]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvdimm/region_devs.c
libnvdimm, namespace: record 'lbasize' for pmem namespaces
[karo-tx-linux.git] / drivers / nvdimm / region_devs.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35                 struct nd_region_data *ndrd)
36 {
37         int i, j;
38
39         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42                 struct resource *res = &nvdimm->flush_wpq[i];
43                 unsigned long pfn = PHYS_PFN(res->start);
44                 void __iomem *flush_page;
45
46                 /* check if flush hints share a page */
47                 for (j = 0; j < i; j++) {
48                         struct resource *res_j = &nvdimm->flush_wpq[j];
49                         unsigned long pfn_j = PHYS_PFN(res_j->start);
50
51                         if (pfn == pfn_j)
52                                 break;
53                 }
54
55                 if (j < i)
56                         flush_page = (void __iomem *) ((unsigned long)
57                                         ndrd_get_flush_wpq(ndrd, dimm, j)
58                                         & PAGE_MASK);
59                 else
60                         flush_page = devm_nvdimm_ioremap(dev,
61                                         PFN_PHYS(pfn), PAGE_SIZE);
62                 if (!flush_page)
63                         return -ENXIO;
64                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65                                 + (res->start & ~PAGE_MASK));
66         }
67
68         return 0;
69 }
70
71 int nd_region_activate(struct nd_region *nd_region)
72 {
73         int i, j, num_flush = 0;
74         struct nd_region_data *ndrd;
75         struct device *dev = &nd_region->dev;
76         size_t flush_data_size = sizeof(void *);
77
78         nvdimm_bus_lock(&nd_region->dev);
79         for (i = 0; i < nd_region->ndr_mappings; i++) {
80                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
82
83                 /* at least one null hint slot per-dimm for the "no-hint" case */
84                 flush_data_size += sizeof(void *);
85                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86                 if (!nvdimm->num_flush)
87                         continue;
88                 flush_data_size += nvdimm->num_flush * sizeof(void *);
89         }
90         nvdimm_bus_unlock(&nd_region->dev);
91
92         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
93         if (!ndrd)
94                 return -ENOMEM;
95         dev_set_drvdata(dev, ndrd);
96
97         if (!num_flush)
98                 return 0;
99
100         ndrd->hints_shift = ilog2(num_flush);
101         for (i = 0; i < nd_region->ndr_mappings; i++) {
102                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
104                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105
106                 if (rc)
107                         return rc;
108         }
109
110         /*
111          * Clear out entries that are duplicates. This should prevent the
112          * extra flushings.
113          */
114         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115                 /* ignore if NULL already */
116                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
117                         continue;
118
119                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
120                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121                             ndrd_get_flush_wpq(ndrd, j, 0))
122                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
123         }
124
125         return 0;
126 }
127
128 static void nd_region_release(struct device *dev)
129 {
130         struct nd_region *nd_region = to_nd_region(dev);
131         u16 i;
132
133         for (i = 0; i < nd_region->ndr_mappings; i++) {
134                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
136
137                 put_device(&nvdimm->dev);
138         }
139         free_percpu(nd_region->lane);
140         ida_simple_remove(&region_ida, nd_region->id);
141         if (is_nd_blk(dev))
142                 kfree(to_nd_blk_region(dev));
143         else
144                 kfree(nd_region);
145 }
146
147 static struct device_type nd_blk_device_type = {
148         .name = "nd_blk",
149         .release = nd_region_release,
150 };
151
152 static struct device_type nd_pmem_device_type = {
153         .name = "nd_pmem",
154         .release = nd_region_release,
155 };
156
157 static struct device_type nd_volatile_device_type = {
158         .name = "nd_volatile",
159         .release = nd_region_release,
160 };
161
162 bool is_nd_pmem(struct device *dev)
163 {
164         return dev ? dev->type == &nd_pmem_device_type : false;
165 }
166
167 bool is_nd_blk(struct device *dev)
168 {
169         return dev ? dev->type == &nd_blk_device_type : false;
170 }
171
172 struct nd_region *to_nd_region(struct device *dev)
173 {
174         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
175
176         WARN_ON(dev->type->release != nd_region_release);
177         return nd_region;
178 }
179 EXPORT_SYMBOL_GPL(to_nd_region);
180
181 struct nd_blk_region *to_nd_blk_region(struct device *dev)
182 {
183         struct nd_region *nd_region = to_nd_region(dev);
184
185         WARN_ON(!is_nd_blk(dev));
186         return container_of(nd_region, struct nd_blk_region, nd_region);
187 }
188 EXPORT_SYMBOL_GPL(to_nd_blk_region);
189
190 void *nd_region_provider_data(struct nd_region *nd_region)
191 {
192         return nd_region->provider_data;
193 }
194 EXPORT_SYMBOL_GPL(nd_region_provider_data);
195
196 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
197 {
198         return ndbr->blk_provider_data;
199 }
200 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
201
202 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
203 {
204         ndbr->blk_provider_data = data;
205 }
206 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
207
208 /**
209  * nd_region_to_nstype() - region to an integer namespace type
210  * @nd_region: region-device to interrogate
211  *
212  * This is the 'nstype' attribute of a region as well, an input to the
213  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214  * namespace devices with namespace drivers.
215  */
216 int nd_region_to_nstype(struct nd_region *nd_region)
217 {
218         if (is_nd_pmem(&nd_region->dev)) {
219                 u16 i, alias;
220
221                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
224
225                         if (test_bit(NDD_ALIASING, &nvdimm->flags))
226                                 alias++;
227                 }
228                 if (alias)
229                         return ND_DEVICE_NAMESPACE_PMEM;
230                 else
231                         return ND_DEVICE_NAMESPACE_IO;
232         } else if (is_nd_blk(&nd_region->dev)) {
233                 return ND_DEVICE_NAMESPACE_BLK;
234         }
235
236         return 0;
237 }
238 EXPORT_SYMBOL(nd_region_to_nstype);
239
240 static ssize_t size_show(struct device *dev,
241                 struct device_attribute *attr, char *buf)
242 {
243         struct nd_region *nd_region = to_nd_region(dev);
244         unsigned long long size = 0;
245
246         if (is_nd_pmem(dev)) {
247                 size = nd_region->ndr_size;
248         } else if (nd_region->ndr_mappings == 1) {
249                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
250
251                 size = nd_mapping->size;
252         }
253
254         return sprintf(buf, "%llu\n", size);
255 }
256 static DEVICE_ATTR_RO(size);
257
258 static ssize_t deep_flush_show(struct device *dev,
259                 struct device_attribute *attr, char *buf)
260 {
261         struct nd_region *nd_region = to_nd_region(dev);
262
263         /*
264          * NOTE: in the nvdimm_has_flush() error case this attribute is
265          * not visible.
266          */
267         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
268 }
269
270 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
271                 const char *buf, size_t len)
272 {
273         bool flush;
274         int rc = strtobool(buf, &flush);
275         struct nd_region *nd_region = to_nd_region(dev);
276
277         if (rc)
278                 return rc;
279         if (!flush)
280                 return -EINVAL;
281         nvdimm_flush(nd_region);
282
283         return len;
284 }
285 static DEVICE_ATTR_RW(deep_flush);
286
287 static ssize_t mappings_show(struct device *dev,
288                 struct device_attribute *attr, char *buf)
289 {
290         struct nd_region *nd_region = to_nd_region(dev);
291
292         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
293 }
294 static DEVICE_ATTR_RO(mappings);
295
296 static ssize_t nstype_show(struct device *dev,
297                 struct device_attribute *attr, char *buf)
298 {
299         struct nd_region *nd_region = to_nd_region(dev);
300
301         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
302 }
303 static DEVICE_ATTR_RO(nstype);
304
305 static ssize_t set_cookie_show(struct device *dev,
306                 struct device_attribute *attr, char *buf)
307 {
308         struct nd_region *nd_region = to_nd_region(dev);
309         struct nd_interleave_set *nd_set = nd_region->nd_set;
310         ssize_t rc = 0;
311
312         if (is_nd_pmem(dev) && nd_set)
313                 /* pass, should be precluded by region_visible */;
314         else
315                 return -ENXIO;
316
317         /*
318          * The cookie to show depends on which specification of the
319          * labels we are using. If there are not labels then default to
320          * the v1.1 namespace label cookie definition. To read all this
321          * data we need to wait for probing to settle.
322          */
323         device_lock(dev);
324         nvdimm_bus_lock(dev);
325         wait_nvdimm_bus_probe_idle(dev);
326         if (nd_region->ndr_mappings) {
327                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
328                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
329
330                 if (ndd) {
331                         struct nd_namespace_index *nsindex;
332
333                         nsindex = to_namespace_index(ndd, ndd->ns_current);
334                         rc = sprintf(buf, "%#llx\n",
335                                         nd_region_interleave_set_cookie(nd_region,
336                                                 nsindex));
337                 }
338         }
339         nvdimm_bus_unlock(dev);
340         device_unlock(dev);
341
342         if (rc)
343                 return rc;
344         return sprintf(buf, "%#llx\n", nd_set->cookie1);
345 }
346 static DEVICE_ATTR_RO(set_cookie);
347
348 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
349 {
350         resource_size_t blk_max_overlap = 0, available, overlap;
351         int i;
352
353         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
354
355  retry:
356         available = 0;
357         overlap = blk_max_overlap;
358         for (i = 0; i < nd_region->ndr_mappings; i++) {
359                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
360                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
361
362                 /* if a dimm is disabled the available capacity is zero */
363                 if (!ndd)
364                         return 0;
365
366                 if (is_nd_pmem(&nd_region->dev)) {
367                         available += nd_pmem_available_dpa(nd_region,
368                                         nd_mapping, &overlap);
369                         if (overlap > blk_max_overlap) {
370                                 blk_max_overlap = overlap;
371                                 goto retry;
372                         }
373                 } else if (is_nd_blk(&nd_region->dev))
374                         available += nd_blk_available_dpa(nd_region);
375         }
376
377         return available;
378 }
379
380 static ssize_t available_size_show(struct device *dev,
381                 struct device_attribute *attr, char *buf)
382 {
383         struct nd_region *nd_region = to_nd_region(dev);
384         unsigned long long available = 0;
385
386         /*
387          * Flush in-flight updates and grab a snapshot of the available
388          * size.  Of course, this value is potentially invalidated the
389          * memory nvdimm_bus_lock() is dropped, but that's userspace's
390          * problem to not race itself.
391          */
392         nvdimm_bus_lock(dev);
393         wait_nvdimm_bus_probe_idle(dev);
394         available = nd_region_available_dpa(nd_region);
395         nvdimm_bus_unlock(dev);
396
397         return sprintf(buf, "%llu\n", available);
398 }
399 static DEVICE_ATTR_RO(available_size);
400
401 static ssize_t init_namespaces_show(struct device *dev,
402                 struct device_attribute *attr, char *buf)
403 {
404         struct nd_region_data *ndrd = dev_get_drvdata(dev);
405         ssize_t rc;
406
407         nvdimm_bus_lock(dev);
408         if (ndrd)
409                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
410         else
411                 rc = -ENXIO;
412         nvdimm_bus_unlock(dev);
413
414         return rc;
415 }
416 static DEVICE_ATTR_RO(init_namespaces);
417
418 static ssize_t namespace_seed_show(struct device *dev,
419                 struct device_attribute *attr, char *buf)
420 {
421         struct nd_region *nd_region = to_nd_region(dev);
422         ssize_t rc;
423
424         nvdimm_bus_lock(dev);
425         if (nd_region->ns_seed)
426                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
427         else
428                 rc = sprintf(buf, "\n");
429         nvdimm_bus_unlock(dev);
430         return rc;
431 }
432 static DEVICE_ATTR_RO(namespace_seed);
433
434 static ssize_t btt_seed_show(struct device *dev,
435                 struct device_attribute *attr, char *buf)
436 {
437         struct nd_region *nd_region = to_nd_region(dev);
438         ssize_t rc;
439
440         nvdimm_bus_lock(dev);
441         if (nd_region->btt_seed)
442                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
443         else
444                 rc = sprintf(buf, "\n");
445         nvdimm_bus_unlock(dev);
446
447         return rc;
448 }
449 static DEVICE_ATTR_RO(btt_seed);
450
451 static ssize_t pfn_seed_show(struct device *dev,
452                 struct device_attribute *attr, char *buf)
453 {
454         struct nd_region *nd_region = to_nd_region(dev);
455         ssize_t rc;
456
457         nvdimm_bus_lock(dev);
458         if (nd_region->pfn_seed)
459                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
460         else
461                 rc = sprintf(buf, "\n");
462         nvdimm_bus_unlock(dev);
463
464         return rc;
465 }
466 static DEVICE_ATTR_RO(pfn_seed);
467
468 static ssize_t dax_seed_show(struct device *dev,
469                 struct device_attribute *attr, char *buf)
470 {
471         struct nd_region *nd_region = to_nd_region(dev);
472         ssize_t rc;
473
474         nvdimm_bus_lock(dev);
475         if (nd_region->dax_seed)
476                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
477         else
478                 rc = sprintf(buf, "\n");
479         nvdimm_bus_unlock(dev);
480
481         return rc;
482 }
483 static DEVICE_ATTR_RO(dax_seed);
484
485 static ssize_t read_only_show(struct device *dev,
486                 struct device_attribute *attr, char *buf)
487 {
488         struct nd_region *nd_region = to_nd_region(dev);
489
490         return sprintf(buf, "%d\n", nd_region->ro);
491 }
492
493 static ssize_t read_only_store(struct device *dev,
494                 struct device_attribute *attr, const char *buf, size_t len)
495 {
496         bool ro;
497         int rc = strtobool(buf, &ro);
498         struct nd_region *nd_region = to_nd_region(dev);
499
500         if (rc)
501                 return rc;
502
503         nd_region->ro = ro;
504         return len;
505 }
506 static DEVICE_ATTR_RW(read_only);
507
508 static ssize_t region_badblocks_show(struct device *dev,
509                 struct device_attribute *attr, char *buf)
510 {
511         struct nd_region *nd_region = to_nd_region(dev);
512
513         return badblocks_show(&nd_region->bb, buf, 0);
514 }
515
516 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
517
518 static ssize_t resource_show(struct device *dev,
519                 struct device_attribute *attr, char *buf)
520 {
521         struct nd_region *nd_region = to_nd_region(dev);
522
523         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
524 }
525 static DEVICE_ATTR_RO(resource);
526
527 static struct attribute *nd_region_attributes[] = {
528         &dev_attr_size.attr,
529         &dev_attr_nstype.attr,
530         &dev_attr_mappings.attr,
531         &dev_attr_btt_seed.attr,
532         &dev_attr_pfn_seed.attr,
533         &dev_attr_dax_seed.attr,
534         &dev_attr_deep_flush.attr,
535         &dev_attr_read_only.attr,
536         &dev_attr_set_cookie.attr,
537         &dev_attr_available_size.attr,
538         &dev_attr_namespace_seed.attr,
539         &dev_attr_init_namespaces.attr,
540         &dev_attr_badblocks.attr,
541         &dev_attr_resource.attr,
542         NULL,
543 };
544
545 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
546 {
547         struct device *dev = container_of(kobj, typeof(*dev), kobj);
548         struct nd_region *nd_region = to_nd_region(dev);
549         struct nd_interleave_set *nd_set = nd_region->nd_set;
550         int type = nd_region_to_nstype(nd_region);
551
552         if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
553                 return 0;
554
555         if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
556                 return 0;
557
558         if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
559                 return 0;
560
561         if (!is_nd_pmem(dev) && a == &dev_attr_resource.attr)
562                 return 0;
563
564         if (a == &dev_attr_deep_flush.attr) {
565                 int has_flush = nvdimm_has_flush(nd_region);
566
567                 if (has_flush == 1)
568                         return a->mode;
569                 else if (has_flush == 0)
570                         return 0444;
571                 else
572                         return 0;
573         }
574
575         if (a != &dev_attr_set_cookie.attr
576                         && a != &dev_attr_available_size.attr)
577                 return a->mode;
578
579         if ((type == ND_DEVICE_NAMESPACE_PMEM
580                                 || type == ND_DEVICE_NAMESPACE_BLK)
581                         && a == &dev_attr_available_size.attr)
582                 return a->mode;
583         else if (is_nd_pmem(dev) && nd_set)
584                 return a->mode;
585
586         return 0;
587 }
588
589 struct attribute_group nd_region_attribute_group = {
590         .attrs = nd_region_attributes,
591         .is_visible = region_visible,
592 };
593 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
594
595 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
596                 struct nd_namespace_index *nsindex)
597 {
598         struct nd_interleave_set *nd_set = nd_region->nd_set;
599
600         if (!nd_set)
601                 return 0;
602
603         if (nsindex && __le16_to_cpu(nsindex->major) == 1
604                         && __le16_to_cpu(nsindex->minor) == 1)
605                 return nd_set->cookie1;
606         return nd_set->cookie2;
607 }
608
609 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
610 {
611         struct nd_interleave_set *nd_set = nd_region->nd_set;
612
613         if (nd_set)
614                 return nd_set->altcookie;
615         return 0;
616 }
617
618 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
619 {
620         struct nd_label_ent *label_ent, *e;
621
622         lockdep_assert_held(&nd_mapping->lock);
623         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
624                 list_del(&label_ent->list);
625                 kfree(label_ent);
626         }
627 }
628
629 /*
630  * Upon successful probe/remove, take/release a reference on the
631  * associated interleave set (if present), and plant new btt + namespace
632  * seeds.  Also, on the removal of a BLK region, notify the provider to
633  * disable the region.
634  */
635 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
636                 struct device *dev, bool probe)
637 {
638         struct nd_region *nd_region;
639
640         if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
641                 int i;
642
643                 nd_region = to_nd_region(dev);
644                 for (i = 0; i < nd_region->ndr_mappings; i++) {
645                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
646                         struct nvdimm_drvdata *ndd = nd_mapping->ndd;
647                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
648
649                         mutex_lock(&nd_mapping->lock);
650                         nd_mapping_free_labels(nd_mapping);
651                         mutex_unlock(&nd_mapping->lock);
652
653                         put_ndd(ndd);
654                         nd_mapping->ndd = NULL;
655                         if (ndd)
656                                 atomic_dec(&nvdimm->busy);
657                 }
658
659                 if (is_nd_pmem(dev))
660                         return;
661         }
662         if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
663                         && probe) {
664                 nd_region = to_nd_region(dev->parent);
665                 nvdimm_bus_lock(dev);
666                 if (nd_region->ns_seed == dev)
667                         nd_region_create_ns_seed(nd_region);
668                 nvdimm_bus_unlock(dev);
669         }
670         if (is_nd_btt(dev) && probe) {
671                 struct nd_btt *nd_btt = to_nd_btt(dev);
672
673                 nd_region = to_nd_region(dev->parent);
674                 nvdimm_bus_lock(dev);
675                 if (nd_region->btt_seed == dev)
676                         nd_region_create_btt_seed(nd_region);
677                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
678                         nd_region_create_ns_seed(nd_region);
679                 nvdimm_bus_unlock(dev);
680         }
681         if (is_nd_pfn(dev) && probe) {
682                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
683
684                 nd_region = to_nd_region(dev->parent);
685                 nvdimm_bus_lock(dev);
686                 if (nd_region->pfn_seed == dev)
687                         nd_region_create_pfn_seed(nd_region);
688                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
689                         nd_region_create_ns_seed(nd_region);
690                 nvdimm_bus_unlock(dev);
691         }
692         if (is_nd_dax(dev) && probe) {
693                 struct nd_dax *nd_dax = to_nd_dax(dev);
694
695                 nd_region = to_nd_region(dev->parent);
696                 nvdimm_bus_lock(dev);
697                 if (nd_region->dax_seed == dev)
698                         nd_region_create_dax_seed(nd_region);
699                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
700                         nd_region_create_ns_seed(nd_region);
701                 nvdimm_bus_unlock(dev);
702         }
703 }
704
705 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
706 {
707         nd_region_notify_driver_action(nvdimm_bus, dev, true);
708 }
709
710 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
711 {
712         nd_region_notify_driver_action(nvdimm_bus, dev, false);
713 }
714
715 static ssize_t mappingN(struct device *dev, char *buf, int n)
716 {
717         struct nd_region *nd_region = to_nd_region(dev);
718         struct nd_mapping *nd_mapping;
719         struct nvdimm *nvdimm;
720
721         if (n >= nd_region->ndr_mappings)
722                 return -ENXIO;
723         nd_mapping = &nd_region->mapping[n];
724         nvdimm = nd_mapping->nvdimm;
725
726         return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
727                         nd_mapping->start, nd_mapping->size);
728 }
729
730 #define REGION_MAPPING(idx) \
731 static ssize_t mapping##idx##_show(struct device *dev,          \
732                 struct device_attribute *attr, char *buf)       \
733 {                                                               \
734         return mappingN(dev, buf, idx);                         \
735 }                                                               \
736 static DEVICE_ATTR_RO(mapping##idx)
737
738 /*
739  * 32 should be enough for a while, even in the presence of socket
740  * interleave a 32-way interleave set is a degenerate case.
741  */
742 REGION_MAPPING(0);
743 REGION_MAPPING(1);
744 REGION_MAPPING(2);
745 REGION_MAPPING(3);
746 REGION_MAPPING(4);
747 REGION_MAPPING(5);
748 REGION_MAPPING(6);
749 REGION_MAPPING(7);
750 REGION_MAPPING(8);
751 REGION_MAPPING(9);
752 REGION_MAPPING(10);
753 REGION_MAPPING(11);
754 REGION_MAPPING(12);
755 REGION_MAPPING(13);
756 REGION_MAPPING(14);
757 REGION_MAPPING(15);
758 REGION_MAPPING(16);
759 REGION_MAPPING(17);
760 REGION_MAPPING(18);
761 REGION_MAPPING(19);
762 REGION_MAPPING(20);
763 REGION_MAPPING(21);
764 REGION_MAPPING(22);
765 REGION_MAPPING(23);
766 REGION_MAPPING(24);
767 REGION_MAPPING(25);
768 REGION_MAPPING(26);
769 REGION_MAPPING(27);
770 REGION_MAPPING(28);
771 REGION_MAPPING(29);
772 REGION_MAPPING(30);
773 REGION_MAPPING(31);
774
775 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
776 {
777         struct device *dev = container_of(kobj, struct device, kobj);
778         struct nd_region *nd_region = to_nd_region(dev);
779
780         if (n < nd_region->ndr_mappings)
781                 return a->mode;
782         return 0;
783 }
784
785 static struct attribute *mapping_attributes[] = {
786         &dev_attr_mapping0.attr,
787         &dev_attr_mapping1.attr,
788         &dev_attr_mapping2.attr,
789         &dev_attr_mapping3.attr,
790         &dev_attr_mapping4.attr,
791         &dev_attr_mapping5.attr,
792         &dev_attr_mapping6.attr,
793         &dev_attr_mapping7.attr,
794         &dev_attr_mapping8.attr,
795         &dev_attr_mapping9.attr,
796         &dev_attr_mapping10.attr,
797         &dev_attr_mapping11.attr,
798         &dev_attr_mapping12.attr,
799         &dev_attr_mapping13.attr,
800         &dev_attr_mapping14.attr,
801         &dev_attr_mapping15.attr,
802         &dev_attr_mapping16.attr,
803         &dev_attr_mapping17.attr,
804         &dev_attr_mapping18.attr,
805         &dev_attr_mapping19.attr,
806         &dev_attr_mapping20.attr,
807         &dev_attr_mapping21.attr,
808         &dev_attr_mapping22.attr,
809         &dev_attr_mapping23.attr,
810         &dev_attr_mapping24.attr,
811         &dev_attr_mapping25.attr,
812         &dev_attr_mapping26.attr,
813         &dev_attr_mapping27.attr,
814         &dev_attr_mapping28.attr,
815         &dev_attr_mapping29.attr,
816         &dev_attr_mapping30.attr,
817         &dev_attr_mapping31.attr,
818         NULL,
819 };
820
821 struct attribute_group nd_mapping_attribute_group = {
822         .is_visible = mapping_visible,
823         .attrs = mapping_attributes,
824 };
825 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
826
827 int nd_blk_region_init(struct nd_region *nd_region)
828 {
829         struct device *dev = &nd_region->dev;
830         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
831
832         if (!is_nd_blk(dev))
833                 return 0;
834
835         if (nd_region->ndr_mappings < 1) {
836                 dev_dbg(dev, "invalid BLK region\n");
837                 return -ENXIO;
838         }
839
840         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
841 }
842
843 /**
844  * nd_region_acquire_lane - allocate and lock a lane
845  * @nd_region: region id and number of lanes possible
846  *
847  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
848  * We optimize for the common case where there are 256 lanes, one
849  * per-cpu.  For larger systems we need to lock to share lanes.  For now
850  * this implementation assumes the cost of maintaining an allocator for
851  * free lanes is on the order of the lock hold time, so it implements a
852  * static lane = cpu % num_lanes mapping.
853  *
854  * In the case of a BTT instance on top of a BLK namespace a lane may be
855  * acquired recursively.  We lock on the first instance.
856  *
857  * In the case of a BTT instance on top of PMEM, we only acquire a lane
858  * for the BTT metadata updates.
859  */
860 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
861 {
862         unsigned int cpu, lane;
863
864         cpu = get_cpu();
865         if (nd_region->num_lanes < nr_cpu_ids) {
866                 struct nd_percpu_lane *ndl_lock, *ndl_count;
867
868                 lane = cpu % nd_region->num_lanes;
869                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
870                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
871                 if (ndl_count->count++ == 0)
872                         spin_lock(&ndl_lock->lock);
873         } else
874                 lane = cpu;
875
876         return lane;
877 }
878 EXPORT_SYMBOL(nd_region_acquire_lane);
879
880 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
881 {
882         if (nd_region->num_lanes < nr_cpu_ids) {
883                 unsigned int cpu = get_cpu();
884                 struct nd_percpu_lane *ndl_lock, *ndl_count;
885
886                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
887                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
888                 if (--ndl_count->count == 0)
889                         spin_unlock(&ndl_lock->lock);
890                 put_cpu();
891         }
892         put_cpu();
893 }
894 EXPORT_SYMBOL(nd_region_release_lane);
895
896 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
897                 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
898                 const char *caller)
899 {
900         struct nd_region *nd_region;
901         struct device *dev;
902         void *region_buf;
903         unsigned int i;
904         int ro = 0;
905
906         for (i = 0; i < ndr_desc->num_mappings; i++) {
907                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
908                 struct nvdimm *nvdimm = mapping->nvdimm;
909
910                 if ((mapping->start | mapping->size) % SZ_4K) {
911                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
912                                         caller, dev_name(&nvdimm->dev), i);
913
914                         return NULL;
915                 }
916
917                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
918                         ro = 1;
919         }
920
921         if (dev_type == &nd_blk_device_type) {
922                 struct nd_blk_region_desc *ndbr_desc;
923                 struct nd_blk_region *ndbr;
924
925                 ndbr_desc = to_blk_region_desc(ndr_desc);
926                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
927                                 * ndr_desc->num_mappings,
928                                 GFP_KERNEL);
929                 if (ndbr) {
930                         nd_region = &ndbr->nd_region;
931                         ndbr->enable = ndbr_desc->enable;
932                         ndbr->do_io = ndbr_desc->do_io;
933                 }
934                 region_buf = ndbr;
935         } else {
936                 nd_region = kzalloc(sizeof(struct nd_region)
937                                 + sizeof(struct nd_mapping)
938                                 * ndr_desc->num_mappings,
939                                 GFP_KERNEL);
940                 region_buf = nd_region;
941         }
942
943         if (!region_buf)
944                 return NULL;
945         nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
946         if (nd_region->id < 0)
947                 goto err_id;
948
949         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
950         if (!nd_region->lane)
951                 goto err_percpu;
952
953         for (i = 0; i < nr_cpu_ids; i++) {
954                 struct nd_percpu_lane *ndl;
955
956                 ndl = per_cpu_ptr(nd_region->lane, i);
957                 spin_lock_init(&ndl->lock);
958                 ndl->count = 0;
959         }
960
961         for (i = 0; i < ndr_desc->num_mappings; i++) {
962                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
963                 struct nvdimm *nvdimm = mapping->nvdimm;
964
965                 nd_region->mapping[i].nvdimm = nvdimm;
966                 nd_region->mapping[i].start = mapping->start;
967                 nd_region->mapping[i].size = mapping->size;
968                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
969                 mutex_init(&nd_region->mapping[i].lock);
970
971                 get_device(&nvdimm->dev);
972         }
973         nd_region->ndr_mappings = ndr_desc->num_mappings;
974         nd_region->provider_data = ndr_desc->provider_data;
975         nd_region->nd_set = ndr_desc->nd_set;
976         nd_region->num_lanes = ndr_desc->num_lanes;
977         nd_region->flags = ndr_desc->flags;
978         nd_region->ro = ro;
979         nd_region->numa_node = ndr_desc->numa_node;
980         ida_init(&nd_region->ns_ida);
981         ida_init(&nd_region->btt_ida);
982         ida_init(&nd_region->pfn_ida);
983         ida_init(&nd_region->dax_ida);
984         dev = &nd_region->dev;
985         dev_set_name(dev, "region%d", nd_region->id);
986         dev->parent = &nvdimm_bus->dev;
987         dev->type = dev_type;
988         dev->groups = ndr_desc->attr_groups;
989         nd_region->ndr_size = resource_size(ndr_desc->res);
990         nd_region->ndr_start = ndr_desc->res->start;
991         nd_device_register(dev);
992
993         return nd_region;
994
995  err_percpu:
996         ida_simple_remove(&region_ida, nd_region->id);
997  err_id:
998         kfree(region_buf);
999         return NULL;
1000 }
1001
1002 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1003                 struct nd_region_desc *ndr_desc)
1004 {
1005         ndr_desc->num_lanes = ND_MAX_LANES;
1006         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1007                         __func__);
1008 }
1009 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1010
1011 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1012                 struct nd_region_desc *ndr_desc)
1013 {
1014         if (ndr_desc->num_mappings > 1)
1015                 return NULL;
1016         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1017         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1018                         __func__);
1019 }
1020 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1021
1022 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1023                 struct nd_region_desc *ndr_desc)
1024 {
1025         ndr_desc->num_lanes = ND_MAX_LANES;
1026         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1027                         __func__);
1028 }
1029 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1030
1031 /**
1032  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1033  * @nd_region: blk or interleaved pmem region
1034  */
1035 void nvdimm_flush(struct nd_region *nd_region)
1036 {
1037         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1038         int i, idx;
1039
1040         /*
1041          * Try to encourage some diversity in flush hint addresses
1042          * across cpus assuming a limited number of flush hints.
1043          */
1044         idx = this_cpu_read(flush_idx);
1045         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1046
1047         /*
1048          * The first wmb() is needed to 'sfence' all previous writes
1049          * such that they are architecturally visible for the platform
1050          * buffer flush.  Note that we've already arranged for pmem
1051          * writes to avoid the cache via arch_memcpy_to_pmem().  The
1052          * final wmb() ensures ordering for the NVDIMM flush write.
1053          */
1054         wmb();
1055         for (i = 0; i < nd_region->ndr_mappings; i++)
1056                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1057                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1058         wmb();
1059 }
1060 EXPORT_SYMBOL_GPL(nvdimm_flush);
1061
1062 /**
1063  * nvdimm_has_flush - determine write flushing requirements
1064  * @nd_region: blk or interleaved pmem region
1065  *
1066  * Returns 1 if writes require flushing
1067  * Returns 0 if writes do not require flushing
1068  * Returns -ENXIO if flushing capability can not be determined
1069  */
1070 int nvdimm_has_flush(struct nd_region *nd_region)
1071 {
1072         int i;
1073
1074         /* no nvdimm == flushing capability unknown */
1075         if (nd_region->ndr_mappings == 0)
1076                 return -ENXIO;
1077
1078         for (i = 0; i < nd_region->ndr_mappings; i++) {
1079                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1080                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1081
1082                 /* flush hints present / available */
1083                 if (nvdimm->num_flush)
1084                         return 1;
1085         }
1086
1087         /*
1088          * The platform defines dimm devices without hints, assume
1089          * platform persistence mechanism like ADR
1090          */
1091         return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1094
1095 void __exit nd_region_devs_exit(void)
1096 {
1097         ida_destroy(&region_ida);
1098 }