]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_ptp.c
Merge branch 'stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux...
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /*
2  * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3  *
4  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/pci.h>
23 #include <linux/ptp_classify.h>
24
25 #include "igb.h"
26
27 #define INCVALUE_MASK           0x7fffffff
28 #define ISGN                    0x80000000
29
30 /*
31  * The 82580 timesync updates the system timer every 8ns by 8ns,
32  * and this update value cannot be reprogrammed.
33  *
34  * Neither the 82576 nor the 82580 offer registers wide enough to hold
35  * nanoseconds time values for very long. For the 82580, SYSTIM always
36  * counts nanoseconds, but the upper 24 bits are not availible. The
37  * frequency is adjusted by changing the 32 bit fractional nanoseconds
38  * register, TIMINCA.
39  *
40  * For the 82576, the SYSTIM register time unit is affect by the
41  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
42  * field are needed to provide the nominal 16 nanosecond period,
43  * leaving 19 bits for fractional nanoseconds.
44  *
45  * We scale the NIC clock cycle by a large factor so that relatively
46  * small clock corrections can be added or subtracted at each clock
47  * tick. The drawbacks of a large factor are a) that the clock
48  * register overflows more quickly (not such a big deal) and b) that
49  * the increment per tick has to fit into 24 bits.  As a result we
50  * need to use a shift of 19 so we can fit a value of 16 into the
51  * TIMINCA register.
52  *
53  *
54  *             SYSTIMH            SYSTIML
55  *        +--------------+   +---+---+------+
56  *  82576 |      32      |   | 8 | 5 |  19  |
57  *        +--------------+   +---+---+------+
58  *         \________ 45 bits _______/  fract
59  *
60  *        +----------+---+   +--------------+
61  *  82580 |    24    | 8 |   |      32      |
62  *        +----------+---+   +--------------+
63  *          reserved  \______ 40 bits _____/
64  *
65  *
66  * The 45 bit 82576 SYSTIM overflows every
67  *   2^45 * 10^-9 / 3600 = 9.77 hours.
68  *
69  * The 40 bit 82580 SYSTIM overflows every
70  *   2^40 * 10^-9 /  60  = 18.3 minutes.
71  */
72
73 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
74 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
75 #define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
76 #define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
77 #define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
78 #define IGB_NBITS_82580                 40
79
80 /*
81  * SYSTIM read access for the 82576
82  */
83
84 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
85 {
86         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
87         struct e1000_hw *hw = &igb->hw;
88         u64 val;
89         u32 lo, hi;
90
91         lo = rd32(E1000_SYSTIML);
92         hi = rd32(E1000_SYSTIMH);
93
94         val = ((u64) hi) << 32;
95         val |= lo;
96
97         return val;
98 }
99
100 /*
101  * SYSTIM read access for the 82580
102  */
103
104 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
105 {
106         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
107         struct e1000_hw *hw = &igb->hw;
108         u64 val;
109         u32 lo, hi, jk;
110
111         /*
112          * The timestamp latches on lowest register read. For the 82580
113          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
114          * need to provide nanosecond resolution, so we just ignore it.
115          */
116         jk = rd32(E1000_SYSTIMR);
117         lo = rd32(E1000_SYSTIML);
118         hi = rd32(E1000_SYSTIMH);
119
120         val = ((u64) hi) << 32;
121         val |= lo;
122
123         return val;
124 }
125
126 /*
127  * SYSTIM read access for I210/I211
128  */
129
130 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
131 {
132         struct e1000_hw *hw = &adapter->hw;
133         u32 sec, nsec, jk;
134
135         /*
136          * The timestamp latches on lowest register read. For I210/I211, the
137          * lowest register is SYSTIMR. Since we only need to provide nanosecond
138          * resolution, we can ignore it.
139          */
140         jk = rd32(E1000_SYSTIMR);
141         nsec = rd32(E1000_SYSTIML);
142         sec = rd32(E1000_SYSTIMH);
143
144         ts->tv_sec = sec;
145         ts->tv_nsec = nsec;
146 }
147
148 static void igb_ptp_write_i210(struct igb_adapter *adapter,
149                                const struct timespec *ts)
150 {
151         struct e1000_hw *hw = &adapter->hw;
152
153         /*
154          * Writing the SYSTIMR register is not necessary as it only provides
155          * sub-nanosecond resolution.
156          */
157         wr32(E1000_SYSTIML, ts->tv_nsec);
158         wr32(E1000_SYSTIMH, ts->tv_sec);
159 }
160
161 /**
162  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
163  * @adapter: board private structure
164  * @hwtstamps: timestamp structure to update
165  * @systim: unsigned 64bit system time value.
166  *
167  * We need to convert the system time value stored in the RX/TXSTMP registers
168  * into a hwtstamp which can be used by the upper level timestamping functions.
169  *
170  * The 'tmreg_lock' spinlock is used to protect the consistency of the
171  * system time value. This is needed because reading the 64 bit time
172  * value involves reading two (or three) 32 bit registers. The first
173  * read latches the value. Ditto for writing.
174  *
175  * In addition, here have extended the system time with an overflow
176  * counter in software.
177  **/
178 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
179                                        struct skb_shared_hwtstamps *hwtstamps,
180                                        u64 systim)
181 {
182         unsigned long flags;
183         u64 ns;
184
185         switch (adapter->hw.mac.type) {
186         case e1000_82576:
187         case e1000_82580:
188         case e1000_i350:
189                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
190
191                 ns = timecounter_cyc2time(&adapter->tc, systim);
192
193                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
194
195                 memset(hwtstamps, 0, sizeof(*hwtstamps));
196                 hwtstamps->hwtstamp = ns_to_ktime(ns);
197                 break;
198         case e1000_i210:
199         case e1000_i211:
200                 memset(hwtstamps, 0, sizeof(*hwtstamps));
201                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
202                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
203                                                 systim & 0xFFFFFFFF);
204                 break;
205         default:
206                 break;
207         }
208 }
209
210 /*
211  * PTP clock operations
212  */
213
214 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
215 {
216         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
217                                                ptp_caps);
218         struct e1000_hw *hw = &igb->hw;
219         int neg_adj = 0;
220         u64 rate;
221         u32 incvalue;
222
223         if (ppb < 0) {
224                 neg_adj = 1;
225                 ppb = -ppb;
226         }
227         rate = ppb;
228         rate <<= 14;
229         rate = div_u64(rate, 1953125);
230
231         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
232
233         if (neg_adj)
234                 incvalue -= rate;
235         else
236                 incvalue += rate;
237
238         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
239
240         return 0;
241 }
242
243 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
244 {
245         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
246                                                ptp_caps);
247         struct e1000_hw *hw = &igb->hw;
248         int neg_adj = 0;
249         u64 rate;
250         u32 inca;
251
252         if (ppb < 0) {
253                 neg_adj = 1;
254                 ppb = -ppb;
255         }
256         rate = ppb;
257         rate <<= 26;
258         rate = div_u64(rate, 1953125);
259
260         inca = rate & INCVALUE_MASK;
261         if (neg_adj)
262                 inca |= ISGN;
263
264         wr32(E1000_TIMINCA, inca);
265
266         return 0;
267 }
268
269 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
270 {
271         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
272                                                ptp_caps);
273         unsigned long flags;
274         s64 now;
275
276         spin_lock_irqsave(&igb->tmreg_lock, flags);
277
278         now = timecounter_read(&igb->tc);
279         now += delta;
280         timecounter_init(&igb->tc, &igb->cc, now);
281
282         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
283
284         return 0;
285 }
286
287 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
288 {
289         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290                                                ptp_caps);
291         unsigned long flags;
292         struct timespec now, then = ns_to_timespec(delta);
293
294         spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296         igb_ptp_read_i210(igb, &now);
297         now = timespec_add(now, then);
298         igb_ptp_write_i210(igb, (const struct timespec *)&now);
299
300         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
301
302         return 0;
303 }
304
305 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
306                                  struct timespec *ts)
307 {
308         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309                                                ptp_caps);
310         unsigned long flags;
311         u64 ns;
312         u32 remainder;
313
314         spin_lock_irqsave(&igb->tmreg_lock, flags);
315
316         ns = timecounter_read(&igb->tc);
317
318         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
319
320         ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
321         ts->tv_nsec = remainder;
322
323         return 0;
324 }
325
326 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
327                                 struct timespec *ts)
328 {
329         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
330                                                ptp_caps);
331         unsigned long flags;
332
333         spin_lock_irqsave(&igb->tmreg_lock, flags);
334
335         igb_ptp_read_i210(igb, ts);
336
337         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
338
339         return 0;
340 }
341
342 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
343                                  const struct timespec *ts)
344 {
345         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
346                                                ptp_caps);
347         unsigned long flags;
348         u64 ns;
349
350         ns = ts->tv_sec * 1000000000ULL;
351         ns += ts->tv_nsec;
352
353         spin_lock_irqsave(&igb->tmreg_lock, flags);
354
355         timecounter_init(&igb->tc, &igb->cc, ns);
356
357         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
358
359         return 0;
360 }
361
362 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
363                                 const struct timespec *ts)
364 {
365         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
366                                                ptp_caps);
367         unsigned long flags;
368
369         spin_lock_irqsave(&igb->tmreg_lock, flags);
370
371         igb_ptp_write_i210(igb, ts);
372
373         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
374
375         return 0;
376 }
377
378 static int igb_ptp_enable(struct ptp_clock_info *ptp,
379                           struct ptp_clock_request *rq, int on)
380 {
381         return -EOPNOTSUPP;
382 }
383
384 /**
385  * igb_ptp_tx_work
386  * @work: pointer to work struct
387  *
388  * This work function polls the TSYNCTXCTL valid bit to determine when a
389  * timestamp has been taken for the current stored skb.
390  */
391 void igb_ptp_tx_work(struct work_struct *work)
392 {
393         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
394                                                    ptp_tx_work);
395         struct e1000_hw *hw = &adapter->hw;
396         u32 tsynctxctl;
397
398         if (!adapter->ptp_tx_skb)
399                 return;
400
401         if (time_is_before_jiffies(adapter->ptp_tx_start +
402                                    IGB_PTP_TX_TIMEOUT)) {
403                 dev_kfree_skb_any(adapter->ptp_tx_skb);
404                 adapter->ptp_tx_skb = NULL;
405                 adapter->tx_hwtstamp_timeouts++;
406                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
407                 return;
408         }
409
410         tsynctxctl = rd32(E1000_TSYNCTXCTL);
411         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
412                 igb_ptp_tx_hwtstamp(adapter);
413         else
414                 /* reschedule to check later */
415                 schedule_work(&adapter->ptp_tx_work);
416 }
417
418 static void igb_ptp_overflow_check(struct work_struct *work)
419 {
420         struct igb_adapter *igb =
421                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
422         struct timespec ts;
423
424         igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
425
426         pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
427
428         schedule_delayed_work(&igb->ptp_overflow_work,
429                               IGB_SYSTIM_OVERFLOW_PERIOD);
430 }
431
432 /**
433  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
434  * @adapter: private network adapter structure
435  *
436  * This watchdog task is scheduled to detect error case where hardware has
437  * dropped an Rx packet that was timestamped when the ring is full. The
438  * particular error is rare but leaves the device in a state unable to timestamp
439  * any future packets.
440  */
441 void igb_ptp_rx_hang(struct igb_adapter *adapter)
442 {
443         struct e1000_hw *hw = &adapter->hw;
444         struct igb_ring *rx_ring;
445         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
446         unsigned long rx_event;
447         int n;
448
449         if (hw->mac.type != e1000_82576)
450                 return;
451
452         /* If we don't have a valid timestamp in the registers, just update the
453          * timeout counter and exit
454          */
455         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
456                 adapter->last_rx_ptp_check = jiffies;
457                 return;
458         }
459
460         /* Determine the most recent watchdog or rx_timestamp event */
461         rx_event = adapter->last_rx_ptp_check;
462         for (n = 0; n < adapter->num_rx_queues; n++) {
463                 rx_ring = adapter->rx_ring[n];
464                 if (time_after(rx_ring->last_rx_timestamp, rx_event))
465                         rx_event = rx_ring->last_rx_timestamp;
466         }
467
468         /* Only need to read the high RXSTMP register to clear the lock */
469         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
470                 rd32(E1000_RXSTMPH);
471                 adapter->last_rx_ptp_check = jiffies;
472                 adapter->rx_hwtstamp_cleared++;
473                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
474         }
475 }
476
477 /**
478  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
479  * @adapter: Board private structure.
480  *
481  * If we were asked to do hardware stamping and such a time stamp is
482  * available, then it must have been for this skb here because we only
483  * allow only one such packet into the queue.
484  */
485 void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
486 {
487         struct e1000_hw *hw = &adapter->hw;
488         struct skb_shared_hwtstamps shhwtstamps;
489         u64 regval;
490
491         regval = rd32(E1000_TXSTMPL);
492         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
493
494         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
495         skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
496         dev_kfree_skb_any(adapter->ptp_tx_skb);
497         adapter->ptp_tx_skb = NULL;
498 }
499
500 /**
501  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
502  * @q_vector: Pointer to interrupt specific structure
503  * @va: Pointer to address containing Rx buffer
504  * @skb: Buffer containing timestamp and packet
505  *
506  * This function is meant to retrieve a timestamp from the first buffer of an
507  * incoming frame.  The value is stored in little endian format starting on
508  * byte 8.
509  */
510 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
511                          unsigned char *va,
512                          struct sk_buff *skb)
513 {
514         __le64 *regval = (__le64 *)va;
515
516         /*
517          * The timestamp is recorded in little endian format.
518          * DWORD: 0        1        2        3
519          * Field: Reserved Reserved SYSTIML  SYSTIMH
520          */
521         igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
522                                    le64_to_cpu(regval[1]));
523 }
524
525 /**
526  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
527  * @q_vector: Pointer to interrupt specific structure
528  * @skb: Buffer containing timestamp and packet
529  *
530  * This function is meant to retrieve a timestamp from the internal registers
531  * of the adapter and store it in the skb.
532  */
533 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
534                          struct sk_buff *skb)
535 {
536         struct igb_adapter *adapter = q_vector->adapter;
537         struct e1000_hw *hw = &adapter->hw;
538         u64 regval;
539
540         /*
541          * If this bit is set, then the RX registers contain the time stamp. No
542          * other packet will be time stamped until we read these registers, so
543          * read the registers to make them available again. Because only one
544          * packet can be time stamped at a time, we know that the register
545          * values must belong to this one here and therefore we don't need to
546          * compare any of the additional attributes stored for it.
547          *
548          * If nothing went wrong, then it should have a shared tx_flags that we
549          * can turn into a skb_shared_hwtstamps.
550          */
551         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
552                 return;
553
554         regval = rd32(E1000_RXSTMPL);
555         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
556
557         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
558 }
559
560 /**
561  * igb_ptp_hwtstamp_ioctl - control hardware time stamping
562  * @netdev:
563  * @ifreq:
564  * @cmd:
565  *
566  * Outgoing time stamping can be enabled and disabled. Play nice and
567  * disable it when requested, although it shouldn't case any overhead
568  * when no packet needs it. At most one packet in the queue may be
569  * marked for time stamping, otherwise it would be impossible to tell
570  * for sure to which packet the hardware time stamp belongs.
571  *
572  * Incoming time stamping has to be configured via the hardware
573  * filters. Not all combinations are supported, in particular event
574  * type has to be specified. Matching the kind of event packet is
575  * not supported, with the exception of "all V2 events regardless of
576  * level 2 or 4".
577  *
578  **/
579 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
580                            struct ifreq *ifr, int cmd)
581 {
582         struct igb_adapter *adapter = netdev_priv(netdev);
583         struct e1000_hw *hw = &adapter->hw;
584         struct hwtstamp_config config;
585         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
586         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
587         u32 tsync_rx_cfg = 0;
588         bool is_l4 = false;
589         bool is_l2 = false;
590         u32 regval;
591
592         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
593                 return -EFAULT;
594
595         /* reserved for future extensions */
596         if (config.flags)
597                 return -EINVAL;
598
599         switch (config.tx_type) {
600         case HWTSTAMP_TX_OFF:
601                 tsync_tx_ctl = 0;
602         case HWTSTAMP_TX_ON:
603                 break;
604         default:
605                 return -ERANGE;
606         }
607
608         switch (config.rx_filter) {
609         case HWTSTAMP_FILTER_NONE:
610                 tsync_rx_ctl = 0;
611                 break;
612         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
613                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
614                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
615                 is_l4 = true;
616                 break;
617         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
618                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
619                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
620                 is_l4 = true;
621                 break;
622         case HWTSTAMP_FILTER_PTP_V2_EVENT:
623         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
624         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
625         case HWTSTAMP_FILTER_PTP_V2_SYNC:
626         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
627         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
628         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
629         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
630         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
631                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
632                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
633                 is_l2 = true;
634                 is_l4 = true;
635                 break;
636         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
637         case HWTSTAMP_FILTER_ALL:
638                 /* 82576 cannot timestamp all packets, which it needs to do to
639                  * support both V1 Sync and Delay_Req messages
640                  */
641                 if (hw->mac.type != e1000_82576) {
642                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
643                         config.rx_filter = HWTSTAMP_FILTER_ALL;
644                         break;
645                 }
646                 /* fall through */
647         default:
648                 config.rx_filter = HWTSTAMP_FILTER_NONE;
649                 return -ERANGE;
650         }
651
652         if (hw->mac.type == e1000_82575) {
653                 if (tsync_rx_ctl | tsync_tx_ctl)
654                         return -EINVAL;
655                 return 0;
656         }
657
658         /*
659          * Per-packet timestamping only works if all packets are
660          * timestamped, so enable timestamping in all packets as
661          * long as one rx filter was configured.
662          */
663         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
664                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
665                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
666                 config.rx_filter = HWTSTAMP_FILTER_ALL;
667                 is_l2 = true;
668                 is_l4 = true;
669
670                 if ((hw->mac.type == e1000_i210) ||
671                     (hw->mac.type == e1000_i211)) {
672                         regval = rd32(E1000_RXPBS);
673                         regval |= E1000_RXPBS_CFG_TS_EN;
674                         wr32(E1000_RXPBS, regval);
675                 }
676         }
677
678         /* enable/disable TX */
679         regval = rd32(E1000_TSYNCTXCTL);
680         regval &= ~E1000_TSYNCTXCTL_ENABLED;
681         regval |= tsync_tx_ctl;
682         wr32(E1000_TSYNCTXCTL, regval);
683
684         /* enable/disable RX */
685         regval = rd32(E1000_TSYNCRXCTL);
686         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
687         regval |= tsync_rx_ctl;
688         wr32(E1000_TSYNCRXCTL, regval);
689
690         /* define which PTP packets are time stamped */
691         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
692
693         /* define ethertype filter for timestamped packets */
694         if (is_l2)
695                 wr32(E1000_ETQF(3),
696                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
697                       E1000_ETQF_1588 | /* enable timestamping */
698                       ETH_P_1588));     /* 1588 eth protocol type */
699         else
700                 wr32(E1000_ETQF(3), 0);
701
702         /* L4 Queue Filter[3]: filter by destination port and protocol */
703         if (is_l4) {
704                 u32 ftqf = (IPPROTO_UDP /* UDP */
705                         | E1000_FTQF_VF_BP /* VF not compared */
706                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
707                         | E1000_FTQF_MASK); /* mask all inputs */
708                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
709
710                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
711                 wr32(E1000_IMIREXT(3),
712                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
713                 if (hw->mac.type == e1000_82576) {
714                         /* enable source port check */
715                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
716                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
717                 }
718                 wr32(E1000_FTQF(3), ftqf);
719         } else {
720                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
721         }
722         wrfl();
723
724         /* clear TX/RX time stamp registers, just to be sure */
725         regval = rd32(E1000_TXSTMPL);
726         regval = rd32(E1000_TXSTMPH);
727         regval = rd32(E1000_RXSTMPL);
728         regval = rd32(E1000_RXSTMPH);
729
730         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
731                 -EFAULT : 0;
732 }
733
734 void igb_ptp_init(struct igb_adapter *adapter)
735 {
736         struct e1000_hw *hw = &adapter->hw;
737         struct net_device *netdev = adapter->netdev;
738
739         switch (hw->mac.type) {
740         case e1000_82576:
741                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
742                 adapter->ptp_caps.owner = THIS_MODULE;
743                 adapter->ptp_caps.max_adj = 999999881;
744                 adapter->ptp_caps.n_ext_ts = 0;
745                 adapter->ptp_caps.pps = 0;
746                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
747                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
748                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
749                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
750                 adapter->ptp_caps.enable = igb_ptp_enable;
751                 adapter->cc.read = igb_ptp_read_82576;
752                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
753                 adapter->cc.mult = 1;
754                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
755                 /* Dial the nominal frequency. */
756                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
757                 break;
758         case e1000_82580:
759         case e1000_i350:
760                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
761                 adapter->ptp_caps.owner = THIS_MODULE;
762                 adapter->ptp_caps.max_adj = 62499999;
763                 adapter->ptp_caps.n_ext_ts = 0;
764                 adapter->ptp_caps.pps = 0;
765                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
766                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
767                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
768                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
769                 adapter->ptp_caps.enable = igb_ptp_enable;
770                 adapter->cc.read = igb_ptp_read_82580;
771                 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
772                 adapter->cc.mult = 1;
773                 adapter->cc.shift = 0;
774                 /* Enable the timer functions by clearing bit 31. */
775                 wr32(E1000_TSAUXC, 0x0);
776                 break;
777         case e1000_i210:
778         case e1000_i211:
779                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
780                 adapter->ptp_caps.owner = THIS_MODULE;
781                 adapter->ptp_caps.max_adj = 62499999;
782                 adapter->ptp_caps.n_ext_ts = 0;
783                 adapter->ptp_caps.pps = 0;
784                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
785                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
786                 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
787                 adapter->ptp_caps.settime = igb_ptp_settime_i210;
788                 adapter->ptp_caps.enable = igb_ptp_enable;
789                 /* Enable the timer functions by clearing bit 31. */
790                 wr32(E1000_TSAUXC, 0x0);
791                 break;
792         default:
793                 adapter->ptp_clock = NULL;
794                 return;
795         }
796
797         wrfl();
798
799         spin_lock_init(&adapter->tmreg_lock);
800         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
801
802         /* Initialize the clock and overflow work for devices that need it. */
803         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
804                 struct timespec ts = ktime_to_timespec(ktime_get_real());
805
806                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
807         } else {
808                 timecounter_init(&adapter->tc, &adapter->cc,
809                                  ktime_to_ns(ktime_get_real()));
810
811                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
812                                   igb_ptp_overflow_check);
813
814                 schedule_delayed_work(&adapter->ptp_overflow_work,
815                                       IGB_SYSTIM_OVERFLOW_PERIOD);
816         }
817
818         /* Initialize the time sync interrupts for devices that support it. */
819         if (hw->mac.type >= e1000_82580) {
820                 wr32(E1000_TSIM, E1000_TSIM_TXTS);
821                 wr32(E1000_IMS, E1000_IMS_TS);
822         }
823
824         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
825                                                 &adapter->pdev->dev);
826         if (IS_ERR(adapter->ptp_clock)) {
827                 adapter->ptp_clock = NULL;
828                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
829         } else {
830                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
831                          adapter->netdev->name);
832                 adapter->flags |= IGB_FLAG_PTP;
833         }
834 }
835
836 /**
837  * igb_ptp_stop - Disable PTP device and stop the overflow check.
838  * @adapter: Board private structure.
839  *
840  * This function stops the PTP support and cancels the delayed work.
841  **/
842 void igb_ptp_stop(struct igb_adapter *adapter)
843 {
844         switch (adapter->hw.mac.type) {
845         case e1000_82576:
846         case e1000_82580:
847         case e1000_i350:
848                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849                 break;
850         case e1000_i210:
851         case e1000_i211:
852                 /* No delayed work to cancel. */
853                 break;
854         default:
855                 return;
856         }
857
858         cancel_work_sync(&adapter->ptp_tx_work);
859         if (adapter->ptp_tx_skb) {
860                 dev_kfree_skb_any(adapter->ptp_tx_skb);
861                 adapter->ptp_tx_skb = NULL;
862         }
863
864         if (adapter->ptp_clock) {
865                 ptp_clock_unregister(adapter->ptp_clock);
866                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
867                          adapter->netdev->name);
868                 adapter->flags &= ~IGB_FLAG_PTP;
869         }
870 }
871
872 /**
873  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
874  * @adapter: Board private structure.
875  *
876  * This function handles the reset work required to re-enable the PTP device.
877  **/
878 void igb_ptp_reset(struct igb_adapter *adapter)
879 {
880         struct e1000_hw *hw = &adapter->hw;
881
882         if (!(adapter->flags & IGB_FLAG_PTP))
883                 return;
884
885         switch (adapter->hw.mac.type) {
886         case e1000_82576:
887                 /* Dial the nominal frequency. */
888                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
889                 break;
890         case e1000_82580:
891         case e1000_i350:
892         case e1000_i210:
893         case e1000_i211:
894                 /* Enable the timer functions and interrupts. */
895                 wr32(E1000_TSAUXC, 0x0);
896                 wr32(E1000_TSIM, E1000_TSIM_TXTS);
897                 wr32(E1000_IMS, E1000_IMS_TS);
898                 break;
899         default:
900                 /* No work to do. */
901                 return;
902         }
903
904         /* Re-initialize the timer. */
905         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
906                 struct timespec ts = ktime_to_timespec(ktime_get_real());
907
908                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
909         } else {
910                 timecounter_init(&adapter->tc, &adapter->cc,
911                                  ktime_to_ns(ktime_get_real()));
912         }
913 }