]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
NVMe: Don't unmap controller registers on reset
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS    1
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83
84 struct nvme_dev;
85 struct nvme_queue;
86
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
91
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96         struct list_head node;
97         struct nvme_queue **queues;
98         struct blk_mq_tag_set tagset;
99         struct blk_mq_tag_set admin_tagset;
100         u32 __iomem *dbs;
101         struct device *dev;
102         struct dma_pool *prp_page_pool;
103         struct dma_pool *prp_small_pool;
104         unsigned queue_count;
105         unsigned online_queues;
106         unsigned max_qid;
107         int q_depth;
108         u32 db_stride;
109         struct msix_entry *entry;
110         void __iomem *bar;
111         struct work_struct reset_work;
112         struct work_struct scan_work;
113         struct work_struct remove_work;
114         struct mutex shutdown_lock;
115         bool subsystem;
116         void __iomem *cmb;
117         dma_addr_t cmb_dma_addr;
118         u64 cmb_size;
119         u32 cmbsz;
120         unsigned long flags;
121
122 #define NVME_CTRL_RESETTING    0
123
124         struct nvme_ctrl ctrl;
125         struct completion ioq_wait;
126 };
127
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130         return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132
133 /*
134  * An NVM Express queue.  Each device has at least two (one for admin
135  * commands and one for I/O commands).
136  */
137 struct nvme_queue {
138         struct device *q_dmadev;
139         struct nvme_dev *dev;
140         char irqname[24];       /* nvme4294967295-65535\0 */
141         spinlock_t q_lock;
142         struct nvme_command *sq_cmds;
143         struct nvme_command __iomem *sq_cmds_io;
144         volatile struct nvme_completion *cqes;
145         struct blk_mq_tags **tags;
146         dma_addr_t sq_dma_addr;
147         dma_addr_t cq_dma_addr;
148         u32 __iomem *q_db;
149         u16 q_depth;
150         s16 cq_vector;
151         u16 sq_head;
152         u16 sq_tail;
153         u16 cq_head;
154         u16 qid;
155         u8 cq_phase;
156         u8 cqe_seen;
157 };
158
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_init_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166         struct nvme_queue *nvmeq;
167         int aborted;
168         int npages;             /* In the PRP list. 0 means small pool in use */
169         int nents;              /* Used in scatterlist */
170         int length;             /* Of data, in bytes */
171         dma_addr_t first_dma;
172         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173         struct scatterlist *sg;
174         struct scatterlist inline_sg[0];
175 };
176
177 /*
178  * Check we didin't inadvertently grow the command struct
179  */
180 static inline void _nvme_check_size(void)
181 {
182         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195
196 /*
197  * Max size of iod being embedded in the request payload
198  */
199 #define NVME_INT_PAGES          2
200 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
201
202 /*
203  * Will slightly overestimate the number of pages needed.  This is OK
204  * as it only leads to a small amount of wasted memory for the lifetime of
205  * the I/O.
206  */
207 static int nvme_npages(unsigned size, struct nvme_dev *dev)
208 {
209         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210                                       dev->ctrl.page_size);
211         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212 }
213
214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215                 unsigned int size, unsigned int nseg)
216 {
217         return sizeof(__le64 *) * nvme_npages(size, dev) +
218                         sizeof(struct scatterlist) * nseg;
219 }
220
221 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222 {
223         return sizeof(struct nvme_iod) +
224                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225 }
226
227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228                                 unsigned int hctx_idx)
229 {
230         struct nvme_dev *dev = data;
231         struct nvme_queue *nvmeq = dev->queues[0];
232
233         WARN_ON(hctx_idx != 0);
234         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235         WARN_ON(nvmeq->tags);
236
237         hctx->driver_data = nvmeq;
238         nvmeq->tags = &dev->admin_tagset.tags[0];
239         return 0;
240 }
241
242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243 {
244         struct nvme_queue *nvmeq = hctx->driver_data;
245
246         nvmeq->tags = NULL;
247 }
248
249 static int nvme_admin_init_request(void *data, struct request *req,
250                                 unsigned int hctx_idx, unsigned int rq_idx,
251                                 unsigned int numa_node)
252 {
253         struct nvme_dev *dev = data;
254         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255         struct nvme_queue *nvmeq = dev->queues[0];
256
257         BUG_ON(!nvmeq);
258         iod->nvmeq = nvmeq;
259         return 0;
260 }
261
262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263                           unsigned int hctx_idx)
264 {
265         struct nvme_dev *dev = data;
266         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268         if (!nvmeq->tags)
269                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
270
271         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272         hctx->driver_data = nvmeq;
273         return 0;
274 }
275
276 static int nvme_init_request(void *data, struct request *req,
277                                 unsigned int hctx_idx, unsigned int rq_idx,
278                                 unsigned int numa_node)
279 {
280         struct nvme_dev *dev = data;
281         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284         BUG_ON(!nvmeq);
285         iod->nvmeq = nvmeq;
286         return 0;
287 }
288
289 static void nvme_complete_async_event(struct nvme_dev *dev,
290                 struct nvme_completion *cqe)
291 {
292         u16 status = le16_to_cpu(cqe->status) >> 1;
293         u32 result = le32_to_cpu(cqe->result);
294
295         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
296                 ++dev->ctrl.event_limit;
297         if (status != NVME_SC_SUCCESS)
298                 return;
299
300         switch (result & 0xff07) {
301         case NVME_AER_NOTICE_NS_CHANGED:
302                 dev_info(dev->dev, "rescanning\n");
303                 queue_work(nvme_workq, &dev->scan_work);
304         default:
305                 dev_warn(dev->dev, "async event result %08x\n", result);
306         }
307 }
308
309 /**
310  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
311  * @nvmeq: The queue to use
312  * @cmd: The command to send
313  *
314  * Safe to use from interrupt context
315  */
316 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
317                                                 struct nvme_command *cmd)
318 {
319         u16 tail = nvmeq->sq_tail;
320
321         if (nvmeq->sq_cmds_io)
322                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
323         else
324                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325
326         if (++tail == nvmeq->q_depth)
327                 tail = 0;
328         writel(tail, nvmeq->q_db);
329         nvmeq->sq_tail = tail;
330 }
331
332 static __le64 **iod_list(struct request *req)
333 {
334         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335         return (__le64 **)(iod->sg + req->nr_phys_segments);
336 }
337
338 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
339 {
340         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341         int nseg = rq->nr_phys_segments;
342         unsigned size;
343
344         if (rq->cmd_flags & REQ_DISCARD)
345                 size = sizeof(struct nvme_dsm_range);
346         else
347                 size = blk_rq_bytes(rq);
348
349         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
350                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
351                 if (!iod->sg)
352                         return BLK_MQ_RQ_QUEUE_BUSY;
353         } else {
354                 iod->sg = iod->inline_sg;
355         }
356
357         iod->aborted = 0;
358         iod->npages = -1;
359         iod->nents = 0;
360         iod->length = size;
361         return 0;
362 }
363
364 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
365 {
366         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367         const int last_prp = dev->ctrl.page_size / 8 - 1;
368         int i;
369         __le64 **list = iod_list(req);
370         dma_addr_t prp_dma = iod->first_dma;
371
372         if (iod->npages == 0)
373                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
374         for (i = 0; i < iod->npages; i++) {
375                 __le64 *prp_list = list[i];
376                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
377                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
378                 prp_dma = next_prp_dma;
379         }
380
381         if (iod->sg != iod->inline_sg)
382                 kfree(iod->sg);
383 }
384
385 #ifdef CONFIG_BLK_DEV_INTEGRITY
386 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
387 {
388         if (be32_to_cpu(pi->ref_tag) == v)
389                 pi->ref_tag = cpu_to_be32(p);
390 }
391
392 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
393 {
394         if (be32_to_cpu(pi->ref_tag) == p)
395                 pi->ref_tag = cpu_to_be32(v);
396 }
397
398 /**
399  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
400  *
401  * The virtual start sector is the one that was originally submitted by the
402  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
403  * start sector may be different. Remap protection information to match the
404  * physical LBA on writes, and back to the original seed on reads.
405  *
406  * Type 0 and 3 do not have a ref tag, so no remapping required.
407  */
408 static void nvme_dif_remap(struct request *req,
409                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410 {
411         struct nvme_ns *ns = req->rq_disk->private_data;
412         struct bio_integrity_payload *bip;
413         struct t10_pi_tuple *pi;
414         void *p, *pmap;
415         u32 i, nlb, ts, phys, virt;
416
417         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
418                 return;
419
420         bip = bio_integrity(req->bio);
421         if (!bip)
422                 return;
423
424         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
425
426         p = pmap;
427         virt = bip_get_seed(bip);
428         phys = nvme_block_nr(ns, blk_rq_pos(req));
429         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
430         ts = ns->disk->queue->integrity.tuple_size;
431
432         for (i = 0; i < nlb; i++, virt++, phys++) {
433                 pi = (struct t10_pi_tuple *)p;
434                 dif_swap(phys, virt, pi);
435                 p += ts;
436         }
437         kunmap_atomic(pmap);
438 }
439 #else /* CONFIG_BLK_DEV_INTEGRITY */
440 static void nvme_dif_remap(struct request *req,
441                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
442 {
443 }
444 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
445 {
446 }
447 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
448 {
449 }
450 #endif
451
452 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
453                 int total_len)
454 {
455         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456         struct dma_pool *pool;
457         int length = total_len;
458         struct scatterlist *sg = iod->sg;
459         int dma_len = sg_dma_len(sg);
460         u64 dma_addr = sg_dma_address(sg);
461         u32 page_size = dev->ctrl.page_size;
462         int offset = dma_addr & (page_size - 1);
463         __le64 *prp_list;
464         __le64 **list = iod_list(req);
465         dma_addr_t prp_dma;
466         int nprps, i;
467
468         length -= (page_size - offset);
469         if (length <= 0)
470                 return true;
471
472         dma_len -= (page_size - offset);
473         if (dma_len) {
474                 dma_addr += (page_size - offset);
475         } else {
476                 sg = sg_next(sg);
477                 dma_addr = sg_dma_address(sg);
478                 dma_len = sg_dma_len(sg);
479         }
480
481         if (length <= page_size) {
482                 iod->first_dma = dma_addr;
483                 return true;
484         }
485
486         nprps = DIV_ROUND_UP(length, page_size);
487         if (nprps <= (256 / 8)) {
488                 pool = dev->prp_small_pool;
489                 iod->npages = 0;
490         } else {
491                 pool = dev->prp_page_pool;
492                 iod->npages = 1;
493         }
494
495         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496         if (!prp_list) {
497                 iod->first_dma = dma_addr;
498                 iod->npages = -1;
499                 return false;
500         }
501         list[0] = prp_list;
502         iod->first_dma = prp_dma;
503         i = 0;
504         for (;;) {
505                 if (i == page_size >> 3) {
506                         __le64 *old_prp_list = prp_list;
507                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
508                         if (!prp_list)
509                                 return false;
510                         list[iod->npages++] = prp_list;
511                         prp_list[0] = old_prp_list[i - 1];
512                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
513                         i = 1;
514                 }
515                 prp_list[i++] = cpu_to_le64(dma_addr);
516                 dma_len -= page_size;
517                 dma_addr += page_size;
518                 length -= page_size;
519                 if (length <= 0)
520                         break;
521                 if (dma_len > 0)
522                         continue;
523                 BUG_ON(dma_len < 0);
524                 sg = sg_next(sg);
525                 dma_addr = sg_dma_address(sg);
526                 dma_len = sg_dma_len(sg);
527         }
528
529         return true;
530 }
531
532 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
533                 struct nvme_command *cmnd)
534 {
535         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
536         struct request_queue *q = req->q;
537         enum dma_data_direction dma_dir = rq_data_dir(req) ?
538                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
539         int ret = BLK_MQ_RQ_QUEUE_ERROR;
540
541         sg_init_table(iod->sg, req->nr_phys_segments);
542         iod->nents = blk_rq_map_sg(q, req, iod->sg);
543         if (!iod->nents)
544                 goto out;
545
546         ret = BLK_MQ_RQ_QUEUE_BUSY;
547         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
548                 goto out;
549
550         if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
551                 goto out_unmap;
552
553         ret = BLK_MQ_RQ_QUEUE_ERROR;
554         if (blk_integrity_rq(req)) {
555                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
556                         goto out_unmap;
557
558                 sg_init_table(&iod->meta_sg, 1);
559                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
560                         goto out_unmap;
561
562                 if (rq_data_dir(req))
563                         nvme_dif_remap(req, nvme_dif_prep);
564
565                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
566                         goto out_unmap;
567         }
568
569         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
570         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
571         if (blk_integrity_rq(req))
572                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
573         return BLK_MQ_RQ_QUEUE_OK;
574
575 out_unmap:
576         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577 out:
578         return ret;
579 }
580
581 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
582 {
583         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584         enum dma_data_direction dma_dir = rq_data_dir(req) ?
585                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
586
587         if (iod->nents) {
588                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
589                 if (blk_integrity_rq(req)) {
590                         if (!rq_data_dir(req))
591                                 nvme_dif_remap(req, nvme_dif_complete);
592                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
593                 }
594         }
595
596         nvme_free_iod(dev, req);
597 }
598
599 /*
600  * We reuse the small pool to allocate the 16-byte range here as it is not
601  * worth having a special pool for these or additional cases to handle freeing
602  * the iod.
603  */
604 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
605                 struct request *req, struct nvme_command *cmnd)
606 {
607         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608         struct nvme_dsm_range *range;
609
610         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
611                                                 &iod->first_dma);
612         if (!range)
613                 return BLK_MQ_RQ_QUEUE_BUSY;
614         iod_list(req)[0] = (__le64 *)range;
615         iod->npages = 0;
616
617         range->cattr = cpu_to_le32(0);
618         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
619         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620
621         memset(cmnd, 0, sizeof(*cmnd));
622         cmnd->dsm.opcode = nvme_cmd_dsm;
623         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625         cmnd->dsm.nr = 0;
626         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627         return BLK_MQ_RQ_QUEUE_OK;
628 }
629
630 /*
631  * NOTE: ns is NULL when called on the admin queue.
632  */
633 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
634                          const struct blk_mq_queue_data *bd)
635 {
636         struct nvme_ns *ns = hctx->queue->queuedata;
637         struct nvme_queue *nvmeq = hctx->driver_data;
638         struct nvme_dev *dev = nvmeq->dev;
639         struct request *req = bd->rq;
640         struct nvme_command cmnd;
641         int ret = BLK_MQ_RQ_QUEUE_OK;
642
643         /*
644          * If formated with metadata, require the block layer provide a buffer
645          * unless this namespace is formated such that the metadata can be
646          * stripped/generated by the controller with PRACT=1.
647          */
648         if (ns && ns->ms && !blk_integrity_rq(req)) {
649                 if (!(ns->pi_type && ns->ms == 8) &&
650                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
651                         blk_mq_end_request(req, -EFAULT);
652                         return BLK_MQ_RQ_QUEUE_OK;
653                 }
654         }
655
656         ret = nvme_init_iod(req, dev);
657         if (ret)
658                 return ret;
659
660         if (req->cmd_flags & REQ_DISCARD) {
661                 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
662         } else {
663                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
664                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
665                 else if (req->cmd_flags & REQ_FLUSH)
666                         nvme_setup_flush(ns, &cmnd);
667                 else
668                         nvme_setup_rw(ns, req, &cmnd);
669
670                 if (req->nr_phys_segments)
671                         ret = nvme_map_data(dev, req, &cmnd);
672         }
673
674         if (ret)
675                 goto out;
676
677         cmnd.common.command_id = req->tag;
678         blk_mq_start_request(req);
679
680         spin_lock_irq(&nvmeq->q_lock);
681         if (unlikely(nvmeq->cq_vector < 0)) {
682                 ret = BLK_MQ_RQ_QUEUE_BUSY;
683                 spin_unlock_irq(&nvmeq->q_lock);
684                 goto out;
685         }
686         __nvme_submit_cmd(nvmeq, &cmnd);
687         nvme_process_cq(nvmeq);
688         spin_unlock_irq(&nvmeq->q_lock);
689         return BLK_MQ_RQ_QUEUE_OK;
690 out:
691         nvme_free_iod(dev, req);
692         return ret;
693 }
694
695 static void nvme_complete_rq(struct request *req)
696 {
697         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
698         struct nvme_dev *dev = iod->nvmeq->dev;
699         int error = 0;
700
701         nvme_unmap_data(dev, req);
702
703         if (unlikely(req->errors)) {
704                 if (nvme_req_needs_retry(req, req->errors)) {
705                         nvme_requeue_req(req);
706                         return;
707                 }
708
709                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
710                         error = req->errors;
711                 else
712                         error = nvme_error_status(req->errors);
713         }
714
715         if (unlikely(iod->aborted)) {
716                 dev_warn(dev->dev,
717                         "completing aborted command with status: %04x\n",
718                         req->errors);
719         }
720
721         blk_mq_end_request(req, error);
722 }
723
724 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
725 {
726         u16 head, phase;
727
728         head = nvmeq->cq_head;
729         phase = nvmeq->cq_phase;
730
731         for (;;) {
732                 struct nvme_completion cqe = nvmeq->cqes[head];
733                 u16 status = le16_to_cpu(cqe.status);
734                 struct request *req;
735
736                 if ((status & 1) != phase)
737                         break;
738                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
739                 if (++head == nvmeq->q_depth) {
740                         head = 0;
741                         phase = !phase;
742                 }
743
744                 if (tag && *tag == cqe.command_id)
745                         *tag = -1;
746
747                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
748                         dev_warn(nvmeq->q_dmadev,
749                                 "invalid id %d completed on queue %d\n",
750                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
751                         continue;
752                 }
753
754                 /*
755                  * AEN requests are special as they don't time out and can
756                  * survive any kind of queue freeze and often don't respond to
757                  * aborts.  We don't even bother to allocate a struct request
758                  * for them but rather special case them here.
759                  */
760                 if (unlikely(nvmeq->qid == 0 &&
761                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
762                         nvme_complete_async_event(nvmeq->dev, &cqe);
763                         continue;
764                 }
765
766                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
767                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
768                         u32 result = le32_to_cpu(cqe.result);
769                         req->special = (void *)(uintptr_t)result;
770                 }
771                 blk_mq_complete_request(req, status >> 1);
772
773         }
774
775         /* If the controller ignores the cq head doorbell and continuously
776          * writes to the queue, it is theoretically possible to wrap around
777          * the queue twice and mistakenly return IRQ_NONE.  Linux only
778          * requires that 0.1% of your interrupts are handled, so this isn't
779          * a big problem.
780          */
781         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
782                 return;
783
784         if (likely(nvmeq->cq_vector >= 0))
785                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
786         nvmeq->cq_head = head;
787         nvmeq->cq_phase = phase;
788
789         nvmeq->cqe_seen = 1;
790 }
791
792 static void nvme_process_cq(struct nvme_queue *nvmeq)
793 {
794         __nvme_process_cq(nvmeq, NULL);
795 }
796
797 static irqreturn_t nvme_irq(int irq, void *data)
798 {
799         irqreturn_t result;
800         struct nvme_queue *nvmeq = data;
801         spin_lock(&nvmeq->q_lock);
802         nvme_process_cq(nvmeq);
803         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
804         nvmeq->cqe_seen = 0;
805         spin_unlock(&nvmeq->q_lock);
806         return result;
807 }
808
809 static irqreturn_t nvme_irq_check(int irq, void *data)
810 {
811         struct nvme_queue *nvmeq = data;
812         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
813         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
814                 return IRQ_NONE;
815         return IRQ_WAKE_THREAD;
816 }
817
818 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
819 {
820         struct nvme_queue *nvmeq = hctx->driver_data;
821
822         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
823             nvmeq->cq_phase) {
824                 spin_lock_irq(&nvmeq->q_lock);
825                 __nvme_process_cq(nvmeq, &tag);
826                 spin_unlock_irq(&nvmeq->q_lock);
827
828                 if (tag == -1)
829                         return 1;
830         }
831
832         return 0;
833 }
834
835 static void nvme_submit_async_event(struct nvme_dev *dev)
836 {
837         struct nvme_command c;
838
839         memset(&c, 0, sizeof(c));
840         c.common.opcode = nvme_admin_async_event;
841         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
842
843         __nvme_submit_cmd(dev->queues[0], &c);
844 }
845
846 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
847 {
848         struct nvme_command c;
849
850         memset(&c, 0, sizeof(c));
851         c.delete_queue.opcode = opcode;
852         c.delete_queue.qid = cpu_to_le16(id);
853
854         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
855 }
856
857 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
858                                                 struct nvme_queue *nvmeq)
859 {
860         struct nvme_command c;
861         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
862
863         /*
864          * Note: we (ab)use the fact the the prp fields survive if no data
865          * is attached to the request.
866          */
867         memset(&c, 0, sizeof(c));
868         c.create_cq.opcode = nvme_admin_create_cq;
869         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
870         c.create_cq.cqid = cpu_to_le16(qid);
871         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
872         c.create_cq.cq_flags = cpu_to_le16(flags);
873         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
874
875         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
876 }
877
878 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
879                                                 struct nvme_queue *nvmeq)
880 {
881         struct nvme_command c;
882         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
883
884         /*
885          * Note: we (ab)use the fact the the prp fields survive if no data
886          * is attached to the request.
887          */
888         memset(&c, 0, sizeof(c));
889         c.create_sq.opcode = nvme_admin_create_sq;
890         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
891         c.create_sq.sqid = cpu_to_le16(qid);
892         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
893         c.create_sq.sq_flags = cpu_to_le16(flags);
894         c.create_sq.cqid = cpu_to_le16(qid);
895
896         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
897 }
898
899 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
900 {
901         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
902 }
903
904 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
905 {
906         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
907 }
908
909 static void abort_endio(struct request *req, int error)
910 {
911         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912         struct nvme_queue *nvmeq = iod->nvmeq;
913         u32 result = (u32)(uintptr_t)req->special;
914         u16 status = req->errors;
915
916         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
917         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
918
919         blk_mq_free_request(req);
920 }
921
922 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
923 {
924         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925         struct nvme_queue *nvmeq = iod->nvmeq;
926         struct nvme_dev *dev = nvmeq->dev;
927         struct request *abort_req;
928         struct nvme_command cmd;
929
930         /*
931          * Shutdown immediately if controller times out while starting. The
932          * reset work will see the pci device disabled when it gets the forced
933          * cancellation error. All outstanding requests are completed on
934          * shutdown, so we return BLK_EH_HANDLED.
935          */
936         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
937                 dev_warn(dev->dev,
938                          "I/O %d QID %d timeout, disable controller\n",
939                          req->tag, nvmeq->qid);
940                 nvme_dev_disable(dev, false);
941                 req->errors = NVME_SC_CANCELLED;
942                 return BLK_EH_HANDLED;
943         }
944
945         /*
946          * Shutdown the controller immediately and schedule a reset if the
947          * command was already aborted once before and still hasn't been
948          * returned to the driver, or if this is the admin queue.
949          */
950         if (!nvmeq->qid || iod->aborted) {
951                 dev_warn(dev->dev,
952                          "I/O %d QID %d timeout, reset controller\n",
953                          req->tag, nvmeq->qid);
954                 nvme_dev_disable(dev, false);
955                 queue_work(nvme_workq, &dev->reset_work);
956
957                 /*
958                  * Mark the request as handled, since the inline shutdown
959                  * forces all outstanding requests to complete.
960                  */
961                 req->errors = NVME_SC_CANCELLED;
962                 return BLK_EH_HANDLED;
963         }
964
965         iod->aborted = 1;
966
967         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
968                 atomic_inc(&dev->ctrl.abort_limit);
969                 return BLK_EH_RESET_TIMER;
970         }
971
972         memset(&cmd, 0, sizeof(cmd));
973         cmd.abort.opcode = nvme_admin_abort_cmd;
974         cmd.abort.cid = req->tag;
975         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
976
977         dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
978                                  req->tag, nvmeq->qid);
979
980         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
981                         BLK_MQ_REQ_NOWAIT);
982         if (IS_ERR(abort_req)) {
983                 atomic_inc(&dev->ctrl.abort_limit);
984                 return BLK_EH_RESET_TIMER;
985         }
986
987         abort_req->timeout = ADMIN_TIMEOUT;
988         abort_req->end_io_data = NULL;
989         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
990
991         /*
992          * The aborted req will be completed on receiving the abort req.
993          * We enable the timer again. If hit twice, it'll cause a device reset,
994          * as the device then is in a faulty state.
995          */
996         return BLK_EH_RESET_TIMER;
997 }
998
999 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1000 {
1001         struct nvme_queue *nvmeq = data;
1002         int status;
1003
1004         if (!blk_mq_request_started(req))
1005                 return;
1006
1007         dev_dbg_ratelimited(nvmeq->q_dmadev,
1008                  "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1009
1010         status = NVME_SC_ABORT_REQ;
1011         if (blk_queue_dying(req->q))
1012                 status |= NVME_SC_DNR;
1013         blk_mq_complete_request(req, status);
1014 }
1015
1016 static void nvme_free_queue(struct nvme_queue *nvmeq)
1017 {
1018         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1019                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1020         if (nvmeq->sq_cmds)
1021                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023         kfree(nvmeq);
1024 }
1025
1026 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1027 {
1028         int i;
1029
1030         for (i = dev->queue_count - 1; i >= lowest; i--) {
1031                 struct nvme_queue *nvmeq = dev->queues[i];
1032                 dev->queue_count--;
1033                 dev->queues[i] = NULL;
1034                 nvme_free_queue(nvmeq);
1035         }
1036 }
1037
1038 /**
1039  * nvme_suspend_queue - put queue into suspended state
1040  * @nvmeq - queue to suspend
1041  */
1042 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1043 {
1044         int vector;
1045
1046         spin_lock_irq(&nvmeq->q_lock);
1047         if (nvmeq->cq_vector == -1) {
1048                 spin_unlock_irq(&nvmeq->q_lock);
1049                 return 1;
1050         }
1051         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1052         nvmeq->dev->online_queues--;
1053         nvmeq->cq_vector = -1;
1054         spin_unlock_irq(&nvmeq->q_lock);
1055
1056         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1057                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1058
1059         irq_set_affinity_hint(vector, NULL);
1060         free_irq(vector, nvmeq);
1061
1062         return 0;
1063 }
1064
1065 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1066 {
1067         spin_lock_irq(&nvmeq->q_lock);
1068         if (nvmeq->tags && *nvmeq->tags)
1069                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1070         spin_unlock_irq(&nvmeq->q_lock);
1071 }
1072
1073 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1074 {
1075         struct nvme_queue *nvmeq = dev->queues[0];
1076
1077         if (!nvmeq)
1078                 return;
1079         if (nvme_suspend_queue(nvmeq))
1080                 return;
1081
1082         if (shutdown)
1083                 nvme_shutdown_ctrl(&dev->ctrl);
1084         else
1085                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1086                                                 dev->bar + NVME_REG_CAP));
1087
1088         spin_lock_irq(&nvmeq->q_lock);
1089         nvme_process_cq(nvmeq);
1090         spin_unlock_irq(&nvmeq->q_lock);
1091 }
1092
1093 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1094                                 int entry_size)
1095 {
1096         int q_depth = dev->q_depth;
1097         unsigned q_size_aligned = roundup(q_depth * entry_size,
1098                                           dev->ctrl.page_size);
1099
1100         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1101                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1102                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1103                 q_depth = div_u64(mem_per_q, entry_size);
1104
1105                 /*
1106                  * Ensure the reduced q_depth is above some threshold where it
1107                  * would be better to map queues in system memory with the
1108                  * original depth
1109                  */
1110                 if (q_depth < 64)
1111                         return -ENOMEM;
1112         }
1113
1114         return q_depth;
1115 }
1116
1117 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1118                                 int qid, int depth)
1119 {
1120         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1121                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1122                                                       dev->ctrl.page_size);
1123                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1124                 nvmeq->sq_cmds_io = dev->cmb + offset;
1125         } else {
1126                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1127                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1128                 if (!nvmeq->sq_cmds)
1129                         return -ENOMEM;
1130         }
1131
1132         return 0;
1133 }
1134
1135 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1136                                                         int depth)
1137 {
1138         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1139         if (!nvmeq)
1140                 return NULL;
1141
1142         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1143                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1144         if (!nvmeq->cqes)
1145                 goto free_nvmeq;
1146
1147         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1148                 goto free_cqdma;
1149
1150         nvmeq->q_dmadev = dev->dev;
1151         nvmeq->dev = dev;
1152         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1153                         dev->ctrl.instance, qid);
1154         spin_lock_init(&nvmeq->q_lock);
1155         nvmeq->cq_head = 0;
1156         nvmeq->cq_phase = 1;
1157         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1158         nvmeq->q_depth = depth;
1159         nvmeq->qid = qid;
1160         nvmeq->cq_vector = -1;
1161         dev->queues[qid] = nvmeq;
1162
1163         /* make sure queue descriptor is set before queue count, for kthread */
1164         mb();
1165         dev->queue_count++;
1166
1167         return nvmeq;
1168
1169  free_cqdma:
1170         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1171                                                         nvmeq->cq_dma_addr);
1172  free_nvmeq:
1173         kfree(nvmeq);
1174         return NULL;
1175 }
1176
1177 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1178                                                         const char *name)
1179 {
1180         if (use_threaded_interrupts)
1181                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1182                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1183                                         name, nvmeq);
1184         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1185                                 IRQF_SHARED, name, nvmeq);
1186 }
1187
1188 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1189 {
1190         struct nvme_dev *dev = nvmeq->dev;
1191
1192         spin_lock_irq(&nvmeq->q_lock);
1193         nvmeq->sq_tail = 0;
1194         nvmeq->cq_head = 0;
1195         nvmeq->cq_phase = 1;
1196         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1197         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1198         dev->online_queues++;
1199         spin_unlock_irq(&nvmeq->q_lock);
1200 }
1201
1202 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1203 {
1204         struct nvme_dev *dev = nvmeq->dev;
1205         int result;
1206
1207         nvmeq->cq_vector = qid - 1;
1208         result = adapter_alloc_cq(dev, qid, nvmeq);
1209         if (result < 0)
1210                 return result;
1211
1212         result = adapter_alloc_sq(dev, qid, nvmeq);
1213         if (result < 0)
1214                 goto release_cq;
1215
1216         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1217         if (result < 0)
1218                 goto release_sq;
1219
1220         nvme_init_queue(nvmeq, qid);
1221         return result;
1222
1223  release_sq:
1224         adapter_delete_sq(dev, qid);
1225  release_cq:
1226         adapter_delete_cq(dev, qid);
1227         return result;
1228 }
1229
1230 static struct blk_mq_ops nvme_mq_admin_ops = {
1231         .queue_rq       = nvme_queue_rq,
1232         .complete       = nvme_complete_rq,
1233         .map_queue      = blk_mq_map_queue,
1234         .init_hctx      = nvme_admin_init_hctx,
1235         .exit_hctx      = nvme_admin_exit_hctx,
1236         .init_request   = nvme_admin_init_request,
1237         .timeout        = nvme_timeout,
1238 };
1239
1240 static struct blk_mq_ops nvme_mq_ops = {
1241         .queue_rq       = nvme_queue_rq,
1242         .complete       = nvme_complete_rq,
1243         .map_queue      = blk_mq_map_queue,
1244         .init_hctx      = nvme_init_hctx,
1245         .init_request   = nvme_init_request,
1246         .timeout        = nvme_timeout,
1247         .poll           = nvme_poll,
1248 };
1249
1250 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1251 {
1252         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1253                 blk_cleanup_queue(dev->ctrl.admin_q);
1254                 blk_mq_free_tag_set(&dev->admin_tagset);
1255         }
1256 }
1257
1258 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1259 {
1260         if (!dev->ctrl.admin_q) {
1261                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1262                 dev->admin_tagset.nr_hw_queues = 1;
1263
1264                 /*
1265                  * Subtract one to leave an empty queue entry for 'Full Queue'
1266                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1267                  */
1268                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1269                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1270                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1271                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1272                 dev->admin_tagset.driver_data = dev;
1273
1274                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1275                         return -ENOMEM;
1276
1277                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1278                 if (IS_ERR(dev->ctrl.admin_q)) {
1279                         blk_mq_free_tag_set(&dev->admin_tagset);
1280                         return -ENOMEM;
1281                 }
1282                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1283                         nvme_dev_remove_admin(dev);
1284                         dev->ctrl.admin_q = NULL;
1285                         return -ENODEV;
1286                 }
1287         } else
1288                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1289
1290         return 0;
1291 }
1292
1293 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1294 {
1295         int result;
1296         u32 aqa;
1297         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1298         struct nvme_queue *nvmeq;
1299
1300         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1301                                                 NVME_CAP_NSSRC(cap) : 0;
1302
1303         if (dev->subsystem &&
1304             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1305                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1306
1307         result = nvme_disable_ctrl(&dev->ctrl, cap);
1308         if (result < 0)
1309                 return result;
1310
1311         nvmeq = dev->queues[0];
1312         if (!nvmeq) {
1313                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1314                 if (!nvmeq)
1315                         return -ENOMEM;
1316         }
1317
1318         aqa = nvmeq->q_depth - 1;
1319         aqa |= aqa << 16;
1320
1321         writel(aqa, dev->bar + NVME_REG_AQA);
1322         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1323         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1324
1325         result = nvme_enable_ctrl(&dev->ctrl, cap);
1326         if (result)
1327                 goto free_nvmeq;
1328
1329         nvmeq->cq_vector = 0;
1330         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1331         if (result) {
1332                 nvmeq->cq_vector = -1;
1333                 goto free_nvmeq;
1334         }
1335
1336         return result;
1337
1338  free_nvmeq:
1339         nvme_free_queues(dev, 0);
1340         return result;
1341 }
1342
1343 static int nvme_kthread(void *data)
1344 {
1345         struct nvme_dev *dev, *next;
1346
1347         while (!kthread_should_stop()) {
1348                 set_current_state(TASK_INTERRUPTIBLE);
1349                 spin_lock(&dev_list_lock);
1350                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1351                         int i;
1352                         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1353
1354                         /*
1355                          * Skip controllers currently under reset.
1356                          */
1357                         if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1358                                 continue;
1359
1360                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1361                                                         csts & NVME_CSTS_CFS) {
1362                                 if (queue_work(nvme_workq, &dev->reset_work)) {
1363                                         dev_warn(dev->dev,
1364                                                 "Failed status: %x, reset controller\n",
1365                                                 readl(dev->bar + NVME_REG_CSTS));
1366                                 }
1367                                 continue;
1368                         }
1369                         for (i = 0; i < dev->queue_count; i++) {
1370                                 struct nvme_queue *nvmeq = dev->queues[i];
1371                                 if (!nvmeq)
1372                                         continue;
1373                                 spin_lock_irq(&nvmeq->q_lock);
1374                                 nvme_process_cq(nvmeq);
1375
1376                                 while (i == 0 && dev->ctrl.event_limit > 0)
1377                                         nvme_submit_async_event(dev);
1378                                 spin_unlock_irq(&nvmeq->q_lock);
1379                         }
1380                 }
1381                 spin_unlock(&dev_list_lock);
1382                 schedule_timeout(round_jiffies_relative(HZ));
1383         }
1384         return 0;
1385 }
1386
1387 static int nvme_create_io_queues(struct nvme_dev *dev)
1388 {
1389         unsigned i;
1390         int ret = 0;
1391
1392         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1393                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1394                         ret = -ENOMEM;
1395                         break;
1396                 }
1397         }
1398
1399         for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1400                 ret = nvme_create_queue(dev->queues[i], i);
1401                 if (ret) {
1402                         nvme_free_queues(dev, i);
1403                         break;
1404                 }
1405         }
1406
1407         /*
1408          * Ignore failing Create SQ/CQ commands, we can continue with less
1409          * than the desired aount of queues, and even a controller without
1410          * I/O queues an still be used to issue admin commands.  This might
1411          * be useful to upgrade a buggy firmware for example.
1412          */
1413         return ret >= 0 ? 0 : ret;
1414 }
1415
1416 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1417 {
1418         u64 szu, size, offset;
1419         u32 cmbloc;
1420         resource_size_t bar_size;
1421         struct pci_dev *pdev = to_pci_dev(dev->dev);
1422         void __iomem *cmb;
1423         dma_addr_t dma_addr;
1424
1425         if (!use_cmb_sqes)
1426                 return NULL;
1427
1428         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1429         if (!(NVME_CMB_SZ(dev->cmbsz)))
1430                 return NULL;
1431
1432         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1433
1434         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1435         size = szu * NVME_CMB_SZ(dev->cmbsz);
1436         offset = szu * NVME_CMB_OFST(cmbloc);
1437         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1438
1439         if (offset > bar_size)
1440                 return NULL;
1441
1442         /*
1443          * Controllers may support a CMB size larger than their BAR,
1444          * for example, due to being behind a bridge. Reduce the CMB to
1445          * the reported size of the BAR
1446          */
1447         if (size > bar_size - offset)
1448                 size = bar_size - offset;
1449
1450         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1451         cmb = ioremap_wc(dma_addr, size);
1452         if (!cmb)
1453                 return NULL;
1454
1455         dev->cmb_dma_addr = dma_addr;
1456         dev->cmb_size = size;
1457         return cmb;
1458 }
1459
1460 static inline void nvme_release_cmb(struct nvme_dev *dev)
1461 {
1462         if (dev->cmb) {
1463                 iounmap(dev->cmb);
1464                 dev->cmb = NULL;
1465         }
1466 }
1467
1468 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1469 {
1470         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1471 }
1472
1473 static int nvme_setup_io_queues(struct nvme_dev *dev)
1474 {
1475         struct nvme_queue *adminq = dev->queues[0];
1476         struct pci_dev *pdev = to_pci_dev(dev->dev);
1477         int result, i, vecs, nr_io_queues, size;
1478
1479         nr_io_queues = num_possible_cpus();
1480         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1481         if (result < 0)
1482                 return result;
1483
1484         /*
1485          * Degraded controllers might return an error when setting the queue
1486          * count.  We still want to be able to bring them online and offer
1487          * access to the admin queue, as that might be only way to fix them up.
1488          */
1489         if (result > 0) {
1490                 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1491                 nr_io_queues = 0;
1492                 result = 0;
1493         }
1494
1495         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1496                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1497                                 sizeof(struct nvme_command));
1498                 if (result > 0)
1499                         dev->q_depth = result;
1500                 else
1501                         nvme_release_cmb(dev);
1502         }
1503
1504         size = db_bar_size(dev, nr_io_queues);
1505         if (size > 8192) {
1506                 iounmap(dev->bar);
1507                 do {
1508                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1509                         if (dev->bar)
1510                                 break;
1511                         if (!--nr_io_queues)
1512                                 return -ENOMEM;
1513                         size = db_bar_size(dev, nr_io_queues);
1514                 } while (1);
1515                 dev->dbs = dev->bar + 4096;
1516                 adminq->q_db = dev->dbs;
1517         }
1518
1519         /* Deregister the admin queue's interrupt */
1520         free_irq(dev->entry[0].vector, adminq);
1521
1522         /*
1523          * If we enable msix early due to not intx, disable it again before
1524          * setting up the full range we need.
1525          */
1526         if (!pdev->irq)
1527                 pci_disable_msix(pdev);
1528
1529         for (i = 0; i < nr_io_queues; i++)
1530                 dev->entry[i].entry = i;
1531         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1532         if (vecs < 0) {
1533                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1534                 if (vecs < 0) {
1535                         vecs = 1;
1536                 } else {
1537                         for (i = 0; i < vecs; i++)
1538                                 dev->entry[i].vector = i + pdev->irq;
1539                 }
1540         }
1541
1542         /*
1543          * Should investigate if there's a performance win from allocating
1544          * more queues than interrupt vectors; it might allow the submission
1545          * path to scale better, even if the receive path is limited by the
1546          * number of interrupts.
1547          */
1548         nr_io_queues = vecs;
1549         dev->max_qid = nr_io_queues;
1550
1551         result = queue_request_irq(dev, adminq, adminq->irqname);
1552         if (result) {
1553                 adminq->cq_vector = -1;
1554                 goto free_queues;
1555         }
1556
1557         /* Free previously allocated queues that are no longer usable */
1558         nvme_free_queues(dev, nr_io_queues + 1);
1559         return nvme_create_io_queues(dev);
1560
1561  free_queues:
1562         nvme_free_queues(dev, 1);
1563         return result;
1564 }
1565
1566 static void nvme_set_irq_hints(struct nvme_dev *dev)
1567 {
1568         struct nvme_queue *nvmeq;
1569         int i;
1570
1571         for (i = 0; i < dev->online_queues; i++) {
1572                 nvmeq = dev->queues[i];
1573
1574                 if (!nvmeq->tags || !(*nvmeq->tags))
1575                         continue;
1576
1577                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1578                                         blk_mq_tags_cpumask(*nvmeq->tags));
1579         }
1580 }
1581
1582 static void nvme_dev_scan(struct work_struct *work)
1583 {
1584         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1585
1586         if (!dev->tagset.tags)
1587                 return;
1588         nvme_scan_namespaces(&dev->ctrl);
1589         nvme_set_irq_hints(dev);
1590 }
1591
1592 static void nvme_del_queue_end(struct request *req, int error)
1593 {
1594         struct nvme_queue *nvmeq = req->end_io_data;
1595
1596         blk_mq_free_request(req);
1597         complete(&nvmeq->dev->ioq_wait);
1598 }
1599
1600 static void nvme_del_cq_end(struct request *req, int error)
1601 {
1602         struct nvme_queue *nvmeq = req->end_io_data;
1603
1604         if (!error) {
1605                 unsigned long flags;
1606
1607                 spin_lock_irqsave(&nvmeq->q_lock, flags);
1608                 nvme_process_cq(nvmeq);
1609                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1610         }
1611
1612         nvme_del_queue_end(req, error);
1613 }
1614
1615 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1616 {
1617         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1618         struct request *req;
1619         struct nvme_command cmd;
1620
1621         memset(&cmd, 0, sizeof(cmd));
1622         cmd.delete_queue.opcode = opcode;
1623         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1624
1625         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1626         if (IS_ERR(req))
1627                 return PTR_ERR(req);
1628
1629         req->timeout = ADMIN_TIMEOUT;
1630         req->end_io_data = nvmeq;
1631
1632         blk_execute_rq_nowait(q, NULL, req, false,
1633                         opcode == nvme_admin_delete_cq ?
1634                                 nvme_del_cq_end : nvme_del_queue_end);
1635         return 0;
1636 }
1637
1638 static void nvme_disable_io_queues(struct nvme_dev *dev)
1639 {
1640         int pass;
1641         unsigned long timeout;
1642         u8 opcode = nvme_admin_delete_sq;
1643
1644         for (pass = 0; pass < 2; pass++) {
1645                 int sent = 0, i = dev->queue_count - 1;
1646
1647                 reinit_completion(&dev->ioq_wait);
1648  retry:
1649                 timeout = ADMIN_TIMEOUT;
1650                 for (; i > 0; i--) {
1651                         struct nvme_queue *nvmeq = dev->queues[i];
1652
1653                         if (!pass)
1654                                 nvme_suspend_queue(nvmeq);
1655                         if (nvme_delete_queue(nvmeq, opcode))
1656                                 break;
1657                         ++sent;
1658                 }
1659                 while (sent--) {
1660                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1661                         if (timeout == 0)
1662                                 return;
1663                         if (i)
1664                                 goto retry;
1665                 }
1666                 opcode = nvme_admin_delete_cq;
1667         }
1668 }
1669
1670 /*
1671  * Return: error value if an error occurred setting up the queues or calling
1672  * Identify Device.  0 if these succeeded, even if adding some of the
1673  * namespaces failed.  At the moment, these failures are silent.  TBD which
1674  * failures should be reported.
1675  */
1676 static int nvme_dev_add(struct nvme_dev *dev)
1677 {
1678         if (!dev->ctrl.tagset) {
1679                 dev->tagset.ops = &nvme_mq_ops;
1680                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1681                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1682                 dev->tagset.numa_node = dev_to_node(dev->dev);
1683                 dev->tagset.queue_depth =
1684                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1685                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1686                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1687                 dev->tagset.driver_data = dev;
1688
1689                 if (blk_mq_alloc_tag_set(&dev->tagset))
1690                         return 0;
1691                 dev->ctrl.tagset = &dev->tagset;
1692         }
1693         queue_work(nvme_workq, &dev->scan_work);
1694         return 0;
1695 }
1696
1697 static int nvme_pci_enable(struct nvme_dev *dev)
1698 {
1699         u64 cap;
1700         int result = -ENOMEM;
1701         struct pci_dev *pdev = to_pci_dev(dev->dev);
1702
1703         if (pci_enable_device_mem(pdev))
1704                 return result;
1705
1706         dev->entry[0].vector = pdev->irq;
1707         pci_set_master(pdev);
1708
1709         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1710             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1711                 goto disable;
1712
1713         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1714                 result = -ENODEV;
1715                 goto disable;
1716         }
1717
1718         /*
1719          * Some devices don't advertse INTx interrupts, pre-enable a single
1720          * MSIX vec for setup. We'll adjust this later.
1721          */
1722         if (!pdev->irq) {
1723                 result = pci_enable_msix(pdev, dev->entry, 1);
1724                 if (result < 0)
1725                         goto disable;
1726         }
1727
1728         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1729
1730         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1731         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1732         dev->dbs = dev->bar + 4096;
1733
1734         /*
1735          * Temporary fix for the Apple controller found in the MacBook8,1 and
1736          * some MacBook7,1 to avoid controller resets and data loss.
1737          */
1738         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1739                 dev->q_depth = 2;
1740                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1741                         "queue depth=%u to work around controller resets\n",
1742                         dev->q_depth);
1743         }
1744
1745         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1746                 dev->cmb = nvme_map_cmb(dev);
1747
1748         pci_enable_pcie_error_reporting(pdev);
1749         pci_save_state(pdev);
1750         return 0;
1751
1752  disable:
1753         pci_disable_device(pdev);
1754         return result;
1755 }
1756
1757 static void nvme_dev_unmap(struct nvme_dev *dev)
1758 {
1759         if (dev->bar)
1760                 iounmap(dev->bar);
1761         pci_release_regions(to_pci_dev(dev->dev));
1762 }
1763
1764 static void nvme_pci_disable(struct nvme_dev *dev)
1765 {
1766         struct pci_dev *pdev = to_pci_dev(dev->dev);
1767
1768         if (pdev->msi_enabled)
1769                 pci_disable_msi(pdev);
1770         else if (pdev->msix_enabled)
1771                 pci_disable_msix(pdev);
1772
1773         if (pci_is_enabled(pdev)) {
1774                 pci_disable_pcie_error_reporting(pdev);
1775                 pci_disable_device(pdev);
1776         }
1777 }
1778
1779 static int nvme_dev_list_add(struct nvme_dev *dev)
1780 {
1781         bool start_thread = false;
1782
1783         spin_lock(&dev_list_lock);
1784         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1785                 start_thread = true;
1786                 nvme_thread = NULL;
1787         }
1788         list_add(&dev->node, &dev_list);
1789         spin_unlock(&dev_list_lock);
1790
1791         if (start_thread) {
1792                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1793                 wake_up_all(&nvme_kthread_wait);
1794         } else
1795                 wait_event_killable(nvme_kthread_wait, nvme_thread);
1796
1797         if (IS_ERR_OR_NULL(nvme_thread))
1798                 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1799
1800         return 0;
1801 }
1802
1803 /*
1804 * Remove the node from the device list and check
1805 * for whether or not we need to stop the nvme_thread.
1806 */
1807 static void nvme_dev_list_remove(struct nvme_dev *dev)
1808 {
1809         struct task_struct *tmp = NULL;
1810
1811         spin_lock(&dev_list_lock);
1812         list_del_init(&dev->node);
1813         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1814                 tmp = nvme_thread;
1815                 nvme_thread = NULL;
1816         }
1817         spin_unlock(&dev_list_lock);
1818
1819         if (tmp)
1820                 kthread_stop(tmp);
1821 }
1822
1823 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1824 {
1825         int i;
1826         u32 csts = -1;
1827
1828         nvme_dev_list_remove(dev);
1829
1830         mutex_lock(&dev->shutdown_lock);
1831         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1832                 nvme_stop_queues(&dev->ctrl);
1833                 csts = readl(dev->bar + NVME_REG_CSTS);
1834         }
1835         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1836                 for (i = dev->queue_count - 1; i >= 0; i--) {
1837                         struct nvme_queue *nvmeq = dev->queues[i];
1838                         nvme_suspend_queue(nvmeq);
1839                 }
1840         } else {
1841                 nvme_disable_io_queues(dev);
1842                 nvme_disable_admin_queue(dev, shutdown);
1843         }
1844         nvme_pci_disable(dev);
1845
1846         for (i = dev->queue_count - 1; i >= 0; i--)
1847                 nvme_clear_queue(dev->queues[i]);
1848         mutex_unlock(&dev->shutdown_lock);
1849 }
1850
1851 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1852 {
1853         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1854                                                 PAGE_SIZE, PAGE_SIZE, 0);
1855         if (!dev->prp_page_pool)
1856                 return -ENOMEM;
1857
1858         /* Optimisation for I/Os between 4k and 128k */
1859         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1860                                                 256, 256, 0);
1861         if (!dev->prp_small_pool) {
1862                 dma_pool_destroy(dev->prp_page_pool);
1863                 return -ENOMEM;
1864         }
1865         return 0;
1866 }
1867
1868 static void nvme_release_prp_pools(struct nvme_dev *dev)
1869 {
1870         dma_pool_destroy(dev->prp_page_pool);
1871         dma_pool_destroy(dev->prp_small_pool);
1872 }
1873
1874 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1875 {
1876         struct nvme_dev *dev = to_nvme_dev(ctrl);
1877
1878         put_device(dev->dev);
1879         if (dev->tagset.tags)
1880                 blk_mq_free_tag_set(&dev->tagset);
1881         if (dev->ctrl.admin_q)
1882                 blk_put_queue(dev->ctrl.admin_q);
1883         kfree(dev->queues);
1884         kfree(dev->entry);
1885         kfree(dev);
1886 }
1887
1888 static void nvme_reset_work(struct work_struct *work)
1889 {
1890         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1891         int result;
1892
1893         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1894                 goto out;
1895
1896         /*
1897          * If we're called to reset a live controller first shut it down before
1898          * moving on.
1899          */
1900         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1901                 nvme_dev_disable(dev, false);
1902
1903         set_bit(NVME_CTRL_RESETTING, &dev->flags);
1904
1905         result = nvme_pci_enable(dev);
1906         if (result)
1907                 goto out;
1908
1909         result = nvme_configure_admin_queue(dev);
1910         if (result)
1911                 goto unmap;
1912
1913         nvme_init_queue(dev->queues[0], 0);
1914         result = nvme_alloc_admin_tags(dev);
1915         if (result)
1916                 goto disable;
1917
1918         result = nvme_init_identify(&dev->ctrl);
1919         if (result)
1920                 goto free_tags;
1921
1922         result = nvme_setup_io_queues(dev);
1923         if (result)
1924                 goto free_tags;
1925
1926         dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1927
1928         result = nvme_dev_list_add(dev);
1929         if (result)
1930                 goto remove;
1931
1932         /*
1933          * Keep the controller around but remove all namespaces if we don't have
1934          * any working I/O queue.
1935          */
1936         if (dev->online_queues < 2) {
1937                 dev_warn(dev->dev, "IO queues not created\n");
1938                 nvme_remove_namespaces(&dev->ctrl);
1939         } else {
1940                 nvme_start_queues(&dev->ctrl);
1941                 nvme_dev_add(dev);
1942         }
1943
1944         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1945         return;
1946
1947  remove:
1948         nvme_dev_list_remove(dev);
1949  free_tags:
1950         nvme_dev_remove_admin(dev);
1951         blk_put_queue(dev->ctrl.admin_q);
1952         dev->ctrl.admin_q = NULL;
1953         dev->queues[0]->tags = NULL;
1954  disable:
1955         nvme_disable_admin_queue(dev, false);
1956  unmap:
1957         nvme_dev_unmap(dev);
1958  out:
1959         nvme_remove_dead_ctrl(dev);
1960 }
1961
1962 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1963 {
1964         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1965         struct pci_dev *pdev = to_pci_dev(dev->dev);
1966
1967         if (pci_get_drvdata(pdev))
1968                 pci_stop_and_remove_bus_device_locked(pdev);
1969         nvme_put_ctrl(&dev->ctrl);
1970 }
1971
1972 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1973 {
1974         dev_warn(dev->dev, "Removing after probe failure\n");
1975         kref_get(&dev->ctrl.kref);
1976         if (!schedule_work(&dev->remove_work))
1977                 nvme_put_ctrl(&dev->ctrl);
1978 }
1979
1980 static int nvme_reset(struct nvme_dev *dev)
1981 {
1982         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1983                 return -ENODEV;
1984
1985         if (!queue_work(nvme_workq, &dev->reset_work))
1986                 return -EBUSY;
1987
1988         flush_work(&dev->reset_work);
1989         return 0;
1990 }
1991
1992 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1993 {
1994         *val = readl(to_nvme_dev(ctrl)->bar + off);
1995         return 0;
1996 }
1997
1998 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1999 {
2000         writel(val, to_nvme_dev(ctrl)->bar + off);
2001         return 0;
2002 }
2003
2004 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2005 {
2006         *val = readq(to_nvme_dev(ctrl)->bar + off);
2007         return 0;
2008 }
2009
2010 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2011 {
2012         struct nvme_dev *dev = to_nvme_dev(ctrl);
2013
2014         return !dev->bar || dev->online_queues < 2;
2015 }
2016
2017 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2018 {
2019         return nvme_reset(to_nvme_dev(ctrl));
2020 }
2021
2022 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2023         .reg_read32             = nvme_pci_reg_read32,
2024         .reg_write32            = nvme_pci_reg_write32,
2025         .reg_read64             = nvme_pci_reg_read64,
2026         .io_incapable           = nvme_pci_io_incapable,
2027         .reset_ctrl             = nvme_pci_reset_ctrl,
2028         .free_ctrl              = nvme_pci_free_ctrl,
2029 };
2030
2031 static int nvme_dev_map(struct nvme_dev *dev)
2032 {
2033         int bars;
2034         struct pci_dev *pdev = to_pci_dev(dev->dev);
2035
2036         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2037         if (!bars)
2038                 return -ENODEV;
2039         if (pci_request_selected_regions(pdev, bars, "nvme"))
2040                 return -ENODEV;
2041
2042         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2043         if (!dev->bar)
2044                 goto release;
2045
2046        return 0;
2047   release:
2048        pci_release_regions(pdev);
2049        return -ENODEV;
2050 }
2051
2052 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2053 {
2054         int node, result = -ENOMEM;
2055         struct nvme_dev *dev;
2056
2057         node = dev_to_node(&pdev->dev);
2058         if (node == NUMA_NO_NODE)
2059                 set_dev_node(&pdev->dev, 0);
2060
2061         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2062         if (!dev)
2063                 return -ENOMEM;
2064         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2065                                                         GFP_KERNEL, node);
2066         if (!dev->entry)
2067                 goto free;
2068         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2069                                                         GFP_KERNEL, node);
2070         if (!dev->queues)
2071                 goto free;
2072
2073         dev->dev = get_device(&pdev->dev);
2074         pci_set_drvdata(pdev, dev);
2075
2076         result = nvme_dev_map(dev);
2077         if (result)
2078                 goto free;
2079
2080         INIT_LIST_HEAD(&dev->node);
2081         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2082         INIT_WORK(&dev->reset_work, nvme_reset_work);
2083         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2084         mutex_init(&dev->shutdown_lock);
2085         init_completion(&dev->ioq_wait);
2086
2087         result = nvme_setup_prp_pools(dev);
2088         if (result)
2089                 goto put_pci;
2090
2091         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2092                         id->driver_data);
2093         if (result)
2094                 goto release_pools;
2095
2096         queue_work(nvme_workq, &dev->reset_work);
2097         return 0;
2098
2099  release_pools:
2100         nvme_release_prp_pools(dev);
2101  put_pci:
2102         put_device(dev->dev);
2103         nvme_dev_unmap(dev);
2104  free:
2105         kfree(dev->queues);
2106         kfree(dev->entry);
2107         kfree(dev);
2108         return result;
2109 }
2110
2111 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2112 {
2113         struct nvme_dev *dev = pci_get_drvdata(pdev);
2114
2115         if (prepare)
2116                 nvme_dev_disable(dev, false);
2117         else
2118                 queue_work(nvme_workq, &dev->reset_work);
2119 }
2120
2121 static void nvme_shutdown(struct pci_dev *pdev)
2122 {
2123         struct nvme_dev *dev = pci_get_drvdata(pdev);
2124         nvme_dev_disable(dev, true);
2125 }
2126
2127 static void nvme_remove(struct pci_dev *pdev)
2128 {
2129         struct nvme_dev *dev = pci_get_drvdata(pdev);
2130
2131         pci_set_drvdata(pdev, NULL);
2132         flush_work(&dev->scan_work);
2133         nvme_remove_namespaces(&dev->ctrl);
2134         nvme_uninit_ctrl(&dev->ctrl);
2135         nvme_dev_disable(dev, true);
2136         flush_work(&dev->reset_work);
2137         nvme_dev_remove_admin(dev);
2138         nvme_free_queues(dev, 0);
2139         nvme_release_cmb(dev);
2140         nvme_release_prp_pools(dev);
2141         nvme_dev_unmap(dev);
2142         nvme_put_ctrl(&dev->ctrl);
2143 }
2144
2145 #ifdef CONFIG_PM_SLEEP
2146 static int nvme_suspend(struct device *dev)
2147 {
2148         struct pci_dev *pdev = to_pci_dev(dev);
2149         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2150
2151         nvme_dev_disable(ndev, true);
2152         return 0;
2153 }
2154
2155 static int nvme_resume(struct device *dev)
2156 {
2157         struct pci_dev *pdev = to_pci_dev(dev);
2158         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2159
2160         queue_work(nvme_workq, &ndev->reset_work);
2161         return 0;
2162 }
2163 #endif
2164
2165 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2166
2167 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2168                                                 pci_channel_state_t state)
2169 {
2170         struct nvme_dev *dev = pci_get_drvdata(pdev);
2171
2172         /*
2173          * A frozen channel requires a reset. When detected, this method will
2174          * shutdown the controller to quiesce. The controller will be restarted
2175          * after the slot reset through driver's slot_reset callback.
2176          */
2177         dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2178         switch (state) {
2179         case pci_channel_io_normal:
2180                 return PCI_ERS_RESULT_CAN_RECOVER;
2181         case pci_channel_io_frozen:
2182                 nvme_dev_disable(dev, false);
2183                 return PCI_ERS_RESULT_NEED_RESET;
2184         case pci_channel_io_perm_failure:
2185                 return PCI_ERS_RESULT_DISCONNECT;
2186         }
2187         return PCI_ERS_RESULT_NEED_RESET;
2188 }
2189
2190 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2191 {
2192         struct nvme_dev *dev = pci_get_drvdata(pdev);
2193
2194         dev_info(&pdev->dev, "restart after slot reset\n");
2195         pci_restore_state(pdev);
2196         queue_work(nvme_workq, &dev->reset_work);
2197         return PCI_ERS_RESULT_RECOVERED;
2198 }
2199
2200 static void nvme_error_resume(struct pci_dev *pdev)
2201 {
2202         pci_cleanup_aer_uncorrect_error_status(pdev);
2203 }
2204
2205 static const struct pci_error_handlers nvme_err_handler = {
2206         .error_detected = nvme_error_detected,
2207         .slot_reset     = nvme_slot_reset,
2208         .resume         = nvme_error_resume,
2209         .reset_notify   = nvme_reset_notify,
2210 };
2211
2212 /* Move to pci_ids.h later */
2213 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2214
2215 static const struct pci_device_id nvme_id_table[] = {
2216         { PCI_VDEVICE(INTEL, 0x0953),
2217                 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2218         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2219                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2220         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2221         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2222         { 0, }
2223 };
2224 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2225
2226 static struct pci_driver nvme_driver = {
2227         .name           = "nvme",
2228         .id_table       = nvme_id_table,
2229         .probe          = nvme_probe,
2230         .remove         = nvme_remove,
2231         .shutdown       = nvme_shutdown,
2232         .driver         = {
2233                 .pm     = &nvme_dev_pm_ops,
2234         },
2235         .err_handler    = &nvme_err_handler,
2236 };
2237
2238 static int __init nvme_init(void)
2239 {
2240         int result;
2241
2242         init_waitqueue_head(&nvme_kthread_wait);
2243
2244         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2245         if (!nvme_workq)
2246                 return -ENOMEM;
2247
2248         result = nvme_core_init();
2249         if (result < 0)
2250                 goto kill_workq;
2251
2252         result = pci_register_driver(&nvme_driver);
2253         if (result)
2254                 goto core_exit;
2255         return 0;
2256
2257  core_exit:
2258         nvme_core_exit();
2259  kill_workq:
2260         destroy_workqueue(nvme_workq);
2261         return result;
2262 }
2263
2264 static void __exit nvme_exit(void)
2265 {
2266         pci_unregister_driver(&nvme_driver);
2267         nvme_core_exit();
2268         destroy_workqueue(nvme_workq);
2269         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2270         _nvme_check_size();
2271 }
2272
2273 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2274 MODULE_LICENSE("GPL");
2275 MODULE_VERSION("1.0");
2276 module_init(nvme_init);
2277 module_exit(nvme_exit);