]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvdimm/pmem.c
Merge branch 'for-4.13/dax' into libnvdimm-for-next
[karo-tx-linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40         /*
41          * nvdimm bus services need a 'dev' parameter, and we record the device
42          * at init in bb.dev.
43          */
44         return pmem->bb.dev;
45 }
46
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49         return to_nd_region(to_dev(pmem)->parent);
50 }
51
52 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
53                 unsigned int len)
54 {
55         struct device *dev = to_dev(pmem);
56         sector_t sector;
57         long cleared;
58         int rc = 0;
59
60         sector = (offset - pmem->data_offset) / 512;
61
62         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63         if (cleared < len)
64                 rc = -EIO;
65         if (cleared > 0 && cleared / 512) {
66                 cleared /= 512;
67                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68                                 (unsigned long long) sector, cleared,
69                                 cleared > 1 ? "s" : "");
70                 badblocks_clear(&pmem->bb, sector, cleared);
71                 if (pmem->bb_state)
72                         sysfs_notify_dirent(pmem->bb_state);
73         }
74
75         arch_invalidate_pmem(pmem->virt_addr + offset, len);
76
77         return rc;
78 }
79
80 static void write_pmem(void *pmem_addr, struct page *page,
81                 unsigned int off, unsigned int len)
82 {
83         void *mem = kmap_atomic(page);
84
85         memcpy_flushcache(pmem_addr, mem + off, len);
86         kunmap_atomic(mem);
87 }
88
89 static int read_pmem(struct page *page, unsigned int off,
90                 void *pmem_addr, unsigned int len)
91 {
92         int rc;
93         void *mem = kmap_atomic(page);
94
95         rc = memcpy_mcsafe(mem + off, pmem_addr, len);
96         kunmap_atomic(mem);
97         if (rc)
98                 return -EIO;
99         return 0;
100 }
101
102 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
103                         unsigned int len, unsigned int off, bool is_write,
104                         sector_t sector)
105 {
106         int rc = 0;
107         bool bad_pmem = false;
108         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
109         void *pmem_addr = pmem->virt_addr + pmem_off;
110
111         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
112                 bad_pmem = true;
113
114         if (!is_write) {
115                 if (unlikely(bad_pmem))
116                         rc = -EIO;
117                 else {
118                         rc = read_pmem(page, off, pmem_addr, len);
119                         flush_dcache_page(page);
120                 }
121         } else {
122                 /*
123                  * Note that we write the data both before and after
124                  * clearing poison.  The write before clear poison
125                  * handles situations where the latest written data is
126                  * preserved and the clear poison operation simply marks
127                  * the address range as valid without changing the data.
128                  * In this case application software can assume that an
129                  * interrupted write will either return the new good
130                  * data or an error.
131                  *
132                  * However, if pmem_clear_poison() leaves the data in an
133                  * indeterminate state we need to perform the write
134                  * after clear poison.
135                  */
136                 flush_dcache_page(page);
137                 write_pmem(pmem_addr, page, off, len);
138                 if (unlikely(bad_pmem)) {
139                         rc = pmem_clear_poison(pmem, pmem_off, len);
140                         write_pmem(pmem_addr, page, off, len);
141                 }
142         }
143
144         return rc;
145 }
146
147 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
148 #ifndef REQ_FLUSH
149 #define REQ_FLUSH REQ_PREFLUSH
150 #endif
151
152 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
153 {
154         int rc = 0;
155         bool do_acct;
156         unsigned long start;
157         struct bio_vec bvec;
158         struct bvec_iter iter;
159         struct pmem_device *pmem = q->queuedata;
160         struct nd_region *nd_region = to_region(pmem);
161
162         if (bio->bi_opf & REQ_FLUSH)
163                 nvdimm_flush(nd_region);
164
165         do_acct = nd_iostat_start(bio, &start);
166         bio_for_each_segment(bvec, bio, iter) {
167                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
168                                 bvec.bv_offset, op_is_write(bio_op(bio)),
169                                 iter.bi_sector);
170                 if (rc) {
171                         bio->bi_error = rc;
172                         break;
173                 }
174         }
175         if (do_acct)
176                 nd_iostat_end(bio, start);
177
178         if (bio->bi_opf & REQ_FUA)
179                 nvdimm_flush(nd_region);
180
181         bio_endio(bio);
182         return BLK_QC_T_NONE;
183 }
184
185 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
186                        struct page *page, bool is_write)
187 {
188         struct pmem_device *pmem = bdev->bd_queue->queuedata;
189         int rc;
190
191         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
192
193         /*
194          * The ->rw_page interface is subtle and tricky.  The core
195          * retries on any error, so we can only invoke page_endio() in
196          * the successful completion case.  Otherwise, we'll see crashes
197          * caused by double completion.
198          */
199         if (rc == 0)
200                 page_endio(page, is_write, 0);
201
202         return rc;
203 }
204
205 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
206 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
207                 long nr_pages, void **kaddr, pfn_t *pfn)
208 {
209         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
210
211         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
212                                         PFN_PHYS(nr_pages))))
213                 return -EIO;
214         *kaddr = pmem->virt_addr + offset;
215         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
216
217         /*
218          * If badblocks are present, limit known good range to the
219          * requested range.
220          */
221         if (unlikely(pmem->bb.count))
222                 return nr_pages;
223         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
224 }
225
226 static const struct block_device_operations pmem_fops = {
227         .owner =                THIS_MODULE,
228         .rw_page =              pmem_rw_page,
229         .revalidate_disk =      nvdimm_revalidate_disk,
230 };
231
232 static long pmem_dax_direct_access(struct dax_device *dax_dev,
233                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
234 {
235         struct pmem_device *pmem = dax_get_private(dax_dev);
236
237         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
238 }
239
240 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
241                 void *addr, size_t bytes, struct iov_iter *i)
242 {
243         return copy_from_iter_flushcache(addr, bytes, i);
244 }
245
246 static void pmem_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff,
247                 void *addr, size_t size)
248 {
249         arch_wb_cache_pmem(addr, size);
250 }
251
252 static const struct dax_operations pmem_dax_ops = {
253         .direct_access = pmem_dax_direct_access,
254         .copy_from_iter = pmem_copy_from_iter,
255         .flush = pmem_dax_flush,
256 };
257
258 static const struct attribute_group *pmem_attribute_groups[] = {
259         &dax_attribute_group,
260         NULL,
261 };
262
263 static void pmem_release_queue(void *q)
264 {
265         blk_cleanup_queue(q);
266 }
267
268 static void pmem_freeze_queue(void *q)
269 {
270         blk_freeze_queue_start(q);
271 }
272
273 static void pmem_release_disk(void *__pmem)
274 {
275         struct pmem_device *pmem = __pmem;
276
277         kill_dax(pmem->dax_dev);
278         put_dax(pmem->dax_dev);
279         del_gendisk(pmem->disk);
280         put_disk(pmem->disk);
281 }
282
283 static int pmem_attach_disk(struct device *dev,
284                 struct nd_namespace_common *ndns)
285 {
286         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
287         struct nd_region *nd_region = to_nd_region(dev->parent);
288         struct vmem_altmap __altmap, *altmap = NULL;
289         int nid = dev_to_node(dev), fua, wbc;
290         struct resource *res = &nsio->res;
291         struct nd_pfn *nd_pfn = NULL;
292         struct dax_device *dax_dev;
293         struct nd_pfn_sb *pfn_sb;
294         struct pmem_device *pmem;
295         struct resource pfn_res;
296         struct request_queue *q;
297         struct device *gendev;
298         struct gendisk *disk;
299         void *addr;
300
301         /* while nsio_rw_bytes is active, parse a pfn info block if present */
302         if (is_nd_pfn(dev)) {
303                 nd_pfn = to_nd_pfn(dev);
304                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
305                 if (IS_ERR(altmap))
306                         return PTR_ERR(altmap);
307         }
308
309         /* we're attaching a block device, disable raw namespace access */
310         devm_nsio_disable(dev, nsio);
311
312         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
313         if (!pmem)
314                 return -ENOMEM;
315
316         dev_set_drvdata(dev, pmem);
317         pmem->phys_addr = res->start;
318         pmem->size = resource_size(res);
319         fua = nvdimm_has_flush(nd_region);
320         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
321                 dev_warn(dev, "unable to guarantee persistence of writes\n");
322                 fua = 0;
323         }
324         wbc = nvdimm_has_cache(nd_region);
325
326         if (!devm_request_mem_region(dev, res->start, resource_size(res),
327                                 dev_name(&ndns->dev))) {
328                 dev_warn(dev, "could not reserve region %pR\n", res);
329                 return -EBUSY;
330         }
331
332         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
333         if (!q)
334                 return -ENOMEM;
335
336         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
337                 return -ENOMEM;
338
339         pmem->pfn_flags = PFN_DEV;
340         if (is_nd_pfn(dev)) {
341                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
342                                 altmap);
343                 pfn_sb = nd_pfn->pfn_sb;
344                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
345                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
346                 pmem->pfn_flags |= PFN_MAP;
347                 res = &pfn_res; /* for badblocks populate */
348                 res->start += pmem->data_offset;
349         } else if (pmem_should_map_pages(dev)) {
350                 addr = devm_memremap_pages(dev, &nsio->res,
351                                 &q->q_usage_counter, NULL);
352                 pmem->pfn_flags |= PFN_MAP;
353         } else
354                 addr = devm_memremap(dev, pmem->phys_addr,
355                                 pmem->size, ARCH_MEMREMAP_PMEM);
356
357         /*
358          * At release time the queue must be frozen before
359          * devm_memremap_pages is unwound
360          */
361         if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
362                 return -ENOMEM;
363
364         if (IS_ERR(addr))
365                 return PTR_ERR(addr);
366         pmem->virt_addr = addr;
367
368         blk_queue_write_cache(q, wbc, fua);
369         blk_queue_make_request(q, pmem_make_request);
370         blk_queue_physical_block_size(q, PAGE_SIZE);
371         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
372         blk_queue_max_hw_sectors(q, UINT_MAX);
373         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
374         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
375         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
376         q->queuedata = pmem;
377
378         disk = alloc_disk_node(0, nid);
379         if (!disk)
380                 return -ENOMEM;
381         pmem->disk = disk;
382
383         disk->fops              = &pmem_fops;
384         disk->queue             = q;
385         disk->flags             = GENHD_FL_EXT_DEVT;
386         nvdimm_namespace_disk_name(ndns, disk->disk_name);
387         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
388                         / 512);
389         if (devm_init_badblocks(dev, &pmem->bb))
390                 return -ENOMEM;
391         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
392         disk->bb = &pmem->bb;
393
394         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
395         if (!dax_dev) {
396                 put_disk(disk);
397                 return -ENOMEM;
398         }
399         dax_write_cache(dax_dev, wbc);
400         pmem->dax_dev = dax_dev;
401
402         gendev = disk_to_dev(disk);
403         gendev->groups = pmem_attribute_groups;
404
405         device_add_disk(dev, disk);
406         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
407                 return -ENOMEM;
408
409         revalidate_disk(disk);
410
411         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
412                                           "badblocks");
413         if (!pmem->bb_state)
414                 dev_warn(dev, "'badblocks' notification disabled\n");
415
416         return 0;
417 }
418
419 static int nd_pmem_probe(struct device *dev)
420 {
421         struct nd_namespace_common *ndns;
422
423         ndns = nvdimm_namespace_common_probe(dev);
424         if (IS_ERR(ndns))
425                 return PTR_ERR(ndns);
426
427         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
428                 return -ENXIO;
429
430         if (is_nd_btt(dev))
431                 return nvdimm_namespace_attach_btt(ndns);
432
433         if (is_nd_pfn(dev))
434                 return pmem_attach_disk(dev, ndns);
435
436         /* if we find a valid info-block we'll come back as that personality */
437         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
438                         || nd_dax_probe(dev, ndns) == 0)
439                 return -ENXIO;
440
441         /* ...otherwise we're just a raw pmem device */
442         return pmem_attach_disk(dev, ndns);
443 }
444
445 static int nd_pmem_remove(struct device *dev)
446 {
447         struct pmem_device *pmem = dev_get_drvdata(dev);
448
449         if (is_nd_btt(dev))
450                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
451         else {
452                 /*
453                  * Note, this assumes device_lock() context to not race
454                  * nd_pmem_notify()
455                  */
456                 sysfs_put(pmem->bb_state);
457                 pmem->bb_state = NULL;
458         }
459         nvdimm_flush(to_nd_region(dev->parent));
460
461         return 0;
462 }
463
464 static void nd_pmem_shutdown(struct device *dev)
465 {
466         nvdimm_flush(to_nd_region(dev->parent));
467 }
468
469 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
470 {
471         struct nd_region *nd_region;
472         resource_size_t offset = 0, end_trunc = 0;
473         struct nd_namespace_common *ndns;
474         struct nd_namespace_io *nsio;
475         struct resource res;
476         struct badblocks *bb;
477         struct kernfs_node *bb_state;
478
479         if (event != NVDIMM_REVALIDATE_POISON)
480                 return;
481
482         if (is_nd_btt(dev)) {
483                 struct nd_btt *nd_btt = to_nd_btt(dev);
484
485                 ndns = nd_btt->ndns;
486                 nd_region = to_nd_region(ndns->dev.parent);
487                 nsio = to_nd_namespace_io(&ndns->dev);
488                 bb = &nsio->bb;
489                 bb_state = NULL;
490         } else {
491                 struct pmem_device *pmem = dev_get_drvdata(dev);
492
493                 nd_region = to_region(pmem);
494                 bb = &pmem->bb;
495                 bb_state = pmem->bb_state;
496
497                 if (is_nd_pfn(dev)) {
498                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
499                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
500
501                         ndns = nd_pfn->ndns;
502                         offset = pmem->data_offset +
503                                         __le32_to_cpu(pfn_sb->start_pad);
504                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
505                 } else {
506                         ndns = to_ndns(dev);
507                 }
508
509                 nsio = to_nd_namespace_io(&ndns->dev);
510         }
511
512         res.start = nsio->res.start + offset;
513         res.end = nsio->res.end - end_trunc;
514         nvdimm_badblocks_populate(nd_region, bb, &res);
515         if (bb_state)
516                 sysfs_notify_dirent(bb_state);
517 }
518
519 MODULE_ALIAS("pmem");
520 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
521 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
522 static struct nd_device_driver nd_pmem_driver = {
523         .probe = nd_pmem_probe,
524         .remove = nd_pmem_remove,
525         .notify = nd_pmem_notify,
526         .shutdown = nd_pmem_shutdown,
527         .drv = {
528                 .name = "nd_pmem",
529         },
530         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
531 };
532
533 static int __init pmem_init(void)
534 {
535         return nd_driver_register(&nd_pmem_driver);
536 }
537 module_init(pmem_init);
538
539 static void pmem_exit(void)
540 {
541         driver_unregister(&nd_pmem_driver.drv);
542 }
543 module_exit(pmem_exit);
544
545 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
546 MODULE_LICENSE("GPL v2");