]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
Merge remote-tracking branch 'regulator/topic/max8997' into regulator-next
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38
39 #include "e1000.h"
40
41 enum {NETDEV_STATS, E1000_STATS};
42
43 struct e1000_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int type;
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define E1000_STAT(str, m) { \
51                 .stat_string = str, \
52                 .type = E1000_STATS, \
53                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54                 .stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56                 .stat_string = str, \
57                 .type = NETDEV_STATS, \
58                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62         E1000_STAT("rx_packets", stats.gprc),
63         E1000_STAT("tx_packets", stats.gptc),
64         E1000_STAT("rx_bytes", stats.gorc),
65         E1000_STAT("tx_bytes", stats.gotc),
66         E1000_STAT("rx_broadcast", stats.bprc),
67         E1000_STAT("tx_broadcast", stats.bptc),
68         E1000_STAT("rx_multicast", stats.mprc),
69         E1000_STAT("tx_multicast", stats.mptc),
70         E1000_NETDEV_STAT("rx_errors", rx_errors),
71         E1000_NETDEV_STAT("tx_errors", tx_errors),
72         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73         E1000_STAT("multicast", stats.mprc),
74         E1000_STAT("collisions", stats.colc),
75         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77         E1000_STAT("rx_crc_errors", stats.crcerrs),
78         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79         E1000_STAT("rx_no_buffer_count", stats.rnbc),
80         E1000_STAT("rx_missed_errors", stats.mpc),
81         E1000_STAT("tx_aborted_errors", stats.ecol),
82         E1000_STAT("tx_carrier_errors", stats.tncrs),
83         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85         E1000_STAT("tx_window_errors", stats.latecol),
86         E1000_STAT("tx_abort_late_coll", stats.latecol),
87         E1000_STAT("tx_deferred_ok", stats.dc),
88         E1000_STAT("tx_single_coll_ok", stats.scc),
89         E1000_STAT("tx_multi_coll_ok", stats.mcc),
90         E1000_STAT("tx_timeout_count", tx_timeout_count),
91         E1000_STAT("tx_restart_queue", restart_queue),
92         E1000_STAT("rx_long_length_errors", stats.roc),
93         E1000_STAT("rx_short_length_errors", stats.ruc),
94         E1000_STAT("rx_align_errors", stats.algnerrc),
95         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99         E1000_STAT("tx_flow_control_xon", stats.xontxc),
100         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101         E1000_STAT("rx_long_byte_count", stats.gorc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
112         E1000_STAT("corr_ecc_errors", corr_errors),
113 };
114
115 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
116 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
117 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
118         "Register test  (offline)", "Eeprom test    (offline)",
119         "Interrupt test (offline)", "Loopback test  (offline)",
120         "Link test   (on/offline)"
121 };
122 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
123
124 static int e1000_get_settings(struct net_device *netdev,
125                               struct ethtool_cmd *ecmd)
126 {
127         struct e1000_adapter *adapter = netdev_priv(netdev);
128         struct e1000_hw *hw = &adapter->hw;
129         u32 speed;
130
131         if (hw->phy.media_type == e1000_media_type_copper) {
132
133                 ecmd->supported = (SUPPORTED_10baseT_Half |
134                                    SUPPORTED_10baseT_Full |
135                                    SUPPORTED_100baseT_Half |
136                                    SUPPORTED_100baseT_Full |
137                                    SUPPORTED_1000baseT_Full |
138                                    SUPPORTED_Autoneg |
139                                    SUPPORTED_TP);
140                 if (hw->phy.type == e1000_phy_ife)
141                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
142                 ecmd->advertising = ADVERTISED_TP;
143
144                 if (hw->mac.autoneg == 1) {
145                         ecmd->advertising |= ADVERTISED_Autoneg;
146                         /* the e1000 autoneg seems to match ethtool nicely */
147                         ecmd->advertising |= hw->phy.autoneg_advertised;
148                 }
149
150                 ecmd->port = PORT_TP;
151                 ecmd->phy_address = hw->phy.addr;
152                 ecmd->transceiver = XCVR_INTERNAL;
153
154         } else {
155                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
156                                      SUPPORTED_FIBRE |
157                                      SUPPORTED_Autoneg);
158
159                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
160                                      ADVERTISED_FIBRE |
161                                      ADVERTISED_Autoneg);
162
163                 ecmd->port = PORT_FIBRE;
164                 ecmd->transceiver = XCVR_EXTERNAL;
165         }
166
167         speed = -1;
168         ecmd->duplex = -1;
169
170         if (netif_running(netdev)) {
171                 if (netif_carrier_ok(netdev)) {
172                         speed = adapter->link_speed;
173                         ecmd->duplex = adapter->link_duplex - 1;
174                 }
175         } else {
176                 u32 status = er32(STATUS);
177                 if (status & E1000_STATUS_LU) {
178                         if (status & E1000_STATUS_SPEED_1000)
179                                 speed = SPEED_1000;
180                         else if (status & E1000_STATUS_SPEED_100)
181                                 speed = SPEED_100;
182                         else
183                                 speed = SPEED_10;
184
185                         if (status & E1000_STATUS_FD)
186                                 ecmd->duplex = DUPLEX_FULL;
187                         else
188                                 ecmd->duplex = DUPLEX_HALF;
189                 }
190         }
191
192         ethtool_cmd_speed_set(ecmd, speed);
193         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
194                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
195
196         /* MDI-X => 2; MDI =>1; Invalid =>0 */
197         if ((hw->phy.media_type == e1000_media_type_copper) &&
198             netif_carrier_ok(netdev))
199                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
200                                                       ETH_TP_MDI;
201         else
202                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203
204         if (hw->phy.mdix == AUTO_ALL_MODES)
205                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206         else
207                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208
209         return 0;
210 }
211
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214         struct e1000_mac_info *mac = &adapter->hw.mac;
215
216         mac->autoneg = 0;
217
218         /* Make sure dplx is at most 1 bit and lsb of speed is not set
219          * for the switch() below to work
220          */
221         if ((spd & 1) || (dplx & ~1))
222                 goto err_inval;
223
224         /* Fiber NICs only allow 1000 gbps Full duplex */
225         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226             spd != SPEED_1000 &&
227             dplx != DUPLEX_FULL) {
228                 goto err_inval;
229         }
230
231         switch (spd + dplx) {
232         case SPEED_10 + DUPLEX_HALF:
233                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
234                 break;
235         case SPEED_10 + DUPLEX_FULL:
236                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
237                 break;
238         case SPEED_100 + DUPLEX_HALF:
239                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
240                 break;
241         case SPEED_100 + DUPLEX_FULL:
242                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
243                 break;
244         case SPEED_1000 + DUPLEX_FULL:
245                 mac->autoneg = 1;
246                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
247                 break;
248         case SPEED_1000 + DUPLEX_HALF: /* not supported */
249         default:
250                 goto err_inval;
251         }
252
253         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
254         adapter->hw.phy.mdix = AUTO_ALL_MODES;
255
256         return 0;
257
258 err_inval:
259         e_err("Unsupported Speed/Duplex configuration\n");
260         return -EINVAL;
261 }
262
263 static int e1000_set_settings(struct net_device *netdev,
264                               struct ethtool_cmd *ecmd)
265 {
266         struct e1000_adapter *adapter = netdev_priv(netdev);
267         struct e1000_hw *hw = &adapter->hw;
268
269         /* When SoL/IDER sessions are active, autoneg/speed/duplex
270          * cannot be changed
271          */
272         if (hw->phy.ops.check_reset_block &&
273             hw->phy.ops.check_reset_block(hw)) {
274                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
275                 return -EINVAL;
276         }
277
278         /* MDI setting is only allowed when autoneg enabled because
279          * some hardware doesn't allow MDI setting when speed or
280          * duplex is forced.
281          */
282         if (ecmd->eth_tp_mdix_ctrl) {
283                 if (hw->phy.media_type != e1000_media_type_copper)
284                         return -EOPNOTSUPP;
285
286                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287                     (ecmd->autoneg != AUTONEG_ENABLE)) {
288                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289                         return -EINVAL;
290                 }
291         }
292
293         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
294                 usleep_range(1000, 2000);
295
296         if (ecmd->autoneg == AUTONEG_ENABLE) {
297                 hw->mac.autoneg = 1;
298                 if (hw->phy.media_type == e1000_media_type_fiber)
299                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
300                                                      ADVERTISED_FIBRE |
301                                                      ADVERTISED_Autoneg;
302                 else
303                         hw->phy.autoneg_advertised = ecmd->advertising |
304                                                      ADVERTISED_TP |
305                                                      ADVERTISED_Autoneg;
306                 ecmd->advertising = hw->phy.autoneg_advertised;
307                 if (adapter->fc_autoneg)
308                         hw->fc.requested_mode = e1000_fc_default;
309         } else {
310                 u32 speed = ethtool_cmd_speed(ecmd);
311                 /* calling this overrides forced MDI setting */
312                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
313                         clear_bit(__E1000_RESETTING, &adapter->state);
314                         return -EINVAL;
315                 }
316         }
317
318         /* MDI-X => 2; MDI => 1; Auto => 3 */
319         if (ecmd->eth_tp_mdix_ctrl) {
320                 /* fix up the value for auto (3 => 0) as zero is mapped
321                  * internally to auto
322                  */
323                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
324                         hw->phy.mdix = AUTO_ALL_MODES;
325                 else
326                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
327         }
328
329         /* reset the link */
330
331         if (netif_running(adapter->netdev)) {
332                 e1000e_down(adapter);
333                 e1000e_up(adapter);
334         } else
335                 e1000e_reset(adapter);
336
337         clear_bit(__E1000_RESETTING, &adapter->state);
338         return 0;
339 }
340
341 static void e1000_get_pauseparam(struct net_device *netdev,
342                                  struct ethtool_pauseparam *pause)
343 {
344         struct e1000_adapter *adapter = netdev_priv(netdev);
345         struct e1000_hw *hw = &adapter->hw;
346
347         pause->autoneg =
348                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
349
350         if (hw->fc.current_mode == e1000_fc_rx_pause) {
351                 pause->rx_pause = 1;
352         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
353                 pause->tx_pause = 1;
354         } else if (hw->fc.current_mode == e1000_fc_full) {
355                 pause->rx_pause = 1;
356                 pause->tx_pause = 1;
357         }
358 }
359
360 static int e1000_set_pauseparam(struct net_device *netdev,
361                                 struct ethtool_pauseparam *pause)
362 {
363         struct e1000_adapter *adapter = netdev_priv(netdev);
364         struct e1000_hw *hw = &adapter->hw;
365         int retval = 0;
366
367         adapter->fc_autoneg = pause->autoneg;
368
369         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
370                 usleep_range(1000, 2000);
371
372         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
373                 hw->fc.requested_mode = e1000_fc_default;
374                 if (netif_running(adapter->netdev)) {
375                         e1000e_down(adapter);
376                         e1000e_up(adapter);
377                 } else {
378                         e1000e_reset(adapter);
379                 }
380         } else {
381                 if (pause->rx_pause && pause->tx_pause)
382                         hw->fc.requested_mode = e1000_fc_full;
383                 else if (pause->rx_pause && !pause->tx_pause)
384                         hw->fc.requested_mode = e1000_fc_rx_pause;
385                 else if (!pause->rx_pause && pause->tx_pause)
386                         hw->fc.requested_mode = e1000_fc_tx_pause;
387                 else if (!pause->rx_pause && !pause->tx_pause)
388                         hw->fc.requested_mode = e1000_fc_none;
389
390                 hw->fc.current_mode = hw->fc.requested_mode;
391
392                 if (hw->phy.media_type == e1000_media_type_fiber) {
393                         retval = hw->mac.ops.setup_link(hw);
394                         /* implicit goto out */
395                 } else {
396                         retval = e1000e_force_mac_fc(hw);
397                         if (retval)
398                                 goto out;
399                         e1000e_set_fc_watermarks(hw);
400                 }
401         }
402
403 out:
404         clear_bit(__E1000_RESETTING, &adapter->state);
405         return retval;
406 }
407
408 static u32 e1000_get_msglevel(struct net_device *netdev)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         return adapter->msg_enable;
412 }
413
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
415 {
416         struct e1000_adapter *adapter = netdev_priv(netdev);
417         adapter->msg_enable = data;
418 }
419
420 static int e1000_get_regs_len(struct net_device *netdev)
421 {
422 #define E1000_REGS_LEN 32 /* overestimate */
423         return E1000_REGS_LEN * sizeof(u32);
424 }
425
426 static void e1000_get_regs(struct net_device *netdev,
427                            struct ethtool_regs *regs, void *p)
428 {
429         struct e1000_adapter *adapter = netdev_priv(netdev);
430         struct e1000_hw *hw = &adapter->hw;
431         u32 *regs_buff = p;
432         u16 phy_data;
433
434         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
435
436         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
437                         adapter->pdev->device;
438
439         regs_buff[0]  = er32(CTRL);
440         regs_buff[1]  = er32(STATUS);
441
442         regs_buff[2]  = er32(RCTL);
443         regs_buff[3]  = er32(RDLEN(0));
444         regs_buff[4]  = er32(RDH(0));
445         regs_buff[5]  = er32(RDT(0));
446         regs_buff[6]  = er32(RDTR);
447
448         regs_buff[7]  = er32(TCTL);
449         regs_buff[8]  = er32(TDLEN(0));
450         regs_buff[9]  = er32(TDH(0));
451         regs_buff[10] = er32(TDT(0));
452         regs_buff[11] = er32(TIDV);
453
454         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
455
456         /* ethtool doesn't use anything past this point, so all this
457          * code is likely legacy junk for apps that may or may not exist
458          */
459         if (hw->phy.type == e1000_phy_m88) {
460                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
461                 regs_buff[13] = (u32)phy_data; /* cable length */
462                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
466                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
467                 regs_buff[18] = regs_buff[13]; /* cable polarity */
468                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469                 regs_buff[20] = regs_buff[17]; /* polarity correction */
470                 /* phy receive errors */
471                 regs_buff[22] = adapter->phy_stats.receive_errors;
472                 regs_buff[23] = regs_buff[13]; /* mdix mode */
473         }
474         regs_buff[21] = 0; /* was idle_errors */
475         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
476         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
477         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
478 }
479
480 static int e1000_get_eeprom_len(struct net_device *netdev)
481 {
482         struct e1000_adapter *adapter = netdev_priv(netdev);
483         return adapter->hw.nvm.word_size * 2;
484 }
485
486 static int e1000_get_eeprom(struct net_device *netdev,
487                             struct ethtool_eeprom *eeprom, u8 *bytes)
488 {
489         struct e1000_adapter *adapter = netdev_priv(netdev);
490         struct e1000_hw *hw = &adapter->hw;
491         u16 *eeprom_buff;
492         int first_word;
493         int last_word;
494         int ret_val = 0;
495         u16 i;
496
497         if (eeprom->len == 0)
498                 return -EINVAL;
499
500         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
501
502         first_word = eeprom->offset >> 1;
503         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504
505         eeprom_buff = kmalloc(sizeof(u16) *
506                         (last_word - first_word + 1), GFP_KERNEL);
507         if (!eeprom_buff)
508                 return -ENOMEM;
509
510         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
511                 ret_val = e1000_read_nvm(hw, first_word,
512                                          last_word - first_word + 1,
513                                          eeprom_buff);
514         } else {
515                 for (i = 0; i < last_word - first_word + 1; i++) {
516                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
517                                                       &eeprom_buff[i]);
518                         if (ret_val)
519                                 break;
520                 }
521         }
522
523         if (ret_val) {
524                 /* a read error occurred, throw away the result */
525                 memset(eeprom_buff, 0xff, sizeof(u16) *
526                        (last_word - first_word + 1));
527         } else {
528                 /* Device's eeprom is always little-endian, word addressable */
529                 for (i = 0; i < last_word - first_word + 1; i++)
530                         le16_to_cpus(&eeprom_buff[i]);
531         }
532
533         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
534         kfree(eeprom_buff);
535
536         return ret_val;
537 }
538
539 static int e1000_set_eeprom(struct net_device *netdev,
540                             struct ethtool_eeprom *eeprom, u8 *bytes)
541 {
542         struct e1000_adapter *adapter = netdev_priv(netdev);
543         struct e1000_hw *hw = &adapter->hw;
544         u16 *eeprom_buff;
545         void *ptr;
546         int max_len;
547         int first_word;
548         int last_word;
549         int ret_val = 0;
550         u16 i;
551
552         if (eeprom->len == 0)
553                 return -EOPNOTSUPP;
554
555         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
556                 return -EFAULT;
557
558         if (adapter->flags & FLAG_READ_ONLY_NVM)
559                 return -EINVAL;
560
561         max_len = hw->nvm.word_size * 2;
562
563         first_word = eeprom->offset >> 1;
564         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
565         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
566         if (!eeprom_buff)
567                 return -ENOMEM;
568
569         ptr = (void *)eeprom_buff;
570
571         if (eeprom->offset & 1) {
572                 /* need read/modify/write of first changed EEPROM word */
573                 /* only the second byte of the word is being modified */
574                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
575                 ptr++;
576         }
577         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
578                 /* need read/modify/write of last changed EEPROM word */
579                 /* only the first byte of the word is being modified */
580                 ret_val = e1000_read_nvm(hw, last_word, 1,
581                                   &eeprom_buff[last_word - first_word]);
582
583         if (ret_val)
584                 goto out;
585
586         /* Device's eeprom is always little-endian, word addressable */
587         for (i = 0; i < last_word - first_word + 1; i++)
588                 le16_to_cpus(&eeprom_buff[i]);
589
590         memcpy(ptr, bytes, eeprom->len);
591
592         for (i = 0; i < last_word - first_word + 1; i++)
593                 cpu_to_le16s(&eeprom_buff[i]);
594
595         ret_val = e1000_write_nvm(hw, first_word,
596                                   last_word - first_word + 1, eeprom_buff);
597
598         if (ret_val)
599                 goto out;
600
601         /* Update the checksum over the first part of the EEPROM if needed
602          * and flush shadow RAM for applicable controllers
603          */
604         if ((first_word <= NVM_CHECKSUM_REG) ||
605             (hw->mac.type == e1000_82583) ||
606             (hw->mac.type == e1000_82574) ||
607             (hw->mac.type == e1000_82573))
608                 ret_val = e1000e_update_nvm_checksum(hw);
609
610 out:
611         kfree(eeprom_buff);
612         return ret_val;
613 }
614
615 static void e1000_get_drvinfo(struct net_device *netdev,
616                               struct ethtool_drvinfo *drvinfo)
617 {
618         struct e1000_adapter *adapter = netdev_priv(netdev);
619
620         strlcpy(drvinfo->driver,  e1000e_driver_name,
621                 sizeof(drvinfo->driver));
622         strlcpy(drvinfo->version, e1000e_driver_version,
623                 sizeof(drvinfo->version));
624
625         /* EEPROM image version # is reported as firmware version # for
626          * PCI-E controllers
627          */
628         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
629                 "%d.%d-%d",
630                 (adapter->eeprom_vers & 0xF000) >> 12,
631                 (adapter->eeprom_vers & 0x0FF0) >> 4,
632                 (adapter->eeprom_vers & 0x000F));
633
634         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
635                 sizeof(drvinfo->bus_info));
636         drvinfo->regdump_len = e1000_get_regs_len(netdev);
637         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
638 }
639
640 static void e1000_get_ringparam(struct net_device *netdev,
641                                 struct ethtool_ringparam *ring)
642 {
643         struct e1000_adapter *adapter = netdev_priv(netdev);
644
645         ring->rx_max_pending = E1000_MAX_RXD;
646         ring->tx_max_pending = E1000_MAX_TXD;
647         ring->rx_pending = adapter->rx_ring_count;
648         ring->tx_pending = adapter->tx_ring_count;
649 }
650
651 static int e1000_set_ringparam(struct net_device *netdev,
652                                struct ethtool_ringparam *ring)
653 {
654         struct e1000_adapter *adapter = netdev_priv(netdev);
655         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
656         int err = 0, size = sizeof(struct e1000_ring);
657         bool set_tx = false, set_rx = false;
658         u16 new_rx_count, new_tx_count;
659
660         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
661                 return -EINVAL;
662
663         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
664                                E1000_MAX_RXD);
665         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
666
667         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
668                                E1000_MAX_TXD);
669         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
670
671         if ((new_tx_count == adapter->tx_ring_count) &&
672             (new_rx_count == adapter->rx_ring_count))
673                 /* nothing to do */
674                 return 0;
675
676         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
677                 usleep_range(1000, 2000);
678
679         if (!netif_running(adapter->netdev)) {
680                 /* Set counts now and allocate resources during open() */
681                 adapter->tx_ring->count = new_tx_count;
682                 adapter->rx_ring->count = new_rx_count;
683                 adapter->tx_ring_count = new_tx_count;
684                 adapter->rx_ring_count = new_rx_count;
685                 goto clear_reset;
686         }
687
688         set_tx = (new_tx_count != adapter->tx_ring_count);
689         set_rx = (new_rx_count != adapter->rx_ring_count);
690
691         /* Allocate temporary storage for ring updates */
692         if (set_tx) {
693                 temp_tx = vmalloc(size);
694                 if (!temp_tx) {
695                         err = -ENOMEM;
696                         goto free_temp;
697                 }
698         }
699         if (set_rx) {
700                 temp_rx = vmalloc(size);
701                 if (!temp_rx) {
702                         err = -ENOMEM;
703                         goto free_temp;
704                 }
705         }
706
707         e1000e_down(adapter);
708
709         /* We can't just free everything and then setup again, because the
710          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
711          * structs.  First, attempt to allocate new resources...
712          */
713         if (set_tx) {
714                 memcpy(temp_tx, adapter->tx_ring, size);
715                 temp_tx->count = new_tx_count;
716                 err = e1000e_setup_tx_resources(temp_tx);
717                 if (err)
718                         goto err_setup;
719         }
720         if (set_rx) {
721                 memcpy(temp_rx, adapter->rx_ring, size);
722                 temp_rx->count = new_rx_count;
723                 err = e1000e_setup_rx_resources(temp_rx);
724                 if (err)
725                         goto err_setup_rx;
726         }
727
728         /* ...then free the old resources and copy back any new ring data */
729         if (set_tx) {
730                 e1000e_free_tx_resources(adapter->tx_ring);
731                 memcpy(adapter->tx_ring, temp_tx, size);
732                 adapter->tx_ring_count = new_tx_count;
733         }
734         if (set_rx) {
735                 e1000e_free_rx_resources(adapter->rx_ring);
736                 memcpy(adapter->rx_ring, temp_rx, size);
737                 adapter->rx_ring_count = new_rx_count;
738         }
739
740 err_setup_rx:
741         if (err && set_tx)
742                 e1000e_free_tx_resources(temp_tx);
743 err_setup:
744         e1000e_up(adapter);
745 free_temp:
746         vfree(temp_tx);
747         vfree(temp_rx);
748 clear_reset:
749         clear_bit(__E1000_RESETTING, &adapter->state);
750         return err;
751 }
752
753 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
754                              int reg, int offset, u32 mask, u32 write)
755 {
756         u32 pat, val;
757         static const u32 test[] = {
758                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
759         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
760                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
761                                       (test[pat] & write));
762                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
763                 if (val != (test[pat] & write & mask)) {
764                         e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
765                               reg + offset, val, (test[pat] & write & mask));
766                         *data = reg;
767                         return 1;
768                 }
769         }
770         return 0;
771 }
772
773 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
774                               int reg, u32 mask, u32 write)
775 {
776         u32 val;
777         __ew32(&adapter->hw, reg, write & mask);
778         val = __er32(&adapter->hw, reg);
779         if ((write & mask) != (val & mask)) {
780                 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
781                       reg, (val & mask), (write & mask));
782                 *data = reg;
783                 return 1;
784         }
785         return 0;
786 }
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
788         do {                                                                   \
789                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
790                         return 1;                                              \
791         } while (0)
792 #define REG_PATTERN_TEST(reg, mask, write)                                     \
793         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
794
795 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
796         do {                                                                   \
797                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
798                         return 1;                                              \
799         } while (0)
800
801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
802 {
803         struct e1000_hw *hw = &adapter->hw;
804         struct e1000_mac_info *mac = &adapter->hw.mac;
805         u32 value;
806         u32 before;
807         u32 after;
808         u32 i;
809         u32 toggle;
810         u32 mask;
811         u32 wlock_mac = 0;
812
813         /* The status register is Read Only, so a write should fail.
814          * Some bits that get toggled are ignored.
815          */
816         switch (mac->type) {
817         /* there are several bits on newer hardware that are r/w */
818         case e1000_82571:
819         case e1000_82572:
820         case e1000_80003es2lan:
821                 toggle = 0x7FFFF3FF;
822                 break;
823         default:
824                 toggle = 0x7FFFF033;
825                 break;
826         }
827
828         before = er32(STATUS);
829         value = (er32(STATUS) & toggle);
830         ew32(STATUS, toggle);
831         after = er32(STATUS) & toggle;
832         if (value != after) {
833                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
834                       after, value);
835                 *data = 1;
836                 return 1;
837         }
838         /* restore previous status */
839         ew32(STATUS, before);
840
841         if (!(adapter->flags & FLAG_IS_ICH)) {
842                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
843                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
844                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
845                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
846         }
847
848         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
849         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
850         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
851         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
852         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
853         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
854         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
855         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
856         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
857         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
858
859         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
860
861         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
862         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
863         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
864
865         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
866         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
867         if (!(adapter->flags & FLAG_IS_ICH))
868                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
869         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
870         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
871         mask = 0x8003FFFF;
872         switch (mac->type) {
873         case e1000_ich10lan:
874         case e1000_pchlan:
875         case e1000_pch2lan:
876         case e1000_pch_lpt:
877                 mask |= (1 << 18);
878                 break;
879         default:
880                 break;
881         }
882
883         if (mac->type == e1000_pch_lpt)
884                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
885                     E1000_FWSM_WLOCK_MAC_SHIFT;
886
887         for (i = 0; i < mac->rar_entry_count; i++) {
888                 /* Cannot test write-protected SHRAL[n] registers */
889                 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
890                         continue;
891
892                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
893                                        mask, 0xFFFFFFFF);
894         }
895
896         for (i = 0; i < mac->mta_reg_count; i++)
897                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
898
899         *data = 0;
900
901         return 0;
902 }
903
904 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
905 {
906         u16 temp;
907         u16 checksum = 0;
908         u16 i;
909
910         *data = 0;
911         /* Read and add up the contents of the EEPROM */
912         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
913                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
914                         *data = 1;
915                         return *data;
916                 }
917                 checksum += temp;
918         }
919
920         /* If Checksum is not Correct return error else test passed */
921         if ((checksum != (u16) NVM_SUM) && !(*data))
922                 *data = 2;
923
924         return *data;
925 }
926
927 static irqreturn_t e1000_test_intr(int irq, void *data)
928 {
929         struct net_device *netdev = (struct net_device *) data;
930         struct e1000_adapter *adapter = netdev_priv(netdev);
931         struct e1000_hw *hw = &adapter->hw;
932
933         adapter->test_icr |= er32(ICR);
934
935         return IRQ_HANDLED;
936 }
937
938 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
939 {
940         struct net_device *netdev = adapter->netdev;
941         struct e1000_hw *hw = &adapter->hw;
942         u32 mask;
943         u32 shared_int = 1;
944         u32 irq = adapter->pdev->irq;
945         int i;
946         int ret_val = 0;
947         int int_mode = E1000E_INT_MODE_LEGACY;
948
949         *data = 0;
950
951         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
952         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
953                 int_mode = adapter->int_mode;
954                 e1000e_reset_interrupt_capability(adapter);
955                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
956                 e1000e_set_interrupt_capability(adapter);
957         }
958         /* Hook up test interrupt handler just for this test */
959         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
960                          netdev)) {
961                 shared_int = 0;
962         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
963                  netdev->name, netdev)) {
964                 *data = 1;
965                 ret_val = -1;
966                 goto out;
967         }
968         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
969
970         /* Disable all the interrupts */
971         ew32(IMC, 0xFFFFFFFF);
972         e1e_flush();
973         usleep_range(10000, 20000);
974
975         /* Test each interrupt */
976         for (i = 0; i < 10; i++) {
977                 /* Interrupt to test */
978                 mask = 1 << i;
979
980                 if (adapter->flags & FLAG_IS_ICH) {
981                         switch (mask) {
982                         case E1000_ICR_RXSEQ:
983                                 continue;
984                         case 0x00000100:
985                                 if (adapter->hw.mac.type == e1000_ich8lan ||
986                                     adapter->hw.mac.type == e1000_ich9lan)
987                                         continue;
988                                 break;
989                         default:
990                                 break;
991                         }
992                 }
993
994                 if (!shared_int) {
995                         /* Disable the interrupt to be reported in
996                          * the cause register and then force the same
997                          * interrupt and see if one gets posted.  If
998                          * an interrupt was posted to the bus, the
999                          * test failed.
1000                          */
1001                         adapter->test_icr = 0;
1002                         ew32(IMC, mask);
1003                         ew32(ICS, mask);
1004                         e1e_flush();
1005                         usleep_range(10000, 20000);
1006
1007                         if (adapter->test_icr & mask) {
1008                                 *data = 3;
1009                                 break;
1010                         }
1011                 }
1012
1013                 /* Enable the interrupt to be reported in
1014                  * the cause register and then force the same
1015                  * interrupt and see if one gets posted.  If
1016                  * an interrupt was not posted to the bus, the
1017                  * test failed.
1018                  */
1019                 adapter->test_icr = 0;
1020                 ew32(IMS, mask);
1021                 ew32(ICS, mask);
1022                 e1e_flush();
1023                 usleep_range(10000, 20000);
1024
1025                 if (!(adapter->test_icr & mask)) {
1026                         *data = 4;
1027                         break;
1028                 }
1029
1030                 if (!shared_int) {
1031                         /* Disable the other interrupts to be reported in
1032                          * the cause register and then force the other
1033                          * interrupts and see if any get posted.  If
1034                          * an interrupt was posted to the bus, the
1035                          * test failed.
1036                          */
1037                         adapter->test_icr = 0;
1038                         ew32(IMC, ~mask & 0x00007FFF);
1039                         ew32(ICS, ~mask & 0x00007FFF);
1040                         e1e_flush();
1041                         usleep_range(10000, 20000);
1042
1043                         if (adapter->test_icr) {
1044                                 *data = 5;
1045                                 break;
1046                         }
1047                 }
1048         }
1049
1050         /* Disable all the interrupts */
1051         ew32(IMC, 0xFFFFFFFF);
1052         e1e_flush();
1053         usleep_range(10000, 20000);
1054
1055         /* Unhook test interrupt handler */
1056         free_irq(irq, netdev);
1057
1058 out:
1059         if (int_mode == E1000E_INT_MODE_MSIX) {
1060                 e1000e_reset_interrupt_capability(adapter);
1061                 adapter->int_mode = int_mode;
1062                 e1000e_set_interrupt_capability(adapter);
1063         }
1064
1065         return ret_val;
1066 }
1067
1068 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1069 {
1070         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1071         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1072         struct pci_dev *pdev = adapter->pdev;
1073         int i;
1074
1075         if (tx_ring->desc && tx_ring->buffer_info) {
1076                 for (i = 0; i < tx_ring->count; i++) {
1077                         if (tx_ring->buffer_info[i].dma)
1078                                 dma_unmap_single(&pdev->dev,
1079                                         tx_ring->buffer_info[i].dma,
1080                                         tx_ring->buffer_info[i].length,
1081                                         DMA_TO_DEVICE);
1082                         if (tx_ring->buffer_info[i].skb)
1083                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1084                 }
1085         }
1086
1087         if (rx_ring->desc && rx_ring->buffer_info) {
1088                 for (i = 0; i < rx_ring->count; i++) {
1089                         if (rx_ring->buffer_info[i].dma)
1090                                 dma_unmap_single(&pdev->dev,
1091                                         rx_ring->buffer_info[i].dma,
1092                                         2048, DMA_FROM_DEVICE);
1093                         if (rx_ring->buffer_info[i].skb)
1094                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1095                 }
1096         }
1097
1098         if (tx_ring->desc) {
1099                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1100                                   tx_ring->dma);
1101                 tx_ring->desc = NULL;
1102         }
1103         if (rx_ring->desc) {
1104                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1105                                   rx_ring->dma);
1106                 rx_ring->desc = NULL;
1107         }
1108
1109         kfree(tx_ring->buffer_info);
1110         tx_ring->buffer_info = NULL;
1111         kfree(rx_ring->buffer_info);
1112         rx_ring->buffer_info = NULL;
1113 }
1114
1115 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1116 {
1117         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1118         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1119         struct pci_dev *pdev = adapter->pdev;
1120         struct e1000_hw *hw = &adapter->hw;
1121         u32 rctl;
1122         int i;
1123         int ret_val;
1124
1125         /* Setup Tx descriptor ring and Tx buffers */
1126
1127         if (!tx_ring->count)
1128                 tx_ring->count = E1000_DEFAULT_TXD;
1129
1130         tx_ring->buffer_info = kcalloc(tx_ring->count,
1131                                        sizeof(struct e1000_buffer),
1132                                        GFP_KERNEL);
1133         if (!tx_ring->buffer_info) {
1134                 ret_val = 1;
1135                 goto err_nomem;
1136         }
1137
1138         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1139         tx_ring->size = ALIGN(tx_ring->size, 4096);
1140         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1141                                            &tx_ring->dma, GFP_KERNEL);
1142         if (!tx_ring->desc) {
1143                 ret_val = 2;
1144                 goto err_nomem;
1145         }
1146         tx_ring->next_to_use = 0;
1147         tx_ring->next_to_clean = 0;
1148
1149         ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1150         ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1151         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1152         ew32(TDH(0), 0);
1153         ew32(TDT(0), 0);
1154         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1155              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1156              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1157
1158         for (i = 0; i < tx_ring->count; i++) {
1159                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1160                 struct sk_buff *skb;
1161                 unsigned int skb_size = 1024;
1162
1163                 skb = alloc_skb(skb_size, GFP_KERNEL);
1164                 if (!skb) {
1165                         ret_val = 3;
1166                         goto err_nomem;
1167                 }
1168                 skb_put(skb, skb_size);
1169                 tx_ring->buffer_info[i].skb = skb;
1170                 tx_ring->buffer_info[i].length = skb->len;
1171                 tx_ring->buffer_info[i].dma =
1172                         dma_map_single(&pdev->dev, skb->data, skb->len,
1173                                        DMA_TO_DEVICE);
1174                 if (dma_mapping_error(&pdev->dev,
1175                                       tx_ring->buffer_info[i].dma)) {
1176                         ret_val = 4;
1177                         goto err_nomem;
1178                 }
1179                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1180                 tx_desc->lower.data = cpu_to_le32(skb->len);
1181                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1182                                                    E1000_TXD_CMD_IFCS |
1183                                                    E1000_TXD_CMD_RS);
1184                 tx_desc->upper.data = 0;
1185         }
1186
1187         /* Setup Rx descriptor ring and Rx buffers */
1188
1189         if (!rx_ring->count)
1190                 rx_ring->count = E1000_DEFAULT_RXD;
1191
1192         rx_ring->buffer_info = kcalloc(rx_ring->count,
1193                                        sizeof(struct e1000_buffer),
1194                                        GFP_KERNEL);
1195         if (!rx_ring->buffer_info) {
1196                 ret_val = 5;
1197                 goto err_nomem;
1198         }
1199
1200         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1201         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1202                                            &rx_ring->dma, GFP_KERNEL);
1203         if (!rx_ring->desc) {
1204                 ret_val = 6;
1205                 goto err_nomem;
1206         }
1207         rx_ring->next_to_use = 0;
1208         rx_ring->next_to_clean = 0;
1209
1210         rctl = er32(RCTL);
1211         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1212                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1213         ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1214         ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1215         ew32(RDLEN(0), rx_ring->size);
1216         ew32(RDH(0), 0);
1217         ew32(RDT(0), 0);
1218         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1219                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1220                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1221                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1222                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1223         ew32(RCTL, rctl);
1224
1225         for (i = 0; i < rx_ring->count; i++) {
1226                 union e1000_rx_desc_extended *rx_desc;
1227                 struct sk_buff *skb;
1228
1229                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1230                 if (!skb) {
1231                         ret_val = 7;
1232                         goto err_nomem;
1233                 }
1234                 skb_reserve(skb, NET_IP_ALIGN);
1235                 rx_ring->buffer_info[i].skb = skb;
1236                 rx_ring->buffer_info[i].dma =
1237                         dma_map_single(&pdev->dev, skb->data, 2048,
1238                                        DMA_FROM_DEVICE);
1239                 if (dma_mapping_error(&pdev->dev,
1240                                       rx_ring->buffer_info[i].dma)) {
1241                         ret_val = 8;
1242                         goto err_nomem;
1243                 }
1244                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1245                 rx_desc->read.buffer_addr =
1246                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1247                 memset(skb->data, 0x00, skb->len);
1248         }
1249
1250         return 0;
1251
1252 err_nomem:
1253         e1000_free_desc_rings(adapter);
1254         return ret_val;
1255 }
1256
1257 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1258 {
1259         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1260         e1e_wphy(&adapter->hw, 29, 0x001F);
1261         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1262         e1e_wphy(&adapter->hw, 29, 0x001A);
1263         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1264 }
1265
1266 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1267 {
1268         struct e1000_hw *hw = &adapter->hw;
1269         u32 ctrl_reg = 0;
1270         u16 phy_reg = 0;
1271         s32 ret_val = 0;
1272
1273         hw->mac.autoneg = 0;
1274
1275         if (hw->phy.type == e1000_phy_ife) {
1276                 /* force 100, set loopback */
1277                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1278
1279                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1280                 ctrl_reg = er32(CTRL);
1281                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1282                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1283                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1284                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1285                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1286
1287                 ew32(CTRL, ctrl_reg);
1288                 e1e_flush();
1289                 udelay(500);
1290
1291                 return 0;
1292         }
1293
1294         /* Specific PHY configuration for loopback */
1295         switch (hw->phy.type) {
1296         case e1000_phy_m88:
1297                 /* Auto-MDI/MDIX Off */
1298                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1299                 /* reset to update Auto-MDI/MDIX */
1300                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1301                 /* autoneg off */
1302                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1303                 break;
1304         case e1000_phy_gg82563:
1305                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1306                 break;
1307         case e1000_phy_bm:
1308                 /* Set Default MAC Interface speed to 1GB */
1309                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1310                 phy_reg &= ~0x0007;
1311                 phy_reg |= 0x006;
1312                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1313                 /* Assert SW reset for above settings to take effect */
1314                 e1000e_commit_phy(hw);
1315                 mdelay(1);
1316                 /* Force Full Duplex */
1317                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1318                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1319                 /* Set Link Up (in force link) */
1320                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1321                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1322                 /* Force Link */
1323                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1324                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1325                 /* Set Early Link Enable */
1326                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1327                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1328                 break;
1329         case e1000_phy_82577:
1330         case e1000_phy_82578:
1331                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1332                 ret_val = hw->phy.ops.acquire(hw);
1333                 if (ret_val) {
1334                         e_err("Cannot setup 1Gbps loopback.\n");
1335                         return ret_val;
1336                 }
1337                 e1000_configure_k1_ich8lan(hw, false);
1338                 hw->phy.ops.release(hw);
1339                 break;
1340         case e1000_phy_82579:
1341                 /* Disable PHY energy detect power down */
1342                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1343                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1344                 /* Disable full chip energy detect */
1345                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1346                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1347                 /* Enable loopback on the PHY */
1348 #define I82577_PHY_LBK_CTRL          19
1349                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1350                 break;
1351         default:
1352                 break;
1353         }
1354
1355         /* force 1000, set loopback */
1356         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1357         mdelay(250);
1358
1359         /* Now set up the MAC to the same speed/duplex as the PHY. */
1360         ctrl_reg = er32(CTRL);
1361         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1362         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1363                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1364                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1365                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1366
1367         if (adapter->flags & FLAG_IS_ICH)
1368                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1369
1370         if (hw->phy.media_type == e1000_media_type_copper &&
1371             hw->phy.type == e1000_phy_m88) {
1372                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1373         } else {
1374                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1375                  * detected.
1376                  */
1377                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1378                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1379         }
1380
1381         ew32(CTRL, ctrl_reg);
1382
1383         /* Disable the receiver on the PHY so when a cable is plugged in, the
1384          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1385          */
1386         if (hw->phy.type == e1000_phy_m88)
1387                 e1000_phy_disable_receiver(adapter);
1388
1389         udelay(500);
1390
1391         return 0;
1392 }
1393
1394 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1395 {
1396         struct e1000_hw *hw = &adapter->hw;
1397         u32 ctrl = er32(CTRL);
1398         int link = 0;
1399
1400         /* special requirements for 82571/82572 fiber adapters */
1401
1402         /* jump through hoops to make sure link is up because serdes
1403          * link is hardwired up
1404          */
1405         ctrl |= E1000_CTRL_SLU;
1406         ew32(CTRL, ctrl);
1407
1408         /* disable autoneg */
1409         ctrl = er32(TXCW);
1410         ctrl &= ~(1 << 31);
1411         ew32(TXCW, ctrl);
1412
1413         link = (er32(STATUS) & E1000_STATUS_LU);
1414
1415         if (!link) {
1416                 /* set invert loss of signal */
1417                 ctrl = er32(CTRL);
1418                 ctrl |= E1000_CTRL_ILOS;
1419                 ew32(CTRL, ctrl);
1420         }
1421
1422         /* special write to serdes control register to enable SerDes analog
1423          * loopback
1424          */
1425 #define E1000_SERDES_LB_ON 0x410
1426         ew32(SCTL, E1000_SERDES_LB_ON);
1427         e1e_flush();
1428         usleep_range(10000, 20000);
1429
1430         return 0;
1431 }
1432
1433 /* only call this for fiber/serdes connections to es2lan */
1434 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1435 {
1436         struct e1000_hw *hw = &adapter->hw;
1437         u32 ctrlext = er32(CTRL_EXT);
1438         u32 ctrl = er32(CTRL);
1439
1440         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1441          * on mac_type 80003es2lan)
1442          */
1443         adapter->tx_fifo_head = ctrlext;
1444
1445         /* clear the serdes mode bits, putting the device into mac loopback */
1446         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1447         ew32(CTRL_EXT, ctrlext);
1448
1449         /* force speed to 1000/FD, link up */
1450         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1451         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1452                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1453         ew32(CTRL, ctrl);
1454
1455         /* set mac loopback */
1456         ctrl = er32(RCTL);
1457         ctrl |= E1000_RCTL_LBM_MAC;
1458         ew32(RCTL, ctrl);
1459
1460         /* set testing mode parameters (no need to reset later) */
1461 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1462 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1463         ew32(KMRNCTRLSTA,
1464              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1465
1466         return 0;
1467 }
1468
1469 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1470 {
1471         struct e1000_hw *hw = &adapter->hw;
1472         u32 rctl;
1473
1474         if (hw->phy.media_type == e1000_media_type_fiber ||
1475             hw->phy.media_type == e1000_media_type_internal_serdes) {
1476                 switch (hw->mac.type) {
1477                 case e1000_80003es2lan:
1478                         return e1000_set_es2lan_mac_loopback(adapter);
1479                         break;
1480                 case e1000_82571:
1481                 case e1000_82572:
1482                         return e1000_set_82571_fiber_loopback(adapter);
1483                         break;
1484                 default:
1485                         rctl = er32(RCTL);
1486                         rctl |= E1000_RCTL_LBM_TCVR;
1487                         ew32(RCTL, rctl);
1488                         return 0;
1489                 }
1490         } else if (hw->phy.media_type == e1000_media_type_copper) {
1491                 return e1000_integrated_phy_loopback(adapter);
1492         }
1493
1494         return 7;
1495 }
1496
1497 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1498 {
1499         struct e1000_hw *hw = &adapter->hw;
1500         u32 rctl;
1501         u16 phy_reg;
1502
1503         rctl = er32(RCTL);
1504         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1505         ew32(RCTL, rctl);
1506
1507         switch (hw->mac.type) {
1508         case e1000_80003es2lan:
1509                 if (hw->phy.media_type == e1000_media_type_fiber ||
1510                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1511                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1512                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1513                         adapter->tx_fifo_head = 0;
1514                 }
1515                 /* fall through */
1516         case e1000_82571:
1517         case e1000_82572:
1518                 if (hw->phy.media_type == e1000_media_type_fiber ||
1519                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1520 #define E1000_SERDES_LB_OFF 0x400
1521                         ew32(SCTL, E1000_SERDES_LB_OFF);
1522                         e1e_flush();
1523                         usleep_range(10000, 20000);
1524                         break;
1525                 }
1526                 /* Fall Through */
1527         default:
1528                 hw->mac.autoneg = 1;
1529                 if (hw->phy.type == e1000_phy_gg82563)
1530                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1531                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1532                 if (phy_reg & MII_CR_LOOPBACK) {
1533                         phy_reg &= ~MII_CR_LOOPBACK;
1534                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1535                         e1000e_commit_phy(hw);
1536                 }
1537                 break;
1538         }
1539 }
1540
1541 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1542                                       unsigned int frame_size)
1543 {
1544         memset(skb->data, 0xFF, frame_size);
1545         frame_size &= ~1;
1546         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1547         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1548         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1549 }
1550
1551 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1552                                     unsigned int frame_size)
1553 {
1554         frame_size &= ~1;
1555         if (*(skb->data + 3) == 0xFF)
1556                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1557                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1558                         return 0;
1559         return 13;
1560 }
1561
1562 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1563 {
1564         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1565         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1566         struct pci_dev *pdev = adapter->pdev;
1567         struct e1000_hw *hw = &adapter->hw;
1568         int i, j, k, l;
1569         int lc;
1570         int good_cnt;
1571         int ret_val = 0;
1572         unsigned long time;
1573
1574         ew32(RDT(0), rx_ring->count - 1);
1575
1576         /* Calculate the loop count based on the largest descriptor ring
1577          * The idea is to wrap the largest ring a number of times using 64
1578          * send/receive pairs during each loop
1579          */
1580
1581         if (rx_ring->count <= tx_ring->count)
1582                 lc = ((tx_ring->count / 64) * 2) + 1;
1583         else
1584                 lc = ((rx_ring->count / 64) * 2) + 1;
1585
1586         k = 0;
1587         l = 0;
1588         for (j = 0; j <= lc; j++) { /* loop count loop */
1589                 for (i = 0; i < 64; i++) { /* send the packets */
1590                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1591                                                   1024);
1592                         dma_sync_single_for_device(&pdev->dev,
1593                                         tx_ring->buffer_info[k].dma,
1594                                         tx_ring->buffer_info[k].length,
1595                                         DMA_TO_DEVICE);
1596                         k++;
1597                         if (k == tx_ring->count)
1598                                 k = 0;
1599                 }
1600                 ew32(TDT(0), k);
1601                 e1e_flush();
1602                 msleep(200);
1603                 time = jiffies; /* set the start time for the receive */
1604                 good_cnt = 0;
1605                 do { /* receive the sent packets */
1606                         dma_sync_single_for_cpu(&pdev->dev,
1607                                         rx_ring->buffer_info[l].dma, 2048,
1608                                         DMA_FROM_DEVICE);
1609
1610                         ret_val = e1000_check_lbtest_frame(
1611                                         rx_ring->buffer_info[l].skb, 1024);
1612                         if (!ret_val)
1613                                 good_cnt++;
1614                         l++;
1615                         if (l == rx_ring->count)
1616                                 l = 0;
1617                         /* time + 20 msecs (200 msecs on 2.4) is more than
1618                          * enough time to complete the receives, if it's
1619                          * exceeded, break and error off
1620                          */
1621                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1622                 if (good_cnt != 64) {
1623                         ret_val = 13; /* ret_val is the same as mis-compare */
1624                         break;
1625                 }
1626                 if (jiffies >= (time + 20)) {
1627                         ret_val = 14; /* error code for time out error */
1628                         break;
1629                 }
1630         } /* end loop count loop */
1631         return ret_val;
1632 }
1633
1634 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1635 {
1636         struct e1000_hw *hw = &adapter->hw;
1637
1638         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1639         if (hw->phy.ops.check_reset_block &&
1640             hw->phy.ops.check_reset_block(hw)) {
1641                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1642                 *data = 0;
1643                 goto out;
1644         }
1645
1646         *data = e1000_setup_desc_rings(adapter);
1647         if (*data)
1648                 goto out;
1649
1650         *data = e1000_setup_loopback_test(adapter);
1651         if (*data)
1652                 goto err_loopback;
1653
1654         *data = e1000_run_loopback_test(adapter);
1655         e1000_loopback_cleanup(adapter);
1656
1657 err_loopback:
1658         e1000_free_desc_rings(adapter);
1659 out:
1660         return *data;
1661 }
1662
1663 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1664 {
1665         struct e1000_hw *hw = &adapter->hw;
1666
1667         *data = 0;
1668         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1669                 int i = 0;
1670                 hw->mac.serdes_has_link = false;
1671
1672                 /* On some blade server designs, link establishment
1673                  * could take as long as 2-3 minutes
1674                  */
1675                 do {
1676                         hw->mac.ops.check_for_link(hw);
1677                         if (hw->mac.serdes_has_link)
1678                                 return *data;
1679                         msleep(20);
1680                 } while (i++ < 3750);
1681
1682                 *data = 1;
1683         } else {
1684                 hw->mac.ops.check_for_link(hw);
1685                 if (hw->mac.autoneg)
1686                         /* On some Phy/switch combinations, link establishment
1687                          * can take a few seconds more than expected.
1688                          */
1689                         msleep(5000);
1690
1691                 if (!(er32(STATUS) & E1000_STATUS_LU))
1692                         *data = 1;
1693         }
1694         return *data;
1695 }
1696
1697 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1698 {
1699         switch (sset) {
1700         case ETH_SS_TEST:
1701                 return E1000_TEST_LEN;
1702         case ETH_SS_STATS:
1703                 return E1000_STATS_LEN;
1704         default:
1705                 return -EOPNOTSUPP;
1706         }
1707 }
1708
1709 static void e1000_diag_test(struct net_device *netdev,
1710                             struct ethtool_test *eth_test, u64 *data)
1711 {
1712         struct e1000_adapter *adapter = netdev_priv(netdev);
1713         u16 autoneg_advertised;
1714         u8 forced_speed_duplex;
1715         u8 autoneg;
1716         bool if_running = netif_running(netdev);
1717
1718         set_bit(__E1000_TESTING, &adapter->state);
1719
1720         if (!if_running) {
1721                 /* Get control of and reset hardware */
1722                 if (adapter->flags & FLAG_HAS_AMT)
1723                         e1000e_get_hw_control(adapter);
1724
1725                 e1000e_power_up_phy(adapter);
1726
1727                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1728                 e1000e_reset(adapter);
1729                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1730         }
1731
1732         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1733                 /* Offline tests */
1734
1735                 /* save speed, duplex, autoneg settings */
1736                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1737                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1738                 autoneg = adapter->hw.mac.autoneg;
1739
1740                 e_info("offline testing starting\n");
1741
1742                 if (if_running)
1743                         /* indicate we're in test mode */
1744                         dev_close(netdev);
1745
1746                 if (e1000_reg_test(adapter, &data[0]))
1747                         eth_test->flags |= ETH_TEST_FL_FAILED;
1748
1749                 e1000e_reset(adapter);
1750                 if (e1000_eeprom_test(adapter, &data[1]))
1751                         eth_test->flags |= ETH_TEST_FL_FAILED;
1752
1753                 e1000e_reset(adapter);
1754                 if (e1000_intr_test(adapter, &data[2]))
1755                         eth_test->flags |= ETH_TEST_FL_FAILED;
1756
1757                 e1000e_reset(adapter);
1758                 if (e1000_loopback_test(adapter, &data[3]))
1759                         eth_test->flags |= ETH_TEST_FL_FAILED;
1760
1761                 /* force this routine to wait until autoneg complete/timeout */
1762                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1763                 e1000e_reset(adapter);
1764                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1765
1766                 if (e1000_link_test(adapter, &data[4]))
1767                         eth_test->flags |= ETH_TEST_FL_FAILED;
1768
1769                 /* restore speed, duplex, autoneg settings */
1770                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1771                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1772                 adapter->hw.mac.autoneg = autoneg;
1773                 e1000e_reset(adapter);
1774
1775                 clear_bit(__E1000_TESTING, &adapter->state);
1776                 if (if_running)
1777                         dev_open(netdev);
1778         } else {
1779                 /* Online tests */
1780
1781                 e_info("online testing starting\n");
1782
1783                 /* register, eeprom, intr and loopback tests not run online */
1784                 data[0] = 0;
1785                 data[1] = 0;
1786                 data[2] = 0;
1787                 data[3] = 0;
1788
1789                 if (e1000_link_test(adapter, &data[4]))
1790                         eth_test->flags |= ETH_TEST_FL_FAILED;
1791
1792                 clear_bit(__E1000_TESTING, &adapter->state);
1793         }
1794
1795         if (!if_running) {
1796                 e1000e_reset(adapter);
1797
1798                 if (adapter->flags & FLAG_HAS_AMT)
1799                         e1000e_release_hw_control(adapter);
1800         }
1801
1802         msleep_interruptible(4 * 1000);
1803 }
1804
1805 static void e1000_get_wol(struct net_device *netdev,
1806                           struct ethtool_wolinfo *wol)
1807 {
1808         struct e1000_adapter *adapter = netdev_priv(netdev);
1809
1810         wol->supported = 0;
1811         wol->wolopts = 0;
1812
1813         if (!(adapter->flags & FLAG_HAS_WOL) ||
1814             !device_can_wakeup(&adapter->pdev->dev))
1815                 return;
1816
1817         wol->supported = WAKE_UCAST | WAKE_MCAST |
1818             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1819
1820         /* apply any specific unsupported masks here */
1821         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1822                 wol->supported &= ~WAKE_UCAST;
1823
1824                 if (adapter->wol & E1000_WUFC_EX)
1825                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1826         }
1827
1828         if (adapter->wol & E1000_WUFC_EX)
1829                 wol->wolopts |= WAKE_UCAST;
1830         if (adapter->wol & E1000_WUFC_MC)
1831                 wol->wolopts |= WAKE_MCAST;
1832         if (adapter->wol & E1000_WUFC_BC)
1833                 wol->wolopts |= WAKE_BCAST;
1834         if (adapter->wol & E1000_WUFC_MAG)
1835                 wol->wolopts |= WAKE_MAGIC;
1836         if (adapter->wol & E1000_WUFC_LNKC)
1837                 wol->wolopts |= WAKE_PHY;
1838 }
1839
1840 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1841 {
1842         struct e1000_adapter *adapter = netdev_priv(netdev);
1843
1844         if (!(adapter->flags & FLAG_HAS_WOL) ||
1845             !device_can_wakeup(&adapter->pdev->dev) ||
1846             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1847                               WAKE_MAGIC | WAKE_PHY)))
1848                 return -EOPNOTSUPP;
1849
1850         /* these settings will always override what we currently have */
1851         adapter->wol = 0;
1852
1853         if (wol->wolopts & WAKE_UCAST)
1854                 adapter->wol |= E1000_WUFC_EX;
1855         if (wol->wolopts & WAKE_MCAST)
1856                 adapter->wol |= E1000_WUFC_MC;
1857         if (wol->wolopts & WAKE_BCAST)
1858                 adapter->wol |= E1000_WUFC_BC;
1859         if (wol->wolopts & WAKE_MAGIC)
1860                 adapter->wol |= E1000_WUFC_MAG;
1861         if (wol->wolopts & WAKE_PHY)
1862                 adapter->wol |= E1000_WUFC_LNKC;
1863
1864         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1865
1866         return 0;
1867 }
1868
1869 static int e1000_set_phys_id(struct net_device *netdev,
1870                              enum ethtool_phys_id_state state)
1871 {
1872         struct e1000_adapter *adapter = netdev_priv(netdev);
1873         struct e1000_hw *hw = &adapter->hw;
1874
1875         switch (state) {
1876         case ETHTOOL_ID_ACTIVE:
1877                 if (!hw->mac.ops.blink_led)
1878                         return 2;       /* cycle on/off twice per second */
1879
1880                 hw->mac.ops.blink_led(hw);
1881                 break;
1882
1883         case ETHTOOL_ID_INACTIVE:
1884                 if (hw->phy.type == e1000_phy_ife)
1885                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1886                 hw->mac.ops.led_off(hw);
1887                 hw->mac.ops.cleanup_led(hw);
1888                 break;
1889
1890         case ETHTOOL_ID_ON:
1891                 hw->mac.ops.led_on(hw);
1892                 break;
1893
1894         case ETHTOOL_ID_OFF:
1895                 hw->mac.ops.led_off(hw);
1896                 break;
1897         }
1898         return 0;
1899 }
1900
1901 static int e1000_get_coalesce(struct net_device *netdev,
1902                               struct ethtool_coalesce *ec)
1903 {
1904         struct e1000_adapter *adapter = netdev_priv(netdev);
1905
1906         if (adapter->itr_setting <= 4)
1907                 ec->rx_coalesce_usecs = adapter->itr_setting;
1908         else
1909                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1910
1911         return 0;
1912 }
1913
1914 static int e1000_set_coalesce(struct net_device *netdev,
1915                               struct ethtool_coalesce *ec)
1916 {
1917         struct e1000_adapter *adapter = netdev_priv(netdev);
1918
1919         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1920             ((ec->rx_coalesce_usecs > 4) &&
1921              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1922             (ec->rx_coalesce_usecs == 2))
1923                 return -EINVAL;
1924
1925         if (ec->rx_coalesce_usecs == 4) {
1926                 adapter->itr_setting = 4;
1927                 adapter->itr = adapter->itr_setting;
1928         } else if (ec->rx_coalesce_usecs <= 3) {
1929                 adapter->itr = 20000;
1930                 adapter->itr_setting = ec->rx_coalesce_usecs;
1931         } else {
1932                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1933                 adapter->itr_setting = adapter->itr & ~3;
1934         }
1935
1936         if (adapter->itr_setting != 0)
1937                 e1000e_write_itr(adapter, adapter->itr);
1938         else
1939                 e1000e_write_itr(adapter, 0);
1940
1941         return 0;
1942 }
1943
1944 static int e1000_nway_reset(struct net_device *netdev)
1945 {
1946         struct e1000_adapter *adapter = netdev_priv(netdev);
1947
1948         if (!netif_running(netdev))
1949                 return -EAGAIN;
1950
1951         if (!adapter->hw.mac.autoneg)
1952                 return -EINVAL;
1953
1954         e1000e_reinit_locked(adapter);
1955
1956         return 0;
1957 }
1958
1959 static void e1000_get_ethtool_stats(struct net_device *netdev,
1960                                     struct ethtool_stats *stats,
1961                                     u64 *data)
1962 {
1963         struct e1000_adapter *adapter = netdev_priv(netdev);
1964         struct rtnl_link_stats64 net_stats;
1965         int i;
1966         char *p = NULL;
1967
1968         e1000e_get_stats64(netdev, &net_stats);
1969         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1970                 switch (e1000_gstrings_stats[i].type) {
1971                 case NETDEV_STATS:
1972                         p = (char *) &net_stats +
1973                                         e1000_gstrings_stats[i].stat_offset;
1974                         break;
1975                 case E1000_STATS:
1976                         p = (char *) adapter +
1977                                         e1000_gstrings_stats[i].stat_offset;
1978                         break;
1979                 default:
1980                         data[i] = 0;
1981                         continue;
1982                 }
1983
1984                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1985                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1986         }
1987 }
1988
1989 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1990                               u8 *data)
1991 {
1992         u8 *p = data;
1993         int i;
1994
1995         switch (stringset) {
1996         case ETH_SS_TEST:
1997                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1998                 break;
1999         case ETH_SS_STATS:
2000                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2001                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2002                                ETH_GSTRING_LEN);
2003                         p += ETH_GSTRING_LEN;
2004                 }
2005                 break;
2006         }
2007 }
2008
2009 static int e1000_get_rxnfc(struct net_device *netdev,
2010                            struct ethtool_rxnfc *info, u32 *rule_locs)
2011 {
2012         info->data = 0;
2013
2014         switch (info->cmd) {
2015         case ETHTOOL_GRXFH: {
2016                 struct e1000_adapter *adapter = netdev_priv(netdev);
2017                 struct e1000_hw *hw = &adapter->hw;
2018                 u32 mrqc = er32(MRQC);
2019
2020                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2021                         return 0;
2022
2023                 switch (info->flow_type) {
2024                 case TCP_V4_FLOW:
2025                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2026                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2027                         /* fall through */
2028                 case UDP_V4_FLOW:
2029                 case SCTP_V4_FLOW:
2030                 case AH_ESP_V4_FLOW:
2031                 case IPV4_FLOW:
2032                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2033                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2034                         break;
2035                 case TCP_V6_FLOW:
2036                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2037                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2038                         /* fall through */
2039                 case UDP_V6_FLOW:
2040                 case SCTP_V6_FLOW:
2041                 case AH_ESP_V6_FLOW:
2042                 case IPV6_FLOW:
2043                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2044                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2045                         break;
2046                 default:
2047                         break;
2048                 }
2049                 return 0;
2050         }
2051         default:
2052                 return -EOPNOTSUPP;
2053         }
2054 }
2055
2056 static const struct ethtool_ops e1000_ethtool_ops = {
2057         .get_settings           = e1000_get_settings,
2058         .set_settings           = e1000_set_settings,
2059         .get_drvinfo            = e1000_get_drvinfo,
2060         .get_regs_len           = e1000_get_regs_len,
2061         .get_regs               = e1000_get_regs,
2062         .get_wol                = e1000_get_wol,
2063         .set_wol                = e1000_set_wol,
2064         .get_msglevel           = e1000_get_msglevel,
2065         .set_msglevel           = e1000_set_msglevel,
2066         .nway_reset             = e1000_nway_reset,
2067         .get_link               = ethtool_op_get_link,
2068         .get_eeprom_len         = e1000_get_eeprom_len,
2069         .get_eeprom             = e1000_get_eeprom,
2070         .set_eeprom             = e1000_set_eeprom,
2071         .get_ringparam          = e1000_get_ringparam,
2072         .set_ringparam          = e1000_set_ringparam,
2073         .get_pauseparam         = e1000_get_pauseparam,
2074         .set_pauseparam         = e1000_set_pauseparam,
2075         .self_test              = e1000_diag_test,
2076         .get_strings            = e1000_get_strings,
2077         .set_phys_id            = e1000_set_phys_id,
2078         .get_ethtool_stats      = e1000_get_ethtool_stats,
2079         .get_sset_count         = e1000e_get_sset_count,
2080         .get_coalesce           = e1000_get_coalesce,
2081         .set_coalesce           = e1000_set_coalesce,
2082         .get_rxnfc              = e1000_get_rxnfc,
2083         .get_ts_info            = ethtool_op_get_ts_info,
2084 };
2085
2086 void e1000e_set_ethtool_ops(struct net_device *netdev)
2087 {
2088         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2089 }