]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/ef10.c
sfc: fix IPID endianness in TSOv2
[karo-tx-linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV              7
27 enum {
28         EFX_EF10_TEST = 1,
29         EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53
54 #define EFX_EF10_FILTER_DEV_UC_MAX      32
55 #define EFX_EF10_FILTER_DEV_MC_MAX      256
56
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59         struct list_head list;
60         u16 vid;
61 };
62
63 enum efx_ef10_default_filters {
64         EFX_EF10_BCAST,
65         EFX_EF10_UCDEF,
66         EFX_EF10_MCDEF,
67         EFX_EF10_VXLAN4_UCDEF,
68         EFX_EF10_VXLAN4_MCDEF,
69         EFX_EF10_VXLAN6_UCDEF,
70         EFX_EF10_VXLAN6_MCDEF,
71         EFX_EF10_NVGRE4_UCDEF,
72         EFX_EF10_NVGRE4_MCDEF,
73         EFX_EF10_NVGRE6_UCDEF,
74         EFX_EF10_NVGRE6_MCDEF,
75         EFX_EF10_GENEVE4_UCDEF,
76         EFX_EF10_GENEVE4_MCDEF,
77         EFX_EF10_GENEVE6_UCDEF,
78         EFX_EF10_GENEVE6_MCDEF,
79
80         EFX_EF10_NUM_DEFAULT_FILTERS
81 };
82
83 /* Per-VLAN filters information */
84 struct efx_ef10_filter_vlan {
85         struct list_head list;
86         u16 vid;
87         u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
88         u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89         u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 };
91
92 struct efx_ef10_dev_addr {
93         u8 addr[ETH_ALEN];
94 };
95
96 struct efx_ef10_filter_table {
97 /* The MCDI match masks supported by this fw & hw, in order of priority */
98         u32 rx_match_mcdi_flags[
99                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100         unsigned int rx_match_count;
101
102         struct {
103                 unsigned long spec;     /* pointer to spec plus flag bits */
104 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
105  * used to mark and sweep MAC filters for the device address lists.
106  */
107 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
108 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
109 #define EFX_EF10_FILTER_FLAGS           3UL
110                 u64 handle;             /* firmware handle */
111         } *entry;
112         wait_queue_head_t waitq;
113 /* Shadow of net_device address lists, guarded by mac_lock */
114         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
115         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116         int dev_uc_count;
117         int dev_mc_count;
118         bool uc_promisc;
119         bool mc_promisc;
120 /* Whether in multicast promiscuous mode when last changed */
121         bool mc_promisc_last;
122         bool vlan_filter;
123         struct list_head vlan_list;
124 };
125
126 /* An arbitrary search limit for the software hash table */
127 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
128
129 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
130 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
131 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
132 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
133                                               struct efx_ef10_filter_vlan *vlan);
134 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
135 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
136
137 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
138 {
139         WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
140         return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
141 }
142
143 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
144 {
145         return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
146 }
147
148 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
149 {
150         return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
151 }
152
153 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
154 {
155         efx_dword_t reg;
156
157         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
158         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
159                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
160 }
161
162 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
163 {
164         int bar;
165
166         bar = efx->type->mem_bar;
167         return resource_size(&efx->pci_dev->resource[bar]);
168 }
169
170 static bool efx_ef10_is_vf(struct efx_nic *efx)
171 {
172         return efx->type->is_vf;
173 }
174
175 static int efx_ef10_get_pf_index(struct efx_nic *efx)
176 {
177         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
178         struct efx_ef10_nic_data *nic_data = efx->nic_data;
179         size_t outlen;
180         int rc;
181
182         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
183                           sizeof(outbuf), &outlen);
184         if (rc)
185                 return rc;
186         if (outlen < sizeof(outbuf))
187                 return -EIO;
188
189         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
190         return 0;
191 }
192
193 #ifdef CONFIG_SFC_SRIOV
194 static int efx_ef10_get_vf_index(struct efx_nic *efx)
195 {
196         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
197         struct efx_ef10_nic_data *nic_data = efx->nic_data;
198         size_t outlen;
199         int rc;
200
201         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
202                           sizeof(outbuf), &outlen);
203         if (rc)
204                 return rc;
205         if (outlen < sizeof(outbuf))
206                 return -EIO;
207
208         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
209         return 0;
210 }
211 #endif
212
213 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
214 {
215         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
216         struct efx_ef10_nic_data *nic_data = efx->nic_data;
217         size_t outlen;
218         int rc;
219
220         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
221
222         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
223                           outbuf, sizeof(outbuf), &outlen);
224         if (rc)
225                 return rc;
226         if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
227                 netif_err(efx, drv, efx->net_dev,
228                           "unable to read datapath firmware capabilities\n");
229                 return -EIO;
230         }
231
232         nic_data->datapath_caps =
233                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
234
235         if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
236                 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
237                                 GET_CAPABILITIES_V2_OUT_FLAGS2);
238                 nic_data->piobuf_size = MCDI_WORD(outbuf,
239                                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
240         } else {
241                 nic_data->datapath_caps2 = 0;
242                 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
243         }
244
245         /* record the DPCPU firmware IDs to determine VEB vswitching support.
246          */
247         nic_data->rx_dpcpu_fw_id =
248                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
249         nic_data->tx_dpcpu_fw_id =
250                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
251
252         if (!(nic_data->datapath_caps &
253               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
254                 netif_err(efx, probe, efx->net_dev,
255                           "current firmware does not support an RX prefix\n");
256                 return -ENODEV;
257         }
258
259         return 0;
260 }
261
262 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
263 {
264         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
265         int rc;
266
267         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
268                           outbuf, sizeof(outbuf), NULL);
269         if (rc)
270                 return rc;
271         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
272         return rc > 0 ? rc : -ERANGE;
273 }
274
275 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
276 {
277         struct efx_ef10_nic_data *nic_data = efx->nic_data;
278         unsigned int implemented;
279         unsigned int enabled;
280         int rc;
281
282         nic_data->workaround_35388 = false;
283         nic_data->workaround_61265 = false;
284
285         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
286
287         if (rc == -ENOSYS) {
288                 /* Firmware without GET_WORKAROUNDS - not a problem. */
289                 rc = 0;
290         } else if (rc == 0) {
291                 /* Bug61265 workaround is always enabled if implemented. */
292                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
293                         nic_data->workaround_61265 = true;
294
295                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
296                         nic_data->workaround_35388 = true;
297                 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
298                         /* Workaround is implemented but not enabled.
299                          * Try to enable it.
300                          */
301                         rc = efx_mcdi_set_workaround(efx,
302                                                      MC_CMD_WORKAROUND_BUG35388,
303                                                      true, NULL);
304                         if (rc == 0)
305                                 nic_data->workaround_35388 = true;
306                         /* If we failed to set the workaround just carry on. */
307                         rc = 0;
308                 }
309         }
310
311         netif_dbg(efx, probe, efx->net_dev,
312                   "workaround for bug 35388 is %sabled\n",
313                   nic_data->workaround_35388 ? "en" : "dis");
314         netif_dbg(efx, probe, efx->net_dev,
315                   "workaround for bug 61265 is %sabled\n",
316                   nic_data->workaround_61265 ? "en" : "dis");
317
318         return rc;
319 }
320
321 static void efx_ef10_process_timer_config(struct efx_nic *efx,
322                                           const efx_dword_t *data)
323 {
324         unsigned int max_count;
325
326         if (EFX_EF10_WORKAROUND_61265(efx)) {
327                 efx->timer_quantum_ns = MCDI_DWORD(data,
328                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
329                 efx->timer_max_ns = MCDI_DWORD(data,
330                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
331         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
332                 efx->timer_quantum_ns = MCDI_DWORD(data,
333                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
334                 max_count = MCDI_DWORD(data,
335                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
336                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
337         } else {
338                 efx->timer_quantum_ns = MCDI_DWORD(data,
339                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
340                 max_count = MCDI_DWORD(data,
341                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
342                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
343         }
344
345         netif_dbg(efx, probe, efx->net_dev,
346                   "got timer properties from MC: quantum %u ns; max %u ns\n",
347                   efx->timer_quantum_ns, efx->timer_max_ns);
348 }
349
350 static int efx_ef10_get_timer_config(struct efx_nic *efx)
351 {
352         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
353         int rc;
354
355         rc = efx_ef10_get_timer_workarounds(efx);
356         if (rc)
357                 return rc;
358
359         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
360                                 outbuf, sizeof(outbuf), NULL);
361
362         if (rc == 0) {
363                 efx_ef10_process_timer_config(efx, outbuf);
364         } else if (rc == -ENOSYS || rc == -EPERM) {
365                 /* Not available - fall back to Huntington defaults. */
366                 unsigned int quantum;
367
368                 rc = efx_ef10_get_sysclk_freq(efx);
369                 if (rc < 0)
370                         return rc;
371
372                 quantum = 1536000 / rc; /* 1536 cycles */
373                 efx->timer_quantum_ns = quantum;
374                 efx->timer_max_ns = efx->type->timer_period_max * quantum;
375                 rc = 0;
376         } else {
377                 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
378                                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
379                                        NULL, 0, rc);
380         }
381
382         return rc;
383 }
384
385 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
386 {
387         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
388         size_t outlen;
389         int rc;
390
391         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
392
393         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
394                           outbuf, sizeof(outbuf), &outlen);
395         if (rc)
396                 return rc;
397         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
398                 return -EIO;
399
400         ether_addr_copy(mac_address,
401                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
402         return 0;
403 }
404
405 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
406 {
407         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
408         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
409         size_t outlen;
410         int num_addrs, rc;
411
412         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
413                        EVB_PORT_ID_ASSIGNED);
414         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
415                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
416
417         if (rc)
418                 return rc;
419         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
420                 return -EIO;
421
422         num_addrs = MCDI_DWORD(outbuf,
423                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
424
425         WARN_ON(num_addrs != 1);
426
427         ether_addr_copy(mac_address,
428                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
429
430         return 0;
431 }
432
433 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
434                                                struct device_attribute *attr,
435                                                char *buf)
436 {
437         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
438
439         return sprintf(buf, "%d\n",
440                        ((efx->mcdi->fn_flags) &
441                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
442                        ? 1 : 0);
443 }
444
445 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
446                                           struct device_attribute *attr,
447                                           char *buf)
448 {
449         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
450
451         return sprintf(buf, "%d\n",
452                        ((efx->mcdi->fn_flags) &
453                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
454                        ? 1 : 0);
455 }
456
457 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
458 {
459         struct efx_ef10_nic_data *nic_data = efx->nic_data;
460         struct efx_ef10_vlan *vlan;
461
462         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
463
464         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
465                 if (vlan->vid == vid)
466                         return vlan;
467         }
468
469         return NULL;
470 }
471
472 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
473 {
474         struct efx_ef10_nic_data *nic_data = efx->nic_data;
475         struct efx_ef10_vlan *vlan;
476         int rc;
477
478         mutex_lock(&nic_data->vlan_lock);
479
480         vlan = efx_ef10_find_vlan(efx, vid);
481         if (vlan) {
482                 /* We add VID 0 on init. 8021q adds it on module init
483                  * for all interfaces with VLAN filtring feature.
484                  */
485                 if (vid == 0)
486                         goto done_unlock;
487                 netif_warn(efx, drv, efx->net_dev,
488                            "VLAN %u already added\n", vid);
489                 rc = -EALREADY;
490                 goto fail_exist;
491         }
492
493         rc = -ENOMEM;
494         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
495         if (!vlan)
496                 goto fail_alloc;
497
498         vlan->vid = vid;
499
500         list_add_tail(&vlan->list, &nic_data->vlan_list);
501
502         if (efx->filter_state) {
503                 mutex_lock(&efx->mac_lock);
504                 down_write(&efx->filter_sem);
505                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
506                 up_write(&efx->filter_sem);
507                 mutex_unlock(&efx->mac_lock);
508                 if (rc)
509                         goto fail_filter_add_vlan;
510         }
511
512 done_unlock:
513         mutex_unlock(&nic_data->vlan_lock);
514         return 0;
515
516 fail_filter_add_vlan:
517         list_del(&vlan->list);
518         kfree(vlan);
519 fail_alloc:
520 fail_exist:
521         mutex_unlock(&nic_data->vlan_lock);
522         return rc;
523 }
524
525 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
526                                        struct efx_ef10_vlan *vlan)
527 {
528         struct efx_ef10_nic_data *nic_data = efx->nic_data;
529
530         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
531
532         if (efx->filter_state) {
533                 down_write(&efx->filter_sem);
534                 efx_ef10_filter_del_vlan(efx, vlan->vid);
535                 up_write(&efx->filter_sem);
536         }
537
538         list_del(&vlan->list);
539         kfree(vlan);
540 }
541
542 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
543 {
544         struct efx_ef10_nic_data *nic_data = efx->nic_data;
545         struct efx_ef10_vlan *vlan;
546         int rc = 0;
547
548         /* 8021q removes VID 0 on module unload for all interfaces
549          * with VLAN filtering feature. We need to keep it to receive
550          * untagged traffic.
551          */
552         if (vid == 0)
553                 return 0;
554
555         mutex_lock(&nic_data->vlan_lock);
556
557         vlan = efx_ef10_find_vlan(efx, vid);
558         if (!vlan) {
559                 netif_err(efx, drv, efx->net_dev,
560                           "VLAN %u to be deleted not found\n", vid);
561                 rc = -ENOENT;
562         } else {
563                 efx_ef10_del_vlan_internal(efx, vlan);
564         }
565
566         mutex_unlock(&nic_data->vlan_lock);
567
568         return rc;
569 }
570
571 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
572 {
573         struct efx_ef10_nic_data *nic_data = efx->nic_data;
574         struct efx_ef10_vlan *vlan, *next_vlan;
575
576         mutex_lock(&nic_data->vlan_lock);
577         list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
578                 efx_ef10_del_vlan_internal(efx, vlan);
579         mutex_unlock(&nic_data->vlan_lock);
580 }
581
582 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
583                    NULL);
584 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
585
586 static int efx_ef10_probe(struct efx_nic *efx)
587 {
588         struct efx_ef10_nic_data *nic_data;
589         int i, rc;
590
591         /* We can have one VI for each 8K region.  However, until we
592          * use TX option descriptors we need two TX queues per channel.
593          */
594         efx->max_channels = min_t(unsigned int,
595                                   EFX_MAX_CHANNELS,
596                                   efx_ef10_mem_map_size(efx) /
597                                   (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
598         efx->max_tx_channels = efx->max_channels;
599         if (WARN_ON(efx->max_channels == 0))
600                 return -EIO;
601
602         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
603         if (!nic_data)
604                 return -ENOMEM;
605         efx->nic_data = nic_data;
606
607         /* we assume later that we can copy from this buffer in dwords */
608         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
609
610         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
611                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
612         if (rc)
613                 goto fail1;
614
615         /* Get the MC's warm boot count.  In case it's rebooting right
616          * now, be prepared to retry.
617          */
618         i = 0;
619         for (;;) {
620                 rc = efx_ef10_get_warm_boot_count(efx);
621                 if (rc >= 0)
622                         break;
623                 if (++i == 5)
624                         goto fail2;
625                 ssleep(1);
626         }
627         nic_data->warm_boot_count = rc;
628
629         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
630
631         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
632
633         /* In case we're recovering from a crash (kexec), we want to
634          * cancel any outstanding request by the previous user of this
635          * function.  We send a special message using the least
636          * significant bits of the 'high' (doorbell) register.
637          */
638         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
639
640         rc = efx_mcdi_init(efx);
641         if (rc)
642                 goto fail2;
643
644         mutex_init(&nic_data->udp_tunnels_lock);
645
646         /* Reset (most) configuration for this function */
647         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
648         if (rc)
649                 goto fail3;
650
651         /* Enable event logging */
652         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
653         if (rc)
654                 goto fail3;
655
656         rc = device_create_file(&efx->pci_dev->dev,
657                                 &dev_attr_link_control_flag);
658         if (rc)
659                 goto fail3;
660
661         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
662         if (rc)
663                 goto fail4;
664
665         rc = efx_ef10_get_pf_index(efx);
666         if (rc)
667                 goto fail5;
668
669         rc = efx_ef10_init_datapath_caps(efx);
670         if (rc < 0)
671                 goto fail5;
672
673         efx->rx_packet_len_offset =
674                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
675
676         rc = efx_mcdi_port_get_number(efx);
677         if (rc < 0)
678                 goto fail5;
679         efx->port_num = rc;
680
681         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
682         if (rc)
683                 goto fail5;
684
685         rc = efx_ef10_get_timer_config(efx);
686         if (rc < 0)
687                 goto fail5;
688
689         rc = efx_mcdi_mon_probe(efx);
690         if (rc && rc != -EPERM)
691                 goto fail5;
692
693         efx_ptp_probe(efx, NULL);
694
695 #ifdef CONFIG_SFC_SRIOV
696         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
697                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
698                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
699
700                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
701         } else
702 #endif
703                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
704
705         INIT_LIST_HEAD(&nic_data->vlan_list);
706         mutex_init(&nic_data->vlan_lock);
707
708         /* Add unspecified VID to support VLAN filtering being disabled */
709         rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
710         if (rc)
711                 goto fail_add_vid_unspec;
712
713         /* If VLAN filtering is enabled, we need VID 0 to get untagged
714          * traffic.  It is added automatically if 8021q module is loaded,
715          * but we can't rely on it since module may be not loaded.
716          */
717         rc = efx_ef10_add_vlan(efx, 0);
718         if (rc)
719                 goto fail_add_vid_0;
720
721         return 0;
722
723 fail_add_vid_0:
724         efx_ef10_cleanup_vlans(efx);
725 fail_add_vid_unspec:
726         mutex_destroy(&nic_data->vlan_lock);
727         efx_ptp_remove(efx);
728         efx_mcdi_mon_remove(efx);
729 fail5:
730         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
731 fail4:
732         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
733 fail3:
734         efx_mcdi_detach(efx);
735
736         mutex_lock(&nic_data->udp_tunnels_lock);
737         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
738         (void)efx_ef10_set_udp_tnl_ports(efx, true);
739         mutex_unlock(&nic_data->udp_tunnels_lock);
740         mutex_destroy(&nic_data->udp_tunnels_lock);
741
742         efx_mcdi_fini(efx);
743 fail2:
744         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
745 fail1:
746         kfree(nic_data);
747         efx->nic_data = NULL;
748         return rc;
749 }
750
751 static int efx_ef10_free_vis(struct efx_nic *efx)
752 {
753         MCDI_DECLARE_BUF_ERR(outbuf);
754         size_t outlen;
755         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
756                                     outbuf, sizeof(outbuf), &outlen);
757
758         /* -EALREADY means nothing to free, so ignore */
759         if (rc == -EALREADY)
760                 rc = 0;
761         if (rc)
762                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
763                                        rc);
764         return rc;
765 }
766
767 #ifdef EFX_USE_PIO
768
769 static void efx_ef10_free_piobufs(struct efx_nic *efx)
770 {
771         struct efx_ef10_nic_data *nic_data = efx->nic_data;
772         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
773         unsigned int i;
774         int rc;
775
776         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
777
778         for (i = 0; i < nic_data->n_piobufs; i++) {
779                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
780                                nic_data->piobuf_handle[i]);
781                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
782                                   NULL, 0, NULL);
783                 WARN_ON(rc);
784         }
785
786         nic_data->n_piobufs = 0;
787 }
788
789 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
790 {
791         struct efx_ef10_nic_data *nic_data = efx->nic_data;
792         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
793         unsigned int i;
794         size_t outlen;
795         int rc = 0;
796
797         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
798
799         for (i = 0; i < n; i++) {
800                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
801                                         outbuf, sizeof(outbuf), &outlen);
802                 if (rc) {
803                         /* Don't display the MC error if we didn't have space
804                          * for a VF.
805                          */
806                         if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
807                                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
808                                                        0, outbuf, outlen, rc);
809                         break;
810                 }
811                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
812                         rc = -EIO;
813                         break;
814                 }
815                 nic_data->piobuf_handle[i] =
816                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
817                 netif_dbg(efx, probe, efx->net_dev,
818                           "allocated PIO buffer %u handle %x\n", i,
819                           nic_data->piobuf_handle[i]);
820         }
821
822         nic_data->n_piobufs = i;
823         if (rc)
824                 efx_ef10_free_piobufs(efx);
825         return rc;
826 }
827
828 static int efx_ef10_link_piobufs(struct efx_nic *efx)
829 {
830         struct efx_ef10_nic_data *nic_data = efx->nic_data;
831         MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
832         struct efx_channel *channel;
833         struct efx_tx_queue *tx_queue;
834         unsigned int offset, index;
835         int rc;
836
837         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
838         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
839
840         /* Link a buffer to each VI in the write-combining mapping */
841         for (index = 0; index < nic_data->n_piobufs; ++index) {
842                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
843                                nic_data->piobuf_handle[index]);
844                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
845                                nic_data->pio_write_vi_base + index);
846                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
847                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
848                                   NULL, 0, NULL);
849                 if (rc) {
850                         netif_err(efx, drv, efx->net_dev,
851                                   "failed to link VI %u to PIO buffer %u (%d)\n",
852                                   nic_data->pio_write_vi_base + index, index,
853                                   rc);
854                         goto fail;
855                 }
856                 netif_dbg(efx, probe, efx->net_dev,
857                           "linked VI %u to PIO buffer %u\n",
858                           nic_data->pio_write_vi_base + index, index);
859         }
860
861         /* Link a buffer to each TX queue */
862         efx_for_each_channel(channel, efx) {
863                 efx_for_each_channel_tx_queue(tx_queue, channel) {
864                         /* We assign the PIO buffers to queues in
865                          * reverse order to allow for the following
866                          * special case.
867                          */
868                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
869                                    tx_queue->channel->channel - 1) *
870                                   efx_piobuf_size);
871                         index = offset / nic_data->piobuf_size;
872                         offset = offset % nic_data->piobuf_size;
873
874                         /* When the host page size is 4K, the first
875                          * host page in the WC mapping may be within
876                          * the same VI page as the last TX queue.  We
877                          * can only link one buffer to each VI.
878                          */
879                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
880                                 BUG_ON(index != 0);
881                                 rc = 0;
882                         } else {
883                                 MCDI_SET_DWORD(inbuf,
884                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
885                                                nic_data->piobuf_handle[index]);
886                                 MCDI_SET_DWORD(inbuf,
887                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
888                                                tx_queue->queue);
889                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
890                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
891                                                   NULL, 0, NULL);
892                         }
893
894                         if (rc) {
895                                 /* This is non-fatal; the TX path just
896                                  * won't use PIO for this queue
897                                  */
898                                 netif_err(efx, drv, efx->net_dev,
899                                           "failed to link VI %u to PIO buffer %u (%d)\n",
900                                           tx_queue->queue, index, rc);
901                                 tx_queue->piobuf = NULL;
902                         } else {
903                                 tx_queue->piobuf =
904                                         nic_data->pio_write_base +
905                                         index * EFX_VI_PAGE_SIZE + offset;
906                                 tx_queue->piobuf_offset = offset;
907                                 netif_dbg(efx, probe, efx->net_dev,
908                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
909                                           tx_queue->queue, index,
910                                           tx_queue->piobuf_offset,
911                                           tx_queue->piobuf);
912                         }
913                 }
914         }
915
916         return 0;
917
918 fail:
919         /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
920          * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
921          */
922         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
923         while (index--) {
924                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
925                                nic_data->pio_write_vi_base + index);
926                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
927                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
928                              NULL, 0, NULL);
929         }
930         return rc;
931 }
932
933 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
934 {
935         struct efx_channel *channel;
936         struct efx_tx_queue *tx_queue;
937
938         /* All our existing PIO buffers went away */
939         efx_for_each_channel(channel, efx)
940                 efx_for_each_channel_tx_queue(tx_queue, channel)
941                         tx_queue->piobuf = NULL;
942 }
943
944 #else /* !EFX_USE_PIO */
945
946 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
947 {
948         return n == 0 ? 0 : -ENOBUFS;
949 }
950
951 static int efx_ef10_link_piobufs(struct efx_nic *efx)
952 {
953         return 0;
954 }
955
956 static void efx_ef10_free_piobufs(struct efx_nic *efx)
957 {
958 }
959
960 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
961 {
962 }
963
964 #endif /* EFX_USE_PIO */
965
966 static void efx_ef10_remove(struct efx_nic *efx)
967 {
968         struct efx_ef10_nic_data *nic_data = efx->nic_data;
969         int rc;
970
971 #ifdef CONFIG_SFC_SRIOV
972         struct efx_ef10_nic_data *nic_data_pf;
973         struct pci_dev *pci_dev_pf;
974         struct efx_nic *efx_pf;
975         struct ef10_vf *vf;
976
977         if (efx->pci_dev->is_virtfn) {
978                 pci_dev_pf = efx->pci_dev->physfn;
979                 if (pci_dev_pf) {
980                         efx_pf = pci_get_drvdata(pci_dev_pf);
981                         nic_data_pf = efx_pf->nic_data;
982                         vf = nic_data_pf->vf + nic_data->vf_index;
983                         vf->efx = NULL;
984                 } else
985                         netif_info(efx, drv, efx->net_dev,
986                                    "Could not get the PF id from VF\n");
987         }
988 #endif
989
990         efx_ef10_cleanup_vlans(efx);
991         mutex_destroy(&nic_data->vlan_lock);
992
993         efx_ptp_remove(efx);
994
995         efx_mcdi_mon_remove(efx);
996
997         efx_ef10_rx_free_indir_table(efx);
998
999         if (nic_data->wc_membase)
1000                 iounmap(nic_data->wc_membase);
1001
1002         rc = efx_ef10_free_vis(efx);
1003         WARN_ON(rc != 0);
1004
1005         if (!nic_data->must_restore_piobufs)
1006                 efx_ef10_free_piobufs(efx);
1007
1008         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1009         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1010
1011         efx_mcdi_detach(efx);
1012
1013         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1014         mutex_lock(&nic_data->udp_tunnels_lock);
1015         (void)efx_ef10_set_udp_tnl_ports(efx, true);
1016         mutex_unlock(&nic_data->udp_tunnels_lock);
1017
1018         mutex_destroy(&nic_data->udp_tunnels_lock);
1019
1020         efx_mcdi_fini(efx);
1021         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1022         kfree(nic_data);
1023 }
1024
1025 static int efx_ef10_probe_pf(struct efx_nic *efx)
1026 {
1027         return efx_ef10_probe(efx);
1028 }
1029
1030 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1031                             u32 *port_flags, u32 *vadaptor_flags,
1032                             unsigned int *vlan_tags)
1033 {
1034         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1035         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1036         MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1037         size_t outlen;
1038         int rc;
1039
1040         if (nic_data->datapath_caps &
1041             (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1042                 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1043                                port_id);
1044
1045                 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1046                                   outbuf, sizeof(outbuf), &outlen);
1047                 if (rc)
1048                         return rc;
1049
1050                 if (outlen < sizeof(outbuf)) {
1051                         rc = -EIO;
1052                         return rc;
1053                 }
1054         }
1055
1056         if (port_flags)
1057                 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1058         if (vadaptor_flags)
1059                 *vadaptor_flags =
1060                         MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1061         if (vlan_tags)
1062                 *vlan_tags =
1063                         MCDI_DWORD(outbuf,
1064                                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1065
1066         return 0;
1067 }
1068
1069 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1070 {
1071         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1072
1073         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1074         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1075                             NULL, 0, NULL);
1076 }
1077
1078 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1079 {
1080         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1081
1082         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1083         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1084                             NULL, 0, NULL);
1085 }
1086
1087 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1088                            unsigned int port_id, u8 *mac)
1089 {
1090         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1091
1092         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1093         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1094
1095         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1096                             sizeof(inbuf), NULL, 0, NULL);
1097 }
1098
1099 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1100                            unsigned int port_id, u8 *mac)
1101 {
1102         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1103
1104         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1105         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1106
1107         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1108                             sizeof(inbuf), NULL, 0, NULL);
1109 }
1110
1111 #ifdef CONFIG_SFC_SRIOV
1112 static int efx_ef10_probe_vf(struct efx_nic *efx)
1113 {
1114         int rc;
1115         struct pci_dev *pci_dev_pf;
1116
1117         /* If the parent PF has no VF data structure, it doesn't know about this
1118          * VF so fail probe.  The VF needs to be re-created.  This can happen
1119          * if the PF driver is unloaded while the VF is assigned to a guest.
1120          */
1121         pci_dev_pf = efx->pci_dev->physfn;
1122         if (pci_dev_pf) {
1123                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1124                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1125
1126                 if (!nic_data_pf->vf) {
1127                         netif_info(efx, drv, efx->net_dev,
1128                                    "The VF cannot link to its parent PF; "
1129                                    "please destroy and re-create the VF\n");
1130                         return -EBUSY;
1131                 }
1132         }
1133
1134         rc = efx_ef10_probe(efx);
1135         if (rc)
1136                 return rc;
1137
1138         rc = efx_ef10_get_vf_index(efx);
1139         if (rc)
1140                 goto fail;
1141
1142         if (efx->pci_dev->is_virtfn) {
1143                 if (efx->pci_dev->physfn) {
1144                         struct efx_nic *efx_pf =
1145                                 pci_get_drvdata(efx->pci_dev->physfn);
1146                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1147                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1148
1149                         nic_data_p->vf[nic_data->vf_index].efx = efx;
1150                         nic_data_p->vf[nic_data->vf_index].pci_dev =
1151                                 efx->pci_dev;
1152                 } else
1153                         netif_info(efx, drv, efx->net_dev,
1154                                    "Could not get the PF id from VF\n");
1155         }
1156
1157         return 0;
1158
1159 fail:
1160         efx_ef10_remove(efx);
1161         return rc;
1162 }
1163 #else
1164 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1165 {
1166         return 0;
1167 }
1168 #endif
1169
1170 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1171                               unsigned int min_vis, unsigned int max_vis)
1172 {
1173         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1174         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1175         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1176         size_t outlen;
1177         int rc;
1178
1179         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1180         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1181         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1182                           outbuf, sizeof(outbuf), &outlen);
1183         if (rc != 0)
1184                 return rc;
1185
1186         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1187                 return -EIO;
1188
1189         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1190                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1191
1192         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1193         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1194         return 0;
1195 }
1196
1197 /* Note that the failure path of this function does not free
1198  * resources, as this will be done by efx_ef10_remove().
1199  */
1200 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1201 {
1202         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1203         unsigned int uc_mem_map_size, wc_mem_map_size;
1204         unsigned int min_vis = max(EFX_TXQ_TYPES,
1205                                    efx_separate_tx_channels ? 2 : 1);
1206         unsigned int channel_vis, pio_write_vi_base, max_vis;
1207         void __iomem *membase;
1208         int rc;
1209
1210         channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1211
1212 #ifdef EFX_USE_PIO
1213         /* Try to allocate PIO buffers if wanted and if the full
1214          * number of PIO buffers would be sufficient to allocate one
1215          * copy-buffer per TX channel.  Failure is non-fatal, as there
1216          * are only a small number of PIO buffers shared between all
1217          * functions of the controller.
1218          */
1219         if (efx_piobuf_size != 0 &&
1220             nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1221             efx->n_tx_channels) {
1222                 unsigned int n_piobufs =
1223                         DIV_ROUND_UP(efx->n_tx_channels,
1224                                      nic_data->piobuf_size / efx_piobuf_size);
1225
1226                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1227                 if (rc == -ENOSPC)
1228                         netif_dbg(efx, probe, efx->net_dev,
1229                                   "out of PIO buffers; cannot allocate more\n");
1230                 else if (rc == -EPERM)
1231                         netif_dbg(efx, probe, efx->net_dev,
1232                                   "not permitted to allocate PIO buffers\n");
1233                 else if (rc)
1234                         netif_err(efx, probe, efx->net_dev,
1235                                   "failed to allocate PIO buffers (%d)\n", rc);
1236                 else
1237                         netif_dbg(efx, probe, efx->net_dev,
1238                                   "allocated %u PIO buffers\n", n_piobufs);
1239         }
1240 #else
1241         nic_data->n_piobufs = 0;
1242 #endif
1243
1244         /* PIO buffers should be mapped with write-combining enabled,
1245          * and we want to make single UC and WC mappings rather than
1246          * several of each (in fact that's the only option if host
1247          * page size is >4K).  So we may allocate some extra VIs just
1248          * for writing PIO buffers through.
1249          *
1250          * The UC mapping contains (channel_vis - 1) complete VIs and the
1251          * first half of the next VI.  Then the WC mapping begins with
1252          * the second half of this last VI.
1253          */
1254         uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1255                                      ER_DZ_TX_PIOBUF);
1256         if (nic_data->n_piobufs) {
1257                 /* pio_write_vi_base rounds down to give the number of complete
1258                  * VIs inside the UC mapping.
1259                  */
1260                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1261                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1262                                                nic_data->n_piobufs) *
1263                                               EFX_VI_PAGE_SIZE) -
1264                                    uc_mem_map_size);
1265                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1266         } else {
1267                 pio_write_vi_base = 0;
1268                 wc_mem_map_size = 0;
1269                 max_vis = channel_vis;
1270         }
1271
1272         /* In case the last attached driver failed to free VIs, do it now */
1273         rc = efx_ef10_free_vis(efx);
1274         if (rc != 0)
1275                 return rc;
1276
1277         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1278         if (rc != 0)
1279                 return rc;
1280
1281         if (nic_data->n_allocated_vis < channel_vis) {
1282                 netif_info(efx, drv, efx->net_dev,
1283                            "Could not allocate enough VIs to satisfy RSS"
1284                            " requirements. Performance may not be optimal.\n");
1285                 /* We didn't get the VIs to populate our channels.
1286                  * We could keep what we got but then we'd have more
1287                  * interrupts than we need.
1288                  * Instead calculate new max_channels and restart
1289                  */
1290                 efx->max_channels = nic_data->n_allocated_vis;
1291                 efx->max_tx_channels =
1292                         nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1293
1294                 efx_ef10_free_vis(efx);
1295                 return -EAGAIN;
1296         }
1297
1298         /* If we didn't get enough VIs to map all the PIO buffers, free the
1299          * PIO buffers
1300          */
1301         if (nic_data->n_piobufs &&
1302             nic_data->n_allocated_vis <
1303             pio_write_vi_base + nic_data->n_piobufs) {
1304                 netif_dbg(efx, probe, efx->net_dev,
1305                           "%u VIs are not sufficient to map %u PIO buffers\n",
1306                           nic_data->n_allocated_vis, nic_data->n_piobufs);
1307                 efx_ef10_free_piobufs(efx);
1308         }
1309
1310         /* Shrink the original UC mapping of the memory BAR */
1311         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1312         if (!membase) {
1313                 netif_err(efx, probe, efx->net_dev,
1314                           "could not shrink memory BAR to %x\n",
1315                           uc_mem_map_size);
1316                 return -ENOMEM;
1317         }
1318         iounmap(efx->membase);
1319         efx->membase = membase;
1320
1321         /* Set up the WC mapping if needed */
1322         if (wc_mem_map_size) {
1323                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1324                                                   uc_mem_map_size,
1325                                                   wc_mem_map_size);
1326                 if (!nic_data->wc_membase) {
1327                         netif_err(efx, probe, efx->net_dev,
1328                                   "could not allocate WC mapping of size %x\n",
1329                                   wc_mem_map_size);
1330                         return -ENOMEM;
1331                 }
1332                 nic_data->pio_write_vi_base = pio_write_vi_base;
1333                 nic_data->pio_write_base =
1334                         nic_data->wc_membase +
1335                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1336                          uc_mem_map_size);
1337
1338                 rc = efx_ef10_link_piobufs(efx);
1339                 if (rc)
1340                         efx_ef10_free_piobufs(efx);
1341         }
1342
1343         netif_dbg(efx, probe, efx->net_dev,
1344                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1345                   &efx->membase_phys, efx->membase, uc_mem_map_size,
1346                   nic_data->wc_membase, wc_mem_map_size);
1347
1348         return 0;
1349 }
1350
1351 static int efx_ef10_init_nic(struct efx_nic *efx)
1352 {
1353         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1354         int rc;
1355
1356         if (nic_data->must_check_datapath_caps) {
1357                 rc = efx_ef10_init_datapath_caps(efx);
1358                 if (rc)
1359                         return rc;
1360                 nic_data->must_check_datapath_caps = false;
1361         }
1362
1363         if (nic_data->must_realloc_vis) {
1364                 /* We cannot let the number of VIs change now */
1365                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1366                                         nic_data->n_allocated_vis);
1367                 if (rc)
1368                         return rc;
1369                 nic_data->must_realloc_vis = false;
1370         }
1371
1372         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1373                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1374                 if (rc == 0) {
1375                         rc = efx_ef10_link_piobufs(efx);
1376                         if (rc)
1377                                 efx_ef10_free_piobufs(efx);
1378                 }
1379
1380                 /* Log an error on failure, but this is non-fatal.
1381                  * Permission errors are less important - we've presumably
1382                  * had the PIO buffer licence removed.
1383                  */
1384                 if (rc == -EPERM)
1385                         netif_dbg(efx, drv, efx->net_dev,
1386                                   "not permitted to restore PIO buffers\n");
1387                 else if (rc)
1388                         netif_err(efx, drv, efx->net_dev,
1389                                   "failed to restore PIO buffers (%d)\n", rc);
1390                 nic_data->must_restore_piobufs = false;
1391         }
1392
1393         /* don't fail init if RSS setup doesn't work */
1394         rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1395         efx->rss_active = (rc == 0);
1396
1397         return 0;
1398 }
1399
1400 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1401 {
1402         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1403 #ifdef CONFIG_SFC_SRIOV
1404         unsigned int i;
1405 #endif
1406
1407         /* All our allocations have been reset */
1408         nic_data->must_realloc_vis = true;
1409         nic_data->must_restore_filters = true;
1410         nic_data->must_restore_piobufs = true;
1411         efx_ef10_forget_old_piobufs(efx);
1412         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1413
1414         /* Driver-created vswitches and vports must be re-created */
1415         nic_data->must_probe_vswitching = true;
1416         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1417 #ifdef CONFIG_SFC_SRIOV
1418         if (nic_data->vf)
1419                 for (i = 0; i < efx->vf_count; i++)
1420                         nic_data->vf[i].vport_id = 0;
1421 #endif
1422 }
1423
1424 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1425 {
1426         if (reason == RESET_TYPE_MC_FAILURE)
1427                 return RESET_TYPE_DATAPATH;
1428
1429         return efx_mcdi_map_reset_reason(reason);
1430 }
1431
1432 static int efx_ef10_map_reset_flags(u32 *flags)
1433 {
1434         enum {
1435                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1436                                    ETH_RESET_SHARED_SHIFT),
1437                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1438                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1439                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1440                                  ETH_RESET_SHARED_SHIFT)
1441         };
1442
1443         /* We assume for now that our PCI function is permitted to
1444          * reset everything.
1445          */
1446
1447         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1448                 *flags &= ~EF10_RESET_MC;
1449                 return RESET_TYPE_WORLD;
1450         }
1451
1452         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1453                 *flags &= ~EF10_RESET_PORT;
1454                 return RESET_TYPE_ALL;
1455         }
1456
1457         /* no invisible reset implemented */
1458
1459         return -EINVAL;
1460 }
1461
1462 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1463 {
1464         int rc = efx_mcdi_reset(efx, reset_type);
1465
1466         /* Unprivileged functions return -EPERM, but need to return success
1467          * here so that the datapath is brought back up.
1468          */
1469         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1470                 rc = 0;
1471
1472         /* If it was a port reset, trigger reallocation of MC resources.
1473          * Note that on an MC reset nothing needs to be done now because we'll
1474          * detect the MC reset later and handle it then.
1475          * For an FLR, we never get an MC reset event, but the MC has reset all
1476          * resources assigned to us, so we have to trigger reallocation now.
1477          */
1478         if ((reset_type == RESET_TYPE_ALL ||
1479              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1480                 efx_ef10_reset_mc_allocations(efx);
1481         return rc;
1482 }
1483
1484 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1485         [EF10_STAT_ ## ext_name] =                              \
1486         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1487 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1488         [EF10_STAT_ ## int_name] =                              \
1489         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1490 #define EF10_OTHER_STAT(ext_name)                               \
1491         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1492 #define GENERIC_SW_STAT(ext_name)                               \
1493         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1494
1495 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1496         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1497         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1498         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1499         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1500         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1501         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1502         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1503         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1504         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1505         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1506         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1507         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1508         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1509         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1510         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1511         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1512         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1513         EF10_OTHER_STAT(port_rx_good_bytes),
1514         EF10_OTHER_STAT(port_rx_bad_bytes),
1515         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1516         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1517         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1518         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1519         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1520         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1521         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1522         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1523         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1524         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1525         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1526         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1527         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1528         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1529         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1530         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1531         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1532         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1533         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1534         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1535         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1536         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1537         GENERIC_SW_STAT(rx_nodesc_trunc),
1538         GENERIC_SW_STAT(rx_noskb_drops),
1539         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1540         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1541         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1542         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1543         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1544         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1545         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1546         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1547         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1548         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1549         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1550         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1551         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1552         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1553         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1554         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1555         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1556         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1557         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1558         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1559         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1560         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1561         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1562         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1563         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1564         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1565         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1566         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1567         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1568         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1569 };
1570
1571 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1572                                (1ULL << EF10_STAT_port_tx_packets) |    \
1573                                (1ULL << EF10_STAT_port_tx_pause) |      \
1574                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1575                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1576                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1577                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1578                                (1ULL <<                                 \
1579                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1580                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1581                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1582                                (1ULL << EF10_STAT_port_rx_packets) |    \
1583                                (1ULL << EF10_STAT_port_rx_good) |       \
1584                                (1ULL << EF10_STAT_port_rx_bad) |        \
1585                                (1ULL << EF10_STAT_port_rx_pause) |      \
1586                                (1ULL << EF10_STAT_port_rx_control) |    \
1587                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1588                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1589                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1590                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1591                                (1ULL << EF10_STAT_port_rx_64) |         \
1592                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1593                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1594                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1595                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1596                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1597                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1598                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1599                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1600                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1601                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1602                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1603                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1604
1605 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1606  * For a 10G/40G switchable port we do not expose these because they might
1607  * not include all the packets they should.
1608  * On 8000 series NICs these statistics are always provided.
1609  */
1610 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1611                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1612                                  (1ULL << EF10_STAT_port_tx_64) |       \
1613                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1614                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1615                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1616                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1617                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1618                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1619
1620 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1621  * switchable port we do expose these because the errors will otherwise
1622  * be silent.
1623  */
1624 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1625                                   (1ULL << EF10_STAT_port_rx_length_error))
1626
1627 /* These statistics are only provided if the firmware supports the
1628  * capability PM_AND_RXDP_COUNTERS.
1629  */
1630 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1631         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1632         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1633         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1634         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1635         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1636         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1637         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1638         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1639         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1640         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1641         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1642         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1643
1644 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1645 {
1646         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1647         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1648         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1649
1650         if (!(efx->mcdi->fn_flags &
1651               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1652                 return 0;
1653
1654         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1655                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1656                 /* 8000 series have everything even at 40G */
1657                 if (nic_data->datapath_caps2 &
1658                     (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1659                         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1660         } else {
1661                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1662         }
1663
1664         if (nic_data->datapath_caps &
1665             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1666                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1667
1668         return raw_mask;
1669 }
1670
1671 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1672 {
1673         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1674         u64 raw_mask[2];
1675
1676         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1677
1678         /* Only show vadaptor stats when EVB capability is present */
1679         if (nic_data->datapath_caps &
1680             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1681                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1682                 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1683         } else {
1684                 raw_mask[1] = 0;
1685         }
1686
1687 #if BITS_PER_LONG == 64
1688         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1689         mask[0] = raw_mask[0];
1690         mask[1] = raw_mask[1];
1691 #else
1692         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1693         mask[0] = raw_mask[0] & 0xffffffff;
1694         mask[1] = raw_mask[0] >> 32;
1695         mask[2] = raw_mask[1] & 0xffffffff;
1696 #endif
1697 }
1698
1699 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1700 {
1701         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1702
1703         efx_ef10_get_stat_mask(efx, mask);
1704         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1705                                       mask, names);
1706 }
1707
1708 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1709                                            struct rtnl_link_stats64 *core_stats)
1710 {
1711         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1712         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1713         u64 *stats = nic_data->stats;
1714         size_t stats_count = 0, index;
1715
1716         efx_ef10_get_stat_mask(efx, mask);
1717
1718         if (full_stats) {
1719                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1720                         if (efx_ef10_stat_desc[index].name) {
1721                                 *full_stats++ = stats[index];
1722                                 ++stats_count;
1723                         }
1724                 }
1725         }
1726
1727         if (!core_stats)
1728                 return stats_count;
1729
1730         if (nic_data->datapath_caps &
1731                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1732                 /* Use vadaptor stats. */
1733                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1734                                          stats[EF10_STAT_rx_multicast] +
1735                                          stats[EF10_STAT_rx_broadcast];
1736                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1737                                          stats[EF10_STAT_tx_multicast] +
1738                                          stats[EF10_STAT_tx_broadcast];
1739                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1740                                        stats[EF10_STAT_rx_multicast_bytes] +
1741                                        stats[EF10_STAT_rx_broadcast_bytes];
1742                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1743                                        stats[EF10_STAT_tx_multicast_bytes] +
1744                                        stats[EF10_STAT_tx_broadcast_bytes];
1745                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1746                                          stats[GENERIC_STAT_rx_noskb_drops];
1747                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1748                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1749                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1750                 core_stats->rx_errors = core_stats->rx_crc_errors;
1751                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1752         } else {
1753                 /* Use port stats. */
1754                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1755                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1756                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1757                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1758                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1759                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1760                                          stats[GENERIC_STAT_rx_noskb_drops];
1761                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1762                 core_stats->rx_length_errors =
1763                                 stats[EF10_STAT_port_rx_gtjumbo] +
1764                                 stats[EF10_STAT_port_rx_length_error];
1765                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1766                 core_stats->rx_frame_errors =
1767                                 stats[EF10_STAT_port_rx_align_error];
1768                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1769                 core_stats->rx_errors = (core_stats->rx_length_errors +
1770                                          core_stats->rx_crc_errors +
1771                                          core_stats->rx_frame_errors);
1772         }
1773
1774         return stats_count;
1775 }
1776
1777 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1778 {
1779         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1780         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1781         __le64 generation_start, generation_end;
1782         u64 *stats = nic_data->stats;
1783         __le64 *dma_stats;
1784
1785         efx_ef10_get_stat_mask(efx, mask);
1786
1787         dma_stats = efx->stats_buffer.addr;
1788
1789         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1790         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1791                 return 0;
1792         rmb();
1793         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1794                              stats, efx->stats_buffer.addr, false);
1795         rmb();
1796         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1797         if (generation_end != generation_start)
1798                 return -EAGAIN;
1799
1800         /* Update derived statistics */
1801         efx_nic_fix_nodesc_drop_stat(efx,
1802                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1803         stats[EF10_STAT_port_rx_good_bytes] =
1804                 stats[EF10_STAT_port_rx_bytes] -
1805                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1806         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1807                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1808         efx_update_sw_stats(efx, stats);
1809         return 0;
1810 }
1811
1812
1813 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1814                                        struct rtnl_link_stats64 *core_stats)
1815 {
1816         int retry;
1817
1818         /* If we're unlucky enough to read statistics during the DMA, wait
1819          * up to 10ms for it to finish (typically takes <500us)
1820          */
1821         for (retry = 0; retry < 100; ++retry) {
1822                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1823                         break;
1824                 udelay(100);
1825         }
1826
1827         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1828 }
1829
1830 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1831 {
1832         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1833         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1834         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1835         __le64 generation_start, generation_end;
1836         u64 *stats = nic_data->stats;
1837         u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1838         struct efx_buffer stats_buf;
1839         __le64 *dma_stats;
1840         int rc;
1841
1842         spin_unlock_bh(&efx->stats_lock);
1843
1844         if (in_interrupt()) {
1845                 /* If in atomic context, cannot update stats.  Just update the
1846                  * software stats and return so the caller can continue.
1847                  */
1848                 spin_lock_bh(&efx->stats_lock);
1849                 efx_update_sw_stats(efx, stats);
1850                 return 0;
1851         }
1852
1853         efx_ef10_get_stat_mask(efx, mask);
1854
1855         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1856         if (rc) {
1857                 spin_lock_bh(&efx->stats_lock);
1858                 return rc;
1859         }
1860
1861         dma_stats = stats_buf.addr;
1862         dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1863
1864         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1865         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1866                               MAC_STATS_IN_DMA, 1);
1867         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1868         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1869
1870         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1871                                 NULL, 0, NULL);
1872         spin_lock_bh(&efx->stats_lock);
1873         if (rc) {
1874                 /* Expect ENOENT if DMA queues have not been set up */
1875                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1876                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1877                                                sizeof(inbuf), NULL, 0, rc);
1878                 goto out;
1879         }
1880
1881         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1882         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1883                 WARN_ON_ONCE(1);
1884                 goto out;
1885         }
1886         rmb();
1887         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1888                              stats, stats_buf.addr, false);
1889         rmb();
1890         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1891         if (generation_end != generation_start) {
1892                 rc = -EAGAIN;
1893                 goto out;
1894         }
1895
1896         efx_update_sw_stats(efx, stats);
1897 out:
1898         efx_nic_free_buffer(efx, &stats_buf);
1899         return rc;
1900 }
1901
1902 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1903                                        struct rtnl_link_stats64 *core_stats)
1904 {
1905         if (efx_ef10_try_update_nic_stats_vf(efx))
1906                 return 0;
1907
1908         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1909 }
1910
1911 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1912 {
1913         struct efx_nic *efx = channel->efx;
1914         unsigned int mode, usecs;
1915         efx_dword_t timer_cmd;
1916
1917         if (channel->irq_moderation_us) {
1918                 mode = 3;
1919                 usecs = channel->irq_moderation_us;
1920         } else {
1921                 mode = 0;
1922                 usecs = 0;
1923         }
1924
1925         if (EFX_EF10_WORKAROUND_61265(efx)) {
1926                 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1927                 unsigned int ns = usecs * 1000;
1928
1929                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1930                                channel->channel);
1931                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1932                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1933                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1934
1935                 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1936                                    inbuf, sizeof(inbuf), 0, NULL, 0);
1937         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1938                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1939
1940                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1941                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1942                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1943                                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1944                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1945                                 channel->channel);
1946         } else {
1947                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1948
1949                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1950                                      ERF_DZ_TC_TIMER_VAL, ticks);
1951                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1952                                 channel->channel);
1953         }
1954 }
1955
1956 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1957                                 struct ethtool_wolinfo *wol) {}
1958
1959 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1960 {
1961         return -EOPNOTSUPP;
1962 }
1963
1964 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1965 {
1966         wol->supported = 0;
1967         wol->wolopts = 0;
1968         memset(&wol->sopass, 0, sizeof(wol->sopass));
1969 }
1970
1971 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1972 {
1973         if (type != 0)
1974                 return -EINVAL;
1975         return 0;
1976 }
1977
1978 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1979                                   const efx_dword_t *hdr, size_t hdr_len,
1980                                   const efx_dword_t *sdu, size_t sdu_len)
1981 {
1982         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1983         u8 *pdu = nic_data->mcdi_buf.addr;
1984
1985         memcpy(pdu, hdr, hdr_len);
1986         memcpy(pdu + hdr_len, sdu, sdu_len);
1987         wmb();
1988
1989         /* The hardware provides 'low' and 'high' (doorbell) registers
1990          * for passing the 64-bit address of an MCDI request to
1991          * firmware.  However the dwords are swapped by firmware.  The
1992          * least significant bits of the doorbell are then 0 for all
1993          * MCDI requests due to alignment.
1994          */
1995         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1996                     ER_DZ_MC_DB_LWRD);
1997         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1998                     ER_DZ_MC_DB_HWRD);
1999 }
2000
2001 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2002 {
2003         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2004         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2005
2006         rmb();
2007         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2008 }
2009
2010 static void
2011 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2012                             size_t offset, size_t outlen)
2013 {
2014         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2015         const u8 *pdu = nic_data->mcdi_buf.addr;
2016
2017         memcpy(outbuf, pdu + offset, outlen);
2018 }
2019
2020 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2021 {
2022         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2023
2024         /* All our allocations have been reset */
2025         efx_ef10_reset_mc_allocations(efx);
2026
2027         /* The datapath firmware might have been changed */
2028         nic_data->must_check_datapath_caps = true;
2029
2030         /* MAC statistics have been cleared on the NIC; clear the local
2031          * statistic that we update with efx_update_diff_stat().
2032          */
2033         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2034 }
2035
2036 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2037 {
2038         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2039         int rc;
2040
2041         rc = efx_ef10_get_warm_boot_count(efx);
2042         if (rc < 0) {
2043                 /* The firmware is presumably in the process of
2044                  * rebooting.  However, we are supposed to report each
2045                  * reboot just once, so we must only do that once we
2046                  * can read and store the updated warm boot count.
2047                  */
2048                 return 0;
2049         }
2050
2051         if (rc == nic_data->warm_boot_count)
2052                 return 0;
2053
2054         nic_data->warm_boot_count = rc;
2055         efx_ef10_mcdi_reboot_detected(efx);
2056
2057         return -EIO;
2058 }
2059
2060 /* Handle an MSI interrupt
2061  *
2062  * Handle an MSI hardware interrupt.  This routine schedules event
2063  * queue processing.  No interrupt acknowledgement cycle is necessary.
2064  * Also, we never need to check that the interrupt is for us, since
2065  * MSI interrupts cannot be shared.
2066  */
2067 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2068 {
2069         struct efx_msi_context *context = dev_id;
2070         struct efx_nic *efx = context->efx;
2071
2072         netif_vdbg(efx, intr, efx->net_dev,
2073                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2074
2075         if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
2076                 /* Note test interrupts */
2077                 if (context->index == efx->irq_level)
2078                         efx->last_irq_cpu = raw_smp_processor_id();
2079
2080                 /* Schedule processing of the channel */
2081                 efx_schedule_channel_irq(efx->channel[context->index]);
2082         }
2083
2084         return IRQ_HANDLED;
2085 }
2086
2087 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2088 {
2089         struct efx_nic *efx = dev_id;
2090         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
2091         struct efx_channel *channel;
2092         efx_dword_t reg;
2093         u32 queues;
2094
2095         /* Read the ISR which also ACKs the interrupts */
2096         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2097         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2098
2099         if (queues == 0)
2100                 return IRQ_NONE;
2101
2102         if (likely(soft_enabled)) {
2103                 /* Note test interrupts */
2104                 if (queues & (1U << efx->irq_level))
2105                         efx->last_irq_cpu = raw_smp_processor_id();
2106
2107                 efx_for_each_channel(channel, efx) {
2108                         if (queues & 1)
2109                                 efx_schedule_channel_irq(channel);
2110                         queues >>= 1;
2111                 }
2112         }
2113
2114         netif_vdbg(efx, intr, efx->net_dev,
2115                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2116                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2117
2118         return IRQ_HANDLED;
2119 }
2120
2121 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2122 {
2123         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2124
2125         if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2126                                     NULL) == 0)
2127                 return -ENOTSUPP;
2128
2129         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2130
2131         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2132         return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2133                             inbuf, sizeof(inbuf), NULL, 0, NULL);
2134 }
2135
2136 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2137 {
2138         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2139                                     (tx_queue->ptr_mask + 1) *
2140                                     sizeof(efx_qword_t),
2141                                     GFP_KERNEL);
2142 }
2143
2144 /* This writes to the TX_DESC_WPTR and also pushes data */
2145 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2146                                          const efx_qword_t *txd)
2147 {
2148         unsigned int write_ptr;
2149         efx_oword_t reg;
2150
2151         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2152         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2153         reg.qword[0] = *txd;
2154         efx_writeo_page(tx_queue->efx, &reg,
2155                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
2156 }
2157
2158 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2159  */
2160 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2161                                 struct sk_buff *skb,
2162                                 bool *data_mapped)
2163 {
2164         struct efx_tx_buffer *buffer;
2165         struct tcphdr *tcp;
2166         struct iphdr *ip;
2167
2168         u16 ipv4_id;
2169         u32 seqnum;
2170         u32 mss;
2171
2172         EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2173
2174         mss = skb_shinfo(skb)->gso_size;
2175
2176         if (unlikely(mss < 4)) {
2177                 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2178                 return -EINVAL;
2179         }
2180
2181         ip = ip_hdr(skb);
2182         if (ip->version == 4) {
2183                 /* Modify IPv4 header if needed. */
2184                 ip->tot_len = 0;
2185                 ip->check = 0;
2186                 ipv4_id = ntohs(ip->id);
2187         } else {
2188                 /* Modify IPv6 header if needed. */
2189                 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2190
2191                 ipv6->payload_len = 0;
2192                 ipv4_id = 0;
2193         }
2194
2195         tcp = tcp_hdr(skb);
2196         seqnum = ntohl(tcp->seq);
2197
2198         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2199
2200         buffer->flags = EFX_TX_BUF_OPTION;
2201         buffer->len = 0;
2202         buffer->unmap_len = 0;
2203         EFX_POPULATE_QWORD_5(buffer->option,
2204                         ESF_DZ_TX_DESC_IS_OPT, 1,
2205                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2206                         ESF_DZ_TX_TSO_OPTION_TYPE,
2207                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2208                         ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2209                         ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2210                         );
2211         ++tx_queue->insert_count;
2212
2213         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2214
2215         buffer->flags = EFX_TX_BUF_OPTION;
2216         buffer->len = 0;
2217         buffer->unmap_len = 0;
2218         EFX_POPULATE_QWORD_4(buffer->option,
2219                         ESF_DZ_TX_DESC_IS_OPT, 1,
2220                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2221                         ESF_DZ_TX_TSO_OPTION_TYPE,
2222                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2223                         ESF_DZ_TX_TSO_TCP_MSS, mss
2224                         );
2225         ++tx_queue->insert_count;
2226
2227         return 0;
2228 }
2229
2230 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2231 {
2232         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2233         u32 tso_versions = 0;
2234
2235         if (nic_data->datapath_caps &
2236             (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2237                 tso_versions |= BIT(1);
2238         if (nic_data->datapath_caps2 &
2239             (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2240                 tso_versions |= BIT(2);
2241         return tso_versions;
2242 }
2243
2244 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2245 {
2246         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2247                                                        EFX_BUF_SIZE));
2248         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2249         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2250         struct efx_channel *channel = tx_queue->channel;
2251         struct efx_nic *efx = tx_queue->efx;
2252         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2253         bool tso_v2 = false;
2254         size_t inlen;
2255         dma_addr_t dma_addr;
2256         efx_qword_t *txd;
2257         int rc;
2258         int i;
2259         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2260
2261         /* TSOv2 is a limited resource that can only be configured on a limited
2262          * number of queues. TSO without checksum offload is not really a thing,
2263          * so we only enable it for those queues.
2264          */
2265         if (csum_offload && (nic_data->datapath_caps2 &
2266                         (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
2267                 tso_v2 = true;
2268                 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2269                                 channel->channel);
2270         }
2271
2272         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2273         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2274         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2275         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2276         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2277         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2278
2279         dma_addr = tx_queue->txd.buf.dma_addr;
2280
2281         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2282                   tx_queue->queue, entries, (u64)dma_addr);
2283
2284         for (i = 0; i < entries; ++i) {
2285                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2286                 dma_addr += EFX_BUF_SIZE;
2287         }
2288
2289         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2290
2291         do {
2292                 MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
2293                                 /* This flag was removed from mcdi_pcol.h for
2294                                  * the non-_EXT version of INIT_TXQ.  However,
2295                                  * firmware still honours it.
2296                                  */
2297                                 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2298                                 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2299                                 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2300
2301                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2302                                         NULL, 0, NULL);
2303                 if (rc == -ENOSPC && tso_v2) {
2304                         /* Retry without TSOv2 if we're short on contexts. */
2305                         tso_v2 = false;
2306                         netif_warn(efx, probe, efx->net_dev,
2307                                    "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2308                 } else if (rc) {
2309                         efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2310                                                MC_CMD_INIT_TXQ_EXT_IN_LEN,
2311                                                NULL, 0, rc);
2312                         goto fail;
2313                 }
2314         } while (rc);
2315
2316         /* A previous user of this TX queue might have set us up the
2317          * bomb by writing a descriptor to the TX push collector but
2318          * not the doorbell.  (Each collector belongs to a port, not a
2319          * queue or function, so cannot easily be reset.)  We must
2320          * attempt to push a no-op descriptor in its place.
2321          */
2322         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2323         tx_queue->insert_count = 1;
2324         txd = efx_tx_desc(tx_queue, 0);
2325         EFX_POPULATE_QWORD_4(*txd,
2326                              ESF_DZ_TX_DESC_IS_OPT, true,
2327                              ESF_DZ_TX_OPTION_TYPE,
2328                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2329                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2330                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2331         tx_queue->write_count = 1;
2332
2333         if (tso_v2) {
2334                 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2335                 tx_queue->tso_version = 2;
2336         } else if (nic_data->datapath_caps &
2337                         (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2338                 tx_queue->tso_version = 1;
2339         }
2340
2341         wmb();
2342         efx_ef10_push_tx_desc(tx_queue, txd);
2343
2344         return;
2345
2346 fail:
2347         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2348                     tx_queue->queue);
2349 }
2350
2351 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2352 {
2353         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2354         MCDI_DECLARE_BUF_ERR(outbuf);
2355         struct efx_nic *efx = tx_queue->efx;
2356         size_t outlen;
2357         int rc;
2358
2359         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2360                        tx_queue->queue);
2361
2362         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2363                           outbuf, sizeof(outbuf), &outlen);
2364
2365         if (rc && rc != -EALREADY)
2366                 goto fail;
2367
2368         return;
2369
2370 fail:
2371         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2372                                outbuf, outlen, rc);
2373 }
2374
2375 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2376 {
2377         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2378 }
2379
2380 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2381 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2382 {
2383         unsigned int write_ptr;
2384         efx_dword_t reg;
2385
2386         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2387         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2388         efx_writed_page(tx_queue->efx, &reg,
2389                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2390 }
2391
2392 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2393
2394 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2395                                           dma_addr_t dma_addr, unsigned int len)
2396 {
2397         if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2398                 /* If we need to break across multiple descriptors we should
2399                  * stop at a page boundary. This assumes the length limit is
2400                  * greater than the page size.
2401                  */
2402                 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2403
2404                 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2405                 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2406         }
2407
2408         return len;
2409 }
2410
2411 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2412 {
2413         unsigned int old_write_count = tx_queue->write_count;
2414         struct efx_tx_buffer *buffer;
2415         unsigned int write_ptr;
2416         efx_qword_t *txd;
2417
2418         tx_queue->xmit_more_available = false;
2419         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2420                 return;
2421
2422         do {
2423                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2424                 buffer = &tx_queue->buffer[write_ptr];
2425                 txd = efx_tx_desc(tx_queue, write_ptr);
2426                 ++tx_queue->write_count;
2427
2428                 /* Create TX descriptor ring entry */
2429                 if (buffer->flags & EFX_TX_BUF_OPTION) {
2430                         *txd = buffer->option;
2431                         if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2432                                 /* PIO descriptor */
2433                                 tx_queue->packet_write_count = tx_queue->write_count;
2434                 } else {
2435                         tx_queue->packet_write_count = tx_queue->write_count;
2436                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2437                         EFX_POPULATE_QWORD_3(
2438                                 *txd,
2439                                 ESF_DZ_TX_KER_CONT,
2440                                 buffer->flags & EFX_TX_BUF_CONT,
2441                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2442                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2443                 }
2444         } while (tx_queue->write_count != tx_queue->insert_count);
2445
2446         wmb(); /* Ensure descriptors are written before they are fetched */
2447
2448         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2449                 txd = efx_tx_desc(tx_queue,
2450                                   old_write_count & tx_queue->ptr_mask);
2451                 efx_ef10_push_tx_desc(tx_queue, txd);
2452                 ++tx_queue->pushes;
2453         } else {
2454                 efx_ef10_notify_tx_desc(tx_queue);
2455         }
2456 }
2457
2458 #define RSS_MODE_HASH_ADDRS     (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2459                                  1 << RSS_MODE_HASH_DST_ADDR_LBN)
2460 #define RSS_MODE_HASH_PORTS     (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2461                                  1 << RSS_MODE_HASH_DST_PORT_LBN)
2462 #define RSS_CONTEXT_FLAGS_DEFAULT       (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2463                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2464                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2465                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2466                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2467                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2468                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2469                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2470                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2471                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2472
2473 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2474 {
2475         /* Firmware had a bug (sfc bug 61952) where it would not actually
2476          * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2477          * This meant that it would always contain whatever was previously
2478          * in the MCDI buffer.  Fortunately, all firmware versions with
2479          * this bug have the same default flags value for a newly-allocated
2480          * RSS context, and the only time we want to get the flags is just
2481          * after allocating.  Moreover, the response has a 32-bit hole
2482          * where the context ID would be in the request, so we can use an
2483          * overlength buffer in the request and pre-fill the flags field
2484          * with what we believe the default to be.  Thus if the firmware
2485          * has the bug, it will leave our pre-filled value in the flags
2486          * field of the response, and we will get the right answer.
2487          *
2488          * However, this does mean that this function should NOT be used if
2489          * the RSS context flags might not be their defaults - it is ONLY
2490          * reliably correct for a newly-allocated RSS context.
2491          */
2492         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2493         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2494         size_t outlen;
2495         int rc;
2496
2497         /* Check we have a hole for the context ID */
2498         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2499         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2500         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2501                        RSS_CONTEXT_FLAGS_DEFAULT);
2502         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2503                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2504         if (rc == 0) {
2505                 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2506                         rc = -EIO;
2507                 else
2508                         *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2509         }
2510         return rc;
2511 }
2512
2513 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2514  * If we fail, we just leave the RSS context at its default hash settings,
2515  * which is safe but may slightly reduce performance.
2516  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2517  * just need to set the UDP ports flags (for both IP versions).
2518  */
2519 static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2520 {
2521         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2522         u32 flags;
2523
2524         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2525
2526         if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2527                 return;
2528         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2529         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2530         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2531         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2532         if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2533                           NULL, 0, NULL))
2534                 /* Succeeded, so UDP 4-tuple is now enabled */
2535                 efx->rx_hash_udp_4tuple = true;
2536 }
2537
2538 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2539                                       bool exclusive, unsigned *context_size)
2540 {
2541         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2542         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2543         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2544         size_t outlen;
2545         int rc;
2546         u32 alloc_type = exclusive ?
2547                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2548                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2549         unsigned rss_spread = exclusive ?
2550                                 efx->rss_spread :
2551                                 min(rounddown_pow_of_two(efx->rss_spread),
2552                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2553
2554         if (!exclusive && rss_spread == 1) {
2555                 *context = EFX_EF10_RSS_CONTEXT_INVALID;
2556                 if (context_size)
2557                         *context_size = 1;
2558                 return 0;
2559         }
2560
2561         if (nic_data->datapath_caps &
2562             1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2563                 return -EOPNOTSUPP;
2564
2565         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2566                        nic_data->vport_id);
2567         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2568         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2569
2570         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2571                 outbuf, sizeof(outbuf), &outlen);
2572         if (rc != 0)
2573                 return rc;
2574
2575         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2576                 return -EIO;
2577
2578         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2579
2580         if (context_size)
2581                 *context_size = rss_spread;
2582
2583         if (nic_data->datapath_caps &
2584             1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2585                 efx_ef10_set_rss_flags(efx, *context);
2586
2587         return 0;
2588 }
2589
2590 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2591 {
2592         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2593         int rc;
2594
2595         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2596                        context);
2597
2598         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2599                             NULL, 0, NULL);
2600         WARN_ON(rc != 0);
2601 }
2602
2603 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2604                                        const u32 *rx_indir_table, const u8 *key)
2605 {
2606         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2607         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2608         int i, rc;
2609
2610         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2611                        context);
2612         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2613                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2614
2615         /* This iterates over the length of efx->rx_indir_table, but copies
2616          * bytes from rx_indir_table.  That's because the latter is a pointer
2617          * rather than an array, but should have the same length.
2618          * The efx->rx_hash_key loop below is similar.
2619          */
2620         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2621                 MCDI_PTR(tablebuf,
2622                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2623                                 (u8) rx_indir_table[i];
2624
2625         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2626                           sizeof(tablebuf), NULL, 0, NULL);
2627         if (rc != 0)
2628                 return rc;
2629
2630         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2631                        context);
2632         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2633                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2634         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2635                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2636
2637         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2638                             sizeof(keybuf), NULL, 0, NULL);
2639 }
2640
2641 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2642 {
2643         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2644
2645         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2646                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2647         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2648 }
2649
2650 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2651                                               unsigned *context_size)
2652 {
2653         u32 new_rx_rss_context;
2654         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2655         int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2656                                             false, context_size);
2657
2658         if (rc != 0)
2659                 return rc;
2660
2661         nic_data->rx_rss_context = new_rx_rss_context;
2662         nic_data->rx_rss_context_exclusive = false;
2663         efx_set_default_rx_indir_table(efx);
2664         return 0;
2665 }
2666
2667 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2668                                                  const u32 *rx_indir_table,
2669                                                  const u8 *key)
2670 {
2671         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2672         int rc;
2673         u32 new_rx_rss_context;
2674
2675         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2676             !nic_data->rx_rss_context_exclusive) {
2677                 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2678                                                 true, NULL);
2679                 if (rc == -EOPNOTSUPP)
2680                         return rc;
2681                 else if (rc != 0)
2682                         goto fail1;
2683         } else {
2684                 new_rx_rss_context = nic_data->rx_rss_context;
2685         }
2686
2687         rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2688                                          rx_indir_table, key);
2689         if (rc != 0)
2690                 goto fail2;
2691
2692         if (nic_data->rx_rss_context != new_rx_rss_context)
2693                 efx_ef10_rx_free_indir_table(efx);
2694         nic_data->rx_rss_context = new_rx_rss_context;
2695         nic_data->rx_rss_context_exclusive = true;
2696         if (rx_indir_table != efx->rx_indir_table)
2697                 memcpy(efx->rx_indir_table, rx_indir_table,
2698                        sizeof(efx->rx_indir_table));
2699         if (key != efx->rx_hash_key)
2700                 memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);
2701
2702         return 0;
2703
2704 fail2:
2705         if (new_rx_rss_context != nic_data->rx_rss_context)
2706                 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2707 fail1:
2708         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2709         return rc;
2710 }
2711
2712 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2713 {
2714         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2715         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2716         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2717         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2718         size_t outlen;
2719         int rc, i;
2720
2721         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2722                      MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2723
2724         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2725                 return -ENOENT;
2726
2727         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2728                        nic_data->rx_rss_context);
2729         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2730                      MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2731         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2732                           tablebuf, sizeof(tablebuf), &outlen);
2733         if (rc != 0)
2734                 return rc;
2735
2736         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2737                 return -EIO;
2738
2739         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
2740                 efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2741                                 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2742
2743         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2744                        nic_data->rx_rss_context);
2745         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2746                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2747         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2748                           keybuf, sizeof(keybuf), &outlen);
2749         if (rc != 0)
2750                 return rc;
2751
2752         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2753                 return -EIO;
2754
2755         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2756                 efx->rx_hash_key[i] = MCDI_PTR(
2757                                 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2758
2759         return 0;
2760 }
2761
2762 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2763                                           const u32 *rx_indir_table,
2764                                           const u8 *key)
2765 {
2766         int rc;
2767
2768         if (efx->rss_spread == 1)
2769                 return 0;
2770
2771         if (!key)
2772                 key = efx->rx_hash_key;
2773
2774         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2775
2776         if (rc == -ENOBUFS && !user) {
2777                 unsigned context_size;
2778                 bool mismatch = false;
2779                 size_t i;
2780
2781                 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2782                      i++)
2783                         mismatch = rx_indir_table[i] !=
2784                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
2785
2786                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2787                 if (rc == 0) {
2788                         if (context_size != efx->rss_spread)
2789                                 netif_warn(efx, probe, efx->net_dev,
2790                                            "Could not allocate an exclusive RSS"
2791                                            " context; allocated a shared one of"
2792                                            " different size."
2793                                            " Wanted %u, got %u.\n",
2794                                            efx->rss_spread, context_size);
2795                         else if (mismatch)
2796                                 netif_warn(efx, probe, efx->net_dev,
2797                                            "Could not allocate an exclusive RSS"
2798                                            " context; allocated a shared one but"
2799                                            " could not apply custom"
2800                                            " indirection.\n");
2801                         else
2802                                 netif_info(efx, probe, efx->net_dev,
2803                                            "Could not allocate an exclusive RSS"
2804                                            " context; allocated a shared one.\n");
2805                 }
2806         }
2807         return rc;
2808 }
2809
2810 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2811                                           const u32 *rx_indir_table
2812                                           __attribute__ ((unused)),
2813                                           const u8 *key
2814                                           __attribute__ ((unused)))
2815 {
2816         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2817
2818         if (user)
2819                 return -EOPNOTSUPP;
2820         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2821                 return 0;
2822         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2823 }
2824
2825 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2826 {
2827         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2828                                     (rx_queue->ptr_mask + 1) *
2829                                     sizeof(efx_qword_t),
2830                                     GFP_KERNEL);
2831 }
2832
2833 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2834 {
2835         MCDI_DECLARE_BUF(inbuf,
2836                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2837                                                 EFX_BUF_SIZE));
2838         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2839         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2840         struct efx_nic *efx = rx_queue->efx;
2841         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2842         size_t inlen;
2843         dma_addr_t dma_addr;
2844         int rc;
2845         int i;
2846         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2847
2848         rx_queue->scatter_n = 0;
2849         rx_queue->scatter_len = 0;
2850
2851         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2852         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2853         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2854         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2855                        efx_rx_queue_index(rx_queue));
2856         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2857                               INIT_RXQ_IN_FLAG_PREFIX, 1,
2858                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2859         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2860         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2861
2862         dma_addr = rx_queue->rxd.buf.dma_addr;
2863
2864         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2865                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2866
2867         for (i = 0; i < entries; ++i) {
2868                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2869                 dma_addr += EFX_BUF_SIZE;
2870         }
2871
2872         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2873
2874         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2875                           NULL, 0, NULL);
2876         if (rc)
2877                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2878                             efx_rx_queue_index(rx_queue));
2879 }
2880
2881 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2882 {
2883         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2884         MCDI_DECLARE_BUF_ERR(outbuf);
2885         struct efx_nic *efx = rx_queue->efx;
2886         size_t outlen;
2887         int rc;
2888
2889         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2890                        efx_rx_queue_index(rx_queue));
2891
2892         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2893                           outbuf, sizeof(outbuf), &outlen);
2894
2895         if (rc && rc != -EALREADY)
2896                 goto fail;
2897
2898         return;
2899
2900 fail:
2901         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2902                                outbuf, outlen, rc);
2903 }
2904
2905 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2906 {
2907         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2908 }
2909
2910 /* This creates an entry in the RX descriptor queue */
2911 static inline void
2912 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2913 {
2914         struct efx_rx_buffer *rx_buf;
2915         efx_qword_t *rxd;
2916
2917         rxd = efx_rx_desc(rx_queue, index);
2918         rx_buf = efx_rx_buffer(rx_queue, index);
2919         EFX_POPULATE_QWORD_2(*rxd,
2920                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2921                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2922 }
2923
2924 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2925 {
2926         struct efx_nic *efx = rx_queue->efx;
2927         unsigned int write_count;
2928         efx_dword_t reg;
2929
2930         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2931         write_count = rx_queue->added_count & ~7;
2932         if (rx_queue->notified_count == write_count)
2933                 return;
2934
2935         do
2936                 efx_ef10_build_rx_desc(
2937                         rx_queue,
2938                         rx_queue->notified_count & rx_queue->ptr_mask);
2939         while (++rx_queue->notified_count != write_count);
2940
2941         wmb();
2942         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2943                              write_count & rx_queue->ptr_mask);
2944         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2945                         efx_rx_queue_index(rx_queue));
2946 }
2947
2948 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2949
2950 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2951 {
2952         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2953         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2954         efx_qword_t event;
2955
2956         EFX_POPULATE_QWORD_2(event,
2957                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2958                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2959
2960         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2961
2962         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2963          * already swapped the data to little-endian order.
2964          */
2965         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2966                sizeof(efx_qword_t));
2967
2968         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2969                            inbuf, sizeof(inbuf), 0,
2970                            efx_ef10_rx_defer_refill_complete, 0);
2971 }
2972
2973 static void
2974 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2975                                   int rc, efx_dword_t *outbuf,
2976                                   size_t outlen_actual)
2977 {
2978         /* nothing to do */
2979 }
2980
2981 static int efx_ef10_ev_probe(struct efx_channel *channel)
2982 {
2983         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2984                                     (channel->eventq_mask + 1) *
2985                                     sizeof(efx_qword_t),
2986                                     GFP_KERNEL);
2987 }
2988
2989 static void efx_ef10_ev_fini(struct efx_channel *channel)
2990 {
2991         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2992         MCDI_DECLARE_BUF_ERR(outbuf);
2993         struct efx_nic *efx = channel->efx;
2994         size_t outlen;
2995         int rc;
2996
2997         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2998
2999         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3000                           outbuf, sizeof(outbuf), &outlen);
3001
3002         if (rc && rc != -EALREADY)
3003                 goto fail;
3004
3005         return;
3006
3007 fail:
3008         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3009                                outbuf, outlen, rc);
3010 }
3011
3012 static int efx_ef10_ev_init(struct efx_channel *channel)
3013 {
3014         MCDI_DECLARE_BUF(inbuf,
3015                          MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3016                                                    EFX_BUF_SIZE));
3017         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3018         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3019         struct efx_nic *efx = channel->efx;
3020         struct efx_ef10_nic_data *nic_data;
3021         size_t inlen, outlen;
3022         unsigned int enabled, implemented;
3023         dma_addr_t dma_addr;
3024         int rc;
3025         int i;
3026
3027         nic_data = efx->nic_data;
3028
3029         /* Fill event queue with all ones (i.e. empty events) */
3030         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3031
3032         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3033         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3034         /* INIT_EVQ expects index in vector table, not absolute */
3035         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3036         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3037                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3038         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3039         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3040         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3041                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3042         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3043
3044         if (nic_data->datapath_caps2 &
3045             1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3046                 /* Use the new generic approach to specifying event queue
3047                  * configuration, requesting lower latency or higher throughput.
3048                  * The options that actually get used appear in the output.
3049                  */
3050                 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3051                                       INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3052                                       INIT_EVQ_V2_IN_FLAG_TYPE,
3053                                       MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3054         } else {
3055                 bool cut_thru = !(nic_data->datapath_caps &
3056                         1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3057
3058                 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3059                                       INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3060                                       INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3061                                       INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3062                                       INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3063         }
3064
3065         dma_addr = channel->eventq.buf.dma_addr;
3066         for (i = 0; i < entries; ++i) {
3067                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3068                 dma_addr += EFX_BUF_SIZE;
3069         }
3070
3071         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3072
3073         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3074                           outbuf, sizeof(outbuf), &outlen);
3075
3076         if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3077                 netif_dbg(efx, drv, efx->net_dev,
3078                           "Channel %d using event queue flags %08x\n",
3079                           channel->channel,
3080                           MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3081
3082         /* IRQ return is ignored */
3083         if (channel->channel || rc)
3084                 return rc;
3085
3086         /* Successfully created event queue on channel 0 */
3087         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3088         if (rc == -ENOSYS) {
3089                 /* GET_WORKAROUNDS was implemented before this workaround,
3090                  * thus it must be unavailable in this firmware.
3091                  */
3092                 nic_data->workaround_26807 = false;
3093                 rc = 0;
3094         } else if (rc) {
3095                 goto fail;
3096         } else {
3097                 nic_data->workaround_26807 =
3098                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3099
3100                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3101                     !nic_data->workaround_26807) {
3102                         unsigned int flags;
3103
3104                         rc = efx_mcdi_set_workaround(efx,
3105                                                      MC_CMD_WORKAROUND_BUG26807,
3106                                                      true, &flags);
3107
3108                         if (!rc) {
3109                                 if (flags &
3110                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3111                                         netif_info(efx, drv, efx->net_dev,
3112                                                    "other functions on NIC have been reset\n");
3113
3114                                         /* With MCFW v4.6.x and earlier, the
3115                                          * boot count will have incremented,
3116                                          * so re-read the warm_boot_count
3117                                          * value now to ensure this function
3118                                          * doesn't think it has changed next
3119                                          * time it checks.
3120                                          */
3121                                         rc = efx_ef10_get_warm_boot_count(efx);
3122                                         if (rc >= 0) {
3123                                                 nic_data->warm_boot_count = rc;
3124                                                 rc = 0;
3125                                         }
3126                                 }
3127                                 nic_data->workaround_26807 = true;
3128                         } else if (rc == -EPERM) {
3129                                 rc = 0;
3130                         }
3131                 }
3132         }
3133
3134         if (!rc)
3135                 return 0;
3136
3137 fail:
3138         efx_ef10_ev_fini(channel);
3139         return rc;
3140 }
3141
3142 static void efx_ef10_ev_remove(struct efx_channel *channel)
3143 {
3144         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3145 }
3146
3147 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3148                                            unsigned int rx_queue_label)
3149 {
3150         struct efx_nic *efx = rx_queue->efx;
3151
3152         netif_info(efx, hw, efx->net_dev,
3153                    "rx event arrived on queue %d labeled as queue %u\n",
3154                    efx_rx_queue_index(rx_queue), rx_queue_label);
3155
3156         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3157 }
3158
3159 static void
3160 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3161                              unsigned int actual, unsigned int expected)
3162 {
3163         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3164         struct efx_nic *efx = rx_queue->efx;
3165
3166         netif_info(efx, hw, efx->net_dev,
3167                    "dropped %d events (index=%d expected=%d)\n",
3168                    dropped, actual, expected);
3169
3170         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3171 }
3172
3173 /* partially received RX was aborted. clean up. */
3174 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3175 {
3176         unsigned int rx_desc_ptr;
3177
3178         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3179                   "scattered RX aborted (dropping %u buffers)\n",
3180                   rx_queue->scatter_n);
3181
3182         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3183
3184         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3185                       0, EFX_RX_PKT_DISCARD);
3186
3187         rx_queue->removed_count += rx_queue->scatter_n;
3188         rx_queue->scatter_n = 0;
3189         rx_queue->scatter_len = 0;
3190         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3191 }
3192
3193 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3194                                            unsigned int n_packets,
3195                                            unsigned int rx_encap_hdr,
3196                                            unsigned int rx_l3_class,
3197                                            unsigned int rx_l4_class,
3198                                            const efx_qword_t *event)
3199 {
3200         struct efx_nic *efx = channel->efx;
3201
3202         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3203                 if (!efx->loopback_selftest)
3204                         channel->n_rx_eth_crc_err += n_packets;
3205                 return EFX_RX_PKT_DISCARD;
3206         }
3207         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3208                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3209                              rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3210                              rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3211                              rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3212                              rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3213                         netdev_WARN(efx->net_dev,
3214                                     "invalid class for RX_IPCKSUM_ERR: event="
3215                                     EFX_QWORD_FMT "\n",
3216                                     EFX_QWORD_VAL(*event));
3217                 if (!efx->loopback_selftest)
3218                         *(rx_encap_hdr ?
3219                           &channel->n_rx_outer_ip_hdr_chksum_err :
3220                           &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3221                 return 0;
3222         }
3223         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3224                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3225                              ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3226                                rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3227                               (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3228                                rx_l4_class != ESE_DZ_L4_CLASS_UDP))))
3229                         netdev_WARN(efx->net_dev,
3230                                     "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3231                                     EFX_QWORD_FMT "\n",
3232                                     EFX_QWORD_VAL(*event));
3233                 if (!efx->loopback_selftest)
3234                         *(rx_encap_hdr ?
3235                           &channel->n_rx_outer_tcp_udp_chksum_err :
3236                           &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3237                 return 0;
3238         }
3239         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3240                 if (unlikely(!rx_encap_hdr))
3241                         netdev_WARN(efx->net_dev,
3242                                     "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3243                                     EFX_QWORD_FMT "\n",
3244                                     EFX_QWORD_VAL(*event));
3245                 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3246                                   rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3247                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3248                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3249                         netdev_WARN(efx->net_dev,
3250                                     "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3251                                     EFX_QWORD_FMT "\n",
3252                                     EFX_QWORD_VAL(*event));
3253                 if (!efx->loopback_selftest)
3254                         channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3255                 return 0;
3256         }
3257         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3258                 if (unlikely(!rx_encap_hdr))
3259                         netdev_WARN(efx->net_dev,
3260                                     "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3261                                     EFX_QWORD_FMT "\n",
3262                                     EFX_QWORD_VAL(*event));
3263                 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3264                                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3265                                   (rx_l4_class != ESE_DZ_L4_CLASS_TCP &&
3266                                    rx_l4_class != ESE_DZ_L4_CLASS_UDP)))
3267                         netdev_WARN(efx->net_dev,
3268                                     "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3269                                     EFX_QWORD_FMT "\n",
3270                                     EFX_QWORD_VAL(*event));
3271                 if (!efx->loopback_selftest)
3272                         channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3273                 return 0;
3274         }
3275
3276         WARN_ON(1); /* No error bits were recognised */
3277         return 0;
3278 }
3279
3280 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3281                                     const efx_qword_t *event)
3282 {
3283         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3284         unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3285         unsigned int n_descs, n_packets, i;
3286         struct efx_nic *efx = channel->efx;
3287         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3288         struct efx_rx_queue *rx_queue;
3289         efx_qword_t errors;
3290         bool rx_cont;
3291         u16 flags = 0;
3292
3293         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3294                 return 0;
3295
3296         /* Basic packet information */
3297         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3298         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3299         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3300         rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3301         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
3302         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3303         rx_encap_hdr =
3304                 nic_data->datapath_caps &
3305                         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3306                 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3307                 ESE_EZ_ENCAP_HDR_NONE;
3308
3309         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3310                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3311                             EFX_QWORD_FMT "\n",
3312                             EFX_QWORD_VAL(*event));
3313
3314         rx_queue = efx_channel_get_rx_queue(channel);
3315
3316         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3317                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3318
3319         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3320                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3321
3322         if (n_descs != rx_queue->scatter_n + 1) {
3323                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3324
3325                 /* detect rx abort */
3326                 if (unlikely(n_descs == rx_queue->scatter_n)) {
3327                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3328                                 netdev_WARN(efx->net_dev,
3329                                             "invalid RX abort: scatter_n=%u event="
3330                                             EFX_QWORD_FMT "\n",
3331                                             rx_queue->scatter_n,
3332                                             EFX_QWORD_VAL(*event));
3333                         efx_ef10_handle_rx_abort(rx_queue);
3334                         return 0;
3335                 }
3336
3337                 /* Check that RX completion merging is valid, i.e.
3338                  * the current firmware supports it and this is a
3339                  * non-scattered packet.
3340                  */
3341                 if (!(nic_data->datapath_caps &
3342                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3343                     rx_queue->scatter_n != 0 || rx_cont) {
3344                         efx_ef10_handle_rx_bad_lbits(
3345                                 rx_queue, next_ptr_lbits,
3346                                 (rx_queue->removed_count +
3347                                  rx_queue->scatter_n + 1) &
3348                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3349                         return 0;
3350                 }
3351
3352                 /* Merged completion for multiple non-scattered packets */
3353                 rx_queue->scatter_n = 1;
3354                 rx_queue->scatter_len = 0;
3355                 n_packets = n_descs;
3356                 ++channel->n_rx_merge_events;
3357                 channel->n_rx_merge_packets += n_packets;
3358                 flags |= EFX_RX_PKT_PREFIX_LEN;
3359         } else {
3360                 ++rx_queue->scatter_n;
3361                 rx_queue->scatter_len += rx_bytes;
3362                 if (rx_cont)
3363                         return 0;
3364                 n_packets = 1;
3365         }
3366
3367         EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3368                                      ESF_DZ_RX_IPCKSUM_ERR, 1,
3369                                      ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3370                                      ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3371                                      ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3372         EFX_AND_QWORD(errors, *event, errors);
3373         if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3374                 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3375                                                          rx_encap_hdr,
3376                                                          rx_l3_class, rx_l4_class,
3377                                                          event);
3378         } else {
3379                 bool tcpudp = rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
3380                               rx_l4_class == ESE_DZ_L4_CLASS_UDP;
3381
3382                 switch (rx_encap_hdr) {
3383                 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3384                         flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3385                         if (tcpudp)
3386                                 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3387                         break;
3388                 case ESE_EZ_ENCAP_HDR_GRE:
3389                 case ESE_EZ_ENCAP_HDR_NONE:
3390                         if (tcpudp)
3391                                 flags |= EFX_RX_PKT_CSUMMED;
3392                         break;
3393                 default:
3394                         netdev_WARN(efx->net_dev,
3395                                     "unknown encapsulation type: event="
3396                                     EFX_QWORD_FMT "\n",
3397                                     EFX_QWORD_VAL(*event));
3398                 }
3399         }
3400
3401         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
3402                 flags |= EFX_RX_PKT_TCP;
3403
3404         channel->irq_mod_score += 2 * n_packets;
3405
3406         /* Handle received packet(s) */
3407         for (i = 0; i < n_packets; i++) {
3408                 efx_rx_packet(rx_queue,
3409                               rx_queue->removed_count & rx_queue->ptr_mask,
3410                               rx_queue->scatter_n, rx_queue->scatter_len,
3411                               flags);
3412                 rx_queue->removed_count += rx_queue->scatter_n;
3413         }
3414
3415         rx_queue->scatter_n = 0;
3416         rx_queue->scatter_len = 0;
3417
3418         return n_packets;
3419 }
3420
3421 static int
3422 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3423 {
3424         struct efx_nic *efx = channel->efx;
3425         struct efx_tx_queue *tx_queue;
3426         unsigned int tx_ev_desc_ptr;
3427         unsigned int tx_ev_q_label;
3428         int tx_descs = 0;
3429
3430         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3431                 return 0;
3432
3433         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3434                 return 0;
3435
3436         /* Transmit completion */
3437         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3438         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3439         tx_queue = efx_channel_get_tx_queue(channel,
3440                                             tx_ev_q_label % EFX_TXQ_TYPES);
3441         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
3442                     tx_queue->ptr_mask);
3443         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3444
3445         return tx_descs;
3446 }
3447
3448 static void
3449 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3450 {
3451         struct efx_nic *efx = channel->efx;
3452         int subcode;
3453
3454         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3455
3456         switch (subcode) {
3457         case ESE_DZ_DRV_TIMER_EV:
3458         case ESE_DZ_DRV_WAKE_UP_EV:
3459                 break;
3460         case ESE_DZ_DRV_START_UP_EV:
3461                 /* event queue init complete. ok. */
3462                 break;
3463         default:
3464                 netif_err(efx, hw, efx->net_dev,
3465                           "channel %d unknown driver event type %d"
3466                           " (data " EFX_QWORD_FMT ")\n",
3467                           channel->channel, subcode,
3468                           EFX_QWORD_VAL(*event));
3469
3470         }
3471 }
3472
3473 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3474                                                    efx_qword_t *event)
3475 {
3476         struct efx_nic *efx = channel->efx;
3477         u32 subcode;
3478
3479         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3480
3481         switch (subcode) {
3482         case EFX_EF10_TEST:
3483                 channel->event_test_cpu = raw_smp_processor_id();
3484                 break;
3485         case EFX_EF10_REFILL:
3486                 /* The queue must be empty, so we won't receive any rx
3487                  * events, so efx_process_channel() won't refill the
3488                  * queue. Refill it here
3489                  */
3490                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3491                 break;
3492         default:
3493                 netif_err(efx, hw, efx->net_dev,
3494                           "channel %d unknown driver event type %u"
3495                           " (data " EFX_QWORD_FMT ")\n",
3496                           channel->channel, (unsigned) subcode,
3497                           EFX_QWORD_VAL(*event));
3498         }
3499 }
3500
3501 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3502 {
3503         struct efx_nic *efx = channel->efx;
3504         efx_qword_t event, *p_event;
3505         unsigned int read_ptr;
3506         int ev_code;
3507         int tx_descs = 0;
3508         int spent = 0;
3509
3510         if (quota <= 0)
3511                 return spent;
3512
3513         read_ptr = channel->eventq_read_ptr;
3514
3515         for (;;) {
3516                 p_event = efx_event(channel, read_ptr);
3517                 event = *p_event;
3518
3519                 if (!efx_event_present(&event))
3520                         break;
3521
3522                 EFX_SET_QWORD(*p_event);
3523
3524                 ++read_ptr;
3525
3526                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3527
3528                 netif_vdbg(efx, drv, efx->net_dev,
3529                            "processing event on %d " EFX_QWORD_FMT "\n",
3530                            channel->channel, EFX_QWORD_VAL(event));
3531
3532                 switch (ev_code) {
3533                 case ESE_DZ_EV_CODE_MCDI_EV:
3534                         efx_mcdi_process_event(channel, &event);
3535                         break;
3536                 case ESE_DZ_EV_CODE_RX_EV:
3537                         spent += efx_ef10_handle_rx_event(channel, &event);
3538                         if (spent >= quota) {
3539                                 /* XXX can we split a merged event to
3540                                  * avoid going over-quota?
3541                                  */
3542                                 spent = quota;
3543                                 goto out;
3544                         }
3545                         break;
3546                 case ESE_DZ_EV_CODE_TX_EV:
3547                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
3548                         if (tx_descs > efx->txq_entries) {
3549                                 spent = quota;
3550                                 goto out;
3551                         } else if (++spent == quota) {
3552                                 goto out;
3553                         }
3554                         break;
3555                 case ESE_DZ_EV_CODE_DRIVER_EV:
3556                         efx_ef10_handle_driver_event(channel, &event);
3557                         if (++spent == quota)
3558                                 goto out;
3559                         break;
3560                 case EFX_EF10_DRVGEN_EV:
3561                         efx_ef10_handle_driver_generated_event(channel, &event);
3562                         break;
3563                 default:
3564                         netif_err(efx, hw, efx->net_dev,
3565                                   "channel %d unknown event type %d"
3566                                   " (data " EFX_QWORD_FMT ")\n",
3567                                   channel->channel, ev_code,
3568                                   EFX_QWORD_VAL(event));
3569                 }
3570         }
3571
3572 out:
3573         channel->eventq_read_ptr = read_ptr;
3574         return spent;
3575 }
3576
3577 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3578 {
3579         struct efx_nic *efx = channel->efx;
3580         efx_dword_t rptr;
3581
3582         if (EFX_EF10_WORKAROUND_35388(efx)) {
3583                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3584                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3585                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3586                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3587
3588                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3589                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3590                                      ERF_DD_EVQ_IND_RPTR,
3591                                      (channel->eventq_read_ptr &
3592                                       channel->eventq_mask) >>
3593                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3594                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3595                                 channel->channel);
3596                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3597                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3598                                      ERF_DD_EVQ_IND_RPTR,
3599                                      channel->eventq_read_ptr &
3600                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3601                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3602                                 channel->channel);
3603         } else {
3604                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3605                                      channel->eventq_read_ptr &
3606                                      channel->eventq_mask);
3607                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3608         }
3609 }
3610
3611 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3612 {
3613         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3614         struct efx_nic *efx = channel->efx;
3615         efx_qword_t event;
3616         int rc;
3617
3618         EFX_POPULATE_QWORD_2(event,
3619                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3620                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
3621
3622         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3623
3624         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3625          * already swapped the data to little-endian order.
3626          */
3627         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3628                sizeof(efx_qword_t));
3629
3630         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3631                           NULL, 0, NULL);
3632         if (rc != 0)
3633                 goto fail;
3634
3635         return;
3636
3637 fail:
3638         WARN_ON(true);
3639         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3640 }
3641
3642 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3643 {
3644         if (atomic_dec_and_test(&efx->active_queues))
3645                 wake_up(&efx->flush_wq);
3646
3647         WARN_ON(atomic_read(&efx->active_queues) < 0);
3648 }
3649
3650 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3651 {
3652         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3653         struct efx_channel *channel;
3654         struct efx_tx_queue *tx_queue;
3655         struct efx_rx_queue *rx_queue;
3656         int pending;
3657
3658         /* If the MC has just rebooted, the TX/RX queues will have already been
3659          * torn down, but efx->active_queues needs to be set to zero.
3660          */
3661         if (nic_data->must_realloc_vis) {
3662                 atomic_set(&efx->active_queues, 0);
3663                 return 0;
3664         }
3665
3666         /* Do not attempt to write to the NIC during EEH recovery */
3667         if (efx->state != STATE_RECOVERY) {
3668                 efx_for_each_channel(channel, efx) {
3669                         efx_for_each_channel_rx_queue(rx_queue, channel)
3670                                 efx_ef10_rx_fini(rx_queue);
3671                         efx_for_each_channel_tx_queue(tx_queue, channel)
3672                                 efx_ef10_tx_fini(tx_queue);
3673                 }
3674
3675                 wait_event_timeout(efx->flush_wq,
3676                                    atomic_read(&efx->active_queues) == 0,
3677                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3678                 pending = atomic_read(&efx->active_queues);
3679                 if (pending) {
3680                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3681                                   pending);
3682                         return -ETIMEDOUT;
3683                 }
3684         }
3685
3686         return 0;
3687 }
3688
3689 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3690 {
3691         atomic_set(&efx->active_queues, 0);
3692 }
3693
3694 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3695                                   const struct efx_filter_spec *right)
3696 {
3697         if ((left->match_flags ^ right->match_flags) |
3698             ((left->flags ^ right->flags) &
3699              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3700                 return false;
3701
3702         return memcmp(&left->outer_vid, &right->outer_vid,
3703                       sizeof(struct efx_filter_spec) -
3704                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
3705 }
3706
3707 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3708 {
3709         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3710         return jhash2((const u32 *)&spec->outer_vid,
3711                       (sizeof(struct efx_filter_spec) -
3712                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
3713                       0);
3714         /* XXX should we randomise the initval? */
3715 }
3716
3717 /* Decide whether a filter should be exclusive or else should allow
3718  * delivery to additional recipients.  Currently we decide that
3719  * filters for specific local unicast MAC and IP addresses are
3720  * exclusive.
3721  */
3722 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3723 {
3724         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3725             !is_multicast_ether_addr(spec->loc_mac))
3726                 return true;
3727
3728         if ((spec->match_flags &
3729              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3730             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3731                 if (spec->ether_type == htons(ETH_P_IP) &&
3732                     !ipv4_is_multicast(spec->loc_host[0]))
3733                         return true;
3734                 if (spec->ether_type == htons(ETH_P_IPV6) &&
3735                     ((const u8 *)spec->loc_host)[0] != 0xff)
3736                         return true;
3737         }
3738
3739         return false;
3740 }
3741
3742 static struct efx_filter_spec *
3743 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3744                            unsigned int filter_idx)
3745 {
3746         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3747                                           ~EFX_EF10_FILTER_FLAGS);
3748 }
3749
3750 static unsigned int
3751 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3752                            unsigned int filter_idx)
3753 {
3754         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3755 }
3756
3757 static void
3758 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3759                           unsigned int filter_idx,
3760                           const struct efx_filter_spec *spec,
3761                           unsigned int flags)
3762 {
3763         table->entry[filter_idx].spec = (unsigned long)spec | flags;
3764 }
3765
3766 static void
3767 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
3768                                            const struct efx_filter_spec *spec,
3769                                            efx_dword_t *inbuf)
3770 {
3771         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3772         u32 match_fields = 0, uc_match, mc_match;
3773
3774         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3775                        efx_ef10_filter_is_exclusive(spec) ?
3776                        MC_CMD_FILTER_OP_IN_OP_INSERT :
3777                        MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3778
3779         /* Convert match flags and values.  Unlike almost
3780          * everything else in MCDI, these fields are in
3781          * network byte order.
3782          */
3783 #define COPY_VALUE(value, mcdi_field)                                        \
3784         do {                                                         \
3785                 match_fields |=                                      \
3786                         1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
3787                         mcdi_field ## _LBN;                          \
3788                 BUILD_BUG_ON(                                        \
3789                         MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3790                         sizeof(value));                              \
3791                 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
3792                        &value, sizeof(value));                       \
3793         } while (0)
3794 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
3795         if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3796                 COPY_VALUE(spec->gen_field, mcdi_field);             \
3797         }
3798         /* Handle encap filters first.  They will always be mismatch
3799          * (unknown UC or MC) filters
3800          */
3801         if (encap_type) {
3802                 /* ether_type and outer_ip_proto need to be variables
3803                  * because COPY_VALUE wants to memcpy them
3804                  */
3805                 __be16 ether_type =
3806                         htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
3807                               ETH_P_IPV6 : ETH_P_IP);
3808                 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
3809                 u8 outer_ip_proto;
3810
3811                 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
3812                 case EFX_ENCAP_TYPE_VXLAN:
3813                         vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
3814                         /* fallthrough */
3815                 case EFX_ENCAP_TYPE_GENEVE:
3816                         COPY_VALUE(ether_type, ETHER_TYPE);
3817                         outer_ip_proto = IPPROTO_UDP;
3818                         COPY_VALUE(outer_ip_proto, IP_PROTO);
3819                         /* We always need to set the type field, even
3820                          * though we're not matching on the TNI.
3821                          */
3822                         MCDI_POPULATE_DWORD_1(inbuf,
3823                                 FILTER_OP_EXT_IN_VNI_OR_VSID,
3824                                 FILTER_OP_EXT_IN_VNI_TYPE,
3825                                 vni_type);
3826                         break;
3827                 case EFX_ENCAP_TYPE_NVGRE:
3828                         COPY_VALUE(ether_type, ETHER_TYPE);
3829                         outer_ip_proto = IPPROTO_GRE;
3830                         COPY_VALUE(outer_ip_proto, IP_PROTO);
3831                         break;
3832                 default:
3833                         WARN_ON(1);
3834                 }
3835
3836                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3837                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3838         } else {
3839                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3840                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3841         }
3842
3843         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3844                 match_fields |=
3845                         is_multicast_ether_addr(spec->loc_mac) ?
3846                         1 << mc_match :
3847                         1 << uc_match;
3848         COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3849         COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3850         COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3851         COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3852         COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3853         COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3854         COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3855         COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3856         COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3857         COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3858 #undef COPY_FIELD
3859 #undef COPY_VALUE
3860         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3861                        match_fields);
3862 }
3863
3864 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3865                                       const struct efx_filter_spec *spec,
3866                                       efx_dword_t *inbuf, u64 handle,
3867                                       bool replacing)
3868 {
3869         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3870         u32 flags = spec->flags;
3871
3872         memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
3873
3874         /* Remove RSS flag if we don't have an RSS context. */
3875         if (flags & EFX_FILTER_FLAG_RX_RSS &&
3876             spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3877             nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3878                 flags &= ~EFX_FILTER_FLAG_RX_RSS;
3879
3880         if (replacing) {
3881                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3882                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
3883                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3884         } else {
3885                 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
3886         }
3887
3888         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3889         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3890                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3891                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3892                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3893         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3894         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3895                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3896         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3897                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3898                        0 : spec->dmaq_id);
3899         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3900                        (flags & EFX_FILTER_FLAG_RX_RSS) ?
3901                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3902                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3903         if (flags & EFX_FILTER_FLAG_RX_RSS)
3904                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3905                                spec->rss_context !=
3906                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3907                                spec->rss_context : nic_data->rx_rss_context);
3908 }
3909
3910 static int efx_ef10_filter_push(struct efx_nic *efx,
3911                                 const struct efx_filter_spec *spec,
3912                                 u64 *handle, bool replacing)
3913 {
3914         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
3915         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
3916         int rc;
3917
3918         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3919         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3920                           outbuf, sizeof(outbuf), NULL);
3921         if (rc == 0)
3922                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3923         if (rc == -ENOSPC)
3924                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3925         return rc;
3926 }
3927
3928 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3929 {
3930         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
3931         unsigned int match_flags = spec->match_flags;
3932         unsigned int uc_match, mc_match;
3933         u32 mcdi_flags = 0;
3934
3935 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {          \
3936                 unsigned int  old_match_flags = match_flags;            \
3937                 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;          \
3938                 if (match_flags != old_match_flags)                     \
3939                         mcdi_flags |=                                   \
3940                                 (1 << ((encap) ?                        \
3941                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
3942                                        mcdi_field ## _LBN :             \
3943                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
3944                                        mcdi_field ## _LBN));            \
3945         }
3946         /* inner or outer based on encap type */
3947         MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
3948         MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
3949         MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
3950         MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
3951         MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
3952         MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
3953         MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
3954         MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
3955         /* always outer */
3956         MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
3957         MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
3958 #undef MAP_FILTER_TO_MCDI_FLAG
3959
3960         /* special handling for encap type, and mismatch */
3961         if (encap_type) {
3962                 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
3963                 mcdi_flags |=
3964                         (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
3965                 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
3966
3967                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
3968                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
3969         } else {
3970                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3971                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
3972         }
3973
3974         if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3975                 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3976                 mcdi_flags |=
3977                         is_multicast_ether_addr(spec->loc_mac) ?
3978                         1 << mc_match :
3979                         1 << uc_match;
3980         }
3981
3982         /* Did we map them all? */
3983         WARN_ON_ONCE(match_flags);
3984
3985         return mcdi_flags;
3986 }
3987
3988 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3989                                const struct efx_filter_spec *spec)
3990 {
3991         u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3992         unsigned int match_pri;
3993
3994         for (match_pri = 0;
3995              match_pri < table->rx_match_count;
3996              match_pri++)
3997                 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3998                         return match_pri;
3999
4000         return -EPROTONOSUPPORT;
4001 }
4002
4003 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4004                                   struct efx_filter_spec *spec,
4005                                   bool replace_equal)
4006 {
4007         struct efx_ef10_filter_table *table = efx->filter_state;
4008         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4009         struct efx_filter_spec *saved_spec;
4010         unsigned int match_pri, hash;
4011         unsigned int priv_flags;
4012         bool replacing = false;
4013         int ins_index = -1;
4014         DEFINE_WAIT(wait);
4015         bool is_mc_recip;
4016         s32 rc;
4017
4018         /* For now, only support RX filters */
4019         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4020             EFX_FILTER_FLAG_RX)
4021                 return -EINVAL;
4022
4023         rc = efx_ef10_filter_pri(table, spec);
4024         if (rc < 0)
4025                 return rc;
4026         match_pri = rc;
4027
4028         hash = efx_ef10_filter_hash(spec);
4029         is_mc_recip = efx_filter_is_mc_recipient(spec);
4030         if (is_mc_recip)
4031                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4032
4033         /* Find any existing filters with the same match tuple or
4034          * else a free slot to insert at.  If any of them are busy,
4035          * we have to wait and retry.
4036          */
4037         for (;;) {
4038                 unsigned int depth = 1;
4039                 unsigned int i;
4040
4041                 spin_lock_bh(&efx->filter_lock);
4042
4043                 for (;;) {
4044                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4045                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4046
4047                         if (!saved_spec) {
4048                                 if (ins_index < 0)
4049                                         ins_index = i;
4050                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
4051                                 if (table->entry[i].spec &
4052                                     EFX_EF10_FILTER_FLAG_BUSY)
4053                                         break;
4054                                 if (spec->priority < saved_spec->priority &&
4055                                     spec->priority != EFX_FILTER_PRI_AUTO) {
4056                                         rc = -EPERM;
4057                                         goto out_unlock;
4058                                 }
4059                                 if (!is_mc_recip) {
4060                                         /* This is the only one */
4061                                         if (spec->priority ==
4062                                             saved_spec->priority &&
4063                                             !replace_equal) {
4064                                                 rc = -EEXIST;
4065                                                 goto out_unlock;
4066                                         }
4067                                         ins_index = i;
4068                                         goto found;
4069                                 } else if (spec->priority >
4070                                            saved_spec->priority ||
4071                                            (spec->priority ==
4072                                             saved_spec->priority &&
4073                                             replace_equal)) {
4074                                         if (ins_index < 0)
4075                                                 ins_index = i;
4076                                         else
4077                                                 __set_bit(depth, mc_rem_map);
4078                                 }
4079                         }
4080
4081                         /* Once we reach the maximum search depth, use
4082                          * the first suitable slot or return -EBUSY if
4083                          * there was none
4084                          */
4085                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4086                                 if (ins_index < 0) {
4087                                         rc = -EBUSY;
4088                                         goto out_unlock;
4089                                 }
4090                                 goto found;
4091                         }
4092
4093                         ++depth;
4094                 }
4095
4096                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4097                 spin_unlock_bh(&efx->filter_lock);
4098                 schedule();
4099         }
4100
4101 found:
4102         /* Create a software table entry if necessary, and mark it
4103          * busy.  We might yet fail to insert, but any attempt to
4104          * insert a conflicting filter while we're waiting for the
4105          * firmware must find the busy entry.
4106          */
4107         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4108         if (saved_spec) {
4109                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4110                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4111                         /* Just make sure it won't be removed */
4112                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4113                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4114                         table->entry[ins_index].spec &=
4115                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4116                         rc = ins_index;
4117                         goto out_unlock;
4118                 }
4119                 replacing = true;
4120                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4121         } else {
4122                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4123                 if (!saved_spec) {
4124                         rc = -ENOMEM;
4125                         goto out_unlock;
4126                 }
4127                 *saved_spec = *spec;
4128                 priv_flags = 0;
4129         }
4130         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4131                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
4132
4133         /* Mark lower-priority multicast recipients busy prior to removal */
4134         if (is_mc_recip) {
4135                 unsigned int depth, i;
4136
4137                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4138                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4139                         if (test_bit(depth, mc_rem_map))
4140                                 table->entry[i].spec |=
4141                                         EFX_EF10_FILTER_FLAG_BUSY;
4142                 }
4143         }
4144
4145         spin_unlock_bh(&efx->filter_lock);
4146
4147         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4148                                   replacing);
4149
4150         /* Finalise the software table entry */
4151         spin_lock_bh(&efx->filter_lock);
4152         if (rc == 0) {
4153                 if (replacing) {
4154                         /* Update the fields that may differ */
4155                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4156                                 saved_spec->flags |=
4157                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
4158                         saved_spec->priority = spec->priority;
4159                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4160                         saved_spec->flags |= spec->flags;
4161                         saved_spec->rss_context = spec->rss_context;
4162                         saved_spec->dmaq_id = spec->dmaq_id;
4163                 }
4164         } else if (!replacing) {
4165                 kfree(saved_spec);
4166                 saved_spec = NULL;
4167         }
4168         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4169
4170         /* Remove and finalise entries for lower-priority multicast
4171          * recipients
4172          */
4173         if (is_mc_recip) {
4174                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4175                 unsigned int depth, i;
4176
4177                 memset(inbuf, 0, sizeof(inbuf));
4178
4179                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4180                         if (!test_bit(depth, mc_rem_map))
4181                                 continue;
4182
4183                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4184                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4185                         priv_flags = efx_ef10_filter_entry_flags(table, i);
4186
4187                         if (rc == 0) {
4188                                 spin_unlock_bh(&efx->filter_lock);
4189                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4190                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4191                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4192                                                table->entry[i].handle);
4193                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4194                                                   inbuf, sizeof(inbuf),
4195                                                   NULL, 0, NULL);
4196                                 spin_lock_bh(&efx->filter_lock);
4197                         }
4198
4199                         if (rc == 0) {
4200                                 kfree(saved_spec);
4201                                 saved_spec = NULL;
4202                                 priv_flags = 0;
4203                         } else {
4204                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
4205                         }
4206                         efx_ef10_filter_set_entry(table, i, saved_spec,
4207                                                   priv_flags);
4208                 }
4209         }
4210
4211         /* If successful, return the inserted filter ID */
4212         if (rc == 0)
4213                 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4214
4215         wake_up_all(&table->waitq);
4216 out_unlock:
4217         spin_unlock_bh(&efx->filter_lock);
4218         finish_wait(&table->waitq, &wait);
4219         return rc;
4220 }
4221
4222 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4223 {
4224         /* no need to do anything here on EF10 */
4225 }
4226
4227 /* Remove a filter.
4228  * If !by_index, remove by ID
4229  * If by_index, remove by index
4230  * Filter ID may come from userland and must be range-checked.
4231  */
4232 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4233                                            unsigned int priority_mask,
4234                                            u32 filter_id, bool by_index)
4235 {
4236         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4237         struct efx_ef10_filter_table *table = efx->filter_state;
4238         MCDI_DECLARE_BUF(inbuf,
4239                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4240                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4241         struct efx_filter_spec *spec;
4242         DEFINE_WAIT(wait);
4243         int rc;
4244
4245         /* Find the software table entry and mark it busy.  Don't
4246          * remove it yet; any attempt to update while we're waiting
4247          * for the firmware must find the busy entry.
4248          */
4249         for (;;) {
4250                 spin_lock_bh(&efx->filter_lock);
4251                 if (!(table->entry[filter_idx].spec &
4252                       EFX_EF10_FILTER_FLAG_BUSY))
4253                         break;
4254                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4255                 spin_unlock_bh(&efx->filter_lock);
4256                 schedule();
4257         }
4258
4259         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4260         if (!spec ||
4261             (!by_index &&
4262              efx_ef10_filter_pri(table, spec) !=
4263              efx_ef10_filter_get_unsafe_pri(filter_id))) {
4264                 rc = -ENOENT;
4265                 goto out_unlock;
4266         }
4267
4268         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4269             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4270                 /* Just remove flags */
4271                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4272                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4273                 rc = 0;
4274                 goto out_unlock;
4275         }
4276
4277         if (!(priority_mask & (1U << spec->priority))) {
4278                 rc = -ENOENT;
4279                 goto out_unlock;
4280         }
4281
4282         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4283         spin_unlock_bh(&efx->filter_lock);
4284
4285         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4286                 /* Reset to an automatic filter */
4287
4288                 struct efx_filter_spec new_spec = *spec;
4289
4290                 new_spec.priority = EFX_FILTER_PRI_AUTO;
4291                 new_spec.flags = (EFX_FILTER_FLAG_RX |
4292                                   (efx_rss_enabled(efx) ?
4293                                    EFX_FILTER_FLAG_RX_RSS : 0));
4294                 new_spec.dmaq_id = 0;
4295                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
4296                 rc = efx_ef10_filter_push(efx, &new_spec,
4297                                           &table->entry[filter_idx].handle,
4298                                           true);
4299
4300                 spin_lock_bh(&efx->filter_lock);
4301                 if (rc == 0)
4302                         *spec = new_spec;
4303         } else {
4304                 /* Really remove the filter */
4305
4306                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4307                                efx_ef10_filter_is_exclusive(spec) ?
4308                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4309                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4310                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4311                                table->entry[filter_idx].handle);
4312                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4313                                         inbuf, sizeof(inbuf), NULL, 0, NULL);
4314
4315                 spin_lock_bh(&efx->filter_lock);
4316                 if ((rc == 0) || (rc == -ENOENT)) {
4317                         /* Filter removed OK or didn't actually exist */
4318                         kfree(spec);
4319                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4320                 } else {
4321                         efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4322                                                MC_CMD_FILTER_OP_IN_LEN,
4323                                                NULL, 0, rc);
4324                 }
4325         }
4326
4327         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4328         wake_up_all(&table->waitq);
4329 out_unlock:
4330         spin_unlock_bh(&efx->filter_lock);
4331         finish_wait(&table->waitq, &wait);
4332         return rc;
4333 }
4334
4335 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4336                                        enum efx_filter_priority priority,
4337                                        u32 filter_id)
4338 {
4339         return efx_ef10_filter_remove_internal(efx, 1U << priority,
4340                                                filter_id, false);
4341 }
4342
4343 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4344                                           enum efx_filter_priority priority,
4345                                           u32 filter_id)
4346 {
4347         if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4348                 return;
4349         efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4350 }
4351
4352 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4353                                     enum efx_filter_priority priority,
4354                                     u32 filter_id, struct efx_filter_spec *spec)
4355 {
4356         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4357         struct efx_ef10_filter_table *table = efx->filter_state;
4358         const struct efx_filter_spec *saved_spec;
4359         int rc;
4360
4361         spin_lock_bh(&efx->filter_lock);
4362         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4363         if (saved_spec && saved_spec->priority == priority &&
4364             efx_ef10_filter_pri(table, saved_spec) ==
4365             efx_ef10_filter_get_unsafe_pri(filter_id)) {
4366                 *spec = *saved_spec;
4367                 rc = 0;
4368         } else {
4369                 rc = -ENOENT;
4370         }
4371         spin_unlock_bh(&efx->filter_lock);
4372         return rc;
4373 }
4374
4375 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4376                                      enum efx_filter_priority priority)
4377 {
4378         unsigned int priority_mask;
4379         unsigned int i;
4380         int rc;
4381
4382         priority_mask = (((1U << (priority + 1)) - 1) &
4383                          ~(1U << EFX_FILTER_PRI_AUTO));
4384
4385         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4386                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4387                                                      i, true);
4388                 if (rc && rc != -ENOENT)
4389                         return rc;
4390         }
4391
4392         return 0;
4393 }
4394
4395 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4396                                          enum efx_filter_priority priority)
4397 {
4398         struct efx_ef10_filter_table *table = efx->filter_state;
4399         unsigned int filter_idx;
4400         s32 count = 0;
4401
4402         spin_lock_bh(&efx->filter_lock);
4403         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4404                 if (table->entry[filter_idx].spec &&
4405                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4406                     priority)
4407                         ++count;
4408         }
4409         spin_unlock_bh(&efx->filter_lock);
4410         return count;
4411 }
4412
4413 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4414 {
4415         struct efx_ef10_filter_table *table = efx->filter_state;
4416
4417         return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4418 }
4419
4420 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4421                                       enum efx_filter_priority priority,
4422                                       u32 *buf, u32 size)
4423 {
4424         struct efx_ef10_filter_table *table = efx->filter_state;
4425         struct efx_filter_spec *spec;
4426         unsigned int filter_idx;
4427         s32 count = 0;
4428
4429         spin_lock_bh(&efx->filter_lock);
4430         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4431                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4432                 if (spec && spec->priority == priority) {
4433                         if (count == size) {
4434                                 count = -EMSGSIZE;
4435                                 break;
4436                         }
4437                         buf[count++] =
4438                                 efx_ef10_make_filter_id(
4439                                         efx_ef10_filter_pri(table, spec),
4440                                         filter_idx);
4441                 }
4442         }
4443         spin_unlock_bh(&efx->filter_lock);
4444         return count;
4445 }
4446
4447 #ifdef CONFIG_RFS_ACCEL
4448
4449 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4450
4451 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4452                                       struct efx_filter_spec *spec)
4453 {
4454         struct efx_ef10_filter_table *table = efx->filter_state;
4455         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4456         struct efx_filter_spec *saved_spec;
4457         unsigned int hash, i, depth = 1;
4458         bool replacing = false;
4459         int ins_index = -1;
4460         u64 cookie;
4461         s32 rc;
4462
4463         /* Must be an RX filter without RSS and not for a multicast
4464          * destination address (RFS only works for connected sockets).
4465          * These restrictions allow us to pass only a tiny amount of
4466          * data through to the completion function.
4467          */
4468         EFX_WARN_ON_PARANOID(spec->flags !=
4469                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4470         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4471         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4472
4473         hash = efx_ef10_filter_hash(spec);
4474
4475         spin_lock_bh(&efx->filter_lock);
4476
4477         /* Find any existing filter with the same match tuple or else
4478          * a free slot to insert at.  If an existing filter is busy,
4479          * we have to give up.
4480          */
4481         for (;;) {
4482                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4483                 saved_spec = efx_ef10_filter_entry_spec(table, i);
4484
4485                 if (!saved_spec) {
4486                         if (ins_index < 0)
4487                                 ins_index = i;
4488                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
4489                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4490                                 rc = -EBUSY;
4491                                 goto fail_unlock;
4492                         }
4493                         if (spec->priority < saved_spec->priority) {
4494                                 rc = -EPERM;
4495                                 goto fail_unlock;
4496                         }
4497                         ins_index = i;
4498                         break;
4499                 }
4500
4501                 /* Once we reach the maximum search depth, use the
4502                  * first suitable slot or return -EBUSY if there was
4503                  * none
4504                  */
4505                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4506                         if (ins_index < 0) {
4507                                 rc = -EBUSY;
4508                                 goto fail_unlock;
4509                         }
4510                         break;
4511                 }
4512
4513                 ++depth;
4514         }
4515
4516         /* Create a software table entry if necessary, and mark it
4517          * busy.  We might yet fail to insert, but any attempt to
4518          * insert a conflicting filter while we're waiting for the
4519          * firmware must find the busy entry.
4520          */
4521         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4522         if (saved_spec) {
4523                 replacing = true;
4524         } else {
4525                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4526                 if (!saved_spec) {
4527                         rc = -ENOMEM;
4528                         goto fail_unlock;
4529                 }
4530                 *saved_spec = *spec;
4531         }
4532         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4533                                   EFX_EF10_FILTER_FLAG_BUSY);
4534
4535         spin_unlock_bh(&efx->filter_lock);
4536
4537         /* Pack up the variables needed on completion */
4538         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4539
4540         efx_ef10_filter_push_prep(efx, spec, inbuf,
4541                                   table->entry[ins_index].handle, replacing);
4542         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4543                            MC_CMD_FILTER_OP_OUT_LEN,
4544                            efx_ef10_filter_rfs_insert_complete, cookie);
4545
4546         return ins_index;
4547
4548 fail_unlock:
4549         spin_unlock_bh(&efx->filter_lock);
4550         return rc;
4551 }
4552
4553 static void
4554 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4555                                     int rc, efx_dword_t *outbuf,
4556                                     size_t outlen_actual)
4557 {
4558         struct efx_ef10_filter_table *table = efx->filter_state;
4559         unsigned int ins_index, dmaq_id;
4560         struct efx_filter_spec *spec;
4561         bool replacing;
4562
4563         /* Unpack the cookie */
4564         replacing = cookie >> 31;
4565         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4566         dmaq_id = cookie & 0xffff;
4567
4568         spin_lock_bh(&efx->filter_lock);
4569         spec = efx_ef10_filter_entry_spec(table, ins_index);
4570         if (rc == 0) {
4571                 table->entry[ins_index].handle =
4572                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4573                 if (replacing)
4574                         spec->dmaq_id = dmaq_id;
4575         } else if (!replacing) {
4576                 kfree(spec);
4577                 spec = NULL;
4578         }
4579         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4580         spin_unlock_bh(&efx->filter_lock);
4581
4582         wake_up_all(&table->waitq);
4583 }
4584
4585 static void
4586 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4587                                     unsigned long filter_idx,
4588                                     int rc, efx_dword_t *outbuf,
4589                                     size_t outlen_actual);
4590
4591 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4592                                            unsigned int filter_idx)
4593 {
4594         struct efx_ef10_filter_table *table = efx->filter_state;
4595         struct efx_filter_spec *spec =
4596                 efx_ef10_filter_entry_spec(table, filter_idx);
4597         MCDI_DECLARE_BUF(inbuf,
4598                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4599                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4600
4601         if (!spec ||
4602             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4603             spec->priority != EFX_FILTER_PRI_HINT ||
4604             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4605                                  flow_id, filter_idx))
4606                 return false;
4607
4608         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4609                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
4610         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4611                        table->entry[filter_idx].handle);
4612         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4613                                efx_ef10_filter_rfs_expire_complete, filter_idx))
4614                 return false;
4615
4616         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4617         return true;
4618 }
4619
4620 static void
4621 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4622                                     unsigned long filter_idx,
4623                                     int rc, efx_dword_t *outbuf,
4624                                     size_t outlen_actual)
4625 {
4626         struct efx_ef10_filter_table *table = efx->filter_state;
4627         struct efx_filter_spec *spec =
4628                 efx_ef10_filter_entry_spec(table, filter_idx);
4629
4630         spin_lock_bh(&efx->filter_lock);
4631         if (rc == 0) {
4632                 kfree(spec);
4633                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4634         }
4635         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4636         wake_up_all(&table->waitq);
4637         spin_unlock_bh(&efx->filter_lock);
4638 }
4639
4640 #endif /* CONFIG_RFS_ACCEL */
4641
4642 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4643 {
4644         int match_flags = 0;
4645
4646 #define MAP_FLAG(gen_flag, mcdi_field) do {                             \
4647                 u32 old_mcdi_flags = mcdi_flags;                        \
4648                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##  \
4649                                      mcdi_field ## _LBN);               \
4650                 if (mcdi_flags != old_mcdi_flags)                       \
4651                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
4652         } while (0)
4653
4654         if (encap) {
4655                 /* encap filters must specify encap type */
4656                 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4657                 /* and imply ethertype and ip proto */
4658                 mcdi_flags &=
4659                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4660                 mcdi_flags &=
4661                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4662                 /* VLAN tags refer to the outer packet */
4663                 MAP_FLAG(INNER_VID, INNER_VLAN);
4664                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4665                 /* everything else refers to the inner packet */
4666                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4667                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4668                 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4669                 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4670                 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4671                 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4672                 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4673                 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4674                 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4675                 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4676         } else {
4677                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4678                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4679                 MAP_FLAG(REM_HOST, SRC_IP);
4680                 MAP_FLAG(LOC_HOST, DST_IP);
4681                 MAP_FLAG(REM_MAC, SRC_MAC);
4682                 MAP_FLAG(REM_PORT, SRC_PORT);
4683                 MAP_FLAG(LOC_MAC, DST_MAC);
4684                 MAP_FLAG(LOC_PORT, DST_PORT);
4685                 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4686                 MAP_FLAG(INNER_VID, INNER_VLAN);
4687                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4688                 MAP_FLAG(IP_PROTO, IP_PROTO);
4689         }
4690 #undef MAP_FLAG
4691
4692         /* Did we map them all? */
4693         if (mcdi_flags)
4694                 return -EINVAL;
4695
4696         return match_flags;
4697 }
4698
4699 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4700 {
4701         struct efx_ef10_filter_table *table = efx->filter_state;
4702         struct efx_ef10_filter_vlan *vlan, *next_vlan;
4703
4704         /* See comment in efx_ef10_filter_table_remove() */
4705         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4706                 return;
4707
4708         if (!table)
4709                 return;
4710
4711         list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4712                 efx_ef10_filter_del_vlan_internal(efx, vlan);
4713 }
4714
4715 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4716                                             bool encap,
4717                                             enum efx_filter_match_flags match_flags)
4718 {
4719         unsigned int match_pri;
4720         int mf;
4721
4722         for (match_pri = 0;
4723              match_pri < table->rx_match_count;
4724              match_pri++) {
4725                 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4726                                 table->rx_match_mcdi_flags[match_pri]);
4727                 if (mf == match_flags)
4728                         return true;
4729         }
4730
4731         return false;
4732 }
4733
4734 static int
4735 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4736                                     struct efx_ef10_filter_table *table,
4737                                     bool encap)
4738 {
4739         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4740         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4741         unsigned int pd_match_pri, pd_match_count;
4742         size_t outlen;
4743         int rc;
4744
4745         /* Find out which RX filter types are supported, and their priorities */
4746         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4747                        encap ?
4748                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4749                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4750         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4751                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4752                           &outlen);
4753         if (rc)
4754                 return rc;
4755
4756         pd_match_count = MCDI_VAR_ARRAY_LEN(
4757                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4758
4759         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4760                 u32 mcdi_flags =
4761                         MCDI_ARRAY_DWORD(
4762                                 outbuf,
4763                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4764                                 pd_match_pri);
4765                 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4766                 if (rc < 0) {
4767                         netif_dbg(efx, probe, efx->net_dev,
4768                                   "%s: fw flags %#x pri %u not supported in driver\n",
4769                                   __func__, mcdi_flags, pd_match_pri);
4770                 } else {
4771                         netif_dbg(efx, probe, efx->net_dev,
4772                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4773                                   __func__, mcdi_flags, pd_match_pri,
4774                                   rc, table->rx_match_count);
4775                         table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4776                         table->rx_match_count++;
4777                 }
4778         }
4779
4780         return 0;
4781 }
4782
4783 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4784 {
4785         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4786         struct net_device *net_dev = efx->net_dev;
4787         struct efx_ef10_filter_table *table;
4788         struct efx_ef10_vlan *vlan;
4789         int rc;
4790
4791         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4792                 return -EINVAL;
4793
4794         if (efx->filter_state) /* already probed */
4795                 return 0;
4796
4797         table = kzalloc(sizeof(*table), GFP_KERNEL);
4798         if (!table)
4799                 return -ENOMEM;
4800
4801         table->rx_match_count = 0;
4802         rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4803         if (rc)
4804                 goto fail;
4805         if (nic_data->datapath_caps &
4806                    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4807                 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4808         if (rc)
4809                 goto fail;
4810         if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4811             !(efx_ef10_filter_match_supported(table, false,
4812                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4813               efx_ef10_filter_match_supported(table, false,
4814                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4815                 netif_info(efx, probe, net_dev,
4816                            "VLAN filters are not supported in this firmware variant\n");
4817                 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4818                 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4819                 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4820         }
4821
4822         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4823         if (!table->entry) {
4824                 rc = -ENOMEM;
4825                 goto fail;
4826         }
4827
4828         table->mc_promisc_last = false;
4829         table->vlan_filter =
4830                 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4831         INIT_LIST_HEAD(&table->vlan_list);
4832
4833         efx->filter_state = table;
4834         init_waitqueue_head(&table->waitq);
4835
4836         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4837                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4838                 if (rc)
4839                         goto fail_add_vlan;
4840         }
4841
4842         return 0;
4843
4844 fail_add_vlan:
4845         efx_ef10_filter_cleanup_vlans(efx);
4846         efx->filter_state = NULL;
4847 fail:
4848         kfree(table);
4849         return rc;
4850 }
4851
4852 /* Caller must hold efx->filter_sem for read if race against
4853  * efx_ef10_filter_table_remove() is possible
4854  */
4855 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4856 {
4857         struct efx_ef10_filter_table *table = efx->filter_state;
4858         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4859         unsigned int invalid_filters = 0, failed = 0;
4860         struct efx_ef10_filter_vlan *vlan;
4861         struct efx_filter_spec *spec;
4862         unsigned int filter_idx;
4863         u32 mcdi_flags;
4864         int match_pri;
4865         int rc, i;
4866
4867         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4868
4869         if (!nic_data->must_restore_filters)
4870                 return;
4871
4872         if (!table)
4873                 return;
4874
4875         spin_lock_bh(&efx->filter_lock);
4876
4877         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4878                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4879                 if (!spec)
4880                         continue;
4881
4882                 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4883                 match_pri = 0;
4884                 while (match_pri < table->rx_match_count &&
4885                        table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
4886                         ++match_pri;
4887                 if (match_pri >= table->rx_match_count) {
4888                         invalid_filters++;
4889                         goto not_restored;
4890                 }
4891                 if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
4892                     spec->rss_context != nic_data->rx_rss_context)
4893                         netif_warn(efx, drv, efx->net_dev,
4894                                    "Warning: unable to restore a filter with specific RSS context.\n");
4895
4896                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4897                 spin_unlock_bh(&efx->filter_lock);
4898
4899                 rc = efx_ef10_filter_push(efx, spec,
4900                                           &table->entry[filter_idx].handle,
4901                                           false);
4902                 if (rc)
4903                         failed++;
4904                 spin_lock_bh(&efx->filter_lock);
4905
4906                 if (rc) {
4907 not_restored:
4908                         list_for_each_entry(vlan, &table->vlan_list, list)
4909                                 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
4910                                         if (vlan->default_filters[i] == filter_idx)
4911                                                 vlan->default_filters[i] =
4912                                                         EFX_EF10_FILTER_ID_INVALID;
4913
4914                         kfree(spec);
4915                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4916                 } else {
4917                         table->entry[filter_idx].spec &=
4918                                 ~EFX_EF10_FILTER_FLAG_BUSY;
4919                 }
4920         }
4921
4922         spin_unlock_bh(&efx->filter_lock);
4923
4924         /* This can happen validly if the MC's capabilities have changed, so
4925          * is not an error.
4926          */
4927         if (invalid_filters)
4928                 netif_dbg(efx, drv, efx->net_dev,
4929                           "Did not restore %u filters that are now unsupported.\n",
4930                           invalid_filters);
4931
4932         if (failed)
4933                 netif_err(efx, hw, efx->net_dev,
4934                           "unable to restore %u filters\n", failed);
4935         else
4936                 nic_data->must_restore_filters = false;
4937 }
4938
4939 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4940 {
4941         struct efx_ef10_filter_table *table = efx->filter_state;
4942         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4943         struct efx_filter_spec *spec;
4944         unsigned int filter_idx;
4945         int rc;
4946
4947         efx_ef10_filter_cleanup_vlans(efx);
4948         efx->filter_state = NULL;
4949         /* If we were called without locking, then it's not safe to free
4950          * the table as others might be using it.  So we just WARN, leak
4951          * the memory, and potentially get an inconsistent filter table
4952          * state.
4953          * This should never actually happen.
4954          */
4955         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4956                 return;
4957
4958         if (!table)
4959                 return;
4960
4961         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4962                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4963                 if (!spec)
4964                         continue;
4965
4966                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4967                                efx_ef10_filter_is_exclusive(spec) ?
4968                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4969                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4970                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4971                                table->entry[filter_idx].handle);
4972                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4973                                         sizeof(inbuf), NULL, 0, NULL);
4974                 if (rc)
4975                         netif_info(efx, drv, efx->net_dev,
4976                                    "%s: filter %04x remove failed\n",
4977                                    __func__, filter_idx);
4978                 kfree(spec);
4979         }
4980
4981         vfree(table->entry);
4982         kfree(table);
4983 }
4984
4985 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4986 {
4987         struct efx_ef10_filter_table *table = efx->filter_state;
4988         unsigned int filter_idx;
4989
4990         if (*id != EFX_EF10_FILTER_ID_INVALID) {
4991                 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
4992                 if (!table->entry[filter_idx].spec)
4993                         netif_dbg(efx, drv, efx->net_dev,
4994                                   "marked null spec old %04x:%04x\n", *id,
4995                                   filter_idx);
4996                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4997                 *id = EFX_EF10_FILTER_ID_INVALID;
4998         }
4999 }
5000
5001 /* Mark old per-VLAN filters that may need to be removed */
5002 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5003                                            struct efx_ef10_filter_vlan *vlan)
5004 {
5005         struct efx_ef10_filter_table *table = efx->filter_state;
5006         unsigned int i;
5007
5008         for (i = 0; i < table->dev_uc_count; i++)
5009                 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5010         for (i = 0; i < table->dev_mc_count; i++)
5011                 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5012         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5013                 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5014 }
5015
5016 /* Mark old filters that may need to be removed.
5017  * Caller must hold efx->filter_sem for read if race against
5018  * efx_ef10_filter_table_remove() is possible
5019  */
5020 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5021 {
5022         struct efx_ef10_filter_table *table = efx->filter_state;
5023         struct efx_ef10_filter_vlan *vlan;
5024
5025         spin_lock_bh(&efx->filter_lock);
5026         list_for_each_entry(vlan, &table->vlan_list, list)
5027                 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5028         spin_unlock_bh(&efx->filter_lock);
5029 }
5030
5031 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5032 {
5033         struct efx_ef10_filter_table *table = efx->filter_state;
5034         struct net_device *net_dev = efx->net_dev;
5035         struct netdev_hw_addr *uc;
5036         int addr_count;
5037         unsigned int i;
5038
5039         addr_count = netdev_uc_count(net_dev);
5040         table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5041         table->dev_uc_count = 1 + addr_count;
5042         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5043         i = 1;
5044         netdev_for_each_uc_addr(uc, net_dev) {
5045                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5046                         table->uc_promisc = true;
5047                         break;
5048                 }
5049                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5050                 i++;
5051         }
5052 }
5053
5054 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5055 {
5056         struct efx_ef10_filter_table *table = efx->filter_state;
5057         struct net_device *net_dev = efx->net_dev;
5058         struct netdev_hw_addr *mc;
5059         unsigned int i, addr_count;
5060
5061         table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5062
5063         addr_count = netdev_mc_count(net_dev);
5064         i = 0;
5065         netdev_for_each_mc_addr(mc, net_dev) {
5066                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5067                         table->mc_promisc = true;
5068                         break;
5069                 }
5070                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5071                 i++;
5072         }
5073
5074         table->dev_mc_count = i;
5075 }
5076
5077 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5078                                             struct efx_ef10_filter_vlan *vlan,
5079                                             bool multicast, bool rollback)
5080 {
5081         struct efx_ef10_filter_table *table = efx->filter_state;
5082         struct efx_ef10_dev_addr *addr_list;
5083         enum efx_filter_flags filter_flags;
5084         struct efx_filter_spec spec;
5085         u8 baddr[ETH_ALEN];
5086         unsigned int i, j;
5087         int addr_count;
5088         u16 *ids;
5089         int rc;
5090
5091         if (multicast) {
5092                 addr_list = table->dev_mc_list;
5093                 addr_count = table->dev_mc_count;
5094                 ids = vlan->mc;
5095         } else {
5096                 addr_list = table->dev_uc_list;
5097                 addr_count = table->dev_uc_count;
5098                 ids = vlan->uc;
5099         }
5100
5101         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5102
5103         /* Insert/renew filters */
5104         for (i = 0; i < addr_count; i++) {
5105                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5106                 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5107                 rc = efx_ef10_filter_insert(efx, &spec, true);
5108                 if (rc < 0) {
5109                         if (rollback) {
5110                                 netif_info(efx, drv, efx->net_dev,
5111                                            "efx_ef10_filter_insert failed rc=%d\n",
5112                                            rc);
5113                                 /* Fall back to promiscuous */
5114                                 for (j = 0; j < i; j++) {
5115                                         efx_ef10_filter_remove_unsafe(
5116                                                 efx, EFX_FILTER_PRI_AUTO,
5117                                                 ids[j]);
5118                                         ids[j] = EFX_EF10_FILTER_ID_INVALID;
5119                                 }
5120                                 return rc;
5121                         } else {
5122                                 /* mark as not inserted, and carry on */
5123                                 rc = EFX_EF10_FILTER_ID_INVALID;
5124                         }
5125                 }
5126                 ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5127         }
5128
5129         if (multicast && rollback) {
5130                 /* Also need an Ethernet broadcast filter */
5131                 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5132                                      EFX_EF10_FILTER_ID_INVALID);
5133                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5134                 eth_broadcast_addr(baddr);
5135                 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5136                 rc = efx_ef10_filter_insert(efx, &spec, true);
5137                 if (rc < 0) {
5138                         netif_warn(efx, drv, efx->net_dev,
5139                                    "Broadcast filter insert failed rc=%d\n", rc);
5140                         /* Fall back to promiscuous */
5141                         for (j = 0; j < i; j++) {
5142                                 efx_ef10_filter_remove_unsafe(
5143                                         efx, EFX_FILTER_PRI_AUTO,
5144                                         ids[j]);
5145                                 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5146                         }
5147                         return rc;
5148                 } else {
5149                         vlan->default_filters[EFX_EF10_BCAST] =
5150                                 efx_ef10_filter_get_unsafe_id(rc);
5151                 }
5152         }
5153
5154         return 0;
5155 }
5156
5157 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5158                                       struct efx_ef10_filter_vlan *vlan,
5159                                       enum efx_encap_type encap_type,
5160                                       bool multicast, bool rollback)
5161 {
5162         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5163         enum efx_filter_flags filter_flags;
5164         struct efx_filter_spec spec;
5165         u8 baddr[ETH_ALEN];
5166         int rc;
5167         u16 *id;
5168
5169         filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5170
5171         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5172
5173         if (multicast)
5174                 efx_filter_set_mc_def(&spec);
5175         else
5176                 efx_filter_set_uc_def(&spec);
5177
5178         if (encap_type) {
5179                 if (nic_data->datapath_caps &
5180                     (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5181                         efx_filter_set_encap_type(&spec, encap_type);
5182                 else
5183                         /* don't insert encap filters on non-supporting
5184                          * platforms. ID will be left as INVALID.
5185                          */
5186                         return 0;
5187         }
5188
5189         if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5190                 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5191
5192         rc = efx_ef10_filter_insert(efx, &spec, true);
5193         if (rc < 0) {
5194                 const char *um = multicast ? "Multicast" : "Unicast";
5195                 const char *encap_name = "";
5196                 const char *encap_ipv = "";
5197
5198                 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5199                     EFX_ENCAP_TYPE_VXLAN)
5200                         encap_name = "VXLAN ";
5201                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5202                          EFX_ENCAP_TYPE_NVGRE)
5203                         encap_name = "NVGRE ";
5204                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5205                          EFX_ENCAP_TYPE_GENEVE)
5206                         encap_name = "GENEVE ";
5207                 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5208                         encap_ipv = "IPv6 ";
5209                 else if (encap_type)
5210                         encap_ipv = "IPv4 ";
5211
5212                 /* unprivileged functions can't insert mismatch filters
5213                  * for encapsulated or unicast traffic, so downgrade
5214                  * those warnings to debug.
5215                  */
5216                 netif_cond_dbg(efx, drv, efx->net_dev,
5217                                rc == -EPERM && (encap_type || !multicast), warn,
5218                                "%s%s%s mismatch filter insert failed rc=%d\n",
5219                                encap_name, encap_ipv, um, rc);
5220         } else if (multicast) {
5221                 /* mapping from encap types to default filter IDs (multicast) */
5222                 static enum efx_ef10_default_filters map[] = {
5223                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5224                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5225                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5226                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5227                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5228                                 EFX_EF10_VXLAN6_MCDEF,
5229                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5230                                 EFX_EF10_NVGRE6_MCDEF,
5231                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5232                                 EFX_EF10_GENEVE6_MCDEF,
5233                 };
5234
5235                 /* quick bounds check (BCAST result impossible) */
5236                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5237                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5238                         WARN_ON(1);
5239                         return -EINVAL;
5240                 }
5241                 /* then follow map */
5242                 id = &vlan->default_filters[map[encap_type]];
5243
5244                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5245                 *id = efx_ef10_filter_get_unsafe_id(rc);
5246                 if (!nic_data->workaround_26807 && !encap_type) {
5247                         /* Also need an Ethernet broadcast filter */
5248                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5249                                            filter_flags, 0);
5250                         eth_broadcast_addr(baddr);
5251                         efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5252                         rc = efx_ef10_filter_insert(efx, &spec, true);
5253                         if (rc < 0) {
5254                                 netif_warn(efx, drv, efx->net_dev,
5255                                            "Broadcast filter insert failed rc=%d\n",
5256                                            rc);
5257                                 if (rollback) {
5258                                         /* Roll back the mc_def filter */
5259                                         efx_ef10_filter_remove_unsafe(
5260                                                         efx, EFX_FILTER_PRI_AUTO,
5261                                                         *id);
5262                                         *id = EFX_EF10_FILTER_ID_INVALID;
5263                                         return rc;
5264                                 }
5265                         } else {
5266                                 EFX_WARN_ON_PARANOID(
5267                                         vlan->default_filters[EFX_EF10_BCAST] !=
5268                                         EFX_EF10_FILTER_ID_INVALID);
5269                                 vlan->default_filters[EFX_EF10_BCAST] =
5270                                         efx_ef10_filter_get_unsafe_id(rc);
5271                         }
5272                 }
5273                 rc = 0;
5274         } else {
5275                 /* mapping from encap types to default filter IDs (unicast) */
5276                 static enum efx_ef10_default_filters map[] = {
5277                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5278                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5279                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5280                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5281                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5282                                 EFX_EF10_VXLAN6_UCDEF,
5283                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5284                                 EFX_EF10_NVGRE6_UCDEF,
5285                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5286                                 EFX_EF10_GENEVE6_UCDEF,
5287                 };
5288
5289                 /* quick bounds check (BCAST result impossible) */
5290                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5291                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5292                         WARN_ON(1);
5293                         return -EINVAL;
5294                 }
5295                 /* then follow map */
5296                 id = &vlan->default_filters[map[encap_type]];
5297                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5298                 *id = rc;
5299                 rc = 0;
5300         }
5301         return rc;
5302 }
5303
5304 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
5305  * flag or removes these filters, we don't need to hold the filter_lock while
5306  * scanning for these filters.
5307  */
5308 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5309 {
5310         struct efx_ef10_filter_table *table = efx->filter_state;
5311         int remove_failed = 0;
5312         int remove_noent = 0;
5313         int rc;
5314         int i;
5315
5316         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5317                 if (ACCESS_ONCE(table->entry[i].spec) &
5318                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5319                         rc = efx_ef10_filter_remove_internal(efx,
5320                                         1U << EFX_FILTER_PRI_AUTO, i, true);
5321                         if (rc == -ENOENT)
5322                                 remove_noent++;
5323                         else if (rc)
5324                                 remove_failed++;
5325                 }
5326         }
5327
5328         if (remove_failed)
5329                 netif_info(efx, drv, efx->net_dev,
5330                            "%s: failed to remove %d filters\n",
5331                            __func__, remove_failed);
5332         if (remove_noent)
5333                 netif_info(efx, drv, efx->net_dev,
5334                            "%s: failed to remove %d non-existent filters\n",
5335                            __func__, remove_noent);
5336 }
5337
5338 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5339 {
5340         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5341         u8 mac_old[ETH_ALEN];
5342         int rc, rc2;
5343
5344         /* Only reconfigure a PF-created vport */
5345         if (is_zero_ether_addr(nic_data->vport_mac))
5346                 return 0;
5347
5348         efx_device_detach_sync(efx);
5349         efx_net_stop(efx->net_dev);
5350         down_write(&efx->filter_sem);
5351         efx_ef10_filter_table_remove(efx);
5352         up_write(&efx->filter_sem);
5353
5354         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5355         if (rc)
5356                 goto restore_filters;
5357
5358         ether_addr_copy(mac_old, nic_data->vport_mac);
5359         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5360                                     nic_data->vport_mac);
5361         if (rc)
5362                 goto restore_vadaptor;
5363
5364         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5365                                     efx->net_dev->dev_addr);
5366         if (!rc) {
5367                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5368         } else {
5369                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5370                 if (rc2) {
5371                         /* Failed to add original MAC, so clear vport_mac */
5372                         eth_zero_addr(nic_data->vport_mac);
5373                         goto reset_nic;
5374                 }
5375         }
5376
5377 restore_vadaptor:
5378         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5379         if (rc2)
5380                 goto reset_nic;
5381 restore_filters:
5382         down_write(&efx->filter_sem);
5383         rc2 = efx_ef10_filter_table_probe(efx);
5384         up_write(&efx->filter_sem);
5385         if (rc2)
5386                 goto reset_nic;
5387
5388         rc2 = efx_net_open(efx->net_dev);
5389         if (rc2)
5390                 goto reset_nic;
5391
5392         efx_device_attach_if_not_resetting(efx);
5393
5394         return rc;
5395
5396 reset_nic:
5397         netif_err(efx, drv, efx->net_dev,
5398                   "Failed to restore when changing MAC address - scheduling reset\n");
5399         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5400
5401         return rc ? rc : rc2;
5402 }
5403
5404 /* Caller must hold efx->filter_sem for read if race against
5405  * efx_ef10_filter_table_remove() is possible
5406  */
5407 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5408                                               struct efx_ef10_filter_vlan *vlan)
5409 {
5410         struct efx_ef10_filter_table *table = efx->filter_state;
5411         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5412
5413         /* Do not install unspecified VID if VLAN filtering is enabled.
5414          * Do not install all specified VIDs if VLAN filtering is disabled.
5415          */
5416         if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5417                 return;
5418
5419         /* Insert/renew unicast filters */
5420         if (table->uc_promisc) {
5421                 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5422                                            false, false);
5423                 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5424         } else {
5425                 /* If any of the filters failed to insert, fall back to
5426                  * promiscuous mode - add in the uc_def filter.  But keep
5427                  * our individual unicast filters.
5428                  */
5429                 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5430                         efx_ef10_filter_insert_def(efx, vlan,
5431                                                    EFX_ENCAP_TYPE_NONE,
5432                                                    false, false);
5433         }
5434         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5435                                    false, false);
5436         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5437                                               EFX_ENCAP_FLAG_IPV6,
5438                                    false, false);
5439         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5440                                    false, false);
5441         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5442                                               EFX_ENCAP_FLAG_IPV6,
5443                                    false, false);
5444         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5445                                    false, false);
5446         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5447                                               EFX_ENCAP_FLAG_IPV6,
5448                                    false, false);
5449
5450         /* Insert/renew multicast filters */
5451         /* If changing promiscuous state with cascaded multicast filters, remove
5452          * old filters first, so that packets are dropped rather than duplicated
5453          */
5454         if (nic_data->workaround_26807 &&
5455             table->mc_promisc_last != table->mc_promisc)
5456                 efx_ef10_filter_remove_old(efx);
5457         if (table->mc_promisc) {
5458                 if (nic_data->workaround_26807) {
5459                         /* If we failed to insert promiscuous filters, rollback
5460                          * and fall back to individual multicast filters
5461                          */
5462                         if (efx_ef10_filter_insert_def(efx, vlan,
5463                                                        EFX_ENCAP_TYPE_NONE,
5464                                                        true, true)) {
5465                                 /* Changing promisc state, so remove old filters */
5466                                 efx_ef10_filter_remove_old(efx);
5467                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5468                                                                  true, false);
5469                         }
5470                 } else {
5471                         /* If we failed to insert promiscuous filters, don't
5472                          * rollback.  Regardless, also insert the mc_list
5473                          */
5474                         efx_ef10_filter_insert_def(efx, vlan,
5475                                                    EFX_ENCAP_TYPE_NONE,
5476                                                    true, false);
5477                         efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
5478                 }
5479         } else {
5480                 /* If any filters failed to insert, rollback and fall back to
5481                  * promiscuous mode - mc_def filter and maybe broadcast.  If
5482                  * that fails, roll back again and insert as many of our
5483                  * individual multicast filters as we can.
5484                  */
5485                 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5486                         /* Changing promisc state, so remove old filters */
5487                         if (nic_data->workaround_26807)
5488                                 efx_ef10_filter_remove_old(efx);
5489                         if (efx_ef10_filter_insert_def(efx, vlan,
5490                                                        EFX_ENCAP_TYPE_NONE,
5491                                                        true, true))
5492                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5493                                                                  true, false);
5494                 }
5495         }
5496         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5497                                    true, false);
5498         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5499                                               EFX_ENCAP_FLAG_IPV6,
5500                                    true, false);
5501         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5502                                    true, false);
5503         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5504                                               EFX_ENCAP_FLAG_IPV6,
5505                                    true, false);
5506         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5507                                    true, false);
5508         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5509                                               EFX_ENCAP_FLAG_IPV6,
5510                                    true, false);
5511 }
5512
5513 /* Caller must hold efx->filter_sem for read if race against
5514  * efx_ef10_filter_table_remove() is possible
5515  */
5516 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5517 {
5518         struct efx_ef10_filter_table *table = efx->filter_state;
5519         struct net_device *net_dev = efx->net_dev;
5520         struct efx_ef10_filter_vlan *vlan;
5521         bool vlan_filter;
5522
5523         if (!efx_dev_registered(efx))
5524                 return;
5525
5526         if (!table)
5527                 return;
5528
5529         efx_ef10_filter_mark_old(efx);
5530
5531         /* Copy/convert the address lists; add the primary station
5532          * address and broadcast address
5533          */
5534         netif_addr_lock_bh(net_dev);
5535         efx_ef10_filter_uc_addr_list(efx);
5536         efx_ef10_filter_mc_addr_list(efx);
5537         netif_addr_unlock_bh(net_dev);
5538
5539         /* If VLAN filtering changes, all old filters are finally removed.
5540          * Do it in advance to avoid conflicts for unicast untagged and
5541          * VLAN 0 tagged filters.
5542          */
5543         vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5544         if (table->vlan_filter != vlan_filter) {
5545                 table->vlan_filter = vlan_filter;
5546                 efx_ef10_filter_remove_old(efx);
5547         }
5548
5549         list_for_each_entry(vlan, &table->vlan_list, list)
5550                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5551
5552         efx_ef10_filter_remove_old(efx);
5553         table->mc_promisc_last = table->mc_promisc;
5554 }
5555
5556 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5557 {
5558         struct efx_ef10_filter_table *table = efx->filter_state;
5559         struct efx_ef10_filter_vlan *vlan;
5560
5561         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5562
5563         list_for_each_entry(vlan, &table->vlan_list, list) {
5564                 if (vlan->vid == vid)
5565                         return vlan;
5566         }
5567
5568         return NULL;
5569 }
5570
5571 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5572 {
5573         struct efx_ef10_filter_table *table = efx->filter_state;
5574         struct efx_ef10_filter_vlan *vlan;
5575         unsigned int i;
5576
5577         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5578                 return -EINVAL;
5579
5580         vlan = efx_ef10_filter_find_vlan(efx, vid);
5581         if (WARN_ON(vlan)) {
5582                 netif_err(efx, drv, efx->net_dev,
5583                           "VLAN %u already added\n", vid);
5584                 return -EALREADY;
5585         }
5586
5587         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5588         if (!vlan)
5589                 return -ENOMEM;
5590
5591         vlan->vid = vid;
5592
5593         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5594                 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5595         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5596                 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5597         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5598                 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5599
5600         list_add_tail(&vlan->list, &table->vlan_list);
5601
5602         if (efx_dev_registered(efx))
5603                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5604
5605         return 0;
5606 }
5607
5608 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5609                                               struct efx_ef10_filter_vlan *vlan)
5610 {
5611         unsigned int i;
5612
5613         /* See comment in efx_ef10_filter_table_remove() */
5614         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5615                 return;
5616
5617         list_del(&vlan->list);
5618
5619         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5620                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5621                                               vlan->uc[i]);
5622         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5623                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5624                                               vlan->mc[i]);
5625         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5626                 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5627                         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5628                                                       vlan->default_filters[i]);
5629
5630         kfree(vlan);
5631 }
5632
5633 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5634 {
5635         struct efx_ef10_filter_vlan *vlan;
5636
5637         /* See comment in efx_ef10_filter_table_remove() */
5638         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5639                 return;
5640
5641         vlan = efx_ef10_filter_find_vlan(efx, vid);
5642         if (!vlan) {
5643                 netif_err(efx, drv, efx->net_dev,
5644                           "VLAN %u not found in filter state\n", vid);
5645                 return;
5646         }
5647
5648         efx_ef10_filter_del_vlan_internal(efx, vlan);
5649 }
5650
5651 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5652 {
5653         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5654         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5655         bool was_enabled = efx->port_enabled;
5656         int rc;
5657
5658         efx_device_detach_sync(efx);
5659         efx_net_stop(efx->net_dev);
5660
5661         mutex_lock(&efx->mac_lock);
5662         down_write(&efx->filter_sem);
5663         efx_ef10_filter_table_remove(efx);
5664
5665         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5666                         efx->net_dev->dev_addr);
5667         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5668                        nic_data->vport_id);
5669         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5670                                 sizeof(inbuf), NULL, 0, NULL);
5671
5672         efx_ef10_filter_table_probe(efx);
5673         up_write(&efx->filter_sem);
5674         mutex_unlock(&efx->mac_lock);
5675
5676         if (was_enabled)
5677                 efx_net_open(efx->net_dev);
5678         efx_device_attach_if_not_resetting(efx);
5679
5680 #ifdef CONFIG_SFC_SRIOV
5681         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5682                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5683
5684                 if (rc == -EPERM) {
5685                         struct efx_nic *efx_pf;
5686
5687                         /* Switch to PF and change MAC address on vport */
5688                         efx_pf = pci_get_drvdata(pci_dev_pf);
5689
5690                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5691                                                        nic_data->vf_index,
5692                                                        efx->net_dev->dev_addr);
5693                 } else if (!rc) {
5694                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5695                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5696                         unsigned int i;
5697
5698                         /* MAC address successfully changed by VF (with MAC
5699                          * spoofing) so update the parent PF if possible.
5700                          */
5701                         for (i = 0; i < efx_pf->vf_count; ++i) {
5702                                 struct ef10_vf *vf = nic_data->vf + i;
5703
5704                                 if (vf->efx == efx) {
5705                                         ether_addr_copy(vf->mac,
5706                                                         efx->net_dev->dev_addr);
5707                                         return 0;
5708                                 }
5709                         }
5710                 }
5711         } else
5712 #endif
5713         if (rc == -EPERM) {
5714                 netif_err(efx, drv, efx->net_dev,
5715                           "Cannot change MAC address; use sfboot to enable"
5716                           " mac-spoofing on this interface\n");
5717         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5718                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5719                  * fall-back to the method of changing the MAC address on the
5720                  * vport.  This only applies to PFs because such versions of
5721                  * MCFW do not support VFs.
5722                  */
5723                 rc = efx_ef10_vport_set_mac_address(efx);
5724         } else {
5725                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5726                                        sizeof(inbuf), NULL, 0, rc);
5727         }
5728
5729         return rc;
5730 }
5731
5732 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5733 {
5734         efx_ef10_filter_sync_rx_mode(efx);
5735
5736         return efx_mcdi_set_mac(efx);
5737 }
5738
5739 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5740 {
5741         efx_ef10_filter_sync_rx_mode(efx);
5742
5743         return 0;
5744 }
5745
5746 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5747 {
5748         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5749
5750         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5751         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5752                             NULL, 0, NULL);
5753 }
5754
5755 /* MC BISTs follow a different poll mechanism to phy BISTs.
5756  * The BIST is done in the poll handler on the MC, and the MCDI command
5757  * will block until the BIST is done.
5758  */
5759 static int efx_ef10_poll_bist(struct efx_nic *efx)
5760 {
5761         int rc;
5762         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5763         size_t outlen;
5764         u32 result;
5765
5766         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5767                            outbuf, sizeof(outbuf), &outlen);
5768         if (rc != 0)
5769                 return rc;
5770
5771         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5772                 return -EIO;
5773
5774         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5775         switch (result) {
5776         case MC_CMD_POLL_BIST_PASSED:
5777                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5778                 return 0;
5779         case MC_CMD_POLL_BIST_TIMEOUT:
5780                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5781                 return -EIO;
5782         case MC_CMD_POLL_BIST_FAILED:
5783                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5784                 return -EIO;
5785         default:
5786                 netif_err(efx, hw, efx->net_dev,
5787                           "BIST returned unknown result %u", result);
5788                 return -EIO;
5789         }
5790 }
5791
5792 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5793 {
5794         int rc;
5795
5796         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5797
5798         rc = efx_ef10_start_bist(efx, bist_type);
5799         if (rc != 0)
5800                 return rc;
5801
5802         return efx_ef10_poll_bist(efx);
5803 }
5804
5805 static int
5806 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5807 {
5808         int rc, rc2;
5809
5810         efx_reset_down(efx, RESET_TYPE_WORLD);
5811
5812         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5813                           NULL, 0, NULL, 0, NULL);
5814         if (rc != 0)
5815                 goto out;
5816
5817         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5818         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5819
5820         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5821
5822 out:
5823         if (rc == -EPERM)
5824                 rc = 0;
5825         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5826         return rc ? rc : rc2;
5827 }
5828
5829 #ifdef CONFIG_SFC_MTD
5830
5831 struct efx_ef10_nvram_type_info {
5832         u16 type, type_mask;
5833         u8 port;
5834         const char *name;
5835 };
5836
5837 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5838         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
5839         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5840         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
5841         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
5842         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
5843         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5844         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5845         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5846         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5847         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
5848         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
5849 };
5850
5851 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5852                                         struct efx_mcdi_mtd_partition *part,
5853                                         unsigned int type)
5854 {
5855         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5856         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5857         const struct efx_ef10_nvram_type_info *info;
5858         size_t size, erase_size, outlen;
5859         bool protected;
5860         int rc;
5861
5862         for (info = efx_ef10_nvram_types; ; info++) {
5863                 if (info ==
5864                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5865                         return -ENODEV;
5866                 if ((type & ~info->type_mask) == info->type)
5867                         break;
5868         }
5869         if (info->port != efx_port_num(efx))
5870                 return -ENODEV;
5871
5872         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5873         if (rc)
5874                 return rc;
5875         if (protected)
5876                 return -ENODEV; /* hide it */
5877
5878         part->nvram_type = type;
5879
5880         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5881         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5882                           outbuf, sizeof(outbuf), &outlen);
5883         if (rc)
5884                 return rc;
5885         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5886                 return -EIO;
5887         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5888             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5889                 part->fw_subtype = MCDI_DWORD(outbuf,
5890                                               NVRAM_METADATA_OUT_SUBTYPE);
5891
5892         part->common.dev_type_name = "EF10 NVRAM manager";
5893         part->common.type_name = info->name;
5894
5895         part->common.mtd.type = MTD_NORFLASH;
5896         part->common.mtd.flags = MTD_CAP_NORFLASH;
5897         part->common.mtd.size = size;
5898         part->common.mtd.erasesize = erase_size;
5899
5900         return 0;
5901 }
5902
5903 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5904 {
5905         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5906         struct efx_mcdi_mtd_partition *parts;
5907         size_t outlen, n_parts_total, i, n_parts;
5908         unsigned int type;
5909         int rc;
5910
5911         ASSERT_RTNL();
5912
5913         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5914         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5915                           outbuf, sizeof(outbuf), &outlen);
5916         if (rc)
5917                 return rc;
5918         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5919                 return -EIO;
5920
5921         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5922         if (n_parts_total >
5923             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5924                 return -EIO;
5925
5926         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5927         if (!parts)
5928                 return -ENOMEM;
5929
5930         n_parts = 0;
5931         for (i = 0; i < n_parts_total; i++) {
5932                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5933                                         i);
5934                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5935                 if (rc == 0)
5936                         n_parts++;
5937                 else if (rc != -ENODEV)
5938                         goto fail;
5939         }
5940
5941         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5942 fail:
5943         if (rc)
5944                 kfree(parts);
5945         return rc;
5946 }
5947
5948 #endif /* CONFIG_SFC_MTD */
5949
5950 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5951 {
5952         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5953 }
5954
5955 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5956                                             u32 host_time) {}
5957
5958 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5959                                            bool temp)
5960 {
5961         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5962         int rc;
5963
5964         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5965             channel->sync_events_state == SYNC_EVENTS_VALID ||
5966             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5967                 return 0;
5968         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5969
5970         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5971         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5972         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5973                        channel->channel);
5974
5975         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5976                           inbuf, sizeof(inbuf), NULL, 0, NULL);
5977
5978         if (rc != 0)
5979                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5980                                                     SYNC_EVENTS_DISABLED;
5981
5982         return rc;
5983 }
5984
5985 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5986                                             bool temp)
5987 {
5988         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5989         int rc;
5990
5991         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5992             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5993                 return 0;
5994         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
5995                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
5996                 return 0;
5997         }
5998         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5999                                             SYNC_EVENTS_DISABLED;
6000
6001         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6002         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6003         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6004                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6005         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6006                        channel->channel);
6007
6008         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6009                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6010
6011         return rc;
6012 }
6013
6014 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6015                                            bool temp)
6016 {
6017         int (*set)(struct efx_channel *channel, bool temp);
6018         struct efx_channel *channel;
6019
6020         set = en ?
6021               efx_ef10_rx_enable_timestamping :
6022               efx_ef10_rx_disable_timestamping;
6023
6024         efx_for_each_channel(channel, efx) {
6025                 int rc = set(channel, temp);
6026                 if (en && rc != 0) {
6027                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6028                         return rc;
6029                 }
6030         }
6031
6032         return 0;
6033 }
6034
6035 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6036                                          struct hwtstamp_config *init)
6037 {
6038         return -EOPNOTSUPP;
6039 }
6040
6041 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6042                                       struct hwtstamp_config *init)
6043 {
6044         int rc;
6045
6046         switch (init->rx_filter) {
6047         case HWTSTAMP_FILTER_NONE:
6048                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6049                 /* if TX timestamping is still requested then leave PTP on */
6050                 return efx_ptp_change_mode(efx,
6051                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
6052         case HWTSTAMP_FILTER_ALL:
6053         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6054         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6055         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6056         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6057         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6058         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6059         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6060         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6061         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6062         case HWTSTAMP_FILTER_PTP_V2_EVENT:
6063         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6064         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6065                 init->rx_filter = HWTSTAMP_FILTER_ALL;
6066                 rc = efx_ptp_change_mode(efx, true, 0);
6067                 if (!rc)
6068                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6069                 if (rc)
6070                         efx_ptp_change_mode(efx, false, 0);
6071                 return rc;
6072         default:
6073                 return -ERANGE;
6074         }
6075 }
6076
6077 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6078                                      struct netdev_phys_item_id *ppid)
6079 {
6080         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6081
6082         if (!is_valid_ether_addr(nic_data->port_id))
6083                 return -EOPNOTSUPP;
6084
6085         ppid->id_len = ETH_ALEN;
6086         memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6087
6088         return 0;
6089 }
6090
6091 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6092 {
6093         if (proto != htons(ETH_P_8021Q))
6094                 return -EINVAL;
6095
6096         return efx_ef10_add_vlan(efx, vid);
6097 }
6098
6099 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6100 {
6101         if (proto != htons(ETH_P_8021Q))
6102                 return -EINVAL;
6103
6104         return efx_ef10_del_vlan(efx, vid);
6105 }
6106
6107 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6108  * ports table, ensuring that any TSO descriptors that were made on a now-
6109  * removed tunnel port will be blown away and won't break things when we try
6110  * to transmit them using the new ports table.
6111  */
6112 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6113 {
6114         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6115         MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6116         MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6117         bool will_reset = false;
6118         size_t num_entries = 0;
6119         size_t inlen, outlen;
6120         size_t i;
6121         int rc;
6122         efx_dword_t flags_and_num_entries;
6123
6124         WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6125
6126         nic_data->udp_tunnels_dirty = false;
6127
6128         if (!(nic_data->datapath_caps &
6129             (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6130                 efx_device_attach_if_not_resetting(efx);
6131                 return 0;
6132         }
6133
6134         BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6135                      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6136
6137         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6138                 if (nic_data->udp_tunnels[i].count &&
6139                     nic_data->udp_tunnels[i].port) {
6140                         efx_dword_t entry;
6141
6142                         EFX_POPULATE_DWORD_2(entry,
6143                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6144                                         ntohs(nic_data->udp_tunnels[i].port),
6145                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6146                                         nic_data->udp_tunnels[i].type);
6147                         *_MCDI_ARRAY_DWORD(inbuf,
6148                                 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6149                                 num_entries++) = entry;
6150                 }
6151         }
6152
6153         BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6154                       MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6155                      EFX_WORD_1_LBN);
6156         BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6157                      EFX_WORD_1_WIDTH);
6158         EFX_POPULATE_DWORD_2(flags_and_num_entries,
6159                              MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6160                                 !!unloading,
6161                              EFX_WORD_1, num_entries);
6162         *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6163                 flags_and_num_entries;
6164
6165         inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6166
6167         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6168                                 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6169         if (rc == -EIO) {
6170                 /* Most likely the MC rebooted due to another function also
6171                  * setting its tunnel port list. Mark the tunnel port list as
6172                  * dirty, so it will be pushed upon coming up from the reboot.
6173                  */
6174                 nic_data->udp_tunnels_dirty = true;
6175                 return 0;
6176         }
6177
6178         if (rc) {
6179                 /* expected not available on unprivileged functions */
6180                 if (rc != -EPERM)
6181                         netif_warn(efx, drv, efx->net_dev,
6182                                    "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6183         } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6184                    (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6185                 netif_info(efx, drv, efx->net_dev,
6186                            "Rebooting MC due to UDP tunnel port list change\n");
6187                 will_reset = true;
6188                 if (unloading)
6189                         /* Delay for the MC reset to complete. This will make
6190                          * unloading other functions a bit smoother. This is a
6191                          * race, but the other unload will work whichever way
6192                          * it goes, this just avoids an unnecessary error
6193                          * message.
6194                          */
6195                         msleep(100);
6196         }
6197         if (!will_reset && !unloading) {
6198                 /* The caller will have detached, relying on the MC reset to
6199                  * trigger a re-attach.  Since there won't be an MC reset, we
6200                  * have to do the attach ourselves.
6201                  */
6202                 efx_device_attach_if_not_resetting(efx);
6203         }
6204
6205         return rc;
6206 }
6207
6208 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6209 {
6210         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6211         int rc = 0;
6212
6213         mutex_lock(&nic_data->udp_tunnels_lock);
6214         if (nic_data->udp_tunnels_dirty) {
6215                 /* Make sure all TX are stopped while we modify the table, else
6216                  * we might race against an efx_features_check().
6217                  */
6218                 efx_device_detach_sync(efx);
6219                 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6220         }
6221         mutex_unlock(&nic_data->udp_tunnels_lock);
6222         return rc;
6223 }
6224
6225 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6226                                                              __be16 port)
6227 {
6228         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6229         size_t i;
6230
6231         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6232                 if (!nic_data->udp_tunnels[i].count)
6233                         continue;
6234                 if (nic_data->udp_tunnels[i].port == port)
6235                         return &nic_data->udp_tunnels[i];
6236         }
6237         return NULL;
6238 }
6239
6240 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6241                                      struct efx_udp_tunnel tnl)
6242 {
6243         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6244         struct efx_udp_tunnel *match;
6245         char typebuf[8];
6246         size_t i;
6247         int rc;
6248
6249         if (!(nic_data->datapath_caps &
6250               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6251                 return 0;
6252
6253         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6254         netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6255                   typebuf, ntohs(tnl.port));
6256
6257         mutex_lock(&nic_data->udp_tunnels_lock);
6258         /* Make sure all TX are stopped while we add to the table, else we
6259          * might race against an efx_features_check().
6260          */
6261         efx_device_detach_sync(efx);
6262
6263         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6264         if (match != NULL) {
6265                 if (match->type == tnl.type) {
6266                         netif_dbg(efx, drv, efx->net_dev,
6267                                   "Referencing existing tunnel entry\n");
6268                         match->count++;
6269                         /* No need to cause an MCDI update */
6270                         rc = 0;
6271                         goto unlock_out;
6272                 }
6273                 efx_get_udp_tunnel_type_name(match->type,
6274                                              typebuf, sizeof(typebuf));
6275                 netif_dbg(efx, drv, efx->net_dev,
6276                           "UDP port %d is already in use by %s\n",
6277                           ntohs(tnl.port), typebuf);
6278                 rc = -EEXIST;
6279                 goto unlock_out;
6280         }
6281
6282         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6283                 if (!nic_data->udp_tunnels[i].count) {
6284                         nic_data->udp_tunnels[i] = tnl;
6285                         nic_data->udp_tunnels[i].count = 1;
6286                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6287                         goto unlock_out;
6288                 }
6289
6290         netif_dbg(efx, drv, efx->net_dev,
6291                   "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6292                   typebuf, ntohs(tnl.port));
6293
6294         rc = -ENOMEM;
6295
6296 unlock_out:
6297         mutex_unlock(&nic_data->udp_tunnels_lock);
6298         return rc;
6299 }
6300
6301 /* Called under the TX lock with the TX queue running, hence no-one can be
6302  * in the middle of updating the UDP tunnels table.  However, they could
6303  * have tried and failed the MCDI, in which case they'll have set the dirty
6304  * flag before dropping their locks.
6305  */
6306 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6307 {
6308         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6309
6310         if (!(nic_data->datapath_caps &
6311               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6312                 return false;
6313
6314         if (nic_data->udp_tunnels_dirty)
6315                 /* SW table may not match HW state, so just assume we can't
6316                  * use any UDP tunnel offloads.
6317                  */
6318                 return false;
6319
6320         return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6321 }
6322
6323 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6324                                      struct efx_udp_tunnel tnl)
6325 {
6326         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6327         struct efx_udp_tunnel *match;
6328         char typebuf[8];
6329         int rc;
6330
6331         if (!(nic_data->datapath_caps &
6332               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6333                 return 0;
6334
6335         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6336         netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6337                   typebuf, ntohs(tnl.port));
6338
6339         mutex_lock(&nic_data->udp_tunnels_lock);
6340         /* Make sure all TX are stopped while we remove from the table, else we
6341          * might race against an efx_features_check().
6342          */
6343         efx_device_detach_sync(efx);
6344
6345         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6346         if (match != NULL) {
6347                 if (match->type == tnl.type) {
6348                         if (--match->count) {
6349                                 /* Port is still in use, so nothing to do */
6350                                 netif_dbg(efx, drv, efx->net_dev,
6351                                           "UDP tunnel port %d remains active\n",
6352                                           ntohs(tnl.port));
6353                                 rc = 0;
6354                                 goto out_unlock;
6355                         }
6356                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6357                         goto out_unlock;
6358                 }
6359                 efx_get_udp_tunnel_type_name(match->type,
6360                                              typebuf, sizeof(typebuf));
6361                 netif_warn(efx, drv, efx->net_dev,
6362                            "UDP port %d is actually in use by %s, not removing\n",
6363                            ntohs(tnl.port), typebuf);
6364         }
6365         rc = -ENOENT;
6366
6367 out_unlock:
6368         mutex_unlock(&nic_data->udp_tunnels_lock);
6369         return rc;
6370 }
6371
6372 #define EF10_OFFLOAD_FEATURES           \
6373         (NETIF_F_IP_CSUM |              \
6374          NETIF_F_HW_VLAN_CTAG_FILTER |  \
6375          NETIF_F_IPV6_CSUM |            \
6376          NETIF_F_RXHASH |               \
6377          NETIF_F_NTUPLE)
6378
6379 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6380         .is_vf = true,
6381         .mem_bar = EFX_MEM_VF_BAR,
6382         .mem_map_size = efx_ef10_mem_map_size,
6383         .probe = efx_ef10_probe_vf,
6384         .remove = efx_ef10_remove,
6385         .dimension_resources = efx_ef10_dimension_resources,
6386         .init = efx_ef10_init_nic,
6387         .fini = efx_port_dummy_op_void,
6388         .map_reset_reason = efx_ef10_map_reset_reason,
6389         .map_reset_flags = efx_ef10_map_reset_flags,
6390         .reset = efx_ef10_reset,
6391         .probe_port = efx_mcdi_port_probe,
6392         .remove_port = efx_mcdi_port_remove,
6393         .fini_dmaq = efx_ef10_fini_dmaq,
6394         .prepare_flr = efx_ef10_prepare_flr,
6395         .finish_flr = efx_port_dummy_op_void,
6396         .describe_stats = efx_ef10_describe_stats,
6397         .update_stats = efx_ef10_update_stats_vf,
6398         .start_stats = efx_port_dummy_op_void,
6399         .pull_stats = efx_port_dummy_op_void,
6400         .stop_stats = efx_port_dummy_op_void,
6401         .set_id_led = efx_mcdi_set_id_led,
6402         .push_irq_moderation = efx_ef10_push_irq_moderation,
6403         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6404         .check_mac_fault = efx_mcdi_mac_check_fault,
6405         .reconfigure_port = efx_mcdi_port_reconfigure,
6406         .get_wol = efx_ef10_get_wol_vf,
6407         .set_wol = efx_ef10_set_wol_vf,
6408         .resume_wol = efx_port_dummy_op_void,
6409         .mcdi_request = efx_ef10_mcdi_request,
6410         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6411         .mcdi_read_response = efx_ef10_mcdi_read_response,
6412         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6413         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6414         .irq_enable_master = efx_port_dummy_op_void,
6415         .irq_test_generate = efx_ef10_irq_test_generate,
6416         .irq_disable_non_ev = efx_port_dummy_op_void,
6417         .irq_handle_msi = efx_ef10_msi_interrupt,
6418         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6419         .tx_probe = efx_ef10_tx_probe,
6420         .tx_init = efx_ef10_tx_init,
6421         .tx_remove = efx_ef10_tx_remove,
6422         .tx_write = efx_ef10_tx_write,
6423         .tx_limit_len = efx_ef10_tx_limit_len,
6424         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6425         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6426         .rx_probe = efx_ef10_rx_probe,
6427         .rx_init = efx_ef10_rx_init,
6428         .rx_remove = efx_ef10_rx_remove,
6429         .rx_write = efx_ef10_rx_write,
6430         .rx_defer_refill = efx_ef10_rx_defer_refill,
6431         .ev_probe = efx_ef10_ev_probe,
6432         .ev_init = efx_ef10_ev_init,
6433         .ev_fini = efx_ef10_ev_fini,
6434         .ev_remove = efx_ef10_ev_remove,
6435         .ev_process = efx_ef10_ev_process,
6436         .ev_read_ack = efx_ef10_ev_read_ack,
6437         .ev_test_generate = efx_ef10_ev_test_generate,
6438         .filter_table_probe = efx_ef10_filter_table_probe,
6439         .filter_table_restore = efx_ef10_filter_table_restore,
6440         .filter_table_remove = efx_ef10_filter_table_remove,
6441         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6442         .filter_insert = efx_ef10_filter_insert,
6443         .filter_remove_safe = efx_ef10_filter_remove_safe,
6444         .filter_get_safe = efx_ef10_filter_get_safe,
6445         .filter_clear_rx = efx_ef10_filter_clear_rx,
6446         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6447         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6448         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6449 #ifdef CONFIG_RFS_ACCEL
6450         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
6451         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6452 #endif
6453 #ifdef CONFIG_SFC_MTD
6454         .mtd_probe = efx_port_dummy_op_int,
6455 #endif
6456         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6457         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6458         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6459         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6460 #ifdef CONFIG_SFC_SRIOV
6461         .vswitching_probe = efx_ef10_vswitching_probe_vf,
6462         .vswitching_restore = efx_ef10_vswitching_restore_vf,
6463         .vswitching_remove = efx_ef10_vswitching_remove_vf,
6464 #endif
6465         .get_mac_address = efx_ef10_get_mac_address_vf,
6466         .set_mac_address = efx_ef10_set_mac_address,
6467
6468         .get_phys_port_id = efx_ef10_get_phys_port_id,
6469         .revision = EFX_REV_HUNT_A0,
6470         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6471         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6472         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6473         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6474         .can_rx_scatter = true,
6475         .always_rx_scatter = true,
6476         .min_interrupt_mode = EFX_INT_MODE_MSIX,
6477         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6478         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6479         .offload_features = EF10_OFFLOAD_FEATURES,
6480         .mcdi_max_ver = 2,
6481         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6482         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6483                             1 << HWTSTAMP_FILTER_ALL,
6484         .rx_hash_key_size = 40,
6485 };
6486
6487 const struct efx_nic_type efx_hunt_a0_nic_type = {
6488         .is_vf = false,
6489         .mem_bar = EFX_MEM_BAR,
6490         .mem_map_size = efx_ef10_mem_map_size,
6491         .probe = efx_ef10_probe_pf,
6492         .remove = efx_ef10_remove,
6493         .dimension_resources = efx_ef10_dimension_resources,
6494         .init = efx_ef10_init_nic,
6495         .fini = efx_port_dummy_op_void,
6496         .map_reset_reason = efx_ef10_map_reset_reason,
6497         .map_reset_flags = efx_ef10_map_reset_flags,
6498         .reset = efx_ef10_reset,
6499         .probe_port = efx_mcdi_port_probe,
6500         .remove_port = efx_mcdi_port_remove,
6501         .fini_dmaq = efx_ef10_fini_dmaq,
6502         .prepare_flr = efx_ef10_prepare_flr,
6503         .finish_flr = efx_port_dummy_op_void,
6504         .describe_stats = efx_ef10_describe_stats,
6505         .update_stats = efx_ef10_update_stats_pf,
6506         .start_stats = efx_mcdi_mac_start_stats,
6507         .pull_stats = efx_mcdi_mac_pull_stats,
6508         .stop_stats = efx_mcdi_mac_stop_stats,
6509         .set_id_led = efx_mcdi_set_id_led,
6510         .push_irq_moderation = efx_ef10_push_irq_moderation,
6511         .reconfigure_mac = efx_ef10_mac_reconfigure,
6512         .check_mac_fault = efx_mcdi_mac_check_fault,
6513         .reconfigure_port = efx_mcdi_port_reconfigure,
6514         .get_wol = efx_ef10_get_wol,
6515         .set_wol = efx_ef10_set_wol,
6516         .resume_wol = efx_port_dummy_op_void,
6517         .test_chip = efx_ef10_test_chip,
6518         .test_nvram = efx_mcdi_nvram_test_all,
6519         .mcdi_request = efx_ef10_mcdi_request,
6520         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6521         .mcdi_read_response = efx_ef10_mcdi_read_response,
6522         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6523         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6524         .irq_enable_master = efx_port_dummy_op_void,
6525         .irq_test_generate = efx_ef10_irq_test_generate,
6526         .irq_disable_non_ev = efx_port_dummy_op_void,
6527         .irq_handle_msi = efx_ef10_msi_interrupt,
6528         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6529         .tx_probe = efx_ef10_tx_probe,
6530         .tx_init = efx_ef10_tx_init,
6531         .tx_remove = efx_ef10_tx_remove,
6532         .tx_write = efx_ef10_tx_write,
6533         .tx_limit_len = efx_ef10_tx_limit_len,
6534         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6535         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6536         .rx_probe = efx_ef10_rx_probe,
6537         .rx_init = efx_ef10_rx_init,
6538         .rx_remove = efx_ef10_rx_remove,
6539         .rx_write = efx_ef10_rx_write,
6540         .rx_defer_refill = efx_ef10_rx_defer_refill,
6541         .ev_probe = efx_ef10_ev_probe,
6542         .ev_init = efx_ef10_ev_init,
6543         .ev_fini = efx_ef10_ev_fini,
6544         .ev_remove = efx_ef10_ev_remove,
6545         .ev_process = efx_ef10_ev_process,
6546         .ev_read_ack = efx_ef10_ev_read_ack,
6547         .ev_test_generate = efx_ef10_ev_test_generate,
6548         .filter_table_probe = efx_ef10_filter_table_probe,
6549         .filter_table_restore = efx_ef10_filter_table_restore,
6550         .filter_table_remove = efx_ef10_filter_table_remove,
6551         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6552         .filter_insert = efx_ef10_filter_insert,
6553         .filter_remove_safe = efx_ef10_filter_remove_safe,
6554         .filter_get_safe = efx_ef10_filter_get_safe,
6555         .filter_clear_rx = efx_ef10_filter_clear_rx,
6556         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6557         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6558         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6559 #ifdef CONFIG_RFS_ACCEL
6560         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
6561         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6562 #endif
6563 #ifdef CONFIG_SFC_MTD
6564         .mtd_probe = efx_ef10_mtd_probe,
6565         .mtd_rename = efx_mcdi_mtd_rename,
6566         .mtd_read = efx_mcdi_mtd_read,
6567         .mtd_erase = efx_mcdi_mtd_erase,
6568         .mtd_write = efx_mcdi_mtd_write,
6569         .mtd_sync = efx_mcdi_mtd_sync,
6570 #endif
6571         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6572         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6573         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6574         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6575         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6576         .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6577         .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6578         .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6579         .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6580 #ifdef CONFIG_SFC_SRIOV
6581         .sriov_configure = efx_ef10_sriov_configure,
6582         .sriov_init = efx_ef10_sriov_init,
6583         .sriov_fini = efx_ef10_sriov_fini,
6584         .sriov_wanted = efx_ef10_sriov_wanted,
6585         .sriov_reset = efx_ef10_sriov_reset,
6586         .sriov_flr = efx_ef10_sriov_flr,
6587         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6588         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6589         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6590         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6591         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6592         .vswitching_probe = efx_ef10_vswitching_probe_pf,
6593         .vswitching_restore = efx_ef10_vswitching_restore_pf,
6594         .vswitching_remove = efx_ef10_vswitching_remove_pf,
6595 #endif
6596         .get_mac_address = efx_ef10_get_mac_address_pf,
6597         .set_mac_address = efx_ef10_set_mac_address,
6598         .tso_versions = efx_ef10_tso_versions,
6599
6600         .get_phys_port_id = efx_ef10_get_phys_port_id,
6601         .revision = EFX_REV_HUNT_A0,
6602         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6603         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6604         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6605         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6606         .can_rx_scatter = true,
6607         .always_rx_scatter = true,
6608         .option_descriptors = true,
6609         .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6610         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6611         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6612         .offload_features = EF10_OFFLOAD_FEATURES,
6613         .mcdi_max_ver = 2,
6614         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6615         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6616                             1 << HWTSTAMP_FILTER_ALL,
6617         .rx_hash_key_size = 40,
6618 };