]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath10k/htt_rx.c
Merge branch 'sctp-RFC-4960-Errata-fixes'
[karo-tx-linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37
38 static struct sk_buff *
39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
40 {
41         struct ath10k_skb_rxcb *rxcb;
42
43         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
44                 if (rxcb->paddr == paddr)
45                         return ATH10K_RXCB_SKB(rxcb);
46
47         WARN_ON_ONCE(1);
48         return NULL;
49 }
50
51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
52 {
53         struct sk_buff *skb;
54         struct ath10k_skb_rxcb *rxcb;
55         struct hlist_node *n;
56         int i;
57
58         if (htt->rx_ring.in_ord_rx) {
59                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
60                         skb = ATH10K_RXCB_SKB(rxcb);
61                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
62                                          skb->len + skb_tailroom(skb),
63                                          DMA_FROM_DEVICE);
64                         hash_del(&rxcb->hlist);
65                         dev_kfree_skb_any(skb);
66                 }
67         } else {
68                 for (i = 0; i < htt->rx_ring.size; i++) {
69                         skb = htt->rx_ring.netbufs_ring[i];
70                         if (!skb)
71                                 continue;
72
73                         rxcb = ATH10K_SKB_RXCB(skb);
74                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
75                                          skb->len + skb_tailroom(skb),
76                                          DMA_FROM_DEVICE);
77                         dev_kfree_skb_any(skb);
78                 }
79         }
80
81         htt->rx_ring.fill_cnt = 0;
82         hash_init(htt->rx_ring.skb_table);
83         memset(htt->rx_ring.netbufs_ring, 0,
84                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
85 }
86
87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
88 {
89         struct htt_rx_desc *rx_desc;
90         struct ath10k_skb_rxcb *rxcb;
91         struct sk_buff *skb;
92         dma_addr_t paddr;
93         int ret = 0, idx;
94
95         /* The Full Rx Reorder firmware has no way of telling the host
96          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
97          * To keep things simple make sure ring is always half empty. This
98          * guarantees there'll be no replenishment overruns possible.
99          */
100         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
101
102         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
103         while (num > 0) {
104                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
105                 if (!skb) {
106                         ret = -ENOMEM;
107                         goto fail;
108                 }
109
110                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
111                         skb_pull(skb,
112                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
113                                  skb->data);
114
115                 /* Clear rx_desc attention word before posting to Rx ring */
116                 rx_desc = (struct htt_rx_desc *)skb->data;
117                 rx_desc->attention.flags = __cpu_to_le32(0);
118
119                 paddr = dma_map_single(htt->ar->dev, skb->data,
120                                        skb->len + skb_tailroom(skb),
121                                        DMA_FROM_DEVICE);
122
123                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
124                         dev_kfree_skb_any(skb);
125                         ret = -ENOMEM;
126                         goto fail;
127                 }
128
129                 rxcb = ATH10K_SKB_RXCB(skb);
130                 rxcb->paddr = paddr;
131                 htt->rx_ring.netbufs_ring[idx] = skb;
132                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
133                 htt->rx_ring.fill_cnt++;
134
135                 if (htt->rx_ring.in_ord_rx) {
136                         hash_add(htt->rx_ring.skb_table,
137                                  &ATH10K_SKB_RXCB(skb)->hlist,
138                                  (u32)paddr);
139                 }
140
141                 num--;
142                 idx++;
143                 idx &= htt->rx_ring.size_mask;
144         }
145
146 fail:
147         /*
148          * Make sure the rx buffer is updated before available buffer
149          * index to avoid any potential rx ring corruption.
150          */
151         mb();
152         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
153         return ret;
154 }
155
156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
157 {
158         lockdep_assert_held(&htt->rx_ring.lock);
159         return __ath10k_htt_rx_ring_fill_n(htt, num);
160 }
161
162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
163 {
164         int ret, num_deficit, num_to_fill;
165
166         /* Refilling the whole RX ring buffer proves to be a bad idea. The
167          * reason is RX may take up significant amount of CPU cycles and starve
168          * other tasks, e.g. TX on an ethernet device while acting as a bridge
169          * with ath10k wlan interface. This ended up with very poor performance
170          * once CPU the host system was overwhelmed with RX on ath10k.
171          *
172          * By limiting the number of refills the replenishing occurs
173          * progressively. This in turns makes use of the fact tasklets are
174          * processed in FIFO order. This means actual RX processing can starve
175          * out refilling. If there's not enough buffers on RX ring FW will not
176          * report RX until it is refilled with enough buffers. This
177          * automatically balances load wrt to CPU power.
178          *
179          * This probably comes at a cost of lower maximum throughput but
180          * improves the average and stability.
181          */
182         spin_lock_bh(&htt->rx_ring.lock);
183         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
184         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
185         num_deficit -= num_to_fill;
186         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
187         if (ret == -ENOMEM) {
188                 /*
189                  * Failed to fill it to the desired level -
190                  * we'll start a timer and try again next time.
191                  * As long as enough buffers are left in the ring for
192                  * another A-MPDU rx, no special recovery is needed.
193                  */
194                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
195                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
196         } else if (num_deficit > 0) {
197                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
198                           msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
199         }
200         spin_unlock_bh(&htt->rx_ring.lock);
201 }
202
203 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
204 {
205         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
206
207         ath10k_htt_rx_msdu_buff_replenish(htt);
208 }
209
210 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
211 {
212         struct ath10k_htt *htt = &ar->htt;
213         int ret;
214
215         spin_lock_bh(&htt->rx_ring.lock);
216         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
217                                               htt->rx_ring.fill_cnt));
218         spin_unlock_bh(&htt->rx_ring.lock);
219
220         if (ret)
221                 ath10k_htt_rx_ring_free(htt);
222
223         return ret;
224 }
225
226 void ath10k_htt_rx_free(struct ath10k_htt *htt)
227 {
228         del_timer_sync(&htt->rx_ring.refill_retry_timer);
229
230         skb_queue_purge(&htt->rx_compl_q);
231         skb_queue_purge(&htt->rx_in_ord_compl_q);
232         skb_queue_purge(&htt->tx_fetch_ind_q);
233
234         ath10k_htt_rx_ring_free(htt);
235
236         dma_free_coherent(htt->ar->dev,
237                           (htt->rx_ring.size *
238                            sizeof(htt->rx_ring.paddrs_ring)),
239                           htt->rx_ring.paddrs_ring,
240                           htt->rx_ring.base_paddr);
241
242         dma_free_coherent(htt->ar->dev,
243                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
244                           htt->rx_ring.alloc_idx.vaddr,
245                           htt->rx_ring.alloc_idx.paddr);
246
247         kfree(htt->rx_ring.netbufs_ring);
248 }
249
250 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
251 {
252         struct ath10k *ar = htt->ar;
253         int idx;
254         struct sk_buff *msdu;
255
256         lockdep_assert_held(&htt->rx_ring.lock);
257
258         if (htt->rx_ring.fill_cnt == 0) {
259                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
260                 return NULL;
261         }
262
263         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
264         msdu = htt->rx_ring.netbufs_ring[idx];
265         htt->rx_ring.netbufs_ring[idx] = NULL;
266         htt->rx_ring.paddrs_ring[idx] = 0;
267
268         idx++;
269         idx &= htt->rx_ring.size_mask;
270         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
271         htt->rx_ring.fill_cnt--;
272
273         dma_unmap_single(htt->ar->dev,
274                          ATH10K_SKB_RXCB(msdu)->paddr,
275                          msdu->len + skb_tailroom(msdu),
276                          DMA_FROM_DEVICE);
277         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
278                         msdu->data, msdu->len + skb_tailroom(msdu));
279
280         return msdu;
281 }
282
283 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
284 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
285                                    struct sk_buff_head *amsdu)
286 {
287         struct ath10k *ar = htt->ar;
288         int msdu_len, msdu_chaining = 0;
289         struct sk_buff *msdu;
290         struct htt_rx_desc *rx_desc;
291
292         lockdep_assert_held(&htt->rx_ring.lock);
293
294         for (;;) {
295                 int last_msdu, msdu_len_invalid, msdu_chained;
296
297                 msdu = ath10k_htt_rx_netbuf_pop(htt);
298                 if (!msdu) {
299                         __skb_queue_purge(amsdu);
300                         return -ENOENT;
301                 }
302
303                 __skb_queue_tail(amsdu, msdu);
304
305                 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307                 /* FIXME: we must report msdu payload since this is what caller
308                  * expects now
309                  */
310                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
312
313                 /*
314                  * Sanity check - confirm the HW is finished filling in the
315                  * rx data.
316                  * If the HW and SW are working correctly, then it's guaranteed
317                  * that the HW's MAC DMA is done before this point in the SW.
318                  * To prevent the case that we handle a stale Rx descriptor,
319                  * just assert for now until we have a way to recover.
320                  */
321                 if (!(__le32_to_cpu(rx_desc->attention.flags)
322                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
323                         __skb_queue_purge(amsdu);
324                         return -EIO;
325                 }
326
327                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
328                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
329                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
330                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
331                               RX_MSDU_START_INFO0_MSDU_LENGTH);
332                 msdu_chained = rx_desc->frag_info.ring2_more_count;
333
334                 if (msdu_len_invalid)
335                         msdu_len = 0;
336
337                 skb_trim(msdu, 0);
338                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
339                 msdu_len -= msdu->len;
340
341                 /* Note: Chained buffers do not contain rx descriptor */
342                 while (msdu_chained--) {
343                         msdu = ath10k_htt_rx_netbuf_pop(htt);
344                         if (!msdu) {
345                                 __skb_queue_purge(amsdu);
346                                 return -ENOENT;
347                         }
348
349                         __skb_queue_tail(amsdu, msdu);
350                         skb_trim(msdu, 0);
351                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
352                         msdu_len -= msdu->len;
353                         msdu_chaining = 1;
354                 }
355
356                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
357                                 RX_MSDU_END_INFO0_LAST_MSDU;
358
359                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
360                                          sizeof(*rx_desc) - sizeof(u32));
361
362                 if (last_msdu)
363                         break;
364         }
365
366         if (skb_queue_empty(amsdu))
367                 msdu_chaining = -1;
368
369         /*
370          * Don't refill the ring yet.
371          *
372          * First, the elements popped here are still in use - it is not
373          * safe to overwrite them until the matching call to
374          * mpdu_desc_list_next. Second, for efficiency it is preferable to
375          * refill the rx ring with 1 PPDU's worth of rx buffers (something
376          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
377          * (something like 3 buffers). Consequently, we'll rely on the txrx
378          * SW to tell us when it is done pulling all the PPDU's rx buffers
379          * out of the rx ring, and then refill it just once.
380          */
381
382         return msdu_chaining;
383 }
384
385 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
386                                                u32 paddr)
387 {
388         struct ath10k *ar = htt->ar;
389         struct ath10k_skb_rxcb *rxcb;
390         struct sk_buff *msdu;
391
392         lockdep_assert_held(&htt->rx_ring.lock);
393
394         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
395         if (!msdu)
396                 return NULL;
397
398         rxcb = ATH10K_SKB_RXCB(msdu);
399         hash_del(&rxcb->hlist);
400         htt->rx_ring.fill_cnt--;
401
402         dma_unmap_single(htt->ar->dev, rxcb->paddr,
403                          msdu->len + skb_tailroom(msdu),
404                          DMA_FROM_DEVICE);
405         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
406                         msdu->data, msdu->len + skb_tailroom(msdu));
407
408         return msdu;
409 }
410
411 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
412                                         struct htt_rx_in_ord_ind *ev,
413                                         struct sk_buff_head *list)
414 {
415         struct ath10k *ar = htt->ar;
416         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
417         struct htt_rx_desc *rxd;
418         struct sk_buff *msdu;
419         int msdu_count;
420         bool is_offload;
421         u32 paddr;
422
423         lockdep_assert_held(&htt->rx_ring.lock);
424
425         msdu_count = __le16_to_cpu(ev->msdu_count);
426         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
427
428         while (msdu_count--) {
429                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
430
431                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
432                 if (!msdu) {
433                         __skb_queue_purge(list);
434                         return -ENOENT;
435                 }
436
437                 __skb_queue_tail(list, msdu);
438
439                 if (!is_offload) {
440                         rxd = (void *)msdu->data;
441
442                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
443
444                         skb_put(msdu, sizeof(*rxd));
445                         skb_pull(msdu, sizeof(*rxd));
446                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
447
448                         if (!(__le32_to_cpu(rxd->attention.flags) &
449                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
450                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
451                                 return -EIO;
452                         }
453                 }
454
455                 msdu_desc++;
456         }
457
458         return 0;
459 }
460
461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
462 {
463         struct ath10k *ar = htt->ar;
464         dma_addr_t paddr;
465         void *vaddr;
466         size_t size;
467         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
468
469         htt->rx_confused = false;
470
471         /* XXX: The fill level could be changed during runtime in response to
472          * the host processing latency. Is this really worth it?
473          */
474         htt->rx_ring.size = HTT_RX_RING_SIZE;
475         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
476         htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
477
478         if (!is_power_of_2(htt->rx_ring.size)) {
479                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
480                 return -EINVAL;
481         }
482
483         htt->rx_ring.netbufs_ring =
484                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
485                         GFP_KERNEL);
486         if (!htt->rx_ring.netbufs_ring)
487                 goto err_netbuf;
488
489         size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
490
491         vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
492         if (!vaddr)
493                 goto err_dma_ring;
494
495         htt->rx_ring.paddrs_ring = vaddr;
496         htt->rx_ring.base_paddr = paddr;
497
498         vaddr = dma_alloc_coherent(htt->ar->dev,
499                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
500                                    &paddr, GFP_KERNEL);
501         if (!vaddr)
502                 goto err_dma_idx;
503
504         htt->rx_ring.alloc_idx.vaddr = vaddr;
505         htt->rx_ring.alloc_idx.paddr = paddr;
506         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
507         *htt->rx_ring.alloc_idx.vaddr = 0;
508
509         /* Initialize the Rx refill retry timer */
510         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
511
512         spin_lock_init(&htt->rx_ring.lock);
513
514         htt->rx_ring.fill_cnt = 0;
515         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
516         hash_init(htt->rx_ring.skb_table);
517
518         skb_queue_head_init(&htt->rx_compl_q);
519         skb_queue_head_init(&htt->rx_in_ord_compl_q);
520         skb_queue_head_init(&htt->tx_fetch_ind_q);
521         atomic_set(&htt->num_mpdus_ready, 0);
522
523         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
524                    htt->rx_ring.size, htt->rx_ring.fill_level);
525         return 0;
526
527 err_dma_idx:
528         dma_free_coherent(htt->ar->dev,
529                           (htt->rx_ring.size *
530                            sizeof(htt->rx_ring.paddrs_ring)),
531                           htt->rx_ring.paddrs_ring,
532                           htt->rx_ring.base_paddr);
533 err_dma_ring:
534         kfree(htt->rx_ring.netbufs_ring);
535 err_netbuf:
536         return -ENOMEM;
537 }
538
539 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
540                                           enum htt_rx_mpdu_encrypt_type type)
541 {
542         switch (type) {
543         case HTT_RX_MPDU_ENCRYPT_NONE:
544                 return 0;
545         case HTT_RX_MPDU_ENCRYPT_WEP40:
546         case HTT_RX_MPDU_ENCRYPT_WEP104:
547                 return IEEE80211_WEP_IV_LEN;
548         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
549         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
550                 return IEEE80211_TKIP_IV_LEN;
551         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
552                 return IEEE80211_CCMP_HDR_LEN;
553         case HTT_RX_MPDU_ENCRYPT_WEP128:
554         case HTT_RX_MPDU_ENCRYPT_WAPI:
555                 break;
556         }
557
558         ath10k_warn(ar, "unsupported encryption type %d\n", type);
559         return 0;
560 }
561
562 #define MICHAEL_MIC_LEN 8
563
564 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
565                                          enum htt_rx_mpdu_encrypt_type type)
566 {
567         switch (type) {
568         case HTT_RX_MPDU_ENCRYPT_NONE:
569                 return 0;
570         case HTT_RX_MPDU_ENCRYPT_WEP40:
571         case HTT_RX_MPDU_ENCRYPT_WEP104:
572                 return IEEE80211_WEP_ICV_LEN;
573         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
574         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
575                 return IEEE80211_TKIP_ICV_LEN;
576         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
577                 return IEEE80211_CCMP_MIC_LEN;
578         case HTT_RX_MPDU_ENCRYPT_WEP128:
579         case HTT_RX_MPDU_ENCRYPT_WAPI:
580                 break;
581         }
582
583         ath10k_warn(ar, "unsupported encryption type %d\n", type);
584         return 0;
585 }
586
587 struct amsdu_subframe_hdr {
588         u8 dst[ETH_ALEN];
589         u8 src[ETH_ALEN];
590         __be16 len;
591 } __packed;
592
593 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
594
595 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
596                                   struct ieee80211_rx_status *status,
597                                   struct htt_rx_desc *rxd)
598 {
599         struct ieee80211_supported_band *sband;
600         u8 cck, rate, bw, sgi, mcs, nss;
601         u8 preamble = 0;
602         u8 group_id;
603         u32 info1, info2, info3;
604
605         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
606         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
607         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
608
609         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
610
611         switch (preamble) {
612         case HTT_RX_LEGACY:
613                 /* To get legacy rate index band is required. Since band can't
614                  * be undefined check if freq is non-zero.
615                  */
616                 if (!status->freq)
617                         return;
618
619                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
620                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
621                 rate &= ~RX_PPDU_START_RATE_FLAG;
622
623                 sband = &ar->mac.sbands[status->band];
624                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
625                 break;
626         case HTT_RX_HT:
627         case HTT_RX_HT_WITH_TXBF:
628                 /* HT-SIG - Table 20-11 in info2 and info3 */
629                 mcs = info2 & 0x1F;
630                 nss = mcs >> 3;
631                 bw = (info2 >> 7) & 1;
632                 sgi = (info3 >> 7) & 1;
633
634                 status->rate_idx = mcs;
635                 status->encoding = RX_ENC_HT;
636                 if (sgi)
637                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
638                 if (bw)
639                         status->bw = RATE_INFO_BW_40;
640                 break;
641         case HTT_RX_VHT:
642         case HTT_RX_VHT_WITH_TXBF:
643                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
644                  * TODO check this
645                  */
646                 bw = info2 & 3;
647                 sgi = info3 & 1;
648                 group_id = (info2 >> 4) & 0x3F;
649
650                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
651                         mcs = (info3 >> 4) & 0x0F;
652                         nss = ((info2 >> 10) & 0x07) + 1;
653                 } else {
654                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
655                          * so it's impossible to decode MCS. Also since
656                          * firmware consumes Group Id Management frames host
657                          * has no knowledge regarding group/user position
658                          * mapping so it's impossible to pick the correct Nsts
659                          * from VHT-SIG-A1.
660                          *
661                          * Bandwidth and SGI are valid so report the rateinfo
662                          * on best-effort basis.
663                          */
664                         mcs = 0;
665                         nss = 1;
666                 }
667
668                 if (mcs > 0x09) {
669                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
670                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
671                                     __le32_to_cpu(rxd->attention.flags),
672                                     __le32_to_cpu(rxd->mpdu_start.info0),
673                                     __le32_to_cpu(rxd->mpdu_start.info1),
674                                     __le32_to_cpu(rxd->msdu_start.common.info0),
675                                     __le32_to_cpu(rxd->msdu_start.common.info1),
676                                     rxd->ppdu_start.info0,
677                                     __le32_to_cpu(rxd->ppdu_start.info1),
678                                     __le32_to_cpu(rxd->ppdu_start.info2),
679                                     __le32_to_cpu(rxd->ppdu_start.info3),
680                                     __le32_to_cpu(rxd->ppdu_start.info4));
681
682                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
683                                     __le32_to_cpu(rxd->msdu_end.common.info0),
684                                     __le32_to_cpu(rxd->mpdu_end.info0));
685
686                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
687                                         "rx desc msdu payload: ",
688                                         rxd->msdu_payload, 50);
689                 }
690
691                 status->rate_idx = mcs;
692                 status->nss = nss;
693
694                 if (sgi)
695                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
696
697                 switch (bw) {
698                 /* 20MHZ */
699                 case 0:
700                         break;
701                 /* 40MHZ */
702                 case 1:
703                         status->bw = RATE_INFO_BW_40;
704                         break;
705                 /* 80MHZ */
706                 case 2:
707                         status->bw = RATE_INFO_BW_80;
708                         break;
709                 case 3:
710                         status->bw = RATE_INFO_BW_160;
711                         break;
712                 }
713
714                 status->encoding = RX_ENC_VHT;
715                 break;
716         default:
717                 break;
718         }
719 }
720
721 static struct ieee80211_channel *
722 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
723 {
724         struct ath10k_peer *peer;
725         struct ath10k_vif *arvif;
726         struct cfg80211_chan_def def;
727         u16 peer_id;
728
729         lockdep_assert_held(&ar->data_lock);
730
731         if (!rxd)
732                 return NULL;
733
734         if (rxd->attention.flags &
735             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
736                 return NULL;
737
738         if (!(rxd->msdu_end.common.info0 &
739               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
740                 return NULL;
741
742         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
743                      RX_MPDU_START_INFO0_PEER_IDX);
744
745         peer = ath10k_peer_find_by_id(ar, peer_id);
746         if (!peer)
747                 return NULL;
748
749         arvif = ath10k_get_arvif(ar, peer->vdev_id);
750         if (WARN_ON_ONCE(!arvif))
751                 return NULL;
752
753         if (ath10k_mac_vif_chan(arvif->vif, &def))
754                 return NULL;
755
756         return def.chan;
757 }
758
759 static struct ieee80211_channel *
760 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
761 {
762         struct ath10k_vif *arvif;
763         struct cfg80211_chan_def def;
764
765         lockdep_assert_held(&ar->data_lock);
766
767         list_for_each_entry(arvif, &ar->arvifs, list) {
768                 if (arvif->vdev_id == vdev_id &&
769                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
770                         return def.chan;
771         }
772
773         return NULL;
774 }
775
776 static void
777 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
778                               struct ieee80211_chanctx_conf *conf,
779                               void *data)
780 {
781         struct cfg80211_chan_def *def = data;
782
783         *def = conf->def;
784 }
785
786 static struct ieee80211_channel *
787 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
788 {
789         struct cfg80211_chan_def def = {};
790
791         ieee80211_iter_chan_contexts_atomic(ar->hw,
792                                             ath10k_htt_rx_h_any_chan_iter,
793                                             &def);
794
795         return def.chan;
796 }
797
798 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
799                                     struct ieee80211_rx_status *status,
800                                     struct htt_rx_desc *rxd,
801                                     u32 vdev_id)
802 {
803         struct ieee80211_channel *ch;
804
805         spin_lock_bh(&ar->data_lock);
806         ch = ar->scan_channel;
807         if (!ch)
808                 ch = ar->rx_channel;
809         if (!ch)
810                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
811         if (!ch)
812                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
813         if (!ch)
814                 ch = ath10k_htt_rx_h_any_channel(ar);
815         if (!ch)
816                 ch = ar->tgt_oper_chan;
817         spin_unlock_bh(&ar->data_lock);
818
819         if (!ch)
820                 return false;
821
822         status->band = ch->band;
823         status->freq = ch->center_freq;
824
825         return true;
826 }
827
828 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
829                                    struct ieee80211_rx_status *status,
830                                    struct htt_rx_desc *rxd)
831 {
832         /* FIXME: Get real NF */
833         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
834                          rxd->ppdu_start.rssi_comb;
835         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
836 }
837
838 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
839                                     struct ieee80211_rx_status *status,
840                                     struct htt_rx_desc *rxd)
841 {
842         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
843          * means all prior MSDUs in a PPDU are reported to mac80211 without the
844          * TSF. Is it worth holding frames until end of PPDU is known?
845          *
846          * FIXME: Can we get/compute 64bit TSF?
847          */
848         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
849         status->flag |= RX_FLAG_MACTIME_END;
850 }
851
852 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
853                                  struct sk_buff_head *amsdu,
854                                  struct ieee80211_rx_status *status,
855                                  u32 vdev_id)
856 {
857         struct sk_buff *first;
858         struct htt_rx_desc *rxd;
859         bool is_first_ppdu;
860         bool is_last_ppdu;
861
862         if (skb_queue_empty(amsdu))
863                 return;
864
865         first = skb_peek(amsdu);
866         rxd = (void *)first->data - sizeof(*rxd);
867
868         is_first_ppdu = !!(rxd->attention.flags &
869                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
870         is_last_ppdu = !!(rxd->attention.flags &
871                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
872
873         if (is_first_ppdu) {
874                 /* New PPDU starts so clear out the old per-PPDU status. */
875                 status->freq = 0;
876                 status->rate_idx = 0;
877                 status->nss = 0;
878                 status->encoding = RX_ENC_LEGACY;
879                 status->bw = RATE_INFO_BW_20;
880                 status->flag &= ~RX_FLAG_MACTIME_END;
881                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
882
883                 ath10k_htt_rx_h_signal(ar, status, rxd);
884                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
885                 ath10k_htt_rx_h_rates(ar, status, rxd);
886         }
887
888         if (is_last_ppdu)
889                 ath10k_htt_rx_h_mactime(ar, status, rxd);
890 }
891
892 static const char * const tid_to_ac[] = {
893         "BE",
894         "BK",
895         "BK",
896         "BE",
897         "VI",
898         "VI",
899         "VO",
900         "VO",
901 };
902
903 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
904 {
905         u8 *qc;
906         int tid;
907
908         if (!ieee80211_is_data_qos(hdr->frame_control))
909                 return "";
910
911         qc = ieee80211_get_qos_ctl(hdr);
912         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
913         if (tid < 8)
914                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
915         else
916                 snprintf(out, size, "tid %d", tid);
917
918         return out;
919 }
920
921 static void ath10k_process_rx(struct ath10k *ar,
922                               struct ieee80211_rx_status *rx_status,
923                               struct sk_buff *skb)
924 {
925         struct ieee80211_rx_status *status;
926         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
927         char tid[32];
928
929         status = IEEE80211_SKB_RXCB(skb);
930         *status = *rx_status;
931
932         ath10k_dbg(ar, ATH10K_DBG_DATA,
933                    "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
934                    skb,
935                    skb->len,
936                    ieee80211_get_SA(hdr),
937                    ath10k_get_tid(hdr, tid, sizeof(tid)),
938                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
939                                                         "mcast" : "ucast",
940                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
941                    (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
942                    (status->encoding == RX_ENC_HT) ? "ht" : "",
943                    (status->encoding == RX_ENC_VHT) ? "vht" : "",
944                    (status->bw == RATE_INFO_BW_40) ? "40" : "",
945                    (status->bw == RATE_INFO_BW_80) ? "80" : "",
946                    (status->bw == RATE_INFO_BW_160) ? "160" : "",
947                    status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
948                    status->rate_idx,
949                    status->nss,
950                    status->freq,
951                    status->band, status->flag,
952                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
953                    !!(status->flag & RX_FLAG_MMIC_ERROR),
954                    !!(status->flag & RX_FLAG_AMSDU_MORE));
955         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
956                         skb->data, skb->len);
957         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
958         trace_ath10k_rx_payload(ar, skb->data, skb->len);
959
960         ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
961 }
962
963 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
964                                       struct ieee80211_hdr *hdr)
965 {
966         int len = ieee80211_hdrlen(hdr->frame_control);
967
968         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
969                       ar->running_fw->fw_file.fw_features))
970                 len = round_up(len, 4);
971
972         return len;
973 }
974
975 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
976                                         struct sk_buff *msdu,
977                                         struct ieee80211_rx_status *status,
978                                         enum htt_rx_mpdu_encrypt_type enctype,
979                                         bool is_decrypted)
980 {
981         struct ieee80211_hdr *hdr;
982         struct htt_rx_desc *rxd;
983         size_t hdr_len;
984         size_t crypto_len;
985         bool is_first;
986         bool is_last;
987
988         rxd = (void *)msdu->data - sizeof(*rxd);
989         is_first = !!(rxd->msdu_end.common.info0 &
990                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
991         is_last = !!(rxd->msdu_end.common.info0 &
992                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
993
994         /* Delivered decapped frame:
995          * [802.11 header]
996          * [crypto param] <-- can be trimmed if !fcs_err &&
997          *                    !decrypt_err && !peer_idx_invalid
998          * [amsdu header] <-- only if A-MSDU
999          * [rfc1042/llc]
1000          * [payload]
1001          * [FCS] <-- at end, needs to be trimmed
1002          */
1003
1004         /* This probably shouldn't happen but warn just in case */
1005         if (unlikely(WARN_ON_ONCE(!is_first)))
1006                 return;
1007
1008         /* This probably shouldn't happen but warn just in case */
1009         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1010                 return;
1011
1012         skb_trim(msdu, msdu->len - FCS_LEN);
1013
1014         /* In most cases this will be true for sniffed frames. It makes sense
1015          * to deliver them as-is without stripping the crypto param. This is
1016          * necessary for software based decryption.
1017          *
1018          * If there's no error then the frame is decrypted. At least that is
1019          * the case for frames that come in via fragmented rx indication.
1020          */
1021         if (!is_decrypted)
1022                 return;
1023
1024         /* The payload is decrypted so strip crypto params. Start from tail
1025          * since hdr is used to compute some stuff.
1026          */
1027
1028         hdr = (void *)msdu->data;
1029
1030         /* Tail */
1031         if (status->flag & RX_FLAG_IV_STRIPPED)
1032                 skb_trim(msdu, msdu->len -
1033                          ath10k_htt_rx_crypto_tail_len(ar, enctype));
1034
1035         /* MMIC */
1036         if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1037             !ieee80211_has_morefrags(hdr->frame_control) &&
1038             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1039                 skb_trim(msdu, msdu->len - 8);
1040
1041         /* Head */
1042         if (status->flag & RX_FLAG_IV_STRIPPED) {
1043                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1044                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1045
1046                 memmove((void *)msdu->data + crypto_len,
1047                         (void *)msdu->data, hdr_len);
1048                 skb_pull(msdu, crypto_len);
1049         }
1050 }
1051
1052 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1053                                           struct sk_buff *msdu,
1054                                           struct ieee80211_rx_status *status,
1055                                           const u8 first_hdr[64])
1056 {
1057         struct ieee80211_hdr *hdr;
1058         struct htt_rx_desc *rxd;
1059         size_t hdr_len;
1060         u8 da[ETH_ALEN];
1061         u8 sa[ETH_ALEN];
1062         int l3_pad_bytes;
1063
1064         /* Delivered decapped frame:
1065          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1066          * [rfc1042/llc]
1067          *
1068          * Note: The nwifi header doesn't have QoS Control and is
1069          * (always?) a 3addr frame.
1070          *
1071          * Note2: There's no A-MSDU subframe header. Even if it's part
1072          * of an A-MSDU.
1073          */
1074
1075         /* pull decapped header and copy SA & DA */
1076         rxd = (void *)msdu->data - sizeof(*rxd);
1077
1078         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1079         skb_put(msdu, l3_pad_bytes);
1080
1081         hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1082
1083         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1084         ether_addr_copy(da, ieee80211_get_DA(hdr));
1085         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1086         skb_pull(msdu, hdr_len);
1087
1088         /* push original 802.11 header */
1089         hdr = (struct ieee80211_hdr *)first_hdr;
1090         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1091         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1092
1093         /* original 802.11 header has a different DA and in
1094          * case of 4addr it may also have different SA
1095          */
1096         hdr = (struct ieee80211_hdr *)msdu->data;
1097         ether_addr_copy(ieee80211_get_DA(hdr), da);
1098         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1099 }
1100
1101 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1102                                           struct sk_buff *msdu,
1103                                           enum htt_rx_mpdu_encrypt_type enctype)
1104 {
1105         struct ieee80211_hdr *hdr;
1106         struct htt_rx_desc *rxd;
1107         size_t hdr_len, crypto_len;
1108         void *rfc1042;
1109         bool is_first, is_last, is_amsdu;
1110         int bytes_aligned = ar->hw_params.decap_align_bytes;
1111
1112         rxd = (void *)msdu->data - sizeof(*rxd);
1113         hdr = (void *)rxd->rx_hdr_status;
1114
1115         is_first = !!(rxd->msdu_end.common.info0 &
1116                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1117         is_last = !!(rxd->msdu_end.common.info0 &
1118                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1119         is_amsdu = !(is_first && is_last);
1120
1121         rfc1042 = hdr;
1122
1123         if (is_first) {
1124                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1125                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1126
1127                 rfc1042 += round_up(hdr_len, bytes_aligned) +
1128                            round_up(crypto_len, bytes_aligned);
1129         }
1130
1131         if (is_amsdu)
1132                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1133
1134         return rfc1042;
1135 }
1136
1137 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1138                                         struct sk_buff *msdu,
1139                                         struct ieee80211_rx_status *status,
1140                                         const u8 first_hdr[64],
1141                                         enum htt_rx_mpdu_encrypt_type enctype)
1142 {
1143         struct ieee80211_hdr *hdr;
1144         struct ethhdr *eth;
1145         size_t hdr_len;
1146         void *rfc1042;
1147         u8 da[ETH_ALEN];
1148         u8 sa[ETH_ALEN];
1149         int l3_pad_bytes;
1150         struct htt_rx_desc *rxd;
1151
1152         /* Delivered decapped frame:
1153          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1154          * [payload]
1155          */
1156
1157         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1158         if (WARN_ON_ONCE(!rfc1042))
1159                 return;
1160
1161         rxd = (void *)msdu->data - sizeof(*rxd);
1162         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1163         skb_put(msdu, l3_pad_bytes);
1164         skb_pull(msdu, l3_pad_bytes);
1165
1166         /* pull decapped header and copy SA & DA */
1167         eth = (struct ethhdr *)msdu->data;
1168         ether_addr_copy(da, eth->h_dest);
1169         ether_addr_copy(sa, eth->h_source);
1170         skb_pull(msdu, sizeof(struct ethhdr));
1171
1172         /* push rfc1042/llc/snap */
1173         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1174                sizeof(struct rfc1042_hdr));
1175
1176         /* push original 802.11 header */
1177         hdr = (struct ieee80211_hdr *)first_hdr;
1178         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1179         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1180
1181         /* original 802.11 header has a different DA and in
1182          * case of 4addr it may also have different SA
1183          */
1184         hdr = (struct ieee80211_hdr *)msdu->data;
1185         ether_addr_copy(ieee80211_get_DA(hdr), da);
1186         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1187 }
1188
1189 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1190                                          struct sk_buff *msdu,
1191                                          struct ieee80211_rx_status *status,
1192                                          const u8 first_hdr[64])
1193 {
1194         struct ieee80211_hdr *hdr;
1195         size_t hdr_len;
1196         int l3_pad_bytes;
1197         struct htt_rx_desc *rxd;
1198
1199         /* Delivered decapped frame:
1200          * [amsdu header] <-- replaced with 802.11 hdr
1201          * [rfc1042/llc]
1202          * [payload]
1203          */
1204
1205         rxd = (void *)msdu->data - sizeof(*rxd);
1206         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1207
1208         skb_put(msdu, l3_pad_bytes);
1209         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1210
1211         hdr = (struct ieee80211_hdr *)first_hdr;
1212         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1213         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1214 }
1215
1216 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1217                                     struct sk_buff *msdu,
1218                                     struct ieee80211_rx_status *status,
1219                                     u8 first_hdr[64],
1220                                     enum htt_rx_mpdu_encrypt_type enctype,
1221                                     bool is_decrypted)
1222 {
1223         struct htt_rx_desc *rxd;
1224         enum rx_msdu_decap_format decap;
1225
1226         /* First msdu's decapped header:
1227          * [802.11 header] <-- padded to 4 bytes long
1228          * [crypto param] <-- padded to 4 bytes long
1229          * [amsdu header] <-- only if A-MSDU
1230          * [rfc1042/llc]
1231          *
1232          * Other (2nd, 3rd, ..) msdu's decapped header:
1233          * [amsdu header] <-- only if A-MSDU
1234          * [rfc1042/llc]
1235          */
1236
1237         rxd = (void *)msdu->data - sizeof(*rxd);
1238         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1239                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1240
1241         switch (decap) {
1242         case RX_MSDU_DECAP_RAW:
1243                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1244                                             is_decrypted);
1245                 break;
1246         case RX_MSDU_DECAP_NATIVE_WIFI:
1247                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1248                 break;
1249         case RX_MSDU_DECAP_ETHERNET2_DIX:
1250                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1251                 break;
1252         case RX_MSDU_DECAP_8023_SNAP_LLC:
1253                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1254                 break;
1255         }
1256 }
1257
1258 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1259 {
1260         struct htt_rx_desc *rxd;
1261         u32 flags, info;
1262         bool is_ip4, is_ip6;
1263         bool is_tcp, is_udp;
1264         bool ip_csum_ok, tcpudp_csum_ok;
1265
1266         rxd = (void *)skb->data - sizeof(*rxd);
1267         flags = __le32_to_cpu(rxd->attention.flags);
1268         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1269
1270         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1271         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1272         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1273         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1274         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1275         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1276
1277         if (!is_ip4 && !is_ip6)
1278                 return CHECKSUM_NONE;
1279         if (!is_tcp && !is_udp)
1280                 return CHECKSUM_NONE;
1281         if (!ip_csum_ok)
1282                 return CHECKSUM_NONE;
1283         if (!tcpudp_csum_ok)
1284                 return CHECKSUM_NONE;
1285
1286         return CHECKSUM_UNNECESSARY;
1287 }
1288
1289 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1290 {
1291         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1292 }
1293
1294 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1295                                  struct sk_buff_head *amsdu,
1296                                  struct ieee80211_rx_status *status)
1297 {
1298         struct sk_buff *first;
1299         struct sk_buff *last;
1300         struct sk_buff *msdu;
1301         struct htt_rx_desc *rxd;
1302         struct ieee80211_hdr *hdr;
1303         enum htt_rx_mpdu_encrypt_type enctype;
1304         u8 first_hdr[64];
1305         u8 *qos;
1306         size_t hdr_len;
1307         bool has_fcs_err;
1308         bool has_crypto_err;
1309         bool has_tkip_err;
1310         bool has_peer_idx_invalid;
1311         bool is_decrypted;
1312         bool is_mgmt;
1313         u32 attention;
1314
1315         if (skb_queue_empty(amsdu))
1316                 return;
1317
1318         first = skb_peek(amsdu);
1319         rxd = (void *)first->data - sizeof(*rxd);
1320
1321         is_mgmt = !!(rxd->attention.flags &
1322                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1323
1324         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1325                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1326
1327         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1328          * decapped header. It'll be used for undecapping of each MSDU.
1329          */
1330         hdr = (void *)rxd->rx_hdr_status;
1331         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1332         memcpy(first_hdr, hdr, hdr_len);
1333
1334         /* Each A-MSDU subframe will use the original header as the base and be
1335          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1336          */
1337         hdr = (void *)first_hdr;
1338         qos = ieee80211_get_qos_ctl(hdr);
1339         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1340
1341         /* Some attention flags are valid only in the last MSDU. */
1342         last = skb_peek_tail(amsdu);
1343         rxd = (void *)last->data - sizeof(*rxd);
1344         attention = __le32_to_cpu(rxd->attention.flags);
1345
1346         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1347         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1348         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1349         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1350
1351         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1352          * e.g. due to fcs error, missing peer or invalid key data it will
1353          * report the frame as raw.
1354          */
1355         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1356                         !has_fcs_err &&
1357                         !has_crypto_err &&
1358                         !has_peer_idx_invalid);
1359
1360         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1361         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1362                           RX_FLAG_MMIC_ERROR |
1363                           RX_FLAG_DECRYPTED |
1364                           RX_FLAG_IV_STRIPPED |
1365                           RX_FLAG_ONLY_MONITOR |
1366                           RX_FLAG_MMIC_STRIPPED);
1367
1368         if (has_fcs_err)
1369                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1370
1371         if (has_tkip_err)
1372                 status->flag |= RX_FLAG_MMIC_ERROR;
1373
1374         /* Firmware reports all necessary management frames via WMI already.
1375          * They are not reported to monitor interfaces at all so pass the ones
1376          * coming via HTT to monitor interfaces instead. This simplifies
1377          * matters a lot.
1378          */
1379         if (is_mgmt)
1380                 status->flag |= RX_FLAG_ONLY_MONITOR;
1381
1382         if (is_decrypted) {
1383                 status->flag |= RX_FLAG_DECRYPTED;
1384
1385                 if (likely(!is_mgmt))
1386                         status->flag |= RX_FLAG_IV_STRIPPED |
1387                                         RX_FLAG_MMIC_STRIPPED;
1388 }
1389
1390         skb_queue_walk(amsdu, msdu) {
1391                 ath10k_htt_rx_h_csum_offload(msdu);
1392                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1393                                         is_decrypted);
1394
1395                 /* Undecapping involves copying the original 802.11 header back
1396                  * to sk_buff. If frame is protected and hardware has decrypted
1397                  * it then remove the protected bit.
1398                  */
1399                 if (!is_decrypted)
1400                         continue;
1401                 if (is_mgmt)
1402                         continue;
1403
1404                 hdr = (void *)msdu->data;
1405                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1406         }
1407 }
1408
1409 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1410                                     struct sk_buff_head *amsdu,
1411                                     struct ieee80211_rx_status *status)
1412 {
1413         struct sk_buff *msdu;
1414
1415         while ((msdu = __skb_dequeue(amsdu))) {
1416                 /* Setup per-MSDU flags */
1417                 if (skb_queue_empty(amsdu))
1418                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1419                 else
1420                         status->flag |= RX_FLAG_AMSDU_MORE;
1421
1422                 ath10k_process_rx(ar, status, msdu);
1423         }
1424 }
1425
1426 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1427 {
1428         struct sk_buff *skb, *first;
1429         int space;
1430         int total_len = 0;
1431
1432         /* TODO:  Might could optimize this by using
1433          * skb_try_coalesce or similar method to
1434          * decrease copying, or maybe get mac80211 to
1435          * provide a way to just receive a list of
1436          * skb?
1437          */
1438
1439         first = __skb_dequeue(amsdu);
1440
1441         /* Allocate total length all at once. */
1442         skb_queue_walk(amsdu, skb)
1443                 total_len += skb->len;
1444
1445         space = total_len - skb_tailroom(first);
1446         if ((space > 0) &&
1447             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1448                 /* TODO:  bump some rx-oom error stat */
1449                 /* put it back together so we can free the
1450                  * whole list at once.
1451                  */
1452                 __skb_queue_head(amsdu, first);
1453                 return -1;
1454         }
1455
1456         /* Walk list again, copying contents into
1457          * msdu_head
1458          */
1459         while ((skb = __skb_dequeue(amsdu))) {
1460                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1461                                           skb->len);
1462                 dev_kfree_skb_any(skb);
1463         }
1464
1465         __skb_queue_head(amsdu, first);
1466         return 0;
1467 }
1468
1469 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1470                                     struct sk_buff_head *amsdu)
1471 {
1472         struct sk_buff *first;
1473         struct htt_rx_desc *rxd;
1474         enum rx_msdu_decap_format decap;
1475
1476         first = skb_peek(amsdu);
1477         rxd = (void *)first->data - sizeof(*rxd);
1478         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1479                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1480
1481         /* FIXME: Current unchaining logic can only handle simple case of raw
1482          * msdu chaining. If decapping is other than raw the chaining may be
1483          * more complex and this isn't handled by the current code. Don't even
1484          * try re-constructing such frames - it'll be pretty much garbage.
1485          */
1486         if (decap != RX_MSDU_DECAP_RAW ||
1487             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1488                 __skb_queue_purge(amsdu);
1489                 return;
1490         }
1491
1492         ath10k_unchain_msdu(amsdu);
1493 }
1494
1495 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1496                                         struct sk_buff_head *amsdu,
1497                                         struct ieee80211_rx_status *rx_status)
1498 {
1499         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1500          * invalid/dangerous frames.
1501          */
1502
1503         if (!rx_status->freq) {
1504                 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1505                 return false;
1506         }
1507
1508         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1509                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1510                 return false;
1511         }
1512
1513         return true;
1514 }
1515
1516 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1517                                    struct sk_buff_head *amsdu,
1518                                    struct ieee80211_rx_status *rx_status)
1519 {
1520         if (skb_queue_empty(amsdu))
1521                 return;
1522
1523         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1524                 return;
1525
1526         __skb_queue_purge(amsdu);
1527 }
1528
1529 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1530 {
1531         struct ath10k *ar = htt->ar;
1532         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1533         struct sk_buff_head amsdu;
1534         int ret, num_msdus;
1535
1536         __skb_queue_head_init(&amsdu);
1537
1538         spin_lock_bh(&htt->rx_ring.lock);
1539         if (htt->rx_confused) {
1540                 spin_unlock_bh(&htt->rx_ring.lock);
1541                 return -EIO;
1542         }
1543         ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1544         spin_unlock_bh(&htt->rx_ring.lock);
1545
1546         if (ret < 0) {
1547                 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1548                 __skb_queue_purge(&amsdu);
1549                 /* FIXME: It's probably a good idea to reboot the
1550                  * device instead of leaving it inoperable.
1551                  */
1552                 htt->rx_confused = true;
1553                 return ret;
1554         }
1555
1556         num_msdus = skb_queue_len(&amsdu);
1557         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1558
1559         /* only for ret = 1 indicates chained msdus */
1560         if (ret > 0)
1561                 ath10k_htt_rx_h_unchain(ar, &amsdu);
1562
1563         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1564         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1565         ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1566
1567         return num_msdus;
1568 }
1569
1570 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1571                                       struct htt_rx_indication *rx)
1572 {
1573         struct ath10k *ar = htt->ar;
1574         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1575         int num_mpdu_ranges;
1576         int i, mpdu_count = 0;
1577
1578         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1579                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1580         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1581
1582         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1583                         rx, sizeof(*rx) +
1584                         (sizeof(struct htt_rx_indication_mpdu_range) *
1585                                 num_mpdu_ranges));
1586
1587         for (i = 0; i < num_mpdu_ranges; i++)
1588                 mpdu_count += mpdu_ranges[i].mpdu_count;
1589
1590         atomic_add(mpdu_count, &htt->num_mpdus_ready);
1591 }
1592
1593 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1594                                        struct sk_buff *skb)
1595 {
1596         struct ath10k_htt *htt = &ar->htt;
1597         struct htt_resp *resp = (struct htt_resp *)skb->data;
1598         struct htt_tx_done tx_done = {};
1599         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1600         __le16 msdu_id;
1601         int i;
1602
1603         switch (status) {
1604         case HTT_DATA_TX_STATUS_NO_ACK:
1605                 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1606                 break;
1607         case HTT_DATA_TX_STATUS_OK:
1608                 tx_done.status = HTT_TX_COMPL_STATE_ACK;
1609                 break;
1610         case HTT_DATA_TX_STATUS_DISCARD:
1611         case HTT_DATA_TX_STATUS_POSTPONE:
1612         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1613                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1614                 break;
1615         default:
1616                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1617                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1618                 break;
1619         }
1620
1621         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1622                    resp->data_tx_completion.num_msdus);
1623
1624         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1625                 msdu_id = resp->data_tx_completion.msdus[i];
1626                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1627
1628                 /* kfifo_put: In practice firmware shouldn't fire off per-CE
1629                  * interrupt and main interrupt (MSI/-X range case) for the same
1630                  * HTC service so it should be safe to use kfifo_put w/o lock.
1631                  *
1632                  * From kfifo_put() documentation:
1633                  *  Note that with only one concurrent reader and one concurrent
1634                  *  writer, you don't need extra locking to use these macro.
1635                  */
1636                 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1637                         ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1638                                     tx_done.msdu_id, tx_done.status);
1639                         ath10k_txrx_tx_unref(htt, &tx_done);
1640                 }
1641         }
1642 }
1643
1644 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1645 {
1646         struct htt_rx_addba *ev = &resp->rx_addba;
1647         struct ath10k_peer *peer;
1648         struct ath10k_vif *arvif;
1649         u16 info0, tid, peer_id;
1650
1651         info0 = __le16_to_cpu(ev->info0);
1652         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1653         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1654
1655         ath10k_dbg(ar, ATH10K_DBG_HTT,
1656                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1657                    tid, peer_id, ev->window_size);
1658
1659         spin_lock_bh(&ar->data_lock);
1660         peer = ath10k_peer_find_by_id(ar, peer_id);
1661         if (!peer) {
1662                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1663                             peer_id);
1664                 spin_unlock_bh(&ar->data_lock);
1665                 return;
1666         }
1667
1668         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1669         if (!arvif) {
1670                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1671                             peer->vdev_id);
1672                 spin_unlock_bh(&ar->data_lock);
1673                 return;
1674         }
1675
1676         ath10k_dbg(ar, ATH10K_DBG_HTT,
1677                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1678                    peer->addr, tid, ev->window_size);
1679
1680         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1681         spin_unlock_bh(&ar->data_lock);
1682 }
1683
1684 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1685 {
1686         struct htt_rx_delba *ev = &resp->rx_delba;
1687         struct ath10k_peer *peer;
1688         struct ath10k_vif *arvif;
1689         u16 info0, tid, peer_id;
1690
1691         info0 = __le16_to_cpu(ev->info0);
1692         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1693         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1694
1695         ath10k_dbg(ar, ATH10K_DBG_HTT,
1696                    "htt rx delba tid %hu peer_id %hu\n",
1697                    tid, peer_id);
1698
1699         spin_lock_bh(&ar->data_lock);
1700         peer = ath10k_peer_find_by_id(ar, peer_id);
1701         if (!peer) {
1702                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1703                             peer_id);
1704                 spin_unlock_bh(&ar->data_lock);
1705                 return;
1706         }
1707
1708         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1709         if (!arvif) {
1710                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1711                             peer->vdev_id);
1712                 spin_unlock_bh(&ar->data_lock);
1713                 return;
1714         }
1715
1716         ath10k_dbg(ar, ATH10K_DBG_HTT,
1717                    "htt rx stop rx ba session sta %pM tid %hu\n",
1718                    peer->addr, tid);
1719
1720         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1721         spin_unlock_bh(&ar->data_lock);
1722 }
1723
1724 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1725                                        struct sk_buff_head *amsdu)
1726 {
1727         struct sk_buff *msdu;
1728         struct htt_rx_desc *rxd;
1729
1730         if (skb_queue_empty(list))
1731                 return -ENOBUFS;
1732
1733         if (WARN_ON(!skb_queue_empty(amsdu)))
1734                 return -EINVAL;
1735
1736         while ((msdu = __skb_dequeue(list))) {
1737                 __skb_queue_tail(amsdu, msdu);
1738
1739                 rxd = (void *)msdu->data - sizeof(*rxd);
1740                 if (rxd->msdu_end.common.info0 &
1741                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1742                         break;
1743         }
1744
1745         msdu = skb_peek_tail(amsdu);
1746         rxd = (void *)msdu->data - sizeof(*rxd);
1747         if (!(rxd->msdu_end.common.info0 &
1748               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1749                 skb_queue_splice_init(amsdu, list);
1750                 return -EAGAIN;
1751         }
1752
1753         return 0;
1754 }
1755
1756 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1757                                             struct sk_buff *skb)
1758 {
1759         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1760
1761         if (!ieee80211_has_protected(hdr->frame_control))
1762                 return;
1763
1764         /* Offloaded frames are already decrypted but firmware insists they are
1765          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1766          * will drop the frame.
1767          */
1768
1769         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1770         status->flag |= RX_FLAG_DECRYPTED |
1771                         RX_FLAG_IV_STRIPPED |
1772                         RX_FLAG_MMIC_STRIPPED;
1773 }
1774
1775 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1776                                       struct sk_buff_head *list)
1777 {
1778         struct ath10k_htt *htt = &ar->htt;
1779         struct ieee80211_rx_status *status = &htt->rx_status;
1780         struct htt_rx_offload_msdu *rx;
1781         struct sk_buff *msdu;
1782         size_t offset;
1783         int num_msdu = 0;
1784
1785         while ((msdu = __skb_dequeue(list))) {
1786                 /* Offloaded frames don't have Rx descriptor. Instead they have
1787                  * a short meta information header.
1788                  */
1789
1790                 rx = (void *)msdu->data;
1791
1792                 skb_put(msdu, sizeof(*rx));
1793                 skb_pull(msdu, sizeof(*rx));
1794
1795                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1796                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1797                         dev_kfree_skb_any(msdu);
1798                         continue;
1799                 }
1800
1801                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1802
1803                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1804                  * actual payload is unaligned. Align the frame.  Otherwise
1805                  * mac80211 complains.  This shouldn't reduce performance much
1806                  * because these offloaded frames are rare.
1807                  */
1808                 offset = 4 - ((unsigned long)msdu->data & 3);
1809                 skb_put(msdu, offset);
1810                 memmove(msdu->data + offset, msdu->data, msdu->len);
1811                 skb_pull(msdu, offset);
1812
1813                 /* FIXME: The frame is NWifi. Re-construct QoS Control
1814                  * if possible later.
1815                  */
1816
1817                 memset(status, 0, sizeof(*status));
1818                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1819
1820                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1821                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1822                 ath10k_process_rx(ar, status, msdu);
1823                 num_msdu++;
1824         }
1825         return num_msdu;
1826 }
1827
1828 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1829 {
1830         struct ath10k_htt *htt = &ar->htt;
1831         struct htt_resp *resp = (void *)skb->data;
1832         struct ieee80211_rx_status *status = &htt->rx_status;
1833         struct sk_buff_head list;
1834         struct sk_buff_head amsdu;
1835         u16 peer_id;
1836         u16 msdu_count;
1837         u8 vdev_id;
1838         u8 tid;
1839         bool offload;
1840         bool frag;
1841         int ret, num_msdus = 0;
1842
1843         lockdep_assert_held(&htt->rx_ring.lock);
1844
1845         if (htt->rx_confused)
1846                 return -EIO;
1847
1848         skb_pull(skb, sizeof(resp->hdr));
1849         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1850
1851         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1852         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1853         vdev_id = resp->rx_in_ord_ind.vdev_id;
1854         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1855         offload = !!(resp->rx_in_ord_ind.info &
1856                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1857         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1858
1859         ath10k_dbg(ar, ATH10K_DBG_HTT,
1860                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1861                    vdev_id, peer_id, tid, offload, frag, msdu_count);
1862
1863         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1864                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1865                 return -EINVAL;
1866         }
1867
1868         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1869          * extracted and processed.
1870          */
1871         __skb_queue_head_init(&list);
1872         ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1873         if (ret < 0) {
1874                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1875                 htt->rx_confused = true;
1876                 return -EIO;
1877         }
1878
1879         /* Offloaded frames are very different and need to be handled
1880          * separately.
1881          */
1882         if (offload)
1883                 num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list);
1884
1885         while (!skb_queue_empty(&list)) {
1886                 __skb_queue_head_init(&amsdu);
1887                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1888                 switch (ret) {
1889                 case 0:
1890                         /* Note: The in-order indication may report interleaved
1891                          * frames from different PPDUs meaning reported rx rate
1892                          * to mac80211 isn't accurate/reliable. It's still
1893                          * better to report something than nothing though. This
1894                          * should still give an idea about rx rate to the user.
1895                          */
1896                         num_msdus += skb_queue_len(&amsdu);
1897                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1898                         ath10k_htt_rx_h_filter(ar, &amsdu, status);
1899                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1900                         ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1901                         break;
1902                 case -EAGAIN:
1903                         /* fall through */
1904                 default:
1905                         /* Should not happen. */
1906                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1907                         htt->rx_confused = true;
1908                         __skb_queue_purge(&list);
1909                         return -EIO;
1910                 }
1911         }
1912         return num_msdus;
1913 }
1914
1915 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1916                                                    const __le32 *resp_ids,
1917                                                    int num_resp_ids)
1918 {
1919         int i;
1920         u32 resp_id;
1921
1922         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
1923                    num_resp_ids);
1924
1925         for (i = 0; i < num_resp_ids; i++) {
1926                 resp_id = le32_to_cpu(resp_ids[i]);
1927
1928                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
1929                            resp_id);
1930
1931                 /* TODO: free resp_id */
1932         }
1933 }
1934
1935 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
1936 {
1937         struct ieee80211_hw *hw = ar->hw;
1938         struct ieee80211_txq *txq;
1939         struct htt_resp *resp = (struct htt_resp *)skb->data;
1940         struct htt_tx_fetch_record *record;
1941         size_t len;
1942         size_t max_num_bytes;
1943         size_t max_num_msdus;
1944         size_t num_bytes;
1945         size_t num_msdus;
1946         const __le32 *resp_ids;
1947         u16 num_records;
1948         u16 num_resp_ids;
1949         u16 peer_id;
1950         u8 tid;
1951         int ret;
1952         int i;
1953
1954         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
1955
1956         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
1957         if (unlikely(skb->len < len)) {
1958                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
1959                 return;
1960         }
1961
1962         num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
1963         num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
1964
1965         len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
1966         len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
1967
1968         if (unlikely(skb->len < len)) {
1969                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
1970                 return;
1971         }
1972
1973         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
1974                    num_records, num_resp_ids,
1975                    le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
1976
1977         if (!ar->htt.tx_q_state.enabled) {
1978                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
1979                 return;
1980         }
1981
1982         if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
1983                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
1984                 return;
1985         }
1986
1987         rcu_read_lock();
1988
1989         for (i = 0; i < num_records; i++) {
1990                 record = &resp->tx_fetch_ind.records[i];
1991                 peer_id = MS(le16_to_cpu(record->info),
1992                              HTT_TX_FETCH_RECORD_INFO_PEER_ID);
1993                 tid = MS(le16_to_cpu(record->info),
1994                          HTT_TX_FETCH_RECORD_INFO_TID);
1995                 max_num_msdus = le16_to_cpu(record->num_msdus);
1996                 max_num_bytes = le32_to_cpu(record->num_bytes);
1997
1998                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
1999                            i, peer_id, tid, max_num_msdus, max_num_bytes);
2000
2001                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2002                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2003                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2004                                     peer_id, tid);
2005                         continue;
2006                 }
2007
2008                 spin_lock_bh(&ar->data_lock);
2009                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2010                 spin_unlock_bh(&ar->data_lock);
2011
2012                 /* It is okay to release the lock and use txq because RCU read
2013                  * lock is held.
2014                  */
2015
2016                 if (unlikely(!txq)) {
2017                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2018                                     peer_id, tid);
2019                         continue;
2020                 }
2021
2022                 num_msdus = 0;
2023                 num_bytes = 0;
2024
2025                 while (num_msdus < max_num_msdus &&
2026                        num_bytes < max_num_bytes) {
2027                         ret = ath10k_mac_tx_push_txq(hw, txq);
2028                         if (ret < 0)
2029                                 break;
2030
2031                         num_msdus++;
2032                         num_bytes += ret;
2033                 }
2034
2035                 record->num_msdus = cpu_to_le16(num_msdus);
2036                 record->num_bytes = cpu_to_le32(num_bytes);
2037
2038                 ath10k_htt_tx_txq_recalc(hw, txq);
2039         }
2040
2041         rcu_read_unlock();
2042
2043         resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2044         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2045
2046         ret = ath10k_htt_tx_fetch_resp(ar,
2047                                        resp->tx_fetch_ind.token,
2048                                        resp->tx_fetch_ind.fetch_seq_num,
2049                                        resp->tx_fetch_ind.records,
2050                                        num_records);
2051         if (unlikely(ret)) {
2052                 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2053                             le32_to_cpu(resp->tx_fetch_ind.token), ret);
2054                 /* FIXME: request fw restart */
2055         }
2056
2057         ath10k_htt_tx_txq_sync(ar);
2058 }
2059
2060 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2061                                            struct sk_buff *skb)
2062 {
2063         const struct htt_resp *resp = (void *)skb->data;
2064         size_t len;
2065         int num_resp_ids;
2066
2067         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2068
2069         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2070         if (unlikely(skb->len < len)) {
2071                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2072                 return;
2073         }
2074
2075         num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2076         len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2077
2078         if (unlikely(skb->len < len)) {
2079                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2080                 return;
2081         }
2082
2083         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2084                                                resp->tx_fetch_confirm.resp_ids,
2085                                                num_resp_ids);
2086 }
2087
2088 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2089                                              struct sk_buff *skb)
2090 {
2091         const struct htt_resp *resp = (void *)skb->data;
2092         const struct htt_tx_mode_switch_record *record;
2093         struct ieee80211_txq *txq;
2094         struct ath10k_txq *artxq;
2095         size_t len;
2096         size_t num_records;
2097         enum htt_tx_mode_switch_mode mode;
2098         bool enable;
2099         u16 info0;
2100         u16 info1;
2101         u16 threshold;
2102         u16 peer_id;
2103         u8 tid;
2104         int i;
2105
2106         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2107
2108         len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2109         if (unlikely(skb->len < len)) {
2110                 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2111                 return;
2112         }
2113
2114         info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2115         info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2116
2117         enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2118         num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2119         mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2120         threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2121
2122         ath10k_dbg(ar, ATH10K_DBG_HTT,
2123                    "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2124                    info0, info1, enable, num_records, mode, threshold);
2125
2126         len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2127
2128         if (unlikely(skb->len < len)) {
2129                 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2130                 return;
2131         }
2132
2133         switch (mode) {
2134         case HTT_TX_MODE_SWITCH_PUSH:
2135         case HTT_TX_MODE_SWITCH_PUSH_PULL:
2136                 break;
2137         default:
2138                 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2139                             mode);
2140                 return;
2141         }
2142
2143         if (!enable)
2144                 return;
2145
2146         ar->htt.tx_q_state.enabled = enable;
2147         ar->htt.tx_q_state.mode = mode;
2148         ar->htt.tx_q_state.num_push_allowed = threshold;
2149
2150         rcu_read_lock();
2151
2152         for (i = 0; i < num_records; i++) {
2153                 record = &resp->tx_mode_switch_ind.records[i];
2154                 info0 = le16_to_cpu(record->info0);
2155                 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2156                 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2157
2158                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2159                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2160                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2161                                     peer_id, tid);
2162                         continue;
2163                 }
2164
2165                 spin_lock_bh(&ar->data_lock);
2166                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2167                 spin_unlock_bh(&ar->data_lock);
2168
2169                 /* It is okay to release the lock and use txq because RCU read
2170                  * lock is held.
2171                  */
2172
2173                 if (unlikely(!txq)) {
2174                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2175                                     peer_id, tid);
2176                         continue;
2177                 }
2178
2179                 spin_lock_bh(&ar->htt.tx_lock);
2180                 artxq = (void *)txq->drv_priv;
2181                 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2182                 spin_unlock_bh(&ar->htt.tx_lock);
2183         }
2184
2185         rcu_read_unlock();
2186
2187         ath10k_mac_tx_push_pending(ar);
2188 }
2189
2190 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2191 {
2192         bool release;
2193
2194         release = ath10k_htt_t2h_msg_handler(ar, skb);
2195
2196         /* Free the indication buffer */
2197         if (release)
2198                 dev_kfree_skb_any(skb);
2199 }
2200
2201 static inline bool is_valid_legacy_rate(u8 rate)
2202 {
2203         static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2204                                           18, 24, 36, 48, 54};
2205         int i;
2206
2207         for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2208                 if (rate == legacy_rates[i])
2209                         return true;
2210         }
2211
2212         return false;
2213 }
2214
2215 static void
2216 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2217                                 struct ieee80211_sta *sta,
2218                                 struct ath10k_per_peer_tx_stats *peer_stats)
2219 {
2220         struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2221         u8 rate = 0, sgi;
2222         struct rate_info txrate;
2223
2224         lockdep_assert_held(&ar->data_lock);
2225
2226         txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2227         txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2228         txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2229         txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2230         sgi = ATH10K_HW_GI(peer_stats->flags);
2231
2232         if (((txrate.flags == WMI_RATE_PREAMBLE_HT) ||
2233              (txrate.flags == WMI_RATE_PREAMBLE_VHT)) && txrate.mcs > 9) {
2234                 ath10k_warn(ar, "Invalid mcs %hhd peer stats", txrate.mcs);
2235                 return;
2236         }
2237
2238         memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2239
2240         if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2241             txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2242                 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2243
2244                 if (!is_valid_legacy_rate(rate)) {
2245                         ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2246                                     rate);
2247                         return;
2248                 }
2249
2250                 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2251                 rate *= 10;
2252                 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2253                         rate = rate - 5;
2254                 arsta->txrate.legacy = rate;
2255         } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2256                 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2257                 arsta->txrate.mcs = txrate.mcs;
2258         } else {
2259                 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2260                 arsta->txrate.mcs = txrate.mcs;
2261         }
2262
2263         if (sgi)
2264                 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2265
2266         arsta->txrate.nss = txrate.nss;
2267         arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
2268 }
2269
2270 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2271                                         struct sk_buff *skb)
2272 {
2273         struct htt_resp *resp = (struct htt_resp *)skb->data;
2274         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2275         struct htt_per_peer_tx_stats_ind *tx_stats;
2276         struct ieee80211_sta *sta;
2277         struct ath10k_peer *peer;
2278         int peer_id, i;
2279         u8 ppdu_len, num_ppdu;
2280
2281         num_ppdu = resp->peer_tx_stats.num_ppdu;
2282         ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2283
2284         if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2285                 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2286                 return;
2287         }
2288
2289         tx_stats = (struct htt_per_peer_tx_stats_ind *)
2290                         (resp->peer_tx_stats.payload);
2291         peer_id = __le16_to_cpu(tx_stats->peer_id);
2292
2293         rcu_read_lock();
2294         spin_lock_bh(&ar->data_lock);
2295         peer = ath10k_peer_find_by_id(ar, peer_id);
2296         if (!peer) {
2297                 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2298                             peer_id);
2299                 goto out;
2300         }
2301
2302         sta = peer->sta;
2303         for (i = 0; i < num_ppdu; i++) {
2304                 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2305                            (resp->peer_tx_stats.payload + i * ppdu_len);
2306
2307                 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2308                 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2309                 p_tx_stats->failed_bytes =
2310                                 __le32_to_cpu(tx_stats->failed_bytes);
2311                 p_tx_stats->ratecode = tx_stats->ratecode;
2312                 p_tx_stats->flags = tx_stats->flags;
2313                 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2314                 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2315                 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2316
2317                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2318         }
2319
2320 out:
2321         spin_unlock_bh(&ar->data_lock);
2322         rcu_read_unlock();
2323 }
2324
2325 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2326 {
2327         struct ath10k_htt *htt = &ar->htt;
2328         struct htt_resp *resp = (struct htt_resp *)skb->data;
2329         enum htt_t2h_msg_type type;
2330
2331         /* confirm alignment */
2332         if (!IS_ALIGNED((unsigned long)skb->data, 4))
2333                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2334
2335         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2336                    resp->hdr.msg_type);
2337
2338         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2339                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2340                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2341                 return true;
2342         }
2343         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2344
2345         switch (type) {
2346         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2347                 htt->target_version_major = resp->ver_resp.major;
2348                 htt->target_version_minor = resp->ver_resp.minor;
2349                 complete(&htt->target_version_received);
2350                 break;
2351         }
2352         case HTT_T2H_MSG_TYPE_RX_IND:
2353                 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2354                 break;
2355         case HTT_T2H_MSG_TYPE_PEER_MAP: {
2356                 struct htt_peer_map_event ev = {
2357                         .vdev_id = resp->peer_map.vdev_id,
2358                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2359                 };
2360                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2361                 ath10k_peer_map_event(htt, &ev);
2362                 break;
2363         }
2364         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2365                 struct htt_peer_unmap_event ev = {
2366                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2367                 };
2368                 ath10k_peer_unmap_event(htt, &ev);
2369                 break;
2370         }
2371         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2372                 struct htt_tx_done tx_done = {};
2373                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2374
2375                 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2376
2377                 switch (status) {
2378                 case HTT_MGMT_TX_STATUS_OK:
2379                         tx_done.status = HTT_TX_COMPL_STATE_ACK;
2380                         break;
2381                 case HTT_MGMT_TX_STATUS_RETRY:
2382                         tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2383                         break;
2384                 case HTT_MGMT_TX_STATUS_DROP:
2385                         tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2386                         break;
2387                 }
2388
2389                 status = ath10k_txrx_tx_unref(htt, &tx_done);
2390                 if (!status) {
2391                         spin_lock_bh(&htt->tx_lock);
2392                         ath10k_htt_tx_mgmt_dec_pending(htt);
2393                         spin_unlock_bh(&htt->tx_lock);
2394                 }
2395                 break;
2396         }
2397         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2398                 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2399                 break;
2400         case HTT_T2H_MSG_TYPE_SEC_IND: {
2401                 struct ath10k *ar = htt->ar;
2402                 struct htt_security_indication *ev = &resp->security_indication;
2403
2404                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2405                            "sec ind peer_id %d unicast %d type %d\n",
2406                           __le16_to_cpu(ev->peer_id),
2407                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2408                           MS(ev->flags, HTT_SECURITY_TYPE));
2409                 complete(&ar->install_key_done);
2410                 break;
2411         }
2412         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2413                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2414                                 skb->data, skb->len);
2415                 atomic_inc(&htt->num_mpdus_ready);
2416                 break;
2417         }
2418         case HTT_T2H_MSG_TYPE_TEST:
2419                 break;
2420         case HTT_T2H_MSG_TYPE_STATS_CONF:
2421                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2422                 break;
2423         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2424                 /* Firmware can return tx frames if it's unable to fully
2425                  * process them and suspects host may be able to fix it. ath10k
2426                  * sends all tx frames as already inspected so this shouldn't
2427                  * happen unless fw has a bug.
2428                  */
2429                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2430                 break;
2431         case HTT_T2H_MSG_TYPE_RX_ADDBA:
2432                 ath10k_htt_rx_addba(ar, resp);
2433                 break;
2434         case HTT_T2H_MSG_TYPE_RX_DELBA:
2435                 ath10k_htt_rx_delba(ar, resp);
2436                 break;
2437         case HTT_T2H_MSG_TYPE_PKTLOG: {
2438                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2439                                         skb->len -
2440                                         offsetof(struct htt_resp,
2441                                                  pktlog_msg.payload));
2442                 break;
2443         }
2444         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2445                 /* Ignore this event because mac80211 takes care of Rx
2446                  * aggregation reordering.
2447                  */
2448                 break;
2449         }
2450         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2451                 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2452                 return false;
2453         }
2454         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2455                 break;
2456         case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2457                 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2458                 u32 freq = __le32_to_cpu(resp->chan_change.freq);
2459
2460                 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2461                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2462                            "htt chan change freq %u phymode %s\n",
2463                            freq, ath10k_wmi_phymode_str(phymode));
2464                 break;
2465         }
2466         case HTT_T2H_MSG_TYPE_AGGR_CONF:
2467                 break;
2468         case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2469                 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2470
2471                 if (!tx_fetch_ind) {
2472                         ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2473                         break;
2474                 }
2475                 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2476                 break;
2477         }
2478         case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2479                 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2480                 break;
2481         case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2482                 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2483                 break;
2484         case HTT_T2H_MSG_TYPE_PEER_STATS:
2485                 ath10k_htt_fetch_peer_stats(ar, skb);
2486                 break;
2487         case HTT_T2H_MSG_TYPE_EN_STATS:
2488         default:
2489                 ath10k_warn(ar, "htt event (%d) not handled\n",
2490                             resp->hdr.msg_type);
2491                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2492                                 skb->data, skb->len);
2493                 break;
2494         }
2495         return true;
2496 }
2497 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2498
2499 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2500                                              struct sk_buff *skb)
2501 {
2502         trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2503         dev_kfree_skb_any(skb);
2504 }
2505 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2506
2507 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2508 {
2509         struct ath10k_htt *htt = &ar->htt;
2510         struct htt_tx_done tx_done = {};
2511         struct sk_buff_head tx_ind_q;
2512         struct sk_buff *skb;
2513         unsigned long flags;
2514         int quota = 0, done, num_rx_msdus;
2515         bool resched_napi = false;
2516
2517         __skb_queue_head_init(&tx_ind_q);
2518
2519         /* Since in-ord-ind can deliver more than 1 A-MSDU in single event,
2520          * process it first to utilize full available quota.
2521          */
2522         while (quota < budget) {
2523                 if (skb_queue_empty(&htt->rx_in_ord_compl_q))
2524                         break;
2525
2526                 skb = __skb_dequeue(&htt->rx_in_ord_compl_q);
2527                 if (!skb) {
2528                         resched_napi = true;
2529                         goto exit;
2530                 }
2531
2532                 spin_lock_bh(&htt->rx_ring.lock);
2533                 num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb);
2534                 spin_unlock_bh(&htt->rx_ring.lock);
2535                 if (num_rx_msdus < 0) {
2536                         resched_napi = true;
2537                         goto exit;
2538                 }
2539
2540                 dev_kfree_skb_any(skb);
2541                 if (num_rx_msdus > 0)
2542                         quota += num_rx_msdus;
2543
2544                 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2545                     !skb_queue_empty(&htt->rx_in_ord_compl_q)) {
2546                         resched_napi = true;
2547                         goto exit;
2548                 }
2549         }
2550
2551         while (quota < budget) {
2552                 /* no more data to receive */
2553                 if (!atomic_read(&htt->num_mpdus_ready))
2554                         break;
2555
2556                 num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt);
2557                 if (num_rx_msdus < 0) {
2558                         resched_napi = true;
2559                         goto exit;
2560                 }
2561
2562                 quota += num_rx_msdus;
2563                 atomic_dec(&htt->num_mpdus_ready);
2564                 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2565                     atomic_read(&htt->num_mpdus_ready)) {
2566                         resched_napi = true;
2567                         goto exit;
2568                 }
2569         }
2570
2571         /* From NAPI documentation:
2572          *  The napi poll() function may also process TX completions, in which
2573          *  case if it processes the entire TX ring then it should count that
2574          *  work as the rest of the budget.
2575          */
2576         if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2577                 quota = budget;
2578
2579         /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2580          * From kfifo_get() documentation:
2581          *  Note that with only one concurrent reader and one concurrent writer,
2582          *  you don't need extra locking to use these macro.
2583          */
2584         while (kfifo_get(&htt->txdone_fifo, &tx_done))
2585                 ath10k_txrx_tx_unref(htt, &tx_done);
2586
2587         ath10k_mac_tx_push_pending(ar);
2588
2589         spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2590         skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2591         spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2592
2593         while ((skb = __skb_dequeue(&tx_ind_q))) {
2594                 ath10k_htt_rx_tx_fetch_ind(ar, skb);
2595                 dev_kfree_skb_any(skb);
2596         }
2597
2598 exit:
2599         ath10k_htt_rx_msdu_buff_replenish(htt);
2600         /* In case of rx failure or more data to read, report budget
2601          * to reschedule NAPI poll
2602          */
2603         done = resched_napi ? budget : quota;
2604
2605         return done;
2606 }
2607 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);