]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/micrel/ksz884x.c
ASoC: simple-card: Enable and disable DAI clocks as needed
[karo-tx-linux.git] / drivers / net / ethernet / micrel / ksz884x.c
1 /**
2  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3  *
4  * Copyright (c) 2009-2010 Micrel, Inc.
5  *      Tristram Ha <Tristram.Ha@micrel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36
37
38 /* DMA Registers */
39
40 #define KS_DMA_TX_CTRL                  0x0000
41 #define DMA_TX_ENABLE                   0x00000001
42 #define DMA_TX_CRC_ENABLE               0x00000002
43 #define DMA_TX_PAD_ENABLE               0x00000004
44 #define DMA_TX_LOOPBACK                 0x00000100
45 #define DMA_TX_FLOW_ENABLE              0x00000200
46 #define DMA_TX_CSUM_IP                  0x00010000
47 #define DMA_TX_CSUM_TCP                 0x00020000
48 #define DMA_TX_CSUM_UDP                 0x00040000
49 #define DMA_TX_BURST_SIZE               0x3F000000
50
51 #define KS_DMA_RX_CTRL                  0x0004
52 #define DMA_RX_ENABLE                   0x00000001
53 #define KS884X_DMA_RX_MULTICAST         0x00000002
54 #define DMA_RX_PROMISCUOUS              0x00000004
55 #define DMA_RX_ERROR                    0x00000008
56 #define DMA_RX_UNICAST                  0x00000010
57 #define DMA_RX_ALL_MULTICAST            0x00000020
58 #define DMA_RX_BROADCAST                0x00000040
59 #define DMA_RX_FLOW_ENABLE              0x00000200
60 #define DMA_RX_CSUM_IP                  0x00010000
61 #define DMA_RX_CSUM_TCP                 0x00020000
62 #define DMA_RX_CSUM_UDP                 0x00040000
63 #define DMA_RX_BURST_SIZE               0x3F000000
64
65 #define DMA_BURST_SHIFT                 24
66 #define DMA_BURST_DEFAULT               8
67
68 #define KS_DMA_TX_START                 0x0008
69 #define KS_DMA_RX_START                 0x000C
70 #define DMA_START                       0x00000001
71
72 #define KS_DMA_TX_ADDR                  0x0010
73 #define KS_DMA_RX_ADDR                  0x0014
74
75 #define DMA_ADDR_LIST_MASK              0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT             2
77
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET       0x0020
80 #define KS884X_MULTICAST_1_OFFSET       0x0021
81 #define KS884X_MULTICAST_2_OFFSET       0x0022
82 #define KS884x_MULTICAST_3_OFFSET       0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET       0x0024
85 #define KS884X_MULTICAST_5_OFFSET       0x0025
86 #define KS884X_MULTICAST_6_OFFSET       0x0026
87 #define KS884X_MULTICAST_7_OFFSET       0x0027
88
89 /* Interrupt Registers */
90
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE        0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS        0x002C
95
96 #define KS884X_INT_RX_STOPPED           0x02000000
97 #define KS884X_INT_TX_STOPPED           0x04000000
98 #define KS884X_INT_RX_OVERRUN           0x08000000
99 #define KS884X_INT_TX_EMPTY             0x10000000
100 #define KS884X_INT_RX                   0x20000000
101 #define KS884X_INT_TX                   0x40000000
102 #define KS884X_INT_PHY                  0x80000000
103
104 #define KS884X_INT_RX_MASK              \
105         (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK              \
107         (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109
110 /* MAC Additional Station Address */
111
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO                0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI                0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO                0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI                0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO                0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI                0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO                0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI                0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO                0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI                0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO                0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI                0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO                0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI                0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO                0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI                0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO                0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI                0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO                0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI                0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO                0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI                0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO                0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI                0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO                0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI                0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO                0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI                0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO                0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI                0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO                0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI                0x00FC
176
177 #define ADD_ADDR_HI_MASK                0x0000FFFF
178 #define ADD_ADDR_ENABLE                 0x80000000
179 #define ADD_ADDR_INCR                   8
180
181 /* Miscellaneous Registers */
182
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET            0x0200
185 #define KS884X_ADDR_1_OFFSET            0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET            0x0202
188 #define KS884X_ADDR_3_OFFSET            0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET            0x0204
191 #define KS884X_ADDR_5_OFFSET            0x0205
192
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET          0x0210
195
196 #define BUS_SPEED_125_MHZ               0x0000
197 #define BUS_SPEED_62_5_MHZ              0x0001
198 #define BUS_SPEED_41_66_MHZ             0x0002
199 #define BUS_SPEED_25_MHZ                0x0003
200
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET       0x0212
203
204 #define EEPROM_CHIP_SELECT              0x0001
205 #define EEPROM_SERIAL_CLOCK             0x0002
206 #define EEPROM_DATA_OUT                 0x0004
207 #define EEPROM_DATA_IN                  0x0008
208 #define EEPROM_ACCESS_ENABLE            0x0010
209
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET          0x0214
212
213 #define RX_MEM_TEST_FAILED              0x0008
214 #define RX_MEM_TEST_FINISHED            0x0010
215 #define TX_MEM_TEST_FAILED              0x0800
216 #define TX_MEM_TEST_FINISHED            0x1000
217
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET       0x0216
220 #define GLOBAL_SOFTWARE_RESET           0x0001
221
222 #define KS8841_POWER_MANAGE_OFFSET      0x0218
223
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET          0x021A
226 #define KS8841_WOL_MAGIC_ENABLE         0x0080
227 #define KS8841_WOL_FRAME3_ENABLE        0x0008
228 #define KS8841_WOL_FRAME2_ENABLE        0x0004
229 #define KS8841_WOL_FRAME1_ENABLE        0x0002
230 #define KS8841_WOL_FRAME0_ENABLE        0x0001
231
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET     0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET   0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET   0x0228
236
237 /* IACR */
238 #define KS884X_IACR_P                   0x04A0
239 #define KS884X_IACR_OFFSET              KS884X_IACR_P
240
241 /* IADR1 */
242 #define KS884X_IADR1_P                  0x04A2
243 #define KS884X_IADR2_P                  0x04A4
244 #define KS884X_IADR3_P                  0x04A6
245 #define KS884X_IADR4_P                  0x04A8
246 #define KS884X_IADR5_P                  0x04AA
247
248 #define KS884X_ACC_CTRL_SEL_OFFSET      KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET    (KS884X_ACC_CTRL_SEL_OFFSET + 1)
250
251 #define KS884X_ACC_DATA_0_OFFSET        KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET        (KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET        KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET        (KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET        KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET        (KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET        KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET        (KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET        KS884X_IADR1_P
260
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P                 0x04D0
263 #define KS884X_P1MBSR_P                 0x04D2
264 #define KS884X_PHY1ILR_P                0x04D4
265 #define KS884X_PHY1IHR_P                0x04D6
266 #define KS884X_P1ANAR_P                 0x04D8
267 #define KS884X_P1ANLPR_P                0x04DA
268
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P                 0x04E0
271 #define KS884X_P2MBSR_P                 0x04E2
272 #define KS884X_PHY2ILR_P                0x04E4
273 #define KS884X_PHY2IHR_P                0x04E6
274 #define KS884X_P2ANAR_P                 0x04E8
275 #define KS884X_P2ANLPR_P                0x04EA
276
277 #define KS884X_PHY_1_CTRL_OFFSET        KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL               (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279
280 #define KS884X_PHY_CTRL_OFFSET          0x00
281
282 /* Mode Control Register */
283 #define PHY_REG_CTRL                    0
284
285 #define PHY_RESET                       0x8000
286 #define PHY_LOOPBACK                    0x4000
287 #define PHY_SPEED_100MBIT               0x2000
288 #define PHY_AUTO_NEG_ENABLE             0x1000
289 #define PHY_POWER_DOWN                  0x0800
290 #define PHY_MII_DISABLE                 0x0400
291 #define PHY_AUTO_NEG_RESTART            0x0200
292 #define PHY_FULL_DUPLEX                 0x0100
293 #define PHY_COLLISION_TEST              0x0080
294 #define PHY_HP_MDIX                     0x0020
295 #define PHY_FORCE_MDIX                  0x0010
296 #define PHY_AUTO_MDIX_DISABLE           0x0008
297 #define PHY_REMOTE_FAULT_DISABLE        0x0004
298 #define PHY_TRANSMIT_DISABLE            0x0002
299 #define PHY_LED_DISABLE                 0x0001
300
301 #define KS884X_PHY_STATUS_OFFSET        0x02
302
303 /* Mode Status Register */
304 #define PHY_REG_STATUS                  1
305
306 #define PHY_100BT4_CAPABLE              0x8000
307 #define PHY_100BTX_FD_CAPABLE           0x4000
308 #define PHY_100BTX_CAPABLE              0x2000
309 #define PHY_10BT_FD_CAPABLE             0x1000
310 #define PHY_10BT_CAPABLE                0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE        0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE        0x0020
313 #define PHY_REMOTE_FAULT                0x0010
314 #define PHY_AUTO_NEG_CAPABLE            0x0008
315 #define PHY_LINK_STATUS                 0x0004
316 #define PHY_JABBER_DETECT               0x0002
317 #define PHY_EXTENDED_CAPABILITY         0x0001
318
319 #define KS884X_PHY_ID_1_OFFSET          0x04
320 #define KS884X_PHY_ID_2_OFFSET          0x06
321
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1                    2
324 #define PHY_REG_ID_2                    3
325
326 #define KS884X_PHY_AUTO_NEG_OFFSET      0x08
327
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION        4
330
331 #define PHY_AUTO_NEG_NEXT_PAGE          0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT       0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE         0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE          0x0400
336 #define PHY_AUTO_NEG_100BT4             0x0200
337 #define PHY_AUTO_NEG_100BTX_FD          0x0100
338 #define PHY_AUTO_NEG_100BTX             0x0080
339 #define PHY_AUTO_NEG_10BT_FD            0x0040
340 #define PHY_AUTO_NEG_10BT               0x0020
341 #define PHY_AUTO_NEG_SELECTOR           0x001F
342 #define PHY_AUTO_NEG_802_3              0x0001
343
344 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345
346 #define KS884X_PHY_REMOTE_CAP_OFFSET    0x0A
347
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY       5
350
351 #define PHY_REMOTE_NEXT_PAGE            0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE          0x4000
353 #define PHY_REMOTE_REMOTE_FAULT         0x2000
354 #define PHY_REMOTE_SYM_PAUSE            0x0400
355 #define PHY_REMOTE_100BTX_FD            0x0100
356 #define PHY_REMOTE_100BTX               0x0080
357 #define PHY_REMOTE_10BT_FD              0x0040
358 #define PHY_REMOTE_10BT                 0x0020
359
360 /* P1VCT */
361 #define KS884X_P1VCT_P                  0x04F0
362 #define KS884X_P1PHYCTRL_P              0x04F2
363
364 /* P2VCT */
365 #define KS884X_P2VCT_P                  0x04F4
366 #define KS884X_P2PHYCTRL_P              0x04F6
367
368 #define KS884X_PHY_SPECIAL_OFFSET       KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL            (KS884X_P2VCT_P - KS884X_P1VCT_P)
370
371 #define KS884X_PHY_LINK_MD_OFFSET       0x00
372
373 #define PHY_START_CABLE_DIAG            0x8000
374 #define PHY_CABLE_DIAG_RESULT           0x6000
375 #define PHY_CABLE_STAT_NORMAL           0x0000
376 #define PHY_CABLE_STAT_OPEN             0x2000
377 #define PHY_CABLE_STAT_SHORT            0x4000
378 #define PHY_CABLE_STAT_FAILED           0x6000
379 #define PHY_CABLE_10M_SHORT             0x1000
380 #define PHY_CABLE_FAULT_COUNTER         0x01FF
381
382 #define KS884X_PHY_PHY_CTRL_OFFSET      0x02
383
384 #define PHY_STAT_REVERSED_POLARITY      0x0020
385 #define PHY_STAT_MDIX                   0x0010
386 #define PHY_FORCE_LINK                  0x0008
387 #define PHY_POWER_SAVING_DISABLE        0x0004
388 #define PHY_REMOTE_LOOPBACK             0x0002
389
390 /* SIDER */
391 #define KS884X_SIDER_P                  0x0400
392 #define KS884X_CHIP_ID_OFFSET           KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET         (KS884X_CHIP_ID_OFFSET + 1)
394
395 #define REG_FAMILY_ID                   0x88
396
397 #define REG_CHIP_ID_41                  0x8810
398 #define REG_CHIP_ID_42                  0x8800
399
400 #define KS884X_CHIP_ID_MASK_41          0xFF10
401 #define KS884X_CHIP_ID_MASK             0xFFF0
402 #define KS884X_CHIP_ID_SHIFT            4
403 #define KS884X_REVISION_MASK            0x000E
404 #define KS884X_REVISION_SHIFT           1
405 #define KS8842_START                    0x0001
406
407 #define CHIP_IP_41_M                    0x8810
408 #define CHIP_IP_42_M                    0x8800
409 #define CHIP_IP_61_M                    0x8890
410 #define CHIP_IP_62_M                    0x8880
411
412 #define CHIP_IP_41_P                    0x8850
413 #define CHIP_IP_42_P                    0x8840
414 #define CHIP_IP_61_P                    0x88D0
415 #define CHIP_IP_62_P                    0x88C0
416
417 /* SGCR1 */
418 #define KS8842_SGCR1_P                  0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET     KS8842_SGCR1_P
420
421 #define SWITCH_PASS_ALL                 0x8000
422 #define SWITCH_TX_FLOW_CTRL             0x2000
423 #define SWITCH_RX_FLOW_CTRL             0x1000
424 #define SWITCH_CHECK_LENGTH             0x0800
425 #define SWITCH_AGING_ENABLE             0x0400
426 #define SWITCH_FAST_AGING               0x0200
427 #define SWITCH_AGGR_BACKOFF             0x0100
428 #define SWITCH_PASS_PAUSE               0x0008
429 #define SWITCH_LINK_AUTO_AGING          0x0001
430
431 /* SGCR2 */
432 #define KS8842_SGCR2_P                  0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET     KS8842_SGCR2_P
434
435 #define SWITCH_VLAN_ENABLE              0x8000
436 #define SWITCH_IGMP_SNOOP               0x4000
437 #define IPV6_MLD_SNOOP_ENABLE           0x2000
438 #define IPV6_MLD_SNOOP_OPTION           0x1000
439 #define PRIORITY_SCHEME_SELECT          0x0800
440 #define SWITCH_MIRROR_RX_TX             0x0100
441 #define UNICAST_VLAN_BOUNDARY           0x0080
442 #define MULTICAST_STORM_DISABLE         0x0040
443 #define SWITCH_BACK_PRESSURE            0x0020
444 #define FAIR_FLOW_CTRL                  0x0010
445 #define NO_EXC_COLLISION_DROP           0x0008
446 #define SWITCH_HUGE_PACKET              0x0004
447 #define SWITCH_LEGAL_PACKET             0x0002
448 #define SWITCH_BUF_RESERVE              0x0001
449
450 /* SGCR3 */
451 #define KS8842_SGCR3_P                  0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET     KS8842_SGCR3_P
453
454 #define BROADCAST_STORM_RATE_LO         0xFF00
455 #define SWITCH_REPEATER                 0x0080
456 #define SWITCH_HALF_DUPLEX              0x0040
457 #define SWITCH_FLOW_CTRL                0x0020
458 #define SWITCH_10_MBIT                  0x0010
459 #define SWITCH_REPLACE_NULL_VID         0x0008
460 #define BROADCAST_STORM_RATE_HI         0x0007
461
462 #define BROADCAST_STORM_RATE            0x07FF
463
464 /* SGCR4 */
465 #define KS8842_SGCR4_P                  0x0408
466
467 /* SGCR5 */
468 #define KS8842_SGCR5_P                  0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET     KS8842_SGCR5_P
470
471 #define LED_MODE                        0x8200
472 #define LED_SPEED_DUPLEX_ACT            0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT       0x8000
474 #define LED_DUPLEX_10_100               0x0200
475
476 /* SGCR6 */
477 #define KS8842_SGCR6_P                  0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET     KS8842_SGCR6_P
479
480 #define KS8842_PRIORITY_MASK            3
481 #define KS8842_PRIORITY_SHIFT           2
482
483 /* SGCR7 */
484 #define KS8842_SGCR7_P                  0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET     KS8842_SGCR7_P
486
487 #define SWITCH_UNK_DEF_PORT_ENABLE      0x0008
488 #define SWITCH_UNK_DEF_PORT_3           0x0004
489 #define SWITCH_UNK_DEF_PORT_2           0x0002
490 #define SWITCH_UNK_DEF_PORT_1           0x0001
491
492 /* MACAR1 */
493 #define KS8842_MACAR1_P                 0x0470
494 #define KS8842_MACAR2_P                 0x0472
495 #define KS8842_MACAR3_P                 0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET        KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET        (KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET        KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET        (KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET        KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET        (KS8842_MAC_ADDR_5_OFFSET + 1)
502
503 /* TOSR1 */
504 #define KS8842_TOSR1_P                  0x0480
505 #define KS8842_TOSR2_P                  0x0482
506 #define KS8842_TOSR3_P                  0x0484
507 #define KS8842_TOSR4_P                  0x0486
508 #define KS8842_TOSR5_P                  0x0488
509 #define KS8842_TOSR6_P                  0x048A
510 #define KS8842_TOSR7_P                  0x0490
511 #define KS8842_TOSR8_P                  0x0492
512 #define KS8842_TOS_1_OFFSET             KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET             KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET             KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET             KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET             KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET             KS8842_TOSR6_P
518
519 #define KS8842_TOS_7_OFFSET             KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET             KS8842_TOSR8_P
521
522 /* P1CR1 */
523 #define KS8842_P1CR1_P                  0x0500
524 #define KS8842_P1CR2_P                  0x0502
525 #define KS8842_P1VIDR_P                 0x0504
526 #define KS8842_P1CR3_P                  0x0506
527 #define KS8842_P1IRCR_P                 0x0508
528 #define KS8842_P1ERCR_P                 0x050A
529 #define KS884X_P1SCSLMD_P               0x0510
530 #define KS884X_P1CR4_P                  0x0512
531 #define KS884X_P1SR_P                   0x0514
532
533 /* P2CR1 */
534 #define KS8842_P2CR1_P                  0x0520
535 #define KS8842_P2CR2_P                  0x0522
536 #define KS8842_P2VIDR_P                 0x0524
537 #define KS8842_P2CR3_P                  0x0526
538 #define KS8842_P2IRCR_P                 0x0528
539 #define KS8842_P2ERCR_P                 0x052A
540 #define KS884X_P2SCSLMD_P               0x0530
541 #define KS884X_P2CR4_P                  0x0532
542 #define KS884X_P2SR_P                   0x0534
543
544 /* P3CR1 */
545 #define KS8842_P3CR1_P                  0x0540
546 #define KS8842_P3CR2_P                  0x0542
547 #define KS8842_P3VIDR_P                 0x0544
548 #define KS8842_P3CR3_P                  0x0546
549 #define KS8842_P3IRCR_P                 0x0548
550 #define KS8842_P3ERCR_P                 0x054A
551
552 #define KS8842_PORT_1_CTRL_1            KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1            KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1            KS8842_P3CR1_P
555
556 #define PORT_CTRL_ADDR(port, addr)              \
557         (addr = KS8842_PORT_1_CTRL_1 + (port) * \
558                 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559
560 #define KS8842_PORT_CTRL_1_OFFSET       0x00
561
562 #define PORT_BROADCAST_STORM            0x0080
563 #define PORT_DIFFSERV_ENABLE            0x0040
564 #define PORT_802_1P_ENABLE              0x0020
565 #define PORT_BASED_PRIORITY_MASK        0x0018
566 #define PORT_BASED_PRIORITY_BASE        0x0003
567 #define PORT_BASED_PRIORITY_SHIFT       3
568 #define PORT_BASED_PRIORITY_0           0x0000
569 #define PORT_BASED_PRIORITY_1           0x0008
570 #define PORT_BASED_PRIORITY_2           0x0010
571 #define PORT_BASED_PRIORITY_3           0x0018
572 #define PORT_INSERT_TAG                 0x0004
573 #define PORT_REMOVE_TAG                 0x0002
574 #define PORT_PRIO_QUEUE_ENABLE          0x0001
575
576 #define KS8842_PORT_CTRL_2_OFFSET       0x02
577
578 #define PORT_INGRESS_VLAN_FILTER        0x4000
579 #define PORT_DISCARD_NON_VID            0x2000
580 #define PORT_FORCE_FLOW_CTRL            0x1000
581 #define PORT_BACK_PRESSURE              0x0800
582 #define PORT_TX_ENABLE                  0x0400
583 #define PORT_RX_ENABLE                  0x0200
584 #define PORT_LEARN_DISABLE              0x0100
585 #define PORT_MIRROR_SNIFFER             0x0080
586 #define PORT_MIRROR_RX                  0x0040
587 #define PORT_MIRROR_TX                  0x0020
588 #define PORT_USER_PRIORITY_CEILING      0x0008
589 #define PORT_VLAN_MEMBERSHIP            0x0007
590
591 #define KS8842_PORT_CTRL_VID_OFFSET     0x04
592
593 #define PORT_DEFAULT_VID                0x0001
594
595 #define KS8842_PORT_CTRL_3_OFFSET       0x06
596
597 #define PORT_INGRESS_LIMIT_MODE         0x000C
598 #define PORT_INGRESS_ALL                0x0000
599 #define PORT_INGRESS_UNICAST            0x0004
600 #define PORT_INGRESS_MULTICAST          0x0008
601 #define PORT_INGRESS_BROADCAST          0x000C
602 #define PORT_COUNT_IFG                  0x0002
603 #define PORT_COUNT_PREAMBLE             0x0001
604
605 #define KS8842_PORT_IN_RATE_OFFSET      0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET     0x0A
607
608 #define PORT_PRIORITY_RATE              0x0F
609 #define PORT_PRIORITY_RATE_SHIFT        4
610
611 #define KS884X_PORT_LINK_MD             0x10
612
613 #define PORT_CABLE_10M_SHORT            0x8000
614 #define PORT_CABLE_DIAG_RESULT          0x6000
615 #define PORT_CABLE_STAT_NORMAL          0x0000
616 #define PORT_CABLE_STAT_OPEN            0x2000
617 #define PORT_CABLE_STAT_SHORT           0x4000
618 #define PORT_CABLE_STAT_FAILED          0x6000
619 #define PORT_START_CABLE_DIAG           0x1000
620 #define PORT_FORCE_LINK                 0x0800
621 #define PORT_POWER_SAVING_DISABLE       0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK        0x0200
623 #define PORT_CABLE_FAULT_COUNTER        0x01FF
624
625 #define KS884X_PORT_CTRL_4_OFFSET       0x12
626
627 #define PORT_LED_OFF                    0x8000
628 #define PORT_TX_DISABLE                 0x4000
629 #define PORT_AUTO_NEG_RESTART           0x2000
630 #define PORT_REMOTE_FAULT_DISABLE       0x1000
631 #define PORT_POWER_DOWN                 0x0800
632 #define PORT_AUTO_MDIX_DISABLE          0x0400
633 #define PORT_FORCE_MDIX                 0x0200
634 #define PORT_LOOPBACK                   0x0100
635 #define PORT_AUTO_NEG_ENABLE            0x0080
636 #define PORT_FORCE_100_MBIT             0x0040
637 #define PORT_FORCE_FULL_DUPLEX          0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE         0x0010
639 #define PORT_AUTO_NEG_100BTX_FD         0x0008
640 #define PORT_AUTO_NEG_100BTX            0x0004
641 #define PORT_AUTO_NEG_10BT_FD           0x0002
642 #define PORT_AUTO_NEG_10BT              0x0001
643
644 #define KS884X_PORT_STATUS_OFFSET       0x14
645
646 #define PORT_HP_MDIX                    0x8000
647 #define PORT_REVERSED_POLARITY          0x2000
648 #define PORT_RX_FLOW_CTRL               0x0800
649 #define PORT_TX_FLOW_CTRL               0x1000
650 #define PORT_STATUS_SPEED_100MBIT       0x0400
651 #define PORT_STATUS_FULL_DUPLEX         0x0200
652 #define PORT_REMOTE_FAULT               0x0100
653 #define PORT_MDIX_STATUS                0x0080
654 #define PORT_AUTO_NEG_COMPLETE          0x0040
655 #define PORT_STATUS_LINK_GOOD           0x0020
656 #define PORT_REMOTE_SYM_PAUSE           0x0010
657 #define PORT_REMOTE_100BTX_FD           0x0008
658 #define PORT_REMOTE_100BTX              0x0004
659 #define PORT_REMOTE_10BT_FD             0x0002
660 #define PORT_REMOTE_10BT                0x0001
661
662 /*
663 #define STATIC_MAC_TABLE_ADDR           00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS      00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID          00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE       00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID        00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID            00-03C00000-00000000
669 */
670
671 #define STATIC_MAC_TABLE_ADDR           0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS      0x00070000
673 #define STATIC_MAC_TABLE_VALID          0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE       0x00100000
675 #define STATIC_MAC_TABLE_USE_FID        0x00200000
676 #define STATIC_MAC_TABLE_FID            0x03C00000
677
678 #define STATIC_MAC_FWD_PORTS_SHIFT      16
679 #define STATIC_MAC_FID_SHIFT            22
680
681 /*
682 #define VLAN_TABLE_VID                  00-00000000-00000FFF
683 #define VLAN_TABLE_FID                  00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP           00-00000000-00070000
685 #define VLAN_TABLE_VALID                00-00000000-00080000
686 */
687
688 #define VLAN_TABLE_VID                  0x00000FFF
689 #define VLAN_TABLE_FID                  0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP           0x00070000
691 #define VLAN_TABLE_VALID                0x00080000
692
693 #define VLAN_TABLE_FID_SHIFT            12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT     16
695
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR          00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID           00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT      00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP     00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES       03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY     04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED      78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY     80-00000000-00000000
705 */
706
707 #define DYNAMIC_MAC_TABLE_ADDR          0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID           0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT      0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP     0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES       0xFF000000
712
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H     0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY     0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED      0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY     0x80
717
718 #define DYNAMIC_MAC_FID_SHIFT           16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT      20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT     22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT       24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT     8
723
724 /*
725 #define MIB_COUNTER_VALUE               00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID               00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW            00-00000000-80000000
728 */
729
730 #define MIB_COUNTER_VALUE               0x3FFFFFFF
731 #define MIB_COUNTER_VALID               0x40000000
732 #define MIB_COUNTER_OVERFLOW            0x80000000
733
734 #define MIB_PACKET_DROPPED              0x0000FFFF
735
736 #define KS_MIB_PACKET_DROPPED_TX_0      0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1      0x101
738 #define KS_MIB_PACKET_DROPPED_TX        0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0      0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1      0x104
741 #define KS_MIB_PACKET_DROPPED_RX        0x105
742
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED                 LED_SPEED_DUPLEX_ACT
745
746 #define MAC_ADDR_ORDER(i)               (ETH_ALEN - 1 - (i))
747
748 #define MAX_ETHERNET_BODY_SIZE          1500
749 #define ETHERNET_HEADER_SIZE            (14 + VLAN_HLEN)
750
751 #define MAX_ETHERNET_PACKET_SIZE        \
752         (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753
754 #define REGULAR_RX_BUF_SIZE             (MAX_ETHERNET_PACKET_SIZE + 4)
755 #define MAX_RX_BUF_SIZE                 (1912 + 4)
756
757 #define ADDITIONAL_ENTRIES              16
758 #define MAX_MULTICAST_LIST              32
759
760 #define HW_MULTICAST_SIZE               8
761
762 #define HW_TO_DEV_PORT(port)            (port - 1)
763
764 enum {
765         media_connected,
766         media_disconnected
767 };
768
769 enum {
770         OID_COUNTER_UNKOWN,
771
772         OID_COUNTER_FIRST,
773
774         /* total transmit errors */
775         OID_COUNTER_XMIT_ERROR,
776
777         /* total receive errors */
778         OID_COUNTER_RCV_ERROR,
779
780         OID_COUNTER_LAST
781 };
782
783 /*
784  * Hardware descriptor definitions
785  */
786
787 #define DESC_ALIGNMENT                  16
788 #define BUFFER_ALIGNMENT                8
789
790 #define NUM_OF_RX_DESC                  64
791 #define NUM_OF_TX_DESC                  64
792
793 #define KS_DESC_RX_FRAME_LEN            0x000007FF
794 #define KS_DESC_RX_FRAME_TYPE           0x00008000
795 #define KS_DESC_RX_ERROR_CRC            0x00010000
796 #define KS_DESC_RX_ERROR_RUNT           0x00020000
797 #define KS_DESC_RX_ERROR_TOO_LONG       0x00040000
798 #define KS_DESC_RX_ERROR_PHY            0x00080000
799 #define KS884X_DESC_RX_PORT_MASK        0x00300000
800 #define KS_DESC_RX_MULTICAST            0x01000000
801 #define KS_DESC_RX_ERROR                0x02000000
802 #define KS_DESC_RX_ERROR_CSUM_UDP       0x04000000
803 #define KS_DESC_RX_ERROR_CSUM_TCP       0x08000000
804 #define KS_DESC_RX_ERROR_CSUM_IP        0x10000000
805 #define KS_DESC_RX_LAST                 0x20000000
806 #define KS_DESC_RX_FIRST                0x40000000
807 #define KS_DESC_RX_ERROR_COND           \
808         (KS_DESC_RX_ERROR_CRC |         \
809         KS_DESC_RX_ERROR_RUNT |         \
810         KS_DESC_RX_ERROR_PHY |          \
811         KS_DESC_RX_ERROR_TOO_LONG)
812
813 #define KS_DESC_HW_OWNED                0x80000000
814
815 #define KS_DESC_BUF_SIZE                0x000007FF
816 #define KS884X_DESC_TX_PORT_MASK        0x00300000
817 #define KS_DESC_END_OF_RING             0x02000000
818 #define KS_DESC_TX_CSUM_GEN_UDP         0x04000000
819 #define KS_DESC_TX_CSUM_GEN_TCP         0x08000000
820 #define KS_DESC_TX_CSUM_GEN_IP          0x10000000
821 #define KS_DESC_TX_LAST                 0x20000000
822 #define KS_DESC_TX_FIRST                0x40000000
823 #define KS_DESC_TX_INTERRUPT            0x80000000
824
825 #define KS_DESC_PORT_SHIFT              20
826
827 #define KS_DESC_RX_MASK                 (KS_DESC_BUF_SIZE)
828
829 #define KS_DESC_TX_MASK                 \
830         (KS_DESC_TX_INTERRUPT |         \
831         KS_DESC_TX_FIRST |              \
832         KS_DESC_TX_LAST |               \
833         KS_DESC_TX_CSUM_GEN_IP |        \
834         KS_DESC_TX_CSUM_GEN_TCP |       \
835         KS_DESC_TX_CSUM_GEN_UDP |       \
836         KS_DESC_BUF_SIZE)
837
838 struct ksz_desc_rx_stat {
839 #ifdef __BIG_ENDIAN_BITFIELD
840         u32 hw_owned:1;
841         u32 first_desc:1;
842         u32 last_desc:1;
843         u32 csum_err_ip:1;
844         u32 csum_err_tcp:1;
845         u32 csum_err_udp:1;
846         u32 error:1;
847         u32 multicast:1;
848         u32 src_port:4;
849         u32 err_phy:1;
850         u32 err_too_long:1;
851         u32 err_runt:1;
852         u32 err_crc:1;
853         u32 frame_type:1;
854         u32 reserved1:4;
855         u32 frame_len:11;
856 #else
857         u32 frame_len:11;
858         u32 reserved1:4;
859         u32 frame_type:1;
860         u32 err_crc:1;
861         u32 err_runt:1;
862         u32 err_too_long:1;
863         u32 err_phy:1;
864         u32 src_port:4;
865         u32 multicast:1;
866         u32 error:1;
867         u32 csum_err_udp:1;
868         u32 csum_err_tcp:1;
869         u32 csum_err_ip:1;
870         u32 last_desc:1;
871         u32 first_desc:1;
872         u32 hw_owned:1;
873 #endif
874 };
875
876 struct ksz_desc_tx_stat {
877 #ifdef __BIG_ENDIAN_BITFIELD
878         u32 hw_owned:1;
879         u32 reserved1:31;
880 #else
881         u32 reserved1:31;
882         u32 hw_owned:1;
883 #endif
884 };
885
886 struct ksz_desc_rx_buf {
887 #ifdef __BIG_ENDIAN_BITFIELD
888         u32 reserved4:6;
889         u32 end_of_ring:1;
890         u32 reserved3:14;
891         u32 buf_size:11;
892 #else
893         u32 buf_size:11;
894         u32 reserved3:14;
895         u32 end_of_ring:1;
896         u32 reserved4:6;
897 #endif
898 };
899
900 struct ksz_desc_tx_buf {
901 #ifdef __BIG_ENDIAN_BITFIELD
902         u32 intr:1;
903         u32 first_seg:1;
904         u32 last_seg:1;
905         u32 csum_gen_ip:1;
906         u32 csum_gen_tcp:1;
907         u32 csum_gen_udp:1;
908         u32 end_of_ring:1;
909         u32 reserved4:1;
910         u32 dest_port:4;
911         u32 reserved3:9;
912         u32 buf_size:11;
913 #else
914         u32 buf_size:11;
915         u32 reserved3:9;
916         u32 dest_port:4;
917         u32 reserved4:1;
918         u32 end_of_ring:1;
919         u32 csum_gen_udp:1;
920         u32 csum_gen_tcp:1;
921         u32 csum_gen_ip:1;
922         u32 last_seg:1;
923         u32 first_seg:1;
924         u32 intr:1;
925 #endif
926 };
927
928 union desc_stat {
929         struct ksz_desc_rx_stat rx;
930         struct ksz_desc_tx_stat tx;
931         u32 data;
932 };
933
934 union desc_buf {
935         struct ksz_desc_rx_buf rx;
936         struct ksz_desc_tx_buf tx;
937         u32 data;
938 };
939
940 /**
941  * struct ksz_hw_desc - Hardware descriptor data structure
942  * @ctrl:       Descriptor control value.
943  * @buf:        Descriptor buffer value.
944  * @addr:       Physical address of memory buffer.
945  * @next:       Pointer to next hardware descriptor.
946  */
947 struct ksz_hw_desc {
948         union desc_stat ctrl;
949         union desc_buf buf;
950         u32 addr;
951         u32 next;
952 };
953
954 /**
955  * struct ksz_sw_desc - Software descriptor data structure
956  * @ctrl:       Descriptor control value.
957  * @buf:        Descriptor buffer value.
958  * @buf_size:   Current buffers size value in hardware descriptor.
959  */
960 struct ksz_sw_desc {
961         union desc_stat ctrl;
962         union desc_buf buf;
963         u32 buf_size;
964 };
965
966 /**
967  * struct ksz_dma_buf - OS dependent DMA buffer data structure
968  * @skb:        Associated socket buffer.
969  * @dma:        Associated physical DMA address.
970  * len:         Actual len used.
971  */
972 struct ksz_dma_buf {
973         struct sk_buff *skb;
974         dma_addr_t dma;
975         int len;
976 };
977
978 /**
979  * struct ksz_desc - Descriptor structure
980  * @phw:        Hardware descriptor pointer to uncached physical memory.
981  * @sw:         Cached memory to hold hardware descriptor values for
982  *              manipulation.
983  * @dma_buf:    Operating system dependent data structure to hold physical
984  *              memory buffer allocation information.
985  */
986 struct ksz_desc {
987         struct ksz_hw_desc *phw;
988         struct ksz_sw_desc sw;
989         struct ksz_dma_buf dma_buf;
990 };
991
992 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993
994 /**
995  * struct ksz_desc_info - Descriptor information data structure
996  * @ring:       First descriptor in the ring.
997  * @cur:        Current descriptor being manipulated.
998  * @ring_virt:  First hardware descriptor in the ring.
999  * @ring_phys:  The physical address of the first descriptor of the ring.
1000  * @size:       Size of hardware descriptor.
1001  * @alloc:      Number of descriptors allocated.
1002  * @avail:      Number of descriptors available for use.
1003  * @last:       Index for last descriptor released to hardware.
1004  * @next:       Index for next descriptor available for use.
1005  * @mask:       Mask for index wrapping.
1006  */
1007 struct ksz_desc_info {
1008         struct ksz_desc *ring;
1009         struct ksz_desc *cur;
1010         struct ksz_hw_desc *ring_virt;
1011         u32 ring_phys;
1012         int size;
1013         int alloc;
1014         int avail;
1015         int last;
1016         int next;
1017         int mask;
1018 };
1019
1020 /*
1021  * KSZ8842 switch definitions
1022  */
1023
1024 enum {
1025         TABLE_STATIC_MAC = 0,
1026         TABLE_VLAN,
1027         TABLE_DYNAMIC_MAC,
1028         TABLE_MIB
1029 };
1030
1031 #define LEARNED_MAC_TABLE_ENTRIES       1024
1032 #define STATIC_MAC_TABLE_ENTRIES        8
1033
1034 /**
1035  * struct ksz_mac_table - Static MAC table data structure
1036  * @mac_addr:   MAC address to filter.
1037  * @vid:        VID value.
1038  * @fid:        FID value.
1039  * @ports:      Port membership.
1040  * @override:   Override setting.
1041  * @use_fid:    FID use setting.
1042  * @valid:      Valid setting indicating the entry is being used.
1043  */
1044 struct ksz_mac_table {
1045         u8 mac_addr[ETH_ALEN];
1046         u16 vid;
1047         u8 fid;
1048         u8 ports;
1049         u8 override:1;
1050         u8 use_fid:1;
1051         u8 valid:1;
1052 };
1053
1054 #define VLAN_TABLE_ENTRIES              16
1055
1056 /**
1057  * struct ksz_vlan_table - VLAN table data structure
1058  * @vid:        VID value.
1059  * @fid:        FID value.
1060  * @member:     Port membership.
1061  */
1062 struct ksz_vlan_table {
1063         u16 vid;
1064         u8 fid;
1065         u8 member;
1066 };
1067
1068 #define DIFFSERV_ENTRIES                64
1069 #define PRIO_802_1P_ENTRIES             8
1070 #define PRIO_QUEUES                     4
1071
1072 #define SWITCH_PORT_NUM                 2
1073 #define TOTAL_PORT_NUM                  (SWITCH_PORT_NUM + 1)
1074 #define HOST_MASK                       (1 << SWITCH_PORT_NUM)
1075 #define PORT_MASK                       7
1076
1077 #define MAIN_PORT                       0
1078 #define OTHER_PORT                      1
1079 #define HOST_PORT                       SWITCH_PORT_NUM
1080
1081 #define PORT_COUNTER_NUM                0x20
1082 #define TOTAL_PORT_COUNTER_NUM          (PORT_COUNTER_NUM + 2)
1083
1084 #define MIB_COUNTER_RX_LO_PRIORITY      0x00
1085 #define MIB_COUNTER_RX_HI_PRIORITY      0x01
1086 #define MIB_COUNTER_RX_UNDERSIZE        0x02
1087 #define MIB_COUNTER_RX_FRAGMENT         0x03
1088 #define MIB_COUNTER_RX_OVERSIZE         0x04
1089 #define MIB_COUNTER_RX_JABBER           0x05
1090 #define MIB_COUNTER_RX_SYMBOL_ERR       0x06
1091 #define MIB_COUNTER_RX_CRC_ERR          0x07
1092 #define MIB_COUNTER_RX_ALIGNMENT_ERR    0x08
1093 #define MIB_COUNTER_RX_CTRL_8808        0x09
1094 #define MIB_COUNTER_RX_PAUSE            0x0A
1095 #define MIB_COUNTER_RX_BROADCAST        0x0B
1096 #define MIB_COUNTER_RX_MULTICAST        0x0C
1097 #define MIB_COUNTER_RX_UNICAST          0x0D
1098 #define MIB_COUNTER_RX_OCTET_64         0x0E
1099 #define MIB_COUNTER_RX_OCTET_65_127     0x0F
1100 #define MIB_COUNTER_RX_OCTET_128_255    0x10
1101 #define MIB_COUNTER_RX_OCTET_256_511    0x11
1102 #define MIB_COUNTER_RX_OCTET_512_1023   0x12
1103 #define MIB_COUNTER_RX_OCTET_1024_1522  0x13
1104 #define MIB_COUNTER_TX_LO_PRIORITY      0x14
1105 #define MIB_COUNTER_TX_HI_PRIORITY      0x15
1106 #define MIB_COUNTER_TX_LATE_COLLISION   0x16
1107 #define MIB_COUNTER_TX_PAUSE            0x17
1108 #define MIB_COUNTER_TX_BROADCAST        0x18
1109 #define MIB_COUNTER_TX_MULTICAST        0x19
1110 #define MIB_COUNTER_TX_UNICAST          0x1A
1111 #define MIB_COUNTER_TX_DEFERRED         0x1B
1112 #define MIB_COUNTER_TX_TOTAL_COLLISION  0x1C
1113 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115 #define MIB_COUNTER_TX_MULTI_COLLISION  0x1F
1116
1117 #define MIB_COUNTER_RX_DROPPED_PACKET   0x20
1118 #define MIB_COUNTER_TX_DROPPED_PACKET   0x21
1119
1120 /**
1121  * struct ksz_port_mib - Port MIB data structure
1122  * @cnt_ptr:    Current pointer to MIB counter index.
1123  * @link_down:  Indication the link has just gone down.
1124  * @state:      Connection status of the port.
1125  * @mib_start:  The starting counter index.  Some ports do not start at 0.
1126  * @counter:    64-bit MIB counter value.
1127  * @dropped:    Temporary buffer to remember last read packet dropped values.
1128  *
1129  * MIB counters needs to be read periodically so that counters do not get
1130  * overflowed and give incorrect values.  A right balance is needed to
1131  * satisfy this condition and not waste too much CPU time.
1132  *
1133  * It is pointless to read MIB counters when the port is disconnected.  The
1134  * @state provides the connection status so that MIB counters are read only
1135  * when the port is connected.  The @link_down indicates the port is just
1136  * disconnected so that all MIB counters are read one last time to update the
1137  * information.
1138  */
1139 struct ksz_port_mib {
1140         u8 cnt_ptr;
1141         u8 link_down;
1142         u8 state;
1143         u8 mib_start;
1144
1145         u64 counter[TOTAL_PORT_COUNTER_NUM];
1146         u32 dropped[2];
1147 };
1148
1149 /**
1150  * struct ksz_port_cfg - Port configuration data structure
1151  * @vid:        VID value.
1152  * @member:     Port membership.
1153  * @port_prio:  Port priority.
1154  * @rx_rate:    Receive priority rate.
1155  * @tx_rate:    Transmit priority rate.
1156  * @stp_state:  Current Spanning Tree Protocol state.
1157  */
1158 struct ksz_port_cfg {
1159         u16 vid;
1160         u8 member;
1161         u8 port_prio;
1162         u32 rx_rate[PRIO_QUEUES];
1163         u32 tx_rate[PRIO_QUEUES];
1164         int stp_state;
1165 };
1166
1167 /**
1168  * struct ksz_switch - KSZ8842 switch data structure
1169  * @mac_table:  MAC table entries information.
1170  * @vlan_table: VLAN table entries information.
1171  * @port_cfg:   Port configuration information.
1172  * @diffserv:   DiffServ priority settings.  Possible values from 6-bit of ToS
1173  *              (bit7 ~ bit2) field.
1174  * @p_802_1p:   802.1P priority settings.  Possible values from 3-bit of 802.1p
1175  *              Tag priority field.
1176  * @br_addr:    Bridge address.  Used for STP.
1177  * @other_addr: Other MAC address.  Used for multiple network device mode.
1178  * @broad_per:  Broadcast storm percentage.
1179  * @member:     Current port membership.  Used for STP.
1180  */
1181 struct ksz_switch {
1182         struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183         struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184         struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186         u8 diffserv[DIFFSERV_ENTRIES];
1187         u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189         u8 br_addr[ETH_ALEN];
1190         u8 other_addr[ETH_ALEN];
1191
1192         u8 broad_per;
1193         u8 member;
1194 };
1195
1196 #define TX_RATE_UNIT                    10000
1197
1198 /**
1199  * struct ksz_port_info - Port information data structure
1200  * @state:      Connection status of the port.
1201  * @tx_rate:    Transmit rate divided by 10000 to get Mbit.
1202  * @duplex:     Duplex mode.
1203  * @advertised: Advertised auto-negotiation setting.  Used to determine link.
1204  * @partner:    Auto-negotiation partner setting.  Used to determine link.
1205  * @port_id:    Port index to access actual hardware register.
1206  * @pdev:       Pointer to OS dependent network device.
1207  */
1208 struct ksz_port_info {
1209         uint state;
1210         uint tx_rate;
1211         u8 duplex;
1212         u8 advertised;
1213         u8 partner;
1214         u8 port_id;
1215         void *pdev;
1216 };
1217
1218 #define MAX_TX_HELD_SIZE                52000
1219
1220 /* Hardware features and bug fixes. */
1221 #define LINK_INT_WORKING                (1 << 0)
1222 #define SMALL_PACKET_TX_BUG             (1 << 1)
1223 #define HALF_DUPLEX_SIGNAL_BUG          (1 << 2)
1224 #define RX_HUGE_FRAME                   (1 << 4)
1225 #define STP_SUPPORT                     (1 << 8)
1226
1227 /* Software overrides. */
1228 #define PAUSE_FLOW_CTRL                 (1 << 0)
1229 #define FAST_AGING                      (1 << 1)
1230
1231 /**
1232  * struct ksz_hw - KSZ884X hardware data structure
1233  * @io:                 Virtual address assigned.
1234  * @ksz_switch:         Pointer to KSZ8842 switch.
1235  * @port_info:          Port information.
1236  * @port_mib:           Port MIB information.
1237  * @dev_count:          Number of network devices this hardware supports.
1238  * @dst_ports:          Destination ports in switch for transmission.
1239  * @id:                 Hardware ID.  Used for display only.
1240  * @mib_cnt:            Number of MIB counters this hardware has.
1241  * @mib_port_cnt:       Number of ports with MIB counters.
1242  * @tx_cfg:             Cached transmit control settings.
1243  * @rx_cfg:             Cached receive control settings.
1244  * @intr_mask:          Current interrupt mask.
1245  * @intr_set:           Current interrup set.
1246  * @intr_blocked:       Interrupt blocked.
1247  * @rx_desc_info:       Receive descriptor information.
1248  * @tx_desc_info:       Transmit descriptor information.
1249  * @tx_int_cnt:         Transmit interrupt count.  Used for TX optimization.
1250  * @tx_int_mask:        Transmit interrupt mask.  Used for TX optimization.
1251  * @tx_size:            Transmit data size.  Used for TX optimization.
1252  *                      The maximum is defined by MAX_TX_HELD_SIZE.
1253  * @perm_addr:          Permanent MAC address.
1254  * @override_addr:      Overrided MAC address.
1255  * @address:            Additional MAC address entries.
1256  * @addr_list_size:     Additional MAC address list size.
1257  * @mac_override:       Indication of MAC address overrided.
1258  * @promiscuous:        Counter to keep track of promiscuous mode set.
1259  * @all_multi:          Counter to keep track of all multicast mode set.
1260  * @multi_list:         Multicast address entries.
1261  * @multi_bits:         Cached multicast hash table settings.
1262  * @multi_list_size:    Multicast address list size.
1263  * @enabled:            Indication of hardware enabled.
1264  * @rx_stop:            Indication of receive process stop.
1265  * @features:           Hardware features to enable.
1266  * @overrides:          Hardware features to override.
1267  * @parent:             Pointer to parent, network device private structure.
1268  */
1269 struct ksz_hw {
1270         void __iomem *io;
1271
1272         struct ksz_switch *ksz_switch;
1273         struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274         struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275         int dev_count;
1276         int dst_ports;
1277         int id;
1278         int mib_cnt;
1279         int mib_port_cnt;
1280
1281         u32 tx_cfg;
1282         u32 rx_cfg;
1283         u32 intr_mask;
1284         u32 intr_set;
1285         uint intr_blocked;
1286
1287         struct ksz_desc_info rx_desc_info;
1288         struct ksz_desc_info tx_desc_info;
1289
1290         int tx_int_cnt;
1291         int tx_int_mask;
1292         int tx_size;
1293
1294         u8 perm_addr[ETH_ALEN];
1295         u8 override_addr[ETH_ALEN];
1296         u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297         u8 addr_list_size;
1298         u8 mac_override;
1299         u8 promiscuous;
1300         u8 all_multi;
1301         u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302         u8 multi_bits[HW_MULTICAST_SIZE];
1303         u8 multi_list_size;
1304
1305         u8 enabled;
1306         u8 rx_stop;
1307         u8 reserved2[1];
1308
1309         uint features;
1310         uint overrides;
1311
1312         void *parent;
1313 };
1314
1315 enum {
1316         PHY_NO_FLOW_CTRL,
1317         PHY_FLOW_CTRL,
1318         PHY_TX_ONLY,
1319         PHY_RX_ONLY
1320 };
1321
1322 /**
1323  * struct ksz_port - Virtual port data structure
1324  * @duplex:             Duplex mode setting.  1 for half duplex, 2 for full
1325  *                      duplex, and 0 for auto, which normally results in full
1326  *                      duplex.
1327  * @speed:              Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328  *                      0 for auto, which normally results in 100 Mbit.
1329  * @force_link:         Force link setting.  0 for auto-negotiation, and 1 for
1330  *                      force.
1331  * @flow_ctrl:          Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332  *                      control, and PHY_FLOW_CTRL for flow control.
1333  *                      PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334  *                      Mbit PHY.
1335  * @first_port:         Index of first port this port supports.
1336  * @mib_port_cnt:       Number of ports with MIB counters.
1337  * @port_cnt:           Number of ports this port supports.
1338  * @counter:            Port statistics counter.
1339  * @hw:                 Pointer to hardware structure.
1340  * @linked:             Pointer to port information linked to this port.
1341  */
1342 struct ksz_port {
1343         u8 duplex;
1344         u8 speed;
1345         u8 force_link;
1346         u8 flow_ctrl;
1347
1348         int first_port;
1349         int mib_port_cnt;
1350         int port_cnt;
1351         u64 counter[OID_COUNTER_LAST];
1352
1353         struct ksz_hw *hw;
1354         struct ksz_port_info *linked;
1355 };
1356
1357 /**
1358  * struct ksz_timer_info - Timer information data structure
1359  * @timer:      Kernel timer.
1360  * @cnt:        Running timer counter.
1361  * @max:        Number of times to run timer; -1 for infinity.
1362  * @period:     Timer period in jiffies.
1363  */
1364 struct ksz_timer_info {
1365         struct timer_list timer;
1366         int cnt;
1367         int max;
1368         int period;
1369 };
1370
1371 /**
1372  * struct ksz_shared_mem - OS dependent shared memory data structure
1373  * @dma_addr:   Physical DMA address allocated.
1374  * @alloc_size: Allocation size.
1375  * @phys:       Actual physical address used.
1376  * @alloc_virt: Virtual address allocated.
1377  * @virt:       Actual virtual address used.
1378  */
1379 struct ksz_shared_mem {
1380         dma_addr_t dma_addr;
1381         uint alloc_size;
1382         uint phys;
1383         u8 *alloc_virt;
1384         u8 *virt;
1385 };
1386
1387 /**
1388  * struct ksz_counter_info - OS dependent counter information data structure
1389  * @counter:    Wait queue to wakeup after counters are read.
1390  * @time:       Next time in jiffies to read counter.
1391  * @read:       Indication of counters read in full or not.
1392  */
1393 struct ksz_counter_info {
1394         wait_queue_head_t counter;
1395         unsigned long time;
1396         int read;
1397 };
1398
1399 /**
1400  * struct dev_info - Network device information data structure
1401  * @dev:                Pointer to network device.
1402  * @pdev:               Pointer to PCI device.
1403  * @hw:                 Hardware structure.
1404  * @desc_pool:          Physical memory used for descriptor pool.
1405  * @hwlock:             Spinlock to prevent hardware from accessing.
1406  * @lock:               Mutex lock to prevent device from accessing.
1407  * @dev_rcv:            Receive process function used.
1408  * @last_skb:           Socket buffer allocated for descriptor rx fragments.
1409  * @skb_index:          Buffer index for receiving fragments.
1410  * @skb_len:            Buffer length for receiving fragments.
1411  * @mib_read:           Workqueue to read MIB counters.
1412  * @mib_timer_info:     Timer to read MIB counters.
1413  * @counter:            Used for MIB reading.
1414  * @mtu:                Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415  *                      the maximum is MAX_RX_BUF_SIZE.
1416  * @opened:             Counter to keep track of device open.
1417  * @rx_tasklet:         Receive processing tasklet.
1418  * @tx_tasklet:         Transmit processing tasklet.
1419  * @wol_enable:         Wake-on-LAN enable set by ethtool.
1420  * @wol_support:        Wake-on-LAN support used by ethtool.
1421  * @pme_wait:           Used for KSZ8841 power management.
1422  */
1423 struct dev_info {
1424         struct net_device *dev;
1425         struct pci_dev *pdev;
1426
1427         struct ksz_hw hw;
1428         struct ksz_shared_mem desc_pool;
1429
1430         spinlock_t hwlock;
1431         struct mutex lock;
1432
1433         int (*dev_rcv)(struct dev_info *);
1434
1435         struct sk_buff *last_skb;
1436         int skb_index;
1437         int skb_len;
1438
1439         struct work_struct mib_read;
1440         struct ksz_timer_info mib_timer_info;
1441         struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443         int mtu;
1444         int opened;
1445
1446         struct tasklet_struct rx_tasklet;
1447         struct tasklet_struct tx_tasklet;
1448
1449         int wol_enable;
1450         int wol_support;
1451         unsigned long pme_wait;
1452 };
1453
1454 /**
1455  * struct dev_priv - Network device private data structure
1456  * @adapter:            Adapter device information.
1457  * @port:               Port information.
1458  * @monitor_time_info:  Timer to monitor ports.
1459  * @proc_sem:           Semaphore for proc accessing.
1460  * @id:                 Device ID.
1461  * @mii_if:             MII interface information.
1462  * @advertising:        Temporary variable to store advertised settings.
1463  * @msg_enable:         The message flags controlling driver output.
1464  * @media_state:        The connection status of the device.
1465  * @multicast:          The all multicast state of the device.
1466  * @promiscuous:        The promiscuous state of the device.
1467  */
1468 struct dev_priv {
1469         struct dev_info *adapter;
1470         struct ksz_port port;
1471         struct ksz_timer_info monitor_timer_info;
1472
1473         struct semaphore proc_sem;
1474         int id;
1475
1476         struct mii_if_info mii_if;
1477         u32 advertising;
1478
1479         u32 msg_enable;
1480         int media_state;
1481         int multicast;
1482         int promiscuous;
1483 };
1484
1485 #define DRV_NAME                "KSZ884X PCI"
1486 #define DEVICE_NAME             "KSZ884x PCI"
1487 #define DRV_VERSION             "1.0.0"
1488 #define DRV_RELDATE             "Feb 8, 2010"
1489
1490 static char version[] =
1491         "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495 /*
1496  * Interrupt processing primary routines
1497  */
1498
1499 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500 {
1501         writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502 }
1503
1504 static inline void hw_dis_intr(struct ksz_hw *hw)
1505 {
1506         hw->intr_blocked = hw->intr_mask;
1507         writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508         hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509 }
1510
1511 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512 {
1513         hw->intr_set = interrupt;
1514         writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515 }
1516
1517 static inline void hw_ena_intr(struct ksz_hw *hw)
1518 {
1519         hw->intr_blocked = 0;
1520         hw_set_intr(hw, hw->intr_mask);
1521 }
1522
1523 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524 {
1525         hw->intr_mask &= ~(bit);
1526 }
1527
1528 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529 {
1530         u32 read_intr;
1531
1532         read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533         hw->intr_set = read_intr & ~interrupt;
1534         writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535         hw_dis_intr_bit(hw, interrupt);
1536 }
1537
1538 /**
1539  * hw_turn_on_intr - turn on specified interrupts
1540  * @hw:         The hardware instance.
1541  * @bit:        The interrupt bits to be on.
1542  *
1543  * This routine turns on the specified interrupts in the interrupt mask so that
1544  * those interrupts will be enabled.
1545  */
1546 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547 {
1548         hw->intr_mask |= bit;
1549
1550         if (!hw->intr_blocked)
1551                 hw_set_intr(hw, hw->intr_mask);
1552 }
1553
1554 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555 {
1556         u32 read_intr;
1557
1558         read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559         hw->intr_set = read_intr | interrupt;
1560         writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561 }
1562
1563 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564 {
1565         *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566         *status = *status & hw->intr_set;
1567 }
1568
1569 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570 {
1571         if (interrupt)
1572                 hw_ena_intr(hw);
1573 }
1574
1575 /**
1576  * hw_block_intr - block hardware interrupts
1577  *
1578  * This function blocks all interrupts of the hardware and returns the current
1579  * interrupt enable mask so that interrupts can be restored later.
1580  *
1581  * Return the current interrupt enable mask.
1582  */
1583 static uint hw_block_intr(struct ksz_hw *hw)
1584 {
1585         uint interrupt = 0;
1586
1587         if (!hw->intr_blocked) {
1588                 hw_dis_intr(hw);
1589                 interrupt = hw->intr_blocked;
1590         }
1591         return interrupt;
1592 }
1593
1594 /*
1595  * Hardware descriptor routines
1596  */
1597
1598 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599 {
1600         status.rx.hw_owned = 0;
1601         desc->phw->ctrl.data = cpu_to_le32(status.data);
1602 }
1603
1604 static inline void release_desc(struct ksz_desc *desc)
1605 {
1606         desc->sw.ctrl.tx.hw_owned = 1;
1607         if (desc->sw.buf_size != desc->sw.buf.data) {
1608                 desc->sw.buf_size = desc->sw.buf.data;
1609                 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610         }
1611         desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612 }
1613
1614 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615 {
1616         *desc = &info->ring[info->last];
1617         info->last++;
1618         info->last &= info->mask;
1619         info->avail--;
1620         (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621 }
1622
1623 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624 {
1625         desc->phw->addr = cpu_to_le32(addr);
1626 }
1627
1628 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629 {
1630         desc->sw.buf.rx.buf_size = len;
1631 }
1632
1633 static inline void get_tx_pkt(struct ksz_desc_info *info,
1634         struct ksz_desc **desc)
1635 {
1636         *desc = &info->ring[info->next];
1637         info->next++;
1638         info->next &= info->mask;
1639         info->avail--;
1640         (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641 }
1642
1643 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644 {
1645         desc->phw->addr = cpu_to_le32(addr);
1646 }
1647
1648 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649 {
1650         desc->sw.buf.tx.buf_size = len;
1651 }
1652
1653 /* Switch functions */
1654
1655 #define TABLE_READ                      0x10
1656 #define TABLE_SEL_SHIFT                 2
1657
1658 #define HW_DELAY(hw, reg)                       \
1659         do {                                    \
1660                 u16 dummy;                      \
1661                 dummy = readw(hw->io + reg);    \
1662         } while (0)
1663
1664 /**
1665  * sw_r_table - read 4 bytes of data from switch table
1666  * @hw:         The hardware instance.
1667  * @table:      The table selector.
1668  * @addr:       The address of the table entry.
1669  * @data:       Buffer to store the read data.
1670  *
1671  * This routine reads 4 bytes of data from the table of the switch.
1672  * Hardware interrupts are disabled to minimize corruption of read data.
1673  */
1674 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675 {
1676         u16 ctrl_addr;
1677         uint interrupt;
1678
1679         ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681         interrupt = hw_block_intr(hw);
1682
1683         writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684         HW_DELAY(hw, KS884X_IACR_OFFSET);
1685         *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687         hw_restore_intr(hw, interrupt);
1688 }
1689
1690 /**
1691  * sw_w_table_64 - write 8 bytes of data to the switch table
1692  * @hw:         The hardware instance.
1693  * @table:      The table selector.
1694  * @addr:       The address of the table entry.
1695  * @data_hi:    The high part of data to be written (bit63 ~ bit32).
1696  * @data_lo:    The low part of data to be written (bit31 ~ bit0).
1697  *
1698  * This routine writes 8 bytes of data to the table of the switch.
1699  * Hardware interrupts are disabled to minimize corruption of written data.
1700  */
1701 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702         u32 data_lo)
1703 {
1704         u16 ctrl_addr;
1705         uint interrupt;
1706
1707         ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709         interrupt = hw_block_intr(hw);
1710
1711         writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712         writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714         writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715         HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717         hw_restore_intr(hw, interrupt);
1718 }
1719
1720 /**
1721  * sw_w_sta_mac_table - write to the static MAC table
1722  * @hw:         The hardware instance.
1723  * @addr:       The address of the table entry.
1724  * @mac_addr:   The MAC address.
1725  * @ports:      The port members.
1726  * @override:   The flag to override the port receive/transmit settings.
1727  * @valid:      The flag to indicate entry is valid.
1728  * @use_fid:    The flag to indicate the FID is valid.
1729  * @fid:        The FID value.
1730  *
1731  * This routine writes an entry of the static MAC table of the switch.  It
1732  * calls sw_w_table_64() to write the data.
1733  */
1734 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735         u8 ports, int override, int valid, int use_fid, u8 fid)
1736 {
1737         u32 data_hi;
1738         u32 data_lo;
1739
1740         data_lo = ((u32) mac_addr[2] << 24) |
1741                 ((u32) mac_addr[3] << 16) |
1742                 ((u32) mac_addr[4] << 8) | mac_addr[5];
1743         data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744         data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746         if (override)
1747                 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748         if (use_fid) {
1749                 data_hi |= STATIC_MAC_TABLE_USE_FID;
1750                 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751         }
1752         if (valid)
1753                 data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755         sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756 }
1757
1758 /**
1759  * sw_r_vlan_table - read from the VLAN table
1760  * @hw:         The hardware instance.
1761  * @addr:       The address of the table entry.
1762  * @vid:        Buffer to store the VID.
1763  * @fid:        Buffer to store the VID.
1764  * @member:     Buffer to store the port membership.
1765  *
1766  * This function reads an entry of the VLAN table of the switch.  It calls
1767  * sw_r_table() to get the data.
1768  *
1769  * Return 0 if the entry is valid; otherwise -1.
1770  */
1771 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772         u8 *member)
1773 {
1774         u32 data;
1775
1776         sw_r_table(hw, TABLE_VLAN, addr, &data);
1777         if (data & VLAN_TABLE_VALID) {
1778                 *vid = (u16)(data & VLAN_TABLE_VID);
1779                 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780                 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781                         VLAN_TABLE_MEMBERSHIP_SHIFT);
1782                 return 0;
1783         }
1784         return -1;
1785 }
1786
1787 /**
1788  * port_r_mib_cnt - read MIB counter
1789  * @hw:         The hardware instance.
1790  * @port:       The port index.
1791  * @addr:       The address of the counter.
1792  * @cnt:        Buffer to store the counter.
1793  *
1794  * This routine reads a MIB counter of the port.
1795  * Hardware interrupts are disabled to minimize corruption of read data.
1796  */
1797 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798 {
1799         u32 data;
1800         u16 ctrl_addr;
1801         uint interrupt;
1802         int timeout;
1803
1804         ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806         interrupt = hw_block_intr(hw);
1807
1808         ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809         writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810         HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812         for (timeout = 100; timeout > 0; timeout--) {
1813                 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815                 if (data & MIB_COUNTER_VALID) {
1816                         if (data & MIB_COUNTER_OVERFLOW)
1817                                 *cnt += MIB_COUNTER_VALUE + 1;
1818                         *cnt += data & MIB_COUNTER_VALUE;
1819                         break;
1820                 }
1821         }
1822
1823         hw_restore_intr(hw, interrupt);
1824 }
1825
1826 /**
1827  * port_r_mib_pkt - read dropped packet counts
1828  * @hw:         The hardware instance.
1829  * @port:       The port index.
1830  * @cnt:        Buffer to store the receive and transmit dropped packet counts.
1831  *
1832  * This routine reads the dropped packet counts of the port.
1833  * Hardware interrupts are disabled to minimize corruption of read data.
1834  */
1835 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836 {
1837         u32 cur;
1838         u32 data;
1839         u16 ctrl_addr;
1840         uint interrupt;
1841         int index;
1842
1843         index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844         do {
1845                 interrupt = hw_block_intr(hw);
1846
1847                 ctrl_addr = (u16) index;
1848                 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849                         << 8);
1850                 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851                 HW_DELAY(hw, KS884X_IACR_OFFSET);
1852                 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854                 hw_restore_intr(hw, interrupt);
1855
1856                 data &= MIB_PACKET_DROPPED;
1857                 cur = *last;
1858                 if (data != cur) {
1859                         *last = data;
1860                         if (data < cur)
1861                                 data += MIB_PACKET_DROPPED + 1;
1862                         data -= cur;
1863                         *cnt += data;
1864                 }
1865                 ++last;
1866                 ++cnt;
1867                 index -= KS_MIB_PACKET_DROPPED_TX -
1868                         KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869         } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870 }
1871
1872 /**
1873  * port_r_cnt - read MIB counters periodically
1874  * @hw:         The hardware instance.
1875  * @port:       The port index.
1876  *
1877  * This routine is used to read the counters of the port periodically to avoid
1878  * counter overflow.  The hardware should be acquired first before calling this
1879  * routine.
1880  *
1881  * Return non-zero when not all counters not read.
1882  */
1883 static int port_r_cnt(struct ksz_hw *hw, int port)
1884 {
1885         struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887         if (mib->mib_start < PORT_COUNTER_NUM)
1888                 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889                         port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890                                 &mib->counter[mib->cnt_ptr]);
1891                         ++mib->cnt_ptr;
1892                 }
1893         if (hw->mib_cnt > PORT_COUNTER_NUM)
1894                 port_r_mib_pkt(hw, port, mib->dropped,
1895                         &mib->counter[PORT_COUNTER_NUM]);
1896         mib->cnt_ptr = 0;
1897         return 0;
1898 }
1899
1900 /**
1901  * port_init_cnt - initialize MIB counter values
1902  * @hw:         The hardware instance.
1903  * @port:       The port index.
1904  *
1905  * This routine is used to initialize all counters to zero if the hardware
1906  * cannot do it after reset.
1907  */
1908 static void port_init_cnt(struct ksz_hw *hw, int port)
1909 {
1910         struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912         mib->cnt_ptr = 0;
1913         if (mib->mib_start < PORT_COUNTER_NUM)
1914                 do {
1915                         port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916                                 &mib->counter[mib->cnt_ptr]);
1917                         ++mib->cnt_ptr;
1918                 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919         if (hw->mib_cnt > PORT_COUNTER_NUM)
1920                 port_r_mib_pkt(hw, port, mib->dropped,
1921                         &mib->counter[PORT_COUNTER_NUM]);
1922         memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923         mib->cnt_ptr = 0;
1924 }
1925
1926 /*
1927  * Port functions
1928  */
1929
1930 /**
1931  * port_chk - check port register bits
1932  * @hw:         The hardware instance.
1933  * @port:       The port index.
1934  * @offset:     The offset of the port register.
1935  * @bits:       The data bits to check.
1936  *
1937  * This function checks whether the specified bits of the port register are set
1938  * or not.
1939  *
1940  * Return 0 if the bits are not set.
1941  */
1942 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943 {
1944         u32 addr;
1945         u16 data;
1946
1947         PORT_CTRL_ADDR(port, addr);
1948         addr += offset;
1949         data = readw(hw->io + addr);
1950         return (data & bits) == bits;
1951 }
1952
1953 /**
1954  * port_cfg - set port register bits
1955  * @hw:         The hardware instance.
1956  * @port:       The port index.
1957  * @offset:     The offset of the port register.
1958  * @bits:       The data bits to set.
1959  * @set:        The flag indicating whether the bits are to be set or not.
1960  *
1961  * This routine sets or resets the specified bits of the port register.
1962  */
1963 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964         int set)
1965 {
1966         u32 addr;
1967         u16 data;
1968
1969         PORT_CTRL_ADDR(port, addr);
1970         addr += offset;
1971         data = readw(hw->io + addr);
1972         if (set)
1973                 data |= bits;
1974         else
1975                 data &= ~bits;
1976         writew(data, hw->io + addr);
1977 }
1978
1979 /**
1980  * port_chk_shift - check port bit
1981  * @hw:         The hardware instance.
1982  * @port:       The port index.
1983  * @offset:     The offset of the register.
1984  * @shift:      Number of bits to shift.
1985  *
1986  * This function checks whether the specified port is set in the register or
1987  * not.
1988  *
1989  * Return 0 if the port is not set.
1990  */
1991 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992 {
1993         u16 data;
1994         u16 bit = 1 << port;
1995
1996         data = readw(hw->io + addr);
1997         data >>= shift;
1998         return (data & bit) == bit;
1999 }
2000
2001 /**
2002  * port_cfg_shift - set port bit
2003  * @hw:         The hardware instance.
2004  * @port:       The port index.
2005  * @offset:     The offset of the register.
2006  * @shift:      Number of bits to shift.
2007  * @set:        The flag indicating whether the port is to be set or not.
2008  *
2009  * This routine sets or resets the specified port in the register.
2010  */
2011 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012         int set)
2013 {
2014         u16 data;
2015         u16 bits = 1 << port;
2016
2017         data = readw(hw->io + addr);
2018         bits <<= shift;
2019         if (set)
2020                 data |= bits;
2021         else
2022                 data &= ~bits;
2023         writew(data, hw->io + addr);
2024 }
2025
2026 /**
2027  * port_r8 - read byte from port register
2028  * @hw:         The hardware instance.
2029  * @port:       The port index.
2030  * @offset:     The offset of the port register.
2031  * @data:       Buffer to store the data.
2032  *
2033  * This routine reads a byte from the port register.
2034  */
2035 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036 {
2037         u32 addr;
2038
2039         PORT_CTRL_ADDR(port, addr);
2040         addr += offset;
2041         *data = readb(hw->io + addr);
2042 }
2043
2044 /**
2045  * port_r16 - read word from port register.
2046  * @hw:         The hardware instance.
2047  * @port:       The port index.
2048  * @offset:     The offset of the port register.
2049  * @data:       Buffer to store the data.
2050  *
2051  * This routine reads a word from the port register.
2052  */
2053 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054 {
2055         u32 addr;
2056
2057         PORT_CTRL_ADDR(port, addr);
2058         addr += offset;
2059         *data = readw(hw->io + addr);
2060 }
2061
2062 /**
2063  * port_w16 - write word to port register.
2064  * @hw:         The hardware instance.
2065  * @port:       The port index.
2066  * @offset:     The offset of the port register.
2067  * @data:       Data to write.
2068  *
2069  * This routine writes a word to the port register.
2070  */
2071 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072 {
2073         u32 addr;
2074
2075         PORT_CTRL_ADDR(port, addr);
2076         addr += offset;
2077         writew(data, hw->io + addr);
2078 }
2079
2080 /**
2081  * sw_chk - check switch register bits
2082  * @hw:         The hardware instance.
2083  * @addr:       The address of the switch register.
2084  * @bits:       The data bits to check.
2085  *
2086  * This function checks whether the specified bits of the switch register are
2087  * set or not.
2088  *
2089  * Return 0 if the bits are not set.
2090  */
2091 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092 {
2093         u16 data;
2094
2095         data = readw(hw->io + addr);
2096         return (data & bits) == bits;
2097 }
2098
2099 /**
2100  * sw_cfg - set switch register bits
2101  * @hw:         The hardware instance.
2102  * @addr:       The address of the switch register.
2103  * @bits:       The data bits to set.
2104  * @set:        The flag indicating whether the bits are to be set or not.
2105  *
2106  * This function sets or resets the specified bits of the switch register.
2107  */
2108 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109 {
2110         u16 data;
2111
2112         data = readw(hw->io + addr);
2113         if (set)
2114                 data |= bits;
2115         else
2116                 data &= ~bits;
2117         writew(data, hw->io + addr);
2118 }
2119
2120 /* Bandwidth */
2121
2122 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123 {
2124         port_cfg(hw, p,
2125                 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126 }
2127
2128 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129 {
2130         return port_chk(hw, p,
2131                 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132 }
2133
2134 /* Driver set switch broadcast storm protection at 10% rate. */
2135 #define BROADCAST_STORM_PROTECTION_RATE 10
2136
2137 /* 148,800 frames * 67 ms / 100 */
2138 #define BROADCAST_STORM_VALUE           9969
2139
2140 /**
2141  * sw_cfg_broad_storm - configure broadcast storm threshold
2142  * @hw:         The hardware instance.
2143  * @percent:    Broadcast storm threshold in percent of transmit rate.
2144  *
2145  * This routine configures the broadcast storm threshold of the switch.
2146  */
2147 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148 {
2149         u16 data;
2150         u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152         if (value > BROADCAST_STORM_RATE)
2153                 value = BROADCAST_STORM_RATE;
2154
2155         data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156         data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157         data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158         writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159 }
2160
2161 /**
2162  * sw_get_board_storm - get broadcast storm threshold
2163  * @hw:         The hardware instance.
2164  * @percent:    Buffer to store the broadcast storm threshold percentage.
2165  *
2166  * This routine retrieves the broadcast storm threshold of the switch.
2167  */
2168 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169 {
2170         int num;
2171         u16 data;
2172
2173         data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174         num = (data & BROADCAST_STORM_RATE_HI);
2175         num <<= 8;
2176         num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177         num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178         *percent = (u8) num;
2179 }
2180
2181 /**
2182  * sw_dis_broad_storm - disable broadstorm
2183  * @hw:         The hardware instance.
2184  * @port:       The port index.
2185  *
2186  * This routine disables the broadcast storm limit function of the switch.
2187  */
2188 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189 {
2190         port_cfg_broad_storm(hw, port, 0);
2191 }
2192
2193 /**
2194  * sw_ena_broad_storm - enable broadcast storm
2195  * @hw:         The hardware instance.
2196  * @port:       The port index.
2197  *
2198  * This routine enables the broadcast storm limit function of the switch.
2199  */
2200 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201 {
2202         sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203         port_cfg_broad_storm(hw, port, 1);
2204 }
2205
2206 /**
2207  * sw_init_broad_storm - initialize broadcast storm
2208  * @hw:         The hardware instance.
2209  *
2210  * This routine initializes the broadcast storm limit function of the switch.
2211  */
2212 static void sw_init_broad_storm(struct ksz_hw *hw)
2213 {
2214         int port;
2215
2216         hw->ksz_switch->broad_per = 1;
2217         sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218         for (port = 0; port < TOTAL_PORT_NUM; port++)
2219                 sw_dis_broad_storm(hw, port);
2220         sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221 }
2222
2223 /**
2224  * hw_cfg_broad_storm - configure broadcast storm
2225  * @hw:         The hardware instance.
2226  * @percent:    Broadcast storm threshold in percent of transmit rate.
2227  *
2228  * This routine configures the broadcast storm threshold of the switch.
2229  * It is called by user functions.  The hardware should be acquired first.
2230  */
2231 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232 {
2233         if (percent > 100)
2234                 percent = 100;
2235
2236         sw_cfg_broad_storm(hw, percent);
2237         sw_get_broad_storm(hw, &percent);
2238         hw->ksz_switch->broad_per = percent;
2239 }
2240
2241 /**
2242  * sw_dis_prio_rate - disable switch priority rate
2243  * @hw:         The hardware instance.
2244  * @port:       The port index.
2245  *
2246  * This routine disables the priority rate function of the switch.
2247  */
2248 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249 {
2250         u32 addr;
2251
2252         PORT_CTRL_ADDR(port, addr);
2253         addr += KS8842_PORT_IN_RATE_OFFSET;
2254         writel(0, hw->io + addr);
2255 }
2256
2257 /**
2258  * sw_init_prio_rate - initialize switch prioirty rate
2259  * @hw:         The hardware instance.
2260  *
2261  * This routine initializes the priority rate function of the switch.
2262  */
2263 static void sw_init_prio_rate(struct ksz_hw *hw)
2264 {
2265         int port;
2266         int prio;
2267         struct ksz_switch *sw = hw->ksz_switch;
2268
2269         for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270                 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271                         sw->port_cfg[port].rx_rate[prio] =
2272                         sw->port_cfg[port].tx_rate[prio] = 0;
2273                 }
2274                 sw_dis_prio_rate(hw, port);
2275         }
2276 }
2277
2278 /* Communication */
2279
2280 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281 {
2282         port_cfg(hw, p,
2283                 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284 }
2285
2286 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287 {
2288         port_cfg(hw, p,
2289                 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290 }
2291
2292 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293 {
2294         return port_chk(hw, p,
2295                 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296 }
2297
2298 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299 {
2300         return port_chk(hw, p,
2301                 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302 }
2303
2304 /* Spanning Tree */
2305
2306 static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2307 {
2308         port_cfg(hw, p,
2309                 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2310 }
2311
2312 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2313 {
2314         port_cfg(hw, p,
2315                 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2316 }
2317
2318 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2319 {
2320         port_cfg(hw, p,
2321                 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2322 }
2323
2324 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2325 {
2326         sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2327 }
2328
2329 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2330 {
2331         if (!(hw->overrides & FAST_AGING)) {
2332                 sw_cfg_fast_aging(hw, 1);
2333                 mdelay(1);
2334                 sw_cfg_fast_aging(hw, 0);
2335         }
2336 }
2337
2338 /* VLAN */
2339
2340 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2341 {
2342         port_cfg(hw, p,
2343                 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2344 }
2345
2346 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2347 {
2348         port_cfg(hw, p,
2349                 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2350 }
2351
2352 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2353 {
2354         return port_chk(hw, p,
2355                 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2356 }
2357
2358 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2359 {
2360         return port_chk(hw, p,
2361                 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2362 }
2363
2364 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2365 {
2366         port_cfg(hw, p,
2367                 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2368 }
2369
2370 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2371 {
2372         port_cfg(hw, p,
2373                 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2374 }
2375
2376 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2377 {
2378         return port_chk(hw, p,
2379                 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2380 }
2381
2382 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2383 {
2384         return port_chk(hw, p,
2385                 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2386 }
2387
2388 /* Mirroring */
2389
2390 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2391 {
2392         port_cfg(hw, p,
2393                 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2394 }
2395
2396 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2397 {
2398         port_cfg(hw, p,
2399                 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2400 }
2401
2402 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2403 {
2404         port_cfg(hw, p,
2405                 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2406 }
2407
2408 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2409 {
2410         sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2411 }
2412
2413 static void sw_init_mirror(struct ksz_hw *hw)
2414 {
2415         int port;
2416
2417         for (port = 0; port < TOTAL_PORT_NUM; port++) {
2418                 port_cfg_mirror_sniffer(hw, port, 0);
2419                 port_cfg_mirror_rx(hw, port, 0);
2420                 port_cfg_mirror_tx(hw, port, 0);
2421         }
2422         sw_cfg_mirror_rx_tx(hw, 0);
2423 }
2424
2425 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2426 {
2427         sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428                 SWITCH_UNK_DEF_PORT_ENABLE, set);
2429 }
2430
2431 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2432 {
2433         return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2434                 SWITCH_UNK_DEF_PORT_ENABLE);
2435 }
2436
2437 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2438 {
2439         port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2440 }
2441
2442 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2443 {
2444         return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2445 }
2446
2447 /* Priority */
2448
2449 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2450 {
2451         port_cfg(hw, p,
2452                 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2453 }
2454
2455 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2456 {
2457         port_cfg(hw, p,
2458                 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2459 }
2460
2461 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2462 {
2463         port_cfg(hw, p,
2464                 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2465 }
2466
2467 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2468 {
2469         port_cfg(hw, p,
2470                 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2471 }
2472
2473 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2474 {
2475         return port_chk(hw, p,
2476                 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2477 }
2478
2479 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2480 {
2481         return port_chk(hw, p,
2482                 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2483 }
2484
2485 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2486 {
2487         return port_chk(hw, p,
2488                 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2489 }
2490
2491 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2492 {
2493         return port_chk(hw, p,
2494                 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2495 }
2496
2497 /**
2498  * sw_dis_diffserv - disable switch DiffServ priority
2499  * @hw:         The hardware instance.
2500  * @port:       The port index.
2501  *
2502  * This routine disables the DiffServ priority function of the switch.
2503  */
2504 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2505 {
2506         port_cfg_diffserv(hw, port, 0);
2507 }
2508
2509 /**
2510  * sw_dis_802_1p - disable switch 802.1p priority
2511  * @hw:         The hardware instance.
2512  * @port:       The port index.
2513  *
2514  * This routine disables the 802.1p priority function of the switch.
2515  */
2516 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2517 {
2518         port_cfg_802_1p(hw, port, 0);
2519 }
2520
2521 /**
2522  * sw_cfg_replace_null_vid -
2523  * @hw:         The hardware instance.
2524  * @set:        The flag to disable or enable.
2525  *
2526  */
2527 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2528 {
2529         sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2530 }
2531
2532 /**
2533  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2534  * @hw:         The hardware instance.
2535  * @port:       The port index.
2536  * @set:        The flag to disable or enable.
2537  *
2538  * This routine enables the 802.1p priority re-mapping function of the switch.
2539  * That allows 802.1p priority field to be replaced with the port's default
2540  * tag's priority value if the ingress packet's 802.1p priority has a higher
2541  * priority than port's default tag's priority.
2542  */
2543 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2544 {
2545         port_cfg_replace_vid(hw, port, set);
2546 }
2547
2548 /**
2549  * sw_cfg_port_based - configure switch port based priority
2550  * @hw:         The hardware instance.
2551  * @port:       The port index.
2552  * @prio:       The priority to set.
2553  *
2554  * This routine configures the port based priority of the switch.
2555  */
2556 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2557 {
2558         u16 data;
2559
2560         if (prio > PORT_BASED_PRIORITY_BASE)
2561                 prio = PORT_BASED_PRIORITY_BASE;
2562
2563         hw->ksz_switch->port_cfg[port].port_prio = prio;
2564
2565         port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2566         data &= ~PORT_BASED_PRIORITY_MASK;
2567         data |= prio << PORT_BASED_PRIORITY_SHIFT;
2568         port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2569 }
2570
2571 /**
2572  * sw_dis_multi_queue - disable transmit multiple queues
2573  * @hw:         The hardware instance.
2574  * @port:       The port index.
2575  *
2576  * This routine disables the transmit multiple queues selection of the switch
2577  * port.  Only single transmit queue on the port.
2578  */
2579 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2580 {
2581         port_cfg_prio(hw, port, 0);
2582 }
2583
2584 /**
2585  * sw_init_prio - initialize switch priority
2586  * @hw:         The hardware instance.
2587  *
2588  * This routine initializes the switch QoS priority functions.
2589  */
2590 static void sw_init_prio(struct ksz_hw *hw)
2591 {
2592         int port;
2593         int tos;
2594         struct ksz_switch *sw = hw->ksz_switch;
2595
2596         /*
2597          * Init all the 802.1p tag priority value to be assigned to different
2598          * priority queue.
2599          */
2600         sw->p_802_1p[0] = 0;
2601         sw->p_802_1p[1] = 0;
2602         sw->p_802_1p[2] = 1;
2603         sw->p_802_1p[3] = 1;
2604         sw->p_802_1p[4] = 2;
2605         sw->p_802_1p[5] = 2;
2606         sw->p_802_1p[6] = 3;
2607         sw->p_802_1p[7] = 3;
2608
2609         /*
2610          * Init all the DiffServ priority value to be assigned to priority
2611          * queue 0.
2612          */
2613         for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2614                 sw->diffserv[tos] = 0;
2615
2616         /* All QoS functions disabled. */
2617         for (port = 0; port < TOTAL_PORT_NUM; port++) {
2618                 sw_dis_multi_queue(hw, port);
2619                 sw_dis_diffserv(hw, port);
2620                 sw_dis_802_1p(hw, port);
2621                 sw_cfg_replace_vid(hw, port, 0);
2622
2623                 sw->port_cfg[port].port_prio = 0;
2624                 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2625         }
2626         sw_cfg_replace_null_vid(hw, 0);
2627 }
2628
2629 /**
2630  * port_get_def_vid - get port default VID.
2631  * @hw:         The hardware instance.
2632  * @port:       The port index.
2633  * @vid:        Buffer to store the VID.
2634  *
2635  * This routine retrieves the default VID of the port.
2636  */
2637 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2638 {
2639         u32 addr;
2640
2641         PORT_CTRL_ADDR(port, addr);
2642         addr += KS8842_PORT_CTRL_VID_OFFSET;
2643         *vid = readw(hw->io + addr);
2644 }
2645
2646 /**
2647  * sw_init_vlan - initialize switch VLAN
2648  * @hw:         The hardware instance.
2649  *
2650  * This routine initializes the VLAN function of the switch.
2651  */
2652 static void sw_init_vlan(struct ksz_hw *hw)
2653 {
2654         int port;
2655         int entry;
2656         struct ksz_switch *sw = hw->ksz_switch;
2657
2658         /* Read 16 VLAN entries from device's VLAN table. */
2659         for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2660                 sw_r_vlan_table(hw, entry,
2661                         &sw->vlan_table[entry].vid,
2662                         &sw->vlan_table[entry].fid,
2663                         &sw->vlan_table[entry].member);
2664         }
2665
2666         for (port = 0; port < TOTAL_PORT_NUM; port++) {
2667                 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2668                 sw->port_cfg[port].member = PORT_MASK;
2669         }
2670 }
2671
2672 /**
2673  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2674  * @hw:         The hardware instance.
2675  * @port:       The port index.
2676  * @member:     The port-based VLAN membership.
2677  *
2678  * This routine configures the port-based VLAN membership of the port.
2679  */
2680 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2681 {
2682         u32 addr;
2683         u8 data;
2684
2685         PORT_CTRL_ADDR(port, addr);
2686         addr += KS8842_PORT_CTRL_2_OFFSET;
2687
2688         data = readb(hw->io + addr);
2689         data &= ~PORT_VLAN_MEMBERSHIP;
2690         data |= (member & PORT_MASK);
2691         writeb(data, hw->io + addr);
2692
2693         hw->ksz_switch->port_cfg[port].member = member;
2694 }
2695
2696 /**
2697  * sw_get_addr - get the switch MAC address.
2698  * @hw:         The hardware instance.
2699  * @mac_addr:   Buffer to store the MAC address.
2700  *
2701  * This function retrieves the MAC address of the switch.
2702  */
2703 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2704 {
2705         int i;
2706
2707         for (i = 0; i < 6; i += 2) {
2708                 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2709                 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2710         }
2711 }
2712
2713 /**
2714  * sw_set_addr - configure switch MAC address
2715  * @hw:         The hardware instance.
2716  * @mac_addr:   The MAC address.
2717  *
2718  * This function configures the MAC address of the switch.
2719  */
2720 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2721 {
2722         int i;
2723
2724         for (i = 0; i < 6; i += 2) {
2725                 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2726                 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2727         }
2728 }
2729
2730 /**
2731  * sw_set_global_ctrl - set switch global control
2732  * @hw:         The hardware instance.
2733  *
2734  * This routine sets the global control of the switch function.
2735  */
2736 static void sw_set_global_ctrl(struct ksz_hw *hw)
2737 {
2738         u16 data;
2739
2740         /* Enable switch MII flow control. */
2741         data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2742         data |= SWITCH_FLOW_CTRL;
2743         writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744
2745         data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2746
2747         /* Enable aggressive back off algorithm in half duplex mode. */
2748         data |= SWITCH_AGGR_BACKOFF;
2749
2750         /* Enable automatic fast aging when link changed detected. */
2751         data |= SWITCH_AGING_ENABLE;
2752         data |= SWITCH_LINK_AUTO_AGING;
2753
2754         if (hw->overrides & FAST_AGING)
2755                 data |= SWITCH_FAST_AGING;
2756         else
2757                 data &= ~SWITCH_FAST_AGING;
2758         writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2759
2760         data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2761
2762         /* Enable no excessive collision drop. */
2763         data |= NO_EXC_COLLISION_DROP;
2764         writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2765 }
2766
2767 enum {
2768         STP_STATE_DISABLED = 0,
2769         STP_STATE_LISTENING,
2770         STP_STATE_LEARNING,
2771         STP_STATE_FORWARDING,
2772         STP_STATE_BLOCKED,
2773         STP_STATE_SIMPLE
2774 };
2775
2776 /**
2777  * port_set_stp_state - configure port spanning tree state
2778  * @hw:         The hardware instance.
2779  * @port:       The port index.
2780  * @state:      The spanning tree state.
2781  *
2782  * This routine configures the spanning tree state of the port.
2783  */
2784 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2785 {
2786         u16 data;
2787
2788         port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2789         switch (state) {
2790         case STP_STATE_DISABLED:
2791                 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2792                 data |= PORT_LEARN_DISABLE;
2793                 break;
2794         case STP_STATE_LISTENING:
2795 /*
2796  * No need to turn on transmit because of port direct mode.
2797  * Turning on receive is required if static MAC table is not setup.
2798  */
2799                 data &= ~PORT_TX_ENABLE;
2800                 data |= PORT_RX_ENABLE;
2801                 data |= PORT_LEARN_DISABLE;
2802                 break;
2803         case STP_STATE_LEARNING:
2804                 data &= ~PORT_TX_ENABLE;
2805                 data |= PORT_RX_ENABLE;
2806                 data &= ~PORT_LEARN_DISABLE;
2807                 break;
2808         case STP_STATE_FORWARDING:
2809                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810                 data &= ~PORT_LEARN_DISABLE;
2811                 break;
2812         case STP_STATE_BLOCKED:
2813 /*
2814  * Need to setup static MAC table with override to keep receiving BPDU
2815  * messages.  See sw_init_stp routine.
2816  */
2817                 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2818                 data |= PORT_LEARN_DISABLE;
2819                 break;
2820         case STP_STATE_SIMPLE:
2821                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2822                 data |= PORT_LEARN_DISABLE;
2823                 break;
2824         }
2825         port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2826         hw->ksz_switch->port_cfg[port].stp_state = state;
2827 }
2828
2829 #define STP_ENTRY                       0
2830 #define BROADCAST_ENTRY                 1
2831 #define BRIDGE_ADDR_ENTRY               2
2832 #define IPV6_ADDR_ENTRY                 3
2833
2834 /**
2835  * sw_clr_sta_mac_table - clear static MAC table
2836  * @hw:         The hardware instance.
2837  *
2838  * This routine clears the static MAC table.
2839  */
2840 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2841 {
2842         struct ksz_mac_table *entry;
2843         int i;
2844
2845         for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2846                 entry = &hw->ksz_switch->mac_table[i];
2847                 sw_w_sta_mac_table(hw, i,
2848                         entry->mac_addr, entry->ports,
2849                         entry->override, 0,
2850                         entry->use_fid, entry->fid);
2851         }
2852 }
2853
2854 /**
2855  * sw_init_stp - initialize switch spanning tree support
2856  * @hw:         The hardware instance.
2857  *
2858  * This routine initializes the spanning tree support of the switch.
2859  */
2860 static void sw_init_stp(struct ksz_hw *hw)
2861 {
2862         struct ksz_mac_table *entry;
2863
2864         entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2865         entry->mac_addr[0] = 0x01;
2866         entry->mac_addr[1] = 0x80;
2867         entry->mac_addr[2] = 0xC2;
2868         entry->mac_addr[3] = 0x00;
2869         entry->mac_addr[4] = 0x00;
2870         entry->mac_addr[5] = 0x00;
2871         entry->ports = HOST_MASK;
2872         entry->override = 1;
2873         entry->valid = 1;
2874         sw_w_sta_mac_table(hw, STP_ENTRY,
2875                 entry->mac_addr, entry->ports,
2876                 entry->override, entry->valid,
2877                 entry->use_fid, entry->fid);
2878 }
2879
2880 /**
2881  * sw_block_addr - block certain packets from the host port
2882  * @hw:         The hardware instance.
2883  *
2884  * This routine blocks certain packets from reaching to the host port.
2885  */
2886 static void sw_block_addr(struct ksz_hw *hw)
2887 {
2888         struct ksz_mac_table *entry;
2889         int i;
2890
2891         for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2892                 entry = &hw->ksz_switch->mac_table[i];
2893                 entry->valid = 0;
2894                 sw_w_sta_mac_table(hw, i,
2895                         entry->mac_addr, entry->ports,
2896                         entry->override, entry->valid,
2897                         entry->use_fid, entry->fid);
2898         }
2899 }
2900
2901 #define PHY_LINK_SUPPORT                \
2902         (PHY_AUTO_NEG_ASYM_PAUSE |      \
2903         PHY_AUTO_NEG_SYM_PAUSE |        \
2904         PHY_AUTO_NEG_100BT4 |           \
2905         PHY_AUTO_NEG_100BTX_FD |        \
2906         PHY_AUTO_NEG_100BTX |           \
2907         PHY_AUTO_NEG_10BT_FD |          \
2908         PHY_AUTO_NEG_10BT)
2909
2910 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2911 {
2912         *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2913 }
2914
2915 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2916 {
2917         writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2918 }
2919
2920 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2921 {
2922         *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2923 }
2924
2925 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2926 {
2927         *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2928 }
2929
2930 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2931 {
2932         writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2933 }
2934
2935 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2936 {
2937         *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2938 }
2939
2940 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2941 {
2942         *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2943 }
2944
2945 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2946 {
2947         writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2948 }
2949
2950 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2951 {
2952         *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2953 }
2954
2955 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2956 {
2957         writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2958 }
2959
2960 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2961 {
2962         *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2963 }
2964
2965 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2966 {
2967         writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2968 }
2969
2970 /**
2971  * hw_r_phy - read data from PHY register
2972  * @hw:         The hardware instance.
2973  * @port:       Port to read.
2974  * @reg:        PHY register to read.
2975  * @val:        Buffer to store the read data.
2976  *
2977  * This routine reads data from the PHY register.
2978  */
2979 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2980 {
2981         int phy;
2982
2983         phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2984         *val = readw(hw->io + phy);
2985 }
2986
2987 /**
2988  * port_w_phy - write data to PHY register
2989  * @hw:         The hardware instance.
2990  * @port:       Port to write.
2991  * @reg:        PHY register to write.
2992  * @val:        Word data to write.
2993  *
2994  * This routine writes data to the PHY register.
2995  */
2996 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2997 {
2998         int phy;
2999
3000         phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3001         writew(val, hw->io + phy);
3002 }
3003
3004 /*
3005  * EEPROM access functions
3006  */
3007
3008 #define AT93C_CODE                      0
3009 #define AT93C_WR_OFF                    0x00
3010 #define AT93C_WR_ALL                    0x10
3011 #define AT93C_ER_ALL                    0x20
3012 #define AT93C_WR_ON                     0x30
3013
3014 #define AT93C_WRITE                     1
3015 #define AT93C_READ                      2
3016 #define AT93C_ERASE                     3
3017
3018 #define EEPROM_DELAY                    4
3019
3020 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3021 {
3022         u16 data;
3023
3024         data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3025         data &= ~gpio;
3026         writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027 }
3028
3029 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3030 {
3031         u16 data;
3032
3033         data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034         data |= gpio;
3035         writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036 }
3037
3038 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3039 {
3040         u16 data;
3041
3042         data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043         return (u8)(data & gpio);
3044 }
3045
3046 static void eeprom_clk(struct ksz_hw *hw)
3047 {
3048         raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049         udelay(EEPROM_DELAY);
3050         drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3051         udelay(EEPROM_DELAY);
3052 }
3053
3054 static u16 spi_r(struct ksz_hw *hw)
3055 {
3056         int i;
3057         u16 temp = 0;
3058
3059         for (i = 15; i >= 0; i--) {
3060                 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3061                 udelay(EEPROM_DELAY);
3062
3063                 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3064
3065                 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3066                 udelay(EEPROM_DELAY);
3067         }
3068         return temp;
3069 }
3070
3071 static void spi_w(struct ksz_hw *hw, u16 data)
3072 {
3073         int i;
3074
3075         for (i = 15; i >= 0; i--) {
3076                 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3077                         drop_gpio(hw, EEPROM_DATA_OUT);
3078                 eeprom_clk(hw);
3079         }
3080 }
3081
3082 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3083 {
3084         int i;
3085
3086         /* Initial start bit */
3087         raise_gpio(hw, EEPROM_DATA_OUT);
3088         eeprom_clk(hw);
3089
3090         /* AT93C operation */
3091         for (i = 1; i >= 0; i--) {
3092                 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3093                         drop_gpio(hw, EEPROM_DATA_OUT);
3094                 eeprom_clk(hw);
3095         }
3096
3097         /* Address location */
3098         for (i = 5; i >= 0; i--) {
3099                 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100                         drop_gpio(hw, EEPROM_DATA_OUT);
3101                 eeprom_clk(hw);
3102         }
3103 }
3104
3105 #define EEPROM_DATA_RESERVED            0
3106 #define EEPROM_DATA_MAC_ADDR_0          1
3107 #define EEPROM_DATA_MAC_ADDR_1          2
3108 #define EEPROM_DATA_MAC_ADDR_2          3
3109 #define EEPROM_DATA_SUBSYS_ID           4
3110 #define EEPROM_DATA_SUBSYS_VEN_ID       5
3111 #define EEPROM_DATA_PM_CAP              6
3112
3113 /* User defined EEPROM data */
3114 #define EEPROM_DATA_OTHER_MAC_ADDR      9
3115
3116 /**
3117  * eeprom_read - read from AT93C46 EEPROM
3118  * @hw:         The hardware instance.
3119  * @reg:        The register offset.
3120  *
3121  * This function reads a word from the AT93C46 EEPROM.
3122  *
3123  * Return the data value.
3124  */
3125 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3126 {
3127         u16 data;
3128
3129         raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3130
3131         spi_reg(hw, AT93C_READ, reg);
3132         data = spi_r(hw);
3133
3134         drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3135
3136         return data;
3137 }
3138
3139 /**
3140  * eeprom_write - write to AT93C46 EEPROM
3141  * @hw:         The hardware instance.
3142  * @reg:        The register offset.
3143  * @data:       The data value.
3144  *
3145  * This procedure writes a word to the AT93C46 EEPROM.
3146  */
3147 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3148 {
3149         int timeout;
3150
3151         raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3152
3153         /* Enable write. */
3154         spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3155         drop_gpio(hw, EEPROM_CHIP_SELECT);
3156         udelay(1);
3157
3158         /* Erase the register. */
3159         raise_gpio(hw, EEPROM_CHIP_SELECT);
3160         spi_reg(hw, AT93C_ERASE, reg);
3161         drop_gpio(hw, EEPROM_CHIP_SELECT);
3162         udelay(1);
3163
3164         /* Check operation complete. */
3165         raise_gpio(hw, EEPROM_CHIP_SELECT);
3166         timeout = 8;
3167         mdelay(2);
3168         do {
3169                 mdelay(1);
3170         } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3171         drop_gpio(hw, EEPROM_CHIP_SELECT);
3172         udelay(1);
3173
3174         /* Write the register. */
3175         raise_gpio(hw, EEPROM_CHIP_SELECT);
3176         spi_reg(hw, AT93C_WRITE, reg);
3177         spi_w(hw, data);
3178         drop_gpio(hw, EEPROM_CHIP_SELECT);
3179         udelay(1);
3180
3181         /* Check operation complete. */
3182         raise_gpio(hw, EEPROM_CHIP_SELECT);
3183         timeout = 8;
3184         mdelay(2);
3185         do {
3186                 mdelay(1);
3187         } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3188         drop_gpio(hw, EEPROM_CHIP_SELECT);
3189         udelay(1);
3190
3191         /* Disable write. */
3192         raise_gpio(hw, EEPROM_CHIP_SELECT);
3193         spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3194
3195         drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3196 }
3197
3198 /*
3199  * Link detection routines
3200  */
3201
3202 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3203 {
3204         ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3205         switch (port->flow_ctrl) {
3206         case PHY_FLOW_CTRL:
3207                 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3208                 break;
3209         /* Not supported. */
3210         case PHY_TX_ONLY:
3211         case PHY_RX_ONLY:
3212         default:
3213                 break;
3214         }
3215         return ctrl;
3216 }
3217
3218 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3219 {
3220         u32 rx_cfg;
3221         u32 tx_cfg;
3222
3223         rx_cfg = hw->rx_cfg;
3224         tx_cfg = hw->tx_cfg;
3225         if (rx)
3226                 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3227         else
3228                 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3229         if (tx)
3230                 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3231         else
3232                 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3233         if (hw->enabled) {
3234                 if (rx_cfg != hw->rx_cfg)
3235                         writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3236                 if (tx_cfg != hw->tx_cfg)
3237                         writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3238         }
3239 }
3240
3241 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3242         u16 local, u16 remote)
3243 {
3244         int rx;
3245         int tx;
3246
3247         if (hw->overrides & PAUSE_FLOW_CTRL)
3248                 return;
3249
3250         rx = tx = 0;
3251         if (port->force_link)
3252                 rx = tx = 1;
3253         if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3254                 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3255                         rx = tx = 1;
3256                 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3257                                 (local & PHY_AUTO_NEG_PAUSE) ==
3258                                 PHY_AUTO_NEG_ASYM_PAUSE) {
3259                         tx = 1;
3260                 }
3261         } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3262                 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3263                         rx = 1;
3264         }
3265         if (!hw->ksz_switch)
3266                 set_flow_ctrl(hw, rx, tx);
3267 }
3268
3269 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3270         struct ksz_port_info *info, u16 link_status)
3271 {
3272         if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3273                         !(hw->overrides & PAUSE_FLOW_CTRL)) {
3274                 u32 cfg = hw->tx_cfg;
3275
3276                 /* Disable flow control in the half duplex mode. */
3277                 if (1 == info->duplex)
3278                         hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3279                 if (hw->enabled && cfg != hw->tx_cfg)
3280                         writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3281         }
3282 }
3283
3284 /**
3285  * port_get_link_speed - get current link status
3286  * @port:       The port instance.
3287  *
3288  * This routine reads PHY registers to determine the current link status of the
3289  * switch ports.
3290  */
3291 static void port_get_link_speed(struct ksz_port *port)
3292 {
3293         uint interrupt;
3294         struct ksz_port_info *info;
3295         struct ksz_port_info *linked = NULL;
3296         struct ksz_hw *hw = port->hw;
3297         u16 data;
3298         u16 status;
3299         u8 local;
3300         u8 remote;
3301         int i;
3302         int p;
3303         int change = 0;
3304
3305         interrupt = hw_block_intr(hw);
3306
3307         for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3308                 info = &hw->port_info[p];
3309                 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3310                 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3311
3312                 /*
3313                  * Link status is changing all the time even when there is no
3314                  * cable connection!
3315                  */
3316                 remote = status & (PORT_AUTO_NEG_COMPLETE |
3317                         PORT_STATUS_LINK_GOOD);
3318                 local = (u8) data;
3319
3320                 /* No change to status. */
3321                 if (local == info->advertised && remote == info->partner)
3322                         continue;
3323
3324                 info->advertised = local;
3325                 info->partner = remote;
3326                 if (status & PORT_STATUS_LINK_GOOD) {
3327
3328                         /* Remember the first linked port. */
3329                         if (!linked)
3330                                 linked = info;
3331
3332                         info->tx_rate = 10 * TX_RATE_UNIT;
3333                         if (status & PORT_STATUS_SPEED_100MBIT)
3334                                 info->tx_rate = 100 * TX_RATE_UNIT;
3335
3336                         info->duplex = 1;
3337                         if (status & PORT_STATUS_FULL_DUPLEX)
3338                                 info->duplex = 2;
3339
3340                         if (media_connected != info->state) {
3341                                 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3342                                         &data);
3343                                 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3344                                         &status);
3345                                 determine_flow_ctrl(hw, port, data, status);
3346                                 if (hw->ksz_switch) {
3347                                         port_cfg_back_pressure(hw, p,
3348                                                 (1 == info->duplex));
3349                                 }
3350                                 change |= 1 << i;
3351                                 port_cfg_change(hw, port, info, status);
3352                         }
3353                         info->state = media_connected;
3354                 } else {
3355                         if (media_disconnected != info->state) {
3356                                 change |= 1 << i;
3357
3358                                 /* Indicate the link just goes down. */
3359                                 hw->port_mib[p].link_down = 1;
3360                         }
3361                         info->state = media_disconnected;
3362                 }
3363                 hw->port_mib[p].state = (u8) info->state;
3364         }
3365
3366         if (linked && media_disconnected == port->linked->state)
3367                 port->linked = linked;
3368
3369         hw_restore_intr(hw, interrupt);
3370 }
3371
3372 #define PHY_RESET_TIMEOUT               10
3373
3374 /**
3375  * port_set_link_speed - set port speed
3376  * @port:       The port instance.
3377  *
3378  * This routine sets the link speed of the switch ports.
3379  */
3380 static void port_set_link_speed(struct ksz_port *port)
3381 {
3382         struct ksz_port_info *info;
3383         struct ksz_hw *hw = port->hw;
3384         u16 data;
3385         u16 cfg;
3386         u8 status;
3387         int i;
3388         int p;
3389
3390         for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3391                 info = &hw->port_info[p];
3392
3393                 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3394                 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3395
3396                 cfg = 0;
3397                 if (status & PORT_STATUS_LINK_GOOD)
3398                         cfg = data;
3399
3400                 data |= PORT_AUTO_NEG_ENABLE;
3401                 data = advertised_flow_ctrl(port, data);
3402
3403                 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3404                         PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3405
3406                 /* Check if manual configuration is specified by the user. */
3407                 if (port->speed || port->duplex) {
3408                         if (10 == port->speed)
3409                                 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410                                         PORT_AUTO_NEG_100BTX);
3411                         else if (100 == port->speed)
3412                                 data &= ~(PORT_AUTO_NEG_10BT_FD |
3413                                         PORT_AUTO_NEG_10BT);
3414                         if (1 == port->duplex)
3415                                 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3416                                         PORT_AUTO_NEG_10BT_FD);
3417                         else if (2 == port->duplex)
3418                                 data &= ~(PORT_AUTO_NEG_100BTX |
3419                                         PORT_AUTO_NEG_10BT);
3420                 }
3421                 if (data != cfg) {
3422                         data |= PORT_AUTO_NEG_RESTART;
3423                         port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3424                 }
3425         }
3426 }
3427
3428 /**
3429  * port_force_link_speed - force port speed
3430  * @port:       The port instance.
3431  *
3432  * This routine forces the link speed of the switch ports.
3433  */
3434 static void port_force_link_speed(struct ksz_port *port)
3435 {
3436         struct ksz_hw *hw = port->hw;
3437         u16 data;
3438         int i;
3439         int phy;
3440         int p;
3441
3442         for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3443                 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3444                 hw_r_phy_ctrl(hw, phy, &data);
3445
3446                 data &= ~PHY_AUTO_NEG_ENABLE;
3447
3448                 if (10 == port->speed)
3449                         data &= ~PHY_SPEED_100MBIT;
3450                 else if (100 == port->speed)
3451                         data |= PHY_SPEED_100MBIT;
3452                 if (1 == port->duplex)
3453                         data &= ~PHY_FULL_DUPLEX;
3454                 else if (2 == port->duplex)
3455                         data |= PHY_FULL_DUPLEX;
3456                 hw_w_phy_ctrl(hw, phy, data);
3457         }
3458 }
3459
3460 static void port_set_power_saving(struct ksz_port *port, int enable)
3461 {
3462         struct ksz_hw *hw = port->hw;
3463         int i;
3464         int p;
3465
3466         for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3467                 port_cfg(hw, p,
3468                         KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3469 }
3470
3471 /*
3472  * KSZ8841 power management functions
3473  */
3474
3475 /**
3476  * hw_chk_wol_pme_status - check PMEN pin
3477  * @hw:         The hardware instance.
3478  *
3479  * This function is used to check PMEN pin is asserted.
3480  *
3481  * Return 1 if PMEN pin is asserted; otherwise, 0.
3482  */
3483 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3484 {
3485         struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3486         struct pci_dev *pdev = hw_priv->pdev;
3487         u16 data;
3488
3489         if (!pdev->pm_cap)
3490                 return 0;
3491         pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3492         return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3493 }
3494
3495 /**
3496  * hw_clr_wol_pme_status - clear PMEN pin
3497  * @hw:         The hardware instance.
3498  *
3499  * This routine is used to clear PME_Status to deassert PMEN pin.
3500  */
3501 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3502 {
3503         struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3504         struct pci_dev *pdev = hw_priv->pdev;
3505         u16 data;
3506
3507         if (!pdev->pm_cap)
3508                 return;
3509
3510         /* Clear PME_Status to deassert PMEN pin. */
3511         pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3512         data |= PCI_PM_CTRL_PME_STATUS;
3513         pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3514 }
3515
3516 /**
3517  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3518  * @hw:         The hardware instance.
3519  * @set:        The flag indicating whether to enable or disable.
3520  *
3521  * This routine is used to enable or disable Wake-on-LAN.
3522  */
3523 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3524 {
3525         struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3526         struct pci_dev *pdev = hw_priv->pdev;
3527         u16 data;
3528
3529         if (!pdev->pm_cap)
3530                 return;
3531         pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3532         data &= ~PCI_PM_CTRL_STATE_MASK;
3533         if (set)
3534                 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3535         else
3536                 data &= ~PCI_PM_CTRL_PME_ENABLE;
3537         pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3538 }
3539
3540 /**
3541  * hw_cfg_wol - configure Wake-on-LAN features
3542  * @hw:         The hardware instance.
3543  * @frame:      The pattern frame bit.
3544  * @set:        The flag indicating whether to enable or disable.
3545  *
3546  * This routine is used to enable or disable certain Wake-on-LAN features.
3547  */
3548 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3549 {
3550         u16 data;
3551
3552         data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3553         if (set)
3554                 data |= frame;
3555         else
3556                 data &= ~frame;
3557         writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3558 }
3559
3560 /**
3561  * hw_set_wol_frame - program Wake-on-LAN pattern
3562  * @hw:         The hardware instance.
3563  * @i:          The frame index.
3564  * @mask_size:  The size of the mask.
3565  * @mask:       Mask to ignore certain bytes in the pattern.
3566  * @frame_size: The size of the frame.
3567  * @pattern:    The frame data.
3568  *
3569  * This routine is used to program Wake-on-LAN pattern.
3570  */
3571 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3572         const u8 *mask, uint frame_size, const u8 *pattern)
3573 {
3574         int bits;
3575         int from;
3576         int len;
3577         int to;
3578         u32 crc;
3579         u8 data[64];
3580         u8 val = 0;
3581
3582         if (frame_size > mask_size * 8)
3583                 frame_size = mask_size * 8;
3584         if (frame_size > 64)
3585                 frame_size = 64;
3586
3587         i *= 0x10;
3588         writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3589         writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3590
3591         bits = len = from = to = 0;
3592         do {
3593                 if (bits) {
3594                         if ((val & 1))
3595                                 data[to++] = pattern[from];
3596                         val >>= 1;
3597                         ++from;
3598                         --bits;
3599                 } else {
3600                         val = mask[len];
3601                         writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3602                                 + len);
3603                         ++len;
3604                         if (val)
3605                                 bits = 8;
3606                         else
3607                                 from += 8;
3608                 }
3609         } while (from < (int) frame_size);
3610         if (val) {
3611                 bits = mask[len - 1];
3612                 val <<= (from % 8);
3613                 bits &= ~val;
3614                 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3615                         1);
3616         }
3617         crc = ether_crc(to, data);
3618         writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3619 }
3620
3621 /**
3622  * hw_add_wol_arp - add ARP pattern
3623  * @hw:         The hardware instance.
3624  * @ip_addr:    The IPv4 address assigned to the device.
3625  *
3626  * This routine is used to add ARP pattern for waking up the host.
3627  */
3628 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3629 {
3630         static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3631         u8 pattern[42] = {
3632                 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3633                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3634                 0x08, 0x06,
3635                 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3636                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637                 0x00, 0x00, 0x00, 0x00,
3638                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639                 0x00, 0x00, 0x00, 0x00 };
3640
3641         memcpy(&pattern[38], ip_addr, 4);
3642         hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3643 }
3644
3645 /**
3646  * hw_add_wol_bcast - add broadcast pattern
3647  * @hw:         The hardware instance.
3648  *
3649  * This routine is used to add broadcast pattern for waking up the host.
3650  */
3651 static void hw_add_wol_bcast(struct ksz_hw *hw)
3652 {
3653         static const u8 mask[] = { 0x3F };
3654         static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3655
3656         hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3657 }
3658
3659 /**
3660  * hw_add_wol_mcast - add multicast pattern
3661  * @hw:         The hardware instance.
3662  *
3663  * This routine is used to add multicast pattern for waking up the host.
3664  *
3665  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3666  * by IPv6 ping command.  Note that multicast packets are filtred through the
3667  * multicast hash table, so not all multicast packets can wake up the host.
3668  */
3669 static void hw_add_wol_mcast(struct ksz_hw *hw)
3670 {
3671         static const u8 mask[] = { 0x3F };
3672         u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3673
3674         memcpy(&pattern[3], &hw->override_addr[3], 3);
3675         hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3676 }
3677
3678 /**
3679  * hw_add_wol_ucast - add unicast pattern
3680  * @hw:         The hardware instance.
3681  *
3682  * This routine is used to add unicast pattern to wakeup the host.
3683  *
3684  * It is assumed the unicast packet is directed to the device, as the hardware
3685  * can only receive them in normal case.
3686  */
3687 static void hw_add_wol_ucast(struct ksz_hw *hw)
3688 {
3689         static const u8 mask[] = { 0x3F };
3690
3691         hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3692 }
3693
3694 /**
3695  * hw_enable_wol - enable Wake-on-LAN
3696  * @hw:         The hardware instance.
3697  * @wol_enable: The Wake-on-LAN settings.
3698  * @net_addr:   The IPv4 address assigned to the device.
3699  *
3700  * This routine is used to enable Wake-on-LAN depending on driver settings.
3701  */
3702 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3703 {
3704         hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3705         hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3706         hw_add_wol_ucast(hw);
3707         hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3708         hw_add_wol_mcast(hw);
3709         hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3710         hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3711         hw_add_wol_arp(hw, net_addr);
3712 }
3713
3714 /**
3715  * hw_init - check driver is correct for the hardware
3716  * @hw:         The hardware instance.
3717  *
3718  * This function checks the hardware is correct for this driver and sets the
3719  * hardware up for proper initialization.
3720  *
3721  * Return number of ports or 0 if not right.
3722  */
3723 static int hw_init(struct ksz_hw *hw)
3724 {
3725         int rc = 0;
3726         u16 data;
3727         u16 revision;
3728
3729         /* Set bus speed to 125MHz. */
3730         writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3731
3732         /* Check KSZ884x chip ID. */
3733         data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3734
3735         revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3736         data &= KS884X_CHIP_ID_MASK_41;
3737         if (REG_CHIP_ID_41 == data)
3738                 rc = 1;
3739         else if (REG_CHIP_ID_42 == data)
3740                 rc = 2;
3741         else
3742                 return 0;
3743
3744         /* Setup hardware features or bug workarounds. */
3745         if (revision <= 1) {
3746                 hw->features |= SMALL_PACKET_TX_BUG;
3747                 if (1 == rc)
3748                         hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3749         }
3750         return rc;
3751 }
3752
3753 /**
3754  * hw_reset - reset the hardware
3755  * @hw:         The hardware instance.
3756  *
3757  * This routine resets the hardware.
3758  */
3759 static void hw_reset(struct ksz_hw *hw)
3760 {
3761         writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762
3763         /* Wait for device to reset. */
3764         mdelay(10);
3765
3766         /* Write 0 to clear device reset. */
3767         writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3768 }
3769
3770 /**
3771  * hw_setup - setup the hardware
3772  * @hw:         The hardware instance.
3773  *
3774  * This routine setup the hardware for proper operation.
3775  */
3776 static void hw_setup(struct ksz_hw *hw)
3777 {
3778 #if SET_DEFAULT_LED
3779         u16 data;
3780
3781         /* Change default LED mode. */
3782         data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3783         data &= ~LED_MODE;
3784         data |= SET_DEFAULT_LED;
3785         writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786 #endif
3787
3788         /* Setup transmit control. */
3789         hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3790                 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3791
3792         /* Setup receive control. */
3793         hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3794                 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3795         hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3796
3797         /* Hardware cannot handle UDP packet in IP fragments. */
3798         hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3799
3800         if (hw->all_multi)
3801                 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3802         if (hw->promiscuous)
3803                 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3804 }
3805
3806 /**
3807  * hw_setup_intr - setup interrupt mask
3808  * @hw:         The hardware instance.
3809  *
3810  * This routine setup the interrupt mask for proper operation.
3811  */
3812 static void hw_setup_intr(struct ksz_hw *hw)
3813 {
3814         hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3815 }
3816
3817 static void ksz_check_desc_num(struct ksz_desc_info *info)
3818 {
3819 #define MIN_DESC_SHIFT  2
3820
3821         int alloc = info->alloc;
3822         int shift;
3823
3824         shift = 0;
3825         while (!(alloc & 1)) {
3826                 shift++;
3827                 alloc >>= 1;
3828         }
3829         if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3830                 pr_alert("Hardware descriptor numbers not right!\n");
3831                 while (alloc) {
3832                         shift++;
3833                         alloc >>= 1;
3834                 }
3835                 if (shift < MIN_DESC_SHIFT)
3836                         shift = MIN_DESC_SHIFT;
3837                 alloc = 1 << shift;
3838                 info->alloc = alloc;
3839         }
3840         info->mask = info->alloc - 1;
3841 }
3842
3843 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3844 {
3845         int i;
3846         u32 phys = desc_info->ring_phys;
3847         struct ksz_hw_desc *desc = desc_info->ring_virt;
3848         struct ksz_desc *cur = desc_info->ring;
3849         struct ksz_desc *previous = NULL;
3850
3851         for (i = 0; i < desc_info->alloc; i++) {
3852                 cur->phw = desc++;
3853                 phys += desc_info->size;
3854                 previous = cur++;
3855                 previous->phw->next = cpu_to_le32(phys);
3856         }
3857         previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3858         previous->sw.buf.rx.end_of_ring = 1;
3859         previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3860
3861         desc_info->avail = desc_info->alloc;
3862         desc_info->last = desc_info->next = 0;
3863
3864         desc_info->cur = desc_info->ring;
3865 }
3866
3867 /**
3868  * hw_set_desc_base - set descriptor base addresses
3869  * @hw:         The hardware instance.
3870  * @tx_addr:    The transmit descriptor base.
3871  * @rx_addr:    The receive descriptor base.
3872  *
3873  * This routine programs the descriptor base addresses after reset.
3874  */
3875 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3876 {
3877         /* Set base address of Tx/Rx descriptors. */
3878         writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3879         writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3880 }
3881
3882 static void hw_reset_pkts(struct ksz_desc_info *info)
3883 {
3884         info->cur = info->ring;
3885         info->avail = info->alloc;
3886         info->last = info->next = 0;
3887 }
3888
3889 static inline void hw_resume_rx(struct ksz_hw *hw)
3890 {
3891         writel(DMA_START, hw->io + KS_DMA_RX_START);
3892 }
3893
3894 /**
3895  * hw_start_rx - start receiving
3896  * @hw:         The hardware instance.
3897  *
3898  * This routine starts the receive function of the hardware.
3899  */
3900 static void hw_start_rx(struct ksz_hw *hw)
3901 {
3902         writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3903
3904         /* Notify when the receive stops. */
3905         hw->intr_mask |= KS884X_INT_RX_STOPPED;
3906
3907         writel(DMA_START, hw->io + KS_DMA_RX_START);
3908         hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3909         hw->rx_stop++;
3910
3911         /* Variable overflows. */
3912         if (0 == hw->rx_stop)
3913                 hw->rx_stop = 2;
3914 }
3915
3916 /**
3917  * hw_stop_rx - stop receiving
3918  * @hw:         The hardware instance.
3919  *
3920  * This routine stops the receive function of the hardware.
3921  */
3922 static void hw_stop_rx(struct ksz_hw *hw)
3923 {
3924         hw->rx_stop = 0;
3925         hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3926         writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3927 }
3928
3929 /**
3930  * hw_start_tx - start transmitting
3931  * @hw:         The hardware instance.
3932  *
3933  * This routine starts the transmit function of the hardware.
3934  */
3935 static void hw_start_tx(struct ksz_hw *hw)
3936 {
3937         writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3938 }
3939
3940 /**
3941  * hw_stop_tx - stop transmitting
3942  * @hw:         The hardware instance.
3943  *
3944  * This routine stops the transmit function of the hardware.
3945  */
3946 static void hw_stop_tx(struct ksz_hw *hw)
3947 {
3948         writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3949 }
3950
3951 /**
3952  * hw_disable - disable hardware
3953  * @hw:         The hardware instance.
3954  *
3955  * This routine disables the hardware.
3956  */
3957 static void hw_disable(struct ksz_hw *hw)
3958 {
3959         hw_stop_rx(hw);
3960         hw_stop_tx(hw);
3961         hw->enabled = 0;
3962 }
3963
3964 /**
3965  * hw_enable - enable hardware
3966  * @hw:         The hardware instance.
3967  *
3968  * This routine enables the hardware.
3969  */
3970 static void hw_enable(struct ksz_hw *hw)
3971 {
3972         hw_start_tx(hw);
3973         hw_start_rx(hw);
3974         hw->enabled = 1;
3975 }
3976
3977 /**
3978  * hw_alloc_pkt - allocate enough descriptors for transmission
3979  * @hw:         The hardware instance.
3980  * @length:     The length of the packet.
3981  * @physical:   Number of descriptors required.
3982  *
3983  * This function allocates descriptors for transmission.
3984  *
3985  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3986  */
3987 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3988 {
3989         /* Always leave one descriptor free. */
3990         if (hw->tx_desc_info.avail <= 1)
3991                 return 0;
3992
3993         /* Allocate a descriptor for transmission and mark it current. */
3994         get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3995         hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3996
3997         /* Keep track of number of transmit descriptors used so far. */
3998         ++hw->tx_int_cnt;
3999         hw->tx_size += length;
4000
4001         /* Cannot hold on too much data. */
4002         if (hw->tx_size >= MAX_TX_HELD_SIZE)
4003                 hw->tx_int_cnt = hw->tx_int_mask + 1;
4004
4005         if (physical > hw->tx_desc_info.avail)
4006                 return 1;
4007
4008         return hw->tx_desc_info.avail;
4009 }
4010
4011 /**
4012  * hw_send_pkt - mark packet for transmission
4013  * @hw:         The hardware instance.
4014  *
4015  * This routine marks the packet for transmission in PCI version.
4016  */
4017 static void hw_send_pkt(struct ksz_hw *hw)
4018 {
4019         struct ksz_desc *cur = hw->tx_desc_info.cur;
4020
4021         cur->sw.buf.tx.last_seg = 1;
4022
4023         /* Interrupt only after specified number of descriptors used. */
4024         if (hw->tx_int_cnt > hw->tx_int_mask) {
4025                 cur->sw.buf.tx.intr = 1;
4026                 hw->tx_int_cnt = 0;
4027                 hw->tx_size = 0;
4028         }
4029
4030         /* KSZ8842 supports port directed transmission. */
4031         cur->sw.buf.tx.dest_port = hw->dst_ports;
4032
4033         release_desc(cur);
4034
4035         writel(0, hw->io + KS_DMA_TX_START);
4036 }
4037
4038 static int empty_addr(u8 *addr)
4039 {
4040         u32 *addr1 = (u32 *) addr;
4041         u16 *addr2 = (u16 *) &addr[4];
4042
4043         return 0 == *addr1 && 0 == *addr2;
4044 }
4045
4046 /**
4047  * hw_set_addr - set MAC address
4048  * @hw:         The hardware instance.
4049  *
4050  * This routine programs the MAC address of the hardware when the address is
4051  * overrided.
4052  */
4053 static void hw_set_addr(struct ksz_hw *hw)
4054 {
4055         int i;
4056
4057         for (i = 0; i < ETH_ALEN; i++)
4058                 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4059                         hw->io + KS884X_ADDR_0_OFFSET + i);
4060
4061         sw_set_addr(hw, hw->override_addr);
4062 }
4063
4064 /**
4065  * hw_read_addr - read MAC address
4066  * @hw:         The hardware instance.
4067  *
4068  * This routine retrieves the MAC address of the hardware.
4069  */
4070 static void hw_read_addr(struct ksz_hw *hw)
4071 {
4072         int i;
4073
4074         for (i = 0; i < ETH_ALEN; i++)
4075                 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4076                         KS884X_ADDR_0_OFFSET + i);
4077
4078         if (!hw->mac_override) {
4079                 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4080                 if (empty_addr(hw->override_addr)) {
4081                         memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4082                         memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4083                                ETH_ALEN);
4084                         hw->override_addr[5] += hw->id;
4085                         hw_set_addr(hw);
4086                 }
4087         }
4088 }
4089
4090 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4091 {
4092         int i;
4093         u32 mac_addr_lo;
4094         u32 mac_addr_hi;
4095
4096         mac_addr_hi = 0;
4097         for (i = 0; i < 2; i++) {
4098                 mac_addr_hi <<= 8;
4099                 mac_addr_hi |= mac_addr[i];
4100         }
4101         mac_addr_hi |= ADD_ADDR_ENABLE;
4102         mac_addr_lo = 0;
4103         for (i = 2; i < 6; i++) {
4104                 mac_addr_lo <<= 8;
4105                 mac_addr_lo |= mac_addr[i];
4106         }
4107         index *= ADD_ADDR_INCR;
4108
4109         writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4110         writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4111 }
4112
4113 static void hw_set_add_addr(struct ksz_hw *hw)
4114 {
4115         int i;
4116
4117         for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4118                 if (empty_addr(hw->address[i]))
4119                         writel(0, hw->io + ADD_ADDR_INCR * i +
4120                                 KS_ADD_ADDR_0_HI);
4121                 else
4122                         hw_ena_add_addr(hw, i, hw->address[i]);
4123         }
4124 }
4125
4126 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4127 {
4128         int i;
4129         int j = ADDITIONAL_ENTRIES;
4130
4131         if (ether_addr_equal(hw->override_addr, mac_addr))
4132                 return 0;
4133         for (i = 0; i < hw->addr_list_size; i++) {
4134                 if (ether_addr_equal(hw->address[i], mac_addr))
4135                         return 0;
4136                 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4137                         j = i;
4138         }
4139         if (j < ADDITIONAL_ENTRIES) {
4140                 memcpy(hw->address[j], mac_addr, ETH_ALEN);
4141                 hw_ena_add_addr(hw, j, hw->address[j]);
4142                 return 0;
4143         }
4144         return -1;
4145 }
4146
4147 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4148 {
4149         int i;
4150
4151         for (i = 0; i < hw->addr_list_size; i++) {
4152                 if (ether_addr_equal(hw->address[i], mac_addr)) {
4153                         memset(hw->address[i], 0, ETH_ALEN);
4154                         writel(0, hw->io + ADD_ADDR_INCR * i +
4155                                 KS_ADD_ADDR_0_HI);
4156                         return 0;
4157                 }
4158         }
4159         return -1;
4160 }
4161
4162 /**
4163  * hw_clr_multicast - clear multicast addresses
4164  * @hw:         The hardware instance.
4165  *
4166  * This routine removes all multicast addresses set in the hardware.
4167  */
4168 static void hw_clr_multicast(struct ksz_hw *hw)
4169 {
4170         int i;
4171
4172         for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4173                 hw->multi_bits[i] = 0;
4174
4175                 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4176         }
4177 }
4178
4179 /**
4180  * hw_set_grp_addr - set multicast addresses
4181  * @hw:         The hardware instance.
4182  *
4183  * This routine programs multicast addresses for the hardware to accept those
4184  * addresses.
4185  */
4186 static void hw_set_grp_addr(struct ksz_hw *hw)
4187 {
4188         int i;
4189         int index;
4190         int position;
4191         int value;
4192
4193         memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4194
4195         for (i = 0; i < hw->multi_list_size; i++) {
4196                 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4197                 index = position >> 3;
4198                 value = 1 << (position & 7);
4199                 hw->multi_bits[index] |= (u8) value;
4200         }
4201
4202         for (i = 0; i < HW_MULTICAST_SIZE; i++)
4203                 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4204                         i);
4205 }
4206
4207 /**
4208  * hw_set_multicast - enable or disable all multicast receiving
4209  * @hw:         The hardware instance.
4210  * @multicast:  To turn on or off the all multicast feature.
4211  *
4212  * This routine enables/disables the hardware to accept all multicast packets.
4213  */
4214 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4215 {
4216         /* Stop receiving for reconfiguration. */
4217         hw_stop_rx(hw);
4218
4219         if (multicast)
4220                 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4221         else
4222                 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4223
4224         if (hw->enabled)
4225                 hw_start_rx(hw);
4226 }
4227
4228 /**
4229  * hw_set_promiscuous - enable or disable promiscuous receiving
4230  * @hw:         The hardware instance.
4231  * @prom:       To turn on or off the promiscuous feature.
4232  *
4233  * This routine enables/disables the hardware to accept all packets.
4234  */
4235 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4236 {
4237         /* Stop receiving for reconfiguration. */
4238         hw_stop_rx(hw);
4239
4240         if (prom)
4241                 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4242         else
4243                 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4244
4245         if (hw->enabled)
4246                 hw_start_rx(hw);
4247 }
4248
4249 /**
4250  * sw_enable - enable the switch
4251  * @hw:         The hardware instance.
4252  * @enable:     The flag to enable or disable the switch
4253  *
4254  * This routine is used to enable/disable the switch in KSZ8842.
4255  */
4256 static void sw_enable(struct ksz_hw *hw, int enable)
4257 {
4258         int port;
4259
4260         for (port = 0; port < SWITCH_PORT_NUM; port++) {
4261                 if (hw->dev_count > 1) {
4262                         /* Set port-base vlan membership with host port. */
4263                         sw_cfg_port_base_vlan(hw, port,
4264                                 HOST_MASK | (1 << port));
4265                         port_set_stp_state(hw, port, STP_STATE_DISABLED);
4266                 } else {
4267                         sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4268                         port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4269                 }
4270         }
4271         if (hw->dev_count > 1)
4272                 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4273         else
4274                 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4275
4276         if (enable)
4277                 enable = KS8842_START;
4278         writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4279 }
4280
4281 /**
4282  * sw_setup - setup the switch
4283  * @hw:         The hardware instance.
4284  *
4285  * This routine setup the hardware switch engine for default operation.
4286  */
4287 static void sw_setup(struct ksz_hw *hw)
4288 {
4289         int port;
4290
4291         sw_set_global_ctrl(hw);
4292
4293         /* Enable switch broadcast storm protection at 10% percent rate. */
4294         sw_init_broad_storm(hw);
4295         hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4296         for (port = 0; port < SWITCH_PORT_NUM; port++)
4297                 sw_ena_broad_storm(hw, port);
4298
4299         sw_init_prio(hw);
4300
4301         sw_init_mirror(hw);
4302
4303         sw_init_prio_rate(hw);
4304
4305         sw_init_vlan(hw);
4306
4307         if (hw->features & STP_SUPPORT)
4308                 sw_init_stp(hw);
4309         if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4310                         SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4311                 hw->overrides |= PAUSE_FLOW_CTRL;
4312         sw_enable(hw, 1);
4313 }
4314
4315 /**
4316  * ksz_start_timer - start kernel timer
4317  * @info:       Kernel timer information.
4318  * @time:       The time tick.
4319  *
4320  * This routine starts the kernel timer after the specified time tick.
4321  */
4322 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4323 {
4324         info->cnt = 0;
4325         info->timer.expires = jiffies + time;
4326         add_timer(&info->timer);
4327
4328         /* infinity */
4329         info->max = -1;
4330 }
4331
4332 /**
4333  * ksz_stop_timer - stop kernel timer
4334  * @info:       Kernel timer information.
4335  *
4336  * This routine stops the kernel timer.
4337  */
4338 static void ksz_stop_timer(struct ksz_timer_info *info)
4339 {
4340         if (info->max) {
4341                 info->max = 0;
4342                 del_timer_sync(&info->timer);
4343         }
4344 }
4345
4346 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4347         void (*function)(unsigned long), void *data)
4348 {
4349         info->max = 0;
4350         info->period = period;
4351         init_timer(&info->timer);
4352         info->timer.function = function;
4353         info->timer.data = (unsigned long) data;
4354 }
4355
4356 static void ksz_update_timer(struct ksz_timer_info *info)
4357 {
4358         ++info->cnt;
4359         if (info->max > 0) {
4360                 if (info->cnt < info->max) {
4361                         info->timer.expires = jiffies + info->period;
4362                         add_timer(&info->timer);
4363                 } else
4364                         info->max = 0;
4365         } else if (info->max < 0) {
4366                 info->timer.expires = jiffies + info->period;
4367                 add_timer(&info->timer);
4368         }
4369 }
4370
4371 /**
4372  * ksz_alloc_soft_desc - allocate software descriptors
4373  * @desc_info:  Descriptor information structure.
4374  * @transmit:   Indication that descriptors are for transmit.
4375  *
4376  * This local function allocates software descriptors for manipulation in
4377  * memory.
4378  *
4379  * Return 0 if successful.
4380  */
4381 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4382 {
4383         desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4384                                   GFP_KERNEL);
4385         if (!desc_info->ring)
4386                 return 1;
4387         hw_init_desc(desc_info, transmit);
4388         return 0;
4389 }
4390
4391 /**
4392  * ksz_alloc_desc - allocate hardware descriptors
4393  * @adapter:    Adapter information structure.
4394  *
4395  * This local function allocates hardware descriptors for receiving and
4396  * transmitting.
4397  *
4398  * Return 0 if successful.
4399  */
4400 static int ksz_alloc_desc(struct dev_info *adapter)
4401 {
4402         struct ksz_hw *hw = &adapter->hw;
4403         int offset;
4404
4405         /* Allocate memory for RX & TX descriptors. */
4406         adapter->desc_pool.alloc_size =
4407                 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4408                 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4409                 DESC_ALIGNMENT;
4410
4411         adapter->desc_pool.alloc_virt =
4412                 pci_zalloc_consistent(adapter->pdev,
4413                                       adapter->desc_pool.alloc_size,
4414                                       &adapter->desc_pool.dma_addr);
4415         if (adapter->desc_pool.alloc_virt == NULL) {
4416                 adapter->desc_pool.alloc_size = 0;
4417                 return 1;
4418         }
4419
4420         /* Align to the next cache line boundary. */
4421         offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4422                 (DESC_ALIGNMENT -
4423                 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4424         adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4425         adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4426
4427         /* Allocate receive/transmit descriptors. */
4428         hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4429                 adapter->desc_pool.virt;
4430         hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4431         offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4432         hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4433                 (adapter->desc_pool.virt + offset);
4434         hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4435
4436         if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4437                 return 1;
4438         if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4439                 return 1;
4440
4441         return 0;
4442 }
4443
4444 /**
4445  * free_dma_buf - release DMA buffer resources
4446  * @adapter:    Adapter information structure.
4447  *
4448  * This routine is just a helper function to release the DMA buffer resources.
4449  */
4450 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4451         int direction)
4452 {
4453         pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4454         dev_kfree_skb(dma_buf->skb);
4455         dma_buf->skb = NULL;
4456         dma_buf->dma = 0;
4457 }
4458
4459 /**
4460  * ksz_init_rx_buffers - initialize receive descriptors
4461  * @adapter:    Adapter information structure.
4462  *
4463  * This routine initializes DMA buffers for receiving.
4464  */
4465 static void ksz_init_rx_buffers(struct dev_info *adapter)
4466 {
4467         int i;
4468         struct ksz_desc *desc;
4469         struct ksz_dma_buf *dma_buf;
4470         struct ksz_hw *hw = &adapter->hw;
4471         struct ksz_desc_info *info = &hw->rx_desc_info;
4472
4473         for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4474                 get_rx_pkt(info, &desc);
4475
4476                 dma_buf = DMA_BUFFER(desc);
4477                 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4478                         free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4479                 dma_buf->len = adapter->mtu;
4480                 if (!dma_buf->skb)
4481                         dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4482                 if (dma_buf->skb && !dma_buf->dma)
4483                         dma_buf->dma = pci_map_single(
4484                                 adapter->pdev,
4485                                 skb_tail_pointer(dma_buf->skb),
4486                                 dma_buf->len,
4487                                 PCI_DMA_FROMDEVICE);
4488
4489                 /* Set descriptor. */
4490                 set_rx_buf(desc, dma_buf->dma);
4491                 set_rx_len(desc, dma_buf->len);
4492                 release_desc(desc);
4493         }
4494 }
4495
4496 /**
4497  * ksz_alloc_mem - allocate memory for hardware descriptors
4498  * @adapter:    Adapter information structure.
4499  *
4500  * This function allocates memory for use by hardware descriptors for receiving
4501  * and transmitting.
4502  *
4503  * Return 0 if successful.
4504  */
4505 static int ksz_alloc_mem(struct dev_info *adapter)
4506 {
4507         struct ksz_hw *hw = &adapter->hw;
4508
4509         /* Determine the number of receive and transmit descriptors. */
4510         hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4511         hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4512
4513         /* Determine how many descriptors to skip transmit interrupt. */
4514         hw->tx_int_cnt = 0;
4515         hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4516         if (hw->tx_int_mask > 8)
4517                 hw->tx_int_mask = 8;
4518         while (hw->tx_int_mask) {
4519                 hw->tx_int_cnt++;
4520                 hw->tx_int_mask >>= 1;
4521         }
4522         if (hw->tx_int_cnt) {
4523                 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4524                 hw->tx_int_cnt = 0;
4525         }
4526
4527         /* Determine the descriptor size. */
4528         hw->rx_desc_info.size =
4529                 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4530                 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4531         hw->tx_desc_info.size =
4532                 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4533                 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4534         if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4535                 pr_alert("Hardware descriptor size not right!\n");
4536         ksz_check_desc_num(&hw->rx_desc_info);
4537         ksz_check_desc_num(&hw->tx_desc_info);
4538
4539         /* Allocate descriptors. */
4540         if (ksz_alloc_desc(adapter))
4541                 return 1;
4542
4543         return 0;
4544 }
4545
4546 /**
4547  * ksz_free_desc - free software and hardware descriptors
4548  * @adapter:    Adapter information structure.
4549  *
4550  * This local routine frees the software and hardware descriptors allocated by
4551  * ksz_alloc_desc().
4552  */
4553 static void ksz_free_desc(struct dev_info *adapter)
4554 {
4555         struct ksz_hw *hw = &adapter->hw;
4556
4557         /* Reset descriptor. */
4558         hw->rx_desc_info.ring_virt = NULL;
4559         hw->tx_desc_info.ring_virt = NULL;
4560         hw->rx_desc_info.ring_phys = 0;
4561         hw->tx_desc_info.ring_phys = 0;
4562
4563         /* Free memory. */
4564         if (adapter->desc_pool.alloc_virt)
4565                 pci_free_consistent(
4566                         adapter->pdev,
4567                         adapter->desc_pool.alloc_size,
4568                         adapter->desc_pool.alloc_virt,
4569                         adapter->desc_pool.dma_addr);
4570
4571         /* Reset resource pool. */
4572         adapter->desc_pool.alloc_size = 0;
4573         adapter->desc_pool.alloc_virt = NULL;
4574
4575         kfree(hw->rx_desc_info.ring);
4576         hw->rx_desc_info.ring = NULL;
4577         kfree(hw->tx_desc_info.ring);
4578         hw->tx_desc_info.ring = NULL;
4579 }
4580
4581 /**
4582  * ksz_free_buffers - free buffers used in the descriptors
4583  * @adapter:    Adapter information structure.
4584  * @desc_info:  Descriptor information structure.
4585  *
4586  * This local routine frees buffers used in the DMA buffers.
4587  */
4588 static void ksz_free_buffers(struct dev_info *adapter,
4589         struct ksz_desc_info *desc_info, int direction)
4590 {
4591         int i;
4592         struct ksz_dma_buf *dma_buf;
4593         struct ksz_desc *desc = desc_info->ring;
4594
4595         for (i = 0; i < desc_info->alloc; i++) {
4596                 dma_buf = DMA_BUFFER(desc);
4597                 if (dma_buf->skb)
4598                         free_dma_buf(adapter, dma_buf, direction);
4599                 desc++;
4600         }
4601 }
4602
4603 /**
4604  * ksz_free_mem - free all resources used by descriptors
4605  * @adapter:    Adapter information structure.
4606  *
4607  * This local routine frees all the resources allocated by ksz_alloc_mem().
4608  */
4609 static void ksz_free_mem(struct dev_info *adapter)
4610 {
4611         /* Free transmit buffers. */
4612         ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4613                 PCI_DMA_TODEVICE);
4614
4615         /* Free receive buffers. */
4616         ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4617                 PCI_DMA_FROMDEVICE);
4618
4619         /* Free descriptors. */
4620         ksz_free_desc(adapter);
4621 }
4622
4623 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4624         u64 *counter)
4625 {
4626         int i;
4627         int mib;
4628         int port;
4629         struct ksz_port_mib *port_mib;
4630
4631         memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4632         for (i = 0, port = first; i < cnt; i++, port++) {
4633                 port_mib = &hw->port_mib[port];
4634                 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4635                         counter[mib] += port_mib->counter[mib];
4636         }
4637 }
4638
4639 /**
4640  * send_packet - send packet
4641  * @skb:        Socket buffer.
4642  * @dev:        Network device.
4643  *
4644  * This routine is used to send a packet out to the network.
4645  */
4646 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4647 {
4648         struct ksz_desc *desc;
4649         struct ksz_desc *first;
4650         struct dev_priv *priv = netdev_priv(dev);
4651         struct dev_info *hw_priv = priv->adapter;
4652         struct ksz_hw *hw = &hw_priv->hw;
4653         struct ksz_desc_info *info = &hw->tx_desc_info;
4654         struct ksz_dma_buf *dma_buf;
4655         int len;
4656         int last_frag = skb_shinfo(skb)->nr_frags;
4657
4658         /*
4659          * KSZ8842 with multiple device interfaces needs to be told which port
4660          * to send.
4661          */
4662         if (hw->dev_count > 1)
4663                 hw->dst_ports = 1 << priv->port.first_port;
4664
4665         /* Hardware will pad the length to 60. */
4666         len = skb->len;
4667
4668         /* Remember the very first descriptor. */
4669         first = info->cur;
4670         desc = first;
4671
4672         dma_buf = DMA_BUFFER(desc);
4673         if (last_frag) {
4674                 int frag;
4675                 skb_frag_t *this_frag;
4676
4677                 dma_buf->len = skb_headlen(skb);
4678
4679                 dma_buf->dma = pci_map_single(
4680                         hw_priv->pdev, skb->data, dma_buf->len,
4681                         PCI_DMA_TODEVICE);
4682                 set_tx_buf(desc, dma_buf->dma);
4683                 set_tx_len(desc, dma_buf->len);
4684
4685                 frag = 0;
4686                 do {
4687                         this_frag = &skb_shinfo(skb)->frags[frag];
4688
4689                         /* Get a new descriptor. */
4690                         get_tx_pkt(info, &desc);
4691
4692                         /* Keep track of descriptors used so far. */
4693                         ++hw->tx_int_cnt;
4694
4695                         dma_buf = DMA_BUFFER(desc);
4696                         dma_buf->len = skb_frag_size(this_frag);
4697
4698                         dma_buf->dma = pci_map_single(
4699                                 hw_priv->pdev,
4700                                 skb_frag_address(this_frag),
4701                                 dma_buf->len,
4702                                 PCI_DMA_TODEVICE);
4703                         set_tx_buf(desc, dma_buf->dma);
4704                         set_tx_len(desc, dma_buf->len);
4705
4706                         frag++;
4707                         if (frag == last_frag)
4708                                 break;
4709
4710                         /* Do not release the last descriptor here. */
4711                         release_desc(desc);
4712                 } while (1);
4713
4714                 /* current points to the last descriptor. */
4715                 info->cur = desc;
4716
4717                 /* Release the first descriptor. */
4718                 release_desc(first);
4719         } else {
4720                 dma_buf->len = len;
4721
4722                 dma_buf->dma = pci_map_single(
4723                         hw_priv->pdev, skb->data, dma_buf->len,
4724                         PCI_DMA_TODEVICE);
4725                 set_tx_buf(desc, dma_buf->dma);
4726                 set_tx_len(desc, dma_buf->len);
4727         }
4728
4729         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4730                 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4731                 (desc)->sw.buf.tx.csum_gen_udp = 1;
4732         }
4733
4734         /*
4735          * The last descriptor holds the packet so that it can be returned to
4736          * network subsystem after all descriptors are transmitted.
4737          */
4738         dma_buf->skb = skb;
4739
4740         hw_send_pkt(hw);
4741
4742         /* Update transmit statistics. */
4743         dev->stats.tx_packets++;
4744         dev->stats.tx_bytes += len;
4745 }
4746
4747 /**
4748  * transmit_cleanup - clean up transmit descriptors
4749  * @dev:        Network device.
4750  *
4751  * This routine is called to clean up the transmitted buffers.
4752  */
4753 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4754 {
4755         int last;
4756         union desc_stat status;
4757         struct ksz_hw *hw = &hw_priv->hw;
4758         struct ksz_desc_info *info = &hw->tx_desc_info;
4759         struct ksz_desc *desc;
4760         struct ksz_dma_buf *dma_buf;
4761         struct net_device *dev = NULL;
4762
4763         spin_lock_irq(&hw_priv->hwlock);
4764         last = info->last;
4765
4766         while (info->avail < info->alloc) {
4767                 /* Get next descriptor which is not hardware owned. */
4768                 desc = &info->ring[last];
4769                 status.data = le32_to_cpu(desc->phw->ctrl.data);
4770                 if (status.tx.hw_owned) {
4771                         if (normal)
4772                                 break;
4773                         else
4774                                 reset_desc(desc, status);
4775                 }
4776
4777                 dma_buf = DMA_BUFFER(desc);
4778                 pci_unmap_single(
4779                         hw_priv->pdev, dma_buf->dma, dma_buf->len,
4780                         PCI_DMA_TODEVICE);
4781
4782                 /* This descriptor contains the last buffer in the packet. */
4783                 if (dma_buf->skb) {
4784                         dev = dma_buf->skb->dev;
4785
4786                         /* Release the packet back to network subsystem. */
4787                         dev_kfree_skb_irq(dma_buf->skb);
4788                         dma_buf->skb = NULL;
4789                 }
4790
4791                 /* Free the transmitted descriptor. */
4792                 last++;
4793                 last &= info->mask;
4794                 info->avail++;
4795         }
4796         info->last = last;
4797         spin_unlock_irq(&hw_priv->hwlock);
4798
4799         /* Notify the network subsystem that the packet has been sent. */
4800         if (dev)
4801                 dev->trans_start = jiffies;
4802 }
4803
4804 /**
4805  * transmit_done - transmit done processing
4806  * @dev:        Network device.
4807  *
4808  * This routine is called when the transmit interrupt is triggered, indicating
4809  * either a packet is sent successfully or there are transmit errors.
4810  */
4811 static void tx_done(struct dev_info *hw_priv)
4812 {
4813         struct ksz_hw *hw = &hw_priv->hw;
4814         int port;
4815
4816         transmit_cleanup(hw_priv, 1);
4817
4818         for (port = 0; port < hw->dev_count; port++) {
4819                 struct net_device *dev = hw->port_info[port].pdev;
4820
4821                 if (netif_running(dev) && netif_queue_stopped(dev))
4822                         netif_wake_queue(dev);
4823         }
4824 }
4825
4826 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4827 {
4828         skb->dev = old->dev;
4829         skb->protocol = old->protocol;
4830         skb->ip_summed = old->ip_summed;
4831         skb->csum = old->csum;
4832         skb_set_network_header(skb, ETH_HLEN);
4833
4834         dev_consume_skb_any(old);
4835 }
4836
4837 /**
4838  * netdev_tx - send out packet
4839  * @skb:        Socket buffer.
4840  * @dev:        Network device.
4841  *
4842  * This function is used by the upper network layer to send out a packet.
4843  *
4844  * Return 0 if successful; otherwise an error code indicating failure.
4845  */
4846 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4847 {
4848         struct dev_priv *priv = netdev_priv(dev);
4849         struct dev_info *hw_priv = priv->adapter;
4850         struct ksz_hw *hw = &hw_priv->hw;
4851         int left;
4852         int num = 1;
4853         int rc = 0;
4854
4855         if (hw->features & SMALL_PACKET_TX_BUG) {
4856                 struct sk_buff *org_skb = skb;
4857
4858                 if (skb->len <= 48) {
4859                         if (skb_end_pointer(skb) - skb->data >= 50) {
4860                                 memset(&skb->data[skb->len], 0, 50 - skb->len);
4861                                 skb->len = 50;
4862                         } else {
4863                                 skb = netdev_alloc_skb(dev, 50);
4864                                 if (!skb)
4865                                         return NETDEV_TX_BUSY;
4866                                 memcpy(skb->data, org_skb->data, org_skb->len);
4867                                 memset(&skb->data[org_skb->len], 0,
4868                                         50 - org_skb->len);
4869                                 skb->len = 50;
4870                                 copy_old_skb(org_skb, skb);
4871                         }
4872                 }
4873         }
4874
4875         spin_lock_irq(&hw_priv->hwlock);
4876
4877         num = skb_shinfo(skb)->nr_frags + 1;
4878         left = hw_alloc_pkt(hw, skb->len, num);
4879         if (left) {
4880                 if (left < num ||
4881                     (CHECKSUM_PARTIAL == skb->ip_summed &&
4882                      skb->protocol == htons(ETH_P_IPV6))) {
4883                         struct sk_buff *org_skb = skb;
4884
4885                         skb = netdev_alloc_skb(dev, org_skb->len);
4886                         if (!skb) {
4887                                 rc = NETDEV_TX_BUSY;
4888                                 goto unlock;
4889                         }
4890                         skb_copy_and_csum_dev(org_skb, skb->data);
4891                         org_skb->ip_summed = CHECKSUM_NONE;
4892                         skb->len = org_skb->len;
4893                         copy_old_skb(org_skb, skb);
4894                 }
4895                 send_packet(skb, dev);
4896                 if (left <= num)
4897                         netif_stop_queue(dev);
4898         } else {
4899                 /* Stop the transmit queue until packet is allocated. */
4900                 netif_stop_queue(dev);
4901                 rc = NETDEV_TX_BUSY;
4902         }
4903 unlock:
4904         spin_unlock_irq(&hw_priv->hwlock);
4905
4906         return rc;
4907 }
4908
4909 /**
4910  * netdev_tx_timeout - transmit timeout processing
4911  * @dev:        Network device.
4912  *
4913  * This routine is called when the transmit timer expires.  That indicates the
4914  * hardware is not running correctly because transmit interrupts are not
4915  * triggered to free up resources so that the transmit routine can continue
4916  * sending out packets.  The hardware is reset to correct the problem.
4917  */
4918 static void netdev_tx_timeout(struct net_device *dev)
4919 {
4920         static unsigned long last_reset;
4921
4922         struct dev_priv *priv = netdev_priv(dev);
4923         struct dev_info *hw_priv = priv->adapter;
4924         struct ksz_hw *hw = &hw_priv->hw;
4925         int port;
4926
4927         if (hw->dev_count > 1) {
4928                 /*
4929                  * Only reset the hardware if time between calls is long
4930                  * enough.
4931                  */
4932                 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4933                         hw_priv = NULL;
4934         }
4935
4936         last_reset = jiffies;
4937         if (hw_priv) {
4938                 hw_dis_intr(hw);
4939                 hw_disable(hw);
4940
4941                 transmit_cleanup(hw_priv, 0);
4942                 hw_reset_pkts(&hw->rx_desc_info);
4943                 hw_reset_pkts(&hw->tx_desc_info);
4944                 ksz_init_rx_buffers(hw_priv);
4945
4946                 hw_reset(hw);
4947
4948                 hw_set_desc_base(hw,
4949                         hw->tx_desc_info.ring_phys,
4950                         hw->rx_desc_info.ring_phys);
4951                 hw_set_addr(hw);
4952                 if (hw->all_multi)
4953                         hw_set_multicast(hw, hw->all_multi);
4954                 else if (hw->multi_list_size)
4955                         hw_set_grp_addr(hw);
4956
4957                 if (hw->dev_count > 1) {
4958                         hw_set_add_addr(hw);
4959                         for (port = 0; port < SWITCH_PORT_NUM; port++) {
4960                                 struct net_device *port_dev;
4961
4962                                 port_set_stp_state(hw, port,
4963                                         STP_STATE_DISABLED);
4964
4965                                 port_dev = hw->port_info[port].pdev;
4966                                 if (netif_running(port_dev))
4967                                         port_set_stp_state(hw, port,
4968                                                 STP_STATE_SIMPLE);
4969                         }
4970                 }
4971
4972                 hw_enable(hw);
4973                 hw_ena_intr(hw);
4974         }
4975
4976         dev->trans_start = jiffies;
4977         netif_wake_queue(dev);
4978 }
4979
4980 static inline void csum_verified(struct sk_buff *skb)
4981 {
4982         unsigned short protocol;
4983         struct iphdr *iph;
4984
4985         protocol = skb->protocol;
4986         skb_reset_network_header(skb);
4987         iph = (struct iphdr *) skb_network_header(skb);
4988         if (protocol == htons(ETH_P_8021Q)) {
4989                 protocol = iph->tot_len;
4990                 skb_set_network_header(skb, VLAN_HLEN);
4991                 iph = (struct iphdr *) skb_network_header(skb);
4992         }
4993         if (protocol == htons(ETH_P_IP)) {
4994                 if (iph->protocol == IPPROTO_TCP)
4995                         skb->ip_summed = CHECKSUM_UNNECESSARY;
4996         }
4997 }
4998
4999 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5000         struct ksz_desc *desc, union desc_stat status)
5001 {
5002         int packet_len;
5003         struct dev_priv *priv = netdev_priv(dev);
5004         struct dev_info *hw_priv = priv->adapter;
5005         struct ksz_dma_buf *dma_buf;
5006         struct sk_buff *skb;
5007         int rx_status;
5008
5009         /* Received length includes 4-byte CRC. */
5010         packet_len = status.rx.frame_len - 4;
5011
5012         dma_buf = DMA_BUFFER(desc);
5013         pci_dma_sync_single_for_cpu(
5014                 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5015                 PCI_DMA_FROMDEVICE);
5016
5017         do {
5018                 /* skb->data != skb->head */
5019                 skb = netdev_alloc_skb(dev, packet_len + 2);
5020                 if (!skb) {
5021                         dev->stats.rx_dropped++;
5022                         return -ENOMEM;
5023                 }
5024
5025                 /*
5026                  * Align socket buffer in 4-byte boundary for better
5027                  * performance.
5028                  */
5029                 skb_reserve(skb, 2);
5030
5031                 memcpy(skb_put(skb, packet_len),
5032                         dma_buf->skb->data, packet_len);
5033         } while (0);
5034
5035         skb->protocol = eth_type_trans(skb, dev);
5036
5037         if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5038                 csum_verified(skb);
5039
5040         /* Update receive statistics. */
5041         dev->stats.rx_packets++;
5042         dev->stats.rx_bytes += packet_len;
5043
5044         /* Notify upper layer for received packet. */
5045         rx_status = netif_rx(skb);
5046
5047         return 0;
5048 }
5049
5050 static int dev_rcv_packets(struct dev_info *hw_priv)
5051 {
5052         int next;
5053         union desc_stat status;
5054         struct ksz_hw *hw = &hw_priv->hw;
5055         struct net_device *dev = hw->port_info[0].pdev;
5056         struct ksz_desc_info *info = &hw->rx_desc_info;
5057         int left = info->alloc;
5058         struct ksz_desc *desc;
5059         int received = 0;
5060
5061         next = info->next;
5062         while (left--) {
5063                 /* Get next descriptor which is not hardware owned. */
5064                 desc = &info->ring[next];
5065                 status.data = le32_to_cpu(desc->phw->ctrl.data);
5066                 if (status.rx.hw_owned)
5067                         break;
5068
5069                 /* Status valid only when last descriptor bit is set. */
5070                 if (status.rx.last_desc && status.rx.first_desc) {
5071                         if (rx_proc(dev, hw, desc, status))
5072                                 goto release_packet;
5073                         received++;
5074                 }
5075
5076 release_packet:
5077                 release_desc(desc);
5078                 next++;
5079                 next &= info->mask;
5080         }
5081         info->next = next;
5082
5083         return received;
5084 }
5085
5086 static int port_rcv_packets(struct dev_info *hw_priv)
5087 {
5088         int next;
5089         union desc_stat status;
5090         struct ksz_hw *hw = &hw_priv->hw;
5091         struct net_device *dev = hw->port_info[0].pdev;
5092         struct ksz_desc_info *info = &hw->rx_desc_info;
5093         int left = info->alloc;
5094         struct ksz_desc *desc;
5095         int received = 0;
5096
5097         next = info->next;
5098         while (left--) {
5099                 /* Get next descriptor which is not hardware owned. */
5100                 desc = &info->ring[next];
5101                 status.data = le32_to_cpu(desc->phw->ctrl.data);
5102                 if (status.rx.hw_owned)
5103                         break;
5104
5105                 if (hw->dev_count > 1) {
5106                         /* Get received port number. */
5107                         int p = HW_TO_DEV_PORT(status.rx.src_port);
5108
5109                         dev = hw->port_info[p].pdev;
5110                         if (!netif_running(dev))
5111                                 goto release_packet;
5112                 }
5113
5114                 /* Status valid only when last descriptor bit is set. */
5115                 if (status.rx.last_desc && status.rx.first_desc) {
5116                         if (rx_proc(dev, hw, desc, status))
5117                                 goto release_packet;
5118                         received++;
5119                 }
5120
5121 release_packet:
5122                 release_desc(desc);
5123                 next++;
5124                 next &= info->mask;
5125         }
5126         info->next = next;
5127
5128         return received;
5129 }
5130
5131 static int dev_rcv_special(struct dev_info *hw_priv)
5132 {
5133         int next;
5134         union desc_stat status;
5135         struct ksz_hw *hw = &hw_priv->hw;
5136         struct net_device *dev = hw->port_info[0].pdev;
5137         struct ksz_desc_info *info = &hw->rx_desc_info;
5138         int left = info->alloc;
5139         struct ksz_desc *desc;
5140         int received = 0;
5141
5142         next = info->next;
5143         while (left--) {
5144                 /* Get next descriptor which is not hardware owned. */
5145                 desc = &info->ring[next];
5146                 status.data = le32_to_cpu(desc->phw->ctrl.data);
5147                 if (status.rx.hw_owned)
5148                         break;
5149
5150                 if (hw->dev_count > 1) {
5151                         /* Get received port number. */
5152                         int p = HW_TO_DEV_PORT(status.rx.src_port);
5153
5154                         dev = hw->port_info[p].pdev;
5155                         if (!netif_running(dev))
5156                                 goto release_packet;
5157                 }
5158
5159                 /* Status valid only when last descriptor bit is set. */
5160                 if (status.rx.last_desc && status.rx.first_desc) {
5161                         /*
5162                          * Receive without error.  With receive errors
5163                          * disabled, packets with receive errors will be
5164                          * dropped, so no need to check the error bit.
5165                          */
5166                         if (!status.rx.error || (status.data &
5167                                         KS_DESC_RX_ERROR_COND) ==
5168                                         KS_DESC_RX_ERROR_TOO_LONG) {
5169                                 if (rx_proc(dev, hw, desc, status))
5170                                         goto release_packet;
5171                                 received++;
5172                         } else {
5173                                 struct dev_priv *priv = netdev_priv(dev);
5174
5175                                 /* Update receive error statistics. */
5176                                 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5177                         }
5178                 }
5179
5180 release_packet:
5181                 release_desc(desc);
5182                 next++;
5183                 next &= info->mask;
5184         }
5185         info->next = next;
5186
5187         return received;
5188 }
5189
5190 static void rx_proc_task(unsigned long data)
5191 {
5192         struct dev_info *hw_priv = (struct dev_info *) data;
5193         struct ksz_hw *hw = &hw_priv->hw;
5194
5195         if (!hw->enabled)
5196                 return;
5197         if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5198
5199                 /* In case receive process is suspended because of overrun. */
5200                 hw_resume_rx(hw);
5201
5202                 /* tasklets are interruptible. */
5203                 spin_lock_irq(&hw_priv->hwlock);
5204                 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5205                 spin_unlock_irq(&hw_priv->hwlock);
5206         } else {
5207                 hw_ack_intr(hw, KS884X_INT_RX);
5208                 tasklet_schedule(&hw_priv->rx_tasklet);
5209         }
5210 }
5211
5212 static void tx_proc_task(unsigned long data)
5213 {
5214         struct dev_info *hw_priv = (struct dev_info *) data;
5215         struct ksz_hw *hw = &hw_priv->hw;
5216
5217         hw_ack_intr(hw, KS884X_INT_TX_MASK);
5218
5219         tx_done(hw_priv);
5220
5221         /* tasklets are interruptible. */
5222         spin_lock_irq(&hw_priv->hwlock);
5223         hw_turn_on_intr(hw, KS884X_INT_TX);
5224         spin_unlock_irq(&hw_priv->hwlock);
5225 }
5226
5227 static inline void handle_rx_stop(struct ksz_hw *hw)
5228 {
5229         /* Receive just has been stopped. */
5230         if (0 == hw->rx_stop)
5231                 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5232         else if (hw->rx_stop > 1) {
5233                 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5234                         hw_start_rx(hw);
5235                 } else {
5236                         hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5237                         hw->rx_stop = 0;
5238                 }
5239         } else
5240                 /* Receive just has been started. */
5241                 hw->rx_stop++;
5242 }
5243
5244 /**
5245  * netdev_intr - interrupt handling
5246  * @irq:        Interrupt number.
5247  * @dev_id:     Network device.
5248  *
5249  * This function is called by upper network layer to signal interrupt.
5250  *
5251  * Return IRQ_HANDLED if interrupt is handled.
5252  */
5253 static irqreturn_t netdev_intr(int irq, void *dev_id)
5254 {
5255         uint int_enable = 0;
5256         struct net_device *dev = (struct net_device *) dev_id;
5257         struct dev_priv *priv = netdev_priv(dev);
5258         struct dev_info *hw_priv = priv->adapter;
5259         struct ksz_hw *hw = &hw_priv->hw;
5260
5261         spin_lock(&hw_priv->hwlock);
5262
5263         hw_read_intr(hw, &int_enable);
5264
5265         /* Not our interrupt! */
5266         if (!int_enable) {
5267                 spin_unlock(&hw_priv->hwlock);
5268                 return IRQ_NONE;
5269         }
5270
5271         do {
5272                 hw_ack_intr(hw, int_enable);
5273                 int_enable &= hw->intr_mask;
5274
5275                 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5276                         hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5277                         tasklet_schedule(&hw_priv->tx_tasklet);
5278                 }
5279
5280                 if (likely(int_enable & KS884X_INT_RX)) {
5281                         hw_dis_intr_bit(hw, KS884X_INT_RX);
5282                         tasklet_schedule(&hw_priv->rx_tasklet);
5283                 }
5284
5285                 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5286                         dev->stats.rx_fifo_errors++;
5287                         hw_resume_rx(hw);
5288                 }
5289
5290                 if (unlikely(int_enable & KS884X_INT_PHY)) {
5291                         struct ksz_port *port = &priv->port;
5292
5293                         hw->features |= LINK_INT_WORKING;
5294                         port_get_link_speed(port);
5295                 }
5296
5297                 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5298                         handle_rx_stop(hw);
5299                         break;
5300                 }
5301
5302                 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5303                         u32 data;
5304
5305                         hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5306                         pr_info("Tx stopped\n");
5307                         data = readl(hw->io + KS_DMA_TX_CTRL);
5308                         if (!(data & DMA_TX_ENABLE))
5309                                 pr_info("Tx disabled\n");
5310                         break;
5311                 }
5312         } while (0);
5313
5314         hw_ena_intr(hw);
5315
5316         spin_unlock(&hw_priv->hwlock);
5317
5318         return IRQ_HANDLED;
5319 }
5320
5321 /*
5322  * Linux network device functions
5323  */
5324
5325 static unsigned long next_jiffies;
5326
5327 #ifdef CONFIG_NET_POLL_CONTROLLER
5328 static void netdev_netpoll(struct net_device *dev)
5329 {
5330         struct dev_priv *priv = netdev_priv(dev);
5331         struct dev_info *hw_priv = priv->adapter;
5332
5333         hw_dis_intr(&hw_priv->hw);
5334         netdev_intr(dev->irq, dev);
5335 }
5336 #endif
5337
5338 static void bridge_change(struct ksz_hw *hw)
5339 {
5340         int port;
5341         u8  member;
5342         struct ksz_switch *sw = hw->ksz_switch;
5343
5344         /* No ports in forwarding state. */
5345         if (!sw->member) {
5346                 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5347                 sw_block_addr(hw);
5348         }
5349         for (port = 0; port < SWITCH_PORT_NUM; port++) {
5350                 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5351                         member = HOST_MASK | sw->member;
5352                 else
5353                         member = HOST_MASK | (1 << port);
5354                 if (member != sw->port_cfg[port].member)
5355                         sw_cfg_port_base_vlan(hw, port, member);
5356         }
5357 }
5358
5359 /**
5360  * netdev_close - close network device
5361  * @dev:        Network device.
5362  *
5363  * This function process the close operation of network device.  This is caused
5364  * by the user command "ifconfig ethX down."
5365  *
5366  * Return 0 if successful; otherwise an error code indicating failure.
5367  */
5368 static int netdev_close(struct net_device *dev)
5369 {
5370         struct dev_priv *priv = netdev_priv(dev);
5371         struct dev_info *hw_priv = priv->adapter;
5372         struct ksz_port *port = &priv->port;
5373         struct ksz_hw *hw = &hw_priv->hw;
5374         int pi;
5375
5376         netif_stop_queue(dev);
5377
5378         ksz_stop_timer(&priv->monitor_timer_info);
5379
5380         /* Need to shut the port manually in multiple device interfaces mode. */
5381         if (hw->dev_count > 1) {
5382                 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5383
5384                 /* Port is closed.  Need to change bridge setting. */
5385                 if (hw->features & STP_SUPPORT) {
5386                         pi = 1 << port->first_port;
5387                         if (hw->ksz_switch->member & pi) {
5388                                 hw->ksz_switch->member &= ~pi;
5389                                 bridge_change(hw);
5390                         }
5391                 }
5392         }
5393         if (port->first_port > 0)
5394                 hw_del_addr(hw, dev->dev_addr);
5395         if (!hw_priv->wol_enable)
5396                 port_set_power_saving(port, true);
5397
5398         if (priv->multicast)
5399                 --hw->all_multi;
5400         if (priv->promiscuous)
5401                 --hw->promiscuous;
5402
5403         hw_priv->opened--;
5404         if (!(hw_priv->opened)) {
5405                 ksz_stop_timer(&hw_priv->mib_timer_info);
5406                 flush_work(&hw_priv->mib_read);
5407
5408                 hw_dis_intr(hw);
5409                 hw_disable(hw);
5410                 hw_clr_multicast(hw);
5411
5412                 /* Delay for receive task to stop scheduling itself. */
5413                 msleep(2000 / HZ);
5414
5415                 tasklet_kill(&hw_priv->rx_tasklet);
5416                 tasklet_kill(&hw_priv->tx_tasklet);
5417                 free_irq(dev->irq, hw_priv->dev);
5418
5419                 transmit_cleanup(hw_priv, 0);
5420                 hw_reset_pkts(&hw->rx_desc_info);
5421                 hw_reset_pkts(&hw->tx_desc_info);
5422
5423                 /* Clean out static MAC table when the switch is shutdown. */
5424                 if (hw->features & STP_SUPPORT)
5425                         sw_clr_sta_mac_table(hw);
5426         }
5427
5428         return 0;
5429 }
5430
5431 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5432 {
5433         if (hw->ksz_switch) {
5434                 u32 data;
5435
5436                 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5437                 if (hw->features & RX_HUGE_FRAME)
5438                         data |= SWITCH_HUGE_PACKET;
5439                 else
5440                         data &= ~SWITCH_HUGE_PACKET;
5441                 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5442         }
5443         if (hw->features & RX_HUGE_FRAME) {
5444                 hw->rx_cfg |= DMA_RX_ERROR;
5445                 hw_priv->dev_rcv = dev_rcv_special;
5446         } else {
5447                 hw->rx_cfg &= ~DMA_RX_ERROR;
5448                 if (hw->dev_count > 1)
5449                         hw_priv->dev_rcv = port_rcv_packets;
5450                 else
5451                         hw_priv->dev_rcv = dev_rcv_packets;
5452         }
5453 }
5454
5455 static int prepare_hardware(struct net_device *dev)
5456 {
5457         struct dev_priv *priv = netdev_priv(dev);
5458         struct dev_info *hw_priv = priv->adapter;
5459         struct ksz_hw *hw = &hw_priv->hw;
5460         int rc = 0;
5461
5462         /* Remember the network device that requests interrupts. */
5463         hw_priv->dev = dev;
5464         rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5465         if (rc)
5466                 return rc;
5467         tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5468                      (unsigned long) hw_priv);
5469         tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5470                      (unsigned long) hw_priv);
5471
5472         hw->promiscuous = 0;
5473         hw->all_multi = 0;
5474         hw->multi_list_size = 0;
5475
5476         hw_reset(hw);
5477
5478         hw_set_desc_base(hw,
5479                 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5480         hw_set_addr(hw);
5481         hw_cfg_huge_frame(hw_priv, hw);
5482         ksz_init_rx_buffers(hw_priv);
5483         return 0;
5484 }
5485
5486 static void set_media_state(struct net_device *dev, int media_state)
5487 {
5488         struct dev_priv *priv = netdev_priv(dev);
5489
5490         if (media_state == priv->media_state)
5491                 netif_carrier_on(dev);
5492         else
5493                 netif_carrier_off(dev);
5494         netif_info(priv, link, dev, "link %s\n",
5495                    media_state == priv->media_state ? "on" : "off");
5496 }
5497
5498 /**
5499  * netdev_open - open network device
5500  * @dev:        Network device.
5501  *
5502  * This function process the open operation of network device.  This is caused
5503  * by the user command "ifconfig ethX up."
5504  *
5505  * Return 0 if successful; otherwise an error code indicating failure.
5506  */
5507 static int netdev_open(struct net_device *dev)
5508 {
5509         struct dev_priv *priv = netdev_priv(dev);
5510         struct dev_info *hw_priv = priv->adapter;
5511         struct ksz_hw *hw = &hw_priv->hw;
5512         struct ksz_port *port = &priv->port;
5513         int i;
5514         int p;
5515         int rc = 0;
5516
5517         priv->multicast = 0;
5518         priv->promiscuous = 0;
5519
5520         /* Reset device statistics. */
5521         memset(&dev->stats, 0, sizeof(struct net_device_stats));
5522         memset((void *) port->counter, 0,
5523                 (sizeof(u64) * OID_COUNTER_LAST));
5524
5525         if (!(hw_priv->opened)) {
5526                 rc = prepare_hardware(dev);
5527                 if (rc)
5528                         return rc;
5529                 for (i = 0; i < hw->mib_port_cnt; i++) {
5530                         if (next_jiffies < jiffies)
5531                                 next_jiffies = jiffies + HZ * 2;
5532                         else
5533                                 next_jiffies += HZ * 1;
5534                         hw_priv->counter[i].time = next_jiffies;
5535                         hw->port_mib[i].state = media_disconnected;
5536                         port_init_cnt(hw, i);
5537                 }
5538                 if (hw->ksz_switch)
5539                         hw->port_mib[HOST_PORT].state = media_connected;
5540                 else {
5541                         hw_add_wol_bcast(hw);
5542                         hw_cfg_wol_pme(hw, 0);
5543                         hw_clr_wol_pme_status(&hw_priv->hw);
5544                 }
5545         }
5546         port_set_power_saving(port, false);
5547
5548         for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5549                 /*
5550                  * Initialize to invalid value so that link detection
5551                  * is done.
5552                  */
5553                 hw->port_info[p].partner = 0xFF;
5554                 hw->port_info[p].state = media_disconnected;
5555         }
5556
5557         /* Need to open the port in multiple device interfaces mode. */
5558         if (hw->dev_count > 1) {
5559                 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5560                 if (port->first_port > 0)
5561                         hw_add_addr(hw, dev->dev_addr);
5562         }
5563
5564         port_get_link_speed(port);
5565         if (port->force_link)
5566                 port_force_link_speed(port);
5567         else
5568                 port_set_link_speed(port);
5569
5570         if (!(hw_priv->opened)) {
5571                 hw_setup_intr(hw);
5572                 hw_enable(hw);
5573                 hw_ena_intr(hw);
5574
5575                 if (hw->mib_port_cnt)
5576                         ksz_start_timer(&hw_priv->mib_timer_info,
5577                                 hw_priv->mib_timer_info.period);
5578         }
5579
5580         hw_priv->opened++;
5581
5582         ksz_start_timer(&priv->monitor_timer_info,
5583                 priv->monitor_timer_info.period);
5584
5585         priv->media_state = port->linked->state;
5586
5587         set_media_state(dev, media_connected);
5588         netif_start_queue(dev);
5589
5590         return 0;
5591 }
5592
5593 /* RX errors = rx_errors */
5594 /* RX dropped = rx_dropped */
5595 /* RX overruns = rx_fifo_errors */
5596 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5597 /* TX errors = tx_errors */
5598 /* TX dropped = tx_dropped */
5599 /* TX overruns = tx_fifo_errors */
5600 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5601 /* collisions = collisions */
5602
5603 /**
5604  * netdev_query_statistics - query network device statistics
5605  * @dev:        Network device.
5606  *
5607  * This function returns the statistics of the network device.  The device
5608  * needs not be opened.
5609  *
5610  * Return network device statistics.
5611  */
5612 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5613 {
5614         struct dev_priv *priv = netdev_priv(dev);
5615         struct ksz_port *port = &priv->port;
5616         struct ksz_hw *hw = &priv->adapter->hw;
5617         struct ksz_port_mib *mib;
5618         int i;
5619         int p;
5620
5621         dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5622         dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5623
5624         /* Reset to zero to add count later. */
5625         dev->stats.multicast = 0;
5626         dev->stats.collisions = 0;
5627         dev->stats.rx_length_errors = 0;
5628         dev->stats.rx_crc_errors = 0;
5629         dev->stats.rx_frame_errors = 0;
5630         dev->stats.tx_window_errors = 0;
5631
5632         for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5633                 mib = &hw->port_mib[p];
5634
5635                 dev->stats.multicast += (unsigned long)
5636                         mib->counter[MIB_COUNTER_RX_MULTICAST];
5637
5638                 dev->stats.collisions += (unsigned long)
5639                         mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5640
5641                 dev->stats.rx_length_errors += (unsigned long)(
5642                         mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5643                         mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5644                         mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5645                         mib->counter[MIB_COUNTER_RX_JABBER]);
5646                 dev->stats.rx_crc_errors += (unsigned long)
5647                         mib->counter[MIB_COUNTER_RX_CRC_ERR];
5648                 dev->stats.rx_frame_errors += (unsigned long)(
5649                         mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5650                         mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5651
5652                 dev->stats.tx_window_errors += (unsigned long)
5653                         mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5654         }
5655
5656         return &dev->stats;
5657 }
5658
5659 /**
5660  * netdev_set_mac_address - set network device MAC address
5661  * @dev:        Network device.
5662  * @addr:       Buffer of MAC address.
5663  *
5664  * This function is used to set the MAC address of the network device.
5665  *
5666  * Return 0 to indicate success.
5667  */
5668 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5669 {
5670         struct dev_priv *priv = netdev_priv(dev);
5671         struct dev_info *hw_priv = priv->adapter;
5672         struct ksz_hw *hw = &hw_priv->hw;
5673         struct sockaddr *mac = addr;
5674         uint interrupt;
5675
5676         if (priv->port.first_port > 0)
5677                 hw_del_addr(hw, dev->dev_addr);
5678         else {
5679                 hw->mac_override = 1;
5680                 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5681         }
5682
5683         memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5684
5685         interrupt = hw_block_intr(hw);
5686
5687         if (priv->port.first_port > 0)
5688                 hw_add_addr(hw, dev->dev_addr);
5689         else
5690                 hw_set_addr(hw);
5691         hw_restore_intr(hw, interrupt);
5692
5693         return 0;
5694 }
5695
5696 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5697         struct ksz_hw *hw, int promiscuous)
5698 {
5699         if (promiscuous != priv->promiscuous) {
5700                 u8 prev_state = hw->promiscuous;
5701
5702                 if (promiscuous)
5703                         ++hw->promiscuous;
5704                 else
5705                         --hw->promiscuous;
5706                 priv->promiscuous = promiscuous;
5707
5708                 /* Turn on/off promiscuous mode. */
5709                 if (hw->promiscuous <= 1 && prev_state <= 1)
5710                         hw_set_promiscuous(hw, hw->promiscuous);
5711
5712                 /*
5713                  * Port is not in promiscuous mode, meaning it is released
5714                  * from the bridge.
5715                  */
5716                 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5717                     (dev->priv_flags & IFF_BRIDGE_PORT)) {
5718                         struct ksz_switch *sw = hw->ksz_switch;
5719                         int port = priv->port.first_port;
5720
5721                         port_set_stp_state(hw, port, STP_STATE_DISABLED);
5722                         port = 1 << port;
5723                         if (sw->member & port) {
5724                                 sw->member &= ~port;
5725                                 bridge_change(hw);
5726                         }
5727                 }
5728         }
5729 }
5730
5731 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5732         int multicast)
5733 {
5734         if (multicast != priv->multicast) {
5735                 u8 all_multi = hw->all_multi;
5736
5737                 if (multicast)
5738                         ++hw->all_multi;
5739                 else
5740                         --hw->all_multi;
5741                 priv->multicast = multicast;
5742
5743                 /* Turn on/off all multicast mode. */
5744                 if (hw->all_multi <= 1 && all_multi <= 1)
5745                         hw_set_multicast(hw, hw->all_multi);
5746         }
5747 }
5748
5749 /**
5750  * netdev_set_rx_mode
5751  * @dev:        Network device.
5752  *
5753  * This routine is used to set multicast addresses or put the network device
5754  * into promiscuous mode.
5755  */
5756 static void netdev_set_rx_mode(struct net_device *dev)
5757 {
5758         struct dev_priv *priv = netdev_priv(dev);
5759         struct dev_info *hw_priv = priv->adapter;
5760         struct ksz_hw *hw = &hw_priv->hw;
5761         struct netdev_hw_addr *ha;
5762         int multicast = (dev->flags & IFF_ALLMULTI);
5763
5764         dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5765
5766         if (hw_priv->hw.dev_count > 1)
5767                 multicast |= (dev->flags & IFF_MULTICAST);
5768         dev_set_multicast(priv, hw, multicast);
5769
5770         /* Cannot use different hashes in multiple device interfaces mode. */
5771         if (hw_priv->hw.dev_count > 1)
5772                 return;
5773
5774         if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5775                 int i = 0;
5776
5777                 /* List too big to support so turn on all multicast mode. */
5778                 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5779                         if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5780                                 hw->multi_list_size = MAX_MULTICAST_LIST;
5781                                 ++hw->all_multi;
5782                                 hw_set_multicast(hw, hw->all_multi);
5783                         }
5784                         return;
5785                 }
5786
5787                 netdev_for_each_mc_addr(ha, dev) {
5788                         if (i >= MAX_MULTICAST_LIST)
5789                                 break;
5790                         memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5791                 }
5792                 hw->multi_list_size = (u8) i;
5793                 hw_set_grp_addr(hw);
5794         } else {
5795                 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5796                         --hw->all_multi;
5797                         hw_set_multicast(hw, hw->all_multi);
5798                 }
5799                 hw->multi_list_size = 0;
5800                 hw_clr_multicast(hw);
5801         }
5802 }
5803
5804 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5805 {
5806         struct dev_priv *priv = netdev_priv(dev);
5807         struct dev_info *hw_priv = priv->adapter;
5808         struct ksz_hw *hw = &hw_priv->hw;
5809         int hw_mtu;
5810
5811         if (netif_running(dev))
5812                 return -EBUSY;
5813
5814         /* Cannot use different MTU in multiple device interfaces mode. */
5815         if (hw->dev_count > 1)
5816                 if (dev != hw_priv->dev)
5817                         return 0;
5818         if (new_mtu < 60)
5819                 return -EINVAL;
5820
5821         if (dev->mtu != new_mtu) {
5822                 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5823                 if (hw_mtu > MAX_RX_BUF_SIZE)
5824                         return -EINVAL;
5825                 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5826                         hw->features |= RX_HUGE_FRAME;
5827                         hw_mtu = MAX_RX_BUF_SIZE;
5828                 } else {
5829                         hw->features &= ~RX_HUGE_FRAME;
5830                         hw_mtu = REGULAR_RX_BUF_SIZE;
5831                 }
5832                 hw_mtu = (hw_mtu + 3) & ~3;
5833                 hw_priv->mtu = hw_mtu;
5834                 dev->mtu = new_mtu;
5835         }
5836         return 0;
5837 }
5838
5839 /**
5840  * netdev_ioctl - I/O control processing
5841  * @dev:        Network device.
5842  * @ifr:        Interface request structure.
5843  * @cmd:        I/O control code.
5844  *
5845  * This function is used to process I/O control calls.
5846  *
5847  * Return 0 to indicate success.
5848  */
5849 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5850 {
5851         struct dev_priv *priv = netdev_priv(dev);
5852         struct dev_info *hw_priv = priv->adapter;
5853         struct ksz_hw *hw = &hw_priv->hw;
5854         struct ksz_port *port = &priv->port;
5855         int result = 0;
5856         struct mii_ioctl_data *data = if_mii(ifr);
5857
5858         if (down_interruptible(&priv->proc_sem))
5859                 return -ERESTARTSYS;
5860
5861         switch (cmd) {
5862         /* Get address of MII PHY in use. */
5863         case SIOCGMIIPHY:
5864                 data->phy_id = priv->id;
5865
5866                 /* Fallthrough... */
5867
5868         /* Read MII PHY register. */
5869         case SIOCGMIIREG:
5870                 if (data->phy_id != priv->id || data->reg_num >= 6)
5871                         result = -EIO;
5872                 else
5873                         hw_r_phy(hw, port->linked->port_id, data->reg_num,
5874                                 &data->val_out);
5875                 break;
5876
5877         /* Write MII PHY register. */
5878         case SIOCSMIIREG:
5879                 if (!capable(CAP_NET_ADMIN))
5880                         result = -EPERM;
5881                 else if (data->phy_id != priv->id || data->reg_num >= 6)
5882                         result = -EIO;
5883                 else
5884                         hw_w_phy(hw, port->linked->port_id, data->reg_num,
5885                                 data->val_in);
5886                 break;
5887
5888         default:
5889                 result = -EOPNOTSUPP;
5890         }
5891
5892         up(&priv->proc_sem);
5893
5894         return result;
5895 }
5896
5897 /*
5898  * MII support
5899  */
5900
5901 /**
5902  * mdio_read - read PHY register
5903  * @dev:        Network device.
5904  * @phy_id:     The PHY id.
5905  * @reg_num:    The register number.
5906  *
5907  * This function returns the PHY register value.
5908  *
5909  * Return the register value.
5910  */
5911 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5912 {
5913         struct dev_priv *priv = netdev_priv(dev);
5914         struct ksz_port *port = &priv->port;
5915         struct ksz_hw *hw = port->hw;
5916         u16 val_out;
5917
5918         hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5919         return val_out;
5920 }
5921
5922 /**
5923  * mdio_write - set PHY register
5924  * @dev:        Network device.
5925  * @phy_id:     The PHY id.
5926  * @reg_num:    The register number.
5927  * @val:        The register value.
5928  *
5929  * This procedure sets the PHY register value.
5930  */
5931 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5932 {
5933         struct dev_priv *priv = netdev_priv(dev);
5934         struct ksz_port *port = &priv->port;
5935         struct ksz_hw *hw = port->hw;
5936         int i;
5937         int pi;
5938
5939         for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5940                 hw_w_phy(hw, pi, reg_num << 1, val);
5941 }
5942
5943 /*
5944  * ethtool support
5945  */
5946
5947 #define EEPROM_SIZE                     0x40
5948
5949 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5950
5951 #define ADVERTISED_ALL                  \
5952         (ADVERTISED_10baseT_Half |      \
5953         ADVERTISED_10baseT_Full |       \
5954         ADVERTISED_100baseT_Half |      \
5955         ADVERTISED_100baseT_Full)
5956
5957 /* These functions use the MII functions in mii.c. */
5958
5959 /**
5960  * netdev_get_settings - get network device settings
5961  * @dev:        Network device.
5962  * @cmd:        Ethtool command.
5963  *
5964  * This function queries the PHY and returns its state in the ethtool command.
5965  *
5966  * Return 0 if successful; otherwise an error code.
5967  */
5968 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5969 {
5970         struct dev_priv *priv = netdev_priv(dev);
5971         struct dev_info *hw_priv = priv->adapter;
5972
5973         mutex_lock(&hw_priv->lock);
5974         mii_ethtool_gset(&priv->mii_if, cmd);
5975         cmd->advertising |= SUPPORTED_TP;
5976         mutex_unlock(&hw_priv->lock);
5977
5978         /* Save advertised settings for workaround in next function. */
5979         priv->advertising = cmd->advertising;
5980         return 0;
5981 }
5982
5983 /**
5984  * netdev_set_settings - set network device settings
5985  * @dev:        Network device.
5986  * @cmd:        Ethtool command.
5987  *
5988  * This function sets the PHY according to the ethtool command.
5989  *
5990  * Return 0 if successful; otherwise an error code.
5991  */
5992 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5993 {
5994         struct dev_priv *priv = netdev_priv(dev);
5995         struct dev_info *hw_priv = priv->adapter;
5996         struct ksz_port *port = &priv->port;
5997         u32 speed = ethtool_cmd_speed(cmd);
5998         int rc;
5999
6000         /*
6001          * ethtool utility does not change advertised setting if auto
6002          * negotiation is not specified explicitly.
6003          */
6004         if (cmd->autoneg && priv->advertising == cmd->advertising) {
6005                 cmd->advertising |= ADVERTISED_ALL;
6006                 if (10 == speed)
6007                         cmd->advertising &=
6008                                 ~(ADVERTISED_100baseT_Full |
6009                                 ADVERTISED_100baseT_Half);
6010                 else if (100 == speed)
6011                         cmd->advertising &=
6012                                 ~(ADVERTISED_10baseT_Full |
6013                                 ADVERTISED_10baseT_Half);
6014                 if (0 == cmd->duplex)
6015                         cmd->advertising &=
6016                                 ~(ADVERTISED_100baseT_Full |
6017                                 ADVERTISED_10baseT_Full);
6018                 else if (1 == cmd->duplex)
6019                         cmd->advertising &=
6020                                 ~(ADVERTISED_100baseT_Half |
6021                                 ADVERTISED_10baseT_Half);
6022         }
6023         mutex_lock(&hw_priv->lock);
6024         if (cmd->autoneg &&
6025                         (cmd->advertising & ADVERTISED_ALL) ==
6026                         ADVERTISED_ALL) {
6027                 port->duplex = 0;
6028                 port->speed = 0;
6029                 port->force_link = 0;
6030         } else {
6031                 port->duplex = cmd->duplex + 1;
6032                 if (1000 != speed)
6033                         port->speed = speed;
6034                 if (cmd->autoneg)
6035                         port->force_link = 0;
6036                 else
6037                         port->force_link = 1;
6038         }
6039         rc = mii_ethtool_sset(&priv->mii_if, cmd);
6040         mutex_unlock(&hw_priv->lock);
6041         return rc;
6042 }
6043
6044 /**
6045  * netdev_nway_reset - restart auto-negotiation
6046  * @dev:        Network device.
6047  *
6048  * This function restarts the PHY for auto-negotiation.
6049  *
6050  * Return 0 if successful; otherwise an error code.
6051  */
6052 static int netdev_nway_reset(struct net_device *dev)
6053 {
6054         struct dev_priv *priv = netdev_priv(dev);
6055         struct dev_info *hw_priv = priv->adapter;
6056         int rc;
6057
6058         mutex_lock(&hw_priv->lock);
6059         rc = mii_nway_restart(&priv->mii_if);
6060         mutex_unlock(&hw_priv->lock);
6061         return rc;
6062 }
6063
6064 /**
6065  * netdev_get_link - get network device link status
6066  * @dev:        Network device.
6067  *
6068  * This function gets the link status from the PHY.
6069  *
6070  * Return true if PHY is linked and false otherwise.
6071  */
6072 static u32 netdev_get_link(struct net_device *dev)
6073 {
6074         struct dev_priv *priv = netdev_priv(dev);
6075         int rc;
6076
6077         rc = mii_link_ok(&priv->mii_if);
6078         return rc;
6079 }
6080
6081 /**
6082  * netdev_get_drvinfo - get network driver information
6083  * @dev:        Network device.
6084  * @info:       Ethtool driver info data structure.
6085  *
6086  * This procedure returns the driver information.
6087  */
6088 static void netdev_get_drvinfo(struct net_device *dev,
6089         struct ethtool_drvinfo *info)
6090 {
6091         struct dev_priv *priv = netdev_priv(dev);
6092         struct dev_info *hw_priv = priv->adapter;
6093
6094         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6095         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6096         strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6097                 sizeof(info->bus_info));
6098 }
6099
6100 /**
6101  * netdev_get_regs_len - get length of register dump
6102  * @dev:        Network device.
6103  *
6104  * This function returns the length of the register dump.
6105  *
6106  * Return length of the register dump.
6107  */
6108 static struct hw_regs {
6109         int start;
6110         int end;
6111 } hw_regs_range[] = {
6112         { KS_DMA_TX_CTRL,       KS884X_INTERRUPTS_STATUS },
6113         { KS_ADD_ADDR_0_LO,     KS_ADD_ADDR_F_HI },
6114         { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6115         { KS884X_SIDER_P,       KS8842_SGCR7_P },
6116         { KS8842_MACAR1_P,      KS8842_TOSR8_P },
6117         { KS884X_P1MBCR_P,      KS8842_P3ERCR_P },
6118         { 0, 0 }
6119 };
6120
6121 static int netdev_get_regs_len(struct net_device *dev)
6122 {
6123         struct hw_regs *range = hw_regs_range;
6124         int regs_len = 0x10 * sizeof(u32);
6125
6126         while (range->end > range->start) {
6127                 regs_len += (range->end - range->start + 3) / 4 * 4;
6128                 range++;
6129         }
6130         return regs_len;
6131 }
6132
6133 /**
6134  * netdev_get_regs - get register dump
6135  * @dev:        Network device.
6136  * @regs:       Ethtool registers data structure.
6137  * @ptr:        Buffer to store the register values.
6138  *
6139  * This procedure dumps the register values in the provided buffer.
6140  */
6141 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6142         void *ptr)
6143 {
6144         struct dev_priv *priv = netdev_priv(dev);
6145         struct dev_info *hw_priv = priv->adapter;
6146         struct ksz_hw *hw = &hw_priv->hw;
6147         int *buf = (int *) ptr;
6148         struct hw_regs *range = hw_regs_range;
6149         int len;
6150
6151         mutex_lock(&hw_priv->lock);
6152         regs->version = 0;
6153         for (len = 0; len < 0x40; len += 4) {
6154                 pci_read_config_dword(hw_priv->pdev, len, buf);
6155                 buf++;
6156         }
6157         while (range->end > range->start) {
6158                 for (len = range->start; len < range->end; len += 4) {
6159                         *buf = readl(hw->io + len);
6160                         buf++;
6161                 }
6162                 range++;
6163         }
6164         mutex_unlock(&hw_priv->lock);
6165 }
6166
6167 #define WOL_SUPPORT                     \
6168         (WAKE_PHY | WAKE_MAGIC |        \
6169         WAKE_UCAST | WAKE_MCAST |       \
6170         WAKE_BCAST | WAKE_ARP)
6171
6172 /**
6173  * netdev_get_wol - get Wake-on-LAN support
6174  * @dev:        Network device.
6175  * @wol:        Ethtool Wake-on-LAN data structure.
6176  *
6177  * This procedure returns Wake-on-LAN support.
6178  */
6179 static void netdev_get_wol(struct net_device *dev,
6180         struct ethtool_wolinfo *wol)
6181 {
6182         struct dev_priv *priv = netdev_priv(dev);
6183         struct dev_info *hw_priv = priv->adapter;
6184
6185         wol->supported = hw_priv->wol_support;
6186         wol->wolopts = hw_priv->wol_enable;
6187         memset(&wol->sopass, 0, sizeof(wol->sopass));
6188 }
6189
6190 /**
6191  * netdev_set_wol - set Wake-on-LAN support
6192  * @dev:        Network device.
6193  * @wol:        Ethtool Wake-on-LAN data structure.
6194  *
6195  * This function sets Wake-on-LAN support.
6196  *
6197  * Return 0 if successful; otherwise an error code.
6198  */
6199 static int netdev_set_wol(struct net_device *dev,
6200         struct ethtool_wolinfo *wol)
6201 {
6202         struct dev_priv *priv = netdev_priv(dev);
6203         struct dev_info *hw_priv = priv->adapter;
6204
6205         /* Need to find a way to retrieve the device IP address. */
6206         static const u8 net_addr[] = { 192, 168, 1, 1 };
6207
6208         if (wol->wolopts & ~hw_priv->wol_support)
6209                 return -EINVAL;
6210
6211         hw_priv->wol_enable = wol->wolopts;
6212
6213         /* Link wakeup cannot really be disabled. */
6214         if (wol->wolopts)
6215                 hw_priv->wol_enable |= WAKE_PHY;
6216         hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6217         return 0;
6218 }
6219
6220 /**
6221  * netdev_get_msglevel - get debug message level
6222  * @dev:        Network device.
6223  *
6224  * This function returns current debug message level.
6225  *
6226  * Return current debug message flags.
6227  */
6228 static u32 netdev_get_msglevel(struct net_device *dev)
6229 {
6230         struct dev_priv *priv = netdev_priv(dev);
6231
6232         return priv->msg_enable;
6233 }
6234
6235 /**
6236  * netdev_set_msglevel - set debug message level
6237  * @dev:        Network device.
6238  * @value:      Debug message flags.
6239  *
6240  * This procedure sets debug message level.
6241  */
6242 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6243 {
6244         struct dev_priv *priv = netdev_priv(dev);
6245
6246         priv->msg_enable = value;
6247 }
6248
6249 /**
6250  * netdev_get_eeprom_len - get EEPROM length
6251  * @dev:        Network device.
6252  *
6253  * This function returns the length of the EEPROM.
6254  *
6255  * Return length of the EEPROM.
6256  */
6257 static int netdev_get_eeprom_len(struct net_device *dev)
6258 {
6259         return EEPROM_SIZE * 2;
6260 }
6261
6262 /**
6263  * netdev_get_eeprom - get EEPROM data
6264  * @dev:        Network device.
6265  * @eeprom:     Ethtool EEPROM data structure.
6266  * @data:       Buffer to store the EEPROM data.
6267  *
6268  * This function dumps the EEPROM data in the provided buffer.
6269  *
6270  * Return 0 if successful; otherwise an error code.
6271  */
6272 #define EEPROM_MAGIC                    0x10A18842
6273
6274 static int netdev_get_eeprom(struct net_device *dev,
6275         struct ethtool_eeprom *eeprom, u8 *data)
6276 {
6277         struct dev_priv *priv = netdev_priv(dev);
6278         struct dev_info *hw_priv = priv->adapter;
6279         u8 *eeprom_byte = (u8 *) eeprom_data;
6280         int i;
6281         int len;
6282
6283         len = (eeprom->offset + eeprom->len + 1) / 2;
6284         for (i = eeprom->offset / 2; i < len; i++)
6285                 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6286         eeprom->magic = EEPROM_MAGIC;
6287         memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6288
6289         return 0;
6290 }
6291
6292 /**
6293  * netdev_set_eeprom - write EEPROM data
6294  * @dev:        Network device.
6295  * @eeprom:     Ethtool EEPROM data structure.
6296  * @data:       Data buffer.
6297  *
6298  * This function modifies the EEPROM data one byte at a time.
6299  *
6300  * Return 0 if successful; otherwise an error code.
6301  */
6302 static int netdev_set_eeprom(struct net_device *dev,
6303         struct ethtool_eeprom *eeprom, u8 *data)
6304 {
6305         struct dev_priv *priv = netdev_priv(dev);
6306         struct dev_info *hw_priv = priv->adapter;
6307         u16 eeprom_word[EEPROM_SIZE];
6308         u8 *eeprom_byte = (u8 *) eeprom_word;
6309         int i;
6310         int len;
6311
6312         if (eeprom->magic != EEPROM_MAGIC)
6313                 return -EINVAL;
6314
6315         len = (eeprom->offset + eeprom->len + 1) / 2;
6316         for (i = eeprom->offset / 2; i < len; i++)
6317                 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6318         memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6319         memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6320         for (i = 0; i < EEPROM_SIZE; i++)
6321                 if (eeprom_word[i] != eeprom_data[i]) {
6322                         eeprom_data[i] = eeprom_word[i];
6323                         eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6324         }
6325
6326         return 0;
6327 }
6328
6329 /**
6330  * netdev_get_pauseparam - get flow control parameters
6331  * @dev:        Network device.
6332  * @pause:      Ethtool PAUSE settings data structure.
6333  *
6334  * This procedure returns the PAUSE control flow settings.
6335  */
6336 static void netdev_get_pauseparam(struct net_device *dev,
6337         struct ethtool_pauseparam *pause)
6338 {
6339         struct dev_priv *priv = netdev_priv(dev);
6340         struct dev_info *hw_priv = priv->adapter;
6341         struct ksz_hw *hw = &hw_priv->hw;
6342
6343         pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6344         if (!hw->ksz_switch) {
6345                 pause->rx_pause =
6346                         (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6347                 pause->tx_pause =
6348                         (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6349         } else {
6350                 pause->rx_pause =
6351                         (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6352                                 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6353                 pause->tx_pause =
6354                         (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6355                                 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6356         }
6357 }
6358
6359 /**
6360  * netdev_set_pauseparam - set flow control parameters
6361  * @dev:        Network device.
6362  * @pause:      Ethtool PAUSE settings data structure.
6363  *
6364  * This function sets the PAUSE control flow settings.
6365  * Not implemented yet.
6366  *
6367  * Return 0 if successful; otherwise an error code.
6368  */
6369 static int netdev_set_pauseparam(struct net_device *dev,
6370         struct ethtool_pauseparam *pause)
6371 {
6372         struct dev_priv *priv = netdev_priv(dev);
6373         struct dev_info *hw_priv = priv->adapter;
6374         struct ksz_hw *hw = &hw_priv->hw;
6375         struct ksz_port *port = &priv->port;
6376
6377         mutex_lock(&hw_priv->lock);
6378         if (pause->autoneg) {
6379                 if (!pause->rx_pause && !pause->tx_pause)
6380                         port->flow_ctrl = PHY_NO_FLOW_CTRL;
6381                 else
6382                         port->flow_ctrl = PHY_FLOW_CTRL;
6383                 hw->overrides &= ~PAUSE_FLOW_CTRL;
6384                 port->force_link = 0;
6385                 if (hw->ksz_switch) {
6386                         sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387                                 SWITCH_RX_FLOW_CTRL, 1);
6388                         sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6389                                 SWITCH_TX_FLOW_CTRL, 1);
6390                 }
6391                 port_set_link_speed(port);
6392         } else {
6393                 hw->overrides |= PAUSE_FLOW_CTRL;
6394                 if (hw->ksz_switch) {
6395                         sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6396                                 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6397                         sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398                                 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6399                 } else
6400                         set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6401         }
6402         mutex_unlock(&hw_priv->lock);
6403
6404         return 0;
6405 }
6406
6407 /**
6408  * netdev_get_ringparam - get tx/rx ring parameters
6409  * @dev:        Network device.
6410  * @pause:      Ethtool RING settings data structure.
6411  *
6412  * This procedure returns the TX/RX ring settings.
6413  */
6414 static void netdev_get_ringparam(struct net_device *dev,
6415         struct ethtool_ringparam *ring)
6416 {
6417         struct dev_priv *priv = netdev_priv(dev);
6418         struct dev_info *hw_priv = priv->adapter;
6419         struct ksz_hw *hw = &hw_priv->hw;
6420
6421         ring->tx_max_pending = (1 << 9);
6422         ring->tx_pending = hw->tx_desc_info.alloc;
6423         ring->rx_max_pending = (1 << 9);
6424         ring->rx_pending = hw->rx_desc_info.alloc;
6425 }
6426
6427 #define STATS_LEN                       (TOTAL_PORT_COUNTER_NUM)
6428
6429 static struct {
6430         char string[ETH_GSTRING_LEN];
6431 } ethtool_stats_keys[STATS_LEN] = {
6432         { "rx_lo_priority_octets" },
6433         { "rx_hi_priority_octets" },
6434         { "rx_undersize_packets" },
6435         { "rx_fragments" },
6436         { "rx_oversize_packets" },
6437         { "rx_jabbers" },
6438         { "rx_symbol_errors" },
6439         { "rx_crc_errors" },
6440         { "rx_align_errors" },
6441         { "rx_mac_ctrl_packets" },
6442         { "rx_pause_packets" },
6443         { "rx_bcast_packets" },
6444         { "rx_mcast_packets" },
6445         { "rx_ucast_packets" },
6446         { "rx_64_or_less_octet_packets" },
6447         { "rx_65_to_127_octet_packets" },
6448         { "rx_128_to_255_octet_packets" },
6449         { "rx_256_to_511_octet_packets" },
6450         { "rx_512_to_1023_octet_packets" },
6451         { "rx_1024_to_1522_octet_packets" },
6452
6453         { "tx_lo_priority_octets" },
6454         { "tx_hi_priority_octets" },
6455         { "tx_late_collisions" },
6456         { "tx_pause_packets" },
6457         { "tx_bcast_packets" },
6458         { "tx_mcast_packets" },
6459         { "tx_ucast_packets" },
6460         { "tx_deferred" },
6461         { "tx_total_collisions" },
6462         { "tx_excessive_collisions" },
6463         { "tx_single_collisions" },
6464         { "tx_mult_collisions" },
6465
6466         { "rx_discards" },
6467         { "tx_discards" },
6468 };
6469
6470 /**
6471  * netdev_get_strings - get statistics identity strings
6472  * @dev:        Network device.
6473  * @stringset:  String set identifier.
6474  * @buf:        Buffer to store the strings.
6475  *
6476  * This procedure returns the strings used to identify the statistics.
6477  */
6478 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6479 {
6480         struct dev_priv *priv = netdev_priv(dev);
6481         struct dev_info *hw_priv = priv->adapter;
6482         struct ksz_hw *hw = &hw_priv->hw;
6483
6484         if (ETH_SS_STATS == stringset)
6485                 memcpy(buf, &ethtool_stats_keys,
6486                         ETH_GSTRING_LEN * hw->mib_cnt);
6487 }
6488
6489 /**
6490  * netdev_get_sset_count - get statistics size
6491  * @dev:        Network device.
6492  * @sset:       The statistics set number.
6493  *
6494  * This function returns the size of the statistics to be reported.
6495  *
6496  * Return size of the statistics to be reported.
6497  */
6498 static int netdev_get_sset_count(struct net_device *dev, int sset)
6499 {
6500         struct dev_priv *priv = netdev_priv(dev);
6501         struct dev_info *hw_priv = priv->adapter;
6502         struct ksz_hw *hw = &hw_priv->hw;
6503
6504         switch (sset) {
6505         case ETH_SS_STATS:
6506                 return hw->mib_cnt;
6507         default:
6508                 return -EOPNOTSUPP;
6509         }
6510 }
6511
6512 /**
6513  * netdev_get_ethtool_stats - get network device statistics
6514  * @dev:        Network device.
6515  * @stats:      Ethtool statistics data structure.
6516  * @data:       Buffer to store the statistics.
6517  *
6518  * This procedure returns the statistics.
6519  */
6520 static void netdev_get_ethtool_stats(struct net_device *dev,
6521         struct ethtool_stats *stats, u64 *data)
6522 {
6523         struct dev_priv *priv = netdev_priv(dev);
6524         struct dev_info *hw_priv = priv->adapter;
6525         struct ksz_hw *hw = &hw_priv->hw;
6526         struct ksz_port *port = &priv->port;
6527         int n_stats = stats->n_stats;
6528         int i;
6529         int n;
6530         int p;
6531         int rc;
6532         u64 counter[TOTAL_PORT_COUNTER_NUM];
6533
6534         mutex_lock(&hw_priv->lock);
6535         n = SWITCH_PORT_NUM;
6536         for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6537                 if (media_connected == hw->port_mib[p].state) {
6538                         hw_priv->counter[p].read = 1;
6539
6540                         /* Remember first port that requests read. */
6541                         if (n == SWITCH_PORT_NUM)
6542                                 n = p;
6543                 }
6544         }
6545         mutex_unlock(&hw_priv->lock);
6546
6547         if (n < SWITCH_PORT_NUM)
6548                 schedule_work(&hw_priv->mib_read);
6549
6550         if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6551                 p = n;
6552                 rc = wait_event_interruptible_timeout(
6553                         hw_priv->counter[p].counter,
6554                         2 == hw_priv->counter[p].read,
6555                         HZ * 1);
6556         } else
6557                 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6558                         if (0 == i) {
6559                                 rc = wait_event_interruptible_timeout(
6560                                         hw_priv->counter[p].counter,
6561                                         2 == hw_priv->counter[p].read,
6562                                         HZ * 2);
6563                         } else if (hw->port_mib[p].cnt_ptr) {
6564                                 rc = wait_event_interruptible_timeout(
6565                                         hw_priv->counter[p].counter,
6566                                         2 == hw_priv->counter[p].read,
6567                                         HZ * 1);
6568                         }
6569                 }
6570
6571         get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6572         n = hw->mib_cnt;
6573         if (n > n_stats)
6574                 n = n_stats;
6575         n_stats -= n;
6576         for (i = 0; i < n; i++)
6577                 *data++ = counter[i];
6578 }
6579
6580 /**
6581  * netdev_set_features - set receive checksum support
6582  * @dev:        Network device.
6583  * @features:   New device features (offloads).
6584  *
6585  * This function sets receive checksum support setting.
6586  *
6587  * Return 0 if successful; otherwise an error code.
6588  */
6589 static int netdev_set_features(struct net_device *dev,
6590         netdev_features_t features)
6591 {
6592         struct dev_priv *priv = netdev_priv(dev);
6593         struct dev_info *hw_priv = priv->adapter;
6594         struct ksz_hw *hw = &hw_priv->hw;
6595
6596         mutex_lock(&hw_priv->lock);
6597
6598         /* see note in hw_setup() */
6599         if (features & NETIF_F_RXCSUM)
6600                 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6601         else
6602                 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6603
6604         if (hw->enabled)
6605                 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6606
6607         mutex_unlock(&hw_priv->lock);
6608
6609         return 0;
6610 }
6611
6612 static const struct ethtool_ops netdev_ethtool_ops = {
6613         .get_settings           = netdev_get_settings,
6614         .set_settings           = netdev_set_settings,
6615         .nway_reset             = netdev_nway_reset,
6616         .get_link               = netdev_get_link,
6617         .get_drvinfo            = netdev_get_drvinfo,
6618         .get_regs_len           = netdev_get_regs_len,
6619         .get_regs               = netdev_get_regs,
6620         .get_wol                = netdev_get_wol,
6621         .set_wol                = netdev_set_wol,
6622         .get_msglevel           = netdev_get_msglevel,
6623         .set_msglevel           = netdev_set_msglevel,
6624         .get_eeprom_len         = netdev_get_eeprom_len,
6625         .get_eeprom             = netdev_get_eeprom,
6626         .set_eeprom             = netdev_set_eeprom,
6627         .get_pauseparam         = netdev_get_pauseparam,
6628         .set_pauseparam         = netdev_set_pauseparam,
6629         .get_ringparam          = netdev_get_ringparam,
6630         .get_strings            = netdev_get_strings,
6631         .get_sset_count         = netdev_get_sset_count,
6632         .get_ethtool_stats      = netdev_get_ethtool_stats,
6633 };
6634
6635 /*
6636  * Hardware monitoring
6637  */
6638
6639 static void update_link(struct net_device *dev, struct dev_priv *priv,
6640         struct ksz_port *port)
6641 {
6642         if (priv->media_state != port->linked->state) {
6643                 priv->media_state = port->linked->state;
6644                 if (netif_running(dev))
6645                         set_media_state(dev, media_connected);
6646         }
6647 }
6648
6649 static void mib_read_work(struct work_struct *work)
6650 {
6651         struct dev_info *hw_priv =
6652                 container_of(work, struct dev_info, mib_read);
6653         struct ksz_hw *hw = &hw_priv->hw;
6654         struct ksz_port_mib *mib;
6655         int i;
6656
6657         next_jiffies = jiffies;
6658         for (i = 0; i < hw->mib_port_cnt; i++) {
6659                 mib = &hw->port_mib[i];
6660
6661                 /* Reading MIB counters or requested to read. */
6662                 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6663
6664                         /* Need to process receive interrupt. */
6665                         if (port_r_cnt(hw, i))
6666                                 break;
6667                         hw_priv->counter[i].read = 0;
6668
6669                         /* Finish reading counters. */
6670                         if (0 == mib->cnt_ptr) {
6671                                 hw_priv->counter[i].read = 2;
6672                                 wake_up_interruptible(
6673                                         &hw_priv->counter[i].counter);
6674                         }
6675                 } else if (jiffies >= hw_priv->counter[i].time) {
6676                         /* Only read MIB counters when the port is connected. */
6677                         if (media_connected == mib->state)
6678                                 hw_priv->counter[i].read = 1;
6679                         next_jiffies += HZ * 1 * hw->mib_port_cnt;
6680                         hw_priv->counter[i].time = next_jiffies;
6681
6682                 /* Port is just disconnected. */
6683                 } else if (mib->link_down) {
6684                         mib->link_down = 0;
6685
6686                         /* Read counters one last time after link is lost. */
6687                         hw_priv->counter[i].read = 1;
6688                 }
6689         }
6690 }
6691
6692 static void mib_monitor(unsigned long ptr)
6693 {
6694         struct dev_info *hw_priv = (struct dev_info *) ptr;
6695
6696         mib_read_work(&hw_priv->mib_read);
6697
6698         /* This is used to verify Wake-on-LAN is working. */
6699         if (hw_priv->pme_wait) {
6700                 if (hw_priv->pme_wait <= jiffies) {
6701                         hw_clr_wol_pme_status(&hw_priv->hw);
6702                         hw_priv->pme_wait = 0;
6703                 }
6704         } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6705
6706                 /* PME is asserted.  Wait 2 seconds to clear it. */
6707                 hw_priv->pme_wait = jiffies + HZ * 2;
6708         }
6709
6710         ksz_update_timer(&hw_priv->mib_timer_info);
6711 }
6712
6713 /**
6714  * dev_monitor - periodic monitoring
6715  * @ptr:        Network device pointer.
6716  *
6717  * This routine is run in a kernel timer to monitor the network device.
6718  */
6719 static void dev_monitor(unsigned long ptr)
6720 {
6721         struct net_device *dev = (struct net_device *) ptr;
6722         struct dev_priv *priv = netdev_priv(dev);
6723         struct dev_info *hw_priv = priv->adapter;
6724         struct ksz_hw *hw = &hw_priv->hw;
6725         struct ksz_port *port = &priv->port;
6726
6727         if (!(hw->features & LINK_INT_WORKING))
6728                 port_get_link_speed(port);
6729         update_link(dev, priv, port);
6730
6731         ksz_update_timer(&priv->monitor_timer_info);
6732 }
6733
6734 /*
6735  * Linux network device interface functions
6736  */
6737
6738 /* Driver exported variables */
6739
6740 static int msg_enable;
6741
6742 static char *macaddr = ":";
6743 static char *mac1addr = ":";
6744
6745 /*
6746  * This enables multiple network device mode for KSZ8842, which contains a
6747  * switch with two physical ports.  Some users like to take control of the
6748  * ports for running Spanning Tree Protocol.  The driver will create an
6749  * additional eth? device for the other port.
6750  *
6751  * Some limitations are the network devices cannot have different MTU and
6752  * multicast hash tables.
6753  */
6754 static int multi_dev;
6755
6756 /*
6757  * As most users select multiple network device mode to use Spanning Tree
6758  * Protocol, this enables a feature in which most unicast and multicast packets
6759  * are forwarded inside the switch and not passed to the host.  Only packets
6760  * that need the host's attention are passed to it.  This prevents the host
6761  * wasting CPU time to examine each and every incoming packets and do the
6762  * forwarding itself.
6763  *
6764  * As the hack requires the private bridge header, the driver cannot compile
6765  * with just the kernel headers.
6766  *
6767  * Enabling STP support also turns on multiple network device mode.
6768  */
6769 static int stp;
6770
6771 /*
6772  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6773  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6774  * STP support is enabled.
6775  */
6776 static int fast_aging;
6777
6778 /**
6779  * netdev_init - initialize network device.
6780  * @dev:        Network device.
6781  *
6782  * This function initializes the network device.
6783  *
6784  * Return 0 if successful; otherwise an error code indicating failure.
6785  */
6786 static int __init netdev_init(struct net_device *dev)
6787 {
6788         struct dev_priv *priv = netdev_priv(dev);
6789
6790         /* 500 ms timeout */
6791         ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6792                 dev_monitor, dev);
6793
6794         /* 500 ms timeout */
6795         dev->watchdog_timeo = HZ / 2;
6796
6797         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6798
6799         /*
6800          * Hardware does not really support IPv6 checksum generation, but
6801          * driver actually runs faster with this on.
6802          */
6803         dev->hw_features |= NETIF_F_IPV6_CSUM;
6804
6805         dev->features |= dev->hw_features;
6806
6807         sema_init(&priv->proc_sem, 1);
6808
6809         priv->mii_if.phy_id_mask = 0x1;
6810         priv->mii_if.reg_num_mask = 0x7;
6811         priv->mii_if.dev = dev;
6812         priv->mii_if.mdio_read = mdio_read;
6813         priv->mii_if.mdio_write = mdio_write;
6814         priv->mii_if.phy_id = priv->port.first_port + 1;
6815
6816         priv->msg_enable = netif_msg_init(msg_enable,
6817                 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6818
6819         return 0;
6820 }
6821
6822 static const struct net_device_ops netdev_ops = {
6823         .ndo_init               = netdev_init,
6824         .ndo_open               = netdev_open,
6825         .ndo_stop               = netdev_close,
6826         .ndo_get_stats          = netdev_query_statistics,
6827         .ndo_start_xmit         = netdev_tx,
6828         .ndo_tx_timeout         = netdev_tx_timeout,
6829         .ndo_change_mtu         = netdev_change_mtu,
6830         .ndo_set_features       = netdev_set_features,
6831         .ndo_set_mac_address    = netdev_set_mac_address,
6832         .ndo_validate_addr      = eth_validate_addr,
6833         .ndo_do_ioctl           = netdev_ioctl,
6834         .ndo_set_rx_mode        = netdev_set_rx_mode,
6835 #ifdef CONFIG_NET_POLL_CONTROLLER
6836         .ndo_poll_controller    = netdev_netpoll,
6837 #endif
6838 };
6839
6840 static void netdev_free(struct net_device *dev)
6841 {
6842         if (dev->watchdog_timeo)
6843                 unregister_netdev(dev);
6844
6845         free_netdev(dev);
6846 }
6847
6848 struct platform_info {
6849         struct dev_info dev_info;
6850         struct net_device *netdev[SWITCH_PORT_NUM];
6851 };
6852
6853 static int net_device_present;
6854
6855 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6856 {
6857         int i;
6858         int j;
6859         int got_num;
6860         int num;
6861
6862         i = j = num = got_num = 0;
6863         while (j < ETH_ALEN) {
6864                 if (macaddr[i]) {
6865                         int digit;
6866
6867                         got_num = 1;
6868                         digit = hex_to_bin(macaddr[i]);
6869                         if (digit >= 0)
6870                                 num = num * 16 + digit;
6871                         else if (':' == macaddr[i])
6872                                 got_num = 2;
6873                         else
6874                                 break;
6875                 } else if (got_num)
6876                         got_num = 2;
6877                 else
6878                         break;
6879                 if (2 == got_num) {
6880                         if (MAIN_PORT == port) {
6881                                 hw_priv->hw.override_addr[j++] = (u8) num;
6882                                 hw_priv->hw.override_addr[5] +=
6883                                         hw_priv->hw.id;
6884                         } else {
6885                                 hw_priv->hw.ksz_switch->other_addr[j++] =
6886                                         (u8) num;
6887                                 hw_priv->hw.ksz_switch->other_addr[5] +=
6888                                         hw_priv->hw.id;
6889                         }
6890                         num = got_num = 0;
6891                 }
6892                 i++;
6893         }
6894         if (ETH_ALEN == j) {
6895                 if (MAIN_PORT == port)
6896                         hw_priv->hw.mac_override = 1;
6897         }
6898 }
6899
6900 #define KS884X_DMA_MASK                 (~0x0UL)
6901
6902 static void read_other_addr(struct ksz_hw *hw)
6903 {
6904         int i;
6905         u16 data[3];
6906         struct ksz_switch *sw = hw->ksz_switch;
6907
6908         for (i = 0; i < 3; i++)
6909                 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6910         if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6911                 sw->other_addr[5] = (u8) data[0];
6912                 sw->other_addr[4] = (u8)(data[0] >> 8);
6913                 sw->other_addr[3] = (u8) data[1];
6914                 sw->other_addr[2] = (u8)(data[1] >> 8);
6915                 sw->other_addr[1] = (u8) data[2];
6916                 sw->other_addr[0] = (u8)(data[2] >> 8);
6917         }
6918 }
6919
6920 #ifndef PCI_VENDOR_ID_MICREL_KS
6921 #define PCI_VENDOR_ID_MICREL_KS         0x16c6
6922 #endif
6923
6924 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6925 {
6926         struct net_device *dev;
6927         struct dev_priv *priv;
6928         struct dev_info *hw_priv;
6929         struct ksz_hw *hw;
6930         struct platform_info *info;
6931         struct ksz_port *port;
6932         unsigned long reg_base;
6933         unsigned long reg_len;
6934         int cnt;
6935         int i;
6936         int mib_port_count;
6937         int pi;
6938         int port_count;
6939         int result;
6940         char banner[sizeof(version)];
6941         struct ksz_switch *sw = NULL;
6942
6943         result = pci_enable_device(pdev);
6944         if (result)
6945                 return result;
6946
6947         result = -ENODEV;
6948
6949         if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6950                         pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6951                 return result;
6952
6953         reg_base = pci_resource_start(pdev, 0);
6954         reg_len = pci_resource_len(pdev, 0);
6955         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6956                 return result;
6957
6958         if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6959                 return result;
6960         pci_set_master(pdev);
6961
6962         result = -ENOMEM;
6963
6964         info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6965         if (!info)
6966                 goto pcidev_init_dev_err;
6967
6968         hw_priv = &info->dev_info;
6969         hw_priv->pdev = pdev;
6970
6971         hw = &hw_priv->hw;
6972
6973         hw->io = ioremap(reg_base, reg_len);
6974         if (!hw->io)
6975                 goto pcidev_init_io_err;
6976
6977         cnt = hw_init(hw);
6978         if (!cnt) {
6979                 if (msg_enable & NETIF_MSG_PROBE)
6980                         pr_alert("chip not detected\n");
6981                 result = -ENODEV;
6982                 goto pcidev_init_alloc_err;
6983         }
6984
6985         snprintf(banner, sizeof(banner), "%s", version);
6986         banner[13] = cnt + '0';         /* Replace x in "Micrel KSZ884x" */
6987         dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6988         dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6989
6990         /* Assume device is KSZ8841. */
6991         hw->dev_count = 1;
6992         port_count = 1;
6993         mib_port_count = 1;
6994         hw->addr_list_size = 0;
6995         hw->mib_cnt = PORT_COUNTER_NUM;
6996         hw->mib_port_cnt = 1;
6997
6998         /* KSZ8842 has a switch with multiple ports. */
6999         if (2 == cnt) {
7000                 if (fast_aging)
7001                         hw->overrides |= FAST_AGING;
7002
7003                 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7004
7005                 /* Multiple network device interfaces are required. */
7006                 if (multi_dev) {
7007                         hw->dev_count = SWITCH_PORT_NUM;
7008                         hw->addr_list_size = SWITCH_PORT_NUM - 1;
7009                 }
7010
7011                 /* Single network device has multiple ports. */
7012                 if (1 == hw->dev_count) {
7013                         port_count = SWITCH_PORT_NUM;
7014                         mib_port_count = SWITCH_PORT_NUM;
7015                 }
7016                 hw->mib_port_cnt = TOTAL_PORT_NUM;
7017                 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7018                 if (!hw->ksz_switch)
7019                         goto pcidev_init_alloc_err;
7020
7021                 sw = hw->ksz_switch;
7022         }
7023         for (i = 0; i < hw->mib_port_cnt; i++)
7024                 hw->port_mib[i].mib_start = 0;
7025
7026         hw->parent = hw_priv;
7027
7028         /* Default MTU is 1500. */
7029         hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7030
7031         if (ksz_alloc_mem(hw_priv))
7032                 goto pcidev_init_mem_err;
7033
7034         hw_priv->hw.id = net_device_present;
7035
7036         spin_lock_init(&hw_priv->hwlock);
7037         mutex_init(&hw_priv->lock);
7038
7039         for (i = 0; i < TOTAL_PORT_NUM; i++)
7040                 init_waitqueue_head(&hw_priv->counter[i].counter);
7041
7042         if (macaddr[0] != ':')
7043                 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7044
7045         /* Read MAC address and initialize override address if not overrided. */
7046         hw_read_addr(hw);
7047
7048         /* Multiple device interfaces mode requires a second MAC address. */
7049         if (hw->dev_count > 1) {
7050                 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7051                 read_other_addr(hw);
7052                 if (mac1addr[0] != ':')
7053                         get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7054         }
7055
7056         hw_setup(hw);
7057         if (hw->ksz_switch)
7058                 sw_setup(hw);
7059         else {
7060                 hw_priv->wol_support = WOL_SUPPORT;
7061                 hw_priv->wol_enable = 0;
7062         }
7063
7064         INIT_WORK(&hw_priv->mib_read, mib_read_work);
7065
7066         /* 500 ms timeout */
7067         ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7068                 mib_monitor, hw_priv);
7069
7070         for (i = 0; i < hw->dev_count; i++) {
7071                 dev = alloc_etherdev(sizeof(struct dev_priv));
7072                 if (!dev)
7073                         goto pcidev_init_reg_err;
7074                 SET_NETDEV_DEV(dev, &pdev->dev);
7075                 info->netdev[i] = dev;
7076
7077                 priv = netdev_priv(dev);
7078                 priv->adapter = hw_priv;
7079                 priv->id = net_device_present++;
7080
7081                 port = &priv->port;
7082                 port->port_cnt = port_count;
7083                 port->mib_port_cnt = mib_port_count;
7084                 port->first_port = i;
7085                 port->flow_ctrl = PHY_FLOW_CTRL;
7086
7087                 port->hw = hw;
7088                 port->linked = &hw->port_info[port->first_port];
7089
7090                 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7091                         hw->port_info[pi].port_id = pi;
7092                         hw->port_info[pi].pdev = dev;
7093                         hw->port_info[pi].state = media_disconnected;
7094                 }
7095
7096                 dev->mem_start = (unsigned long) hw->io;
7097                 dev->mem_end = dev->mem_start + reg_len - 1;
7098                 dev->irq = pdev->irq;
7099                 if (MAIN_PORT == i)
7100                         memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7101                                ETH_ALEN);
7102                 else {
7103                         memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7104                         if (ether_addr_equal(sw->other_addr, hw->override_addr))
7105                                 dev->dev_addr[5] += port->first_port;
7106                 }
7107
7108                 dev->netdev_ops = &netdev_ops;
7109                 dev->ethtool_ops = &netdev_ethtool_ops;
7110                 if (register_netdev(dev))
7111                         goto pcidev_init_reg_err;
7112                 port_set_power_saving(port, true);
7113         }
7114
7115         pci_dev_get(hw_priv->pdev);
7116         pci_set_drvdata(pdev, info);
7117         return 0;
7118
7119 pcidev_init_reg_err:
7120         for (i = 0; i < hw->dev_count; i++) {
7121                 if (info->netdev[i]) {
7122                         netdev_free(info->netdev[i]);
7123                         info->netdev[i] = NULL;
7124                 }
7125         }
7126
7127 pcidev_init_mem_err:
7128         ksz_free_mem(hw_priv);
7129         kfree(hw->ksz_switch);
7130
7131 pcidev_init_alloc_err:
7132         iounmap(hw->io);
7133
7134 pcidev_init_io_err:
7135         kfree(info);
7136
7137 pcidev_init_dev_err:
7138         release_mem_region(reg_base, reg_len);
7139
7140         return result;
7141 }
7142
7143 static void pcidev_exit(struct pci_dev *pdev)
7144 {
7145         int i;
7146         struct platform_info *info = pci_get_drvdata(pdev);
7147         struct dev_info *hw_priv = &info->dev_info;
7148
7149         release_mem_region(pci_resource_start(pdev, 0),
7150                 pci_resource_len(pdev, 0));
7151         for (i = 0; i < hw_priv->hw.dev_count; i++) {
7152                 if (info->netdev[i])
7153                         netdev_free(info->netdev[i]);
7154         }
7155         if (hw_priv->hw.io)
7156                 iounmap(hw_priv->hw.io);
7157         ksz_free_mem(hw_priv);
7158         kfree(hw_priv->hw.ksz_switch);
7159         pci_dev_put(hw_priv->pdev);
7160         kfree(info);
7161 }
7162
7163 #ifdef CONFIG_PM
7164 static int pcidev_resume(struct pci_dev *pdev)
7165 {
7166         int i;
7167         struct platform_info *info = pci_get_drvdata(pdev);
7168         struct dev_info *hw_priv = &info->dev_info;
7169         struct ksz_hw *hw = &hw_priv->hw;
7170
7171         pci_set_power_state(pdev, PCI_D0);
7172         pci_restore_state(pdev);
7173         pci_enable_wake(pdev, PCI_D0, 0);
7174
7175         if (hw_priv->wol_enable)
7176                 hw_cfg_wol_pme(hw, 0);
7177         for (i = 0; i < hw->dev_count; i++) {
7178                 if (info->netdev[i]) {
7179                         struct net_device *dev = info->netdev[i];
7180
7181                         if (netif_running(dev)) {
7182                                 netdev_open(dev);
7183                                 netif_device_attach(dev);
7184                         }
7185                 }
7186         }
7187         return 0;
7188 }
7189
7190 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7191 {
7192         int i;
7193         struct platform_info *info = pci_get_drvdata(pdev);
7194         struct dev_info *hw_priv = &info->dev_info;
7195         struct ksz_hw *hw = &hw_priv->hw;
7196
7197         /* Need to find a way to retrieve the device IP address. */
7198         static const u8 net_addr[] = { 192, 168, 1, 1 };
7199
7200         for (i = 0; i < hw->dev_count; i++) {
7201                 if (info->netdev[i]) {
7202                         struct net_device *dev = info->netdev[i];
7203
7204                         if (netif_running(dev)) {
7205                                 netif_device_detach(dev);
7206                                 netdev_close(dev);
7207                         }
7208                 }
7209         }
7210         if (hw_priv->wol_enable) {
7211                 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7212                 hw_cfg_wol_pme(hw, 1);
7213         }
7214
7215         pci_save_state(pdev);
7216         pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7217         pci_set_power_state(pdev, pci_choose_state(pdev, state));
7218         return 0;
7219 }
7220 #endif
7221
7222 static char pcidev_name[] = "ksz884xp";
7223
7224 static const struct pci_device_id pcidev_table[] = {
7225         { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7226                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7227         { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7228                 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7229         { 0 }
7230 };
7231
7232 MODULE_DEVICE_TABLE(pci, pcidev_table);
7233
7234 static struct pci_driver pci_device_driver = {
7235 #ifdef CONFIG_PM
7236         .suspend        = pcidev_suspend,
7237         .resume         = pcidev_resume,
7238 #endif
7239         .name           = pcidev_name,
7240         .id_table       = pcidev_table,
7241         .probe          = pcidev_init,
7242         .remove         = pcidev_exit
7243 };
7244
7245 module_pci_driver(pci_device_driver);
7246
7247 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7248 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7249 MODULE_LICENSE("GPL");
7250
7251 module_param_named(message, msg_enable, int, 0);
7252 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7253
7254 module_param(macaddr, charp, 0);
7255 module_param(mac1addr, charp, 0);
7256 module_param(fast_aging, int, 0);
7257 module_param(multi_dev, int, 0);
7258 module_param(stp, int, 0);
7259 MODULE_PARM_DESC(macaddr, "MAC address");
7260 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7261 MODULE_PARM_DESC(fast_aging, "Fast aging");
7262 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7263 MODULE_PARM_DESC(stp, "STP support");