]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/nic.h
sfc: Move NIC-type-specific MTD partition date into separate structures
[karo-tx-linux.git] / drivers / net / ethernet / sfc / nic.h
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 #include "spi.h"
20
21 /*
22  * Falcon hardware control
23  */
24
25 enum {
26         EFX_REV_FALCON_A0 = 0,
27         EFX_REV_FALCON_A1 = 1,
28         EFX_REV_FALCON_B0 = 2,
29         EFX_REV_SIENA_A0 = 3,
30 };
31
32 static inline int efx_nic_rev(struct efx_nic *efx)
33 {
34         return efx->type->revision;
35 }
36
37 extern u32 efx_farch_fpga_ver(struct efx_nic *efx);
38
39 /* NIC has two interlinked PCI functions for the same port. */
40 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
41 {
42         return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
43 }
44
45 /* Read the current event from the event queue */
46 static inline efx_qword_t *efx_event(struct efx_channel *channel,
47                                      unsigned int index)
48 {
49         return ((efx_qword_t *) (channel->eventq.buf.addr)) +
50                 (index & channel->eventq_mask);
51 }
52
53 /* See if an event is present
54  *
55  * We check both the high and low dword of the event for all ones.  We
56  * wrote all ones when we cleared the event, and no valid event can
57  * have all ones in either its high or low dwords.  This approach is
58  * robust against reordering.
59  *
60  * Note that using a single 64-bit comparison is incorrect; even
61  * though the CPU read will be atomic, the DMA write may not be.
62  */
63 static inline int efx_event_present(efx_qword_t *event)
64 {
65         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
66                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
67 }
68
69 /* Returns a pointer to the specified transmit descriptor in the TX
70  * descriptor queue belonging to the specified channel.
71  */
72 static inline efx_qword_t *
73 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
74 {
75         return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
76 }
77
78 /* Decide whether to push a TX descriptor to the NIC vs merely writing
79  * the doorbell.  This can reduce latency when we are adding a single
80  * descriptor to an empty queue, but is otherwise pointless.  Further,
81  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
82  * triggered if we don't check this.
83  */
84 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
85                                             unsigned int write_count)
86 {
87         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
88
89         if (empty_read_count == 0)
90                 return false;
91
92         tx_queue->empty_read_count = 0;
93         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
94                 && tx_queue->write_count - write_count == 1;
95 }
96
97 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
98 static inline efx_qword_t *
99 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
100 {
101         return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
102 }
103
104 enum {
105         PHY_TYPE_NONE = 0,
106         PHY_TYPE_TXC43128 = 1,
107         PHY_TYPE_88E1111 = 2,
108         PHY_TYPE_SFX7101 = 3,
109         PHY_TYPE_QT2022C2 = 4,
110         PHY_TYPE_PM8358 = 6,
111         PHY_TYPE_SFT9001A = 8,
112         PHY_TYPE_QT2025C = 9,
113         PHY_TYPE_SFT9001B = 10,
114 };
115
116 #define FALCON_XMAC_LOOPBACKS                   \
117         ((1 << LOOPBACK_XGMII) |                \
118          (1 << LOOPBACK_XGXS) |                 \
119          (1 << LOOPBACK_XAUI))
120
121 #define FALCON_GMAC_LOOPBACKS                   \
122         (1 << LOOPBACK_GMAC)
123
124 /* Alignment of PCIe DMA boundaries (4KB) */
125 #define EFX_PAGE_SIZE   4096
126 /* Size and alignment of buffer table entries (same) */
127 #define EFX_BUF_SIZE    EFX_PAGE_SIZE
128
129 /**
130  * struct falcon_board_type - board operations and type information
131  * @id: Board type id, as found in NVRAM
132  * @init: Allocate resources and initialise peripheral hardware
133  * @init_phy: Do board-specific PHY initialisation
134  * @fini: Shut down hardware and free resources
135  * @set_id_led: Set state of identifying LED or revert to automatic function
136  * @monitor: Board-specific health check function
137  */
138 struct falcon_board_type {
139         u8 id;
140         int (*init) (struct efx_nic *nic);
141         void (*init_phy) (struct efx_nic *efx);
142         void (*fini) (struct efx_nic *nic);
143         void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
144         int (*monitor) (struct efx_nic *nic);
145 };
146
147 /**
148  * struct falcon_board - board information
149  * @type: Type of board
150  * @major: Major rev. ('A', 'B' ...)
151  * @minor: Minor rev. (0, 1, ...)
152  * @i2c_adap: I2C adapter for on-board peripherals
153  * @i2c_data: Data for bit-banging algorithm
154  * @hwmon_client: I2C client for hardware monitor
155  * @ioexp_client: I2C client for power/port control
156  */
157 struct falcon_board {
158         const struct falcon_board_type *type;
159         int major;
160         int minor;
161         struct i2c_adapter i2c_adap;
162         struct i2c_algo_bit_data i2c_data;
163         struct i2c_client *hwmon_client, *ioexp_client;
164 };
165
166 /**
167  * struct falcon_nic_data - Falcon NIC state
168  * @pci_dev2: Secondary function of Falcon A
169  * @board: Board state and functions
170  * @stats_disable_count: Nest count for disabling statistics fetches
171  * @stats_pending: Is there a pending DMA of MAC statistics.
172  * @stats_timer: A timer for regularly fetching MAC statistics.
173  * @stats_dma_done: Pointer to the flag which indicates DMA completion.
174  * @spi_flash: SPI flash device
175  * @spi_eeprom: SPI EEPROM device
176  * @spi_lock: SPI bus lock
177  * @mdio_lock: MDIO bus lock
178  * @xmac_poll_required: XMAC link state needs polling
179  */
180 struct falcon_nic_data {
181         struct pci_dev *pci_dev2;
182         struct falcon_board board;
183         unsigned int stats_disable_count;
184         bool stats_pending;
185         struct timer_list stats_timer;
186         u32 *stats_dma_done;
187         struct falcon_spi_device spi_flash;
188         struct falcon_spi_device spi_eeprom;
189         struct mutex spi_lock;
190         struct mutex mdio_lock;
191         bool xmac_poll_required;
192 };
193
194 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
195 {
196         struct falcon_nic_data *data = efx->nic_data;
197         return &data->board;
198 }
199
200 /**
201  * struct siena_nic_data - Siena NIC state
202  * @wol_filter_id: Wake-on-LAN packet filter id
203  */
204 struct siena_nic_data {
205         int wol_filter_id;
206 };
207
208 /*
209  * On the SFC9000 family each port is associated with 1 PCI physical
210  * function (PF) handled by sfc and a configurable number of virtual
211  * functions (VFs) that may be handled by some other driver, often in
212  * a VM guest.  The queue pointer registers are mapped in both PF and
213  * VF BARs such that an 8K region provides access to a single RX, TX
214  * and event queue (collectively a Virtual Interface, VI or VNIC).
215  *
216  * The PF has access to all 1024 VIs while VFs are mapped to VIs
217  * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
218  * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
219  * The number of VIs and the VI_SCALE value are configurable but must
220  * be established at boot time by firmware.
221  */
222
223 /* Maximum VI_SCALE parameter supported by Siena */
224 #define EFX_VI_SCALE_MAX 6
225 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
226  * so this is the smallest allowed value. */
227 #define EFX_VI_BASE 128U
228 /* Maximum number of VFs allowed */
229 #define EFX_VF_COUNT_MAX 127
230 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
231 #define EFX_MAX_VF_EVQ_SIZE 8192UL
232 /* The number of buffer table entries reserved for each VI on a VF */
233 #define EFX_VF_BUFTBL_PER_VI                                    \
234         ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *        \
235          sizeof(efx_qword_t) / EFX_BUF_SIZE)
236
237 #ifdef CONFIG_SFC_SRIOV
238
239 static inline bool efx_sriov_wanted(struct efx_nic *efx)
240 {
241         return efx->vf_count != 0;
242 }
243 static inline bool efx_sriov_enabled(struct efx_nic *efx)
244 {
245         return efx->vf_init_count != 0;
246 }
247 static inline unsigned int efx_vf_size(struct efx_nic *efx)
248 {
249         return 1 << efx->vi_scale;
250 }
251
252 extern int efx_init_sriov(void);
253 extern void efx_sriov_probe(struct efx_nic *efx);
254 extern int efx_sriov_init(struct efx_nic *efx);
255 extern void efx_sriov_mac_address_changed(struct efx_nic *efx);
256 extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
257 extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
258 extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
259 extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
260 extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
261 extern void efx_sriov_reset(struct efx_nic *efx);
262 extern void efx_sriov_fini(struct efx_nic *efx);
263 extern void efx_fini_sriov(void);
264
265 #else
266
267 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
268 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
269 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
270
271 static inline int efx_init_sriov(void) { return 0; }
272 static inline void efx_sriov_probe(struct efx_nic *efx) {}
273 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
274 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
275 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
276                                            efx_qword_t *event) {}
277 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
278                                            efx_qword_t *event) {}
279 static inline void efx_sriov_event(struct efx_channel *channel,
280                                    efx_qword_t *event) {}
281 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
282 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
283 static inline void efx_sriov_reset(struct efx_nic *efx) {}
284 static inline void efx_sriov_fini(struct efx_nic *efx) {}
285 static inline void efx_fini_sriov(void) {}
286
287 #endif
288
289 extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
290 extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf,
291                                  u16 vlan, u8 qos);
292 extern int efx_sriov_get_vf_config(struct net_device *dev, int vf,
293                                    struct ifla_vf_info *ivf);
294 extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
295                                      bool spoofchk);
296
297 struct ethtool_ts_info;
298 extern void efx_ptp_probe(struct efx_nic *efx);
299 extern int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
300 extern void efx_ptp_get_ts_info(struct efx_nic *efx,
301                                 struct ethtool_ts_info *ts_info);
302 extern bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
303 extern int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
304 extern void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
305
306 extern const struct efx_nic_type falcon_a1_nic_type;
307 extern const struct efx_nic_type falcon_b0_nic_type;
308 extern const struct efx_nic_type siena_a0_nic_type;
309
310 /**************************************************************************
311  *
312  * Externs
313  *
314  **************************************************************************
315  */
316
317 extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
318
319 /* TX data path */
320 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
321 {
322         return tx_queue->efx->type->tx_probe(tx_queue);
323 }
324 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
325 {
326         tx_queue->efx->type->tx_init(tx_queue);
327 }
328 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
329 {
330         tx_queue->efx->type->tx_remove(tx_queue);
331 }
332 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
333 {
334         tx_queue->efx->type->tx_write(tx_queue);
335 }
336
337 /* RX data path */
338 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
339 {
340         return rx_queue->efx->type->rx_probe(rx_queue);
341 }
342 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
343 {
344         rx_queue->efx->type->rx_init(rx_queue);
345 }
346 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
347 {
348         rx_queue->efx->type->rx_remove(rx_queue);
349 }
350 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
351 {
352         rx_queue->efx->type->rx_write(rx_queue);
353 }
354 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
355 {
356         rx_queue->efx->type->rx_defer_refill(rx_queue);
357 }
358
359 /* Event data path */
360 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
361 {
362         return channel->efx->type->ev_probe(channel);
363 }
364 static inline void efx_nic_init_eventq(struct efx_channel *channel)
365 {
366         channel->efx->type->ev_init(channel);
367 }
368 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
369 {
370         channel->efx->type->ev_fini(channel);
371 }
372 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
373 {
374         channel->efx->type->ev_remove(channel);
375 }
376 static inline int
377 efx_nic_process_eventq(struct efx_channel *channel, int quota)
378 {
379         return channel->efx->type->ev_process(channel, quota);
380 }
381 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
382 {
383         channel->efx->type->ev_read_ack(channel);
384 }
385 extern void efx_nic_event_test_start(struct efx_channel *channel);
386
387 /* Falcon/Siena queue operations */
388 extern int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
389 extern void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
390 extern void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
391 extern void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
392 extern void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
393 extern int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
394 extern void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
395 extern void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
396 extern void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
397 extern void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
398 extern void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
399 extern int efx_farch_ev_probe(struct efx_channel *channel);
400 extern void efx_farch_ev_init(struct efx_channel *channel);
401 extern void efx_farch_ev_fini(struct efx_channel *channel);
402 extern void efx_farch_ev_remove(struct efx_channel *channel);
403 extern int efx_farch_ev_process(struct efx_channel *channel, int quota);
404 extern void efx_farch_ev_read_ack(struct efx_channel *channel);
405 extern void efx_farch_ev_test_generate(struct efx_channel *channel);
406
407 /* Falcon/Siena filter operations */
408 extern int efx_farch_filter_table_probe(struct efx_nic *efx);
409 extern void efx_farch_filter_table_restore(struct efx_nic *efx);
410 extern void efx_farch_filter_table_remove(struct efx_nic *efx);
411 extern void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
412 extern s32 efx_farch_filter_insert(struct efx_nic *efx,
413                                    struct efx_filter_spec *spec, bool replace);
414 extern int efx_farch_filter_remove_safe(struct efx_nic *efx,
415                                         enum efx_filter_priority priority,
416                                         u32 filter_id);
417 extern int efx_farch_filter_get_safe(struct efx_nic *efx,
418                                      enum efx_filter_priority priority,
419                                      u32 filter_id, struct efx_filter_spec *);
420 extern void efx_farch_filter_clear_rx(struct efx_nic *efx,
421                                       enum efx_filter_priority priority);
422 extern u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
423                                           enum efx_filter_priority priority);
424 extern u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
425 extern s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
426                                        enum efx_filter_priority priority,
427                                        u32 *buf, u32 size);
428 #ifdef CONFIG_RFS_ACCEL
429 extern s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
430                                        struct efx_filter_spec *spec);
431 extern bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
432                                             unsigned int index);
433 #endif
434 extern void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
435
436 extern bool efx_nic_event_present(struct efx_channel *channel);
437
438 /* Some statistics are computed as A - B where A and B each increase
439  * linearly with some hardware counter(s) and the counters are read
440  * asynchronously.  If the counters contributing to B are always read
441  * after those contributing to A, the computed value may be lower than
442  * the true value by some variable amount, and may decrease between
443  * subsequent computations.
444  *
445  * We should never allow statistics to decrease or to exceed the true
446  * value.  Since the computed value will never be greater than the
447  * true value, we can achieve this by only storing the computed value
448  * when it increases.
449  */
450 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
451 {
452         if ((s64)(diff - *stat) > 0)
453                 *stat = diff;
454 }
455
456 /* Interrupts */
457 extern int efx_nic_init_interrupt(struct efx_nic *efx);
458 extern void efx_nic_irq_test_start(struct efx_nic *efx);
459 extern void efx_nic_fini_interrupt(struct efx_nic *efx);
460
461 /* Falcon/Siena interrupts */
462 extern void efx_farch_irq_enable_master(struct efx_nic *efx);
463 extern void efx_farch_irq_test_generate(struct efx_nic *efx);
464 extern void efx_farch_irq_disable_master(struct efx_nic *efx);
465 extern irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
466 extern irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
467 extern irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
468
469 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
470 {
471         return ACCESS_ONCE(channel->event_test_cpu);
472 }
473 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
474 {
475         return ACCESS_ONCE(efx->last_irq_cpu);
476 }
477
478 /* Global Resources */
479 extern int efx_nic_flush_queues(struct efx_nic *efx);
480 extern void siena_prepare_flush(struct efx_nic *efx);
481 extern int efx_farch_fini_dmaq(struct efx_nic *efx);
482 extern void siena_finish_flush(struct efx_nic *efx);
483 extern void falcon_start_nic_stats(struct efx_nic *efx);
484 extern void falcon_stop_nic_stats(struct efx_nic *efx);
485 extern int falcon_reset_xaui(struct efx_nic *efx);
486 extern void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
487 extern void efx_farch_init_common(struct efx_nic *efx);
488 static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
489 {
490         efx->type->rx_push_indir_table(efx);
491 }
492 extern void efx_farch_rx_push_indir_table(struct efx_nic *efx);
493
494 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
495                          unsigned int len, gfp_t gfp_flags);
496 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
497
498 /* Tests */
499 struct efx_farch_register_test {
500         unsigned address;
501         efx_oword_t mask;
502 };
503 extern int efx_farch_test_registers(struct efx_nic *efx,
504                                     const struct efx_farch_register_test *regs,
505                                     size_t n_regs);
506
507 extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
508 extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);
509
510 #define EFX_MAX_FLUSH_TIME 5000
511
512 extern void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
513                                      efx_qword_t *event);
514
515 #endif /* EFX_NIC_H */