]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath5k/phy.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[karo-tx-linux.git] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #include <linux/delay.h>
24
25 #include "ath5k.h"
26 #include "reg.h"
27 #include "base.h"
28 #include "rfbuffer.h"
29 #include "rfgain.h"
30
31 /*
32  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33  */
34 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35                                         const struct ath5k_rf_reg *rf_regs,
36                                         u32 val, u8 reg_id, bool set)
37 {
38         const struct ath5k_rf_reg *rfreg = NULL;
39         u8 offset, bank, num_bits, col, position;
40         u16 entry;
41         u32 mask, data, last_bit, bits_shifted, first_bit;
42         u32 *rfb;
43         s32 bits_left;
44         int i;
45
46         data = 0;
47         rfb = ah->ah_rf_banks;
48
49         for (i = 0; i < ah->ah_rf_regs_count; i++) {
50                 if (rf_regs[i].index == reg_id) {
51                         rfreg = &rf_regs[i];
52                         break;
53                 }
54         }
55
56         if (rfb == NULL || rfreg == NULL) {
57                 ATH5K_PRINTF("Rf register not found!\n");
58                 /* should not happen */
59                 return 0;
60         }
61
62         bank = rfreg->bank;
63         num_bits = rfreg->field.len;
64         first_bit = rfreg->field.pos;
65         col = rfreg->field.col;
66
67         /* first_bit is an offset from bank's
68          * start. Since we have all banks on
69          * the same array, we use this offset
70          * to mark each bank's start */
71         offset = ah->ah_offset[bank];
72
73         /* Boundary check */
74         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
75                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
76                 return 0;
77         }
78
79         entry = ((first_bit - 1) / 8) + offset;
80         position = (first_bit - 1) % 8;
81
82         if (set)
83                 data = ath5k_hw_bitswap(val, num_bits);
84
85         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86         position = 0, entry++) {
87
88                 last_bit = (position + bits_left > 8) ? 8 :
89                                         position + bits_left;
90
91                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92                                                                 (col * 8);
93
94                 if (set) {
95                         rfb[entry] &= ~mask;
96                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
97                         data >>= (8 - position);
98                 } else {
99                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100                                 << bits_shifted;
101                         bits_shifted += last_bit - position;
102                 }
103
104                 bits_left -= 8 - position;
105         }
106
107         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
108
109         return data;
110 }
111
112 /**********************\
113 * RF Gain optimization *
114 \**********************/
115
116 /*
117  * This code is used to optimize rf gain on different environments
118  * (temperature mostly) based on feedback from a power detector.
119  *
120  * It's only used on RF5111 and RF5112, later RF chips seem to have
121  * auto adjustment on hw -notice they have a much smaller BANK 7 and
122  * no gain optimization ladder-.
123  *
124  * For more infos check out this patent doc
125  * http://www.freepatentsonline.com/7400691.html
126  *
127  * This paper describes power drops as seen on the receiver due to
128  * probe packets
129  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130  * %20of%20Power%20Control.pdf
131  *
132  * And this is the MadWiFi bug entry related to the above
133  * http://madwifi-project.org/ticket/1659
134  * with various measurements and diagrams
135  *
136  * TODO: Deal with power drops due to probes by setting an apropriate
137  * tx power on the probe packets ! Make this part of the calibration process.
138  */
139
140 /* Initialize ah_gain durring attach */
141 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142 {
143         /* Initialize the gain optimization values */
144         switch (ah->ah_radio) {
145         case AR5K_RF5111:
146                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147                 ah->ah_gain.g_low = 20;
148                 ah->ah_gain.g_high = 35;
149                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150                 break;
151         case AR5K_RF5112:
152                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153                 ah->ah_gain.g_low = 20;
154                 ah->ah_gain.g_high = 85;
155                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156                 break;
157         default:
158                 return -EINVAL;
159         }
160
161         return 0;
162 }
163
164 /* Schedule a gain probe check on the next transmited packet.
165  * That means our next packet is going to be sent with lower
166  * tx power and a Peak to Average Power Detector (PAPD) will try
167  * to measure the gain.
168  *
169  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
170  * just after we enable the probe so that we don't mess with
171  * standard traffic ? Maybe it's time to use sw interrupts and
172  * a probe tasklet !!!
173  */
174 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175 {
176
177         /* Skip if gain calibration is inactive or
178          * we already handle a probe request */
179         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180                 return;
181
182         /* Send the packet with 2dB below max power as
183          * patent doc suggest */
184         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
185                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
186                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190 }
191
192 /* Calculate gain_F measurement correction
193  * based on the current step for RF5112 rev. 2 */
194 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
195 {
196         u32 mix, step;
197         u32 *rf;
198         const struct ath5k_gain_opt *go;
199         const struct ath5k_gain_opt_step *g_step;
200         const struct ath5k_rf_reg *rf_regs;
201
202         /* Only RF5112 Rev. 2 supports it */
203         if ((ah->ah_radio != AR5K_RF5112) ||
204         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205                 return 0;
206
207         go = &rfgain_opt_5112;
208         rf_regs = rf_regs_5112a;
209         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
210
211         g_step = &go->go_step[ah->ah_gain.g_step_idx];
212
213         if (ah->ah_rf_banks == NULL)
214                 return 0;
215
216         rf = ah->ah_rf_banks;
217         ah->ah_gain.g_f_corr = 0;
218
219         /* No VGA (Variable Gain Amplifier) override, skip */
220         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
221                 return 0;
222
223         /* Mix gain stepping */
224         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
225
226         /* Mix gain override */
227         mix = g_step->gos_param[0];
228
229         switch (mix) {
230         case 3:
231                 ah->ah_gain.g_f_corr = step * 2;
232                 break;
233         case 2:
234                 ah->ah_gain.g_f_corr = (step - 5) * 2;
235                 break;
236         case 1:
237                 ah->ah_gain.g_f_corr = step;
238                 break;
239         default:
240                 ah->ah_gain.g_f_corr = 0;
241                 break;
242         }
243
244         return ah->ah_gain.g_f_corr;
245 }
246
247 /* Check if current gain_F measurement is in the range of our
248  * power detector windows. If we get a measurement outside range
249  * we know it's not accurate (detectors can't measure anything outside
250  * their detection window) so we must ignore it */
251 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
252 {
253         const struct ath5k_rf_reg *rf_regs;
254         u32 step, mix_ovr, level[4];
255         u32 *rf;
256
257         if (ah->ah_rf_banks == NULL)
258                 return false;
259
260         rf = ah->ah_rf_banks;
261
262         if (ah->ah_radio == AR5K_RF5111) {
263
264                 rf_regs = rf_regs_5111;
265                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268                         false);
269
270                 level[0] = 0;
271                 level[1] = (step == 63) ? 50 : step + 4;
272                 level[2] = (step != 63) ? 64 : level[0];
273                 level[3] = level[2] + 50 ;
274
275                 ah->ah_gain.g_high = level[3] -
276                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
277                 ah->ah_gain.g_low = level[0] +
278                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
279         } else {
280
281                 rf_regs = rf_regs_5112;
282                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285                         false);
286
287                 level[0] = level[2] = 0;
288
289                 if (mix_ovr == 1) {
290                         level[1] = level[3] = 83;
291                 } else {
292                         level[1] = level[3] = 107;
293                         ah->ah_gain.g_high = 55;
294                 }
295         }
296
297         return (ah->ah_gain.g_current >= level[0] &&
298                         ah->ah_gain.g_current <= level[1]) ||
299                 (ah->ah_gain.g_current >= level[2] &&
300                         ah->ah_gain.g_current <= level[3]);
301 }
302
303 /* Perform gain_F adjustment by choosing the right set
304  * of parameters from rf gain optimization ladder */
305 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
306 {
307         const struct ath5k_gain_opt *go;
308         const struct ath5k_gain_opt_step *g_step;
309         int ret = 0;
310
311         switch (ah->ah_radio) {
312         case AR5K_RF5111:
313                 go = &rfgain_opt_5111;
314                 break;
315         case AR5K_RF5112:
316                 go = &rfgain_opt_5112;
317                 break;
318         default:
319                 return 0;
320         }
321
322         g_step = &go->go_step[ah->ah_gain.g_step_idx];
323
324         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
325
326                 /* Reached maximum */
327                 if (ah->ah_gain.g_step_idx == 0)
328                         return -1;
329
330                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
332                                 ah->ah_gain.g_step_idx > 0;
333                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
334                         ah->ah_gain.g_target -= 2 *
335                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
336                             g_step->gos_gain);
337
338                 ret = 1;
339                 goto done;
340         }
341
342         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
343
344                 /* Reached minimum */
345                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346                         return -2;
347
348                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
351                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
352                         ah->ah_gain.g_target -= 2 *
353                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
354                             g_step->gos_gain);
355
356                 ret = 2;
357                 goto done;
358         }
359
360 done:
361         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362                 "ret %d, gain step %u, current gain %u, target gain %u\n",
363                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364                 ah->ah_gain.g_target);
365
366         return ret;
367 }
368
369 /* Main callback for thermal rf gain calibration engine
370  * Check for a new gain reading and schedule an adjustment
371  * if needed.
372  *
373  * TODO: Use sw interrupt to schedule reset if gain_F needs
374  * adjustment */
375 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376 {
377         u32 data, type;
378         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380         ATH5K_TRACE(ah->ah_sc);
381
382         if (ah->ah_rf_banks == NULL ||
383         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384                 return AR5K_RFGAIN_INACTIVE;
385
386         /* No check requested, either engine is inactive
387          * or an adjustment is already requested */
388         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389                 goto done;
390
391         /* Read the PAPD (Peak to Average Power Detector)
392          * register */
393         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395         /* No probe is scheduled, read gain_F measurement */
396         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400                 /* If tx packet is CCK correct the gain_F measurement
401                  * by cck ofdm gain delta */
402                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404                                 ah->ah_gain.g_current +=
405                                         ee->ee_cck_ofdm_gain_delta;
406                         else
407                                 ah->ah_gain.g_current +=
408                                         AR5K_GAIN_CCK_PROBE_CORR;
409                 }
410
411                 /* Further correct gain_F measurement for
412                  * RF5112A radios */
413                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414                         ath5k_hw_rf_gainf_corr(ah);
415                         ah->ah_gain.g_current =
416                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418                                 0;
419                 }
420
421                 /* Check if measurement is ok and if we need
422                  * to adjust gain, schedule a gain adjustment,
423                  * else switch back to the acive state */
424                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
425                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426                 ath5k_hw_rf_gainf_adjust(ah)) {
427                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428                 } else {
429                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430                 }
431         }
432
433 done:
434         return ah->ah_gain.g_state;
435 }
436
437 /* Write initial rf gain table to set the RF sensitivity
438  * this one works on all RF chips and has nothing to do
439  * with gain_F calibration */
440 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441 {
442         const struct ath5k_ini_rfgain *ath5k_rfg;
443         unsigned int i, size;
444
445         switch (ah->ah_radio) {
446         case AR5K_RF5111:
447                 ath5k_rfg = rfgain_5111;
448                 size = ARRAY_SIZE(rfgain_5111);
449                 break;
450         case AR5K_RF5112:
451                 ath5k_rfg = rfgain_5112;
452                 size = ARRAY_SIZE(rfgain_5112);
453                 break;
454         case AR5K_RF2413:
455                 ath5k_rfg = rfgain_2413;
456                 size = ARRAY_SIZE(rfgain_2413);
457                 break;
458         case AR5K_RF2316:
459                 ath5k_rfg = rfgain_2316;
460                 size = ARRAY_SIZE(rfgain_2316);
461                 break;
462         case AR5K_RF5413:
463                 ath5k_rfg = rfgain_5413;
464                 size = ARRAY_SIZE(rfgain_5413);
465                 break;
466         case AR5K_RF2317:
467         case AR5K_RF2425:
468                 ath5k_rfg = rfgain_2425;
469                 size = ARRAY_SIZE(rfgain_2425);
470                 break;
471         default:
472                 return -EINVAL;
473         }
474
475         switch (freq) {
476         case AR5K_INI_RFGAIN_2GHZ:
477         case AR5K_INI_RFGAIN_5GHZ:
478                 break;
479         default:
480                 return -EINVAL;
481         }
482
483         for (i = 0; i < size; i++) {
484                 AR5K_REG_WAIT(i);
485                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486                         (u32)ath5k_rfg[i].rfg_register);
487         }
488
489         return 0;
490 }
491
492
493
494 /********************\
495 * RF Registers setup *
496 \********************/
497
498
499 /*
500  * Setup RF registers by writing rf buffer on hw
501  */
502 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
503                 unsigned int mode)
504 {
505         const struct ath5k_rf_reg *rf_regs;
506         const struct ath5k_ini_rfbuffer *ini_rfb;
507         const struct ath5k_gain_opt *go = NULL;
508         const struct ath5k_gain_opt_step *g_step;
509         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510         u8 ee_mode = 0;
511         u32 *rfb;
512         int i, obdb = -1, bank = -1;
513
514         switch (ah->ah_radio) {
515         case AR5K_RF5111:
516                 rf_regs = rf_regs_5111;
517                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518                 ini_rfb = rfb_5111;
519                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520                 go = &rfgain_opt_5111;
521                 break;
522         case AR5K_RF5112:
523                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524                         rf_regs = rf_regs_5112a;
525                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526                         ini_rfb = rfb_5112a;
527                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528                 } else {
529                         rf_regs = rf_regs_5112;
530                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531                         ini_rfb = rfb_5112;
532                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533                 }
534                 go = &rfgain_opt_5112;
535                 break;
536         case AR5K_RF2413:
537                 rf_regs = rf_regs_2413;
538                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539                 ini_rfb = rfb_2413;
540                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541                 break;
542         case AR5K_RF2316:
543                 rf_regs = rf_regs_2316;
544                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545                 ini_rfb = rfb_2316;
546                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547                 break;
548         case AR5K_RF5413:
549                 rf_regs = rf_regs_5413;
550                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551                 ini_rfb = rfb_5413;
552                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553                 break;
554         case AR5K_RF2317:
555                 rf_regs = rf_regs_2425;
556                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557                 ini_rfb = rfb_2317;
558                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
559                 break;
560         case AR5K_RF2425:
561                 rf_regs = rf_regs_2425;
562                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564                         ini_rfb = rfb_2425;
565                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566                 } else {
567                         ini_rfb = rfb_2417;
568                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569                 }
570                 break;
571         default:
572                 return -EINVAL;
573         }
574
575         /* If it's the first time we set rf buffer, allocate
576          * ah->ah_rf_banks based on ah->ah_rf_banks_size
577          * we set above */
578         if (ah->ah_rf_banks == NULL) {
579                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580                                                                 GFP_KERNEL);
581                 if (ah->ah_rf_banks == NULL) {
582                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
583                         return -ENOMEM;
584                 }
585         }
586
587         /* Copy values to modify them */
588         rfb = ah->ah_rf_banks;
589
590         for (i = 0; i < ah->ah_rf_banks_size; i++) {
591                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593                         return -EINVAL;
594                 }
595
596                 /* Bank changed, write down the offset */
597                 if (bank != ini_rfb[i].rfb_bank) {
598                         bank = ini_rfb[i].rfb_bank;
599                         ah->ah_offset[bank] = i;
600                 }
601
602                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603         }
604
605         /* Set Output and Driver bias current (OB/DB) */
606         if (channel->hw_value & CHANNEL_2GHZ) {
607
608                 if (channel->hw_value & CHANNEL_CCK)
609                         ee_mode = AR5K_EEPROM_MODE_11B;
610                 else
611                         ee_mode = AR5K_EEPROM_MODE_11G;
612
613                 /* For RF511X/RF211X combination we
614                  * use b_OB and b_DB parameters stored
615                  * in eeprom on ee->ee_ob[ee_mode][0]
616                  *
617                  * For all other chips we use OB/DB for 2Ghz
618                  * stored in the b/g modal section just like
619                  * 802.11a on ee->ee_ob[ee_mode][1] */
620                 if ((ah->ah_radio == AR5K_RF5111) ||
621                 (ah->ah_radio == AR5K_RF5112))
622                         obdb = 0;
623                 else
624                         obdb = 1;
625
626                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627                                                 AR5K_RF_OB_2GHZ, true);
628
629                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630                                                 AR5K_RF_DB_2GHZ, true);
631
632         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
634                         (ah->ah_radio == AR5K_RF5111)) {
635
636                 /* For 11a, Turbo and XR we need to choose
637                  * OB/DB based on frequency range */
638                 ee_mode = AR5K_EEPROM_MODE_11A;
639                 obdb =   channel->center_freq >= 5725 ? 3 :
640                         (channel->center_freq >= 5500 ? 2 :
641                         (channel->center_freq >= 5260 ? 1 :
642                          (channel->center_freq > 4000 ? 0 : -1)));
643
644                 if (obdb < 0)
645                         return -EINVAL;
646
647                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648                                                 AR5K_RF_OB_5GHZ, true);
649
650                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651                                                 AR5K_RF_DB_5GHZ, true);
652         }
653
654         g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656         /* Bank Modifications (chip-specific) */
657         if (ah->ah_radio == AR5K_RF5111) {
658
659                 /* Set gain_F settings according to current step */
660                 if (channel->hw_value & CHANNEL_OFDM) {
661
662                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
664                                         g_step->gos_param[0]);
665
666                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667                                                         AR5K_RF_PWD_90, true);
668
669                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670                                                         AR5K_RF_PWD_84, true);
671
672                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673                                                 AR5K_RF_RFGAIN_SEL, true);
674
675                         /* We programmed gain_F parameters, switch back
676                          * to active state */
677                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679                 }
680
681                 /* Bank 6/7 setup */
682
683                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684                                                 AR5K_RF_PWD_XPD, true);
685
686                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687                                                 AR5K_RF_XPD_GAIN, true);
688
689                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690                                                 AR5K_RF_GAIN_I, true);
691
692                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693                                                 AR5K_RF_PLO_SEL, true);
694
695                 /* TODO: Half/quarter channel support */
696         }
697
698         if (ah->ah_radio == AR5K_RF5112) {
699
700                 /* Set gain_F settings according to current step */
701                 if (channel->hw_value & CHANNEL_OFDM) {
702
703                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704                                                 AR5K_RF_MIXGAIN_OVR, true);
705
706                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707                                                 AR5K_RF_PWD_138, true);
708
709                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710                                                 AR5K_RF_PWD_137, true);
711
712                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713                                                 AR5K_RF_PWD_136, true);
714
715                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716                                                 AR5K_RF_PWD_132, true);
717
718                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719                                                 AR5K_RF_PWD_131, true);
720
721                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722                                                 AR5K_RF_PWD_130, true);
723
724                         /* We programmed gain_F parameters, switch back
725                          * to active state */
726                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727                 }
728
729                 /* Bank 6/7 setup */
730
731                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732                                                 AR5K_RF_XPD_SEL, true);
733
734                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735                         /* Rev. 1 supports only one xpd */
736                         ath5k_hw_rfb_op(ah, rf_regs,
737                                                 ee->ee_x_gain[ee_mode],
738                                                 AR5K_RF_XPD_GAIN, true);
739
740                 } else {
741                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742                         if (ee->ee_pd_gains[ee_mode] > 1) {
743                                 ath5k_hw_rfb_op(ah, rf_regs,
744                                                 pdg_curve_to_idx[0],
745                                                 AR5K_RF_PD_GAIN_LO, true);
746                                 ath5k_hw_rfb_op(ah, rf_regs,
747                                                 pdg_curve_to_idx[1],
748                                                 AR5K_RF_PD_GAIN_HI, true);
749                         } else {
750                                 ath5k_hw_rfb_op(ah, rf_regs,
751                                                 pdg_curve_to_idx[0],
752                                                 AR5K_RF_PD_GAIN_LO, true);
753                                 ath5k_hw_rfb_op(ah, rf_regs,
754                                                 pdg_curve_to_idx[0],
755                                                 AR5K_RF_PD_GAIN_HI, true);
756                         }
757
758                         /* Lower synth voltage on Rev 2 */
759                         ath5k_hw_rfb_op(ah, rf_regs, 2,
760                                         AR5K_RF_HIGH_VC_CP, true);
761
762                         ath5k_hw_rfb_op(ah, rf_regs, 2,
763                                         AR5K_RF_MID_VC_CP, true);
764
765                         ath5k_hw_rfb_op(ah, rf_regs, 2,
766                                         AR5K_RF_LOW_VC_CP, true);
767
768                         ath5k_hw_rfb_op(ah, rf_regs, 2,
769                                         AR5K_RF_PUSH_UP, true);
770
771                         /* Decrease power consumption on 5213+ BaseBand */
772                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
774                                                 AR5K_RF_PAD2GND, true);
775
776                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
777                                                 AR5K_RF_XB2_LVL, true);
778
779                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
780                                                 AR5K_RF_XB5_LVL, true);
781
782                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
783                                                 AR5K_RF_PWD_167, true);
784
785                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
786                                                 AR5K_RF_PWD_166, true);
787                         }
788                 }
789
790                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791                                                 AR5K_RF_GAIN_I, true);
792
793                 /* TODO: Half/quarter channel support */
794
795         }
796
797         if (ah->ah_radio == AR5K_RF5413 &&
798         channel->hw_value & CHANNEL_2GHZ) {
799
800                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801                                                                         true);
802
803                 /* Set optimum value for early revisions (on pci-e chips) */
804                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805                 ah->ah_mac_srev < AR5K_SREV_AR5413)
806                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
808
809         }
810
811         /* Write RF banks on hw */
812         for (i = 0; i < ah->ah_rf_banks_size; i++) {
813                 AR5K_REG_WAIT(i);
814                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815         }
816
817         return 0;
818 }
819
820
821 /**************************\
822   PHY/RF channel functions
823 \**************************/
824
825 /*
826  * Check if a channel is supported
827  */
828 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829 {
830         /* Check if the channel is in our supported range */
831         if (flags & CHANNEL_2GHZ) {
832                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834                         return true;
835         } else if (flags & CHANNEL_5GHZ)
836                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838                         return true;
839
840         return false;
841 }
842
843 /*
844  * Convertion needed for RF5110
845  */
846 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847 {
848         u32 athchan;
849
850         /*
851          * Convert IEEE channel/MHz to an internal channel value used
852          * by the AR5210 chipset. This has not been verified with
853          * newer chipsets like the AR5212A who have a completely
854          * different RF/PHY part.
855          */
856         athchan = (ath5k_hw_bitswap(
857                         (ieee80211_frequency_to_channel(
858                                 channel->center_freq) - 24) / 2, 5)
859                                 << 1) | (1 << 6) | 0x1;
860         return athchan;
861 }
862
863 /*
864  * Set channel on RF5110
865  */
866 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867                 struct ieee80211_channel *channel)
868 {
869         u32 data;
870
871         /*
872          * Set the channel and wait
873          */
874         data = ath5k_hw_rf5110_chan2athchan(channel);
875         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877         mdelay(1);
878
879         return 0;
880 }
881
882 /*
883  * Convertion needed for 5111
884  */
885 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886                 struct ath5k_athchan_2ghz *athchan)
887 {
888         int channel;
889
890         /* Cast this value to catch negative channel numbers (>= -19) */
891         channel = (int)ieee;
892
893         /*
894          * Map 2GHz IEEE channel to 5GHz Atheros channel
895          */
896         if (channel <= 13) {
897                 athchan->a2_athchan = 115 + channel;
898                 athchan->a2_flags = 0x46;
899         } else if (channel == 14) {
900                 athchan->a2_athchan = 124;
901                 athchan->a2_flags = 0x44;
902         } else if (channel >= 15 && channel <= 26) {
903                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
904                 athchan->a2_flags = 0x46;
905         } else
906                 return -EINVAL;
907
908         return 0;
909 }
910
911 /*
912  * Set channel on 5111
913  */
914 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915                 struct ieee80211_channel *channel)
916 {
917         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
918         unsigned int ath5k_channel =
919                 ieee80211_frequency_to_channel(channel->center_freq);
920         u32 data0, data1, clock;
921         int ret;
922
923         /*
924          * Set the channel on the RF5111 radio
925          */
926         data0 = data1 = 0;
927
928         if (channel->hw_value & CHANNEL_2GHZ) {
929                 /* Map 2GHz channel to 5GHz Atheros channel ID */
930                 ret = ath5k_hw_rf5111_chan2athchan(
931                         ieee80211_frequency_to_channel(channel->center_freq),
932                         &ath5k_channel_2ghz);
933                 if (ret)
934                         return ret;
935
936                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938                     << 5) | (1 << 4);
939         }
940
941         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942                 clock = 1;
943                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944                         (clock << 1) | (1 << 10) | 1;
945         } else {
946                 clock = 0;
947                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948                         << 2) | (clock << 1) | (1 << 10) | 1;
949         }
950
951         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952                         AR5K_RF_BUFFER);
953         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954                         AR5K_RF_BUFFER_CONTROL_3);
955
956         return 0;
957 }
958
959 /*
960  * Set channel on 5112 and newer
961  */
962 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963                 struct ieee80211_channel *channel)
964 {
965         u32 data, data0, data1, data2;
966         u16 c;
967
968         data = data0 = data1 = data2 = 0;
969         c = channel->center_freq;
970
971         if (c < 4800) {
972                 if (!((c - 2224) % 5)) {
973                         data0 = ((2 * (c - 704)) - 3040) / 10;
974                         data1 = 1;
975                 } else if (!((c - 2192) % 5)) {
976                         data0 = ((2 * (c - 672)) - 3040) / 10;
977                         data1 = 0;
978                 } else
979                         return -EINVAL;
980
981                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
982         } else if ((c - (c % 5)) != 2 || c > 5435) {
983                 if (!(c % 20) && c >= 5120) {
984                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985                         data2 = ath5k_hw_bitswap(3, 2);
986                 } else if (!(c % 10)) {
987                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988                         data2 = ath5k_hw_bitswap(2, 2);
989                 } else if (!(c % 5)) {
990                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991                         data2 = ath5k_hw_bitswap(1, 2);
992                 } else
993                         return -EINVAL;
994         } else {
995                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
996                 data2 = ath5k_hw_bitswap(0, 2);
997         }
998
999         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * Set the channel on the RF2425
1009  */
1010 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011                 struct ieee80211_channel *channel)
1012 {
1013         u32 data, data0, data2;
1014         u16 c;
1015
1016         data = data0 = data2 = 0;
1017         c = channel->center_freq;
1018
1019         if (c < 4800) {
1020                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1021                 data2 = 0;
1022         /* ? 5GHz ? */
1023         } else if ((c - (c % 5)) != 2 || c > 5435) {
1024                 if (!(c % 20) && c < 5120)
1025                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026                 else if (!(c % 10))
1027                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028                 else if (!(c % 5))
1029                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030                 else
1031                         return -EINVAL;
1032                 data2 = ath5k_hw_bitswap(1, 2);
1033         } else {
1034                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1035                 data2 = ath5k_hw_bitswap(0, 2);
1036         }
1037
1038         data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043         return 0;
1044 }
1045
1046 /*
1047  * Set a channel on the radio chip
1048  */
1049 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050 {
1051         int ret;
1052         /*
1053          * Check bounds supported by the PHY (we don't care about regultory
1054          * restrictions at this point). Note: hw_value already has the band
1055          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056          * of the band by that */
1057         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1058                 ATH5K_ERR(ah->ah_sc,
1059                         "channel frequency (%u MHz) out of supported "
1060                         "band range\n",
1061                         channel->center_freq);
1062                         return -EINVAL;
1063         }
1064
1065         /*
1066          * Set the channel and wait
1067          */
1068         switch (ah->ah_radio) {
1069         case AR5K_RF5110:
1070                 ret = ath5k_hw_rf5110_channel(ah, channel);
1071                 break;
1072         case AR5K_RF5111:
1073                 ret = ath5k_hw_rf5111_channel(ah, channel);
1074                 break;
1075         case AR5K_RF2425:
1076                 ret = ath5k_hw_rf2425_channel(ah, channel);
1077                 break;
1078         default:
1079                 ret = ath5k_hw_rf5112_channel(ah, channel);
1080                 break;
1081         }
1082
1083         if (ret)
1084                 return ret;
1085
1086         /* Set JAPAN setting for channel 14 */
1087         if (channel->center_freq == 2484) {
1088                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089                                 AR5K_PHY_CCKTXCTL_JAPAN);
1090         } else {
1091                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092                                 AR5K_PHY_CCKTXCTL_WORLD);
1093         }
1094
1095         ah->ah_current_channel = channel;
1096         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1097
1098         return 0;
1099 }
1100
1101 /*****************\
1102   PHY calibration
1103 \*****************/
1104
1105 static int sign_extend(int val, const int nbits)
1106 {
1107         int order = BIT(nbits-1);
1108         return (val ^ order) - order;
1109 }
1110
1111 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1112 {
1113         s32 val;
1114
1115         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1116         return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1117 }
1118
1119 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1120 {
1121         int i;
1122
1123         ah->ah_nfcal_hist.index = 0;
1124         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1125                 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1126 }
1127
1128 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1129 {
1130         struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1131         hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1132         hist->nfval[hist->index] = noise_floor;
1133 }
1134
1135 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1136 {
1137         s16 sort[ATH5K_NF_CAL_HIST_MAX];
1138         s16 tmp;
1139         int i, j;
1140
1141         memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1142         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1143                 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1144                         if (sort[j] > sort[j-1]) {
1145                                 tmp = sort[j];
1146                                 sort[j] = sort[j-1];
1147                                 sort[j-1] = tmp;
1148                         }
1149                 }
1150         }
1151         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1152                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1153                         "cal %d:%d\n", i, sort[i]);
1154         }
1155         return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1156 }
1157
1158 /*
1159  * When we tell the hardware to perform a noise floor calibration
1160  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1161  * sample-and-hold the minimum noise level seen at the antennas.
1162  * This value is then stored in a ring buffer of recently measured
1163  * noise floor values so we have a moving window of the last few
1164  * samples.
1165  *
1166  * The median of the values in the history is then loaded into the
1167  * hardware for its own use for RSSI and CCA measurements.
1168  */
1169 static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1170 {
1171         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1172         u32 val;
1173         s16 nf, threshold;
1174         u8 ee_mode;
1175
1176         /* keep last value if calibration hasn't completed */
1177         if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1178                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1179                         "NF did not complete in calibration window\n");
1180
1181                 return;
1182         }
1183
1184         switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1185         case CHANNEL_A:
1186         case CHANNEL_T:
1187         case CHANNEL_XR:
1188                 ee_mode = AR5K_EEPROM_MODE_11A;
1189                 break;
1190         case CHANNEL_G:
1191         case CHANNEL_TG:
1192                 ee_mode = AR5K_EEPROM_MODE_11G;
1193                 break;
1194         default:
1195         case CHANNEL_B:
1196                 ee_mode = AR5K_EEPROM_MODE_11B;
1197                 break;
1198         }
1199
1200
1201         /* completed NF calibration, test threshold */
1202         nf = ath5k_hw_read_measured_noise_floor(ah);
1203         threshold = ee->ee_noise_floor_thr[ee_mode];
1204
1205         if (nf > threshold) {
1206                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1207                         "noise floor failure detected; "
1208                         "read %d, threshold %d\n",
1209                         nf, threshold);
1210
1211                 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1212         }
1213
1214         ath5k_hw_update_nfcal_hist(ah, nf);
1215         nf = ath5k_hw_get_median_noise_floor(ah);
1216
1217         /* load noise floor (in .5 dBm) so the hardware will use it */
1218         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1219         val |= (nf * 2) & AR5K_PHY_NF_M;
1220         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1221
1222         AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1223                 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1224
1225         ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1226                 0, false);
1227
1228         /*
1229          * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1230          * so that we're not capped by the median we just loaded.
1231          * This will be used as the initial value for the next noise
1232          * floor calibration.
1233          */
1234         val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1235         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1236         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1237                 AR5K_PHY_AGCCTL_NF_EN |
1238                 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1239                 AR5K_PHY_AGCCTL_NF);
1240
1241         ah->ah_noise_floor = nf;
1242
1243         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1244                 "noise floor calibrated: %d\n", nf);
1245 }
1246
1247 /*
1248  * Perform a PHY calibration on RF5110
1249  * -Fix BPSK/QAM Constellation (I/Q correction)
1250  * -Calculate Noise Floor
1251  */
1252 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1253                 struct ieee80211_channel *channel)
1254 {
1255         u32 phy_sig, phy_agc, phy_sat, beacon;
1256         int ret;
1257
1258         /*
1259          * Disable beacons and RX/TX queues, wait
1260          */
1261         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1262                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1263         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1264         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1265
1266         mdelay(2);
1267
1268         /*
1269          * Set the channel (with AGC turned off)
1270          */
1271         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1272         udelay(10);
1273         ret = ath5k_hw_channel(ah, channel);
1274
1275         /*
1276          * Activate PHY and wait
1277          */
1278         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1279         mdelay(1);
1280
1281         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1282
1283         if (ret)
1284                 return ret;
1285
1286         /*
1287          * Calibrate the radio chip
1288          */
1289
1290         /* Remember normal state */
1291         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1292         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1293         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1294
1295         /* Update radio registers */
1296         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1297                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1298
1299         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1300                         AR5K_PHY_AGCCOARSE_LO)) |
1301                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1302                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1303
1304         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1305                         AR5K_PHY_ADCSAT_THR)) |
1306                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1307                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1308
1309         udelay(20);
1310
1311         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1312         udelay(10);
1313         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1314         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1315
1316         mdelay(1);
1317
1318         /*
1319          * Enable calibration and wait until completion
1320          */
1321         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1322
1323         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1324                         AR5K_PHY_AGCCTL_CAL, 0, false);
1325
1326         /* Reset to normal state */
1327         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1328         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1329         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1330
1331         if (ret) {
1332                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1333                                 channel->center_freq);
1334                 return ret;
1335         }
1336
1337         ath5k_hw_update_noise_floor(ah);
1338
1339         /*
1340          * Re-enable RX/TX and beacons
1341          */
1342         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1343                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1344         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1345
1346         return 0;
1347 }
1348
1349 /*
1350  * Perform a PHY calibration on RF5111/5112 and newer chips
1351  */
1352 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1353                 struct ieee80211_channel *channel)
1354 {
1355         u32 i_pwr, q_pwr;
1356         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1357         int i;
1358         ATH5K_TRACE(ah->ah_sc);
1359
1360         if (!ah->ah_calibration ||
1361                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1362                 goto done;
1363
1364         /* Calibration has finished, get the results and re-run */
1365
1366         /* work around empty results which can apparently happen on 5212 */
1367         for (i = 0; i <= 10; i++) {
1368                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1369                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1370                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1371                 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1372                         "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1373                 if (i_pwr && q_pwr)
1374                         break;
1375         }
1376
1377         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1378
1379         if (ah->ah_version == AR5K_AR5211)
1380                 q_coffd = q_pwr >> 6;
1381         else
1382                 q_coffd = q_pwr >> 7;
1383
1384         /* protect against divide by 0 and loss of sign bits */
1385         if (i_coffd == 0 || q_coffd < 2)
1386                 goto done;
1387
1388         i_coff = (-iq_corr) / i_coffd;
1389         i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1390
1391         q_coff = (i_pwr / q_coffd) - 128;
1392         q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1393
1394         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1395                         "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1396                         i_coff, q_coff, i_coffd, q_coffd);
1397
1398         /* Commit new I/Q values (set enable bit last to match HAL sources) */
1399         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1400         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1401         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1402
1403         /* Re-enable calibration -if we don't we'll commit
1404          * the same values again and again */
1405         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1406                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1407         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1408
1409 done:
1410
1411         /* TODO: Separate noise floor calibration from I/Q calibration
1412          * since noise floor calibration interrupts rx path while I/Q
1413          * calibration doesn't. We don't need to run noise floor calibration
1414          * as often as I/Q calibration.*/
1415         ath5k_hw_update_noise_floor(ah);
1416
1417         /* Initiate a gain_F calibration */
1418         ath5k_hw_request_rfgain_probe(ah);
1419
1420         return 0;
1421 }
1422
1423 /*
1424  * Perform a PHY calibration
1425  */
1426 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1427                 struct ieee80211_channel *channel)
1428 {
1429         int ret;
1430
1431         if (ah->ah_radio == AR5K_RF5110)
1432                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1433         else
1434                 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1435
1436         return ret;
1437 }
1438
1439 /***************************\
1440 * Spur mitigation functions *
1441 \***************************/
1442
1443 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1444                                 struct ieee80211_channel *channel)
1445 {
1446         u8 refclk_freq;
1447
1448         if ((ah->ah_radio == AR5K_RF5112) ||
1449         (ah->ah_radio == AR5K_RF5413) ||
1450         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1451                 refclk_freq = 40;
1452         else
1453                 refclk_freq = 32;
1454
1455         if ((channel->center_freq % refclk_freq != 0) &&
1456         ((channel->center_freq % refclk_freq < 10) ||
1457         (channel->center_freq % refclk_freq > 22)))
1458                 return true;
1459         else
1460                 return false;
1461 }
1462
1463 void
1464 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1465                                 struct ieee80211_channel *channel)
1466 {
1467         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1468         u32 mag_mask[4] = {0, 0, 0, 0};
1469         u32 pilot_mask[2] = {0, 0};
1470         /* Note: fbin values are scaled up by 2 */
1471         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1472         s32 spur_delta_phase, spur_freq_sigma_delta;
1473         s32 spur_offset, num_symbols_x16;
1474         u8 num_symbol_offsets, i, freq_band;
1475
1476         /* Convert current frequency to fbin value (the same way channels
1477          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1478          * up by 2 so we can compare it later */
1479         if (channel->hw_value & CHANNEL_2GHZ) {
1480                 chan_fbin = (channel->center_freq - 2300) * 10;
1481                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1482         } else {
1483                 chan_fbin = (channel->center_freq - 4900) * 10;
1484                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1485         }
1486
1487         /* Check if any spur_chan_fbin from EEPROM is
1488          * within our current channel's spur detection range */
1489         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1490         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1491         /* XXX: Half/Quarter channels ?*/
1492         if (channel->hw_value & CHANNEL_TURBO)
1493                 spur_detection_window *= 2;
1494
1495         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1496                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1497
1498                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1499                  * so it's zero if we got nothing from EEPROM */
1500                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1501                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1502                         break;
1503                 }
1504
1505                 if ((chan_fbin - spur_detection_window <=
1506                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1507                 (chan_fbin + spur_detection_window >=
1508                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1509                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1510                         break;
1511                 }
1512         }
1513
1514         /* We need to enable spur filter for this channel */
1515         if (spur_chan_fbin) {
1516                 spur_offset = spur_chan_fbin - chan_fbin;
1517                 /*
1518                  * Calculate deltas:
1519                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1520                  * spur_delta_phase -> spur_offset / chip_freq << 11
1521                  * Note: Both values have 100KHz resolution
1522                  */
1523                 /* XXX: Half/Quarter rate channels ? */
1524                 switch (channel->hw_value) {
1525                 case CHANNEL_A:
1526                         /* Both sample_freq and chip_freq are 40MHz */
1527                         spur_delta_phase = (spur_offset << 17) / 25;
1528                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1529                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1530                         break;
1531                 case CHANNEL_G:
1532                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1533                          * (for b compatibility) */
1534                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1535                         spur_delta_phase = (spur_offset << 17) / 25;
1536                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1537                         break;
1538                 case CHANNEL_T:
1539                 case CHANNEL_TG:
1540                         /* Both sample_freq and chip_freq are 80MHz */
1541                         spur_delta_phase = (spur_offset << 16) / 25;
1542                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1543                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1544                         break;
1545                 default:
1546                         return;
1547                 }
1548
1549                 /* Calculate pilot and magnitude masks */
1550
1551                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1552                  * and divide by symbol_width to find how many symbols we have
1553                  * Note: number of symbols is scaled up by 16 */
1554                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1555
1556                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1557                 if (!(num_symbols_x16 & 0xF))
1558                         /* _X_ */
1559                         num_symbol_offsets = 3;
1560                 else
1561                         /* _xx_ */
1562                         num_symbol_offsets = 4;
1563
1564                 for (i = 0; i < num_symbol_offsets; i++) {
1565
1566                         /* Calculate pilot mask */
1567                         s32 curr_sym_off =
1568                                 (num_symbols_x16 / 16) + i + 25;
1569
1570                         /* Pilot magnitude mask seems to be a way to
1571                          * declare the boundaries for our detection
1572                          * window or something, it's 2 for the middle
1573                          * value(s) where the symbol is expected to be
1574                          * and 1 on the boundary values */
1575                         u8 plt_mag_map =
1576                                 (i == 0 || i == (num_symbol_offsets - 1))
1577                                                                 ? 1 : 2;
1578
1579                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1580                                 if (curr_sym_off <= 25)
1581                                         pilot_mask[0] |= 1 << curr_sym_off;
1582                                 else if (curr_sym_off >= 27)
1583                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1584                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1585                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1586
1587                         /* Calculate magnitude mask (for viterbi decoder) */
1588                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1589                                 mag_mask[0] |=
1590                                         plt_mag_map << (curr_sym_off + 1) * 2;
1591                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1592                                 mag_mask[1] |=
1593                                         plt_mag_map << (curr_sym_off - 15) * 2;
1594                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1595                                 mag_mask[2] |=
1596                                         plt_mag_map << (curr_sym_off - 31) * 2;
1597                         else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1598                                 mag_mask[3] |=
1599                                         plt_mag_map << (curr_sym_off - 47) * 2;
1600
1601                 }
1602
1603                 /* Write settings on hw to enable spur filter */
1604                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1605                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1606                 /* XXX: Self correlator also ? */
1607                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1608                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1609                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1610                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1611
1612                 /* Set delta phase and freq sigma delta */
1613                 ath5k_hw_reg_write(ah,
1614                                 AR5K_REG_SM(spur_delta_phase,
1615                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1616                                 AR5K_REG_SM(spur_freq_sigma_delta,
1617                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1618                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1619                                 AR5K_PHY_TIMING_11);
1620
1621                 /* Write pilot masks */
1622                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1623                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1624                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1625                                         pilot_mask[1]);
1626
1627                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1628                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1629                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1630                                         pilot_mask[1]);
1631
1632                 /* Write magnitude masks */
1633                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1634                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1635                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1636                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1637                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1638                                         mag_mask[3]);
1639
1640                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1641                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1642                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1643                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1644                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1645                                         mag_mask[3]);
1646
1647         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1648         AR5K_PHY_IQ_SPUR_FILT_EN) {
1649                 /* Clean up spur mitigation settings and disable fliter */
1650                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1651                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1652                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1653                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1654                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1655                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1656                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1657
1658                 /* Clear pilot masks */
1659                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1660                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1661                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1662                                         0);
1663
1664                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1665                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1666                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1667                                         0);
1668
1669                 /* Clear magnitude masks */
1670                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1671                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1672                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1673                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1674                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1675                                         0);
1676
1677                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1678                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1679                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1680                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1681                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1682                                         0);
1683         }
1684 }
1685
1686 /********************\
1687   Misc PHY functions
1688 \********************/
1689
1690 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1691 {
1692         ATH5K_TRACE(ah->ah_sc);
1693         /*Just a try M.F.*/
1694         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1695
1696         return 0;
1697 }
1698
1699 /*
1700  * Get the PHY Chip revision
1701  */
1702 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1703 {
1704         unsigned int i;
1705         u32 srev;
1706         u16 ret;
1707
1708         ATH5K_TRACE(ah->ah_sc);
1709
1710         /*
1711          * Set the radio chip access register
1712          */
1713         switch (chan) {
1714         case CHANNEL_2GHZ:
1715                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1716                 break;
1717         case CHANNEL_5GHZ:
1718                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1719                 break;
1720         default:
1721                 return 0;
1722         }
1723
1724         mdelay(2);
1725
1726         /* ...wait until PHY is ready and read the selected radio revision */
1727         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1728
1729         for (i = 0; i < 8; i++)
1730                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1731
1732         if (ah->ah_version == AR5K_AR5210) {
1733                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1734                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1735         } else {
1736                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1737                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1738                                 ((srev & 0x0f) << 4), 8);
1739         }
1740
1741         /* Reset to the 5GHz mode */
1742         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1743
1744         return ret;
1745 }
1746
1747 /*****************\
1748 * Antenna control *
1749 \*****************/
1750
1751 static void /*TODO:Boundary check*/
1752 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1753 {
1754         ATH5K_TRACE(ah->ah_sc);
1755
1756         if (ah->ah_version != AR5K_AR5210)
1757                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1758 }
1759
1760 /*
1761  * Enable/disable fast rx antenna diversity
1762  */
1763 static void
1764 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1765 {
1766         switch (ee_mode) {
1767         case AR5K_EEPROM_MODE_11G:
1768                 /* XXX: This is set to
1769                  * disabled on initvals !!! */
1770         case AR5K_EEPROM_MODE_11A:
1771                 if (enable)
1772                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1773                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1774                 else
1775                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1776                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1777                 break;
1778         case AR5K_EEPROM_MODE_11B:
1779                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1780                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1781                 break;
1782         default:
1783                 return;
1784         }
1785
1786         if (enable) {
1787                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1788                                 AR5K_PHY_RESTART_DIV_GC, 0xc);
1789
1790                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1791                                         AR5K_PHY_FAST_ANT_DIV_EN);
1792         } else {
1793                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1794                                 AR5K_PHY_RESTART_DIV_GC, 0x8);
1795
1796                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1797                                         AR5K_PHY_FAST_ANT_DIV_EN);
1798         }
1799 }
1800
1801 /*
1802  * Set antenna operating mode
1803  */
1804 void
1805 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1806 {
1807         struct ieee80211_channel *channel = ah->ah_current_channel;
1808         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1809         bool use_def_for_sg;
1810         u8 def_ant, tx_ant, ee_mode;
1811         u32 sta_id1 = 0;
1812
1813         def_ant = ah->ah_def_ant;
1814
1815         ATH5K_TRACE(ah->ah_sc);
1816
1817         switch (channel->hw_value & CHANNEL_MODES) {
1818         case CHANNEL_A:
1819         case CHANNEL_T:
1820         case CHANNEL_XR:
1821                 ee_mode = AR5K_EEPROM_MODE_11A;
1822                 break;
1823         case CHANNEL_G:
1824         case CHANNEL_TG:
1825                 ee_mode = AR5K_EEPROM_MODE_11G;
1826                 break;
1827         case CHANNEL_B:
1828                 ee_mode = AR5K_EEPROM_MODE_11B;
1829                 break;
1830         default:
1831                 ATH5K_ERR(ah->ah_sc,
1832                         "invalid channel: %d\n", channel->center_freq);
1833                 return;
1834         }
1835
1836         switch (ant_mode) {
1837         case AR5K_ANTMODE_DEFAULT:
1838                 tx_ant = 0;
1839                 use_def_for_tx = false;
1840                 update_def_on_tx = false;
1841                 use_def_for_rts = false;
1842                 use_def_for_sg = false;
1843                 fast_div = true;
1844                 break;
1845         case AR5K_ANTMODE_FIXED_A:
1846                 def_ant = 1;
1847                 tx_ant = 1;
1848                 use_def_for_tx = true;
1849                 update_def_on_tx = false;
1850                 use_def_for_rts = true;
1851                 use_def_for_sg = true;
1852                 fast_div = false;
1853                 break;
1854         case AR5K_ANTMODE_FIXED_B:
1855                 def_ant = 2;
1856                 tx_ant = 2;
1857                 use_def_for_tx = true;
1858                 update_def_on_tx = false;
1859                 use_def_for_rts = true;
1860                 use_def_for_sg = true;
1861                 fast_div = false;
1862                 break;
1863         case AR5K_ANTMODE_SINGLE_AP:
1864                 def_ant = 1;    /* updated on tx */
1865                 tx_ant = 0;
1866                 use_def_for_tx = true;
1867                 update_def_on_tx = true;
1868                 use_def_for_rts = true;
1869                 use_def_for_sg = true;
1870                 fast_div = true;
1871                 break;
1872         case AR5K_ANTMODE_SECTOR_AP:
1873                 tx_ant = 1;     /* variable */
1874                 use_def_for_tx = false;
1875                 update_def_on_tx = false;
1876                 use_def_for_rts = true;
1877                 use_def_for_sg = false;
1878                 fast_div = false;
1879                 break;
1880         case AR5K_ANTMODE_SECTOR_STA:
1881                 tx_ant = 1;     /* variable */
1882                 use_def_for_tx = true;
1883                 update_def_on_tx = false;
1884                 use_def_for_rts = true;
1885                 use_def_for_sg = false;
1886                 fast_div = true;
1887                 break;
1888         case AR5K_ANTMODE_DEBUG:
1889                 def_ant = 1;
1890                 tx_ant = 2;
1891                 use_def_for_tx = false;
1892                 update_def_on_tx = false;
1893                 use_def_for_rts = false;
1894                 use_def_for_sg = false;
1895                 fast_div = false;
1896                 break;
1897         default:
1898                 return;
1899         }
1900
1901         ah->ah_tx_ant = tx_ant;
1902         ah->ah_ant_mode = ant_mode;
1903         ah->ah_def_ant = def_ant;
1904
1905         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1906         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1907         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1908         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1909
1910         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1911
1912         if (sta_id1)
1913                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1914
1915         /* Note: set diversity before default antenna
1916          * because it won't work correctly */
1917         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1918         ath5k_hw_set_def_antenna(ah, def_ant);
1919 }
1920
1921
1922 /****************\
1923 * TX power setup *
1924 \****************/
1925
1926 /*
1927  * Helper functions
1928  */
1929
1930 /*
1931  * Do linear interpolation between two given (x, y) points
1932  */
1933 static s16
1934 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1935                                         s16 y_left, s16 y_right)
1936 {
1937         s16 ratio, result;
1938
1939         /* Avoid divide by zero and skip interpolation
1940          * if we have the same point */
1941         if ((x_left == x_right) || (y_left == y_right))
1942                 return y_left;
1943
1944         /*
1945          * Since we use ints and not fps, we need to scale up in
1946          * order to get a sane ratio value (or else we 'll eg. get
1947          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1948          * to have some accuracy both for 0.5 and 0.25 steps.
1949          */
1950         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1951
1952         /* Now scale down to be in range */
1953         result = y_left + (ratio * (target - x_left) / 100);
1954
1955         return result;
1956 }
1957
1958 /*
1959  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1960  *
1961  * Since we have the top of the curve and we draw the line below
1962  * until we reach 1 (1 pcdac step) we need to know which point
1963  * (x value) that is so that we don't go below y axis and have negative
1964  * pcdac values when creating the curve, or fill the table with zeroes.
1965  */
1966 static s16
1967 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1968                                 const s16 *pwrL, const s16 *pwrR)
1969 {
1970         s8 tmp;
1971         s16 min_pwrL, min_pwrR;
1972         s16 pwr_i;
1973
1974         /* Some vendors write the same pcdac value twice !!! */
1975         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1976                 return max(pwrL[0], pwrR[0]);
1977
1978         if (pwrL[0] == pwrL[1])
1979                 min_pwrL = pwrL[0];
1980         else {
1981                 pwr_i = pwrL[0];
1982                 do {
1983                         pwr_i--;
1984                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1985                                                         pwrL[0], pwrL[1],
1986                                                         stepL[0], stepL[1]);
1987                 } while (tmp > 1);
1988
1989                 min_pwrL = pwr_i;
1990         }
1991
1992         if (pwrR[0] == pwrR[1])
1993                 min_pwrR = pwrR[0];
1994         else {
1995                 pwr_i = pwrR[0];
1996                 do {
1997                         pwr_i--;
1998                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1999                                                         pwrR[0], pwrR[1],
2000                                                         stepR[0], stepR[1]);
2001                 } while (tmp > 1);
2002
2003                 min_pwrR = pwr_i;
2004         }
2005
2006         /* Keep the right boundary so that it works for both curves */
2007         return max(min_pwrL, min_pwrR);
2008 }
2009
2010 /*
2011  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2012  * Power to PCDAC curve.
2013  *
2014  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2015  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2016  * PCDAC/PDADC step for each curve is 64 but we can write more than
2017  * one curves on hw so we can go up to 128 (which is the max step we
2018  * can write on the final table).
2019  *
2020  * We write y values (PCDAC/PDADC steps) on hw.
2021  */
2022 static void
2023 ath5k_create_power_curve(s16 pmin, s16 pmax,
2024                         const s16 *pwr, const u8 *vpd,
2025                         u8 num_points,
2026                         u8 *vpd_table, u8 type)
2027 {
2028         u8 idx[2] = { 0, 1 };
2029         s16 pwr_i = 2*pmin;
2030         int i;
2031
2032         if (num_points < 2)
2033                 return;
2034
2035         /* We want the whole line, so adjust boundaries
2036          * to cover the entire power range. Note that
2037          * power values are already 0.25dB so no need
2038          * to multiply pwr_i by 2 */
2039         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2040                 pwr_i = pmin;
2041                 pmin = 0;
2042                 pmax = 63;
2043         }
2044
2045         /* Find surrounding turning points (TPs)
2046          * and interpolate between them */
2047         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2048         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2049
2050                 /* We passed the right TP, move to the next set of TPs
2051                  * if we pass the last TP, extrapolate above using the last
2052                  * two TPs for ratio */
2053                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2054                         idx[0]++;
2055                         idx[1]++;
2056                 }
2057
2058                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2059                                                 pwr[idx[0]], pwr[idx[1]],
2060                                                 vpd[idx[0]], vpd[idx[1]]);
2061
2062                 /* Increase by 0.5dB
2063                  * (0.25 dB units) */
2064                 pwr_i += 2;
2065         }
2066 }
2067
2068 /*
2069  * Get the surrounding per-channel power calibration piers
2070  * for a given frequency so that we can interpolate between
2071  * them and come up with an apropriate dataset for our current
2072  * channel.
2073  */
2074 static void
2075 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2076                         struct ieee80211_channel *channel,
2077                         struct ath5k_chan_pcal_info **pcinfo_l,
2078                         struct ath5k_chan_pcal_info **pcinfo_r)
2079 {
2080         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2081         struct ath5k_chan_pcal_info *pcinfo;
2082         u8 idx_l, idx_r;
2083         u8 mode, max, i;
2084         u32 target = channel->center_freq;
2085
2086         idx_l = 0;
2087         idx_r = 0;
2088
2089         if (!(channel->hw_value & CHANNEL_OFDM)) {
2090                 pcinfo = ee->ee_pwr_cal_b;
2091                 mode = AR5K_EEPROM_MODE_11B;
2092         } else if (channel->hw_value & CHANNEL_2GHZ) {
2093                 pcinfo = ee->ee_pwr_cal_g;
2094                 mode = AR5K_EEPROM_MODE_11G;
2095         } else {
2096                 pcinfo = ee->ee_pwr_cal_a;
2097                 mode = AR5K_EEPROM_MODE_11A;
2098         }
2099         max = ee->ee_n_piers[mode] - 1;
2100
2101         /* Frequency is below our calibrated
2102          * range. Use the lowest power curve
2103          * we have */
2104         if (target < pcinfo[0].freq) {
2105                 idx_l = idx_r = 0;
2106                 goto done;
2107         }
2108
2109         /* Frequency is above our calibrated
2110          * range. Use the highest power curve
2111          * we have */
2112         if (target > pcinfo[max].freq) {
2113                 idx_l = idx_r = max;
2114                 goto done;
2115         }
2116
2117         /* Frequency is inside our calibrated
2118          * channel range. Pick the surrounding
2119          * calibration piers so that we can
2120          * interpolate */
2121         for (i = 0; i <= max; i++) {
2122
2123                 /* Frequency matches one of our calibration
2124                  * piers, no need to interpolate, just use
2125                  * that calibration pier */
2126                 if (pcinfo[i].freq == target) {
2127                         idx_l = idx_r = i;
2128                         goto done;
2129                 }
2130
2131                 /* We found a calibration pier that's above
2132                  * frequency, use this pier and the previous
2133                  * one to interpolate */
2134                 if (target < pcinfo[i].freq) {
2135                         idx_r = i;
2136                         idx_l = idx_r - 1;
2137                         goto done;
2138                 }
2139         }
2140
2141 done:
2142         *pcinfo_l = &pcinfo[idx_l];
2143         *pcinfo_r = &pcinfo[idx_r];
2144
2145         return;
2146 }
2147
2148 /*
2149  * Get the surrounding per-rate power calibration data
2150  * for a given frequency and interpolate between power
2151  * values to set max target power supported by hw for
2152  * each rate.
2153  */
2154 static void
2155 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2156                         struct ieee80211_channel *channel,
2157                         struct ath5k_rate_pcal_info *rates)
2158 {
2159         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2160         struct ath5k_rate_pcal_info *rpinfo;
2161         u8 idx_l, idx_r;
2162         u8 mode, max, i;
2163         u32 target = channel->center_freq;
2164
2165         idx_l = 0;
2166         idx_r = 0;
2167
2168         if (!(channel->hw_value & CHANNEL_OFDM)) {
2169                 rpinfo = ee->ee_rate_tpwr_b;
2170                 mode = AR5K_EEPROM_MODE_11B;
2171         } else if (channel->hw_value & CHANNEL_2GHZ) {
2172                 rpinfo = ee->ee_rate_tpwr_g;
2173                 mode = AR5K_EEPROM_MODE_11G;
2174         } else {
2175                 rpinfo = ee->ee_rate_tpwr_a;
2176                 mode = AR5K_EEPROM_MODE_11A;
2177         }
2178         max = ee->ee_rate_target_pwr_num[mode] - 1;
2179
2180         /* Get the surrounding calibration
2181          * piers - same as above */
2182         if (target < rpinfo[0].freq) {
2183                 idx_l = idx_r = 0;
2184                 goto done;
2185         }
2186
2187         if (target > rpinfo[max].freq) {
2188                 idx_l = idx_r = max;
2189                 goto done;
2190         }
2191
2192         for (i = 0; i <= max; i++) {
2193
2194                 if (rpinfo[i].freq == target) {
2195                         idx_l = idx_r = i;
2196                         goto done;
2197                 }
2198
2199                 if (target < rpinfo[i].freq) {
2200                         idx_r = i;
2201                         idx_l = idx_r - 1;
2202                         goto done;
2203                 }
2204         }
2205
2206 done:
2207         /* Now interpolate power value, based on the frequency */
2208         rates->freq = target;
2209
2210         rates->target_power_6to24 =
2211                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2212                                         rpinfo[idx_r].freq,
2213                                         rpinfo[idx_l].target_power_6to24,
2214                                         rpinfo[idx_r].target_power_6to24);
2215
2216         rates->target_power_36 =
2217                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2218                                         rpinfo[idx_r].freq,
2219                                         rpinfo[idx_l].target_power_36,
2220                                         rpinfo[idx_r].target_power_36);
2221
2222         rates->target_power_48 =
2223                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2224                                         rpinfo[idx_r].freq,
2225                                         rpinfo[idx_l].target_power_48,
2226                                         rpinfo[idx_r].target_power_48);
2227
2228         rates->target_power_54 =
2229                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2230                                         rpinfo[idx_r].freq,
2231                                         rpinfo[idx_l].target_power_54,
2232                                         rpinfo[idx_r].target_power_54);
2233 }
2234
2235 /*
2236  * Get the max edge power for this channel if
2237  * we have such data from EEPROM's Conformance Test
2238  * Limits (CTL), and limit max power if needed.
2239  */
2240 static void
2241 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2242                         struct ieee80211_channel *channel)
2243 {
2244         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2245         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2246         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2247         u8 *ctl_val = ee->ee_ctl;
2248         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2249         s16 edge_pwr = 0;
2250         u8 rep_idx;
2251         u8 i, ctl_mode;
2252         u8 ctl_idx = 0xFF;
2253         u32 target = channel->center_freq;
2254
2255         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2256
2257         switch (channel->hw_value & CHANNEL_MODES) {
2258         case CHANNEL_A:
2259                 ctl_mode |= AR5K_CTL_11A;
2260                 break;
2261         case CHANNEL_G:
2262                 ctl_mode |= AR5K_CTL_11G;
2263                 break;
2264         case CHANNEL_B:
2265                 ctl_mode |= AR5K_CTL_11B;
2266                 break;
2267         case CHANNEL_T:
2268                 ctl_mode |= AR5K_CTL_TURBO;
2269                 break;
2270         case CHANNEL_TG:
2271                 ctl_mode |= AR5K_CTL_TURBOG;
2272                 break;
2273         case CHANNEL_XR:
2274                 /* Fall through */
2275         default:
2276                 return;
2277         }
2278
2279         for (i = 0; i < ee->ee_ctls; i++) {
2280                 if (ctl_val[i] == ctl_mode) {
2281                         ctl_idx = i;
2282                         break;
2283                 }
2284         }
2285
2286         /* If we have a CTL dataset available grab it and find the
2287          * edge power for our frequency */
2288         if (ctl_idx == 0xFF)
2289                 return;
2290
2291         /* Edge powers are sorted by frequency from lower
2292          * to higher. Each CTL corresponds to 8 edge power
2293          * measurements. */
2294         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2295
2296         /* Don't do boundaries check because we
2297          * might have more that one bands defined
2298          * for this mode */
2299
2300         /* Get the edge power that's closer to our
2301          * frequency */
2302         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2303                 rep_idx += i;
2304                 if (target <= rep[rep_idx].freq)
2305                         edge_pwr = (s16) rep[rep_idx].edge;
2306         }
2307
2308         if (edge_pwr)
2309                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2310 }
2311
2312
2313 /*
2314  * Power to PCDAC table functions
2315  */
2316
2317 /*
2318  * Fill Power to PCDAC table on RF5111
2319  *
2320  * No further processing is needed for RF5111, the only thing we have to
2321  * do is fill the values below and above calibration range since eeprom data
2322  * may not cover the entire PCDAC table.
2323  */
2324 static void
2325 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2326                                                         s16 *table_max)
2327 {
2328         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2329         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2330         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2331         s16     min_pwr, max_pwr;
2332
2333         /* Get table boundaries */
2334         min_pwr = table_min[0];
2335         pcdac_0 = pcdac_tmp[0];
2336
2337         max_pwr = table_max[0];
2338         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2339
2340         /* Extrapolate below minimum using pcdac_0 */
2341         pcdac_i = 0;
2342         for (i = 0; i < min_pwr; i++)
2343                 pcdac_out[pcdac_i++] = pcdac_0;
2344
2345         /* Copy values from pcdac_tmp */
2346         pwr_idx = min_pwr;
2347         for (i = 0 ; pwr_idx <= max_pwr &&
2348         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2349                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2350                 pwr_idx++;
2351         }
2352
2353         /* Extrapolate above maximum */
2354         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2355                 pcdac_out[pcdac_i++] = pcdac_n;
2356
2357 }
2358
2359 /*
2360  * Combine available XPD Curves and fill Linear Power to PCDAC table
2361  * on RF5112
2362  *
2363  * RFX112 can have up to 2 curves (one for low txpower range and one for
2364  * higher txpower range). We need to put them both on pcdac_out and place
2365  * them in the correct location. In case we only have one curve available
2366  * just fit it on pcdac_out (it's supposed to cover the entire range of
2367  * available pwr levels since it's always the higher power curve). Extrapolate
2368  * below and above final table if needed.
2369  */
2370 static void
2371 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2372                                                 s16 *table_max, u8 pdcurves)
2373 {
2374         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2375         u8      *pcdac_low_pwr;
2376         u8      *pcdac_high_pwr;
2377         u8      *pcdac_tmp;
2378         u8      pwr;
2379         s16     max_pwr_idx;
2380         s16     min_pwr_idx;
2381         s16     mid_pwr_idx = 0;
2382         /* Edge flag turs on the 7nth bit on the PCDAC
2383          * to delcare the higher power curve (force values
2384          * to be greater than 64). If we only have one curve
2385          * we don't need to set this, if we have 2 curves and
2386          * fill the table backwards this can also be used to
2387          * switch from higher power curve to lower power curve */
2388         u8      edge_flag;
2389         int     i;
2390
2391         /* When we have only one curve available
2392          * that's the higher power curve. If we have
2393          * two curves the first is the high power curve
2394          * and the next is the low power curve. */
2395         if (pdcurves > 1) {
2396                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2397                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2398                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2399                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2400
2401                 /* If table size goes beyond 31.5dB, keep the
2402                  * upper 31.5dB range when setting tx power.
2403                  * Note: 126 = 31.5 dB in quarter dB steps */
2404                 if (table_max[0] - table_min[1] > 126)
2405                         min_pwr_idx = table_max[0] - 126;
2406                 else
2407                         min_pwr_idx = table_min[1];
2408
2409                 /* Since we fill table backwards
2410                  * start from high power curve */
2411                 pcdac_tmp = pcdac_high_pwr;
2412
2413                 edge_flag = 0x40;
2414         } else {
2415                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2416                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2417                 min_pwr_idx = table_min[0];
2418                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2419                 pcdac_tmp = pcdac_high_pwr;
2420                 edge_flag = 0;
2421         }
2422
2423         /* This is used when setting tx power*/
2424         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2425
2426         /* Fill Power to PCDAC table backwards */
2427         pwr = max_pwr_idx;
2428         for (i = 63; i >= 0; i--) {
2429                 /* Entering lower power range, reset
2430                  * edge flag and set pcdac_tmp to lower
2431                  * power curve.*/
2432                 if (edge_flag == 0x40 &&
2433                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2434                         edge_flag = 0x00;
2435                         pcdac_tmp = pcdac_low_pwr;
2436                         pwr = mid_pwr_idx/2;
2437                 }
2438
2439                 /* Don't go below 1, extrapolate below if we have
2440                  * already swithced to the lower power curve -or
2441                  * we only have one curve and edge_flag is zero
2442                  * anyway */
2443                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2444                         while (i >= 0) {
2445                                 pcdac_out[i] = pcdac_out[i + 1];
2446                                 i--;
2447                         }
2448                         break;
2449                 }
2450
2451                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2452
2453                 /* Extrapolate above if pcdac is greater than
2454                  * 126 -this can happen because we OR pcdac_out
2455                  * value with edge_flag on high power curve */
2456                 if (pcdac_out[i] > 126)
2457                         pcdac_out[i] = 126;
2458
2459                 /* Decrease by a 0.5dB step */
2460                 pwr--;
2461         }
2462 }
2463
2464 /* Write PCDAC values on hw */
2465 static void
2466 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2467 {
2468         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2469         int     i;
2470
2471         /*
2472          * Write TX power values
2473          */
2474         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2475                 ath5k_hw_reg_write(ah,
2476                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2477                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2478                         AR5K_PHY_PCDAC_TXPOWER(i));
2479         }
2480 }
2481
2482
2483 /*
2484  * Power to PDADC table functions
2485  */
2486
2487 /*
2488  * Set the gain boundaries and create final Power to PDADC table
2489  *
2490  * We can have up to 4 pd curves, we need to do a simmilar process
2491  * as we do for RF5112. This time we don't have an edge_flag but we
2492  * set the gain boundaries on a separate register.
2493  */
2494 static void
2495 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2496                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2497 {
2498         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2499         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2500         u8 *pdadc_tmp;
2501         s16 pdadc_0;
2502         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2503         u8 pd_gain_overlap;
2504
2505         /* Note: Register value is initialized on initvals
2506          * there is no feedback from hw.
2507          * XXX: What about pd_gain_overlap from EEPROM ? */
2508         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2509                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2510
2511         /* Create final PDADC table */
2512         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2513                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2514
2515                 if (pdg == pdcurves - 1)
2516                         /* 2 dB boundary stretch for last
2517                          * (higher power) curve */
2518                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2519                 else
2520                         /* Set gain boundary in the middle
2521                          * between this curve and the next one */
2522                         gain_boundaries[pdg] =
2523                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2524
2525                 /* Sanity check in case our 2 db stretch got out of
2526                  * range. */
2527                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2528                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2529
2530                 /* For the first curve (lower power)
2531                  * start from 0 dB */
2532                 if (pdg == 0)
2533                         pdadc_0 = 0;
2534                 else
2535                         /* For the other curves use the gain overlap */
2536                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2537                                                         pd_gain_overlap;
2538
2539                 /* Force each power step to be at least 0.5 dB */
2540                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2541                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2542                 else
2543                         pwr_step = 1;
2544
2545                 /* If pdadc_0 is negative, we need to extrapolate
2546                  * below this pdgain by a number of pwr_steps */
2547                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2548                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2549                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2550                         pdadc_0++;
2551                 }
2552
2553                 /* Set last pwr level, using gain boundaries */
2554                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2555                 /* Limit it to be inside pwr range */
2556                 table_size = pwr_max[pdg] - pwr_min[pdg];
2557                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2558
2559                 /* Fill pdadc_out table */
2560                 while (pdadc_0 < max_idx)
2561                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2562
2563                 /* Need to extrapolate above this pdgain? */
2564                 if (pdadc_n <= max_idx)
2565                         continue;
2566
2567                 /* Force each power step to be at least 0.5 dB */
2568                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2569                         pwr_step = pdadc_tmp[table_size - 1] -
2570                                                 pdadc_tmp[table_size - 2];
2571                 else
2572                         pwr_step = 1;
2573
2574                 /* Extrapolate above */
2575                 while ((pdadc_0 < (s16) pdadc_n) &&
2576                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2577                         s16 tmp = pdadc_tmp[table_size - 1] +
2578                                         (pdadc_0 - max_idx) * pwr_step;
2579                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2580                         pdadc_0++;
2581                 }
2582         }
2583
2584         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2585                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2586                 pdg++;
2587         }
2588
2589         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2590                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2591                 pdadc_i++;
2592         }
2593
2594         /* Set gain boundaries */
2595         ath5k_hw_reg_write(ah,
2596                 AR5K_REG_SM(pd_gain_overlap,
2597                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2598                 AR5K_REG_SM(gain_boundaries[0],
2599                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2600                 AR5K_REG_SM(gain_boundaries[1],
2601                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2602                 AR5K_REG_SM(gain_boundaries[2],
2603                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2604                 AR5K_REG_SM(gain_boundaries[3],
2605                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2606                 AR5K_PHY_TPC_RG5);
2607
2608         /* Used for setting rate power table */
2609         ah->ah_txpower.txp_min_idx = pwr_min[0];
2610
2611 }
2612
2613 /* Write PDADC values on hw */
2614 static void
2615 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2616                         u8 pdcurves, u8 *pdg_to_idx)
2617 {
2618         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2619         u32 reg;
2620         u8 i;
2621
2622         /* Select the right pdgain curves */
2623
2624         /* Clear current settings */
2625         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2626         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2627                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2628                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2629                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2630
2631         /*
2632          * Use pd_gains curve from eeprom
2633          *
2634          * This overrides the default setting from initvals
2635          * in case some vendors (e.g. Zcomax) don't use the default
2636          * curves. If we don't honor their settings we 'll get a
2637          * 5dB (1 * gain overlap ?) drop.
2638          */
2639         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2640
2641         switch (pdcurves) {
2642         case 3:
2643                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2644                 /* Fall through */
2645         case 2:
2646                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2647                 /* Fall through */
2648         case 1:
2649                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2650                 break;
2651         }
2652         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2653
2654         /*
2655          * Write TX power values
2656          */
2657         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2658                 ath5k_hw_reg_write(ah,
2659                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2660                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2661                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2662                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2663                         AR5K_PHY_PDADC_TXPOWER(i));
2664         }
2665 }
2666
2667
2668 /*
2669  * Common code for PCDAC/PDADC tables
2670  */
2671
2672 /*
2673  * This is the main function that uses all of the above
2674  * to set PCDAC/PDADC table on hw for the current channel.
2675  * This table is used for tx power calibration on the basband,
2676  * without it we get weird tx power levels and in some cases
2677  * distorted spectral mask
2678  */
2679 static int
2680 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2681                         struct ieee80211_channel *channel,
2682                         u8 ee_mode, u8 type)
2683 {
2684         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2685         struct ath5k_chan_pcal_info *pcinfo_L;
2686         struct ath5k_chan_pcal_info *pcinfo_R;
2687         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2688         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2689         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2690         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2691         u8 *tmpL;
2692         u8 *tmpR;
2693         u32 target = channel->center_freq;
2694         int pdg, i;
2695
2696         /* Get surounding freq piers for this channel */
2697         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2698                                                 &pcinfo_L,
2699                                                 &pcinfo_R);
2700
2701         /* Loop over pd gain curves on
2702          * surounding freq piers by index */
2703         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2704
2705                 /* Fill curves in reverse order
2706                  * from lower power (max gain)
2707                  * to higher power. Use curve -> idx
2708                  * backmapping we did on eeprom init */
2709                 u8 idx = pdg_curve_to_idx[pdg];
2710
2711                 /* Grab the needed curves by index */
2712                 pdg_L = &pcinfo_L->pd_curves[idx];
2713                 pdg_R = &pcinfo_R->pd_curves[idx];
2714
2715                 /* Initialize the temp tables */
2716                 tmpL = ah->ah_txpower.tmpL[pdg];
2717                 tmpR = ah->ah_txpower.tmpR[pdg];
2718
2719                 /* Set curve's x boundaries and create
2720                  * curves so that they cover the same
2721                  * range (if we don't do that one table
2722                  * will have values on some range and the
2723                  * other one won't have any so interpolation
2724                  * will fail) */
2725                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2726                                         pdg_R->pd_pwr[0]) / 2;
2727
2728                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2729                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2730
2731                 /* Now create the curves on surrounding channels
2732                  * and interpolate if needed to get the final
2733                  * curve for this gain on this channel */
2734                 switch (type) {
2735                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2736                         /* Override min/max so that we don't loose
2737                          * accuracy (don't divide by 2) */
2738                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2739                                                 pdg_R->pd_pwr[0]);
2740
2741                         table_max[pdg] =
2742                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2743                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2744
2745                         /* Override minimum so that we don't get
2746                          * out of bounds while extrapolating
2747                          * below. Don't do this when we have 2
2748                          * curves and we are on the high power curve
2749                          * because table_min is ok in this case */
2750                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2751
2752                                 table_min[pdg] =
2753                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2754                                                                 pdg_R->pd_step,
2755                                                                 pdg_L->pd_pwr,
2756                                                                 pdg_R->pd_pwr);
2757
2758                                 /* Don't go too low because we will
2759                                  * miss the upper part of the curve.
2760                                  * Note: 126 = 31.5dB (max power supported)
2761                                  * in 0.25dB units */
2762                                 if (table_max[pdg] - table_min[pdg] > 126)
2763                                         table_min[pdg] = table_max[pdg] - 126;
2764                         }
2765
2766                         /* Fall through */
2767                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2768                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2769
2770                         ath5k_create_power_curve(table_min[pdg],
2771                                                 table_max[pdg],
2772                                                 pdg_L->pd_pwr,
2773                                                 pdg_L->pd_step,
2774                                                 pdg_L->pd_points, tmpL, type);
2775
2776                         /* We are in a calibration
2777                          * pier, no need to interpolate
2778                          * between freq piers */
2779                         if (pcinfo_L == pcinfo_R)
2780                                 continue;
2781
2782                         ath5k_create_power_curve(table_min[pdg],
2783                                                 table_max[pdg],
2784                                                 pdg_R->pd_pwr,
2785                                                 pdg_R->pd_step,
2786                                                 pdg_R->pd_points, tmpR, type);
2787                         break;
2788                 default:
2789                         return -EINVAL;
2790                 }
2791
2792                 /* Interpolate between curves
2793                  * of surounding freq piers to
2794                  * get the final curve for this
2795                  * pd gain. Re-use tmpL for interpolation
2796                  * output */
2797                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2798                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2799                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2800                                                         (s16) pcinfo_L->freq,
2801                                                         (s16) pcinfo_R->freq,
2802                                                         (s16) tmpL[i],
2803                                                         (s16) tmpR[i]);
2804                 }
2805         }
2806
2807         /* Now we have a set of curves for this
2808          * channel on tmpL (x range is table_max - table_min
2809          * and y values are tmpL[pdg][]) sorted in the same
2810          * order as EEPROM (because we've used the backmapping).
2811          * So for RF5112 it's from higher power to lower power
2812          * and for RF2413 it's from lower power to higher power.
2813          * For RF5111 we only have one curve. */
2814
2815         /* Fill min and max power levels for this
2816          * channel by interpolating the values on
2817          * surounding channels to complete the dataset */
2818         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2819                                         (s16) pcinfo_L->freq,
2820                                         (s16) pcinfo_R->freq,
2821                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2822
2823         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2824                                         (s16) pcinfo_L->freq,
2825                                         (s16) pcinfo_R->freq,
2826                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2827
2828         /* We are ready to go, fill PCDAC/PDADC
2829          * table and write settings on hardware */
2830         switch (type) {
2831         case AR5K_PWRTABLE_LINEAR_PCDAC:
2832                 /* For RF5112 we can have one or two curves
2833                  * and each curve covers a certain power lvl
2834                  * range so we need to do some more processing */
2835                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2836                                                 ee->ee_pd_gains[ee_mode]);
2837
2838                 /* Set txp.offset so that we can
2839                  * match max power value with max
2840                  * table index */
2841                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2842
2843                 /* Write settings on hw */
2844                 ath5k_setup_pcdac_table(ah);
2845                 break;
2846         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2847                 /* We are done for RF5111 since it has only
2848                  * one curve, just fit the curve on the table */
2849                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2850
2851                 /* No rate powertable adjustment for RF5111 */
2852                 ah->ah_txpower.txp_min_idx = 0;
2853                 ah->ah_txpower.txp_offset = 0;
2854
2855                 /* Write settings on hw */
2856                 ath5k_setup_pcdac_table(ah);
2857                 break;
2858         case AR5K_PWRTABLE_PWR_TO_PDADC:
2859                 /* Set PDADC boundaries and fill
2860                  * final PDADC table */
2861                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2862                                                 ee->ee_pd_gains[ee_mode]);
2863
2864                 /* Write settings on hw */
2865                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2866
2867                 /* Set txp.offset, note that table_min
2868                  * can be negative */
2869                 ah->ah_txpower.txp_offset = table_min[0];
2870                 break;
2871         default:
2872                 return -EINVAL;
2873         }
2874
2875         return 0;
2876 }
2877
2878
2879 /*
2880  * Per-rate tx power setting
2881  *
2882  * This is the code that sets the desired tx power (below
2883  * maximum) on hw for each rate (we also have TPC that sets
2884  * power per packet). We do that by providing an index on the
2885  * PCDAC/PDADC table we set up.
2886  */
2887
2888 /*
2889  * Set rate power table
2890  *
2891  * For now we only limit txpower based on maximum tx power
2892  * supported by hw (what's inside rate_info). We need to limit
2893  * this even more, based on regulatory domain etc.
2894  *
2895  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2896  * and is indexed as follows:
2897  * rates[0] - rates[7] -> OFDM rates
2898  * rates[8] - rates[14] -> CCK rates
2899  * rates[15] -> XR rates (they all have the same power)
2900  */
2901 static void
2902 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2903                         struct ath5k_rate_pcal_info *rate_info,
2904                         u8 ee_mode)
2905 {
2906         unsigned int i;
2907         u16 *rates;
2908
2909         /* max_pwr is power level we got from driver/user in 0.5dB
2910          * units, switch to 0.25dB units so we can compare */
2911         max_pwr *= 2;
2912         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2913
2914         /* apply rate limits */
2915         rates = ah->ah_txpower.txp_rates_power_table;
2916
2917         /* OFDM rates 6 to 24Mb/s */
2918         for (i = 0; i < 5; i++)
2919                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2920
2921         /* Rest OFDM rates */
2922         rates[5] = min(rates[0], rate_info->target_power_36);
2923         rates[6] = min(rates[0], rate_info->target_power_48);
2924         rates[7] = min(rates[0], rate_info->target_power_54);
2925
2926         /* CCK rates */
2927         /* 1L */
2928         rates[8] = min(rates[0], rate_info->target_power_6to24);
2929         /* 2L */
2930         rates[9] = min(rates[0], rate_info->target_power_36);
2931         /* 2S */
2932         rates[10] = min(rates[0], rate_info->target_power_36);
2933         /* 5L */
2934         rates[11] = min(rates[0], rate_info->target_power_48);
2935         /* 5S */
2936         rates[12] = min(rates[0], rate_info->target_power_48);
2937         /* 11L */
2938         rates[13] = min(rates[0], rate_info->target_power_54);
2939         /* 11S */
2940         rates[14] = min(rates[0], rate_info->target_power_54);
2941
2942         /* XR rates */
2943         rates[15] = min(rates[0], rate_info->target_power_6to24);
2944
2945         /* CCK rates have different peak to average ratio
2946          * so we have to tweak their power so that gainf
2947          * correction works ok. For this we use OFDM to
2948          * CCK delta from eeprom */
2949         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2950         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2951                 for (i = 8; i <= 15; i++)
2952                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2953
2954         /* Now that we have all rates setup use table offset to
2955          * match the power range set by user with the power indices
2956          * on PCDAC/PDADC table */
2957         for (i = 0; i < 16; i++) {
2958                 rates[i] += ah->ah_txpower.txp_offset;
2959                 /* Don't get out of bounds */
2960                 if (rates[i] > 63)
2961                         rates[i] = 63;
2962         }
2963
2964         /* Min/max in 0.25dB units */
2965         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2966         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2967         ah->ah_txpower.txp_ofdm = rates[7];
2968 }
2969
2970
2971 /*
2972  * Set transmition power
2973  */
2974 int
2975 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2976                 u8 ee_mode, u8 txpower)
2977 {
2978         struct ath5k_rate_pcal_info rate_info;
2979         u8 type;
2980         int ret;
2981
2982         ATH5K_TRACE(ah->ah_sc);
2983         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2984                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2985                 return -EINVAL;
2986         }
2987
2988         /* Reset TX power values */
2989         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2990         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2991         ah->ah_txpower.txp_min_pwr = 0;
2992         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2993
2994         /* Initialize TX power table */
2995         switch (ah->ah_radio) {
2996         case AR5K_RF5111:
2997                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2998                 break;
2999         case AR5K_RF5112:
3000                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3001                 break;
3002         case AR5K_RF2413:
3003         case AR5K_RF5413:
3004         case AR5K_RF2316:
3005         case AR5K_RF2317:
3006         case AR5K_RF2425:
3007                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3008                 break;
3009         default:
3010                 return -EINVAL;
3011         }
3012
3013         /* FIXME: Only on channel/mode change */
3014         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3015         if (ret)
3016                 return ret;
3017
3018         /* Limit max power if we have a CTL available */
3019         ath5k_get_max_ctl_power(ah, channel);
3020
3021         /* FIXME: Tx power limit for this regdomain
3022          * XXX: Mac80211/CRDA will do that anyway ? */
3023
3024         /* FIXME: Antenna reduction stuff */
3025
3026         /* FIXME: Limit power on turbo modes */
3027
3028         /* FIXME: TPC scale reduction */
3029
3030         /* Get surounding channels for per-rate power table
3031          * calibration */
3032         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3033
3034         /* Setup rate power table */
3035         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3036
3037         /* Write rate power table on hw */
3038         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3039                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3040                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3041
3042         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3043                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3044                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3045
3046         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3047                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3048                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3049
3050         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3051                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3052                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3053
3054         /* FIXME: TPC support */
3055         if (ah->ah_txpower.txp_tpc) {
3056                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3057                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3058
3059                 ath5k_hw_reg_write(ah,
3060                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3061                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3062                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3063                         AR5K_TPC);
3064         } else {
3065                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3066                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3067         }
3068
3069         return 0;
3070 }
3071
3072 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3073 {
3074         /*Just a try M.F.*/
3075         struct ieee80211_channel *channel = ah->ah_current_channel;
3076         u8 ee_mode;
3077
3078         ATH5K_TRACE(ah->ah_sc);
3079
3080         switch (channel->hw_value & CHANNEL_MODES) {
3081         case CHANNEL_A:
3082         case CHANNEL_T:
3083         case CHANNEL_XR:
3084                 ee_mode = AR5K_EEPROM_MODE_11A;
3085                 break;
3086         case CHANNEL_G:
3087         case CHANNEL_TG:
3088                 ee_mode = AR5K_EEPROM_MODE_11G;
3089                 break;
3090         case CHANNEL_B:
3091                 ee_mode = AR5K_EEPROM_MODE_11B;
3092                 break;
3093         default:
3094                 ATH5K_ERR(ah->ah_sc,
3095                         "invalid channel: %d\n", channel->center_freq);
3096                 return -EINVAL;
3097         }
3098
3099         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3100                 "changing txpower to %d\n", txpower);
3101
3102         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3103 }