]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/e1000_82575.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29  * e1000_82576
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41
42 static s32  igb_get_invariants_82575(struct e1000_hw *);
43 static s32  igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32  igb_check_for_link_82575(struct e1000_hw *);
48 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32  igb_init_hw_82575(struct e1000_hw *);
50 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32  igb_reset_hw_82575(struct e1000_hw *);
55 static s32  igb_reset_hw_82580(struct e1000_hw *);
56 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65                                                  u16 *);
66 static s32  igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32  igb_reset_init_script_82575(struct e1000_hw *);
70 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78         { 36, 72, 144, 1, 2, 4, 8, 16,
79           35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81         (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83 /**
84  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85  *  @hw: pointer to the HW structure
86  *
87  *  Called to determine if the I2C pins are being used for I2C or as an
88  *  external MDIO interface since the two options are mutually exclusive.
89  **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92         u32 reg = 0;
93         bool ext_mdio = false;
94
95         switch (hw->mac.type) {
96         case e1000_82575:
97         case e1000_82576:
98                 reg = rd32(E1000_MDIC);
99                 ext_mdio = !!(reg & E1000_MDIC_DEST);
100                 break;
101         case e1000_82580:
102         case e1000_i350:
103         case e1000_i210:
104         case e1000_i211:
105                 reg = rd32(E1000_MDICNFG);
106                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
107                 break;
108         default:
109                 break;
110         }
111         return ext_mdio;
112 }
113
114 /**
115  *  igb_init_phy_params_82575 - Init PHY func ptrs.
116  *  @hw: pointer to the HW structure
117  **/
118 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
119 {
120         struct e1000_phy_info *phy = &hw->phy;
121         s32 ret_val = 0;
122         u32 ctrl_ext;
123
124         if (hw->phy.media_type != e1000_media_type_copper) {
125                 phy->type = e1000_phy_none;
126                 goto out;
127         }
128
129         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
130         phy->reset_delay_us     = 100;
131
132         ctrl_ext = rd32(E1000_CTRL_EXT);
133
134         if (igb_sgmii_active_82575(hw)) {
135                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
136                 ctrl_ext |= E1000_CTRL_I2C_ENA;
137         } else {
138                 phy->ops.reset = igb_phy_hw_reset;
139                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
140         }
141
142         wr32(E1000_CTRL_EXT, ctrl_ext);
143         igb_reset_mdicnfg_82580(hw);
144
145         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
146                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
147                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
148         } else {
149                 switch (hw->mac.type) {
150                 case e1000_82580:
151                 case e1000_i350:
152                         phy->ops.read_reg = igb_read_phy_reg_82580;
153                         phy->ops.write_reg = igb_write_phy_reg_82580;
154                         break;
155                 case e1000_i210:
156                 case e1000_i211:
157                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
158                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
159                         break;
160                 default:
161                         phy->ops.read_reg = igb_read_phy_reg_igp;
162                         phy->ops.write_reg = igb_write_phy_reg_igp;
163                 }
164         }
165
166         /* set lan id */
167         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
168                         E1000_STATUS_FUNC_SHIFT;
169
170         /* Set phy->phy_addr and phy->id. */
171         ret_val = igb_get_phy_id_82575(hw);
172         if (ret_val)
173                 return ret_val;
174
175         /* Verify phy id and set remaining function pointers */
176         switch (phy->id) {
177         case I347AT4_E_PHY_ID:
178         case M88E1112_E_PHY_ID:
179         case M88E1111_I_PHY_ID:
180                 phy->type               = e1000_phy_m88;
181                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
182                 if (phy->id == I347AT4_E_PHY_ID ||
183                     phy->id == M88E1112_E_PHY_ID)
184                         phy->ops.get_cable_length =
185                                          igb_get_cable_length_m88_gen2;
186                 else
187                         phy->ops.get_cable_length = igb_get_cable_length_m88;
188                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
189                 break;
190         case IGP03E1000_E_PHY_ID:
191                 phy->type = e1000_phy_igp_3;
192                 phy->ops.get_phy_info = igb_get_phy_info_igp;
193                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
194                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
195                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
196                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
197                 break;
198         case I82580_I_PHY_ID:
199         case I350_I_PHY_ID:
200                 phy->type = e1000_phy_82580;
201                 phy->ops.force_speed_duplex =
202                                          igb_phy_force_speed_duplex_82580;
203                 phy->ops.get_cable_length = igb_get_cable_length_82580;
204                 phy->ops.get_phy_info = igb_get_phy_info_82580;
205                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
206                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
207                 break;
208         case I210_I_PHY_ID:
209                 phy->type               = e1000_phy_i210;
210                 phy->ops.check_polarity = igb_check_polarity_m88;
211                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
212                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
213                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
214                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
215                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
216                 break;
217         default:
218                 ret_val = -E1000_ERR_PHY;
219                 goto out;
220         }
221
222 out:
223         return ret_val;
224 }
225
226 /**
227  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
228  *  @hw: pointer to the HW structure
229  **/
230 s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
231 {
232         struct e1000_nvm_info *nvm = &hw->nvm;
233         u32 eecd = rd32(E1000_EECD);
234         u16 size;
235
236         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237                      E1000_EECD_SIZE_EX_SHIFT);
238         /* Added to a constant, "size" becomes the left-shift value
239          * for setting word_size.
240          */
241         size += NVM_WORD_SIZE_BASE_SHIFT;
242
243         /* Just in case size is out of range, cap it to the largest
244          * EEPROM size supported
245          */
246         if (size > 15)
247                 size = 15;
248
249         nvm->word_size = 1 << size;
250         if (hw->mac.type < e1000_i210) {
251                 nvm->opcode_bits = 8;
252                 nvm->delay_usec = 1;
253
254                 switch (nvm->override) {
255                 case e1000_nvm_override_spi_large:
256                         nvm->page_size = 32;
257                         nvm->address_bits = 16;
258                         break;
259                 case e1000_nvm_override_spi_small:
260                         nvm->page_size = 8;
261                         nvm->address_bits = 8;
262                         break;
263                 default:
264                         nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
265                         nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
266                                             16 : 8;
267                         break;
268                 }
269                 if (nvm->word_size == (1 << 15))
270                         nvm->page_size = 128;
271
272                 nvm->type = e1000_nvm_eeprom_spi;
273         } else {
274                 nvm->type = e1000_nvm_flash_hw;
275         }
276
277         /* NVM Function Pointers */
278         switch (hw->mac.type) {
279         case e1000_82580:
280                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
281                 nvm->ops.update = igb_update_nvm_checksum_82580;
282                 nvm->ops.acquire = igb_acquire_nvm_82575;
283                 nvm->ops.release = igb_release_nvm_82575;
284                 if (nvm->word_size < (1 << 15))
285                         nvm->ops.read = igb_read_nvm_eerd;
286                 else
287                         nvm->ops.read = igb_read_nvm_spi;
288                 nvm->ops.write = igb_write_nvm_spi;
289                 break;
290         case e1000_i350:
291                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
292                 nvm->ops.update = igb_update_nvm_checksum_i350;
293                 nvm->ops.acquire = igb_acquire_nvm_82575;
294                 nvm->ops.release = igb_release_nvm_82575;
295                 if (nvm->word_size < (1 << 15))
296                         nvm->ops.read = igb_read_nvm_eerd;
297                 else
298                         nvm->ops.read = igb_read_nvm_spi;
299                 nvm->ops.write = igb_write_nvm_spi;
300                 break;
301         case e1000_i210:
302                 nvm->ops.validate = igb_validate_nvm_checksum_i210;
303                 nvm->ops.update   = igb_update_nvm_checksum_i210;
304                 nvm->ops.acquire = igb_acquire_nvm_i210;
305                 nvm->ops.release = igb_release_nvm_i210;
306                 nvm->ops.read    = igb_read_nvm_srrd_i210;
307                 nvm->ops.write   = igb_write_nvm_srwr_i210;
308                 nvm->ops.valid_led_default = igb_valid_led_default_i210;
309                 break;
310         case e1000_i211:
311                 nvm->ops.acquire  = igb_acquire_nvm_i210;
312                 nvm->ops.release  = igb_release_nvm_i210;
313                 nvm->ops.read     = igb_read_nvm_i211;
314                 nvm->ops.valid_led_default = igb_valid_led_default_i210;
315                 nvm->ops.validate = NULL;
316                 nvm->ops.update   = NULL;
317                 nvm->ops.write    = NULL;
318                 break;
319         default:
320                 nvm->ops.validate = igb_validate_nvm_checksum;
321                 nvm->ops.update = igb_update_nvm_checksum;
322                 nvm->ops.acquire = igb_acquire_nvm_82575;
323                 nvm->ops.release = igb_release_nvm_82575;
324                 if (nvm->word_size < (1 << 15))
325                         nvm->ops.read = igb_read_nvm_eerd;
326                 else
327                         nvm->ops.read = igb_read_nvm_spi;
328                 nvm->ops.write = igb_write_nvm_spi;
329                 break;
330         }
331
332         return 0;
333 }
334
335 /**
336  *  igb_init_mac_params_82575 - Init MAC func ptrs.
337  *  @hw: pointer to the HW structure
338  **/
339 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
340 {
341         struct e1000_mac_info *mac = &hw->mac;
342         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
343
344         /* Set mta register count */
345         mac->mta_reg_count = 128;
346         /* Set rar entry count */
347         switch (mac->type) {
348         case e1000_82576:
349                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
350                 break;
351         case e1000_82580:
352                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
353                 break;
354         case e1000_i350:
355                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
356                 break;
357         default:
358                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
359                 break;
360         }
361         /* reset */
362         if (mac->type >= e1000_82580)
363                 mac->ops.reset_hw = igb_reset_hw_82580;
364         else
365                 mac->ops.reset_hw = igb_reset_hw_82575;
366
367         if (mac->type >= e1000_i210) {
368                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
369                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
370
371         } else {
372                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
373                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
374         }
375
376         /* Set if part includes ASF firmware */
377         mac->asf_firmware_present = true;
378         /* Set if manageability features are enabled. */
379         mac->arc_subsystem_valid =
380                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
381                         ? true : false;
382         /* enable EEE on i350 parts and later parts */
383         if (mac->type >= e1000_i350)
384                 dev_spec->eee_disable = false;
385         else
386                 dev_spec->eee_disable = true;
387         /* physical interface link setup */
388         mac->ops.setup_physical_interface =
389                 (hw->phy.media_type == e1000_media_type_copper)
390                         ? igb_setup_copper_link_82575
391                         : igb_setup_serdes_link_82575;
392
393         return 0;
394 }
395
396 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
397 {
398         struct e1000_mac_info *mac = &hw->mac;
399         struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
400         s32 ret_val;
401         u32 ctrl_ext = 0;
402
403         switch (hw->device_id) {
404         case E1000_DEV_ID_82575EB_COPPER:
405         case E1000_DEV_ID_82575EB_FIBER_SERDES:
406         case E1000_DEV_ID_82575GB_QUAD_COPPER:
407                 mac->type = e1000_82575;
408                 break;
409         case E1000_DEV_ID_82576:
410         case E1000_DEV_ID_82576_NS:
411         case E1000_DEV_ID_82576_NS_SERDES:
412         case E1000_DEV_ID_82576_FIBER:
413         case E1000_DEV_ID_82576_SERDES:
414         case E1000_DEV_ID_82576_QUAD_COPPER:
415         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
416         case E1000_DEV_ID_82576_SERDES_QUAD:
417                 mac->type = e1000_82576;
418                 break;
419         case E1000_DEV_ID_82580_COPPER:
420         case E1000_DEV_ID_82580_FIBER:
421         case E1000_DEV_ID_82580_QUAD_FIBER:
422         case E1000_DEV_ID_82580_SERDES:
423         case E1000_DEV_ID_82580_SGMII:
424         case E1000_DEV_ID_82580_COPPER_DUAL:
425         case E1000_DEV_ID_DH89XXCC_SGMII:
426         case E1000_DEV_ID_DH89XXCC_SERDES:
427         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
428         case E1000_DEV_ID_DH89XXCC_SFP:
429                 mac->type = e1000_82580;
430                 break;
431         case E1000_DEV_ID_I350_COPPER:
432         case E1000_DEV_ID_I350_FIBER:
433         case E1000_DEV_ID_I350_SERDES:
434         case E1000_DEV_ID_I350_SGMII:
435                 mac->type = e1000_i350;
436                 break;
437         case E1000_DEV_ID_I210_COPPER:
438         case E1000_DEV_ID_I210_COPPER_OEM1:
439         case E1000_DEV_ID_I210_COPPER_IT:
440         case E1000_DEV_ID_I210_FIBER:
441         case E1000_DEV_ID_I210_SERDES:
442         case E1000_DEV_ID_I210_SGMII:
443                 mac->type = e1000_i210;
444                 break;
445         case E1000_DEV_ID_I211_COPPER:
446                 mac->type = e1000_i211;
447                 break;
448         default:
449                 return -E1000_ERR_MAC_INIT;
450                 break;
451         }
452
453         /* Set media type */
454         /*
455          * The 82575 uses bits 22:23 for link mode. The mode can be changed
456          * based on the EEPROM. We cannot rely upon device ID. There
457          * is no distinguishable difference between fiber and internal
458          * SerDes mode on the 82575. There can be an external PHY attached
459          * on the SGMII interface. For this, we'll set sgmii_active to true.
460          */
461         hw->phy.media_type = e1000_media_type_copper;
462         dev_spec->sgmii_active = false;
463
464         ctrl_ext = rd32(E1000_CTRL_EXT);
465         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
466         case E1000_CTRL_EXT_LINK_MODE_SGMII:
467                 dev_spec->sgmii_active = true;
468                 break;
469         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
470         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
471                 hw->phy.media_type = e1000_media_type_internal_serdes;
472                 break;
473         default:
474                 break;
475         }
476
477         /* mac initialization and operations */
478         ret_val = igb_init_mac_params_82575(hw);
479         if (ret_val)
480                 goto out;
481
482         /* NVM initialization */
483         ret_val = igb_init_nvm_params_82575(hw);
484         if (ret_val)
485                 goto out;
486
487         /* if part supports SR-IOV then initialize mailbox parameters */
488         switch (mac->type) {
489         case e1000_82576:
490         case e1000_i350:
491                 igb_init_mbx_params_pf(hw);
492                 break;
493         default:
494                 break;
495         }
496
497         /* setup PHY parameters */
498         ret_val = igb_init_phy_params_82575(hw);
499
500 out:
501         return ret_val;
502 }
503
504 /**
505  *  igb_acquire_phy_82575 - Acquire rights to access PHY
506  *  @hw: pointer to the HW structure
507  *
508  *  Acquire access rights to the correct PHY.  This is a
509  *  function pointer entry point called by the api module.
510  **/
511 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
512 {
513         u16 mask = E1000_SWFW_PHY0_SM;
514
515         if (hw->bus.func == E1000_FUNC_1)
516                 mask = E1000_SWFW_PHY1_SM;
517         else if (hw->bus.func == E1000_FUNC_2)
518                 mask = E1000_SWFW_PHY2_SM;
519         else if (hw->bus.func == E1000_FUNC_3)
520                 mask = E1000_SWFW_PHY3_SM;
521
522         return hw->mac.ops.acquire_swfw_sync(hw, mask);
523 }
524
525 /**
526  *  igb_release_phy_82575 - Release rights to access PHY
527  *  @hw: pointer to the HW structure
528  *
529  *  A wrapper to release access rights to the correct PHY.  This is a
530  *  function pointer entry point called by the api module.
531  **/
532 static void igb_release_phy_82575(struct e1000_hw *hw)
533 {
534         u16 mask = E1000_SWFW_PHY0_SM;
535
536         if (hw->bus.func == E1000_FUNC_1)
537                 mask = E1000_SWFW_PHY1_SM;
538         else if (hw->bus.func == E1000_FUNC_2)
539                 mask = E1000_SWFW_PHY2_SM;
540         else if (hw->bus.func == E1000_FUNC_3)
541                 mask = E1000_SWFW_PHY3_SM;
542
543         hw->mac.ops.release_swfw_sync(hw, mask);
544 }
545
546 /**
547  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
548  *  @hw: pointer to the HW structure
549  *  @offset: register offset to be read
550  *  @data: pointer to the read data
551  *
552  *  Reads the PHY register at offset using the serial gigabit media independent
553  *  interface and stores the retrieved information in data.
554  **/
555 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
556                                           u16 *data)
557 {
558         s32 ret_val = -E1000_ERR_PARAM;
559
560         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
561                 hw_dbg("PHY Address %u is out of range\n", offset);
562                 goto out;
563         }
564
565         ret_val = hw->phy.ops.acquire(hw);
566         if (ret_val)
567                 goto out;
568
569         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
570
571         hw->phy.ops.release(hw);
572
573 out:
574         return ret_val;
575 }
576
577 /**
578  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
579  *  @hw: pointer to the HW structure
580  *  @offset: register offset to write to
581  *  @data: data to write at register offset
582  *
583  *  Writes the data to PHY register at the offset using the serial gigabit
584  *  media independent interface.
585  **/
586 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
587                                            u16 data)
588 {
589         s32 ret_val = -E1000_ERR_PARAM;
590
591
592         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
593                 hw_dbg("PHY Address %d is out of range\n", offset);
594                 goto out;
595         }
596
597         ret_val = hw->phy.ops.acquire(hw);
598         if (ret_val)
599                 goto out;
600
601         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
602
603         hw->phy.ops.release(hw);
604
605 out:
606         return ret_val;
607 }
608
609 /**
610  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
611  *  @hw: pointer to the HW structure
612  *
613  *  Retrieves the PHY address and ID for both PHY's which do and do not use
614  *  sgmi interface.
615  **/
616 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
617 {
618         struct e1000_phy_info *phy = &hw->phy;
619         s32  ret_val = 0;
620         u16 phy_id;
621         u32 ctrl_ext;
622         u32 mdic;
623
624         /*
625          * For SGMII PHYs, we try the list of possible addresses until
626          * we find one that works.  For non-SGMII PHYs
627          * (e.g. integrated copper PHYs), an address of 1 should
628          * work.  The result of this function should mean phy->phy_addr
629          * and phy->id are set correctly.
630          */
631         if (!(igb_sgmii_active_82575(hw))) {
632                 phy->addr = 1;
633                 ret_val = igb_get_phy_id(hw);
634                 goto out;
635         }
636
637         if (igb_sgmii_uses_mdio_82575(hw)) {
638                 switch (hw->mac.type) {
639                 case e1000_82575:
640                 case e1000_82576:
641                         mdic = rd32(E1000_MDIC);
642                         mdic &= E1000_MDIC_PHY_MASK;
643                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
644                         break;
645                 case e1000_82580:
646                 case e1000_i350:
647                 case e1000_i210:
648                 case e1000_i211:
649                         mdic = rd32(E1000_MDICNFG);
650                         mdic &= E1000_MDICNFG_PHY_MASK;
651                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
652                         break;
653                 default:
654                         ret_val = -E1000_ERR_PHY;
655                         goto out;
656                         break;
657                 }
658                 ret_val = igb_get_phy_id(hw);
659                 goto out;
660         }
661
662         /* Power on sgmii phy if it is disabled */
663         ctrl_ext = rd32(E1000_CTRL_EXT);
664         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
665         wrfl();
666         msleep(300);
667
668         /*
669          * The address field in the I2CCMD register is 3 bits and 0 is invalid.
670          * Therefore, we need to test 1-7
671          */
672         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
673                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
674                 if (ret_val == 0) {
675                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
676                                phy_id, phy->addr);
677                         /*
678                          * At the time of this writing, The M88 part is
679                          * the only supported SGMII PHY product.
680                          */
681                         if (phy_id == M88_VENDOR)
682                                 break;
683                 } else {
684                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
685                 }
686         }
687
688         /* A valid PHY type couldn't be found. */
689         if (phy->addr == 8) {
690                 phy->addr = 0;
691                 ret_val = -E1000_ERR_PHY;
692                 goto out;
693         } else {
694                 ret_val = igb_get_phy_id(hw);
695         }
696
697         /* restore previous sfp cage power state */
698         wr32(E1000_CTRL_EXT, ctrl_ext);
699
700 out:
701         return ret_val;
702 }
703
704 /**
705  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
706  *  @hw: pointer to the HW structure
707  *
708  *  Resets the PHY using the serial gigabit media independent interface.
709  **/
710 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
711 {
712         s32 ret_val;
713
714         /*
715          * This isn't a true "hard" reset, but is the only reset
716          * available to us at this time.
717          */
718
719         hw_dbg("Soft resetting SGMII attached PHY...\n");
720
721         /*
722          * SFP documentation requires the following to configure the SPF module
723          * to work on SGMII.  No further documentation is given.
724          */
725         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
726         if (ret_val)
727                 goto out;
728
729         ret_val = igb_phy_sw_reset(hw);
730
731 out:
732         return ret_val;
733 }
734
735 /**
736  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
737  *  @hw: pointer to the HW structure
738  *  @active: true to enable LPLU, false to disable
739  *
740  *  Sets the LPLU D0 state according to the active flag.  When
741  *  activating LPLU this function also disables smart speed
742  *  and vice versa.  LPLU will not be activated unless the
743  *  device autonegotiation advertisement meets standards of
744  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
745  *  This is a function pointer entry point only called by
746  *  PHY setup routines.
747  **/
748 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
749 {
750         struct e1000_phy_info *phy = &hw->phy;
751         s32 ret_val;
752         u16 data;
753
754         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
755         if (ret_val)
756                 goto out;
757
758         if (active) {
759                 data |= IGP02E1000_PM_D0_LPLU;
760                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
761                                                  data);
762                 if (ret_val)
763                         goto out;
764
765                 /* When LPLU is enabled, we should disable SmartSpeed */
766                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
767                                                 &data);
768                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
769                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
770                                                  data);
771                 if (ret_val)
772                         goto out;
773         } else {
774                 data &= ~IGP02E1000_PM_D0_LPLU;
775                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
776                                                  data);
777                 /*
778                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
779                  * during Dx states where the power conservation is most
780                  * important.  During driver activity we should enable
781                  * SmartSpeed, so performance is maintained.
782                  */
783                 if (phy->smart_speed == e1000_smart_speed_on) {
784                         ret_val = phy->ops.read_reg(hw,
785                                         IGP01E1000_PHY_PORT_CONFIG, &data);
786                         if (ret_val)
787                                 goto out;
788
789                         data |= IGP01E1000_PSCFR_SMART_SPEED;
790                         ret_val = phy->ops.write_reg(hw,
791                                         IGP01E1000_PHY_PORT_CONFIG, data);
792                         if (ret_val)
793                                 goto out;
794                 } else if (phy->smart_speed == e1000_smart_speed_off) {
795                         ret_val = phy->ops.read_reg(hw,
796                                         IGP01E1000_PHY_PORT_CONFIG, &data);
797                         if (ret_val)
798                                 goto out;
799
800                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801                         ret_val = phy->ops.write_reg(hw,
802                                         IGP01E1000_PHY_PORT_CONFIG, data);
803                         if (ret_val)
804                                 goto out;
805                 }
806         }
807
808 out:
809         return ret_val;
810 }
811
812 /**
813  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
814  *  @hw: pointer to the HW structure
815  *  @active: true to enable LPLU, false to disable
816  *
817  *  Sets the LPLU D0 state according to the active flag.  When
818  *  activating LPLU this function also disables smart speed
819  *  and vice versa.  LPLU will not be activated unless the
820  *  device autonegotiation advertisement meets standards of
821  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
822  *  This is a function pointer entry point only called by
823  *  PHY setup routines.
824  **/
825 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
826 {
827         struct e1000_phy_info *phy = &hw->phy;
828         s32 ret_val = 0;
829         u16 data;
830
831         data = rd32(E1000_82580_PHY_POWER_MGMT);
832
833         if (active) {
834                 data |= E1000_82580_PM_D0_LPLU;
835
836                 /* When LPLU is enabled, we should disable SmartSpeed */
837                 data &= ~E1000_82580_PM_SPD;
838         } else {
839                 data &= ~E1000_82580_PM_D0_LPLU;
840
841                 /*
842                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
843                  * during Dx states where the power conservation is most
844                  * important.  During driver activity we should enable
845                  * SmartSpeed, so performance is maintained.
846                  */
847                 if (phy->smart_speed == e1000_smart_speed_on)
848                         data |= E1000_82580_PM_SPD;
849                 else if (phy->smart_speed == e1000_smart_speed_off)
850                         data &= ~E1000_82580_PM_SPD; }
851
852         wr32(E1000_82580_PHY_POWER_MGMT, data);
853         return ret_val;
854 }
855
856 /**
857  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
858  *  @hw: pointer to the HW structure
859  *  @active: boolean used to enable/disable lplu
860  *
861  *  Success returns 0, Failure returns 1
862  *
863  *  The low power link up (lplu) state is set to the power management level D3
864  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
865  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
866  *  is used during Dx states where the power conservation is most important.
867  *  During driver activity, SmartSpeed should be enabled so performance is
868  *  maintained.
869  **/
870 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
871 {
872         struct e1000_phy_info *phy = &hw->phy;
873         s32 ret_val = 0;
874         u16 data;
875
876         data = rd32(E1000_82580_PHY_POWER_MGMT);
877
878         if (!active) {
879                 data &= ~E1000_82580_PM_D3_LPLU;
880                 /*
881                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
882                  * during Dx states where the power conservation is most
883                  * important.  During driver activity we should enable
884                  * SmartSpeed, so performance is maintained.
885                  */
886                 if (phy->smart_speed == e1000_smart_speed_on)
887                         data |= E1000_82580_PM_SPD;
888                 else if (phy->smart_speed == e1000_smart_speed_off)
889                         data &= ~E1000_82580_PM_SPD;
890         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
891                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
892                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
893                 data |= E1000_82580_PM_D3_LPLU;
894                 /* When LPLU is enabled, we should disable SmartSpeed */
895                 data &= ~E1000_82580_PM_SPD;
896         }
897
898         wr32(E1000_82580_PHY_POWER_MGMT, data);
899         return ret_val;
900 }
901
902 /**
903  *  igb_acquire_nvm_82575 - Request for access to EEPROM
904  *  @hw: pointer to the HW structure
905  *
906  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
907  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
908  *  Return successful if access grant bit set, else clear the request for
909  *  EEPROM access and return -E1000_ERR_NVM (-1).
910  **/
911 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
912 {
913         s32 ret_val;
914
915         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
916         if (ret_val)
917                 goto out;
918
919         ret_val = igb_acquire_nvm(hw);
920
921         if (ret_val)
922                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
923
924 out:
925         return ret_val;
926 }
927
928 /**
929  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
930  *  @hw: pointer to the HW structure
931  *
932  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
933  *  then release the semaphores acquired.
934  **/
935 static void igb_release_nvm_82575(struct e1000_hw *hw)
936 {
937         igb_release_nvm(hw);
938         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
939 }
940
941 /**
942  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
943  *  @hw: pointer to the HW structure
944  *  @mask: specifies which semaphore to acquire
945  *
946  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
947  *  will also specify which port we're acquiring the lock for.
948  **/
949 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
950 {
951         u32 swfw_sync;
952         u32 swmask = mask;
953         u32 fwmask = mask << 16;
954         s32 ret_val = 0;
955         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
956
957         while (i < timeout) {
958                 if (igb_get_hw_semaphore(hw)) {
959                         ret_val = -E1000_ERR_SWFW_SYNC;
960                         goto out;
961                 }
962
963                 swfw_sync = rd32(E1000_SW_FW_SYNC);
964                 if (!(swfw_sync & (fwmask | swmask)))
965                         break;
966
967                 /*
968                  * Firmware currently using resource (fwmask)
969                  * or other software thread using resource (swmask)
970                  */
971                 igb_put_hw_semaphore(hw);
972                 mdelay(5);
973                 i++;
974         }
975
976         if (i == timeout) {
977                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
978                 ret_val = -E1000_ERR_SWFW_SYNC;
979                 goto out;
980         }
981
982         swfw_sync |= swmask;
983         wr32(E1000_SW_FW_SYNC, swfw_sync);
984
985         igb_put_hw_semaphore(hw);
986
987 out:
988         return ret_val;
989 }
990
991 /**
992  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
993  *  @hw: pointer to the HW structure
994  *  @mask: specifies which semaphore to acquire
995  *
996  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
997  *  will also specify which port we're releasing the lock for.
998  **/
999 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1000 {
1001         u32 swfw_sync;
1002
1003         while (igb_get_hw_semaphore(hw) != 0);
1004         /* Empty */
1005
1006         swfw_sync = rd32(E1000_SW_FW_SYNC);
1007         swfw_sync &= ~mask;
1008         wr32(E1000_SW_FW_SYNC, swfw_sync);
1009
1010         igb_put_hw_semaphore(hw);
1011 }
1012
1013 /**
1014  *  igb_get_cfg_done_82575 - Read config done bit
1015  *  @hw: pointer to the HW structure
1016  *
1017  *  Read the management control register for the config done bit for
1018  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1019  *  to read the config done bit, so an error is *ONLY* logged and returns
1020  *  0.  If we were to return with error, EEPROM-less silicon
1021  *  would not be able to be reset or change link.
1022  **/
1023 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1024 {
1025         s32 timeout = PHY_CFG_TIMEOUT;
1026         s32 ret_val = 0;
1027         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1028
1029         if (hw->bus.func == 1)
1030                 mask = E1000_NVM_CFG_DONE_PORT_1;
1031         else if (hw->bus.func == E1000_FUNC_2)
1032                 mask = E1000_NVM_CFG_DONE_PORT_2;
1033         else if (hw->bus.func == E1000_FUNC_3)
1034                 mask = E1000_NVM_CFG_DONE_PORT_3;
1035
1036         while (timeout) {
1037                 if (rd32(E1000_EEMNGCTL) & mask)
1038                         break;
1039                 msleep(1);
1040                 timeout--;
1041         }
1042         if (!timeout)
1043                 hw_dbg("MNG configuration cycle has not completed.\n");
1044
1045         /* If EEPROM is not marked present, init the PHY manually */
1046         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1047             (hw->phy.type == e1000_phy_igp_3))
1048                 igb_phy_init_script_igp3(hw);
1049
1050         return ret_val;
1051 }
1052
1053 /**
1054  *  igb_check_for_link_82575 - Check for link
1055  *  @hw: pointer to the HW structure
1056  *
1057  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1058  *  use the generic interface for determining link.
1059  **/
1060 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1061 {
1062         s32 ret_val;
1063         u16 speed, duplex;
1064
1065         if (hw->phy.media_type != e1000_media_type_copper) {
1066                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1067                                                              &duplex);
1068                 /*
1069                  * Use this flag to determine if link needs to be checked or
1070                  * not.  If  we have link clear the flag so that we do not
1071                  * continue to check for link.
1072                  */
1073                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1074
1075                 /* Configure Flow Control now that Auto-Neg has completed.
1076                  * First, we need to restore the desired flow control
1077                  * settings because we may have had to re-autoneg with a
1078                  * different link partner.
1079                  */
1080                 ret_val = igb_config_fc_after_link_up(hw);
1081                 if (ret_val)
1082                         hw_dbg("Error configuring flow control\n");
1083         } else {
1084                 ret_val = igb_check_for_copper_link(hw);
1085         }
1086
1087         return ret_val;
1088 }
1089
1090 /**
1091  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1092  *  @hw: pointer to the HW structure
1093  **/
1094 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1095 {
1096         u32 reg;
1097
1098
1099         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1100             !igb_sgmii_active_82575(hw))
1101                 return;
1102
1103         /* Enable PCS to turn on link */
1104         reg = rd32(E1000_PCS_CFG0);
1105         reg |= E1000_PCS_CFG_PCS_EN;
1106         wr32(E1000_PCS_CFG0, reg);
1107
1108         /* Power up the laser */
1109         reg = rd32(E1000_CTRL_EXT);
1110         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1111         wr32(E1000_CTRL_EXT, reg);
1112
1113         /* flush the write to verify completion */
1114         wrfl();
1115         msleep(1);
1116 }
1117
1118 /**
1119  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1120  *  @hw: pointer to the HW structure
1121  *  @speed: stores the current speed
1122  *  @duplex: stores the current duplex
1123  *
1124  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1125  *  duplex, then store the values in the pointers provided.
1126  **/
1127 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1128                                                 u16 *duplex)
1129 {
1130         struct e1000_mac_info *mac = &hw->mac;
1131         u32 pcs;
1132
1133         /* Set up defaults for the return values of this function */
1134         mac->serdes_has_link = false;
1135         *speed = 0;
1136         *duplex = 0;
1137
1138         /*
1139          * Read the PCS Status register for link state. For non-copper mode,
1140          * the status register is not accurate. The PCS status register is
1141          * used instead.
1142          */
1143         pcs = rd32(E1000_PCS_LSTAT);
1144
1145         /*
1146          * The link up bit determines when link is up on autoneg. The sync ok
1147          * gets set once both sides sync up and agree upon link. Stable link
1148          * can be determined by checking for both link up and link sync ok
1149          */
1150         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1151                 mac->serdes_has_link = true;
1152
1153                 /* Detect and store PCS speed */
1154                 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1155                         *speed = SPEED_1000;
1156                 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1157                         *speed = SPEED_100;
1158                 } else {
1159                         *speed = SPEED_10;
1160                 }
1161
1162                 /* Detect and store PCS duplex */
1163                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1164                         *duplex = FULL_DUPLEX;
1165                 } else {
1166                         *duplex = HALF_DUPLEX;
1167                 }
1168         }
1169
1170         return 0;
1171 }
1172
1173 /**
1174  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1175  *  @hw: pointer to the HW structure
1176  *
1177  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1178  *  when management pass thru is not enabled.
1179  **/
1180 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1181 {
1182         u32 reg;
1183
1184         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1185             igb_sgmii_active_82575(hw))
1186                 return;
1187
1188         if (!igb_enable_mng_pass_thru(hw)) {
1189                 /* Disable PCS to turn off link */
1190                 reg = rd32(E1000_PCS_CFG0);
1191                 reg &= ~E1000_PCS_CFG_PCS_EN;
1192                 wr32(E1000_PCS_CFG0, reg);
1193
1194                 /* shutdown the laser */
1195                 reg = rd32(E1000_CTRL_EXT);
1196                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1197                 wr32(E1000_CTRL_EXT, reg);
1198
1199                 /* flush the write to verify completion */
1200                 wrfl();
1201                 msleep(1);
1202         }
1203 }
1204
1205 /**
1206  *  igb_reset_hw_82575 - Reset hardware
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  This resets the hardware into a known state.  This is a
1210  *  function pointer entry point called by the api module.
1211  **/
1212 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1213 {
1214         u32 ctrl, icr;
1215         s32 ret_val;
1216
1217         /*
1218          * Prevent the PCI-E bus from sticking if there is no TLP connection
1219          * on the last TLP read/write transaction when MAC is reset.
1220          */
1221         ret_val = igb_disable_pcie_master(hw);
1222         if (ret_val)
1223                 hw_dbg("PCI-E Master disable polling has failed.\n");
1224
1225         /* set the completion timeout for interface */
1226         ret_val = igb_set_pcie_completion_timeout(hw);
1227         if (ret_val) {
1228                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1229         }
1230
1231         hw_dbg("Masking off all interrupts\n");
1232         wr32(E1000_IMC, 0xffffffff);
1233
1234         wr32(E1000_RCTL, 0);
1235         wr32(E1000_TCTL, E1000_TCTL_PSP);
1236         wrfl();
1237
1238         msleep(10);
1239
1240         ctrl = rd32(E1000_CTRL);
1241
1242         hw_dbg("Issuing a global reset to MAC\n");
1243         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1244
1245         ret_val = igb_get_auto_rd_done(hw);
1246         if (ret_val) {
1247                 /*
1248                  * When auto config read does not complete, do not
1249                  * return with an error. This can happen in situations
1250                  * where there is no eeprom and prevents getting link.
1251                  */
1252                 hw_dbg("Auto Read Done did not complete\n");
1253         }
1254
1255         /* If EEPROM is not present, run manual init scripts */
1256         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1257                 igb_reset_init_script_82575(hw);
1258
1259         /* Clear any pending interrupt events. */
1260         wr32(E1000_IMC, 0xffffffff);
1261         icr = rd32(E1000_ICR);
1262
1263         /* Install any alternate MAC address into RAR0 */
1264         ret_val = igb_check_alt_mac_addr(hw);
1265
1266         return ret_val;
1267 }
1268
1269 /**
1270  *  igb_init_hw_82575 - Initialize hardware
1271  *  @hw: pointer to the HW structure
1272  *
1273  *  This inits the hardware readying it for operation.
1274  **/
1275 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1276 {
1277         struct e1000_mac_info *mac = &hw->mac;
1278         s32 ret_val;
1279         u16 i, rar_count = mac->rar_entry_count;
1280
1281         /* Initialize identification LED */
1282         ret_val = igb_id_led_init(hw);
1283         if (ret_val) {
1284                 hw_dbg("Error initializing identification LED\n");
1285                 /* This is not fatal and we should not stop init due to this */
1286         }
1287
1288         /* Disabling VLAN filtering */
1289         hw_dbg("Initializing the IEEE VLAN\n");
1290         if (hw->mac.type == e1000_i350)
1291                 igb_clear_vfta_i350(hw);
1292         else
1293                 igb_clear_vfta(hw);
1294
1295         /* Setup the receive address */
1296         igb_init_rx_addrs(hw, rar_count);
1297
1298         /* Zero out the Multicast HASH table */
1299         hw_dbg("Zeroing the MTA\n");
1300         for (i = 0; i < mac->mta_reg_count; i++)
1301                 array_wr32(E1000_MTA, i, 0);
1302
1303         /* Zero out the Unicast HASH table */
1304         hw_dbg("Zeroing the UTA\n");
1305         for (i = 0; i < mac->uta_reg_count; i++)
1306                 array_wr32(E1000_UTA, i, 0);
1307
1308         /* Setup link and flow control */
1309         ret_val = igb_setup_link(hw);
1310
1311         /*
1312          * Clear all of the statistics registers (clear on read).  It is
1313          * important that we do this after we have tried to establish link
1314          * because the symbol error count will increment wildly if there
1315          * is no link.
1316          */
1317         igb_clear_hw_cntrs_82575(hw);
1318         return ret_val;
1319 }
1320
1321 /**
1322  *  igb_setup_copper_link_82575 - Configure copper link settings
1323  *  @hw: pointer to the HW structure
1324  *
1325  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1326  *  for link, once link is established calls to configure collision distance
1327  *  and flow control are called.
1328  **/
1329 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1330 {
1331         u32 ctrl;
1332         s32  ret_val;
1333         u32 phpm_reg;
1334
1335         ctrl = rd32(E1000_CTRL);
1336         ctrl |= E1000_CTRL_SLU;
1337         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1338         wr32(E1000_CTRL, ctrl);
1339
1340         /* Clear Go Link Disconnect bit */
1341         if (hw->mac.type >= e1000_82580) {
1342                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1343                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1344                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1345         }
1346
1347         ret_val = igb_setup_serdes_link_82575(hw);
1348         if (ret_val)
1349                 goto out;
1350
1351         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1352                 /* allow time for SFP cage time to power up phy */
1353                 msleep(300);
1354
1355                 ret_val = hw->phy.ops.reset(hw);
1356                 if (ret_val) {
1357                         hw_dbg("Error resetting the PHY.\n");
1358                         goto out;
1359                 }
1360         }
1361         switch (hw->phy.type) {
1362         case e1000_phy_i210:
1363         case e1000_phy_m88:
1364                 switch (hw->phy.id) {
1365                 case I347AT4_E_PHY_ID:
1366                 case M88E1112_E_PHY_ID:
1367                 case I210_I_PHY_ID:
1368                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1369                         break;
1370                 default:
1371                         ret_val = igb_copper_link_setup_m88(hw);
1372                         break;
1373                 }
1374                 break;
1375         case e1000_phy_igp_3:
1376                 ret_val = igb_copper_link_setup_igp(hw);
1377                 break;
1378         case e1000_phy_82580:
1379                 ret_val = igb_copper_link_setup_82580(hw);
1380                 break;
1381         default:
1382                 ret_val = -E1000_ERR_PHY;
1383                 break;
1384         }
1385
1386         if (ret_val)
1387                 goto out;
1388
1389         ret_val = igb_setup_copper_link(hw);
1390 out:
1391         return ret_val;
1392 }
1393
1394 /**
1395  *  igb_setup_serdes_link_82575 - Setup link for serdes
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1399  *  used on copper connections where the serialized gigabit media independent
1400  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1401  *  for auto-negotiation or forces speed/duplex.
1402  **/
1403 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1404 {
1405         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1406         bool pcs_autoneg;
1407         s32 ret_val = E1000_SUCCESS;
1408         u16 data;
1409
1410         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1411             !igb_sgmii_active_82575(hw))
1412                 return ret_val;
1413
1414
1415         /*
1416          * On the 82575, SerDes loopback mode persists until it is
1417          * explicitly turned off or a power cycle is performed.  A read to
1418          * the register does not indicate its status.  Therefore, we ensure
1419          * loopback mode is disabled during initialization.
1420          */
1421         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1422
1423         /* power on the sfp cage if present */
1424         ctrl_ext = rd32(E1000_CTRL_EXT);
1425         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1426         wr32(E1000_CTRL_EXT, ctrl_ext);
1427
1428         ctrl_reg = rd32(E1000_CTRL);
1429         ctrl_reg |= E1000_CTRL_SLU;
1430
1431         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1432                 /* set both sw defined pins */
1433                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1434
1435                 /* Set switch control to serdes energy detect */
1436                 reg = rd32(E1000_CONNSW);
1437                 reg |= E1000_CONNSW_ENRGSRC;
1438                 wr32(E1000_CONNSW, reg);
1439         }
1440
1441         reg = rd32(E1000_PCS_LCTL);
1442
1443         /* default pcs_autoneg to the same setting as mac autoneg */
1444         pcs_autoneg = hw->mac.autoneg;
1445
1446         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1447         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1448                 /* sgmii mode lets the phy handle forcing speed/duplex */
1449                 pcs_autoneg = true;
1450                 /* autoneg time out should be disabled for SGMII mode */
1451                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1452                 break;
1453         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1454                 /* disable PCS autoneg and support parallel detect only */
1455                 pcs_autoneg = false;
1456         default:
1457                 if (hw->mac.type == e1000_82575 ||
1458                     hw->mac.type == e1000_82576) {
1459                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1460                         if (ret_val) {
1461                                 printk(KERN_DEBUG "NVM Read Error\n\n");
1462                                 return ret_val;
1463                         }
1464
1465                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1466                                 pcs_autoneg = false;
1467                 }
1468
1469                 /*
1470                  * non-SGMII modes only supports a speed of 1000/Full for the
1471                  * link so it is best to just force the MAC and let the pcs
1472                  * link either autoneg or be forced to 1000/Full
1473                  */
1474                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1475                             E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1476
1477                 /* set speed of 1000/Full if speed/duplex is forced */
1478                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1479                 break;
1480         }
1481
1482         wr32(E1000_CTRL, ctrl_reg);
1483
1484         /*
1485          * New SerDes mode allows for forcing speed or autonegotiating speed
1486          * at 1gb. Autoneg should be default set by most drivers. This is the
1487          * mode that will be compatible with older link partners and switches.
1488          * However, both are supported by the hardware and some drivers/tools.
1489          */
1490         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1491                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1492
1493         if (pcs_autoneg) {
1494                 /* Set PCS register for autoneg */
1495                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1496                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1497
1498                 /* Disable force flow control for autoneg */
1499                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1500
1501                 /* Configure flow control advertisement for autoneg */
1502                 anadv_reg = rd32(E1000_PCS_ANADV);
1503                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1504                 switch (hw->fc.requested_mode) {
1505                 case e1000_fc_full:
1506                 case e1000_fc_rx_pause:
1507                         anadv_reg |= E1000_TXCW_ASM_DIR;
1508                         anadv_reg |= E1000_TXCW_PAUSE;
1509                         break;
1510                 case e1000_fc_tx_pause:
1511                         anadv_reg |= E1000_TXCW_ASM_DIR;
1512                         break;
1513                 default:
1514                         break;
1515                 }
1516                 wr32(E1000_PCS_ANADV, anadv_reg);
1517
1518                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1519         } else {
1520                 /* Set PCS register for forced link */
1521                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1522
1523                 /* Force flow control for forced link */
1524                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1525
1526                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1527         }
1528
1529         wr32(E1000_PCS_LCTL, reg);
1530
1531         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1532                 igb_force_mac_fc(hw);
1533
1534         return ret_val;
1535 }
1536
1537 /**
1538  *  igb_sgmii_active_82575 - Return sgmii state
1539  *  @hw: pointer to the HW structure
1540  *
1541  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1542  *  which can be enabled for use in the embedded applications.  Simply
1543  *  return the current state of the sgmii interface.
1544  **/
1545 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1546 {
1547         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1548         return dev_spec->sgmii_active;
1549 }
1550
1551 /**
1552  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1553  *  @hw: pointer to the HW structure
1554  *
1555  *  Inits recommended HW defaults after a reset when there is no EEPROM
1556  *  detected. This is only for the 82575.
1557  **/
1558 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1559 {
1560         if (hw->mac.type == e1000_82575) {
1561                 hw_dbg("Running reset init script for 82575\n");
1562                 /* SerDes configuration via SERDESCTRL */
1563                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1564                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1565                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1566                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1567
1568                 /* CCM configuration via CCMCTL register */
1569                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1570                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1571
1572                 /* PCIe lanes configuration */
1573                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1574                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1575                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1576                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1577
1578                 /* PCIe PLL Configuration */
1579                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1580                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1581                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1582         }
1583
1584         return 0;
1585 }
1586
1587 /**
1588  *  igb_read_mac_addr_82575 - Read device MAC address
1589  *  @hw: pointer to the HW structure
1590  **/
1591 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1592 {
1593         s32 ret_val = 0;
1594
1595         /*
1596          * If there's an alternate MAC address place it in RAR0
1597          * so that it will override the Si installed default perm
1598          * address.
1599          */
1600         ret_val = igb_check_alt_mac_addr(hw);
1601         if (ret_val)
1602                 goto out;
1603
1604         ret_val = igb_read_mac_addr(hw);
1605
1606 out:
1607         return ret_val;
1608 }
1609
1610 /**
1611  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1612  * @hw: pointer to the HW structure
1613  *
1614  * In the case of a PHY power down to save power, or to turn off link during a
1615  * driver unload, or wake on lan is not enabled, remove the link.
1616  **/
1617 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1618 {
1619         /* If the management interface is not enabled, then power down */
1620         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1621                 igb_power_down_phy_copper(hw);
1622 }
1623
1624 /**
1625  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1626  *  @hw: pointer to the HW structure
1627  *
1628  *  Clears the hardware counters by reading the counter registers.
1629  **/
1630 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1631 {
1632         igb_clear_hw_cntrs_base(hw);
1633
1634         rd32(E1000_PRC64);
1635         rd32(E1000_PRC127);
1636         rd32(E1000_PRC255);
1637         rd32(E1000_PRC511);
1638         rd32(E1000_PRC1023);
1639         rd32(E1000_PRC1522);
1640         rd32(E1000_PTC64);
1641         rd32(E1000_PTC127);
1642         rd32(E1000_PTC255);
1643         rd32(E1000_PTC511);
1644         rd32(E1000_PTC1023);
1645         rd32(E1000_PTC1522);
1646
1647         rd32(E1000_ALGNERRC);
1648         rd32(E1000_RXERRC);
1649         rd32(E1000_TNCRS);
1650         rd32(E1000_CEXTERR);
1651         rd32(E1000_TSCTC);
1652         rd32(E1000_TSCTFC);
1653
1654         rd32(E1000_MGTPRC);
1655         rd32(E1000_MGTPDC);
1656         rd32(E1000_MGTPTC);
1657
1658         rd32(E1000_IAC);
1659         rd32(E1000_ICRXOC);
1660
1661         rd32(E1000_ICRXPTC);
1662         rd32(E1000_ICRXATC);
1663         rd32(E1000_ICTXPTC);
1664         rd32(E1000_ICTXATC);
1665         rd32(E1000_ICTXQEC);
1666         rd32(E1000_ICTXQMTC);
1667         rd32(E1000_ICRXDMTC);
1668
1669         rd32(E1000_CBTMPC);
1670         rd32(E1000_HTDPMC);
1671         rd32(E1000_CBRMPC);
1672         rd32(E1000_RPTHC);
1673         rd32(E1000_HGPTC);
1674         rd32(E1000_HTCBDPC);
1675         rd32(E1000_HGORCL);
1676         rd32(E1000_HGORCH);
1677         rd32(E1000_HGOTCL);
1678         rd32(E1000_HGOTCH);
1679         rd32(E1000_LENERRS);
1680
1681         /* This register should not be read in copper configurations */
1682         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1683             igb_sgmii_active_82575(hw))
1684                 rd32(E1000_SCVPC);
1685 }
1686
1687 /**
1688  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1689  *  @hw: pointer to the HW structure
1690  *
1691  *  After rx enable if managability is enabled then there is likely some
1692  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1693  *  function clears the fifos and flushes any packets that came in as rx was
1694  *  being enabled.
1695  **/
1696 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1697 {
1698         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1699         int i, ms_wait;
1700
1701         if (hw->mac.type != e1000_82575 ||
1702             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1703                 return;
1704
1705         /* Disable all RX queues */
1706         for (i = 0; i < 4; i++) {
1707                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1708                 wr32(E1000_RXDCTL(i),
1709                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1710         }
1711         /* Poll all queues to verify they have shut down */
1712         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1713                 msleep(1);
1714                 rx_enabled = 0;
1715                 for (i = 0; i < 4; i++)
1716                         rx_enabled |= rd32(E1000_RXDCTL(i));
1717                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1718                         break;
1719         }
1720
1721         if (ms_wait == 10)
1722                 hw_dbg("Queue disable timed out after 10ms\n");
1723
1724         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1725          * incoming packets are rejected.  Set enable and wait 2ms so that
1726          * any packet that was coming in as RCTL.EN was set is flushed
1727          */
1728         rfctl = rd32(E1000_RFCTL);
1729         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1730
1731         rlpml = rd32(E1000_RLPML);
1732         wr32(E1000_RLPML, 0);
1733
1734         rctl = rd32(E1000_RCTL);
1735         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1736         temp_rctl |= E1000_RCTL_LPE;
1737
1738         wr32(E1000_RCTL, temp_rctl);
1739         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1740         wrfl();
1741         msleep(2);
1742
1743         /* Enable RX queues that were previously enabled and restore our
1744          * previous state
1745          */
1746         for (i = 0; i < 4; i++)
1747                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1748         wr32(E1000_RCTL, rctl);
1749         wrfl();
1750
1751         wr32(E1000_RLPML, rlpml);
1752         wr32(E1000_RFCTL, rfctl);
1753
1754         /* Flush receive errors generated by workaround */
1755         rd32(E1000_ROC);
1756         rd32(E1000_RNBC);
1757         rd32(E1000_MPC);
1758 }
1759
1760 /**
1761  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1762  *  @hw: pointer to the HW structure
1763  *
1764  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1765  *  however the hardware default for these parts is 500us to 1ms which is less
1766  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1767  *  increase the value to either 10ms to 200ms for capability version 1 config,
1768  *  or 16ms to 55ms for version 2.
1769  **/
1770 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1771 {
1772         u32 gcr = rd32(E1000_GCR);
1773         s32 ret_val = 0;
1774         u16 pcie_devctl2;
1775
1776         /* only take action if timeout value is defaulted to 0 */
1777         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1778                 goto out;
1779
1780         /*
1781          * if capababilities version is type 1 we can write the
1782          * timeout of 10ms to 200ms through the GCR register
1783          */
1784         if (!(gcr & E1000_GCR_CAP_VER2)) {
1785                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1786                 goto out;
1787         }
1788
1789         /*
1790          * for version 2 capabilities we need to write the config space
1791          * directly in order to set the completion timeout value for
1792          * 16ms to 55ms
1793          */
1794         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1795                                         &pcie_devctl2);
1796         if (ret_val)
1797                 goto out;
1798
1799         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1800
1801         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1802                                          &pcie_devctl2);
1803 out:
1804         /* disable completion timeout resend */
1805         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1806
1807         wr32(E1000_GCR, gcr);
1808         return ret_val;
1809 }
1810
1811 /**
1812  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1813  *  @hw: pointer to the hardware struct
1814  *  @enable: state to enter, either enabled or disabled
1815  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1816  *
1817  *  enables/disables L2 switch anti-spoofing functionality.
1818  **/
1819 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1820 {
1821         u32 reg_val, reg_offset;
1822
1823         switch (hw->mac.type) {
1824         case e1000_82576:
1825                 reg_offset = E1000_DTXSWC;
1826                 break;
1827         case e1000_i350:
1828                 reg_offset = E1000_TXSWC;
1829                 break;
1830         default:
1831                 return;
1832         }
1833
1834         reg_val = rd32(reg_offset);
1835         if (enable) {
1836                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1837                              E1000_DTXSWC_VLAN_SPOOF_MASK);
1838                 /* The PF can spoof - it has to in order to
1839                  * support emulation mode NICs
1840                  */
1841                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1842         } else {
1843                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1844                              E1000_DTXSWC_VLAN_SPOOF_MASK);
1845         }
1846         wr32(reg_offset, reg_val);
1847 }
1848
1849 /**
1850  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1851  *  @hw: pointer to the hardware struct
1852  *  @enable: state to enter, either enabled or disabled
1853  *
1854  *  enables/disables L2 switch loopback functionality.
1855  **/
1856 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1857 {
1858         u32 dtxswc;
1859
1860         switch (hw->mac.type) {
1861         case e1000_82576:
1862                 dtxswc = rd32(E1000_DTXSWC);
1863                 if (enable)
1864                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1865                 else
1866                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1867                 wr32(E1000_DTXSWC, dtxswc);
1868                 break;
1869         case e1000_i350:
1870                 dtxswc = rd32(E1000_TXSWC);
1871                 if (enable)
1872                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1873                 else
1874                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1875                 wr32(E1000_TXSWC, dtxswc);
1876                 break;
1877         default:
1878                 /* Currently no other hardware supports loopback */
1879                 break;
1880         }
1881
1882
1883 }
1884
1885 /**
1886  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1887  *  @hw: pointer to the hardware struct
1888  *  @enable: state to enter, either enabled or disabled
1889  *
1890  *  enables/disables replication of packets across multiple pools.
1891  **/
1892 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1893 {
1894         u32 vt_ctl = rd32(E1000_VT_CTL);
1895
1896         if (enable)
1897                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1898         else
1899                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1900
1901         wr32(E1000_VT_CTL, vt_ctl);
1902 }
1903
1904 /**
1905  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1906  *  @hw: pointer to the HW structure
1907  *  @offset: register offset to be read
1908  *  @data: pointer to the read data
1909  *
1910  *  Reads the MDI control register in the PHY at offset and stores the
1911  *  information read to data.
1912  **/
1913 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1914 {
1915         s32 ret_val;
1916
1917
1918         ret_val = hw->phy.ops.acquire(hw);
1919         if (ret_val)
1920                 goto out;
1921
1922         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1923
1924         hw->phy.ops.release(hw);
1925
1926 out:
1927         return ret_val;
1928 }
1929
1930 /**
1931  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1932  *  @hw: pointer to the HW structure
1933  *  @offset: register offset to write to
1934  *  @data: data to write to register at offset
1935  *
1936  *  Writes data to MDI control register in the PHY at offset.
1937  **/
1938 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1939 {
1940         s32 ret_val;
1941
1942
1943         ret_val = hw->phy.ops.acquire(hw);
1944         if (ret_val)
1945                 goto out;
1946
1947         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1948
1949         hw->phy.ops.release(hw);
1950
1951 out:
1952         return ret_val;
1953 }
1954
1955 /**
1956  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1957  *  @hw: pointer to the HW structure
1958  *
1959  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1960  *  the values found in the EEPROM.  This addresses an issue in which these
1961  *  bits are not restored from EEPROM after reset.
1962  **/
1963 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1964 {
1965         s32 ret_val = 0;
1966         u32 mdicnfg;
1967         u16 nvm_data = 0;
1968
1969         if (hw->mac.type != e1000_82580)
1970                 goto out;
1971         if (!igb_sgmii_active_82575(hw))
1972                 goto out;
1973
1974         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1975                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1976                                    &nvm_data);
1977         if (ret_val) {
1978                 hw_dbg("NVM Read Error\n");
1979                 goto out;
1980         }
1981
1982         mdicnfg = rd32(E1000_MDICNFG);
1983         if (nvm_data & NVM_WORD24_EXT_MDIO)
1984                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1985         if (nvm_data & NVM_WORD24_COM_MDIO)
1986                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1987         wr32(E1000_MDICNFG, mdicnfg);
1988 out:
1989         return ret_val;
1990 }
1991
1992 /**
1993  *  igb_reset_hw_82580 - Reset hardware
1994  *  @hw: pointer to the HW structure
1995  *
1996  *  This resets function or entire device (all ports, etc.)
1997  *  to a known state.
1998  **/
1999 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2000 {
2001         s32 ret_val = 0;
2002         /* BH SW mailbox bit in SW_FW_SYNC */
2003         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2004         u32 ctrl, icr;
2005         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2006
2007
2008         hw->dev_spec._82575.global_device_reset = false;
2009
2010         /* due to hw errata, global device reset doesn't always
2011          * work on 82580
2012          */
2013         if (hw->mac.type == e1000_82580)
2014                 global_device_reset = false;
2015
2016         /* Get current control state. */
2017         ctrl = rd32(E1000_CTRL);
2018
2019         /*
2020          * Prevent the PCI-E bus from sticking if there is no TLP connection
2021          * on the last TLP read/write transaction when MAC is reset.
2022          */
2023         ret_val = igb_disable_pcie_master(hw);
2024         if (ret_val)
2025                 hw_dbg("PCI-E Master disable polling has failed.\n");
2026
2027         hw_dbg("Masking off all interrupts\n");
2028         wr32(E1000_IMC, 0xffffffff);
2029         wr32(E1000_RCTL, 0);
2030         wr32(E1000_TCTL, E1000_TCTL_PSP);
2031         wrfl();
2032
2033         msleep(10);
2034
2035         /* Determine whether or not a global dev reset is requested */
2036         if (global_device_reset &&
2037                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2038                         global_device_reset = false;
2039
2040         if (global_device_reset &&
2041                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2042                 ctrl |= E1000_CTRL_DEV_RST;
2043         else
2044                 ctrl |= E1000_CTRL_RST;
2045
2046         wr32(E1000_CTRL, ctrl);
2047         wrfl();
2048
2049         /* Add delay to insure DEV_RST has time to complete */
2050         if (global_device_reset)
2051                 msleep(5);
2052
2053         ret_val = igb_get_auto_rd_done(hw);
2054         if (ret_val) {
2055                 /*
2056                  * When auto config read does not complete, do not
2057                  * return with an error. This can happen in situations
2058                  * where there is no eeprom and prevents getting link.
2059                  */
2060                 hw_dbg("Auto Read Done did not complete\n");
2061         }
2062
2063         /* If EEPROM is not present, run manual init scripts */
2064         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2065                 igb_reset_init_script_82575(hw);
2066
2067         /* clear global device reset status bit */
2068         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2069
2070         /* Clear any pending interrupt events. */
2071         wr32(E1000_IMC, 0xffffffff);
2072         icr = rd32(E1000_ICR);
2073
2074         ret_val = igb_reset_mdicnfg_82580(hw);
2075         if (ret_val)
2076                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2077
2078         /* Install any alternate MAC address into RAR0 */
2079         ret_val = igb_check_alt_mac_addr(hw);
2080
2081         /* Release semaphore */
2082         if (global_device_reset)
2083                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2084
2085         return ret_val;
2086 }
2087
2088 /**
2089  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2090  *  @data: data received by reading RXPBS register
2091  *
2092  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2093  *  This function converts the retrieved value into the correct table value
2094  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2095  *  0x0 36  72 144   1   2   4   8  16
2096  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2097  */
2098 u16 igb_rxpbs_adjust_82580(u32 data)
2099 {
2100         u16 ret_val = 0;
2101
2102         if (data < E1000_82580_RXPBS_TABLE_SIZE)
2103                 ret_val = e1000_82580_rxpbs_table[data];
2104
2105         return ret_val;
2106 }
2107
2108 /**
2109  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2110  *  checksum
2111  *  @hw: pointer to the HW structure
2112  *  @offset: offset in words of the checksum protected region
2113  *
2114  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2115  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2116  **/
2117 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2118                                                  u16 offset)
2119 {
2120         s32 ret_val = 0;
2121         u16 checksum = 0;
2122         u16 i, nvm_data;
2123
2124         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2125                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2126                 if (ret_val) {
2127                         hw_dbg("NVM Read Error\n");
2128                         goto out;
2129                 }
2130                 checksum += nvm_data;
2131         }
2132
2133         if (checksum != (u16) NVM_SUM) {
2134                 hw_dbg("NVM Checksum Invalid\n");
2135                 ret_val = -E1000_ERR_NVM;
2136                 goto out;
2137         }
2138
2139 out:
2140         return ret_val;
2141 }
2142
2143 /**
2144  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2145  *  checksum
2146  *  @hw: pointer to the HW structure
2147  *  @offset: offset in words of the checksum protected region
2148  *
2149  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2150  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2151  *  value to the EEPROM.
2152  **/
2153 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2154 {
2155         s32 ret_val;
2156         u16 checksum = 0;
2157         u16 i, nvm_data;
2158
2159         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2160                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2161                 if (ret_val) {
2162                         hw_dbg("NVM Read Error while updating checksum.\n");
2163                         goto out;
2164                 }
2165                 checksum += nvm_data;
2166         }
2167         checksum = (u16) NVM_SUM - checksum;
2168         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2169                                 &checksum);
2170         if (ret_val)
2171                 hw_dbg("NVM Write Error while updating checksum.\n");
2172
2173 out:
2174         return ret_val;
2175 }
2176
2177 /**
2178  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2179  *  @hw: pointer to the HW structure
2180  *
2181  *  Calculates the EEPROM section checksum by reading/adding each word of
2182  *  the EEPROM and then verifies that the sum of the EEPROM is
2183  *  equal to 0xBABA.
2184  **/
2185 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2186 {
2187         s32 ret_val = 0;
2188         u16 eeprom_regions_count = 1;
2189         u16 j, nvm_data;
2190         u16 nvm_offset;
2191
2192         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2193         if (ret_val) {
2194                 hw_dbg("NVM Read Error\n");
2195                 goto out;
2196         }
2197
2198         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2199                 /* if checksums compatibility bit is set validate checksums
2200                  * for all 4 ports. */
2201                 eeprom_regions_count = 4;
2202         }
2203
2204         for (j = 0; j < eeprom_regions_count; j++) {
2205                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2206                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2207                                                                 nvm_offset);
2208                 if (ret_val != 0)
2209                         goto out;
2210         }
2211
2212 out:
2213         return ret_val;
2214 }
2215
2216 /**
2217  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2218  *  @hw: pointer to the HW structure
2219  *
2220  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2221  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2222  *  checksum and writes the value to the EEPROM.
2223  **/
2224 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2225 {
2226         s32 ret_val;
2227         u16 j, nvm_data;
2228         u16 nvm_offset;
2229
2230         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2231         if (ret_val) {
2232                 hw_dbg("NVM Read Error while updating checksum"
2233                         " compatibility bit.\n");
2234                 goto out;
2235         }
2236
2237         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2238                 /* set compatibility bit to validate checksums appropriately */
2239                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2240                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2241                                         &nvm_data);
2242                 if (ret_val) {
2243                         hw_dbg("NVM Write Error while updating checksum"
2244                                 " compatibility bit.\n");
2245                         goto out;
2246                 }
2247         }
2248
2249         for (j = 0; j < 4; j++) {
2250                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2251                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2252                 if (ret_val)
2253                         goto out;
2254         }
2255
2256 out:
2257         return ret_val;
2258 }
2259
2260 /**
2261  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2262  *  @hw: pointer to the HW structure
2263  *
2264  *  Calculates the EEPROM section checksum by reading/adding each word of
2265  *  the EEPROM and then verifies that the sum of the EEPROM is
2266  *  equal to 0xBABA.
2267  **/
2268 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2269 {
2270         s32 ret_val = 0;
2271         u16 j;
2272         u16 nvm_offset;
2273
2274         for (j = 0; j < 4; j++) {
2275                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2276                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2277                                                                 nvm_offset);
2278                 if (ret_val != 0)
2279                         goto out;
2280         }
2281
2282 out:
2283         return ret_val;
2284 }
2285
2286 /**
2287  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2288  *  @hw: pointer to the HW structure
2289  *
2290  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2291  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2292  *  checksum and writes the value to the EEPROM.
2293  **/
2294 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2295 {
2296         s32 ret_val = 0;
2297         u16 j;
2298         u16 nvm_offset;
2299
2300         for (j = 0; j < 4; j++) {
2301                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2302                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2303                 if (ret_val != 0)
2304                         goto out;
2305         }
2306
2307 out:
2308         return ret_val;
2309 }
2310
2311 /**
2312  *  igb_set_eee_i350 - Enable/disable EEE support
2313  *  @hw: pointer to the HW structure
2314  *
2315  *  Enable/disable EEE based on setting in dev_spec structure.
2316  *
2317  **/
2318 s32 igb_set_eee_i350(struct e1000_hw *hw)
2319 {
2320         s32 ret_val = 0;
2321         u32 ipcnfg, eeer;
2322
2323         if ((hw->mac.type < e1000_i350) ||
2324             (hw->phy.media_type != e1000_media_type_copper))
2325                 goto out;
2326         ipcnfg = rd32(E1000_IPCNFG);
2327         eeer = rd32(E1000_EEER);
2328
2329         /* enable or disable per user setting */
2330         if (!(hw->dev_spec._82575.eee_disable)) {
2331                 u32 eee_su = rd32(E1000_EEE_SU);
2332
2333                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2334                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2335                         E1000_EEER_LPI_FC);
2336
2337                 /* This bit should not be set in normal operation. */
2338                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2339                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2340
2341
2342         } else {
2343                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2344                         E1000_IPCNFG_EEE_100M_AN);
2345                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2346                         E1000_EEER_RX_LPI_EN |
2347                         E1000_EEER_LPI_FC);
2348         }
2349         wr32(E1000_IPCNFG, ipcnfg);
2350         wr32(E1000_EEER, eeer);
2351         rd32(E1000_IPCNFG);
2352         rd32(E1000_EEER);
2353 out:
2354
2355         return ret_val;
2356 }
2357
2358 static const u8 e1000_emc_temp_data[4] = {
2359         E1000_EMC_INTERNAL_DATA,
2360         E1000_EMC_DIODE1_DATA,
2361         E1000_EMC_DIODE2_DATA,
2362         E1000_EMC_DIODE3_DATA
2363 };
2364 static const u8 e1000_emc_therm_limit[4] = {
2365         E1000_EMC_INTERNAL_THERM_LIMIT,
2366         E1000_EMC_DIODE1_THERM_LIMIT,
2367         E1000_EMC_DIODE2_THERM_LIMIT,
2368         E1000_EMC_DIODE3_THERM_LIMIT
2369 };
2370
2371 /* igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2372  *  @hw: pointer to hardware structure
2373  *
2374  *  Updates the temperatures in mac.thermal_sensor_data
2375  */
2376 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2377 {
2378         s32 status = E1000_SUCCESS;
2379         u16 ets_offset;
2380         u16 ets_cfg;
2381         u16 ets_sensor;
2382         u8  num_sensors;
2383         u8  sensor_index;
2384         u8  sensor_location;
2385         u8  i;
2386         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2387
2388         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2389                 return E1000_NOT_IMPLEMENTED;
2390
2391         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2392
2393         /* Return the internal sensor only if ETS is unsupported */
2394         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2395         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2396                 return status;
2397
2398         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2399         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2400             != NVM_ETS_TYPE_EMC)
2401                 return E1000_NOT_IMPLEMENTED;
2402
2403         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2404         if (num_sensors > E1000_MAX_SENSORS)
2405                 num_sensors = E1000_MAX_SENSORS;
2406
2407         for (i = 1; i < num_sensors; i++) {
2408                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2409                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2410                                 NVM_ETS_DATA_INDEX_SHIFT);
2411                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2412                                    NVM_ETS_DATA_LOC_SHIFT);
2413
2414                 if (sensor_location != 0)
2415                         hw->phy.ops.read_i2c_byte(hw,
2416                                         e1000_emc_temp_data[sensor_index],
2417                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2418                                         &data->sensor[i].temp);
2419         }
2420         return status;
2421 }
2422
2423 /* igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2424  *  @hw: pointer to hardware structure
2425  *
2426  *  Sets the thermal sensor thresholds according to the NVM map
2427  *  and save off the threshold and location values into mac.thermal_sensor_data
2428  */
2429 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2430 {
2431         s32 status = E1000_SUCCESS;
2432         u16 ets_offset;
2433         u16 ets_cfg;
2434         u16 ets_sensor;
2435         u8  low_thresh_delta;
2436         u8  num_sensors;
2437         u8  sensor_index;
2438         u8  sensor_location;
2439         u8  therm_limit;
2440         u8  i;
2441         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2442
2443         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2444                 return E1000_NOT_IMPLEMENTED;
2445
2446         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2447
2448         data->sensor[0].location = 0x1;
2449         data->sensor[0].caution_thresh =
2450                 (rd32(E1000_THHIGHTC) & 0xFF);
2451         data->sensor[0].max_op_thresh =
2452                 (rd32(E1000_THLOWTC) & 0xFF);
2453
2454         /* Return the internal sensor only if ETS is unsupported */
2455         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2456         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2457                 return status;
2458
2459         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2460         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2461             != NVM_ETS_TYPE_EMC)
2462                 return E1000_NOT_IMPLEMENTED;
2463
2464         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2465                             NVM_ETS_LTHRES_DELTA_SHIFT);
2466         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2467
2468         for (i = 1; i <= num_sensors; i++) {
2469                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2470                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2471                                 NVM_ETS_DATA_INDEX_SHIFT);
2472                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2473                                    NVM_ETS_DATA_LOC_SHIFT);
2474                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2475
2476                 hw->phy.ops.write_i2c_byte(hw,
2477                         e1000_emc_therm_limit[sensor_index],
2478                         E1000_I2C_THERMAL_SENSOR_ADDR,
2479                         therm_limit);
2480
2481                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2482                         data->sensor[i].location = sensor_location;
2483                         data->sensor[i].caution_thresh = therm_limit;
2484                         data->sensor[i].max_op_thresh = therm_limit -
2485                                                         low_thresh_delta;
2486                 }
2487         }
2488         return status;
2489 }
2490
2491 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2492         .init_hw              = igb_init_hw_82575,
2493         .check_for_link       = igb_check_for_link_82575,
2494         .rar_set              = igb_rar_set,
2495         .read_mac_addr        = igb_read_mac_addr_82575,
2496         .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2497 #ifdef CONFIG_IGB_HWMON
2498         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2499         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2500 #endif
2501 };
2502
2503 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2504         .acquire              = igb_acquire_phy_82575,
2505         .get_cfg_done         = igb_get_cfg_done_82575,
2506         .release              = igb_release_phy_82575,
2507         .write_i2c_byte       = igb_write_i2c_byte,
2508         .read_i2c_byte        = igb_read_i2c_byte,
2509 };
2510
2511 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2512         .acquire              = igb_acquire_nvm_82575,
2513         .read                 = igb_read_nvm_eerd,
2514         .release              = igb_release_nvm_82575,
2515         .write                = igb_write_nvm_spi,
2516 };
2517
2518 const struct e1000_info e1000_82575_info = {
2519         .get_invariants = igb_get_invariants_82575,
2520         .mac_ops = &e1000_mac_ops_82575,
2521         .phy_ops = &e1000_phy_ops_82575,
2522         .nvm_ops = &e1000_nvm_ops_82575,
2523 };
2524