_generic;
271
272                 /* FWSM register */
273                 mac->has_fwsm = true;
274                 /* ARC supported; valid only if manageability features are
275                  * enabled.
276                  */
277                 mac->arc_subsystem_valid = !!(er32(FWSM) &
278                                               E1000_FWSM_MODE_MASK);
279                 break;
280         case e1000_82574:
281         case e1000_82583:
282                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
283                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
284                 mac->ops.led_on = e1000_led_on_82574;
285                 break;
286         default:
287                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
288                 mac->ops.led_on = e1000e_led_on_generic;
289                 mac->ops.blink_led = e1000e_blink_led_generic;
290
291                 /* FWSM register */
292                 mac->has_fwsm = true;
293                 break;
294         }
295
296         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
297          * first NVM or PHY access. This should be done for single-port
298          * devices, and for one port only on dual-port devices so that
299          * for those devices we can still use the SMBI lock to synchronize
300          * inter-port accesses to the PHY & NVM.
301          */
302         switch (hw->mac.type) {
303         case e1000_82571:
304         case e1000_82572:
305                 swsm2 = er32(SWSM2);
306
307                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
308                         /* Only do this for the first interface on this card */
309                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
310                         force_clear_smbi = true;
311                 } else {
312                         force_clear_smbi = false;
313                 }
314                 break;
315         default:
316                 force_clear_smbi = true;
317                 break;
318         }
319
320         if (force_clear_smbi) {
321                 /* Make sure SWSM.SMBI is clear */
322                 swsm = er32(SWSM);
323                 if (swsm & E1000_SWSM_SMBI) {
324                         /* This bit should not be set on a first interface, and
325                          * indicates that the bootagent or EFI code has
326                          * improperly left this bit enabled
327                          */
328                         e_dbg("Please update your 82571 Bootagent\n");
329                 }
330                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
331         }
332
333         /* Initialize device specific counter of SMBI acquisition timeouts. */
334         hw->dev_spec.e82571.smb_counter = 0;
335
336         return 0;
337 }
338
339 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
340 {
341         struct e1000_hw *hw = &adapter->hw;
342         static int global_quad_port_a;  /* global port a indication */
343         struct pci_dev *pdev = adapter->pdev;
344         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
345         s32 rc;
346
347         rc = e1000_init_mac_params_82571(hw);
348         if (rc)
349                 return rc;
350
351         rc = e1000_init_nvm_params_82571(hw);
352         if (rc)
353                 return rc;
354
355         rc = e1000_init_phy_params_82571(hw);
356         if (rc)
357                 return rc;
358
359         /* tag quad port adapters first, it's used below */
360         switch (pdev->device) {
361         case E1000_DEV_ID_82571EB_QUAD_COPPER:
362         case E1000_DEV_ID_82571EB_QUAD_FIBER:
363         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
364         case E1000_DEV_ID_82571PT_QUAD_COPPER:
365                 adapter->flags |= FLAG_IS_QUAD_PORT;
366                 /* mark the first port */
367                 if (global_quad_port_a == 0)
368                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
369                 /* Reset for multiple quad port adapters */
370                 global_quad_port_a++;
371                 if (global_quad_port_a == 4)
372                         global_quad_port_a = 0;
373                 break;
374         default:
375                 break;
376         }
377
378         switch (adapter->hw.mac.type) {
379         case e1000_82571:
380                 /* these dual ports don't have WoL on port B at all */
381                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
382                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
383                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
384                     (is_port_b))
385                         adapter->flags &= ~FLAG_HAS_WOL;
386                 /* quad ports only support WoL on port A */
387                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
388                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
389                         adapter->flags &= ~FLAG_HAS_WOL;
390                 /* Does not support WoL on any port */
391                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
392                         adapter->flags &= ~FLAG_HAS_WOL;
393                 break;
394         case e1000_82573:
395                 if (pdev->device == E1000_DEV_ID_82573L) {
396                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
398                 }
399                 break;
400         default:
401                 break;
402         }
403
404         return 0;
405 }
406
407 /**
408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409  *  @hw: pointer to the HW structure
410  *
411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
412  *  revision in the hardware structure.
413  **/
414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415 {
416         struct e1000_phy_info *phy = &hw->phy;
417         s32 ret_val;
418         u16 phy_id = 0;
419
420         switch (hw->mac.type) {
421         case e1000_82571:
422         case e1000_82572:
423                 /* The 82571 firmware may still be configuring the PHY.
424                  * In this case, we cannot access the PHY until the
425                  * configuration is done.  So we explicitly set the
426                  * PHY ID.
427                  */
428                 phy->id = IGP01E1000_I_PHY_ID;
429                 break;
430         case e1000_82573:
431                 return e1000e_get_phy_id(hw);
432                 break;
433         case e1000_82574:
434         case e1000_82583:
435                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
436                 if (ret_val)
437                         return ret_val;
438
439                 phy->id = (u32)(phy_id << 16);
440                 usleep_range(20, 40);
441                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
442                 if (ret_val)
443                         return ret_val;
444
445                 phy->id |= (u32)(phy_id);
446                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
447                 break;
448         default:
449                 return -E1000_ERR_PHY;
450                 break;
451         }
452
453         return 0;
454 }
455
456 /**
457  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458  *  @hw: pointer to the HW structure
459  *
460  *  Acquire the HW semaphore to access the PHY or NVM
461  **/
462 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
463 {
464         u32 swsm;
465         s32 sw_timeout = hw->nvm.word_size + 1;
466         s32 fw_timeout = hw->nvm.word_size + 1;
467         s32 i = 0;
468
469         /* If we have timedout 3 times on trying to acquire
470          * the inter-port SMBI semaphore, there is old code
471          * operating on the other port, and it is not
472          * releasing SMBI. Modify the number of times that
473          * we try for the semaphore to interwork with this
474          * older code.
475          */
476         if (hw->dev_spec.e82571.smb_counter > 2)
477                 sw_timeout = 1;
478
479         /* Get the SW semaphore */
480         while (i < sw_timeout) {
481                 swsm = er32(SWSM);
482                 if (!(swsm & E1000_SWSM_SMBI))
483                         break;
484
485                 usleep_range(50, 100);
486                 i++;
487         }
488
489         if (i == sw_timeout) {
490                 e_dbg("Driver can't access device - SMBI bit is set.\n");
491                 hw->dev_spec.e82571.smb_counter++;
492         }
493         /* Get the FW semaphore. */
494         for (i = 0; i < fw_timeout; i++) {
495                 swsm = er32(SWSM);
496                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497
498                 /* Semaphore acquired if bit latched */
499                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
500                         break;
501
502                 usleep_range(50, 100);
503         }
504
505         if (i == fw_timeout) {
506                 /* Release semaphores */
507                 e1000_put_hw_semaphore_82571(hw);
508                 e_dbg("Driver can't access the NVM\n");
509                 return -E1000_ERR_NVM;
510         }
511
512         return 0;
513 }
514
515 /**
516  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
517  *  @hw: pointer to the HW structure
518  *
519  *  Release hardware semaphore used to access the PHY or NVM
520  **/
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522 {
523         u32 swsm;
524
525         swsm = er32(SWSM);
526         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
527         ew32(SWSM, swsm);
528 }
529
530 /**
531  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
532  *  @hw: pointer to the HW structure
533  *
534  *  Acquire the HW semaphore during reset.
535  *
536  **/
537 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
538 {
539         u32 extcnf_ctrl;
540         s32 i = 0;
541
542         extcnf_ctrl = er32(EXTCNF_CTRL);
543         do {
544                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
545                 ew32(EXTCNF_CTRL, extcnf_ctrl);
546                 extcnf_ctrl = er32(EXTCNF_CTRL);
547
548                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
549                         break;
550
551                 usleep_range(2000, 4000);
552                 i++;
553         } while (i < MDIO_OWNERSHIP_TIMEOUT);
554
555         if (i == MDIO_OWNERSHIP_TIMEOUT) {
556                 /* Release semaphores */
557                 e1000_put_hw_semaphore_82573(hw);
558                 e_dbg("Driver can't access the PHY\n");
559                 return -E1000_ERR_PHY;
560         }
561
562         return 0;
563 }
564
565 /**
566  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
567  *  @hw: pointer to the HW structure
568  *
569  *  Release hardware semaphore used during reset.
570  *
571  **/
572 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
573 {
574         u32 extcnf_ctrl;
575
576         extcnf_ctrl = er32(EXTCNF_CTRL);
577         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578         ew32(EXTCNF_CTRL, extcnf_ctrl);
579 }
580
581 static DEFINE_MUTEX(swflag_mutex);
582
583 /**
584  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
585  *  @hw: pointer to the HW structure
586  *
587  *  Acquire the HW semaphore to access the PHY or NVM.
588  *
589  **/
590 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
591 {
592         s32 ret_val;
593
594         mutex_lock(&swflag_mutex);
595         ret_val = e1000_get_hw_semaphore_82573(hw);
596         if (ret_val)
597                 mutex_unlock(&swflag_mutex);
598         return ret_val;
599 }
600
601 /**
602  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
603  *  @hw: pointer to the HW structure
604  *
605  *  Release hardware semaphore used to access the PHY or NVM
606  *
607  **/
608 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
609 {
610         e1000_put_hw_semaphore_82573(hw);
611         mutex_unlock(&swflag_mutex);
612 }
613
614 /**
615  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
616  *  @hw: pointer to the HW structure
617  *  @active: true to enable LPLU, false to disable
618  *
619  *  Sets the LPLU D0 state according to the active flag.
620  *  LPLU will not be activated unless the
621  *  device autonegotiation advertisement meets standards of
622  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
623  *  This is a function pointer entry point only called by
624  *  PHY setup routines.
625  **/
626 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
627 {
628         u32 data = er32(POEMB);
629
630         if (active)
631                 data |= E1000_PHY_CTRL_D0A_LPLU;
632         else
633                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
634
635         ew32(POEMB, data);
636         return 0;
637 }
638
639 /**
640  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
641  *  @hw: pointer to the HW structure
642  *  @active: boolean used to enable/disable lplu
643  *
644  *  The low power link up (lplu) state is set to the power management level D3
645  *  when active is true, else clear lplu for D3. LPLU
646  *  is used during Dx states where the power conservation is most important.
647  *  During driver activity, SmartSpeed should be enabled so performance is
648  *  maintained.
649  **/
650 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
651 {
652         u32 data = er32(POEMB);
653
654         if (!active) {
655                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
656         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
657                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
658                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
659                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
660         }
661
662         ew32(POEMB, data);
663         return 0;
664 }
665
666 /**
667  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
668  *  @hw: pointer to the HW structure
669  *
670  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
671  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
672  *  for EEPROM access grant bit.  If the access grant bit is not set, release
673  *  hardware semaphore.
674  **/
675 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
676 {
677         s32 ret_val;
678
679         ret_val = e1000_get_hw_semaphore_82571(hw);
680         if (ret_val)
681                 return ret_val;
682
683         switch (hw->mac.type) {
684         case e1000_82573:
685                 break;
686         default:
687                 ret_val = e1000e_acquire_nvm(hw);
688                 break;
689         }
690
691         if (ret_val)
692                 e1000_put_hw_semaphore_82571(hw);
693
694         return ret_val;
695 }
696
697 /**
698  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
699  *  @hw: pointer to the HW structure
700  *
701  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
702  **/
703 static void e1000_release_nvm_82571(struct e1000_hw *hw)
704 {
705         e1000e_release_nvm(hw);
706         e1000_put_hw_semaphore_82571(hw);
707 }
708
709 /**
710  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
711  *  @hw: pointer to the HW structure
712  *  @offset: offset within the EEPROM to be written to
713  *  @words: number of words to write
714  *  @data: 16 bit word(s) to be written to the EEPROM
715  *
716  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
717  *
718  *  If e1000e_update_nvm_checksum is not called after this function, the
719  *  EEPROM will most likely contain an invalid checksum.
720  **/
721 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
722                                  u16 *data)
723 {
724         s32 ret_val;
725
726         switch (hw->mac.type) {
727         case e1000_82573:
728         case e1000_82574:
729         case e1000_82583:
730                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
731                 break;
732         case e1000_82571:
733         case e1000_82572:
734                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
735                 break;
736         default:
737                 ret_val = -E1000_ERR_NVM;
738                 break;
739         }
740
741         return ret_val;
742 }
743
744 /**
745  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
746  *  @hw: pointer to the HW structure
747  *
748  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
749  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
750  *  value to the EEPROM.
751  **/
752 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
753 {
754         u32 eecd;
755         s32 ret_val;
756         u16 i;
757
758         ret_val = e1000e_update_nvm_checksum_generic(hw);
759         if (ret_val)
760                 return ret_val;
761
762         /* If our nvm is an EEPROM, then we're done
763          * otherwise, commit the checksum to the flash NVM.
764          */
765         if (hw->nvm.type != e1000_nvm_flash_hw)
766                 return 0;
767
768         /* Check for pending operations. */
769         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
770                 usleep_range(1000, 2000);
771                 if (!(er32(EECD) & E1000_EECD_FLUPD))
772                         break;
773         }
774
775         if (i == E1000_FLASH_UPDATES)
776                 return -E1000_ERR_NVM;
777
778         /* Reset the firmware if using STM opcode. */
779         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
780                 /* The enabling of and the actual reset must be done
781                  * in two write cycles.
782                  */
783                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
784                 e1e_flush();
785                 ew32(HICR, E1000_HICR_FW_RESET);
786         }
787
788         /* Commit the write to flash */
789         eecd = er32(EECD) | E1000_EECD_FLUPD;
790         ew32(EECD, eecd);
791
792         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
793                 usleep_range(1000, 2000);
794                 if (!(er32(EECD) & E1000_EECD_FLUPD))
795                         break;
796         }
797
798         if (i == E1000_FLASH_UPDATES)
799                 return -E1000_ERR_NVM;
800
801         return 0;
802 }
803
804 /**
805  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
806  *  @hw: pointer to the HW structure
807  *
808  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
809  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
810  **/
811 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
812 {
813         if (hw->nvm.type == e1000_nvm_flash_hw)
814                 e1000_fix_nvm_checksum_82571(hw);
815
816         return e1000e_validate_nvm_checksum_generic(hw);
817 }
818
819 /**
820  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
821  *  @hw: pointer to the HW structure
822  *  @offset: offset within the EEPROM to be written to
823  *  @words: number of words to write
824  *  @data: 16 bit word(s) to be written to the EEPROM
825  *
826  *  After checking for invalid values, poll the EEPROM to ensure the previous
827  *  command has completed before trying to write the next word.  After write
828  *  poll for completion.
829  *
830  *  If e1000e_update_nvm_checksum is not called after this function, the
831  *  EEPROM will most likely contain an invalid checksum.
832  **/
833 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
834                                       u16 words, u16 *data)
835 {
836         struct e1000_nvm_info *nvm = &hw->nvm;
837         u32 i, eewr = 0;
838         s32 ret_val = 0;
839
840         /* A check for invalid values:  offset too large, too many words,
841          * and not enough words.
842          */
843         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
844             (words == 0)) {
845                 e_dbg("nvm parameter(s) out of bounds\n");
846                 return -E1000_ERR_NVM;
847         }
848
849         for (i = 0; i < words; i++) {
850                 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
851                         ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
852                         E1000_NVM_RW_REG_START);
853
854                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
855                 if (ret_val)
856                         break;
857
858                 ew32(EEWR, eewr);
859
860                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
861                 if (ret_val)
862                         break;
863         }
864
865         return ret_val;
866 }
867
868 /**
869  *  e1000_get_cfg_done_82571 - Poll for configuration done
870  *  @hw: pointer to the HW structure
871  *
872  *  Reads the management control register for the config done bit to be set.
873  **/
874 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
875 {
876         s32 timeout = PHY_CFG_TIMEOUT;
877
878         while (timeout) {
879                 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
880                         break;
881                 usleep_range(1000, 2000);
882                 timeout--;
883         }
884         if (!timeout) {
885                 e_dbg("MNG configuration cycle has not completed.\n");
886                 return -E1000_ERR_RESET;
887         }
888
889         return 0;
890 }
891
892 /**
893  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
894  *  @hw: pointer to the HW structure
895  *  @active: true to enable LPLU, false to disable
896  *
897  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
898  *  this function also disables smart speed and vice versa.  LPLU will not be
899  *  activated unless the device autonegotiation advertisement meets standards
900  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
901  *  pointer entry point only called by PHY setup routines.
902  **/
903 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
904 {
905         struct e1000_phy_info *phy = &hw->phy;
906         s32 ret_val;
907         u16 data;
908
909         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
910         if (ret_val)
911                 return ret_val;
912
913         if (active) {
914                 data |= IGP02E1000_PM_D0_LPLU;
915                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
916                 if (ret_val)
917                         return ret_val;
918
919                 /* When LPLU is enabled, we should disable SmartSpeed */
920                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
921                 if (ret_val)
922                         return ret_val;
923                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
924                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
925                 if (ret_val)
926                         return ret_val;
927         } else {
928                 data &= ~IGP02E1000_PM_D0_LPLU;
929                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
930                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
931                  * during Dx states where the power conservation is most
932                  * important.  During driver activity we should enable
933                  * SmartSpeed, so performance is maintained.
934                  */
935                 if (phy->smart_speed == e1000_smart_speed_on) {
936                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
937                                            &data);
938                         if (ret_val)
939                                 return ret_val;
940
941                         data |= IGP01E1000_PSCFR_SMART_SPEED;
942                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
943                                            data);
944                         if (ret_val)
945                                 return ret_val;
946                 } else if (phy->smart_speed == e1000_smart_speed_off) {
947                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
948                                            &data);
949                         if (ret_val)
950                                 return ret_val;
951
952                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
954                                            data);
955                         if (ret_val)
956                                 return ret_val;
957                 }
958         }
959
960         return 0;
961 }
962
963 /**
964  *  e1000_reset_hw_82571 - Reset hardware
965  *  @hw: pointer to the HW structure
966  *
967  *  This resets the hardware into a known state.
968  **/
969 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
970 {
971         u32 ctrl, ctrl_ext, eecd, tctl;
972         s32 ret_val;
973
974         /* Prevent the PCI-E bus from sticking if there is no TLP connection
975          * on the last TLP read/write transaction when MAC is reset.
976          */
977         ret_val = e1000e_disable_pcie_master(hw);
978         if (ret_val)
979                 e_dbg("PCI-E Master disable polling has failed.\n");
980
981         e_dbg("Masking off all interrupts\n");
982         ew32(IMC, 0xffffffff);
983
984         ew32(RCTL, 0);
985         tctl = er32(TCTL);
986         tctl &= ~E1000_TCTL_EN;
987         ew32(TCTL, tctl);
988         e1e_flush();
989
990         usleep_range(10000, 20000);
991
992         /* Must acquire the MDIO ownership before MAC reset.
993          * Ownership defaults to firmware after a reset.
994          */
995         switch (hw->mac.type) {
996         case e1000_82573:
997                 ret_val = e1000_get_hw_semaphore_82573(hw);
998                 break;
999         case e1000_82574:
1000         case e1000_82583:
1001                 ret_val = e1000_get_hw_semaphore_82574(hw);
1002                 break;
1003         default:
1004                 break;
1005         }
1006
1007         ctrl = er32(CTRL);
1008
1009         e_dbg("Issuing a global reset to MAC\n");
1010         ew32(CTRL, ctrl | E1000_CTRL_RST);
1011
1012         /* Must release MDIO ownership and mutex after MAC reset. */
1013         switch (hw->mac.type) {
1014         case e1000_82574:
1015         case e1000_82583:
1016                 /* Release mutex only if the hw semaphore is acquired */
1017                 if (!ret_val)
1018                         e1000_put_hw_semaphore_82574(hw);
1019                 break;
1020         default:
1021                 break;
1022         }
1023
1024         if (hw->nvm.type == e1000_nvm_flash_hw) {
1025                 usleep_range(10, 20);
1026                 ctrl_ext = er32(CTRL_EXT);
1027                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1028                 ew32(CTRL_EXT, ctrl_ext);
1029                 e1e_flush();
1030         }
1031
1032         ret_val = e1000e_get_auto_rd_done(hw);
1033         if (ret_val)
1034                 /* We don't want to continue accessing MAC registers. */
1035                 return ret_val;
1036
1037         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1038          * Need to wait for Phy configuration completion before accessing
1039          * NVM and Phy.
1040          */
1041
1042         switch (hw->mac.type) {
1043         case e1000_82571:
1044         case e1000_82572:
1045                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1046                  * to access the EEPROM.
1047                  */
1048                 eecd = er32(EECD);
1049                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1050                 ew32(EECD, eecd);
1051                 break;
1052         case e1000_82573:
1053         case e1000_82574:
1054         case e1000_82583:
1055                 msleep(25);
1056                 break;
1057         default:
1058                 break;
1059         }
1060
1061         /* Clear any pending interrupt events. */
1062         ew32(IMC, 0xffffffff);
1063         er32(ICR);
1064
1065         if (hw->mac.type == e1000_82571) {
1066                 /* Install any alternate MAC address into RAR0 */
1067                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1068                 if (ret_val)
1069                         return ret_val;
1070
1071                 e1000e_set_laa_state_82571(hw, true);
1072         }
1073
1074         /* Reinitialize the 82571 serdes link state machine */
1075         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1076                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  *  e1000_init_hw_82571 - Initialize hardware
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  This inits the hardware readying it for operation.
1086  **/
1087 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1088 {
1089         struct e1000_mac_info *mac = &hw->mac;
1090         u32 reg_data;
1091         s32 ret_val;
1092         u16 i, rar_count = mac->rar_entry_count;
1093
1094         e1000_initialize_hw_bits_82571(hw);
1095
1096         /* Initialize identification LED */
1097         ret_val = mac->ops.id_led_init(hw);
1098         /* An error is not fatal and we should not stop init due to this */
1099         if (ret_val)
1100                 e_dbg("Error initializing identification LED\n");
1101
1102         /* Disabling VLAN filtering */
1103         e_dbg("Initializing the IEEE VLAN\n");
1104         mac->ops.clear_vfta(hw);
1105
1106         /* Setup the receive address.
1107          * If, however, a locally administered address was assigned to the
1108          * 82571, we must reserve a RAR for it to work around an issue where
1109          * resetting one port will reload the MAC on the other port.
1110          */
1111         if (e1000e_get_laa_state_82571(hw))
1112                 rar_count--;
1113         e1000e_init_rx_addrs(hw, rar_count);
1114
1115         /* Zero out the Multicast HASH table */
1116         e_dbg("Zeroing the MTA\n");
1117         for (i = 0; i < mac->mta_reg_count; i++)
1118                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1119
1120         /* Setup link and flow control */
1121         ret_val = mac->ops.setup_link(hw);
1122
1123         /* Set the transmit descriptor write-back policy */
1124         reg_data = er32(TXDCTL(0));
1125         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1126                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1127         ew32(TXDCTL(0), reg_data);
1128
1129         /* ...for both queues. */
1130         switch (mac->type) {
1131         case e1000_82573:
1132                 e1000e_enable_tx_pkt_filtering(hw);
1133                 /* fall through */
1134         case e1000_82574:
1135         case e1000_82583:
1136                 reg_data = er32(GCR);
1137                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1138                 ew32(GCR, reg_data);
1139                 break;
1140         default:
1141                 reg_data = er32(TXDCTL(1));
1142                 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1143                             E1000_TXDCTL_FULL_TX_DESC_WB |
1144                             E1000_TXDCTL_COUNT_DESC);
1145                 ew32(TXDCTL(1), reg_data);
1146                 break;
1147         }
1148
1149         /* Clear all of the statistics registers (clear on read).  It is
1150          * important that we do this after we have tried to establish link
1151          * because the symbol error count will increment wildly if there
1152          * is no link.
1153          */
1154         e1000_clear_hw_cntrs_82571(hw);
1155
1156         return ret_val;
1157 }
1158
1159 /**
1160  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1161  *  @hw: pointer to the HW structure
1162  *
1163  *  Initializes required hardware-dependent bits needed for normal operation.
1164  **/
1165 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1166 {
1167         u32 reg;
1168
1169         /* Transmit Descriptor Control 0 */
1170         reg = er32(TXDCTL(0));
1171         reg |= (1 << 22);
1172         ew32(TXDCTL(0), reg);
1173
1174         /* Transmit Descriptor Control 1 */
1175         reg = er32(TXDCTL(1));
1176         reg |= (1 << 22);
1177         ew32(TXDCTL(1), reg);
1178
1179         /* Transmit Arbitration Control 0 */
1180         reg = er32(TARC(0));
1181         reg &= ~(0xF << 27);    /* 30:27 */
1182         switch (hw->mac.type) {
1183         case e1000_82571:
1184         case e1000_82572:
1185                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1186                 break;
1187         case e1000_82574:
1188         case e1000_82583:
1189                 reg |= (1 << 26);
1190                 break;
1191         default:
1192                 break;
1193         }
1194         ew32(TARC(0), reg);
1195
1196         /* Transmit Arbitration Control 1 */
1197         reg = er32(TARC(1));
1198         switch (hw->mac.type) {
1199         case e1000_82571:
1200         case e1000_82572:
1201                 reg &= ~((1 << 29) | (1 << 30));
1202                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1203                 if (er32(TCTL) & E1000_TCTL_MULR)
1204                         reg &= ~(1 << 28);
1205                 else
1206                         reg |= (1 << 28);
1207                 ew32(TARC(1), reg);
1208                 break;
1209         default:
1210                 break;
1211         }
1212
1213         /* Device Control */
1214         switch (hw->mac.type) {
1215         case e1000_82573:
1216         case e1000_82574:
1217         case e1000_82583:
1218                 reg = er32(CTRL);
1219                 reg &= ~(1 << 29);
1220                 ew32(CTRL, reg);
1221                 break;
1222         default:
1223                 break;
1224         }
1225
1226         /* Extended Device Control */
1227         switch (hw->mac.type) {
1228         case e1000_82573:
1229         case e1000_82574:
1230         case e1000_82583:
1231                 reg = er32(CTRL_EXT);
1232                 reg &= ~(1 << 23);
1233                 reg |= (1 << 22);
1234                 ew32(CTRL_EXT, reg);
1235                 break;
1236         default:
1237                 break;
1238         }
1239
1240         if (hw->mac.type == e1000_82571) {
1241                 reg = er32(PBA_ECC);
1242                 reg |= E1000_PBA_ECC_CORR_EN;
1243                 ew32(PBA_ECC, reg);
1244         }
1245
1246         /* Workaround for hardware errata.
1247          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1248          */
1249         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1250                 reg = er32(CTRL_EXT);
1251                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1252                 ew32(CTRL_EXT, reg);
1253         }
1254
1255         /* Disable IPv6 extension header parsing because some malformed
1256          * IPv6 headers can hang the Rx.
1257          */
1258         if (hw->mac.type <= e1000_82573) {
1259                 reg = er32(RFCTL);
1260                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1261                 ew32(RFCTL, reg);
1262         }
1263
1264         /* PCI-Ex Control Registers */
1265         switch (hw->mac.type) {
1266         case e1000_82574:
1267         case e1000_82583:
1268                 reg = er32(GCR);
1269                 reg |= (1 << 22);
1270                 ew32(GCR, reg);
1271
1272                 /* Workaround for hardware errata.
1273                  * apply workaround for hardware errata documented in errata
1274                  * docs Fixes issue where some error prone or unreliable PCIe
1275                  * completions are occurring, particularly with ASPM enabled.
1276                  * Without fix, issue can cause Tx timeouts.
1277                  */
1278                 reg = er32(GCR2);
1279                 reg |= 1;
1280                 ew32(GCR2, reg);
1281                 break;
1282         default:
1283                 break;
1284         }
1285 }
1286
1287 /**
1288  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1289  *  @hw: pointer to the HW structure
1290  *
1291  *  Clears the register array which contains the VLAN filter table by
1292  *  setting all the values to 0.
1293  **/
1294 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1295 {
1296         u32 offset;
1297         u32 vfta_value = 0;
1298         u32 vfta_offset = 0;
1299         u32 vfta_bit_in_reg = 0;
1300
1301         switch (hw->mac.type) {
1302         case e1000_82573:
1303         case e1000_82574:
1304         case e1000_82583:
1305                 if (hw->mng_cookie.vlan_id != 0) {
1306                         /* The VFTA is a 4096b bit-field, each identifying
1307                          * a single VLAN ID.  The following operations
1308                          * determine which 32b entry (i.e. offset) into the
1309                          * array we want to set the VLAN ID (i.e. bit) of
1310                          * the manageability unit.
1311                          */
1312                         vfta_offset = (hw->mng_cookie.vlan_id >>
1313                                        E1000_VFTA_ENTRY_SHIFT) &
1314                             E1000_VFTA_ENTRY_MASK;
1315                         vfta_bit_in_reg =
1316                             1 << (hw->mng_cookie.vlan_id &
1317                                   E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1318                 }
1319                 break;
1320         default:
1321                 break;
1322         }
1323         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1324                 /* If the offset we want to clear is the same offset of the
1325                  * manageability VLAN ID, then clear all bits except that of
1326                  * the manageability unit.
1327                  */
1328                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1329                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1330                 e1e_flush();
1331         }
1332 }
1333
1334 /**
1335  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1336  *  @hw: pointer to the HW structure
1337  *
1338  *  Reads the NVM Initialization Control Word 2 and returns true
1339  *  (>0) if any manageability is enabled, else false (0).
1340  **/
1341 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1342 {
1343         u16 data;
1344
1345         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1346         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1347 }
1348
1349 /**
1350  *  e1000_led_on_82574 - Turn LED on
1351  *  @hw: pointer to the HW structure
1352  *
1353  *  Turn LED on.
1354  **/
1355 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1356 {
1357         u32 ctrl;
1358         u32 i;
1359
1360         ctrl = hw->mac.ledctl_mode2;
1361         if (!(E1000_STATUS_LU & er32(STATUS))) {
1362                 /* If no link, then turn LED on by setting the invert bit
1363                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1364                  */
1365                 for (i = 0; i < 4; i++)
1366                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1367                             E1000_LEDCTL_MODE_LED_ON)
1368                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1369         }
1370         ew32(LEDCTL, ctrl);
1371
1372         return 0;
1373 }
1374
1375 /**
1376  *  e1000_check_phy_82574 - check 82574 phy hung state
1377  *  @hw: pointer to the HW structure
1378  *
1379  *  Returns whether phy is hung or not
1380  **/
1381 bool e1000_check_phy_82574(struct e1000_hw *hw)
1382 {
1383         u16 status_1kbt = 0;
1384         u16 receive_errors = 0;
1385         s32 ret_val;
1386
1387         /* Read PHY Receive Error counter first, if its is max - all F's then
1388          * read the Base1000T status register If both are max then PHY is hung.
1389          */
1390         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1391         if (ret_val)
1392                 return false;
1393         if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1394                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1395                 if (ret_val)
1396                         return false;
1397                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1398                     E1000_IDLE_ERROR_COUNT_MASK)
1399                         return true;
1400         }
1401
1402         return false;
1403 }
1404
1405 /**
1406  *  e1000_setup_link_82571 - Setup flow control and link settings
1407  *  @hw: pointer to the HW structure
1408  *
1409  *  Determines which flow control settings to use, then configures flow
1410  *  control.  Calls the appropriate media-specific link configuration
1411  *  function.  Assuming the adapter has a valid link partner, a valid link
1412  *  should be established.  Assumes the hardware has previously been reset
1413  *  and the transmitter and receiver are not enabled.
1414  **/
1415 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1416 {
1417         /* 82573 does not have a word in the NVM to determine
1418          * the default flow control setting, so we explicitly
1419          * set it to full.
1420          */
1421         switch (hw->mac.type) {
1422         case e1000_82573:
1423         case e1000_82574:
1424         case e1000_82583:
1425                 if (hw->fc.requested_mode == e1000_fc_default)
1426                         hw->fc.requested_mode = e1000_fc_full;
1427                 break;
1428         default:
1429                 break;
1430         }
1431
1432         return e1000e_setup_link_generic(hw);
1433 }
1434
1435 /**
1436  *  e1000_setup_copper_link_82571 - Configure copper link settings
1437  *  @hw: pointer to the HW structure
1438  *
1439  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1440  *  for link, once link is established calls to configure collision distance
1441  *  and flow control are called.
1442  **/
1443 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1444 {
1445         u32 ctrl;
1446         s32 ret_val;
1447
1448         ctrl = er32(CTRL);
1449         ctrl |= E1000_CTRL_SLU;
1450         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1451         ew32(CTRL, ctrl);
1452
1453         switch (hw->phy.type) {
1454         case e1000_phy_m88:
1455         case e1000_phy_bm:
1456                 ret_val = e1000e_copper_link_setup_m88(hw);
1457                 break;
1458         case e1000_phy_igp_2:
1459                 ret_val = e1000e_copper_link_setup_igp(hw);
1460                 break;
1461         default:
1462                 return -E1000_ERR_PHY;
1463                 break;
1464         }
1465
1466         if (ret_val)
1467                 return ret_val;
1468
1469         return e1000e_setup_copper_link(hw);
1470 }
1471
1472 /**
1473  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1474  *  @hw: pointer to the HW structure
1475  *
1476  *  Configures collision distance and flow control for fiber and serdes links.
1477  *  Upon successful setup, poll for link.
1478  **/
1479 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1480 {
1481         switch (hw->mac.type) {
1482         case e1000_82571:
1483         case e1000_82572:
1484                 /* If SerDes loopback mode is entered, there is no form
1485                  * of reset to take the adapter out of that mode.  So we
1486                  * have to explicitly take the adapter out of loopback
1487                  * mode.  This prevents drivers from twiddling their thumbs
1488                  * if another tool failed to take it out of loopback mode.
1489                  */
1490                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1491                 break;
1492         default:
1493                 break;
1494         }
1495
1496         return e1000e_setup_fiber_serdes_link(hw);
1497 }
1498
1499 /**
1500  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1501  *  @hw: pointer to the HW structure
1502  *
1503  *  Reports the link state as up or down.
1504  *
1505  *  If autonegotiation is supported by the link partner, the link state is
1506  *  determined by the result of autonegotiation. This is the most likely case.
1507  *  If autonegotiation is not supported by the link partner, and the link
1508  *  has a valid signal, force the link up.
1509  *
1510  *  The link state is represented internally here by 4 states:
1511  *
1512  *  1) down
1513  *  2) autoneg_progress
1514  *  3) autoneg_complete (the link successfully autonegotiated)
1515  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1516  *
1517  **/
1518 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1519 {
1520         struct e1000_mac_info *mac = &hw->mac;
1521         u32 rxcw;
1522         u32 ctrl;
1523         u32 status;
1524         u32 txcw;
1525         u32 i;
1526         s32 ret_val = 0;
1527
1528         ctrl = er32(CTRL);
1529         status = er32(STATUS);
1530         er32(RXCW);
1531         /* SYNCH bit and IV bit are sticky */
1532         usleep_range(10, 20);
1533         rxcw = er32(RXCW);
1534
1535         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1536                 /* Receiver is synchronized with no invalid bits.  */
1537                 switch (mac->serdes_link_state) {
1538                 case e1000_serdes_link_autoneg_complete:
1539                         if (!(status & E1000_STATUS_LU)) {
1540                                 /* We have lost link, retry autoneg before
1541                                  * reporting link failure
1542                                  */
1543                                 mac->serdes_link_state =
1544                                     e1000_serdes_link_autoneg_progress;
1545                                 mac->serdes_has_link = false;
1546                                 e_dbg("AN_UP     -> AN_PROG\n");
1547                         } else {
1548                                 mac->serdes_has_link = true;
1549                         }
1550                         break;
1551
1552                 case e1000_serdes_link_forced_up:
1553                         /* If we are receiving /C/ ordered sets, re-enable
1554                          * auto-negotiation in the TXCW register and disable
1555                          * forced link in the Device Control register in an
1556                          * attempt to auto-negotiate with our link partner.
1557                          */
1558                         if (rxcw & E1000_RXCW_C) {
1559                                 /* Enable autoneg, and unforce link up */
1560                                 ew32(TXCW, mac->txcw);
1561                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1562                                 mac->serdes_link_state =
1563                                     e1000_serdes_link_autoneg_progress;
1564                                 mac->serdes_has_link = false;
1565                                 e_dbg("FORCED_UP -> AN_PROG\n");
1566                         } else {
1567                                 mac->serdes_has_link = true;
1568                         }
1569                         break;
1570
1571                 case e1000_serdes_link_autoneg_progress:
1572                         if (rxcw & E1000_RXCW_C) {
1573                                 /* We received /C/ ordered sets, meaning the
1574                                  * link partner has autonegotiated, and we can
1575                                  * trust the Link Up (LU) status bit.
1576                                  */
1577                                 if (status & E1000_STATUS_LU) {
1578                                         mac->serdes_link_state =
1579                                             e1000_serdes_link_autoneg_complete;
1580                                         e_dbg("AN_PROG   -> AN_UP\n");
1581                                         mac->serdes_has_link = true;
1582                                 } else {
1583                                         /* Autoneg completed, but failed. */
1584                                         mac->serdes_link_state =
1585                                             e1000_serdes_link_down;
1586                                         e_dbg("AN_PROG   -> DOWN\n");
1587                                 }
1588                         } else {
1589                                 /* The link partner did not autoneg.
1590                                  * Force link up and full duplex, and change
1591                                  * state to forced.
1592                                  */
1593                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1594                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1595                                 ew32(CTRL, ctrl);
1596
1597                                 /* Configure Flow Control after link up. */
1598                                 ret_val = e1000e_config_fc_after_link_up(hw);
1599                                 if (ret_val) {
1600                                         e_dbg("Error config flow control\n");
1601                                         break;
1602                                 }
1603                                 mac->serdes_link_state =
1604                                     e1000_serdes_link_forced_up;
1605                                 mac->serdes_has_link = true;
1606                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1607                         }
1608                         break;
1609
1610                 case e1000_serdes_link_down:
1611                 default:
1612                         /* The link was down but the receiver has now gained
1613                          * valid sync, so lets see if we can bring the link
1614                          * up.
1615                          */
1616                         ew32(TXCW, mac->txcw);
1617                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1618                         mac->serdes_link_state =
1619                             e1000_serdes_link_autoneg_progress;
1620                         mac->serdes_has_link = false;
1621                         e_dbg("DOWN      -> AN_PROG\n");
1622                         break;
1623                 }
1624         } else {
1625                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1626                         mac->serdes_has_link = false;
1627                         mac->serdes_link_state = e1000_serdes_link_down;
1628                         e_dbg("ANYSTATE  -> DOWN\n");
1629                 } else {
1630                         /* Check several times, if SYNCH bit and CONFIG
1631                          * bit both are consistently 1 then simply ignore
1632                          * the IV bit and restart Autoneg
1633                          */
1634                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1635                                 usleep_range(10, 20);
1636                                 rxcw = er32(RXCW);
1637                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1638                                     (rxcw & E1000_RXCW_C))
1639                                         continue;
1640
1641                                 if (rxcw & E1000_RXCW_IV) {
1642                                         mac->serdes_has_link = false;
1643                                         mac->serdes_link_state =
1644                                             e1000_serdes_link_down;
1645                                         e_dbg("ANYSTATE  -> DOWN\n");
1646                                         break;
1647                                 }
1648                         }
1649
1650                         if (i == AN_RETRY_COUNT) {
1651                                 txcw = er32(TXCW);
1652                                 txcw |= E1000_TXCW_ANE;
1653                                 ew32(TXCW, txcw);
1654                                 mac->serdes_link_state =
1655                                     e1000_serdes_link_autoneg_progress;
1656                                 mac->serdes_has_link = false;
1657                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1658                         }
1659                 }
1660         }
1661
1662         return ret_val;
1663 }
1664
1665 /**
1666  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1667  *  @hw: pointer to the HW structure
1668  *  @data: pointer to the NVM (EEPROM)
1669  *
1670  *  Read the EEPROM for the current default LED configuration.  If the
1671  *  LED configuration is not valid, set to a valid LED configuration.
1672  **/
1673 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1674 {
1675         s32 ret_val;
1676
1677         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1678         if (ret_val) {
1679                 e_dbg("NVM Read Error\n");
1680                 return ret_val;
1681         }
1682
1683         switch (hw->mac.type) {
1684         case e1000_82573:
1685         case e1000_82574:
1686         case e1000_82583:
1687                 if (*data == ID_LED_RESERVED_F746)
1688                         *data = ID_LED_DEFAULT_82573;
1689                 break;
1690         default:
1691                 if (*data == ID_LED_RESERVED_0000 ||
1692                     *data == ID_LED_RESERVED_FFFF)
1693                         *data = ID_LED_DEFAULT;
1694                 break;
1695         }
1696
1697         return 0;
1698 }
1699
1700 /**
1701  *  e1000e_get_laa_state_82571 - Get locally administered address state
1702  *  @hw: pointer to the HW structure
1703  *
1704  *  Retrieve and return the current locally administered address state.
1705  **/
1706 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1707 {
1708         if (hw->mac.type != e1000_82571)
1709                 return false;
1710
1711         return hw->dev_spec.e82571.laa_is_present;
1712 }
1713
1714 /**
1715  *  e1000e_set_laa_state_82571 - Set locally administered address state
1716  *  @hw: pointer to the HW structure
1717  *  @state: enable/disable locally administered address
1718  *
1719  *  Enable/Disable the current locally administered address state.
1720  **/
1721 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1722 {
1723         if (hw->mac.type != e1000_82571)
1724                 return;
1725
1726         hw->dev_spec.e82571.laa_is_present = state;
1727
1728         /* If workaround is activated... */
1729         if (state)
1730                 /* Hold a copy of the LAA in RAR[14] This is done so that
1731                  * between the time RAR[0] gets clobbered and the time it
1732                  * gets fixed, the actual LAA is in one of the RARs and no
1733                  * incoming packets directed to this port are dropped.
1734                  * Eventually the LAA will be in RAR[0] and RAR[14].
1735                  */
1736                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1737                                     hw->mac.rar_entry_count - 1);
1738 }
1739
1740 /**
1741  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1742  *  @hw: pointer to the HW structure
1743  *
1744  *  Verifies that the EEPROM has completed the update.  After updating the
1745  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1746  *  the checksum fix is not implemented, we need to set the bit and update
1747  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1748  *  we need to return bad checksum.
1749  **/
1750 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1751 {
1752         struct e1000_nvm_info *nvm = &hw->nvm;
1753         s32 ret_val;
1754         u16 data;
1755
1756         if (nvm->type != e1000_nvm_flash_hw)
1757                 return 0;
1758
1759         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1760          * 10h-12h.  Checksum may need to be fixed.
1761          */
1762         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1763         if (ret_val)
1764                 return ret_val;
1765
1766         if (!(data & 0x10)) {
1767                 /* Read 0x23 and check bit 15.  This bit is a 1
1768                  * when the checksum has already been fixed.  If
1769                  * the checksum is still wrong and this bit is a
1770                  * 1, we need to return bad checksum.  Otherwise,
1771                  * we need to set this bit to a 1 and update the
1772                  * checksum.
1773                  */
1774                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1775                 if (ret_val)
1776                         return ret_val;
1777
1778                 if (!(data & 0x8000)) {
1779                         data |= 0x8000;
1780                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1781                         if (ret_val)
1782                                 return ret_val;
1783                         ret_val = e1000e_update_nvm_checksum(hw);
1784                         if (ret_val)
1785                                 return ret_val;
1786                 }
1787         }
1788
1789         return 0;
1790 }
1791
1792 /**
1793  *  e1000_read_mac_addr_82571 - Read device MAC address
1794  *  @hw: pointer to the HW structure
1795  **/
1796 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1797 {
1798         if (hw->mac.type == e1000_82571) {
1799                 s32 ret_val;
1800
1801                 /* If there's an alternate MAC address place it in RAR0
1802                  * so that it will override the Si installed default perm
1803                  * address.
1804                  */
1805                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1806                 if (ret_val)
1807                         return ret_val;
1808         }
1809
1810         return e1000_read_mac_addr_generic(hw);
1811 }
1812
1813 /**
1814  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1815  * @hw: pointer to the HW structure
1816  *
1817  * In the case of a PHY power down to save power, or to turn off link during a
1818  * driver unload, or wake on lan is not enabled, remove the link.
1819  **/
1820 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1821 {
1822         struct e1000_phy_info *phy = &hw->phy;
1823         struct e1000_mac_info *mac = &hw->mac;
1824
1825         if (!phy->ops.check_reset_block)
1826                 return;
1827
1828         /* If the management interface is not enabled, then power down */
1829         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1830                 e1000_power_down_phy_copper(hw);
1831 }
1832
1833 /**
1834  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1835  *  @hw: pointer to the HW structure
1836  *
1837  *  Clears the hardware counters by reading the counter registers.
1838  **/
1839 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1840 {
1841         e1000e_clear_hw_cntrs_base(hw);
1842
1843         er32(PRC64);
1844         er32(PRC127);
1845         er32(PRC255);
1846         er32(PRC511);
1847         er32(PRC1023);
1848         er32(PRC1522);
1849         er32(PTC64);
1850         er32(PTC127);
1851         er32(PTC255);
1852         er32(PTC511);
1853         er32(PTC1023);
1854         er32(PTC1522);
1855
1856         er32(ALGNERRC);
1857         er32(RXERRC);
1858         er32(TNCRS);
1859         er32(CEXTERR);
1860         er32(TSCTC);
1861         er32(TSCTFC);
1862
1863         er32(MGTPRC);
1864         er32(MGTPDC);
1865         er32(MGTPTC);
1866
1867         er32(IAC);
1868         er32(ICRXOC);
1869
1870         er32(ICRXPTC);
1871         er32(ICRXATC);
1872         er32(ICTXPTC);
1873         er32(ICTXATC);
1874         er32(ICTXQEC);
1875         er32(ICTXQMTC);
1876         er32(ICRXDMTC);
1877 }
1878
1879 static const struct e1000_mac_operations e82571_mac_ops = {
1880         /* .check_mng_mode: mac type dependent */
1881         /* .check_for_link: media type dependent */
1882         .id_led_init            = e1000e_id_led_init_generic,
1883         .cleanup_led            = e1000e_cleanup_led_generic,
1884         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1885         .get_bus_info           = e1000e_get_bus_info_pcie,
1886         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1887         /* .get_link_up_info: media type dependent */
1888         /* .led_on: mac type dependent */
1889         .led_off                = e1000e_led_off_generic,
1890         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1891         .write_vfta             = e1000_write_vfta_generic,
1892         .clear_vfta             = e1000_clear_vfta_82571,
1893         .reset_hw               = e1000_reset_hw_82571,
1894         .init_hw                = e1000_init_hw_82571,
1895         .setup_link             = e1000_setup_link_82571,
1896         /* .setup_physical_interface: media type dependent */
1897         .setup_led              = e1000e_setup_led_generic,
1898         .config_collision_dist  = e1000e_config_collision_dist_generic,
1899         .read_mac_addr          = e1000_read_mac_addr_82571,
1900         .rar_set                = e1000e_rar_set_generic,
1901 };
1902
1903 static const struct e1000_phy_operations e82_phy_ops_igp = {
1904         .acquire                = e1000_get_hw_semaphore_82571,
1905         .check_polarity         = e1000_check_polarity_igp,
1906         .check_reset_block      = e1000e_check_reset_block_generic,
1907         .commit                 = NULL,
1908         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1909         .get_cfg_done           = e1000_get_cfg_done_82571,
1910         .get_cable_length       = e1000e_get_cable_length_igp_2,
1911         .get_info               = e1000e_get_phy_info_igp,
1912         .read_reg               = e1000e_read_phy_reg_igp,
1913         .release                = e1000_put_hw_semaphore_82571,
1914         .reset                  = e1000e_phy_hw_reset_generic,
1915         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1916         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1917         .write_reg              = e1000e_write_phy_reg_igp,
1918         .cfg_on_link_up         = NULL,
1919 };
1920
1921 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1922         .acquire                = e1000_get_hw_semaphore_82571,
1923         .check_polarity         = e1000_check_polarity_m88,
1924         .check_reset_block      = e1000e_check_reset_block_generic,
1925         .commit                 = e1000e_phy_sw_reset,
1926         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1927         .get_cfg_done           = e1000e_get_cfg_done_generic,
1928         .get_cable_length       = e1000e_get_cable_length_m88,
1929         .get_info               = e1000e_get_phy_info_m88,
1930         .read_reg               = e1000e_read_phy_reg_m88,
1931         .release                = e1000_put_hw_semaphore_82571,
1932         .reset                  = e1000e_phy_hw_reset_generic,
1933         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1934         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1935         .write_reg              = e1000e_write_phy_reg_m88,
1936         .cfg_on_link_up         = NULL,
1937 };
1938
1939 static const struct e1000_phy_operations e82_phy_ops_bm = {
1940         .acquire                = e1000_get_hw_semaphore_82571,
1941         .check_polarity         = e1000_check_polarity_m88,
1942         .check_reset_block      = e1000e_check_reset_block_generic,
1943         .commit                 = e1000e_phy_sw_reset,
1944         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1945         .get_cfg_done           = e1000e_get_cfg_done_generic,
1946         .get_cable_length       = e1000e_get_cable_length_m88,
1947         .get_info               = e1000e_get_phy_info_m88,
1948         .read_reg               = e1000e_read_phy_reg_bm2,
1949         .release                = e1000_put_hw_semaphore_82571,
1950         .reset                  = e1000e_phy_hw_reset_generic,
1951         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1952         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1953         .write_reg              = e1000e_write_phy_reg_bm2,
1954         .cfg_on_link_up         = NULL,
1955 };
1956
1957 static const struct e1000_nvm_operations e82571_nvm_ops = {
1958         .acquire                = e1000_acquire_nvm_82571,
1959         .read                   = e1000e_read_nvm_eerd,
1960         .release                = e1000_release_nvm_82571,
1961         .reload                 = e1000e_reload_nvm_generic,
1962         .update                 = e1000_update_nvm_checksum_82571,
1963         .valid_led_default      = e1000_valid_led_default_82571,
1964         .validate               = e1000_validate_nvm_checksum_82571,
1965         .write                  = e1000_write_nvm_82571,
1966 };
1967
1968 const struct e1000_info e1000_82571_info = {
1969         .mac                    = e1000_82571,
1970         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1971                                   | FLAG_HAS_JUMBO_FRAMES
1972                                   | FLAG_HAS_WOL
1973                                   | FLAG_APME_IN_CTRL3
1974                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1975                                   | FLAG_HAS_SMART_POWER_DOWN
1976                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1977                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1978                                   | FLAG_APME_CHECK_PORT_B,
1979         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1980                                   | FLAG2_DMA_BURST,
1981         .pba                    = 38,
1982         .max_hw_frame_size      = DEFAULT_JUMBO,
1983         .get_variants           = e1000_get_variants_82571,
1984         .mac_ops                = &e82571_mac_ops,
1985         .phy_ops                = &e82_phy_ops_igp,
1986         .nvm_ops                = &e82571_nvm_ops,
1987 };
1988
1989 const struct e1000_info e1000_82572_info = {
1990         .mac                    = e1000_82572,
1991         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1992                                   | FLAG_HAS_JUMBO_FRAMES
1993                                   | FLAG_HAS_WOL
1994                                   | FLAG_APME_IN_CTRL3
1995                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1996                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1997         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1998                                   | FLAG2_DMA_BURST,
1999         .pba                    = 38,
2000         .max_hw_frame_size      = DEFAULT_JUMBO,
2001         .get_variants           = e1000_get_variants_82571,
2002         .mac_ops                = &e82571_mac_ops,
2003         .phy_ops                = &e82_phy_ops_igp,
2004         .nvm_ops                = &e82571_nvm_ops,
2005 };
2006
2007 const struct e1000_info e1000_82573_info = {
2008         .mac                    = e1000_82573,
2009         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2010                                   | FLAG_HAS_WOL
2011                                   | FLAG_APME_IN_CTRL3
2012                                   | FLAG_HAS_SMART_POWER_DOWN
2013                                   | FLAG_HAS_AMT
2014                                   | FLAG_HAS_SWSM_ON_LOAD,
2015         .flags2                 = FLAG2_DISABLE_ASPM_L1
2016                                   | FLAG2_DISABLE_ASPM_L0S,
2017         .pba                    = 20,
2018         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2019         .get_variants           = e1000_get_variants_82571,
2020         .mac_ops                = &e82571_mac_ops,
2021         .phy_ops                = &e82_phy_ops_m88,
2022         .nvm_ops                = &e82571_nvm_ops,
2023 };
2024
2025 const struct e1000_info e1000_82574_info = {
2026         .mac                    = e1000_82574,
2027         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2028                                   | FLAG_HAS_MSIX
2029                                   | FLAG_HAS_JUMBO_FRAMES
2030                                   | FLAG_HAS_WOL
2031                                   | FLAG_HAS_HW_TIMESTAMP
2032                                   | FLAG_APME_IN_CTRL3
2033                                   | FLAG_HAS_SMART_POWER_DOWN
2034                                   | FLAG_HAS_AMT
2035                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2036         .flags2                  = FLAG2_CHECK_PHY_HANG
2037                                   | FLAG2_DISABLE_ASPM_L0S
2038                                   | FLAG2_DISABLE_ASPM_L1
2039                                   | FLAG2_NO_DISABLE_RX
2040                                   | FLAG2_DMA_BURST,
2041         .pba                    = 32,
2042         .max_hw_frame_size      = DEFAULT_JUMBO,
2043         .get_variants           = e1000_get_variants_82571,
2044         .mac_ops                = &e82571_mac_ops,
2045         .phy_ops                = &e82_phy_ops_bm,
2046         .nvm_ops                = &e82571_nvm_ops,
2047 };
2048
2049 const struct e1000_info e1000_82583_info = {
2050         .mac                    = e1000_82583,
2051         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2052                                   | FLAG_HAS_WOL
2053                                   | FLAG_HAS_HW_TIMESTAMP
2054                                   | FLAG_APME_IN_CTRL3
2055                                   | FLAG_HAS_SMART_POWER_DOWN
2056                                   | FLAG_HAS_AMT
2057                                   | FLAG_HAS_JUMBO_FRAMES
2058                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2059         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2060                                   | FLAG2_DISABLE_ASPM_L1
2061                                   | FLAG2_NO_DISABLE_RX,
2062         .pba                    = 32,
2063         .max_hw_frame_size      = DEFAULT_JUMBO,
2064         .get_variants           = e1000_get_variants_82571,
2065         .mac_ops                = &e82571_mac_ops,
2066         .phy_ops                = &e82_phy_ops_bm,
2067         .nvm_ops                = &e82571_nvm_ops,
2068 };