]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
Merge branch 'next/cleanup' into for-next
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244  * @vsi: pointer to the targeted VSI
245  * @fd_data: the flow director data required for the FDir descriptor
246  * @add: true adds a filter, false removes it
247  *
248  * Returns 0 if the filters were successfully added or removed
249  **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251                                    struct i40e_fdir_filter *fd_data,
252                                    bool add)
253 {
254         struct i40e_pf *pf = vsi->back;
255         struct tcphdr *tcp;
256         struct iphdr *ip;
257         bool err = false;
258         u8 *raw_packet;
259         int ret;
260         /* Dummy packet */
261         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264                 0x0, 0x72, 0, 0, 0, 0};
265
266         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267         if (!raw_packet)
268                 return -ENOMEM;
269         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273               + sizeof(struct iphdr));
274
275         ip->daddr = fd_data->dst_ip[0];
276         tcp->dest = fd_data->dst_port;
277         ip->saddr = fd_data->src_ip[0];
278         tcp->source = fd_data->src_port;
279
280         if (add) {
281                 pf->fd_tcp_rule++;
282                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
284                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286                 }
287         } else {
288                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289                                   (pf->fd_tcp_rule - 1) : 0;
290                 if (pf->fd_tcp_rule == 0) {
291                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
293                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469                     (I40E_DEBUG_FD & pf->hw.debug_mask))
470                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471                                  rx_desc->wb.qword0.hi_dword.fd_id);
472
473                 /* Check if the programming error is for ATR.
474                  * If so, auto disable ATR and set a state for
475                  * flush in progress. Next time we come here if flush is in
476                  * progress do nothing, once flush is complete the state will
477                  * be cleared.
478                  */
479                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
480                         return;
481
482                 pf->fd_add_err++;
483                 /* store the current atr filter count */
484                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
485
486                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
487                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
488                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
489                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
490                 }
491
492                 /* filter programming failed most likely due to table full */
493                 fcnt_prog = i40e_get_global_fd_count(pf);
494                 fcnt_avail = pf->fdir_pf_filter_count;
495                 /* If ATR is running fcnt_prog can quickly change,
496                  * if we are very close to full, it makes sense to disable
497                  * FD ATR/SB and then re-enable it when there is room.
498                  */
499                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
500                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
501                             !(pf->auto_disable_flags &
502                                      I40E_FLAG_FD_SB_ENABLED)) {
503                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
504                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505                                 pf->auto_disable_flags |=
506                                                         I40E_FLAG_FD_SB_ENABLED;
507                         }
508                 } else {
509                         dev_info(&pdev->dev,
510                                 "FD filter programming failed due to incorrect filter parameters\n");
511                 }
512         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
513                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
515                                  rx_desc->wb.qword0.hi_dword.fd_id);
516         }
517 }
518
519 /**
520  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
521  * @ring:      the ring that owns the buffer
522  * @tx_buffer: the buffer to free
523  **/
524 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
525                                             struct i40e_tx_buffer *tx_buffer)
526 {
527         if (tx_buffer->skb) {
528                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
529                         kfree(tx_buffer->raw_buf);
530                 else
531                         dev_kfree_skb_any(tx_buffer->skb);
532
533                 if (dma_unmap_len(tx_buffer, len))
534                         dma_unmap_single(ring->dev,
535                                          dma_unmap_addr(tx_buffer, dma),
536                                          dma_unmap_len(tx_buffer, len),
537                                          DMA_TO_DEVICE);
538         } else if (dma_unmap_len(tx_buffer, len)) {
539                 dma_unmap_page(ring->dev,
540                                dma_unmap_addr(tx_buffer, dma),
541                                dma_unmap_len(tx_buffer, len),
542                                DMA_TO_DEVICE);
543         }
544         tx_buffer->next_to_watch = NULL;
545         tx_buffer->skb = NULL;
546         dma_unmap_len_set(tx_buffer, len, 0);
547         /* tx_buffer must be completely set up in the transmit path */
548 }
549
550 /**
551  * i40e_clean_tx_ring - Free any empty Tx buffers
552  * @tx_ring: ring to be cleaned
553  **/
554 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
555 {
556         unsigned long bi_size;
557         u16 i;
558
559         /* ring already cleared, nothing to do */
560         if (!tx_ring->tx_bi)
561                 return;
562
563         /* Free all the Tx ring sk_buffs */
564         for (i = 0; i < tx_ring->count; i++)
565                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
566
567         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
568         memset(tx_ring->tx_bi, 0, bi_size);
569
570         /* Zero out the descriptor ring */
571         memset(tx_ring->desc, 0, tx_ring->size);
572
573         tx_ring->next_to_use = 0;
574         tx_ring->next_to_clean = 0;
575
576         if (!tx_ring->netdev)
577                 return;
578
579         /* cleanup Tx queue statistics */
580         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
581                                                   tx_ring->queue_index));
582 }
583
584 /**
585  * i40e_free_tx_resources - Free Tx resources per queue
586  * @tx_ring: Tx descriptor ring for a specific queue
587  *
588  * Free all transmit software resources
589  **/
590 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
591 {
592         i40e_clean_tx_ring(tx_ring);
593         kfree(tx_ring->tx_bi);
594         tx_ring->tx_bi = NULL;
595
596         if (tx_ring->desc) {
597                 dma_free_coherent(tx_ring->dev, tx_ring->size,
598                                   tx_ring->desc, tx_ring->dma);
599                 tx_ring->desc = NULL;
600         }
601 }
602
603 /**
604  * i40e_get_head - Retrieve head from head writeback
605  * @tx_ring:  tx ring to fetch head of
606  *
607  * Returns value of Tx ring head based on value stored
608  * in head write-back location
609  **/
610 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
611 {
612         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
613
614         return le32_to_cpu(*(volatile __le32 *)head);
615 }
616
617 /**
618  * i40e_get_tx_pending - how many tx descriptors not processed
619  * @tx_ring: the ring of descriptors
620  *
621  * Since there is no access to the ring head register
622  * in XL710, we need to use our local copies
623  **/
624 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
625 {
626         u32 head, tail;
627
628         head = i40e_get_head(ring);
629         tail = readl(ring->tail);
630
631         if (head != tail)
632                 return (head < tail) ?
633                         tail - head : (tail + ring->count - head);
634
635         return 0;
636 }
637
638 /**
639  * i40e_check_tx_hang - Is there a hang in the Tx queue
640  * @tx_ring: the ring of descriptors
641  **/
642 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
643 {
644         u32 tx_done = tx_ring->stats.packets;
645         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
646         u32 tx_pending = i40e_get_tx_pending(tx_ring);
647         struct i40e_pf *pf = tx_ring->vsi->back;
648         bool ret = false;
649
650         clear_check_for_tx_hang(tx_ring);
651
652         /* Check for a hung queue, but be thorough. This verifies
653          * that a transmit has been completed since the previous
654          * check AND there is at least one packet pending. The
655          * ARMED bit is set to indicate a potential hang. The
656          * bit is cleared if a pause frame is received to remove
657          * false hang detection due to PFC or 802.3x frames. By
658          * requiring this to fail twice we avoid races with
659          * PFC clearing the ARMED bit and conditions where we
660          * run the check_tx_hang logic with a transmit completion
661          * pending but without time to complete it yet.
662          */
663         if ((tx_done_old == tx_done) && tx_pending) {
664                 /* make sure it is true for two checks in a row */
665                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
666                                        &tx_ring->state);
667         } else if (tx_done_old == tx_done &&
668                    (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
669                 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
670                         dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
671                                  tx_pending, tx_ring->queue_index);
672                 pf->tx_sluggish_count++;
673         } else {
674                 /* update completed stats and disarm the hang check */
675                 tx_ring->tx_stats.tx_done_old = tx_done;
676                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
677         }
678
679         return ret;
680 }
681
682 #define WB_STRIDE 0x3
683
684 /**
685  * i40e_clean_tx_irq - Reclaim resources after transmit completes
686  * @tx_ring:  tx ring to clean
687  * @budget:   how many cleans we're allowed
688  *
689  * Returns true if there's any budget left (e.g. the clean is finished)
690  **/
691 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
692 {
693         u16 i = tx_ring->next_to_clean;
694         struct i40e_tx_buffer *tx_buf;
695         struct i40e_tx_desc *tx_head;
696         struct i40e_tx_desc *tx_desc;
697         unsigned int total_packets = 0;
698         unsigned int total_bytes = 0;
699
700         tx_buf = &tx_ring->tx_bi[i];
701         tx_desc = I40E_TX_DESC(tx_ring, i);
702         i -= tx_ring->count;
703
704         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
705
706         do {
707                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
708
709                 /* if next_to_watch is not set then there is no work pending */
710                 if (!eop_desc)
711                         break;
712
713                 /* prevent any other reads prior to eop_desc */
714                 read_barrier_depends();
715
716                 /* we have caught up to head, no work left to do */
717                 if (tx_head == tx_desc)
718                         break;
719
720                 /* clear next_to_watch to prevent false hangs */
721                 tx_buf->next_to_watch = NULL;
722
723                 /* update the statistics for this packet */
724                 total_bytes += tx_buf->bytecount;
725                 total_packets += tx_buf->gso_segs;
726
727                 /* free the skb */
728                 dev_consume_skb_any(tx_buf->skb);
729
730                 /* unmap skb header data */
731                 dma_unmap_single(tx_ring->dev,
732                                  dma_unmap_addr(tx_buf, dma),
733                                  dma_unmap_len(tx_buf, len),
734                                  DMA_TO_DEVICE);
735
736                 /* clear tx_buffer data */
737                 tx_buf->skb = NULL;
738                 dma_unmap_len_set(tx_buf, len, 0);
739
740                 /* unmap remaining buffers */
741                 while (tx_desc != eop_desc) {
742
743                         tx_buf++;
744                         tx_desc++;
745                         i++;
746                         if (unlikely(!i)) {
747                                 i -= tx_ring->count;
748                                 tx_buf = tx_ring->tx_bi;
749                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
750                         }
751
752                         /* unmap any remaining paged data */
753                         if (dma_unmap_len(tx_buf, len)) {
754                                 dma_unmap_page(tx_ring->dev,
755                                                dma_unmap_addr(tx_buf, dma),
756                                                dma_unmap_len(tx_buf, len),
757                                                DMA_TO_DEVICE);
758                                 dma_unmap_len_set(tx_buf, len, 0);
759                         }
760                 }
761
762                 /* move us one more past the eop_desc for start of next pkt */
763                 tx_buf++;
764                 tx_desc++;
765                 i++;
766                 if (unlikely(!i)) {
767                         i -= tx_ring->count;
768                         tx_buf = tx_ring->tx_bi;
769                         tx_desc = I40E_TX_DESC(tx_ring, 0);
770                 }
771
772                 prefetch(tx_desc);
773
774                 /* update budget accounting */
775                 budget--;
776         } while (likely(budget));
777
778         i += tx_ring->count;
779         tx_ring->next_to_clean = i;
780         u64_stats_update_begin(&tx_ring->syncp);
781         tx_ring->stats.bytes += total_bytes;
782         tx_ring->stats.packets += total_packets;
783         u64_stats_update_end(&tx_ring->syncp);
784         tx_ring->q_vector->tx.total_bytes += total_bytes;
785         tx_ring->q_vector->tx.total_packets += total_packets;
786
787         /* check to see if there are any non-cache aligned descriptors
788          * waiting to be written back, and kick the hardware to force
789          * them to be written back in case of napi polling
790          */
791         if (budget &&
792             !((i & WB_STRIDE) == WB_STRIDE) &&
793             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
794             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
795                 tx_ring->arm_wb = true;
796         else
797                 tx_ring->arm_wb = false;
798
799         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
800                 /* schedule immediate reset if we believe we hung */
801                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
802                          "  VSI                  <%d>\n"
803                          "  Tx Queue             <%d>\n"
804                          "  next_to_use          <%x>\n"
805                          "  next_to_clean        <%x>\n",
806                          tx_ring->vsi->seid,
807                          tx_ring->queue_index,
808                          tx_ring->next_to_use, i);
809
810                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
811
812                 dev_info(tx_ring->dev,
813                          "tx hang detected on queue %d, reset requested\n",
814                          tx_ring->queue_index);
815
816                 /* do not fire the reset immediately, wait for the stack to
817                  * decide we are truly stuck, also prevents every queue from
818                  * simultaneously requesting a reset
819                  */
820
821                 /* the adapter is about to reset, no point in enabling polling */
822                 budget = 1;
823         }
824
825         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
826                                                       tx_ring->queue_index),
827                                   total_packets, total_bytes);
828
829 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
830         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
831                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
832                 /* Make sure that anybody stopping the queue after this
833                  * sees the new next_to_clean.
834                  */
835                 smp_mb();
836                 if (__netif_subqueue_stopped(tx_ring->netdev,
837                                              tx_ring->queue_index) &&
838                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
839                         netif_wake_subqueue(tx_ring->netdev,
840                                             tx_ring->queue_index);
841                         ++tx_ring->tx_stats.restart_queue;
842                 }
843         }
844
845         return !!budget;
846 }
847
848 /**
849  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
850  * @vsi: the VSI we care about
851  * @q_vector: the vector  on which to force writeback
852  *
853  **/
854 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
855 {
856         u16 flags = q_vector->tx.ring[0].flags;
857
858         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
859                 u32 val;
860
861                 if (q_vector->arm_wb_state)
862                         return;
863
864                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
865
866                 wr32(&vsi->back->hw,
867                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
868                                          vsi->base_vector - 1),
869                      val);
870                 q_vector->arm_wb_state = true;
871         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
872                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
873                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
874                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
875                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
876                           /* allow 00 to be written to the index */
877
878                 wr32(&vsi->back->hw,
879                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
880                                          vsi->base_vector - 1), val);
881         } else {
882                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
883                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
884                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
885                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
886                         /* allow 00 to be written to the index */
887
888                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
889         }
890 }
891
892 /**
893  * i40e_set_new_dynamic_itr - Find new ITR level
894  * @rc: structure containing ring performance data
895  *
896  * Stores a new ITR value based on packets and byte counts during
897  * the last interrupt.  The advantage of per interrupt computation
898  * is faster updates and more accurate ITR for the current traffic
899  * pattern.  Constants in this function were computed based on
900  * theoretical maximum wire speed and thresholds were set based on
901  * testing data as well as attempting to minimize response time
902  * while increasing bulk throughput.
903  **/
904 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
905 {
906         enum i40e_latency_range new_latency_range = rc->latency_range;
907         u32 new_itr = rc->itr;
908         int bytes_per_int;
909
910         if (rc->total_packets == 0 || !rc->itr)
911                 return;
912
913         /* simple throttlerate management
914          *   0-10MB/s   lowest (100000 ints/s)
915          *  10-20MB/s   low    (20000 ints/s)
916          *  20-1249MB/s bulk   (8000 ints/s)
917          */
918         bytes_per_int = rc->total_bytes / rc->itr;
919         switch (new_latency_range) {
920         case I40E_LOWEST_LATENCY:
921                 if (bytes_per_int > 10)
922                         new_latency_range = I40E_LOW_LATENCY;
923                 break;
924         case I40E_LOW_LATENCY:
925                 if (bytes_per_int > 20)
926                         new_latency_range = I40E_BULK_LATENCY;
927                 else if (bytes_per_int <= 10)
928                         new_latency_range = I40E_LOWEST_LATENCY;
929                 break;
930         case I40E_BULK_LATENCY:
931                 if (bytes_per_int <= 20)
932                         new_latency_range = I40E_LOW_LATENCY;
933                 break;
934         default:
935                 if (bytes_per_int <= 20)
936                         new_latency_range = I40E_LOW_LATENCY;
937                 break;
938         }
939         rc->latency_range = new_latency_range;
940
941         switch (new_latency_range) {
942         case I40E_LOWEST_LATENCY:
943                 new_itr = I40E_ITR_100K;
944                 break;
945         case I40E_LOW_LATENCY:
946                 new_itr = I40E_ITR_20K;
947                 break;
948         case I40E_BULK_LATENCY:
949                 new_itr = I40E_ITR_8K;
950                 break;
951         default:
952                 break;
953         }
954
955         if (new_itr != rc->itr)
956                 rc->itr = new_itr;
957
958         rc->total_bytes = 0;
959         rc->total_packets = 0;
960 }
961
962 /**
963  * i40e_clean_programming_status - clean the programming status descriptor
964  * @rx_ring: the rx ring that has this descriptor
965  * @rx_desc: the rx descriptor written back by HW
966  *
967  * Flow director should handle FD_FILTER_STATUS to check its filter programming
968  * status being successful or not and take actions accordingly. FCoE should
969  * handle its context/filter programming/invalidation status and take actions.
970  *
971  **/
972 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
973                                           union i40e_rx_desc *rx_desc)
974 {
975         u64 qw;
976         u8 id;
977
978         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
979         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
980                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
981
982         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
983                 i40e_fd_handle_status(rx_ring, rx_desc, id);
984 #ifdef I40E_FCOE
985         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
986                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
987                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
988 #endif
989 }
990
991 /**
992  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
993  * @tx_ring: the tx ring to set up
994  *
995  * Return 0 on success, negative on error
996  **/
997 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
998 {
999         struct device *dev = tx_ring->dev;
1000         int bi_size;
1001
1002         if (!dev)
1003                 return -ENOMEM;
1004
1005         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1006         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1007         if (!tx_ring->tx_bi)
1008                 goto err;
1009
1010         /* round up to nearest 4K */
1011         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1012         /* add u32 for head writeback, align after this takes care of
1013          * guaranteeing this is at least one cache line in size
1014          */
1015         tx_ring->size += sizeof(u32);
1016         tx_ring->size = ALIGN(tx_ring->size, 4096);
1017         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1018                                            &tx_ring->dma, GFP_KERNEL);
1019         if (!tx_ring->desc) {
1020                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1021                          tx_ring->size);
1022                 goto err;
1023         }
1024
1025         tx_ring->next_to_use = 0;
1026         tx_ring->next_to_clean = 0;
1027         return 0;
1028
1029 err:
1030         kfree(tx_ring->tx_bi);
1031         tx_ring->tx_bi = NULL;
1032         return -ENOMEM;
1033 }
1034
1035 /**
1036  * i40e_clean_rx_ring - Free Rx buffers
1037  * @rx_ring: ring to be cleaned
1038  **/
1039 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1040 {
1041         struct device *dev = rx_ring->dev;
1042         struct i40e_rx_buffer *rx_bi;
1043         unsigned long bi_size;
1044         u16 i;
1045
1046         /* ring already cleared, nothing to do */
1047         if (!rx_ring->rx_bi)
1048                 return;
1049
1050         if (ring_is_ps_enabled(rx_ring)) {
1051                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1052
1053                 rx_bi = &rx_ring->rx_bi[0];
1054                 if (rx_bi->hdr_buf) {
1055                         dma_free_coherent(dev,
1056                                           bufsz,
1057                                           rx_bi->hdr_buf,
1058                                           rx_bi->dma);
1059                         for (i = 0; i < rx_ring->count; i++) {
1060                                 rx_bi = &rx_ring->rx_bi[i];
1061                                 rx_bi->dma = 0;
1062                                 rx_bi->hdr_buf = NULL;
1063                         }
1064                 }
1065         }
1066         /* Free all the Rx ring sk_buffs */
1067         for (i = 0; i < rx_ring->count; i++) {
1068                 rx_bi = &rx_ring->rx_bi[i];
1069                 if (rx_bi->dma) {
1070                         dma_unmap_single(dev,
1071                                          rx_bi->dma,
1072                                          rx_ring->rx_buf_len,
1073                                          DMA_FROM_DEVICE);
1074                         rx_bi->dma = 0;
1075                 }
1076                 if (rx_bi->skb) {
1077                         dev_kfree_skb(rx_bi->skb);
1078                         rx_bi->skb = NULL;
1079                 }
1080                 if (rx_bi->page) {
1081                         if (rx_bi->page_dma) {
1082                                 dma_unmap_page(dev,
1083                                                rx_bi->page_dma,
1084                                                PAGE_SIZE / 2,
1085                                                DMA_FROM_DEVICE);
1086                                 rx_bi->page_dma = 0;
1087                         }
1088                         __free_page(rx_bi->page);
1089                         rx_bi->page = NULL;
1090                         rx_bi->page_offset = 0;
1091                 }
1092         }
1093
1094         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1095         memset(rx_ring->rx_bi, 0, bi_size);
1096
1097         /* Zero out the descriptor ring */
1098         memset(rx_ring->desc, 0, rx_ring->size);
1099
1100         rx_ring->next_to_clean = 0;
1101         rx_ring->next_to_use = 0;
1102 }
1103
1104 /**
1105  * i40e_free_rx_resources - Free Rx resources
1106  * @rx_ring: ring to clean the resources from
1107  *
1108  * Free all receive software resources
1109  **/
1110 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1111 {
1112         i40e_clean_rx_ring(rx_ring);
1113         kfree(rx_ring->rx_bi);
1114         rx_ring->rx_bi = NULL;
1115
1116         if (rx_ring->desc) {
1117                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1118                                   rx_ring->desc, rx_ring->dma);
1119                 rx_ring->desc = NULL;
1120         }
1121 }
1122
1123 /**
1124  * i40e_alloc_rx_headers - allocate rx header buffers
1125  * @rx_ring: ring to alloc buffers
1126  *
1127  * Allocate rx header buffers for the entire ring. As these are static,
1128  * this is only called when setting up a new ring.
1129  **/
1130 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1131 {
1132         struct device *dev = rx_ring->dev;
1133         struct i40e_rx_buffer *rx_bi;
1134         dma_addr_t dma;
1135         void *buffer;
1136         int buf_size;
1137         int i;
1138
1139         if (rx_ring->rx_bi[0].hdr_buf)
1140                 return;
1141         /* Make sure the buffers don't cross cache line boundaries. */
1142         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1143         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1144                                     &dma, GFP_KERNEL);
1145         if (!buffer)
1146                 return;
1147         for (i = 0; i < rx_ring->count; i++) {
1148                 rx_bi = &rx_ring->rx_bi[i];
1149                 rx_bi->dma = dma + (i * buf_size);
1150                 rx_bi->hdr_buf = buffer + (i * buf_size);
1151         }
1152 }
1153
1154 /**
1155  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1156  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1157  *
1158  * Returns 0 on success, negative on failure
1159  **/
1160 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1161 {
1162         struct device *dev = rx_ring->dev;
1163         int bi_size;
1164
1165         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1166         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1167         if (!rx_ring->rx_bi)
1168                 goto err;
1169
1170         u64_stats_init(&rx_ring->syncp);
1171
1172         /* Round up to nearest 4K */
1173         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1174                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1175                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1176         rx_ring->size = ALIGN(rx_ring->size, 4096);
1177         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1178                                            &rx_ring->dma, GFP_KERNEL);
1179
1180         if (!rx_ring->desc) {
1181                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1182                          rx_ring->size);
1183                 goto err;
1184         }
1185
1186         rx_ring->next_to_clean = 0;
1187         rx_ring->next_to_use = 0;
1188
1189         return 0;
1190 err:
1191         kfree(rx_ring->rx_bi);
1192         rx_ring->rx_bi = NULL;
1193         return -ENOMEM;
1194 }
1195
1196 /**
1197  * i40e_release_rx_desc - Store the new tail and head values
1198  * @rx_ring: ring to bump
1199  * @val: new head index
1200  **/
1201 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1202 {
1203         rx_ring->next_to_use = val;
1204         /* Force memory writes to complete before letting h/w
1205          * know there are new descriptors to fetch.  (Only
1206          * applicable for weak-ordered memory model archs,
1207          * such as IA-64).
1208          */
1209         wmb();
1210         writel(val, rx_ring->tail);
1211 }
1212
1213 /**
1214  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1215  * @rx_ring: ring to place buffers on
1216  * @cleaned_count: number of buffers to replace
1217  **/
1218 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1219 {
1220         u16 i = rx_ring->next_to_use;
1221         union i40e_rx_desc *rx_desc;
1222         struct i40e_rx_buffer *bi;
1223
1224         /* do nothing if no valid netdev defined */
1225         if (!rx_ring->netdev || !cleaned_count)
1226                 return;
1227
1228         while (cleaned_count--) {
1229                 rx_desc = I40E_RX_DESC(rx_ring, i);
1230                 bi = &rx_ring->rx_bi[i];
1231
1232                 if (bi->skb) /* desc is in use */
1233                         goto no_buffers;
1234                 if (!bi->page) {
1235                         bi->page = alloc_page(GFP_ATOMIC);
1236                         if (!bi->page) {
1237                                 rx_ring->rx_stats.alloc_page_failed++;
1238                                 goto no_buffers;
1239                         }
1240                 }
1241
1242                 if (!bi->page_dma) {
1243                         /* use a half page if we're re-using */
1244                         bi->page_offset ^= PAGE_SIZE / 2;
1245                         bi->page_dma = dma_map_page(rx_ring->dev,
1246                                                     bi->page,
1247                                                     bi->page_offset,
1248                                                     PAGE_SIZE / 2,
1249                                                     DMA_FROM_DEVICE);
1250                         if (dma_mapping_error(rx_ring->dev,
1251                                               bi->page_dma)) {
1252                                 rx_ring->rx_stats.alloc_page_failed++;
1253                                 bi->page_dma = 0;
1254                                 goto no_buffers;
1255                         }
1256                 }
1257
1258                 dma_sync_single_range_for_device(rx_ring->dev,
1259                                                  bi->dma,
1260                                                  0,
1261                                                  rx_ring->rx_hdr_len,
1262                                                  DMA_FROM_DEVICE);
1263                 /* Refresh the desc even if buffer_addrs didn't change
1264                  * because each write-back erases this info.
1265                  */
1266                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1267                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1268                 i++;
1269                 if (i == rx_ring->count)
1270                         i = 0;
1271         }
1272
1273 no_buffers:
1274         if (rx_ring->next_to_use != i)
1275                 i40e_release_rx_desc(rx_ring, i);
1276 }
1277
1278 /**
1279  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1280  * @rx_ring: ring to place buffers on
1281  * @cleaned_count: number of buffers to replace
1282  **/
1283 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1284 {
1285         u16 i = rx_ring->next_to_use;
1286         union i40e_rx_desc *rx_desc;
1287         struct i40e_rx_buffer *bi;
1288         struct sk_buff *skb;
1289
1290         /* do nothing if no valid netdev defined */
1291         if (!rx_ring->netdev || !cleaned_count)
1292                 return;
1293
1294         while (cleaned_count--) {
1295                 rx_desc = I40E_RX_DESC(rx_ring, i);
1296                 bi = &rx_ring->rx_bi[i];
1297                 skb = bi->skb;
1298
1299                 if (!skb) {
1300                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1301                                                         rx_ring->rx_buf_len);
1302                         if (!skb) {
1303                                 rx_ring->rx_stats.alloc_buff_failed++;
1304                                 goto no_buffers;
1305                         }
1306                         /* initialize queue mapping */
1307                         skb_record_rx_queue(skb, rx_ring->queue_index);
1308                         bi->skb = skb;
1309                 }
1310
1311                 if (!bi->dma) {
1312                         bi->dma = dma_map_single(rx_ring->dev,
1313                                                  skb->data,
1314                                                  rx_ring->rx_buf_len,
1315                                                  DMA_FROM_DEVICE);
1316                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1317                                 rx_ring->rx_stats.alloc_buff_failed++;
1318                                 bi->dma = 0;
1319                                 goto no_buffers;
1320                         }
1321                 }
1322
1323                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1324                 rx_desc->read.hdr_addr = 0;
1325                 i++;
1326                 if (i == rx_ring->count)
1327                         i = 0;
1328         }
1329
1330 no_buffers:
1331         if (rx_ring->next_to_use != i)
1332                 i40e_release_rx_desc(rx_ring, i);
1333 }
1334
1335 /**
1336  * i40e_receive_skb - Send a completed packet up the stack
1337  * @rx_ring:  rx ring in play
1338  * @skb: packet to send up
1339  * @vlan_tag: vlan tag for packet
1340  **/
1341 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1342                              struct sk_buff *skb, u16 vlan_tag)
1343 {
1344         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1345         struct i40e_vsi *vsi = rx_ring->vsi;
1346         u64 flags = vsi->back->flags;
1347
1348         if (vlan_tag & VLAN_VID_MASK)
1349                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1350
1351         if (flags & I40E_FLAG_IN_NETPOLL)
1352                 netif_rx(skb);
1353         else
1354                 napi_gro_receive(&q_vector->napi, skb);
1355 }
1356
1357 /**
1358  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1359  * @vsi: the VSI we care about
1360  * @skb: skb currently being received and modified
1361  * @rx_status: status value of last descriptor in packet
1362  * @rx_error: error value of last descriptor in packet
1363  * @rx_ptype: ptype value of last descriptor in packet
1364  **/
1365 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1366                                     struct sk_buff *skb,
1367                                     u32 rx_status,
1368                                     u32 rx_error,
1369                                     u16 rx_ptype)
1370 {
1371         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1372         bool ipv4 = false, ipv6 = false;
1373         bool ipv4_tunnel, ipv6_tunnel;
1374         __wsum rx_udp_csum;
1375         struct iphdr *iph;
1376         __sum16 csum;
1377
1378         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1379                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1380         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1381                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1382
1383         skb->ip_summed = CHECKSUM_NONE;
1384
1385         /* Rx csum enabled and ip headers found? */
1386         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1387                 return;
1388
1389         /* did the hardware decode the packet and checksum? */
1390         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1391                 return;
1392
1393         /* both known and outer_ip must be set for the below code to work */
1394         if (!(decoded.known && decoded.outer_ip))
1395                 return;
1396
1397         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1398             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1399                 ipv4 = true;
1400         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1401                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1402                 ipv6 = true;
1403
1404         if (ipv4 &&
1405             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1406                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1407                 goto checksum_fail;
1408
1409         /* likely incorrect csum if alternate IP extension headers found */
1410         if (ipv6 &&
1411             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1412                 /* don't increment checksum err here, non-fatal err */
1413                 return;
1414
1415         /* there was some L4 error, count error and punt packet to the stack */
1416         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1417                 goto checksum_fail;
1418
1419         /* handle packets that were not able to be checksummed due
1420          * to arrival speed, in this case the stack can compute
1421          * the csum.
1422          */
1423         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1424                 return;
1425
1426         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1427          * it in the driver, hardware does not do it for us.
1428          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1429          * so the total length of IPv4 header is IHL*4 bytes
1430          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1431          */
1432         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1433             (ipv4_tunnel)) {
1434                 skb->transport_header = skb->mac_header +
1435                                         sizeof(struct ethhdr) +
1436                                         (ip_hdr(skb)->ihl * 4);
1437
1438                 /* Add 4 bytes for VLAN tagged packets */
1439                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1440                                           skb->protocol == htons(ETH_P_8021AD))
1441                                           ? VLAN_HLEN : 0;
1442
1443                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1444                     (udp_hdr(skb)->check != 0)) {
1445                         rx_udp_csum = udp_csum(skb);
1446                         iph = ip_hdr(skb);
1447                         csum = csum_tcpudp_magic(
1448                                         iph->saddr, iph->daddr,
1449                                         (skb->len - skb_transport_offset(skb)),
1450                                         IPPROTO_UDP, rx_udp_csum);
1451
1452                         if (udp_hdr(skb)->check != csum)
1453                                 goto checksum_fail;
1454
1455                 } /* else its GRE and so no outer UDP header */
1456         }
1457
1458         skb->ip_summed = CHECKSUM_UNNECESSARY;
1459         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1460
1461         return;
1462
1463 checksum_fail:
1464         vsi->back->hw_csum_rx_error++;
1465 }
1466
1467 /**
1468  * i40e_rx_hash - returns the hash value from the Rx descriptor
1469  * @ring: descriptor ring
1470  * @rx_desc: specific descriptor
1471  **/
1472 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1473                                union i40e_rx_desc *rx_desc)
1474 {
1475         const __le64 rss_mask =
1476                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1477                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1478
1479         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1480             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1481                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1482         else
1483                 return 0;
1484 }
1485
1486 /**
1487  * i40e_ptype_to_hash - get a hash type
1488  * @ptype: the ptype value from the descriptor
1489  *
1490  * Returns a hash type to be used by skb_set_hash
1491  **/
1492 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1493 {
1494         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1495
1496         if (!decoded.known)
1497                 return PKT_HASH_TYPE_NONE;
1498
1499         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1500             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1501                 return PKT_HASH_TYPE_L4;
1502         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1503                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1504                 return PKT_HASH_TYPE_L3;
1505         else
1506                 return PKT_HASH_TYPE_L2;
1507 }
1508
1509 /**
1510  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1511  * @rx_ring:  rx ring to clean
1512  * @budget:   how many cleans we're allowed
1513  *
1514  * Returns true if there's any budget left (e.g. the clean is finished)
1515  **/
1516 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1517 {
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1520         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1521         const int current_node = numa_node_id();
1522         struct i40e_vsi *vsi = rx_ring->vsi;
1523         u16 i = rx_ring->next_to_clean;
1524         union i40e_rx_desc *rx_desc;
1525         u32 rx_error, rx_status;
1526         u8 rx_ptype;
1527         u64 qword;
1528
1529         if (budget <= 0)
1530                 return 0;
1531
1532         do {
1533                 struct i40e_rx_buffer *rx_bi;
1534                 struct sk_buff *skb;
1535                 u16 vlan_tag;
1536                 /* return some buffers to hardware, one at a time is too slow */
1537                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1538                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1539                         cleaned_count = 0;
1540                 }
1541
1542                 i = rx_ring->next_to_clean;
1543                 rx_desc = I40E_RX_DESC(rx_ring, i);
1544                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1545                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1546                         I40E_RXD_QW1_STATUS_SHIFT;
1547
1548                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1549                         break;
1550
1551                 /* This memory barrier is needed to keep us from reading
1552                  * any other fields out of the rx_desc until we know the
1553                  * DD bit is set.
1554                  */
1555                 dma_rmb();
1556                 if (i40e_rx_is_programming_status(qword)) {
1557                         i40e_clean_programming_status(rx_ring, rx_desc);
1558                         I40E_RX_INCREMENT(rx_ring, i);
1559                         continue;
1560                 }
1561                 rx_bi = &rx_ring->rx_bi[i];
1562                 skb = rx_bi->skb;
1563                 if (likely(!skb)) {
1564                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1565                                                         rx_ring->rx_hdr_len);
1566                         if (!skb) {
1567                                 rx_ring->rx_stats.alloc_buff_failed++;
1568                                 break;
1569                         }
1570
1571                         /* initialize queue mapping */
1572                         skb_record_rx_queue(skb, rx_ring->queue_index);
1573                         /* we are reusing so sync this buffer for CPU use */
1574                         dma_sync_single_range_for_cpu(rx_ring->dev,
1575                                                       rx_bi->dma,
1576                                                       0,
1577                                                       rx_ring->rx_hdr_len,
1578                                                       DMA_FROM_DEVICE);
1579                 }
1580                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1581                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1582                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1583                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1584                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1585                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1586
1587                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1588                            I40E_RXD_QW1_ERROR_SHIFT;
1589                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1590                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1591
1592                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1593                            I40E_RXD_QW1_PTYPE_SHIFT;
1594                 prefetch(rx_bi->page);
1595                 rx_bi->skb = NULL;
1596                 cleaned_count++;
1597                 if (rx_hbo || rx_sph) {
1598                         int len;
1599                         if (rx_hbo)
1600                                 len = I40E_RX_HDR_SIZE;
1601                         else
1602                                 len = rx_header_len;
1603                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1604                 } else if (skb->len == 0) {
1605                         int len;
1606
1607                         len = (rx_packet_len > skb_headlen(skb) ?
1608                                 skb_headlen(skb) : rx_packet_len);
1609                         memcpy(__skb_put(skb, len),
1610                                rx_bi->page + rx_bi->page_offset,
1611                                len);
1612                         rx_bi->page_offset += len;
1613                         rx_packet_len -= len;
1614                 }
1615
1616                 /* Get the rest of the data if this was a header split */
1617                 if (rx_packet_len) {
1618                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1619                                            rx_bi->page,
1620                                            rx_bi->page_offset,
1621                                            rx_packet_len);
1622
1623                         skb->len += rx_packet_len;
1624                         skb->data_len += rx_packet_len;
1625                         skb->truesize += rx_packet_len;
1626
1627                         if ((page_count(rx_bi->page) == 1) &&
1628                             (page_to_nid(rx_bi->page) == current_node))
1629                                 get_page(rx_bi->page);
1630                         else
1631                                 rx_bi->page = NULL;
1632
1633                         dma_unmap_page(rx_ring->dev,
1634                                        rx_bi->page_dma,
1635                                        PAGE_SIZE / 2,
1636                                        DMA_FROM_DEVICE);
1637                         rx_bi->page_dma = 0;
1638                 }
1639                 I40E_RX_INCREMENT(rx_ring, i);
1640
1641                 if (unlikely(
1642                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1643                         struct i40e_rx_buffer *next_buffer;
1644
1645                         next_buffer = &rx_ring->rx_bi[i];
1646                         next_buffer->skb = skb;
1647                         rx_ring->rx_stats.non_eop_descs++;
1648                         continue;
1649                 }
1650
1651                 /* ERR_MASK will only have valid bits if EOP set */
1652                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1653                         dev_kfree_skb_any(skb);
1654                         continue;
1655                 }
1656
1657                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1658                              i40e_ptype_to_hash(rx_ptype));
1659                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1660                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1661                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1662                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1663                         rx_ring->last_rx_timestamp = jiffies;
1664                 }
1665
1666                 /* probably a little skewed due to removing CRC */
1667                 total_rx_bytes += skb->len;
1668                 total_rx_packets++;
1669
1670                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1671
1672                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1673
1674                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1675                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1676                          : 0;
1677 #ifdef I40E_FCOE
1678                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1679                         dev_kfree_skb_any(skb);
1680                         continue;
1681                 }
1682 #endif
1683                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1684                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1685
1686                 rx_desc->wb.qword1.status_error_len = 0;
1687
1688         } while (likely(total_rx_packets < budget));
1689
1690         u64_stats_update_begin(&rx_ring->syncp);
1691         rx_ring->stats.packets += total_rx_packets;
1692         rx_ring->stats.bytes += total_rx_bytes;
1693         u64_stats_update_end(&rx_ring->syncp);
1694         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1695         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1696
1697         return total_rx_packets;
1698 }
1699
1700 /**
1701  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1702  * @rx_ring:  rx ring to clean
1703  * @budget:   how many cleans we're allowed
1704  *
1705  * Returns number of packets cleaned
1706  **/
1707 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1708 {
1709         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1710         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1711         struct i40e_vsi *vsi = rx_ring->vsi;
1712         union i40e_rx_desc *rx_desc;
1713         u32 rx_error, rx_status;
1714         u16 rx_packet_len;
1715         u8 rx_ptype;
1716         u64 qword;
1717         u16 i;
1718
1719         do {
1720                 struct i40e_rx_buffer *rx_bi;
1721                 struct sk_buff *skb;
1722                 u16 vlan_tag;
1723                 /* return some buffers to hardware, one at a time is too slow */
1724                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1725                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1726                         cleaned_count = 0;
1727                 }
1728
1729                 i = rx_ring->next_to_clean;
1730                 rx_desc = I40E_RX_DESC(rx_ring, i);
1731                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1732                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1733                         I40E_RXD_QW1_STATUS_SHIFT;
1734
1735                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1736                         break;
1737
1738                 /* This memory barrier is needed to keep us from reading
1739                  * any other fields out of the rx_desc until we know the
1740                  * DD bit is set.
1741                  */
1742                 dma_rmb();
1743
1744                 if (i40e_rx_is_programming_status(qword)) {
1745                         i40e_clean_programming_status(rx_ring, rx_desc);
1746                         I40E_RX_INCREMENT(rx_ring, i);
1747                         continue;
1748                 }
1749                 rx_bi = &rx_ring->rx_bi[i];
1750                 skb = rx_bi->skb;
1751                 prefetch(skb->data);
1752
1753                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1754                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1755
1756                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1757                            I40E_RXD_QW1_ERROR_SHIFT;
1758                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1759
1760                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1761                            I40E_RXD_QW1_PTYPE_SHIFT;
1762                 rx_bi->skb = NULL;
1763                 cleaned_count++;
1764
1765                 /* Get the header and possibly the whole packet
1766                  * If this is an skb from previous receive dma will be 0
1767                  */
1768                 skb_put(skb, rx_packet_len);
1769                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1770                                  DMA_FROM_DEVICE);
1771                 rx_bi->dma = 0;
1772
1773                 I40E_RX_INCREMENT(rx_ring, i);
1774
1775                 if (unlikely(
1776                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1777                         rx_ring->rx_stats.non_eop_descs++;
1778                         continue;
1779                 }
1780
1781                 /* ERR_MASK will only have valid bits if EOP set */
1782                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1783                         dev_kfree_skb_any(skb);
1784                         /* TODO: shouldn't we increment a counter indicating the
1785                          * drop?
1786                          */
1787                         continue;
1788                 }
1789
1790                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1791                              i40e_ptype_to_hash(rx_ptype));
1792                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1793                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1794                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1795                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1796                         rx_ring->last_rx_timestamp = jiffies;
1797                 }
1798
1799                 /* probably a little skewed due to removing CRC */
1800                 total_rx_bytes += skb->len;
1801                 total_rx_packets++;
1802
1803                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1804
1805                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1806
1807                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1808                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1809                          : 0;
1810 #ifdef I40E_FCOE
1811                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1812                         dev_kfree_skb_any(skb);
1813                         continue;
1814                 }
1815 #endif
1816                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1817
1818                 rx_desc->wb.qword1.status_error_len = 0;
1819         } while (likely(total_rx_packets < budget));
1820
1821         u64_stats_update_begin(&rx_ring->syncp);
1822         rx_ring->stats.packets += total_rx_packets;
1823         rx_ring->stats.bytes += total_rx_bytes;
1824         u64_stats_update_end(&rx_ring->syncp);
1825         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1826         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1827
1828         return total_rx_packets;
1829 }
1830
1831 /**
1832  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1833  * @vsi: the VSI we care about
1834  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1835  *
1836  **/
1837 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1838                                           struct i40e_q_vector *q_vector)
1839 {
1840         struct i40e_hw *hw = &vsi->back->hw;
1841         u16 old_itr;
1842         int vector;
1843         u32 val;
1844
1845         vector = (q_vector->v_idx + vsi->base_vector);
1846         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1847                 old_itr = q_vector->rx.itr;
1848                 i40e_set_new_dynamic_itr(&q_vector->rx);
1849                 if (old_itr != q_vector->rx.itr) {
1850                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1851                         I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1852                         (I40E_RX_ITR <<
1853                                 I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1854                         (q_vector->rx.itr <<
1855                                 I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1856                 } else {
1857                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1858                         I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1859                         (I40E_ITR_NONE <<
1860                                 I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
1861                 }
1862                 if (!test_bit(__I40E_DOWN, &vsi->state))
1863                         wr32(hw, I40E_PFINT_DYN_CTLN(vector - 1), val);
1864         } else {
1865                 i40e_irq_dynamic_enable(vsi,
1866                                         q_vector->v_idx + vsi->base_vector);
1867         }
1868         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1869                 old_itr = q_vector->tx.itr;
1870                 i40e_set_new_dynamic_itr(&q_vector->tx);
1871                 if (old_itr != q_vector->tx.itr) {
1872                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1873                                 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1874                                 (I40E_TX_ITR <<
1875                                    I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1876                                 (q_vector->tx.itr <<
1877                                    I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1878                 } else {
1879                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1880                                 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1881                                 (I40E_ITR_NONE <<
1882                                    I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
1883                 }
1884                 if (!test_bit(__I40E_DOWN, &vsi->state))
1885                         wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->v_idx +
1886                               vsi->base_vector - 1), val);
1887         } else {
1888                 i40e_irq_dynamic_enable(vsi,
1889                                         q_vector->v_idx + vsi->base_vector);
1890         }
1891 }
1892
1893 /**
1894  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1895  * @napi: napi struct with our devices info in it
1896  * @budget: amount of work driver is allowed to do this pass, in packets
1897  *
1898  * This function will clean all queues associated with a q_vector.
1899  *
1900  * Returns the amount of work done
1901  **/
1902 int i40e_napi_poll(struct napi_struct *napi, int budget)
1903 {
1904         struct i40e_q_vector *q_vector =
1905                                container_of(napi, struct i40e_q_vector, napi);
1906         struct i40e_vsi *vsi = q_vector->vsi;
1907         struct i40e_ring *ring;
1908         bool clean_complete = true;
1909         bool arm_wb = false;
1910         int budget_per_ring;
1911         int cleaned;
1912
1913         if (test_bit(__I40E_DOWN, &vsi->state)) {
1914                 napi_complete(napi);
1915                 return 0;
1916         }
1917
1918         /* Since the actual Tx work is minimal, we can give the Tx a larger
1919          * budget and be more aggressive about cleaning up the Tx descriptors.
1920          */
1921         i40e_for_each_ring(ring, q_vector->tx) {
1922                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1923                 arm_wb |= ring->arm_wb;
1924         }
1925
1926         /* We attempt to distribute budget to each Rx queue fairly, but don't
1927          * allow the budget to go below 1 because that would exit polling early.
1928          */
1929         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1930
1931         i40e_for_each_ring(ring, q_vector->rx) {
1932                 if (ring_is_ps_enabled(ring))
1933                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1934                 else
1935                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1936                 /* if we didn't clean as many as budgeted, we must be done */
1937                 clean_complete &= (budget_per_ring != cleaned);
1938         }
1939
1940         /* If work not completed, return budget and polling will return */
1941         if (!clean_complete) {
1942                 if (arm_wb)
1943                         i40e_force_wb(vsi, q_vector);
1944                 return budget;
1945         }
1946
1947         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1948                 q_vector->arm_wb_state = false;
1949
1950         /* Work is done so exit the polling mode and re-enable the interrupt */
1951         napi_complete(napi);
1952         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1953                 i40e_update_enable_itr(vsi, q_vector);
1954         } else { /* Legacy mode */
1955                 struct i40e_hw *hw = &vsi->back->hw;
1956                 /* We re-enable the queue 0 cause, but
1957                  * don't worry about dynamic_enable
1958                  * because we left it on for the other
1959                  * possible interrupts during napi
1960                  */
1961                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1962                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1963
1964                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1965                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1966                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1967                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1968                 i40e_irq_dynamic_enable_icr0(vsi->back);
1969         }
1970         return 0;
1971 }
1972
1973 /**
1974  * i40e_atr - Add a Flow Director ATR filter
1975  * @tx_ring:  ring to add programming descriptor to
1976  * @skb:      send buffer
1977  * @tx_flags: send tx flags
1978  * @protocol: wire protocol
1979  **/
1980 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1981                      u32 tx_flags, __be16 protocol)
1982 {
1983         struct i40e_filter_program_desc *fdir_desc;
1984         struct i40e_pf *pf = tx_ring->vsi->back;
1985         union {
1986                 unsigned char *network;
1987                 struct iphdr *ipv4;
1988                 struct ipv6hdr *ipv6;
1989         } hdr;
1990         struct tcphdr *th;
1991         unsigned int hlen;
1992         u32 flex_ptype, dtype_cmd;
1993         u16 i;
1994
1995         /* make sure ATR is enabled */
1996         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1997                 return;
1998
1999         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2000                 return;
2001
2002         /* if sampling is disabled do nothing */
2003         if (!tx_ring->atr_sample_rate)
2004                 return;
2005
2006         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2007                 return;
2008
2009         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
2010                 /* snag network header to get L4 type and address */
2011                 hdr.network = skb_network_header(skb);
2012
2013                 /* Currently only IPv4/IPv6 with TCP is supported
2014                  * access ihl as u8 to avoid unaligned access on ia64
2015                  */
2016                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2017                         hlen = (hdr.network[0] & 0x0F) << 2;
2018                 else if (protocol == htons(ETH_P_IPV6))
2019                         hlen = sizeof(struct ipv6hdr);
2020                 else
2021                         return;
2022         } else {
2023                 hdr.network = skb_inner_network_header(skb);
2024                 hlen = skb_inner_network_header_len(skb);
2025         }
2026
2027         /* Currently only IPv4/IPv6 with TCP is supported
2028          * Note: tx_flags gets modified to reflect inner protocols in
2029          * tx_enable_csum function if encap is enabled.
2030          */
2031         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2032             (hdr.ipv4->protocol != IPPROTO_TCP))
2033                 return;
2034         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2035                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2036                 return;
2037
2038         th = (struct tcphdr *)(hdr.network + hlen);
2039
2040         /* Due to lack of space, no more new filters can be programmed */
2041         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2042                 return;
2043         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2044                 /* HW ATR eviction will take care of removing filters on FIN
2045                  * and RST packets.
2046                  */
2047                 if (th->fin || th->rst)
2048                         return;
2049         }
2050
2051         tx_ring->atr_count++;
2052
2053         /* sample on all syn/fin/rst packets or once every atr sample rate */
2054         if (!th->fin &&
2055             !th->syn &&
2056             !th->rst &&
2057             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2058                 return;
2059
2060         tx_ring->atr_count = 0;
2061
2062         /* grab the next descriptor */
2063         i = tx_ring->next_to_use;
2064         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2065
2066         i++;
2067         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2068
2069         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2070                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2071         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2072                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2073                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2074                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2075                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2076
2077         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2078
2079         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2080
2081         dtype_cmd |= (th->fin || th->rst) ?
2082                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2083                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2084                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2085                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2086
2087         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2088                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2089
2090         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2091                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2092
2093         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2094         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2095                 dtype_cmd |=
2096                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2097                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2098                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2099         else
2100                 dtype_cmd |=
2101                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2102                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2103                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2104
2105         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2106                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2107
2108         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2109         fdir_desc->rsvd = cpu_to_le32(0);
2110         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2111         fdir_desc->fd_id = cpu_to_le32(0);
2112 }
2113
2114 /**
2115  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2116  * @skb:     send buffer
2117  * @tx_ring: ring to send buffer on
2118  * @flags:   the tx flags to be set
2119  *
2120  * Checks the skb and set up correspondingly several generic transmit flags
2121  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2122  *
2123  * Returns error code indicate the frame should be dropped upon error and the
2124  * otherwise  returns 0 to indicate the flags has been set properly.
2125  **/
2126 #ifdef I40E_FCOE
2127 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2128                                       struct i40e_ring *tx_ring,
2129                                       u32 *flags)
2130 #else
2131 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2132                                              struct i40e_ring *tx_ring,
2133                                              u32 *flags)
2134 #endif
2135 {
2136         __be16 protocol = skb->protocol;
2137         u32  tx_flags = 0;
2138
2139         if (protocol == htons(ETH_P_8021Q) &&
2140             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2141                 /* When HW VLAN acceleration is turned off by the user the
2142                  * stack sets the protocol to 8021q so that the driver
2143                  * can take any steps required to support the SW only
2144                  * VLAN handling.  In our case the driver doesn't need
2145                  * to take any further steps so just set the protocol
2146                  * to the encapsulated ethertype.
2147                  */
2148                 skb->protocol = vlan_get_protocol(skb);
2149                 goto out;
2150         }
2151
2152         /* if we have a HW VLAN tag being added, default to the HW one */
2153         if (skb_vlan_tag_present(skb)) {
2154                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2155                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2156         /* else if it is a SW VLAN, check the next protocol and store the tag */
2157         } else if (protocol == htons(ETH_P_8021Q)) {
2158                 struct vlan_hdr *vhdr, _vhdr;
2159                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2160                 if (!vhdr)
2161                         return -EINVAL;
2162
2163                 protocol = vhdr->h_vlan_encapsulated_proto;
2164                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2165                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2166         }
2167
2168         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2169                 goto out;
2170
2171         /* Insert 802.1p priority into VLAN header */
2172         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2173             (skb->priority != TC_PRIO_CONTROL)) {
2174                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2175                 tx_flags |= (skb->priority & 0x7) <<
2176                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2177                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2178                         struct vlan_ethhdr *vhdr;
2179                         int rc;
2180
2181                         rc = skb_cow_head(skb, 0);
2182                         if (rc < 0)
2183                                 return rc;
2184                         vhdr = (struct vlan_ethhdr *)skb->data;
2185                         vhdr->h_vlan_TCI = htons(tx_flags >>
2186                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2187                 } else {
2188                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2189                 }
2190         }
2191
2192 out:
2193         *flags = tx_flags;
2194         return 0;
2195 }
2196
2197 /**
2198  * i40e_tso - set up the tso context descriptor
2199  * @tx_ring:  ptr to the ring to send
2200  * @skb:      ptr to the skb we're sending
2201  * @hdr_len:  ptr to the size of the packet header
2202  * @cd_tunneling: ptr to context descriptor bits
2203  *
2204  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2205  **/
2206 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2207                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2208                     u32 *cd_tunneling)
2209 {
2210         u32 cd_cmd, cd_tso_len, cd_mss;
2211         struct ipv6hdr *ipv6h;
2212         struct tcphdr *tcph;
2213         struct iphdr *iph;
2214         u32 l4len;
2215         int err;
2216
2217         if (!skb_is_gso(skb))
2218                 return 0;
2219
2220         err = skb_cow_head(skb, 0);
2221         if (err < 0)
2222                 return err;
2223
2224         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2225         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2226
2227         if (iph->version == 4) {
2228                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2229                 iph->tot_len = 0;
2230                 iph->check = 0;
2231                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2232                                                  0, IPPROTO_TCP, 0);
2233         } else if (ipv6h->version == 6) {
2234                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2235                 ipv6h->payload_len = 0;
2236                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2237                                                0, IPPROTO_TCP, 0);
2238         }
2239
2240         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2241         *hdr_len = (skb->encapsulation
2242                     ? (skb_inner_transport_header(skb) - skb->data)
2243                     : skb_transport_offset(skb)) + l4len;
2244
2245         /* find the field values */
2246         cd_cmd = I40E_TX_CTX_DESC_TSO;
2247         cd_tso_len = skb->len - *hdr_len;
2248         cd_mss = skb_shinfo(skb)->gso_size;
2249         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2250                                 ((u64)cd_tso_len <<
2251                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2252                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2253         return 1;
2254 }
2255
2256 /**
2257  * i40e_tsyn - set up the tsyn context descriptor
2258  * @tx_ring:  ptr to the ring to send
2259  * @skb:      ptr to the skb we're sending
2260  * @tx_flags: the collected send information
2261  *
2262  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2263  **/
2264 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2265                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2266 {
2267         struct i40e_pf *pf;
2268
2269         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2270                 return 0;
2271
2272         /* Tx timestamps cannot be sampled when doing TSO */
2273         if (tx_flags & I40E_TX_FLAGS_TSO)
2274                 return 0;
2275
2276         /* only timestamp the outbound packet if the user has requested it and
2277          * we are not already transmitting a packet to be timestamped
2278          */
2279         pf = i40e_netdev_to_pf(tx_ring->netdev);
2280         if (!(pf->flags & I40E_FLAG_PTP))
2281                 return 0;
2282
2283         if (pf->ptp_tx &&
2284             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2285                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2286                 pf->ptp_tx_skb = skb_get(skb);
2287         } else {
2288                 return 0;
2289         }
2290
2291         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2292                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2293
2294         return 1;
2295 }
2296
2297 /**
2298  * i40e_tx_enable_csum - Enable Tx checksum offloads
2299  * @skb: send buffer
2300  * @tx_flags: pointer to Tx flags currently set
2301  * @td_cmd: Tx descriptor command bits to set
2302  * @td_offset: Tx descriptor header offsets to set
2303  * @cd_tunneling: ptr to context desc bits
2304  **/
2305 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2306                                 u32 *td_cmd, u32 *td_offset,
2307                                 struct i40e_ring *tx_ring,
2308                                 u32 *cd_tunneling)
2309 {
2310         struct ipv6hdr *this_ipv6_hdr;
2311         unsigned int this_tcp_hdrlen;
2312         struct iphdr *this_ip_hdr;
2313         u32 network_hdr_len;
2314         u8 l4_hdr = 0;
2315         struct udphdr *oudph;
2316         struct iphdr *oiph;
2317         u32 l4_tunnel = 0;
2318
2319         if (skb->encapsulation) {
2320                 switch (ip_hdr(skb)->protocol) {
2321                 case IPPROTO_UDP:
2322                         oudph = udp_hdr(skb);
2323                         oiph = ip_hdr(skb);
2324                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2325                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2326                         break;
2327                 default:
2328                         return;
2329                 }
2330                 network_hdr_len = skb_inner_network_header_len(skb);
2331                 this_ip_hdr = inner_ip_hdr(skb);
2332                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2333                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2334
2335                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2336                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2337                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2338                                 ip_hdr(skb)->check = 0;
2339                         } else {
2340                                 *cd_tunneling |=
2341                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2342                         }
2343                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2344                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2345                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2346                                 ip_hdr(skb)->check = 0;
2347                 }
2348
2349                 /* Now set the ctx descriptor fields */
2350                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2351                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2352                                    l4_tunnel                             |
2353                                    ((skb_inner_network_offset(skb) -
2354                                         skb_transport_offset(skb)) >> 1) <<
2355                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2356                 if (this_ip_hdr->version == 6) {
2357                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2358                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2359                 }
2360                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2361                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2362                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2363                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2364                                         oiph->daddr,
2365                                         (skb->len - skb_transport_offset(skb)),
2366                                         IPPROTO_UDP, 0);
2367                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2368                 }
2369         } else {
2370                 network_hdr_len = skb_network_header_len(skb);
2371                 this_ip_hdr = ip_hdr(skb);
2372                 this_ipv6_hdr = ipv6_hdr(skb);
2373                 this_tcp_hdrlen = tcp_hdrlen(skb);
2374         }
2375
2376         /* Enable IP checksum offloads */
2377         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2378                 l4_hdr = this_ip_hdr->protocol;
2379                 /* the stack computes the IP header already, the only time we
2380                  * need the hardware to recompute it is in the case of TSO.
2381                  */
2382                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2383                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2384                         this_ip_hdr->check = 0;
2385                 } else {
2386                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2387                 }
2388                 /* Now set the td_offset for IP header length */
2389                 *td_offset = (network_hdr_len >> 2) <<
2390                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2391         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2392                 l4_hdr = this_ipv6_hdr->nexthdr;
2393                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2394                 /* Now set the td_offset for IP header length */
2395                 *td_offset = (network_hdr_len >> 2) <<
2396                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2397         }
2398         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2399         *td_offset |= (skb_network_offset(skb) >> 1) <<
2400                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2401
2402         /* Enable L4 checksum offloads */
2403         switch (l4_hdr) {
2404         case IPPROTO_TCP:
2405                 /* enable checksum offloads */
2406                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2407                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2408                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2409                 break;
2410         case IPPROTO_SCTP:
2411                 /* enable SCTP checksum offload */
2412                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2413                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2414                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2415                 break;
2416         case IPPROTO_UDP:
2417                 /* enable UDP checksum offload */
2418                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2419                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2420                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2421                 break;
2422         default:
2423                 break;
2424         }
2425 }
2426
2427 /**
2428  * i40e_create_tx_ctx Build the Tx context descriptor
2429  * @tx_ring:  ring to create the descriptor on
2430  * @cd_type_cmd_tso_mss: Quad Word 1
2431  * @cd_tunneling: Quad Word 0 - bits 0-31
2432  * @cd_l2tag2: Quad Word 0 - bits 32-63
2433  **/
2434 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2435                                const u64 cd_type_cmd_tso_mss,
2436                                const u32 cd_tunneling, const u32 cd_l2tag2)
2437 {
2438         struct i40e_tx_context_desc *context_desc;
2439         int i = tx_ring->next_to_use;
2440
2441         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2442             !cd_tunneling && !cd_l2tag2)
2443                 return;
2444
2445         /* grab the next descriptor */
2446         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2447
2448         i++;
2449         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2450
2451         /* cpu_to_le32 and assign to struct fields */
2452         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2453         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2454         context_desc->rsvd = cpu_to_le16(0);
2455         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2456 }
2457
2458 /**
2459  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2460  * @tx_ring: the ring to be checked
2461  * @size:    the size buffer we want to assure is available
2462  *
2463  * Returns -EBUSY if a stop is needed, else 0
2464  **/
2465 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2466 {
2467         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2468         /* Memory barrier before checking head and tail */
2469         smp_mb();
2470
2471         /* Check again in a case another CPU has just made room available. */
2472         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2473                 return -EBUSY;
2474
2475         /* A reprieve! - use start_queue because it doesn't call schedule */
2476         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2477         ++tx_ring->tx_stats.restart_queue;
2478         return 0;
2479 }
2480
2481 /**
2482  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2483  * @tx_ring: the ring to be checked
2484  * @size:    the size buffer we want to assure is available
2485  *
2486  * Returns 0 if stop is not needed
2487  **/
2488 #ifdef I40E_FCOE
2489 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2490 #else
2491 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2492 #endif
2493 {
2494         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2495                 return 0;
2496         return __i40e_maybe_stop_tx(tx_ring, size);
2497 }
2498
2499 /**
2500  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2501  * @skb:      send buffer
2502  * @tx_flags: collected send information
2503  *
2504  * Note: Our HW can't scatter-gather more than 8 fragments to build
2505  * a packet on the wire and so we need to figure out the cases where we
2506  * need to linearize the skb.
2507  **/
2508 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2509 {
2510         struct skb_frag_struct *frag;
2511         bool linearize = false;
2512         unsigned int size = 0;
2513         u16 num_frags;
2514         u16 gso_segs;
2515
2516         num_frags = skb_shinfo(skb)->nr_frags;
2517         gso_segs = skb_shinfo(skb)->gso_segs;
2518
2519         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2520                 u16 j = 0;
2521
2522                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2523                         goto linearize_chk_done;
2524                 /* try the simple math, if we have too many frags per segment */
2525                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2526                     I40E_MAX_BUFFER_TXD) {
2527                         linearize = true;
2528                         goto linearize_chk_done;
2529                 }
2530                 frag = &skb_shinfo(skb)->frags[0];
2531                 /* we might still have more fragments per segment */
2532                 do {
2533                         size += skb_frag_size(frag);
2534                         frag++; j++;
2535                         if ((size >= skb_shinfo(skb)->gso_size) &&
2536                             (j < I40E_MAX_BUFFER_TXD)) {
2537                                 size = (size % skb_shinfo(skb)->gso_size);
2538                                 j = (size) ? 1 : 0;
2539                         }
2540                         if (j == I40E_MAX_BUFFER_TXD) {
2541                                 linearize = true;
2542                                 break;
2543                         }
2544                         num_frags--;
2545                 } while (num_frags);
2546         } else {
2547                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2548                         linearize = true;
2549         }
2550
2551 linearize_chk_done:
2552         return linearize;
2553 }
2554
2555 /**
2556  * i40e_tx_map - Build the Tx descriptor
2557  * @tx_ring:  ring to send buffer on
2558  * @skb:      send buffer
2559  * @first:    first buffer info buffer to use
2560  * @tx_flags: collected send information
2561  * @hdr_len:  size of the packet header
2562  * @td_cmd:   the command field in the descriptor
2563  * @td_offset: offset for checksum or crc
2564  **/
2565 #ifdef I40E_FCOE
2566 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2567                         struct i40e_tx_buffer *first, u32 tx_flags,
2568                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2569 #else
2570 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2571                                struct i40e_tx_buffer *first, u32 tx_flags,
2572                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2573 #endif
2574 {
2575         unsigned int data_len = skb->data_len;
2576         unsigned int size = skb_headlen(skb);
2577         struct skb_frag_struct *frag;
2578         struct i40e_tx_buffer *tx_bi;
2579         struct i40e_tx_desc *tx_desc;
2580         u16 i = tx_ring->next_to_use;
2581         u32 td_tag = 0;
2582         dma_addr_t dma;
2583         u16 gso_segs;
2584
2585         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2586                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2587                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2588                          I40E_TX_FLAGS_VLAN_SHIFT;
2589         }
2590
2591         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2592                 gso_segs = skb_shinfo(skb)->gso_segs;
2593         else
2594                 gso_segs = 1;
2595
2596         /* multiply data chunks by size of headers */
2597         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2598         first->gso_segs = gso_segs;
2599         first->skb = skb;
2600         first->tx_flags = tx_flags;
2601
2602         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2603
2604         tx_desc = I40E_TX_DESC(tx_ring, i);
2605         tx_bi = first;
2606
2607         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2608                 if (dma_mapping_error(tx_ring->dev, dma))
2609                         goto dma_error;
2610
2611                 /* record length, and DMA address */
2612                 dma_unmap_len_set(tx_bi, len, size);
2613                 dma_unmap_addr_set(tx_bi, dma, dma);
2614
2615                 tx_desc->buffer_addr = cpu_to_le64(dma);
2616
2617                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2618                         tx_desc->cmd_type_offset_bsz =
2619                                 build_ctob(td_cmd, td_offset,
2620                                            I40E_MAX_DATA_PER_TXD, td_tag);
2621
2622                         tx_desc++;
2623                         i++;
2624                         if (i == tx_ring->count) {
2625                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2626                                 i = 0;
2627                         }
2628
2629                         dma += I40E_MAX_DATA_PER_TXD;
2630                         size -= I40E_MAX_DATA_PER_TXD;
2631
2632                         tx_desc->buffer_addr = cpu_to_le64(dma);
2633                 }
2634
2635                 if (likely(!data_len))
2636                         break;
2637
2638                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2639                                                           size, td_tag);
2640
2641                 tx_desc++;
2642                 i++;
2643                 if (i == tx_ring->count) {
2644                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2645                         i = 0;
2646                 }
2647
2648                 size = skb_frag_size(frag);
2649                 data_len -= size;
2650
2651                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2652                                        DMA_TO_DEVICE);
2653
2654                 tx_bi = &tx_ring->tx_bi[i];
2655         }
2656
2657         /* Place RS bit on last descriptor of any packet that spans across the
2658          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2659          */
2660         if (((i & WB_STRIDE) != WB_STRIDE) &&
2661             (first <= &tx_ring->tx_bi[i]) &&
2662             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2663                 tx_desc->cmd_type_offset_bsz =
2664                         build_ctob(td_cmd, td_offset, size, td_tag) |
2665                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2666                                          I40E_TXD_QW1_CMD_SHIFT);
2667         } else {
2668                 tx_desc->cmd_type_offset_bsz =
2669                         build_ctob(td_cmd, td_offset, size, td_tag) |
2670                         cpu_to_le64((u64)I40E_TXD_CMD <<
2671                                          I40E_TXD_QW1_CMD_SHIFT);
2672         }
2673
2674         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2675                                                  tx_ring->queue_index),
2676                              first->bytecount);
2677
2678         /* Force memory writes to complete before letting h/w
2679          * know there are new descriptors to fetch.  (Only
2680          * applicable for weak-ordered memory model archs,
2681          * such as IA-64).
2682          */
2683         wmb();
2684
2685         /* set next_to_watch value indicating a packet is present */
2686         first->next_to_watch = tx_desc;
2687
2688         i++;
2689         if (i == tx_ring->count)
2690                 i = 0;
2691
2692         tx_ring->next_to_use = i;
2693
2694         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2695         /* notify HW of packet */
2696         if (!skb->xmit_more ||
2697             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2698                                                    tx_ring->queue_index)))
2699                 writel(i, tx_ring->tail);
2700         else
2701                 prefetchw(tx_desc + 1);
2702
2703         return;
2704
2705 dma_error:
2706         dev_info(tx_ring->dev, "TX DMA map failed\n");
2707
2708         /* clear dma mappings for failed tx_bi map */
2709         for (;;) {
2710                 tx_bi = &tx_ring->tx_bi[i];
2711                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2712                 if (tx_bi == first)
2713                         break;
2714                 if (i == 0)
2715                         i = tx_ring->count;
2716                 i--;
2717         }
2718
2719         tx_ring->next_to_use = i;
2720 }
2721
2722 /**
2723  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2724  * @skb:     send buffer
2725  * @tx_ring: ring to send buffer on
2726  *
2727  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2728  * there is not enough descriptors available in this ring since we need at least
2729  * one descriptor.
2730  **/
2731 #ifdef I40E_FCOE
2732 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2733                                       struct i40e_ring *tx_ring)
2734 #else
2735 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2736                                              struct i40e_ring *tx_ring)
2737 #endif
2738 {
2739         unsigned int f;
2740         int count = 0;
2741
2742         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2743          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2744          *       + 4 desc gap to avoid the cache line where head is,
2745          *       + 1 desc for context descriptor,
2746          * otherwise try next time
2747          */
2748         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2749                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2750
2751         count += TXD_USE_COUNT(skb_headlen(skb));
2752         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2753                 tx_ring->tx_stats.tx_busy++;
2754                 return 0;
2755         }
2756         return count;
2757 }
2758
2759 /**
2760  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2761  * @skb:     send buffer
2762  * @tx_ring: ring to send buffer on
2763  *
2764  * Returns NETDEV_TX_OK if sent, else an error code
2765  **/
2766 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2767                                         struct i40e_ring *tx_ring)
2768 {
2769         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2770         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2771         struct i40e_tx_buffer *first;
2772         u32 td_offset = 0;
2773         u32 tx_flags = 0;
2774         __be16 protocol;
2775         u32 td_cmd = 0;
2776         u8 hdr_len = 0;
2777         int tsyn;
2778         int tso;
2779         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2780                 return NETDEV_TX_BUSY;
2781
2782         /* prepare the xmit flags */
2783         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2784                 goto out_drop;
2785
2786         /* obtain protocol of skb */
2787         protocol = vlan_get_protocol(skb);
2788
2789         /* record the location of the first descriptor for this packet */
2790         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2791
2792         /* setup IPv4/IPv6 offloads */
2793         if (protocol == htons(ETH_P_IP))
2794                 tx_flags |= I40E_TX_FLAGS_IPV4;
2795         else if (protocol == htons(ETH_P_IPV6))
2796                 tx_flags |= I40E_TX_FLAGS_IPV6;
2797
2798         tso = i40e_tso(tx_ring, skb, &hdr_len,
2799                        &cd_type_cmd_tso_mss, &cd_tunneling);
2800
2801         if (tso < 0)
2802                 goto out_drop;
2803         else if (tso)
2804                 tx_flags |= I40E_TX_FLAGS_TSO;
2805
2806         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2807
2808         if (tsyn)
2809                 tx_flags |= I40E_TX_FLAGS_TSYN;
2810
2811         if (i40e_chk_linearize(skb, tx_flags))
2812                 if (skb_linearize(skb))
2813                         goto out_drop;
2814
2815         skb_tx_timestamp(skb);
2816
2817         /* always enable CRC insertion offload */
2818         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2819
2820         /* Always offload the checksum, since it's in the data descriptor */
2821         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2822                 tx_flags |= I40E_TX_FLAGS_CSUM;
2823
2824                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2825                                     tx_ring, &cd_tunneling);
2826         }
2827
2828         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2829                            cd_tunneling, cd_l2tag2);
2830
2831         /* Add Flow Director ATR if it's enabled.
2832          *
2833          * NOTE: this must always be directly before the data descriptor.
2834          */
2835         i40e_atr(tx_ring, skb, tx_flags, protocol);
2836
2837         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2838                     td_cmd, td_offset);
2839
2840         return NETDEV_TX_OK;
2841
2842 out_drop:
2843         dev_kfree_skb_any(skb);
2844         return NETDEV_TX_OK;
2845 }
2846
2847 /**
2848  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2849  * @skb:    send buffer
2850  * @netdev: network interface device structure
2851  *
2852  * Returns NETDEV_TX_OK if sent, else an error code
2853  **/
2854 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2855 {
2856         struct i40e_netdev_priv *np = netdev_priv(netdev);
2857         struct i40e_vsi *vsi = np->vsi;
2858         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2859
2860         /* hardware can't handle really short frames, hardware padding works
2861          * beyond this point
2862          */
2863         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2864                 return NETDEV_TX_OK;
2865
2866         return i40e_xmit_frame_ring(skb, tx_ring);
2867 }