]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/kernel.h>
32 #include <linux/interrupt.h>
33 #include <linux/ip.h>
34 #include <linux/tcp.h>
35 #include <linux/skbuff.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_ether.h>
38 #include <linux/crc32.h>
39 #include <linux/mii.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/slab.h>
44 #include <linux/prefetch.h>
45 #ifdef CONFIG_STMMAC_DEBUG_FS
46 #include <linux/debugfs.h>
47 #include <linux/seq_file.h>
48 #endif
49 #include "stmmac.h"
50
51 #undef STMMAC_DEBUG
52 /*#define STMMAC_DEBUG*/
53 #ifdef STMMAC_DEBUG
54 #define DBG(nlevel, klevel, fmt, args...) \
55                 ((void)(netif_msg_##nlevel(priv) && \
56                 printk(KERN_##klevel fmt, ## args)))
57 #else
58 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59 #endif
60
61 #undef STMMAC_RX_DEBUG
62 /*#define STMMAC_RX_DEBUG*/
63 #ifdef STMMAC_RX_DEBUG
64 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
65 #else
66 #define RX_DBG(fmt, args...)  do { } while (0)
67 #endif
68
69 #undef STMMAC_XMIT_DEBUG
70 /*#define STMMAC_XMIT_DEBUG*/
71 #ifdef STMMAC_TX_DEBUG
72 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
73 #else
74 #define TX_DBG(fmt, args...)  do { } while (0)
75 #endif
76
77 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
78 #define JUMBO_LEN       9000
79
80 /* Module parameters */
81 #define TX_TIMEO 5000 /* default 5 seconds */
82 static int watchdog = TX_TIMEO;
83 module_param(watchdog, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85
86 static int debug = -1;          /* -1: default, 0: no output, 16:  all */
87 module_param(debug, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89
90 int phyaddr = -1;
91 module_param(phyaddr, int, S_IRUGO);
92 MODULE_PARM_DESC(phyaddr, "Physical device address");
93
94 #define DMA_TX_SIZE 256
95 static int dma_txsize = DMA_TX_SIZE;
96 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98
99 #define DMA_RX_SIZE 256
100 static int dma_rxsize = DMA_RX_SIZE;
101 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103
104 static int flow_ctrl = FLOW_OFF;
105 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107
108 static int pause = PAUSE_TIME;
109 module_param(pause, int, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111
112 #define TC_DEFAULT 64
113 static int tc = TC_DEFAULT;
114 module_param(tc, int, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(tc, "DMA threshold control value");
116
117 /* Pay attention to tune this parameter; take care of both
118  * hardware capability and network stabitily/performance impact.
119  * Many tests showed that ~4ms latency seems to be good enough. */
120 #ifdef CONFIG_STMMAC_TIMER
121 #define DEFAULT_PERIODIC_RATE   256
122 static int tmrate = DEFAULT_PERIODIC_RATE;
123 module_param(tmrate, int, S_IRUGO | S_IWUSR);
124 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125 #endif
126
127 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
128 static int buf_sz = DMA_BUFFER_SIZE;
129 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131
132 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
134                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135
136 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137
138 #ifdef CONFIG_STMMAC_DEBUG_FS
139 static int stmmac_init_fs(struct net_device *dev);
140 static void stmmac_exit_fs(void);
141 #endif
142
143 /**
144  * stmmac_verify_args - verify the driver parameters.
145  * Description: it verifies if some wrong parameter is passed to the driver.
146  * Note that wrong parameters are replaced with the default values.
147  */
148 static void stmmac_verify_args(void)
149 {
150         if (unlikely(watchdog < 0))
151                 watchdog = TX_TIMEO;
152         if (unlikely(dma_rxsize < 0))
153                 dma_rxsize = DMA_RX_SIZE;
154         if (unlikely(dma_txsize < 0))
155                 dma_txsize = DMA_TX_SIZE;
156         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157                 buf_sz = DMA_BUFFER_SIZE;
158         if (unlikely(flow_ctrl > 1))
159                 flow_ctrl = FLOW_AUTO;
160         else if (likely(flow_ctrl < 0))
161                 flow_ctrl = FLOW_OFF;
162         if (unlikely((pause < 0) || (pause > 0xffff)))
163                 pause = PAUSE_TIME;
164 }
165
166 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
167 {
168 #ifdef CONFIG_HAVE_CLK
169         u32 clk_rate;
170
171         clk_rate = clk_get_rate(priv->stmmac_clk);
172
173         /* Platform provided default clk_csr would be assumed valid
174          * for all other cases except for the below mentioned ones. */
175         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176                 if (clk_rate < CSR_F_35M)
177                         priv->clk_csr = STMMAC_CSR_20_35M;
178                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179                         priv->clk_csr = STMMAC_CSR_35_60M;
180                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181                         priv->clk_csr = STMMAC_CSR_60_100M;
182                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183                         priv->clk_csr = STMMAC_CSR_100_150M;
184                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185                         priv->clk_csr = STMMAC_CSR_150_250M;
186                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187                         priv->clk_csr = STMMAC_CSR_250_300M;
188         } /* For values higher than the IEEE 802.3 specified frequency
189            * we can not estimate the proper divider as it is not known
190            * the frequency of clk_csr_i. So we do not change the default
191            * divider. */
192 #endif
193 }
194
195 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
196 static void print_pkt(unsigned char *buf, int len)
197 {
198         int j;
199         pr_info("len = %d byte, buf addr: 0x%p", len, buf);
200         for (j = 0; j < len; j++) {
201                 if ((j % 16) == 0)
202                         pr_info("\n %03x:", j);
203                 pr_info(" %02x", buf[j]);
204         }
205         pr_info("\n");
206 }
207 #endif
208
209 /* minimum number of free TX descriptors required to wake up TX process */
210 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
211
212 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
213 {
214         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
215 }
216
217 /* On some ST platforms, some HW system configuraton registers have to be
218  * set according to the link speed negotiated.
219  */
220 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
221 {
222         struct phy_device *phydev = priv->phydev;
223
224         if (likely(priv->plat->fix_mac_speed))
225                 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
226                                           phydev->speed);
227 }
228
229 /**
230  * stmmac_adjust_link
231  * @dev: net device structure
232  * Description: it adjusts the link parameters.
233  */
234 static void stmmac_adjust_link(struct net_device *dev)
235 {
236         struct stmmac_priv *priv = netdev_priv(dev);
237         struct phy_device *phydev = priv->phydev;
238         unsigned long flags;
239         int new_state = 0;
240         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
241
242         if (phydev == NULL)
243                 return;
244
245         DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
246             phydev->addr, phydev->link);
247
248         spin_lock_irqsave(&priv->lock, flags);
249         if (phydev->link) {
250                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
251
252                 /* Now we make sure that we can be in full duplex mode.
253                  * If not, we operate in half-duplex mode. */
254                 if (phydev->duplex != priv->oldduplex) {
255                         new_state = 1;
256                         if (!(phydev->duplex))
257                                 ctrl &= ~priv->hw->link.duplex;
258                         else
259                                 ctrl |= priv->hw->link.duplex;
260                         priv->oldduplex = phydev->duplex;
261                 }
262                 /* Flow Control operation */
263                 if (phydev->pause)
264                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
265                                                  fc, pause_time);
266
267                 if (phydev->speed != priv->speed) {
268                         new_state = 1;
269                         switch (phydev->speed) {
270                         case 1000:
271                                 if (likely(priv->plat->has_gmac))
272                                         ctrl &= ~priv->hw->link.port;
273                                         stmmac_hw_fix_mac_speed(priv);
274                                 break;
275                         case 100:
276                         case 10:
277                                 if (priv->plat->has_gmac) {
278                                         ctrl |= priv->hw->link.port;
279                                         if (phydev->speed == SPEED_100) {
280                                                 ctrl |= priv->hw->link.speed;
281                                         } else {
282                                                 ctrl &= ~(priv->hw->link.speed);
283                                         }
284                                 } else {
285                                         ctrl &= ~priv->hw->link.port;
286                                 }
287                                 stmmac_hw_fix_mac_speed(priv);
288                                 break;
289                         default:
290                                 if (netif_msg_link(priv))
291                                         pr_warning("%s: Speed (%d) is not 10"
292                                        " or 100!\n", dev->name, phydev->speed);
293                                 break;
294                         }
295
296                         priv->speed = phydev->speed;
297                 }
298
299                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
300
301                 if (!priv->oldlink) {
302                         new_state = 1;
303                         priv->oldlink = 1;
304                 }
305         } else if (priv->oldlink) {
306                 new_state = 1;
307                 priv->oldlink = 0;
308                 priv->speed = 0;
309                 priv->oldduplex = -1;
310         }
311
312         if (new_state && netif_msg_link(priv))
313                 phy_print_status(phydev);
314
315         spin_unlock_irqrestore(&priv->lock, flags);
316
317         DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
318 }
319
320 /**
321  * stmmac_init_phy - PHY initialization
322  * @dev: net device structure
323  * Description: it initializes the driver's PHY state, and attaches the PHY
324  * to the mac driver.
325  *  Return value:
326  *  0 on success
327  */
328 static int stmmac_init_phy(struct net_device *dev)
329 {
330         struct stmmac_priv *priv = netdev_priv(dev);
331         struct phy_device *phydev;
332         char phy_id[MII_BUS_ID_SIZE + 3];
333         char bus_id[MII_BUS_ID_SIZE];
334         int interface = priv->plat->interface;
335         priv->oldlink = 0;
336         priv->speed = 0;
337         priv->oldduplex = -1;
338
339         if (priv->plat->phy_bus_name)
340                 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
341                                 priv->plat->phy_bus_name, priv->plat->bus_id);
342         else
343                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
344                                 priv->plat->bus_id);
345
346         snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
347                  priv->plat->phy_addr);
348         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
349
350         phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
351
352         if (IS_ERR(phydev)) {
353                 pr_err("%s: Could not attach to PHY\n", dev->name);
354                 return PTR_ERR(phydev);
355         }
356
357         /* Stop Advertising 1000BASE Capability if interface is not GMII */
358         if ((interface == PHY_INTERFACE_MODE_MII) ||
359             (interface == PHY_INTERFACE_MODE_RMII))
360                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
361                                          SUPPORTED_1000baseT_Full);
362
363         /*
364          * Broken HW is sometimes missing the pull-up resistor on the
365          * MDIO line, which results in reads to non-existent devices returning
366          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
367          * device as well.
368          * Note: phydev->phy_id is the result of reading the UID PHY registers.
369          */
370         if (phydev->phy_id == 0) {
371                 phy_disconnect(phydev);
372                 return -ENODEV;
373         }
374         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
375                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
376
377         priv->phydev = phydev;
378
379         return 0;
380 }
381
382 /**
383  * display_ring
384  * @p: pointer to the ring.
385  * @size: size of the ring.
386  * Description: display all the descriptors within the ring.
387  */
388 static void display_ring(struct dma_desc *p, int size)
389 {
390         struct tmp_s {
391                 u64 a;
392                 unsigned int b;
393                 unsigned int c;
394         };
395         int i;
396         for (i = 0; i < size; i++) {
397                 struct tmp_s *x = (struct tmp_s *)(p + i);
398                 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
399                        i, (unsigned int)virt_to_phys(&p[i]),
400                        (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
401                        x->b, x->c);
402                 pr_info("\n");
403         }
404 }
405
406 static int stmmac_set_bfsize(int mtu, int bufsize)
407 {
408         int ret = bufsize;
409
410         if (mtu >= BUF_SIZE_4KiB)
411                 ret = BUF_SIZE_8KiB;
412         else if (mtu >= BUF_SIZE_2KiB)
413                 ret = BUF_SIZE_4KiB;
414         else if (mtu >= DMA_BUFFER_SIZE)
415                 ret = BUF_SIZE_2KiB;
416         else
417                 ret = DMA_BUFFER_SIZE;
418
419         return ret;
420 }
421
422 /**
423  * init_dma_desc_rings - init the RX/TX descriptor rings
424  * @dev: net device structure
425  * Description:  this function initializes the DMA RX/TX descriptors
426  * and allocates the socket buffers. It suppors the chained and ring
427  * modes.
428  */
429 static void init_dma_desc_rings(struct net_device *dev)
430 {
431         int i;
432         struct stmmac_priv *priv = netdev_priv(dev);
433         struct sk_buff *skb;
434         unsigned int txsize = priv->dma_tx_size;
435         unsigned int rxsize = priv->dma_rx_size;
436         unsigned int bfsize;
437         int dis_ic = 0;
438         int des3_as_data_buf = 0;
439
440         /* Set the max buffer size according to the DESC mode
441          * and the MTU. Note that RING mode allows 16KiB bsize. */
442         bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
443
444         if (bfsize == BUF_SIZE_16KiB)
445                 des3_as_data_buf = 1;
446         else
447                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
448
449 #ifdef CONFIG_STMMAC_TIMER
450         /* Disable interrupts on completion for the reception if timer is on */
451         if (likely(priv->tm->enable))
452                 dis_ic = 1;
453 #endif
454
455         DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
456             txsize, rxsize, bfsize);
457
458         priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
459         priv->rx_skbuff =
460             kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
461         priv->dma_rx =
462             (struct dma_desc *)dma_alloc_coherent(priv->device,
463                                                   rxsize *
464                                                   sizeof(struct dma_desc),
465                                                   &priv->dma_rx_phy,
466                                                   GFP_KERNEL);
467         priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
468                                        GFP_KERNEL);
469         priv->dma_tx =
470             (struct dma_desc *)dma_alloc_coherent(priv->device,
471                                                   txsize *
472                                                   sizeof(struct dma_desc),
473                                                   &priv->dma_tx_phy,
474                                                   GFP_KERNEL);
475
476         if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
477                 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
478                 return;
479         }
480
481         DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
482             "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
483             dev->name, priv->dma_rx, priv->dma_tx,
484             (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
485
486         /* RX INITIALIZATION */
487         DBG(probe, INFO, "stmmac: SKB addresses:\n"
488                          "skb\t\tskb data\tdma data\n");
489
490         for (i = 0; i < rxsize; i++) {
491                 struct dma_desc *p = priv->dma_rx + i;
492
493                 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
494                                          GFP_KERNEL);
495                 if (unlikely(skb == NULL)) {
496                         pr_err("%s: Rx init fails; skb is NULL\n", __func__);
497                         break;
498                 }
499                 skb_reserve(skb, NET_IP_ALIGN);
500                 priv->rx_skbuff[i] = skb;
501                 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
502                                                 bfsize, DMA_FROM_DEVICE);
503
504                 p->des2 = priv->rx_skbuff_dma[i];
505
506                 priv->hw->ring->init_desc3(des3_as_data_buf, p);
507
508                 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
509                         priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
510         }
511         priv->cur_rx = 0;
512         priv->dirty_rx = (unsigned int)(i - rxsize);
513         priv->dma_buf_sz = bfsize;
514         buf_sz = bfsize;
515
516         /* TX INITIALIZATION */
517         for (i = 0; i < txsize; i++) {
518                 priv->tx_skbuff[i] = NULL;
519                 priv->dma_tx[i].des2 = 0;
520         }
521
522         /* In case of Chained mode this sets the des3 to the next
523          * element in the chain */
524         priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
525         priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
526
527         priv->dirty_tx = 0;
528         priv->cur_tx = 0;
529
530         /* Clear the Rx/Tx descriptors */
531         priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
532         priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
533
534         if (netif_msg_hw(priv)) {
535                 pr_info("RX descriptor ring:\n");
536                 display_ring(priv->dma_rx, rxsize);
537                 pr_info("TX descriptor ring:\n");
538                 display_ring(priv->dma_tx, txsize);
539         }
540 }
541
542 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
543 {
544         int i;
545
546         for (i = 0; i < priv->dma_rx_size; i++) {
547                 if (priv->rx_skbuff[i]) {
548                         dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
549                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
550                         dev_kfree_skb_any(priv->rx_skbuff[i]);
551                 }
552                 priv->rx_skbuff[i] = NULL;
553         }
554 }
555
556 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
557 {
558         int i;
559
560         for (i = 0; i < priv->dma_tx_size; i++) {
561                 if (priv->tx_skbuff[i] != NULL) {
562                         struct dma_desc *p = priv->dma_tx + i;
563                         if (p->des2)
564                                 dma_unmap_single(priv->device, p->des2,
565                                                  priv->hw->desc->get_tx_len(p),
566                                                  DMA_TO_DEVICE);
567                         dev_kfree_skb_any(priv->tx_skbuff[i]);
568                         priv->tx_skbuff[i] = NULL;
569                 }
570         }
571 }
572
573 static void free_dma_desc_resources(struct stmmac_priv *priv)
574 {
575         /* Release the DMA TX/RX socket buffers */
576         dma_free_rx_skbufs(priv);
577         dma_free_tx_skbufs(priv);
578
579         /* Free the region of consistent memory previously allocated for
580          * the DMA */
581         dma_free_coherent(priv->device,
582                           priv->dma_tx_size * sizeof(struct dma_desc),
583                           priv->dma_tx, priv->dma_tx_phy);
584         dma_free_coherent(priv->device,
585                           priv->dma_rx_size * sizeof(struct dma_desc),
586                           priv->dma_rx, priv->dma_rx_phy);
587         kfree(priv->rx_skbuff_dma);
588         kfree(priv->rx_skbuff);
589         kfree(priv->tx_skbuff);
590 }
591
592 /**
593  *  stmmac_dma_operation_mode - HW DMA operation mode
594  *  @priv : pointer to the private device structure.
595  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
596  *  or Store-And-Forward capability.
597  */
598 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
599 {
600         if (likely(priv->plat->force_sf_dma_mode ||
601                 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
602                 /*
603                  * In case of GMAC, SF mode can be enabled
604                  * to perform the TX COE in HW. This depends on:
605                  * 1) TX COE if actually supported
606                  * 2) There is no bugged Jumbo frame support
607                  *    that needs to not insert csum in the TDES.
608                  */
609                 priv->hw->dma->dma_mode(priv->ioaddr,
610                                         SF_DMA_MODE, SF_DMA_MODE);
611                 tc = SF_DMA_MODE;
612         } else
613                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
614 }
615
616 /**
617  * stmmac_tx:
618  * @priv: private driver structure
619  * Description: it reclaims resources after transmission completes.
620  */
621 static void stmmac_tx(struct stmmac_priv *priv)
622 {
623         unsigned int txsize = priv->dma_tx_size;
624
625         spin_lock(&priv->tx_lock);
626
627         while (priv->dirty_tx != priv->cur_tx) {
628                 int last;
629                 unsigned int entry = priv->dirty_tx % txsize;
630                 struct sk_buff *skb = priv->tx_skbuff[entry];
631                 struct dma_desc *p = priv->dma_tx + entry;
632
633                 /* Check if the descriptor is owned by the DMA. */
634                 if (priv->hw->desc->get_tx_owner(p))
635                         break;
636
637                 /* Verify tx error by looking at the last segment */
638                 last = priv->hw->desc->get_tx_ls(p);
639                 if (likely(last)) {
640                         int tx_error =
641                                 priv->hw->desc->tx_status(&priv->dev->stats,
642                                                           &priv->xstats, p,
643                                                           priv->ioaddr);
644                         if (likely(tx_error == 0)) {
645                                 priv->dev->stats.tx_packets++;
646                                 priv->xstats.tx_pkt_n++;
647                         } else
648                                 priv->dev->stats.tx_errors++;
649                 }
650                 TX_DBG("%s: curr %d, dirty %d\n", __func__,
651                         priv->cur_tx, priv->dirty_tx);
652
653                 if (likely(p->des2))
654                         dma_unmap_single(priv->device, p->des2,
655                                          priv->hw->desc->get_tx_len(p),
656                                          DMA_TO_DEVICE);
657                 priv->hw->ring->clean_desc3(p);
658
659                 if (likely(skb != NULL)) {
660                         /*
661                          * If there's room in the queue (limit it to size)
662                          * we add this skb back into the pool,
663                          * if it's the right size.
664                          */
665                         if ((skb_queue_len(&priv->rx_recycle) <
666                                 priv->dma_rx_size) &&
667                                 skb_recycle_check(skb, priv->dma_buf_sz))
668                                 __skb_queue_head(&priv->rx_recycle, skb);
669                         else
670                                 dev_kfree_skb(skb);
671
672                         priv->tx_skbuff[entry] = NULL;
673                 }
674
675                 priv->hw->desc->release_tx_desc(p);
676
677                 entry = (++priv->dirty_tx) % txsize;
678         }
679         if (unlikely(netif_queue_stopped(priv->dev) &&
680                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
681                 netif_tx_lock(priv->dev);
682                 if (netif_queue_stopped(priv->dev) &&
683                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
684                         TX_DBG("%s: restart transmit\n", __func__);
685                         netif_wake_queue(priv->dev);
686                 }
687                 netif_tx_unlock(priv->dev);
688         }
689         spin_unlock(&priv->tx_lock);
690 }
691
692 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
693 {
694 #ifdef CONFIG_STMMAC_TIMER
695         if (likely(priv->tm->enable))
696                 priv->tm->timer_start(tmrate);
697         else
698 #endif
699                 priv->hw->dma->enable_dma_irq(priv->ioaddr);
700 }
701
702 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
703 {
704 #ifdef CONFIG_STMMAC_TIMER
705         if (likely(priv->tm->enable))
706                 priv->tm->timer_stop();
707         else
708 #endif
709                 priv->hw->dma->disable_dma_irq(priv->ioaddr);
710 }
711
712 static int stmmac_has_work(struct stmmac_priv *priv)
713 {
714         unsigned int has_work = 0;
715         int rxret, tx_work = 0;
716
717         rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
718                 (priv->cur_rx % priv->dma_rx_size));
719
720         if (priv->dirty_tx != priv->cur_tx)
721                 tx_work = 1;
722
723         if (likely(!rxret || tx_work))
724                 has_work = 1;
725
726         return has_work;
727 }
728
729 static inline void _stmmac_schedule(struct stmmac_priv *priv)
730 {
731         if (likely(stmmac_has_work(priv))) {
732                 stmmac_disable_irq(priv);
733                 napi_schedule(&priv->napi);
734         }
735 }
736
737 #ifdef CONFIG_STMMAC_TIMER
738 void stmmac_schedule(struct net_device *dev)
739 {
740         struct stmmac_priv *priv = netdev_priv(dev);
741
742         priv->xstats.sched_timer_n++;
743
744         _stmmac_schedule(priv);
745 }
746
747 static void stmmac_no_timer_started(unsigned int x)
748 {;
749 };
750
751 static void stmmac_no_timer_stopped(void)
752 {;
753 };
754 #endif
755
756 /**
757  * stmmac_tx_err:
758  * @priv: pointer to the private device structure
759  * Description: it cleans the descriptors and restarts the transmission
760  * in case of errors.
761  */
762 static void stmmac_tx_err(struct stmmac_priv *priv)
763 {
764         netif_stop_queue(priv->dev);
765
766         priv->hw->dma->stop_tx(priv->ioaddr);
767         dma_free_tx_skbufs(priv);
768         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
769         priv->dirty_tx = 0;
770         priv->cur_tx = 0;
771         priv->hw->dma->start_tx(priv->ioaddr);
772
773         priv->dev->stats.tx_errors++;
774         netif_wake_queue(priv->dev);
775 }
776
777
778 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
779 {
780         int status;
781
782         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
783         if (likely(status == handle_tx_rx))
784                 _stmmac_schedule(priv);
785
786         else if (unlikely(status == tx_hard_error_bump_tc)) {
787                 /* Try to bump up the dma threshold on this failure */
788                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
789                         tc += 64;
790                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
791                         priv->xstats.threshold = tc;
792                 }
793         } else if (unlikely(status == tx_hard_error))
794                 stmmac_tx_err(priv);
795 }
796
797 static void stmmac_mmc_setup(struct stmmac_priv *priv)
798 {
799         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
800                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
801
802         /* Mask MMC irq, counters are managed in SW and registers
803          * are cleared on each READ eventually. */
804         dwmac_mmc_intr_all_mask(priv->ioaddr);
805
806         if (priv->dma_cap.rmon) {
807                 dwmac_mmc_ctrl(priv->ioaddr, mode);
808                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
809         } else
810                 pr_info(" No MAC Management Counters available\n");
811 }
812
813 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
814 {
815         u32 hwid = priv->hw->synopsys_uid;
816
817         /* Only check valid Synopsys Id because old MAC chips
818          * have no HW registers where get the ID */
819         if (likely(hwid)) {
820                 u32 uid = ((hwid & 0x0000ff00) >> 8);
821                 u32 synid = (hwid & 0x000000ff);
822
823                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
824                         uid, synid);
825
826                 return synid;
827         }
828         return 0;
829 }
830
831 /**
832  * stmmac_selec_desc_mode
833  * @dev : device pointer
834  * Description: select the Enhanced/Alternate or Normal descriptors */
835 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
836 {
837         if (priv->plat->enh_desc) {
838                 pr_info(" Enhanced/Alternate descriptors\n");
839                 priv->hw->desc = &enh_desc_ops;
840         } else {
841                 pr_info(" Normal descriptors\n");
842                 priv->hw->desc = &ndesc_ops;
843         }
844 }
845
846 /**
847  * stmmac_get_hw_features
848  * @priv : private device pointer
849  * Description:
850  *  new GMAC chip generations have a new register to indicate the
851  *  presence of the optional feature/functions.
852  *  This can be also used to override the value passed through the
853  *  platform and necessary for old MAC10/100 and GMAC chips.
854  */
855 static int stmmac_get_hw_features(struct stmmac_priv *priv)
856 {
857         u32 hw_cap = 0;
858
859         if (priv->hw->dma->get_hw_feature) {
860                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
861
862                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
863                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
864                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
865                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
866                 priv->dma_cap.multi_addr =
867                         (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
868                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
869                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
870                 priv->dma_cap.pmt_remote_wake_up =
871                         (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
872                 priv->dma_cap.pmt_magic_frame =
873                         (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
874                 /* MMC */
875                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
876                 /* IEEE 1588-2002*/
877                 priv->dma_cap.time_stamp =
878                         (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
879                 /* IEEE 1588-2008*/
880                 priv->dma_cap.atime_stamp =
881                         (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
882                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
883                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
884                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
885                 /* TX and RX csum */
886                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
887                 priv->dma_cap.rx_coe_type1 =
888                         (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
889                 priv->dma_cap.rx_coe_type2 =
890                         (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
891                 priv->dma_cap.rxfifo_over_2048 =
892                         (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
893                 /* TX and RX number of channels */
894                 priv->dma_cap.number_rx_channel =
895                         (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
896                 priv->dma_cap.number_tx_channel =
897                         (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
898                 /* Alternate (enhanced) DESC mode*/
899                 priv->dma_cap.enh_desc =
900                         (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
901
902         }
903
904         return hw_cap;
905 }
906
907 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
908 {
909         /* verify if the MAC address is valid, in case of failures it
910          * generates a random MAC address */
911         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
912                 priv->hw->mac->get_umac_addr((void __iomem *)
913                                              priv->dev->base_addr,
914                                              priv->dev->dev_addr, 0);
915                 if  (!is_valid_ether_addr(priv->dev->dev_addr))
916                         eth_hw_addr_random(priv->dev);
917         }
918         pr_warning("%s: device MAC address %pM\n", priv->dev->name,
919                                                    priv->dev->dev_addr);
920 }
921
922 /**
923  *  stmmac_open - open entry point of the driver
924  *  @dev : pointer to the device structure.
925  *  Description:
926  *  This function is the open entry point of the driver.
927  *  Return value:
928  *  0 on success and an appropriate (-)ve integer as defined in errno.h
929  *  file on failure.
930  */
931 static int stmmac_open(struct net_device *dev)
932 {
933         struct stmmac_priv *priv = netdev_priv(dev);
934         int ret;
935
936         stmmac_clk_enable(priv);
937
938         stmmac_check_ether_addr(priv);
939
940         /* MDIO bus Registration */
941         ret = stmmac_mdio_register(dev);
942         if (ret < 0) {
943                 pr_debug("%s: MDIO bus (id: %d) registration failed",
944                          __func__, priv->plat->bus_id);
945                 goto open_clk_dis;
946         }
947
948 #ifdef CONFIG_STMMAC_TIMER
949         priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
950         if (unlikely(priv->tm == NULL)) {
951                 ret = -ENOMEM;
952                 goto open_clk_dis;
953         }
954
955         priv->tm->freq = tmrate;
956
957         /* Test if the external timer can be actually used.
958          * In case of failure continue without timer. */
959         if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
960                 pr_warning("stmmaceth: cannot attach the external timer.\n");
961                 priv->tm->freq = 0;
962                 priv->tm->timer_start = stmmac_no_timer_started;
963                 priv->tm->timer_stop = stmmac_no_timer_stopped;
964         } else
965                 priv->tm->enable = 1;
966 #endif
967         ret = stmmac_init_phy(dev);
968         if (unlikely(ret)) {
969                 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
970                 goto open_error;
971         }
972
973         /* Create and initialize the TX/RX descriptors chains. */
974         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
975         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
976         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
977         init_dma_desc_rings(dev);
978
979         /* DMA initialization and SW reset */
980         ret = priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg->pbl,
981                                   priv->plat->dma_cfg->fixed_burst,
982                                   priv->plat->dma_cfg->burst_len,
983                                   priv->dma_tx_phy, priv->dma_rx_phy);
984         if (ret < 0) {
985                 pr_err("%s: DMA initialization failed\n", __func__);
986                 goto open_error;
987         }
988
989         /* Copy the MAC addr into the HW  */
990         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
991
992         /* If required, perform hw setup of the bus. */
993         if (priv->plat->bus_setup)
994                 priv->plat->bus_setup(priv->ioaddr);
995
996         /* Initialize the MAC Core */
997         priv->hw->mac->core_init(priv->ioaddr);
998
999         /* Request the IRQ lines */
1000         ret = request_irq(dev->irq, stmmac_interrupt,
1001                          IRQF_SHARED, dev->name, dev);
1002         if (unlikely(ret < 0)) {
1003                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1004                        __func__, dev->irq, ret);
1005                 goto open_error;
1006         }
1007
1008         /* Request the Wake IRQ in case of another line is used for WoL */
1009         if (priv->wol_irq != dev->irq) {
1010                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1011                                   IRQF_SHARED, dev->name, dev);
1012                 if (unlikely(ret < 0)) {
1013                         pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1014                                "(error: %d)\n", __func__, priv->wol_irq, ret);
1015                         goto open_error_wolirq;
1016                 }
1017         }
1018
1019         /* Enable the MAC Rx/Tx */
1020         stmmac_set_mac(priv->ioaddr, true);
1021
1022         /* Set the HW DMA mode and the COE */
1023         stmmac_dma_operation_mode(priv);
1024
1025         /* Extra statistics */
1026         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1027         priv->xstats.threshold = tc;
1028
1029         stmmac_mmc_setup(priv);
1030
1031 #ifdef CONFIG_STMMAC_DEBUG_FS
1032         ret = stmmac_init_fs(dev);
1033         if (ret < 0)
1034                 pr_warning("%s: failed debugFS registration\n", __func__);
1035 #endif
1036         /* Start the ball rolling... */
1037         DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1038         priv->hw->dma->start_tx(priv->ioaddr);
1039         priv->hw->dma->start_rx(priv->ioaddr);
1040
1041 #ifdef CONFIG_STMMAC_TIMER
1042         priv->tm->timer_start(tmrate);
1043 #endif
1044
1045         /* Dump DMA/MAC registers */
1046         if (netif_msg_hw(priv)) {
1047                 priv->hw->mac->dump_regs(priv->ioaddr);
1048                 priv->hw->dma->dump_regs(priv->ioaddr);
1049         }
1050
1051         if (priv->phydev)
1052                 phy_start(priv->phydev);
1053
1054         napi_enable(&priv->napi);
1055         skb_queue_head_init(&priv->rx_recycle);
1056         netif_start_queue(dev);
1057
1058         return 0;
1059
1060 open_error_wolirq:
1061         free_irq(dev->irq, dev);
1062
1063 open_error:
1064 #ifdef CONFIG_STMMAC_TIMER
1065         kfree(priv->tm);
1066 #endif
1067         if (priv->phydev)
1068                 phy_disconnect(priv->phydev);
1069
1070 open_clk_dis:
1071         stmmac_clk_disable(priv);
1072         return ret;
1073 }
1074
1075 /**
1076  *  stmmac_release - close entry point of the driver
1077  *  @dev : device pointer.
1078  *  Description:
1079  *  This is the stop entry point of the driver.
1080  */
1081 static int stmmac_release(struct net_device *dev)
1082 {
1083         struct stmmac_priv *priv = netdev_priv(dev);
1084
1085         /* Stop and disconnect the PHY */
1086         if (priv->phydev) {
1087                 phy_stop(priv->phydev);
1088                 phy_disconnect(priv->phydev);
1089                 priv->phydev = NULL;
1090         }
1091
1092         netif_stop_queue(dev);
1093
1094 #ifdef CONFIG_STMMAC_TIMER
1095         /* Stop and release the timer */
1096         stmmac_close_ext_timer();
1097         if (priv->tm != NULL)
1098                 kfree(priv->tm);
1099 #endif
1100         napi_disable(&priv->napi);
1101         skb_queue_purge(&priv->rx_recycle);
1102
1103         /* Free the IRQ lines */
1104         free_irq(dev->irq, dev);
1105         if (priv->wol_irq != dev->irq)
1106                 free_irq(priv->wol_irq, dev);
1107
1108         /* Stop TX/RX DMA and clear the descriptors */
1109         priv->hw->dma->stop_tx(priv->ioaddr);
1110         priv->hw->dma->stop_rx(priv->ioaddr);
1111
1112         /* Release and free the Rx/Tx resources */
1113         free_dma_desc_resources(priv);
1114
1115         /* Disable the MAC Rx/Tx */
1116         stmmac_set_mac(priv->ioaddr, false);
1117
1118         netif_carrier_off(dev);
1119
1120 #ifdef CONFIG_STMMAC_DEBUG_FS
1121         stmmac_exit_fs();
1122 #endif
1123         stmmac_mdio_unregister(dev);
1124         stmmac_clk_disable(priv);
1125
1126         return 0;
1127 }
1128
1129 /**
1130  *  stmmac_xmit:
1131  *  @skb : the socket buffer
1132  *  @dev : device pointer
1133  *  Description : Tx entry point of the driver.
1134  */
1135 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1136 {
1137         struct stmmac_priv *priv = netdev_priv(dev);
1138         unsigned int txsize = priv->dma_tx_size;
1139         unsigned int entry;
1140         int i, csum_insertion = 0;
1141         int nfrags = skb_shinfo(skb)->nr_frags;
1142         struct dma_desc *desc, *first;
1143         unsigned int nopaged_len = skb_headlen(skb);
1144
1145         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1146                 if (!netif_queue_stopped(dev)) {
1147                         netif_stop_queue(dev);
1148                         /* This is a hard error, log it. */
1149                         pr_err("%s: BUG! Tx Ring full when queue awake\n",
1150                                 __func__);
1151                 }
1152                 return NETDEV_TX_BUSY;
1153         }
1154
1155         spin_lock(&priv->tx_lock);
1156
1157         entry = priv->cur_tx % txsize;
1158
1159 #ifdef STMMAC_XMIT_DEBUG
1160         if ((skb->len > ETH_FRAME_LEN) || nfrags)
1161                 pr_info("stmmac xmit:\n"
1162                        "\tskb addr %p - len: %d - nopaged_len: %d\n"
1163                        "\tn_frags: %d - ip_summed: %d - %s gso\n",
1164                        skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1165                        !skb_is_gso(skb) ? "isn't" : "is");
1166 #endif
1167
1168         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1169
1170         desc = priv->dma_tx + entry;
1171         first = desc;
1172
1173 #ifdef STMMAC_XMIT_DEBUG
1174         if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1175                 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1176                        "\t\tn_frags: %d, ip_summed: %d\n",
1177                        skb->len, nopaged_len, nfrags, skb->ip_summed);
1178 #endif
1179         priv->tx_skbuff[entry] = skb;
1180
1181         if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1182                 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1183                 desc = priv->dma_tx + entry;
1184         } else {
1185                 desc->des2 = dma_map_single(priv->device, skb->data,
1186                                         nopaged_len, DMA_TO_DEVICE);
1187                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1188                                                 csum_insertion);
1189         }
1190
1191         for (i = 0; i < nfrags; i++) {
1192                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1193                 int len = skb_frag_size(frag);
1194
1195                 entry = (++priv->cur_tx) % txsize;
1196                 desc = priv->dma_tx + entry;
1197
1198                 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1199                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1200                                               DMA_TO_DEVICE);
1201                 priv->tx_skbuff[entry] = NULL;
1202                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1203                 wmb();
1204                 priv->hw->desc->set_tx_owner(desc);
1205         }
1206
1207         /* Interrupt on completition only for the latest segment */
1208         priv->hw->desc->close_tx_desc(desc);
1209
1210 #ifdef CONFIG_STMMAC_TIMER
1211         /* Clean IC while using timer */
1212         if (likely(priv->tm->enable))
1213                 priv->hw->desc->clear_tx_ic(desc);
1214 #endif
1215
1216         wmb();
1217
1218         /* To avoid raise condition */
1219         priv->hw->desc->set_tx_owner(first);
1220
1221         priv->cur_tx++;
1222
1223 #ifdef STMMAC_XMIT_DEBUG
1224         if (netif_msg_pktdata(priv)) {
1225                 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1226                        "first=%p, nfrags=%d\n",
1227                        (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1228                        entry, first, nfrags);
1229                 display_ring(priv->dma_tx, txsize);
1230                 pr_info(">>> frame to be transmitted: ");
1231                 print_pkt(skb->data, skb->len);
1232         }
1233 #endif
1234         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1235                 TX_DBG("%s: stop transmitted packets\n", __func__);
1236                 netif_stop_queue(dev);
1237         }
1238
1239         dev->stats.tx_bytes += skb->len;
1240
1241         skb_tx_timestamp(skb);
1242
1243         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1244
1245         spin_unlock(&priv->tx_lock);
1246
1247         return NETDEV_TX_OK;
1248 }
1249
1250 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1251 {
1252         unsigned int rxsize = priv->dma_rx_size;
1253         int bfsize = priv->dma_buf_sz;
1254         struct dma_desc *p = priv->dma_rx;
1255
1256         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1257                 unsigned int entry = priv->dirty_rx % rxsize;
1258                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1259                         struct sk_buff *skb;
1260
1261                         skb = __skb_dequeue(&priv->rx_recycle);
1262                         if (skb == NULL)
1263                                 skb = netdev_alloc_skb_ip_align(priv->dev,
1264                                                                 bfsize);
1265
1266                         if (unlikely(skb == NULL))
1267                                 break;
1268
1269                         priv->rx_skbuff[entry] = skb;
1270                         priv->rx_skbuff_dma[entry] =
1271                             dma_map_single(priv->device, skb->data, bfsize,
1272                                            DMA_FROM_DEVICE);
1273
1274                         (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1275
1276                         if (unlikely(priv->plat->has_gmac))
1277                                 priv->hw->ring->refill_desc3(bfsize, p + entry);
1278
1279                         RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1280                 }
1281                 wmb();
1282                 priv->hw->desc->set_rx_owner(p + entry);
1283         }
1284 }
1285
1286 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1287 {
1288         unsigned int rxsize = priv->dma_rx_size;
1289         unsigned int entry = priv->cur_rx % rxsize;
1290         unsigned int next_entry;
1291         unsigned int count = 0;
1292         struct dma_desc *p = priv->dma_rx + entry;
1293         struct dma_desc *p_next;
1294
1295 #ifdef STMMAC_RX_DEBUG
1296         if (netif_msg_hw(priv)) {
1297                 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1298                 display_ring(priv->dma_rx, rxsize);
1299         }
1300 #endif
1301         count = 0;
1302         while (!priv->hw->desc->get_rx_owner(p)) {
1303                 int status;
1304
1305                 if (count >= limit)
1306                         break;
1307
1308                 count++;
1309
1310                 next_entry = (++priv->cur_rx) % rxsize;
1311                 p_next = priv->dma_rx + next_entry;
1312                 prefetch(p_next);
1313
1314                 /* read the status of the incoming frame */
1315                 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1316                                                     &priv->xstats, p));
1317                 if (unlikely(status == discard_frame))
1318                         priv->dev->stats.rx_errors++;
1319                 else {
1320                         struct sk_buff *skb;
1321                         int frame_len;
1322
1323                         frame_len = priv->hw->desc->get_rx_frame_len(p,
1324                                         priv->plat->rx_coe);
1325                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1326                          * Type frames (LLC/LLC-SNAP) */
1327                         if (unlikely(status != llc_snap))
1328                                 frame_len -= ETH_FCS_LEN;
1329 #ifdef STMMAC_RX_DEBUG
1330                         if (frame_len > ETH_FRAME_LEN)
1331                                 pr_debug("\tRX frame size %d, COE status: %d\n",
1332                                         frame_len, status);
1333
1334                         if (netif_msg_hw(priv))
1335                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1336                                         p, entry, p->des2);
1337 #endif
1338                         skb = priv->rx_skbuff[entry];
1339                         if (unlikely(!skb)) {
1340                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
1341                                         priv->dev->name);
1342                                 priv->dev->stats.rx_dropped++;
1343                                 break;
1344                         }
1345                         prefetch(skb->data - NET_IP_ALIGN);
1346                         priv->rx_skbuff[entry] = NULL;
1347
1348                         skb_put(skb, frame_len);
1349                         dma_unmap_single(priv->device,
1350                                          priv->rx_skbuff_dma[entry],
1351                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
1352 #ifdef STMMAC_RX_DEBUG
1353                         if (netif_msg_pktdata(priv)) {
1354                                 pr_info(" frame received (%dbytes)", frame_len);
1355                                 print_pkt(skb->data, frame_len);
1356                         }
1357 #endif
1358                         skb->protocol = eth_type_trans(skb, priv->dev);
1359
1360                         if (unlikely(!priv->plat->rx_coe)) {
1361                                 /* No RX COE for old mac10/100 devices */
1362                                 skb_checksum_none_assert(skb);
1363                                 netif_receive_skb(skb);
1364                         } else {
1365                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1366                                 napi_gro_receive(&priv->napi, skb);
1367                         }
1368
1369                         priv->dev->stats.rx_packets++;
1370                         priv->dev->stats.rx_bytes += frame_len;
1371                 }
1372                 entry = next_entry;
1373                 p = p_next;     /* use prefetched values */
1374         }
1375
1376         stmmac_rx_refill(priv);
1377
1378         priv->xstats.rx_pkt_n += count;
1379
1380         return count;
1381 }
1382
1383 /**
1384  *  stmmac_poll - stmmac poll method (NAPI)
1385  *  @napi : pointer to the napi structure.
1386  *  @budget : maximum number of packets that the current CPU can receive from
1387  *            all interfaces.
1388  *  Description :
1389  *   This function implements the the reception process.
1390  *   Also it runs the TX completion thread
1391  */
1392 static int stmmac_poll(struct napi_struct *napi, int budget)
1393 {
1394         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1395         int work_done = 0;
1396
1397         priv->xstats.poll_n++;
1398         stmmac_tx(priv);
1399         work_done = stmmac_rx(priv, budget);
1400
1401         if (work_done < budget) {
1402                 napi_complete(napi);
1403                 stmmac_enable_irq(priv);
1404         }
1405         return work_done;
1406 }
1407
1408 /**
1409  *  stmmac_tx_timeout
1410  *  @dev : Pointer to net device structure
1411  *  Description: this function is called when a packet transmission fails to
1412  *   complete within a reasonable tmrate. The driver will mark the error in the
1413  *   netdev structure and arrange for the device to be reset to a sane state
1414  *   in order to transmit a new packet.
1415  */
1416 static void stmmac_tx_timeout(struct net_device *dev)
1417 {
1418         struct stmmac_priv *priv = netdev_priv(dev);
1419
1420         /* Clear Tx resources and restart transmitting again */
1421         stmmac_tx_err(priv);
1422 }
1423
1424 /* Configuration changes (passed on by ifconfig) */
1425 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1426 {
1427         if (dev->flags & IFF_UP)        /* can't act on a running interface */
1428                 return -EBUSY;
1429
1430         /* Don't allow changing the I/O address */
1431         if (map->base_addr != dev->base_addr) {
1432                 pr_warning("%s: can't change I/O address\n", dev->name);
1433                 return -EOPNOTSUPP;
1434         }
1435
1436         /* Don't allow changing the IRQ */
1437         if (map->irq != dev->irq) {
1438                 pr_warning("%s: can't change IRQ number %d\n",
1439                        dev->name, dev->irq);
1440                 return -EOPNOTSUPP;
1441         }
1442
1443         /* ignore other fields */
1444         return 0;
1445 }
1446
1447 /**
1448  *  stmmac_set_rx_mode - entry point for multicast addressing
1449  *  @dev : pointer to the device structure
1450  *  Description:
1451  *  This function is a driver entry point which gets called by the kernel
1452  *  whenever multicast addresses must be enabled/disabled.
1453  *  Return value:
1454  *  void.
1455  */
1456 static void stmmac_set_rx_mode(struct net_device *dev)
1457 {
1458         struct stmmac_priv *priv = netdev_priv(dev);
1459
1460         spin_lock(&priv->lock);
1461         priv->hw->mac->set_filter(dev);
1462         spin_unlock(&priv->lock);
1463 }
1464
1465 /**
1466  *  stmmac_change_mtu - entry point to change MTU size for the device.
1467  *  @dev : device pointer.
1468  *  @new_mtu : the new MTU size for the device.
1469  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1470  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1471  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1472  *  Return value:
1473  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1474  *  file on failure.
1475  */
1476 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1477 {
1478         struct stmmac_priv *priv = netdev_priv(dev);
1479         int max_mtu;
1480
1481         if (netif_running(dev)) {
1482                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1483                 return -EBUSY;
1484         }
1485
1486         if (priv->plat->enh_desc)
1487                 max_mtu = JUMBO_LEN;
1488         else
1489                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1490
1491         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1492                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1493                 return -EINVAL;
1494         }
1495
1496         dev->mtu = new_mtu;
1497         netdev_update_features(dev);
1498
1499         return 0;
1500 }
1501
1502 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1503         netdev_features_t features)
1504 {
1505         struct stmmac_priv *priv = netdev_priv(dev);
1506
1507         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1508                 features &= ~NETIF_F_RXCSUM;
1509         else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1510                 features &= ~NETIF_F_IPV6_CSUM;
1511         if (!priv->plat->tx_coe)
1512                 features &= ~NETIF_F_ALL_CSUM;
1513
1514         /* Some GMAC devices have a bugged Jumbo frame support that
1515          * needs to have the Tx COE disabled for oversized frames
1516          * (due to limited buffer sizes). In this case we disable
1517          * the TX csum insertionin the TDES and not use SF. */
1518         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1519                 features &= ~NETIF_F_ALL_CSUM;
1520
1521         return features;
1522 }
1523
1524 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1525 {
1526         struct net_device *dev = (struct net_device *)dev_id;
1527         struct stmmac_priv *priv = netdev_priv(dev);
1528
1529         if (unlikely(!dev)) {
1530                 pr_err("%s: invalid dev pointer\n", __func__);
1531                 return IRQ_NONE;
1532         }
1533
1534         if (priv->plat->has_gmac)
1535                 /* To handle GMAC own interrupts */
1536                 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1537
1538         stmmac_dma_interrupt(priv);
1539
1540         return IRQ_HANDLED;
1541 }
1542
1543 #ifdef CONFIG_NET_POLL_CONTROLLER
1544 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1545  * to allow network I/O with interrupts disabled. */
1546 static void stmmac_poll_controller(struct net_device *dev)
1547 {
1548         disable_irq(dev->irq);
1549         stmmac_interrupt(dev->irq, dev);
1550         enable_irq(dev->irq);
1551 }
1552 #endif
1553
1554 /**
1555  *  stmmac_ioctl - Entry point for the Ioctl
1556  *  @dev: Device pointer.
1557  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1558  *  a proprietary structure used to pass information to the driver.
1559  *  @cmd: IOCTL command
1560  *  Description:
1561  *  Currently there are no special functionality supported in IOCTL, just the
1562  *  phy_mii_ioctl(...) can be invoked.
1563  */
1564 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1565 {
1566         struct stmmac_priv *priv = netdev_priv(dev);
1567         int ret;
1568
1569         if (!netif_running(dev))
1570                 return -EINVAL;
1571
1572         if (!priv->phydev)
1573                 return -EINVAL;
1574
1575         ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1576
1577         return ret;
1578 }
1579
1580 #ifdef CONFIG_STMMAC_DEBUG_FS
1581 static struct dentry *stmmac_fs_dir;
1582 static struct dentry *stmmac_rings_status;
1583 static struct dentry *stmmac_dma_cap;
1584
1585 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1586 {
1587         struct tmp_s {
1588                 u64 a;
1589                 unsigned int b;
1590                 unsigned int c;
1591         };
1592         int i;
1593         struct net_device *dev = seq->private;
1594         struct stmmac_priv *priv = netdev_priv(dev);
1595
1596         seq_printf(seq, "=======================\n");
1597         seq_printf(seq, " RX descriptor ring\n");
1598         seq_printf(seq, "=======================\n");
1599
1600         for (i = 0; i < priv->dma_rx_size; i++) {
1601                 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1602                 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1603                            i, (unsigned int)(x->a),
1604                            (unsigned int)((x->a) >> 32), x->b, x->c);
1605                 seq_printf(seq, "\n");
1606         }
1607
1608         seq_printf(seq, "\n");
1609         seq_printf(seq, "=======================\n");
1610         seq_printf(seq, "  TX descriptor ring\n");
1611         seq_printf(seq, "=======================\n");
1612
1613         for (i = 0; i < priv->dma_tx_size; i++) {
1614                 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1615                 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1616                            i, (unsigned int)(x->a),
1617                            (unsigned int)((x->a) >> 32), x->b, x->c);
1618                 seq_printf(seq, "\n");
1619         }
1620
1621         return 0;
1622 }
1623
1624 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1625 {
1626         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1627 }
1628
1629 static const struct file_operations stmmac_rings_status_fops = {
1630         .owner = THIS_MODULE,
1631         .open = stmmac_sysfs_ring_open,
1632         .read = seq_read,
1633         .llseek = seq_lseek,
1634         .release = seq_release,
1635 };
1636
1637 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1638 {
1639         struct net_device *dev = seq->private;
1640         struct stmmac_priv *priv = netdev_priv(dev);
1641
1642         if (!priv->hw_cap_support) {
1643                 seq_printf(seq, "DMA HW features not supported\n");
1644                 return 0;
1645         }
1646
1647         seq_printf(seq, "==============================\n");
1648         seq_printf(seq, "\tDMA HW features\n");
1649         seq_printf(seq, "==============================\n");
1650
1651         seq_printf(seq, "\t10/100 Mbps %s\n",
1652                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1653         seq_printf(seq, "\t1000 Mbps %s\n",
1654                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
1655         seq_printf(seq, "\tHalf duple %s\n",
1656                    (priv->dma_cap.half_duplex) ? "Y" : "N");
1657         seq_printf(seq, "\tHash Filter: %s\n",
1658                    (priv->dma_cap.hash_filter) ? "Y" : "N");
1659         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1660                    (priv->dma_cap.multi_addr) ? "Y" : "N");
1661         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1662                    (priv->dma_cap.pcs) ? "Y" : "N");
1663         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1664                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
1665         seq_printf(seq, "\tPMT Remote wake up: %s\n",
1666                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1667         seq_printf(seq, "\tPMT Magic Frame: %s\n",
1668                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1669         seq_printf(seq, "\tRMON module: %s\n",
1670                    (priv->dma_cap.rmon) ? "Y" : "N");
1671         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1672                    (priv->dma_cap.time_stamp) ? "Y" : "N");
1673         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1674                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
1675         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1676                    (priv->dma_cap.eee) ? "Y" : "N");
1677         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1678         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1679                    (priv->dma_cap.tx_coe) ? "Y" : "N");
1680         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1681                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1682         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1683                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1684         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1685                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1686         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1687                    priv->dma_cap.number_rx_channel);
1688         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1689                    priv->dma_cap.number_tx_channel);
1690         seq_printf(seq, "\tEnhanced descriptors: %s\n",
1691                    (priv->dma_cap.enh_desc) ? "Y" : "N");
1692
1693         return 0;
1694 }
1695
1696 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1697 {
1698         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1699 }
1700
1701 static const struct file_operations stmmac_dma_cap_fops = {
1702         .owner = THIS_MODULE,
1703         .open = stmmac_sysfs_dma_cap_open,
1704         .read = seq_read,
1705         .llseek = seq_lseek,
1706         .release = seq_release,
1707 };
1708
1709 static int stmmac_init_fs(struct net_device *dev)
1710 {
1711         /* Create debugfs entries */
1712         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1713
1714         if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1715                 pr_err("ERROR %s, debugfs create directory failed\n",
1716                        STMMAC_RESOURCE_NAME);
1717
1718                 return -ENOMEM;
1719         }
1720
1721         /* Entry to report DMA RX/TX rings */
1722         stmmac_rings_status = debugfs_create_file("descriptors_status",
1723                                            S_IRUGO, stmmac_fs_dir, dev,
1724                                            &stmmac_rings_status_fops);
1725
1726         if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1727                 pr_info("ERROR creating stmmac ring debugfs file\n");
1728                 debugfs_remove(stmmac_fs_dir);
1729
1730                 return -ENOMEM;
1731         }
1732
1733         /* Entry to report the DMA HW features */
1734         stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1735                                              dev, &stmmac_dma_cap_fops);
1736
1737         if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1738                 pr_info("ERROR creating stmmac MMC debugfs file\n");
1739                 debugfs_remove(stmmac_rings_status);
1740                 debugfs_remove(stmmac_fs_dir);
1741
1742                 return -ENOMEM;
1743         }
1744
1745         return 0;
1746 }
1747
1748 static void stmmac_exit_fs(void)
1749 {
1750         debugfs_remove(stmmac_rings_status);
1751         debugfs_remove(stmmac_dma_cap);
1752         debugfs_remove(stmmac_fs_dir);
1753 }
1754 #endif /* CONFIG_STMMAC_DEBUG_FS */
1755
1756 static const struct net_device_ops stmmac_netdev_ops = {
1757         .ndo_open = stmmac_open,
1758         .ndo_start_xmit = stmmac_xmit,
1759         .ndo_stop = stmmac_release,
1760         .ndo_change_mtu = stmmac_change_mtu,
1761         .ndo_fix_features = stmmac_fix_features,
1762         .ndo_set_rx_mode = stmmac_set_rx_mode,
1763         .ndo_tx_timeout = stmmac_tx_timeout,
1764         .ndo_do_ioctl = stmmac_ioctl,
1765         .ndo_set_config = stmmac_config,
1766 #ifdef CONFIG_NET_POLL_CONTROLLER
1767         .ndo_poll_controller = stmmac_poll_controller,
1768 #endif
1769         .ndo_set_mac_address = eth_mac_addr,
1770 };
1771
1772 /**
1773  *  stmmac_hw_init - Init the MAC device
1774  *  @priv : pointer to the private device structure.
1775  *  Description: this function detects which MAC device
1776  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1777  *  (if supported) and sets the driver's features (for example
1778  *  to use the ring or chaine mode or support the normal/enh
1779  *  descriptor structure).
1780  */
1781 static int stmmac_hw_init(struct stmmac_priv *priv)
1782 {
1783         int ret = 0;
1784         struct mac_device_info *mac;
1785
1786         /* Identify the MAC HW device */
1787         if (priv->plat->has_gmac) {
1788                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
1789                 mac = dwmac1000_setup(priv->ioaddr);
1790         } else {
1791                 mac = dwmac100_setup(priv->ioaddr);
1792         }
1793         if (!mac)
1794                 return -ENOMEM;
1795
1796         priv->hw = mac;
1797
1798         /* To use the chained or ring mode */
1799         priv->hw->ring = &ring_mode_ops;
1800
1801         /* Get and dump the chip ID */
1802         stmmac_get_synopsys_id(priv);
1803
1804         /* Get the HW capability (new GMAC newer than 3.50a) */
1805         priv->hw_cap_support = stmmac_get_hw_features(priv);
1806         if (priv->hw_cap_support) {
1807                 pr_info(" DMA HW capability register supported");
1808
1809                 /* We can override some gmac/dma configuration fields: e.g.
1810                  * enh_desc, tx_coe (e.g. that are passed through the
1811                  * platform) with the values from the HW capability
1812                  * register (if supported).
1813                  */
1814                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
1815                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1816
1817                 priv->plat->tx_coe = priv->dma_cap.tx_coe;
1818
1819                 if (priv->dma_cap.rx_coe_type2)
1820                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1821                 else if (priv->dma_cap.rx_coe_type1)
1822                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1823
1824         } else
1825                 pr_info(" No HW DMA feature register supported");
1826
1827         /* Select the enhnaced/normal descriptor structures */
1828         stmmac_selec_desc_mode(priv);
1829
1830         /* Enable the IPC (Checksum Offload) and check if the feature has been
1831          * enabled during the core configuration. */
1832         ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1833         if (!ret) {
1834                 pr_warning(" RX IPC Checksum Offload not configured.\n");
1835                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1836         }
1837
1838         if (priv->plat->rx_coe)
1839                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1840                         priv->plat->rx_coe);
1841         if (priv->plat->tx_coe)
1842                 pr_info(" TX Checksum insertion supported\n");
1843
1844         if (priv->plat->pmt) {
1845                 pr_info(" Wake-Up On Lan supported\n");
1846                 device_set_wakeup_capable(priv->device, 1);
1847         }
1848
1849         return ret;
1850 }
1851
1852 /**
1853  * stmmac_dvr_probe
1854  * @device: device pointer
1855  * Description: this is the main probe function used to
1856  * call the alloc_etherdev, allocate the priv structure.
1857  */
1858 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1859                                      struct plat_stmmacenet_data *plat_dat,
1860                                      void __iomem *addr)
1861 {
1862         int ret = 0;
1863         struct net_device *ndev = NULL;
1864         struct stmmac_priv *priv;
1865
1866         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1867         if (!ndev)
1868                 return NULL;
1869
1870         SET_NETDEV_DEV(ndev, device);
1871
1872         priv = netdev_priv(ndev);
1873         priv->device = device;
1874         priv->dev = ndev;
1875
1876         ether_setup(ndev);
1877
1878         stmmac_set_ethtool_ops(ndev);
1879         priv->pause = pause;
1880         priv->plat = plat_dat;
1881         priv->ioaddr = addr;
1882         priv->dev->base_addr = (unsigned long)addr;
1883
1884         /* Verify driver arguments */
1885         stmmac_verify_args();
1886
1887         /* Override with kernel parameters if supplied XXX CRS XXX
1888          * this needs to have multiple instances */
1889         if ((phyaddr >= 0) && (phyaddr <= 31))
1890                 priv->plat->phy_addr = phyaddr;
1891
1892         /* Init MAC and get the capabilities */
1893         stmmac_hw_init(priv);
1894
1895         ndev->netdev_ops = &stmmac_netdev_ops;
1896
1897         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1898                             NETIF_F_RXCSUM;
1899         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1900         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1901 #ifdef STMMAC_VLAN_TAG_USED
1902         /* Both mac100 and gmac support receive VLAN tag detection */
1903         ndev->features |= NETIF_F_HW_VLAN_RX;
1904 #endif
1905         priv->msg_enable = netif_msg_init(debug, default_msg_level);
1906
1907         if (flow_ctrl)
1908                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
1909
1910         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1911
1912         spin_lock_init(&priv->lock);
1913         spin_lock_init(&priv->tx_lock);
1914
1915         ret = register_netdev(ndev);
1916         if (ret) {
1917                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
1918                 goto error;
1919         }
1920
1921         if (stmmac_clk_get(priv))
1922                 goto error;
1923
1924         /* If a specific clk_csr value is passed from the platform
1925          * this means that the CSR Clock Range selection cannot be
1926          * changed at run-time and it is fixed. Viceversa the driver'll try to
1927          * set the MDC clock dynamically according to the csr actual
1928          * clock input.
1929          */
1930         if (!priv->plat->clk_csr)
1931                 stmmac_clk_csr_set(priv);
1932         else
1933                 priv->clk_csr = priv->plat->clk_csr;
1934
1935         return priv;
1936
1937 error:
1938         netif_napi_del(&priv->napi);
1939
1940         unregister_netdev(ndev);
1941         free_netdev(ndev);
1942
1943         return NULL;
1944 }
1945
1946 /**
1947  * stmmac_dvr_remove
1948  * @ndev: net device pointer
1949  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1950  * changes the link status, releases the DMA descriptor rings.
1951  */
1952 int stmmac_dvr_remove(struct net_device *ndev)
1953 {
1954         struct stmmac_priv *priv = netdev_priv(ndev);
1955
1956         pr_info("%s:\n\tremoving driver", __func__);
1957
1958         priv->hw->dma->stop_rx(priv->ioaddr);
1959         priv->hw->dma->stop_tx(priv->ioaddr);
1960
1961         stmmac_set_mac(priv->ioaddr, false);
1962         netif_carrier_off(ndev);
1963         unregister_netdev(ndev);
1964         free_netdev(ndev);
1965
1966         return 0;
1967 }
1968
1969 #ifdef CONFIG_PM
1970 int stmmac_suspend(struct net_device *ndev)
1971 {
1972         struct stmmac_priv *priv = netdev_priv(ndev);
1973         int dis_ic = 0;
1974
1975         if (!ndev || !netif_running(ndev))
1976                 return 0;
1977
1978         if (priv->phydev)
1979                 phy_stop(priv->phydev);
1980
1981         spin_lock(&priv->lock);
1982
1983         netif_device_detach(ndev);
1984         netif_stop_queue(ndev);
1985
1986 #ifdef CONFIG_STMMAC_TIMER
1987         priv->tm->timer_stop();
1988         if (likely(priv->tm->enable))
1989                 dis_ic = 1;
1990 #endif
1991         napi_disable(&priv->napi);
1992
1993         /* Stop TX/RX DMA */
1994         priv->hw->dma->stop_tx(priv->ioaddr);
1995         priv->hw->dma->stop_rx(priv->ioaddr);
1996         /* Clear the Rx/Tx descriptors */
1997         priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1998                                      dis_ic);
1999         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2000
2001         /* Enable Power down mode by programming the PMT regs */
2002         if (device_may_wakeup(priv->device))
2003                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2004         else {
2005                 stmmac_set_mac(priv->ioaddr, false);
2006                 /* Disable clock in case of PWM is off */
2007                 stmmac_clk_disable(priv);
2008         }
2009         spin_unlock(&priv->lock);
2010         return 0;
2011 }
2012
2013 int stmmac_resume(struct net_device *ndev)
2014 {
2015         struct stmmac_priv *priv = netdev_priv(ndev);
2016
2017         if (!netif_running(ndev))
2018                 return 0;
2019
2020         spin_lock(&priv->lock);
2021
2022         /* Power Down bit, into the PM register, is cleared
2023          * automatically as soon as a magic packet or a Wake-up frame
2024          * is received. Anyway, it's better to manually clear
2025          * this bit because it can generate problems while resuming
2026          * from another devices (e.g. serial console). */
2027         if (device_may_wakeup(priv->device))
2028                 priv->hw->mac->pmt(priv->ioaddr, 0);
2029         else
2030                 /* enable the clk prevously disabled */
2031                 stmmac_clk_enable(priv);
2032
2033         netif_device_attach(ndev);
2034
2035         /* Enable the MAC and DMA */
2036         stmmac_set_mac(priv->ioaddr, true);
2037         priv->hw->dma->start_tx(priv->ioaddr);
2038         priv->hw->dma->start_rx(priv->ioaddr);
2039
2040 #ifdef CONFIG_STMMAC_TIMER
2041         if (likely(priv->tm->enable))
2042                 priv->tm->timer_start(tmrate);
2043 #endif
2044         napi_enable(&priv->napi);
2045
2046         netif_start_queue(ndev);
2047
2048         spin_unlock(&priv->lock);
2049
2050         if (priv->phydev)
2051                 phy_start(priv->phydev);
2052
2053         return 0;
2054 }
2055
2056 int stmmac_freeze(struct net_device *ndev)
2057 {
2058         if (!ndev || !netif_running(ndev))
2059                 return 0;
2060
2061         return stmmac_release(ndev);
2062 }
2063
2064 int stmmac_restore(struct net_device *ndev)
2065 {
2066         if (!ndev || !netif_running(ndev))
2067                 return 0;
2068
2069         return stmmac_open(ndev);
2070 }
2071 #endif /* CONFIG_PM */
2072
2073 #ifndef MODULE
2074 static int __init stmmac_cmdline_opt(char *str)
2075 {
2076         char *opt;
2077
2078         if (!str || !*str)
2079                 return -EINVAL;
2080         while ((opt = strsep(&str, ",")) != NULL) {
2081                 if (!strncmp(opt, "debug:", 6)) {
2082                         if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2083                                 goto err;
2084                 } else if (!strncmp(opt, "phyaddr:", 8)) {
2085                         if (strict_strtoul(opt + 8, 0,
2086                                            (unsigned long *)&phyaddr))
2087                                 goto err;
2088                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2089                         if (strict_strtoul(opt + 11, 0,
2090                                            (unsigned long *)&dma_txsize))
2091                                 goto err;
2092                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2093                         if (strict_strtoul(opt + 11, 0,
2094                                            (unsigned long *)&dma_rxsize))
2095                                 goto err;
2096                 } else if (!strncmp(opt, "buf_sz:", 7)) {
2097                         if (strict_strtoul(opt + 7, 0,
2098                                            (unsigned long *)&buf_sz))
2099                                 goto err;
2100                 } else if (!strncmp(opt, "tc:", 3)) {
2101                         if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2102                                 goto err;
2103                 } else if (!strncmp(opt, "watchdog:", 9)) {
2104                         if (strict_strtoul(opt + 9, 0,
2105                                            (unsigned long *)&watchdog))
2106                                 goto err;
2107                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2108                         if (strict_strtoul(opt + 10, 0,
2109                                            (unsigned long *)&flow_ctrl))
2110                                 goto err;
2111                 } else if (!strncmp(opt, "pause:", 6)) {
2112                         if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2113                                 goto err;
2114 #ifdef CONFIG_STMMAC_TIMER
2115                 } else if (!strncmp(opt, "tmrate:", 7)) {
2116                         if (strict_strtoul(opt + 7, 0,
2117                                            (unsigned long *)&tmrate))
2118                                 goto err;
2119 #endif
2120                 }
2121         }
2122         return 0;
2123
2124 err:
2125         pr_err("%s: ERROR broken module parameter conversion", __func__);
2126         return -EINVAL;
2127 }
2128
2129 __setup("stmmaceth=", stmmac_cmdline_opt);
2130 #endif
2131
2132 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2133 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2134 MODULE_LICENSE("GPL");