]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
nvme-pci: remap BAR0 to cover admin CQ doorbell for large stride
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48
49 #include "nvme.h"
50
51 #define NVME_Q_DEPTH            1024
52 #define NVME_AQ_DEPTH           256
53 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
55
56 /*
57  * We handle AEN commands ourselves and don't even let the
58  * block layer know about them.
59  */
60 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69 static unsigned int max_host_mem_size_mb = 128;
70 module_param(max_host_mem_size_mb, uint, 0444);
71 MODULE_PARM_DESC(max_host_mem_size_mb,
72         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
73
74 struct nvme_dev;
75 struct nvme_queue;
76
77 static int nvme_reset(struct nvme_dev *dev);
78 static void nvme_process_cq(struct nvme_queue *nvmeq);
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
80
81 /*
82  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
83  */
84 struct nvme_dev {
85         struct nvme_queue **queues;
86         struct blk_mq_tag_set tagset;
87         struct blk_mq_tag_set admin_tagset;
88         u32 __iomem *dbs;
89         struct device *dev;
90         struct dma_pool *prp_page_pool;
91         struct dma_pool *prp_small_pool;
92         unsigned queue_count;
93         unsigned online_queues;
94         unsigned max_qid;
95         int q_depth;
96         u32 db_stride;
97         void __iomem *bar;
98         unsigned long bar_mapped_size;
99         struct work_struct reset_work;
100         struct work_struct remove_work;
101         struct timer_list watchdog_timer;
102         struct mutex shutdown_lock;
103         bool subsystem;
104         void __iomem *cmb;
105         dma_addr_t cmb_dma_addr;
106         u64 cmb_size;
107         u32 cmbsz;
108         u32 cmbloc;
109         struct nvme_ctrl ctrl;
110         struct completion ioq_wait;
111
112         /* shadow doorbell buffer support: */
113         u32 *dbbuf_dbs;
114         dma_addr_t dbbuf_dbs_dma_addr;
115         u32 *dbbuf_eis;
116         dma_addr_t dbbuf_eis_dma_addr;
117
118         /* host memory buffer support: */
119         u64 host_mem_size;
120         u32 nr_host_mem_descs;
121         struct nvme_host_mem_buf_desc *host_mem_descs;
122         void **host_mem_desc_bufs;
123 };
124
125 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
126 {
127         return qid * 2 * stride;
128 }
129
130 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
131 {
132         return (qid * 2 + 1) * stride;
133 }
134
135 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
136 {
137         return container_of(ctrl, struct nvme_dev, ctrl);
138 }
139
140 /*
141  * An NVM Express queue.  Each device has at least two (one for admin
142  * commands and one for I/O commands).
143  */
144 struct nvme_queue {
145         struct device *q_dmadev;
146         struct nvme_dev *dev;
147         spinlock_t q_lock;
148         struct nvme_command *sq_cmds;
149         struct nvme_command __iomem *sq_cmds_io;
150         volatile struct nvme_completion *cqes;
151         struct blk_mq_tags **tags;
152         dma_addr_t sq_dma_addr;
153         dma_addr_t cq_dma_addr;
154         u32 __iomem *q_db;
155         u16 q_depth;
156         s16 cq_vector;
157         u16 sq_tail;
158         u16 cq_head;
159         u16 qid;
160         u8 cq_phase;
161         u8 cqe_seen;
162         u32 *dbbuf_sq_db;
163         u32 *dbbuf_cq_db;
164         u32 *dbbuf_sq_ei;
165         u32 *dbbuf_cq_ei;
166 };
167
168 /*
169  * The nvme_iod describes the data in an I/O, including the list of PRP
170  * entries.  You can't see it in this data structure because C doesn't let
171  * me express that.  Use nvme_init_iod to ensure there's enough space
172  * allocated to store the PRP list.
173  */
174 struct nvme_iod {
175         struct nvme_request req;
176         struct nvme_queue *nvmeq;
177         int aborted;
178         int npages;             /* In the PRP list. 0 means small pool in use */
179         int nents;              /* Used in scatterlist */
180         int length;             /* Of data, in bytes */
181         dma_addr_t first_dma;
182         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
183         struct scatterlist *sg;
184         struct scatterlist inline_sg[0];
185 };
186
187 /*
188  * Check we didin't inadvertently grow the command struct
189  */
190 static inline void _nvme_check_size(void)
191 {
192         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
193         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
194         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
195         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
201         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
202         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
204         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
205 }
206
207 static inline unsigned int nvme_dbbuf_size(u32 stride)
208 {
209         return ((num_possible_cpus() + 1) * 8 * stride);
210 }
211
212 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
213 {
214         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
215
216         if (dev->dbbuf_dbs)
217                 return 0;
218
219         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
220                                             &dev->dbbuf_dbs_dma_addr,
221                                             GFP_KERNEL);
222         if (!dev->dbbuf_dbs)
223                 return -ENOMEM;
224         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
225                                             &dev->dbbuf_eis_dma_addr,
226                                             GFP_KERNEL);
227         if (!dev->dbbuf_eis) {
228                 dma_free_coherent(dev->dev, mem_size,
229                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
230                 dev->dbbuf_dbs = NULL;
231                 return -ENOMEM;
232         }
233
234         return 0;
235 }
236
237 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
238 {
239         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
240
241         if (dev->dbbuf_dbs) {
242                 dma_free_coherent(dev->dev, mem_size,
243                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244                 dev->dbbuf_dbs = NULL;
245         }
246         if (dev->dbbuf_eis) {
247                 dma_free_coherent(dev->dev, mem_size,
248                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
249                 dev->dbbuf_eis = NULL;
250         }
251 }
252
253 static void nvme_dbbuf_init(struct nvme_dev *dev,
254                             struct nvme_queue *nvmeq, int qid)
255 {
256         if (!dev->dbbuf_dbs || !qid)
257                 return;
258
259         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
260         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
261         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
262         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
263 }
264
265 static void nvme_dbbuf_set(struct nvme_dev *dev)
266 {
267         struct nvme_command c;
268
269         if (!dev->dbbuf_dbs)
270                 return;
271
272         memset(&c, 0, sizeof(c));
273         c.dbbuf.opcode = nvme_admin_dbbuf;
274         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
275         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
276
277         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
278                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
279                 /* Free memory and continue on */
280                 nvme_dbbuf_dma_free(dev);
281         }
282 }
283
284 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
285 {
286         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
287 }
288
289 /* Update dbbuf and return true if an MMIO is required */
290 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
291                                               volatile u32 *dbbuf_ei)
292 {
293         if (dbbuf_db) {
294                 u16 old_value;
295
296                 /*
297                  * Ensure that the queue is written before updating
298                  * the doorbell in memory
299                  */
300                 wmb();
301
302                 old_value = *dbbuf_db;
303                 *dbbuf_db = value;
304
305                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
306                         return false;
307         }
308
309         return true;
310 }
311
312 /*
313  * Max size of iod being embedded in the request payload
314  */
315 #define NVME_INT_PAGES          2
316 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
317
318 /*
319  * Will slightly overestimate the number of pages needed.  This is OK
320  * as it only leads to a small amount of wasted memory for the lifetime of
321  * the I/O.
322  */
323 static int nvme_npages(unsigned size, struct nvme_dev *dev)
324 {
325         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
326                                       dev->ctrl.page_size);
327         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
328 }
329
330 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
331                 unsigned int size, unsigned int nseg)
332 {
333         return sizeof(__le64 *) * nvme_npages(size, dev) +
334                         sizeof(struct scatterlist) * nseg;
335 }
336
337 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
338 {
339         return sizeof(struct nvme_iod) +
340                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
341 }
342
343 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
344                                 unsigned int hctx_idx)
345 {
346         struct nvme_dev *dev = data;
347         struct nvme_queue *nvmeq = dev->queues[0];
348
349         WARN_ON(hctx_idx != 0);
350         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
351         WARN_ON(nvmeq->tags);
352
353         hctx->driver_data = nvmeq;
354         nvmeq->tags = &dev->admin_tagset.tags[0];
355         return 0;
356 }
357
358 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
359 {
360         struct nvme_queue *nvmeq = hctx->driver_data;
361
362         nvmeq->tags = NULL;
363 }
364
365 static int nvme_admin_init_request(struct blk_mq_tag_set *set,
366                 struct request *req, unsigned int hctx_idx,
367                 unsigned int numa_node)
368 {
369         struct nvme_dev *dev = set->driver_data;
370         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
371         struct nvme_queue *nvmeq = dev->queues[0];
372
373         BUG_ON(!nvmeq);
374         iod->nvmeq = nvmeq;
375         return 0;
376 }
377
378 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
379                           unsigned int hctx_idx)
380 {
381         struct nvme_dev *dev = data;
382         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
383
384         if (!nvmeq->tags)
385                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
386
387         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
388         hctx->driver_data = nvmeq;
389         return 0;
390 }
391
392 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
393                 unsigned int hctx_idx, unsigned int numa_node)
394 {
395         struct nvme_dev *dev = set->driver_data;
396         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
397         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
398
399         BUG_ON(!nvmeq);
400         iod->nvmeq = nvmeq;
401         return 0;
402 }
403
404 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
405 {
406         struct nvme_dev *dev = set->driver_data;
407
408         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
409 }
410
411 /**
412  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
413  * @nvmeq: The queue to use
414  * @cmd: The command to send
415  *
416  * Safe to use from interrupt context
417  */
418 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
419                                                 struct nvme_command *cmd)
420 {
421         u16 tail = nvmeq->sq_tail;
422
423         if (nvmeq->sq_cmds_io)
424                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
425         else
426                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
427
428         if (++tail == nvmeq->q_depth)
429                 tail = 0;
430         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
431                                               nvmeq->dbbuf_sq_ei))
432                 writel(tail, nvmeq->q_db);
433         nvmeq->sq_tail = tail;
434 }
435
436 static __le64 **iod_list(struct request *req)
437 {
438         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
439         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
440 }
441
442 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
443 {
444         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
445         int nseg = blk_rq_nr_phys_segments(rq);
446         unsigned int size = blk_rq_payload_bytes(rq);
447
448         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
449                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
450                 if (!iod->sg)
451                         return BLK_STS_RESOURCE;
452         } else {
453                 iod->sg = iod->inline_sg;
454         }
455
456         iod->aborted = 0;
457         iod->npages = -1;
458         iod->nents = 0;
459         iod->length = size;
460
461         return BLK_STS_OK;
462 }
463
464 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
465 {
466         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
467         const int last_prp = dev->ctrl.page_size / 8 - 1;
468         int i;
469         __le64 **list = iod_list(req);
470         dma_addr_t prp_dma = iod->first_dma;
471
472         if (iod->npages == 0)
473                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
474         for (i = 0; i < iod->npages; i++) {
475                 __le64 *prp_list = list[i];
476                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
477                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
478                 prp_dma = next_prp_dma;
479         }
480
481         if (iod->sg != iod->inline_sg)
482                 kfree(iod->sg);
483 }
484
485 #ifdef CONFIG_BLK_DEV_INTEGRITY
486 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
487 {
488         if (be32_to_cpu(pi->ref_tag) == v)
489                 pi->ref_tag = cpu_to_be32(p);
490 }
491
492 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
493 {
494         if (be32_to_cpu(pi->ref_tag) == p)
495                 pi->ref_tag = cpu_to_be32(v);
496 }
497
498 /**
499  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
500  *
501  * The virtual start sector is the one that was originally submitted by the
502  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
503  * start sector may be different. Remap protection information to match the
504  * physical LBA on writes, and back to the original seed on reads.
505  *
506  * Type 0 and 3 do not have a ref tag, so no remapping required.
507  */
508 static void nvme_dif_remap(struct request *req,
509                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
510 {
511         struct nvme_ns *ns = req->rq_disk->private_data;
512         struct bio_integrity_payload *bip;
513         struct t10_pi_tuple *pi;
514         void *p, *pmap;
515         u32 i, nlb, ts, phys, virt;
516
517         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
518                 return;
519
520         bip = bio_integrity(req->bio);
521         if (!bip)
522                 return;
523
524         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
525
526         p = pmap;
527         virt = bip_get_seed(bip);
528         phys = nvme_block_nr(ns, blk_rq_pos(req));
529         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
530         ts = ns->disk->queue->integrity.tuple_size;
531
532         for (i = 0; i < nlb; i++, virt++, phys++) {
533                 pi = (struct t10_pi_tuple *)p;
534                 dif_swap(phys, virt, pi);
535                 p += ts;
536         }
537         kunmap_atomic(pmap);
538 }
539 #else /* CONFIG_BLK_DEV_INTEGRITY */
540 static void nvme_dif_remap(struct request *req,
541                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
542 {
543 }
544 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
545 {
546 }
547 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
548 {
549 }
550 #endif
551
552 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
553 {
554         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555         struct dma_pool *pool;
556         int length = blk_rq_payload_bytes(req);
557         struct scatterlist *sg = iod->sg;
558         int dma_len = sg_dma_len(sg);
559         u64 dma_addr = sg_dma_address(sg);
560         u32 page_size = dev->ctrl.page_size;
561         int offset = dma_addr & (page_size - 1);
562         __le64 *prp_list;
563         __le64 **list = iod_list(req);
564         dma_addr_t prp_dma;
565         int nprps, i;
566
567         length -= (page_size - offset);
568         if (length <= 0)
569                 return true;
570
571         dma_len -= (page_size - offset);
572         if (dma_len) {
573                 dma_addr += (page_size - offset);
574         } else {
575                 sg = sg_next(sg);
576                 dma_addr = sg_dma_address(sg);
577                 dma_len = sg_dma_len(sg);
578         }
579
580         if (length <= page_size) {
581                 iod->first_dma = dma_addr;
582                 return true;
583         }
584
585         nprps = DIV_ROUND_UP(length, page_size);
586         if (nprps <= (256 / 8)) {
587                 pool = dev->prp_small_pool;
588                 iod->npages = 0;
589         } else {
590                 pool = dev->prp_page_pool;
591                 iod->npages = 1;
592         }
593
594         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
595         if (!prp_list) {
596                 iod->first_dma = dma_addr;
597                 iod->npages = -1;
598                 return false;
599         }
600         list[0] = prp_list;
601         iod->first_dma = prp_dma;
602         i = 0;
603         for (;;) {
604                 if (i == page_size >> 3) {
605                         __le64 *old_prp_list = prp_list;
606                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
607                         if (!prp_list)
608                                 return false;
609                         list[iod->npages++] = prp_list;
610                         prp_list[0] = old_prp_list[i - 1];
611                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
612                         i = 1;
613                 }
614                 prp_list[i++] = cpu_to_le64(dma_addr);
615                 dma_len -= page_size;
616                 dma_addr += page_size;
617                 length -= page_size;
618                 if (length <= 0)
619                         break;
620                 if (dma_len > 0)
621                         continue;
622                 BUG_ON(dma_len < 0);
623                 sg = sg_next(sg);
624                 dma_addr = sg_dma_address(sg);
625                 dma_len = sg_dma_len(sg);
626         }
627
628         return true;
629 }
630
631 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
632                 struct nvme_command *cmnd)
633 {
634         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
635         struct request_queue *q = req->q;
636         enum dma_data_direction dma_dir = rq_data_dir(req) ?
637                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
638         blk_status_t ret = BLK_STS_IOERR;
639
640         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
641         iod->nents = blk_rq_map_sg(q, req, iod->sg);
642         if (!iod->nents)
643                 goto out;
644
645         ret = BLK_STS_RESOURCE;
646         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
647                                 DMA_ATTR_NO_WARN))
648                 goto out;
649
650         if (!nvme_setup_prps(dev, req))
651                 goto out_unmap;
652
653         ret = BLK_STS_IOERR;
654         if (blk_integrity_rq(req)) {
655                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
656                         goto out_unmap;
657
658                 sg_init_table(&iod->meta_sg, 1);
659                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
660                         goto out_unmap;
661
662                 if (rq_data_dir(req))
663                         nvme_dif_remap(req, nvme_dif_prep);
664
665                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
666                         goto out_unmap;
667         }
668
669         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
670         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
671         if (blk_integrity_rq(req))
672                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
673         return BLK_STS_OK;
674
675 out_unmap:
676         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
677 out:
678         return ret;
679 }
680
681 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
682 {
683         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
684         enum dma_data_direction dma_dir = rq_data_dir(req) ?
685                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
686
687         if (iod->nents) {
688                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
689                 if (blk_integrity_rq(req)) {
690                         if (!rq_data_dir(req))
691                                 nvme_dif_remap(req, nvme_dif_complete);
692                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
693                 }
694         }
695
696         nvme_cleanup_cmd(req);
697         nvme_free_iod(dev, req);
698 }
699
700 /*
701  * NOTE: ns is NULL when called on the admin queue.
702  */
703 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
704                          const struct blk_mq_queue_data *bd)
705 {
706         struct nvme_ns *ns = hctx->queue->queuedata;
707         struct nvme_queue *nvmeq = hctx->driver_data;
708         struct nvme_dev *dev = nvmeq->dev;
709         struct request *req = bd->rq;
710         struct nvme_command cmnd;
711         blk_status_t ret = BLK_STS_OK;
712
713         /*
714          * If formated with metadata, require the block layer provide a buffer
715          * unless this namespace is formated such that the metadata can be
716          * stripped/generated by the controller with PRACT=1.
717          */
718         if (ns && ns->ms && !blk_integrity_rq(req)) {
719                 if (!(ns->pi_type && ns->ms == 8) &&
720                     !blk_rq_is_passthrough(req))
721                         return BLK_STS_NOTSUPP;
722         }
723
724         ret = nvme_setup_cmd(ns, req, &cmnd);
725         if (ret)
726                 return ret;
727
728         ret = nvme_init_iod(req, dev);
729         if (ret)
730                 goto out_free_cmd;
731
732         if (blk_rq_nr_phys_segments(req)) {
733                 ret = nvme_map_data(dev, req, &cmnd);
734                 if (ret)
735                         goto out_cleanup_iod;
736         }
737
738         blk_mq_start_request(req);
739
740         spin_lock_irq(&nvmeq->q_lock);
741         if (unlikely(nvmeq->cq_vector < 0)) {
742                 ret = BLK_STS_IOERR;
743                 spin_unlock_irq(&nvmeq->q_lock);
744                 goto out_cleanup_iod;
745         }
746         __nvme_submit_cmd(nvmeq, &cmnd);
747         nvme_process_cq(nvmeq);
748         spin_unlock_irq(&nvmeq->q_lock);
749         return BLK_STS_OK;
750 out_cleanup_iod:
751         nvme_free_iod(dev, req);
752 out_free_cmd:
753         nvme_cleanup_cmd(req);
754         return ret;
755 }
756
757 static void nvme_pci_complete_rq(struct request *req)
758 {
759         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
760
761         nvme_unmap_data(iod->nvmeq->dev, req);
762         nvme_complete_rq(req);
763 }
764
765 /* We read the CQE phase first to check if the rest of the entry is valid */
766 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
767                 u16 phase)
768 {
769         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
770 }
771
772 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
773 {
774         u16 head, phase;
775
776         head = nvmeq->cq_head;
777         phase = nvmeq->cq_phase;
778
779         while (nvme_cqe_valid(nvmeq, head, phase)) {
780                 struct nvme_completion cqe = nvmeq->cqes[head];
781                 struct request *req;
782
783                 if (++head == nvmeq->q_depth) {
784                         head = 0;
785                         phase = !phase;
786                 }
787
788                 if (tag && *tag == cqe.command_id)
789                         *tag = -1;
790
791                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
792                         dev_warn(nvmeq->dev->ctrl.device,
793                                 "invalid id %d completed on queue %d\n",
794                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
795                         continue;
796                 }
797
798                 /*
799                  * AEN requests are special as they don't time out and can
800                  * survive any kind of queue freeze and often don't respond to
801                  * aborts.  We don't even bother to allocate a struct request
802                  * for them but rather special case them here.
803                  */
804                 if (unlikely(nvmeq->qid == 0 &&
805                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
806                         nvme_complete_async_event(&nvmeq->dev->ctrl,
807                                         cqe.status, &cqe.result);
808                         continue;
809                 }
810
811                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
812                 nvme_end_request(req, cqe.status, cqe.result);
813         }
814
815         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
816                 return;
817
818         if (likely(nvmeq->cq_vector >= 0))
819                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
820                                                       nvmeq->dbbuf_cq_ei))
821                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
822         nvmeq->cq_head = head;
823         nvmeq->cq_phase = phase;
824
825         nvmeq->cqe_seen = 1;
826 }
827
828 static void nvme_process_cq(struct nvme_queue *nvmeq)
829 {
830         __nvme_process_cq(nvmeq, NULL);
831 }
832
833 static irqreturn_t nvme_irq(int irq, void *data)
834 {
835         irqreturn_t result;
836         struct nvme_queue *nvmeq = data;
837         spin_lock(&nvmeq->q_lock);
838         nvme_process_cq(nvmeq);
839         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
840         nvmeq->cqe_seen = 0;
841         spin_unlock(&nvmeq->q_lock);
842         return result;
843 }
844
845 static irqreturn_t nvme_irq_check(int irq, void *data)
846 {
847         struct nvme_queue *nvmeq = data;
848         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
849                 return IRQ_WAKE_THREAD;
850         return IRQ_NONE;
851 }
852
853 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
854 {
855         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
856                 spin_lock_irq(&nvmeq->q_lock);
857                 __nvme_process_cq(nvmeq, &tag);
858                 spin_unlock_irq(&nvmeq->q_lock);
859
860                 if (tag == -1)
861                         return 1;
862         }
863
864         return 0;
865 }
866
867 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
868 {
869         struct nvme_queue *nvmeq = hctx->driver_data;
870
871         return __nvme_poll(nvmeq, tag);
872 }
873
874 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
875 {
876         struct nvme_dev *dev = to_nvme_dev(ctrl);
877         struct nvme_queue *nvmeq = dev->queues[0];
878         struct nvme_command c;
879
880         memset(&c, 0, sizeof(c));
881         c.common.opcode = nvme_admin_async_event;
882         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
883
884         spin_lock_irq(&nvmeq->q_lock);
885         __nvme_submit_cmd(nvmeq, &c);
886         spin_unlock_irq(&nvmeq->q_lock);
887 }
888
889 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
890 {
891         struct nvme_command c;
892
893         memset(&c, 0, sizeof(c));
894         c.delete_queue.opcode = opcode;
895         c.delete_queue.qid = cpu_to_le16(id);
896
897         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
898 }
899
900 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
901                                                 struct nvme_queue *nvmeq)
902 {
903         struct nvme_command c;
904         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
905
906         /*
907          * Note: we (ab)use the fact the the prp fields survive if no data
908          * is attached to the request.
909          */
910         memset(&c, 0, sizeof(c));
911         c.create_cq.opcode = nvme_admin_create_cq;
912         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
913         c.create_cq.cqid = cpu_to_le16(qid);
914         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
915         c.create_cq.cq_flags = cpu_to_le16(flags);
916         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
917
918         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
919 }
920
921 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
922                                                 struct nvme_queue *nvmeq)
923 {
924         struct nvme_command c;
925         int flags = NVME_QUEUE_PHYS_CONTIG;
926
927         /*
928          * Note: we (ab)use the fact the the prp fields survive if no data
929          * is attached to the request.
930          */
931         memset(&c, 0, sizeof(c));
932         c.create_sq.opcode = nvme_admin_create_sq;
933         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
934         c.create_sq.sqid = cpu_to_le16(qid);
935         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
936         c.create_sq.sq_flags = cpu_to_le16(flags);
937         c.create_sq.cqid = cpu_to_le16(qid);
938
939         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
940 }
941
942 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
943 {
944         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
945 }
946
947 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
948 {
949         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
950 }
951
952 static void abort_endio(struct request *req, blk_status_t error)
953 {
954         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
955         struct nvme_queue *nvmeq = iod->nvmeq;
956
957         dev_warn(nvmeq->dev->ctrl.device,
958                  "Abort status: 0x%x", nvme_req(req)->status);
959         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
960         blk_mq_free_request(req);
961 }
962
963 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
964 {
965         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966         struct nvme_queue *nvmeq = iod->nvmeq;
967         struct nvme_dev *dev = nvmeq->dev;
968         struct request *abort_req;
969         struct nvme_command cmd;
970
971         /*
972          * Did we miss an interrupt?
973          */
974         if (__nvme_poll(nvmeq, req->tag)) {
975                 dev_warn(dev->ctrl.device,
976                          "I/O %d QID %d timeout, completion polled\n",
977                          req->tag, nvmeq->qid);
978                 return BLK_EH_HANDLED;
979         }
980
981         /*
982          * Shutdown immediately if controller times out while starting. The
983          * reset work will see the pci device disabled when it gets the forced
984          * cancellation error. All outstanding requests are completed on
985          * shutdown, so we return BLK_EH_HANDLED.
986          */
987         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
988                 dev_warn(dev->ctrl.device,
989                          "I/O %d QID %d timeout, disable controller\n",
990                          req->tag, nvmeq->qid);
991                 nvme_dev_disable(dev, false);
992                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
993                 return BLK_EH_HANDLED;
994         }
995
996         /*
997          * Shutdown the controller immediately and schedule a reset if the
998          * command was already aborted once before and still hasn't been
999          * returned to the driver, or if this is the admin queue.
1000          */
1001         if (!nvmeq->qid || iod->aborted) {
1002                 dev_warn(dev->ctrl.device,
1003                          "I/O %d QID %d timeout, reset controller\n",
1004                          req->tag, nvmeq->qid);
1005                 nvme_dev_disable(dev, false);
1006                 nvme_reset(dev);
1007
1008                 /*
1009                  * Mark the request as handled, since the inline shutdown
1010                  * forces all outstanding requests to complete.
1011                  */
1012                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1013                 return BLK_EH_HANDLED;
1014         }
1015
1016         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1017                 atomic_inc(&dev->ctrl.abort_limit);
1018                 return BLK_EH_RESET_TIMER;
1019         }
1020         iod->aborted = 1;
1021
1022         memset(&cmd, 0, sizeof(cmd));
1023         cmd.abort.opcode = nvme_admin_abort_cmd;
1024         cmd.abort.cid = req->tag;
1025         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1026
1027         dev_warn(nvmeq->dev->ctrl.device,
1028                 "I/O %d QID %d timeout, aborting\n",
1029                  req->tag, nvmeq->qid);
1030
1031         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1032                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1033         if (IS_ERR(abort_req)) {
1034                 atomic_inc(&dev->ctrl.abort_limit);
1035                 return BLK_EH_RESET_TIMER;
1036         }
1037
1038         abort_req->timeout = ADMIN_TIMEOUT;
1039         abort_req->end_io_data = NULL;
1040         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1041
1042         /*
1043          * The aborted req will be completed on receiving the abort req.
1044          * We enable the timer again. If hit twice, it'll cause a device reset,
1045          * as the device then is in a faulty state.
1046          */
1047         return BLK_EH_RESET_TIMER;
1048 }
1049
1050 static void nvme_free_queue(struct nvme_queue *nvmeq)
1051 {
1052         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1053                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1054         if (nvmeq->sq_cmds)
1055                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1056                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1057         kfree(nvmeq);
1058 }
1059
1060 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1061 {
1062         int i;
1063
1064         for (i = dev->queue_count - 1; i >= lowest; i--) {
1065                 struct nvme_queue *nvmeq = dev->queues[i];
1066                 dev->queue_count--;
1067                 dev->queues[i] = NULL;
1068                 nvme_free_queue(nvmeq);
1069         }
1070 }
1071
1072 /**
1073  * nvme_suspend_queue - put queue into suspended state
1074  * @nvmeq - queue to suspend
1075  */
1076 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1077 {
1078         int vector;
1079
1080         spin_lock_irq(&nvmeq->q_lock);
1081         if (nvmeq->cq_vector == -1) {
1082                 spin_unlock_irq(&nvmeq->q_lock);
1083                 return 1;
1084         }
1085         vector = nvmeq->cq_vector;
1086         nvmeq->dev->online_queues--;
1087         nvmeq->cq_vector = -1;
1088         spin_unlock_irq(&nvmeq->q_lock);
1089
1090         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1091                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1092
1093         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1094
1095         return 0;
1096 }
1097
1098 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1099 {
1100         struct nvme_queue *nvmeq = dev->queues[0];
1101
1102         if (!nvmeq)
1103                 return;
1104         if (nvme_suspend_queue(nvmeq))
1105                 return;
1106
1107         if (shutdown)
1108                 nvme_shutdown_ctrl(&dev->ctrl);
1109         else
1110                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1111                                                 dev->bar + NVME_REG_CAP));
1112
1113         spin_lock_irq(&nvmeq->q_lock);
1114         nvme_process_cq(nvmeq);
1115         spin_unlock_irq(&nvmeq->q_lock);
1116 }
1117
1118 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1119                                 int entry_size)
1120 {
1121         int q_depth = dev->q_depth;
1122         unsigned q_size_aligned = roundup(q_depth * entry_size,
1123                                           dev->ctrl.page_size);
1124
1125         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1126                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1127                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1128                 q_depth = div_u64(mem_per_q, entry_size);
1129
1130                 /*
1131                  * Ensure the reduced q_depth is above some threshold where it
1132                  * would be better to map queues in system memory with the
1133                  * original depth
1134                  */
1135                 if (q_depth < 64)
1136                         return -ENOMEM;
1137         }
1138
1139         return q_depth;
1140 }
1141
1142 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1143                                 int qid, int depth)
1144 {
1145         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1146                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1147                                                       dev->ctrl.page_size);
1148                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1149                 nvmeq->sq_cmds_io = dev->cmb + offset;
1150         } else {
1151                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1152                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1153                 if (!nvmeq->sq_cmds)
1154                         return -ENOMEM;
1155         }
1156
1157         return 0;
1158 }
1159
1160 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1161                                                         int depth, int node)
1162 {
1163         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1164                                                         node);
1165         if (!nvmeq)
1166                 return NULL;
1167
1168         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1169                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1170         if (!nvmeq->cqes)
1171                 goto free_nvmeq;
1172
1173         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1174                 goto free_cqdma;
1175
1176         nvmeq->q_dmadev = dev->dev;
1177         nvmeq->dev = dev;
1178         spin_lock_init(&nvmeq->q_lock);
1179         nvmeq->cq_head = 0;
1180         nvmeq->cq_phase = 1;
1181         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1182         nvmeq->q_depth = depth;
1183         nvmeq->qid = qid;
1184         nvmeq->cq_vector = -1;
1185         dev->queues[qid] = nvmeq;
1186         dev->queue_count++;
1187
1188         return nvmeq;
1189
1190  free_cqdma:
1191         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1192                                                         nvmeq->cq_dma_addr);
1193  free_nvmeq:
1194         kfree(nvmeq);
1195         return NULL;
1196 }
1197
1198 static int queue_request_irq(struct nvme_queue *nvmeq)
1199 {
1200         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1201         int nr = nvmeq->dev->ctrl.instance;
1202
1203         if (use_threaded_interrupts) {
1204                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1205                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1206         } else {
1207                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1208                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1209         }
1210 }
1211
1212 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1213 {
1214         struct nvme_dev *dev = nvmeq->dev;
1215
1216         spin_lock_irq(&nvmeq->q_lock);
1217         nvmeq->sq_tail = 0;
1218         nvmeq->cq_head = 0;
1219         nvmeq->cq_phase = 1;
1220         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1221         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1222         nvme_dbbuf_init(dev, nvmeq, qid);
1223         dev->online_queues++;
1224         spin_unlock_irq(&nvmeq->q_lock);
1225 }
1226
1227 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1228 {
1229         struct nvme_dev *dev = nvmeq->dev;
1230         int result;
1231
1232         nvmeq->cq_vector = qid - 1;
1233         result = adapter_alloc_cq(dev, qid, nvmeq);
1234         if (result < 0)
1235                 return result;
1236
1237         result = adapter_alloc_sq(dev, qid, nvmeq);
1238         if (result < 0)
1239                 goto release_cq;
1240
1241         result = queue_request_irq(nvmeq);
1242         if (result < 0)
1243                 goto release_sq;
1244
1245         nvme_init_queue(nvmeq, qid);
1246         return result;
1247
1248  release_sq:
1249         adapter_delete_sq(dev, qid);
1250  release_cq:
1251         adapter_delete_cq(dev, qid);
1252         return result;
1253 }
1254
1255 static const struct blk_mq_ops nvme_mq_admin_ops = {
1256         .queue_rq       = nvme_queue_rq,
1257         .complete       = nvme_pci_complete_rq,
1258         .init_hctx      = nvme_admin_init_hctx,
1259         .exit_hctx      = nvme_admin_exit_hctx,
1260         .init_request   = nvme_admin_init_request,
1261         .timeout        = nvme_timeout,
1262 };
1263
1264 static const struct blk_mq_ops nvme_mq_ops = {
1265         .queue_rq       = nvme_queue_rq,
1266         .complete       = nvme_pci_complete_rq,
1267         .init_hctx      = nvme_init_hctx,
1268         .init_request   = nvme_init_request,
1269         .map_queues     = nvme_pci_map_queues,
1270         .timeout        = nvme_timeout,
1271         .poll           = nvme_poll,
1272 };
1273
1274 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1275 {
1276         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1277                 /*
1278                  * If the controller was reset during removal, it's possible
1279                  * user requests may be waiting on a stopped queue. Start the
1280                  * queue to flush these to completion.
1281                  */
1282                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1283                 blk_cleanup_queue(dev->ctrl.admin_q);
1284                 blk_mq_free_tag_set(&dev->admin_tagset);
1285         }
1286 }
1287
1288 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1289 {
1290         if (!dev->ctrl.admin_q) {
1291                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1292                 dev->admin_tagset.nr_hw_queues = 1;
1293
1294                 /*
1295                  * Subtract one to leave an empty queue entry for 'Full Queue'
1296                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1297                  */
1298                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1299                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1300                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1301                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1302                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1303                 dev->admin_tagset.driver_data = dev;
1304
1305                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1306                         return -ENOMEM;
1307
1308                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1309                 if (IS_ERR(dev->ctrl.admin_q)) {
1310                         blk_mq_free_tag_set(&dev->admin_tagset);
1311                         return -ENOMEM;
1312                 }
1313                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1314                         nvme_dev_remove_admin(dev);
1315                         dev->ctrl.admin_q = NULL;
1316                         return -ENODEV;
1317                 }
1318         } else
1319                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1320
1321         return 0;
1322 }
1323
1324 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1325 {
1326         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1327 }
1328
1329 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1330 {
1331         struct pci_dev *pdev = to_pci_dev(dev->dev);
1332
1333         if (size <= dev->bar_mapped_size)
1334                 return 0;
1335         if (size > pci_resource_len(pdev, 0))
1336                 return -ENOMEM;
1337         if (dev->bar)
1338                 iounmap(dev->bar);
1339         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1340         if (!dev->bar) {
1341                 dev->bar_mapped_size = 0;
1342                 return -ENOMEM;
1343         }
1344         dev->bar_mapped_size = size;
1345         dev->dbs = dev->bar + NVME_REG_DBS;
1346
1347         return 0;
1348 }
1349
1350 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1351 {
1352         int result;
1353         u32 aqa;
1354         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1355         struct nvme_queue *nvmeq;
1356
1357         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1358         if (result < 0)
1359                 return result;
1360
1361         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1362                                                 NVME_CAP_NSSRC(cap) : 0;
1363
1364         if (dev->subsystem &&
1365             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1366                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1367
1368         result = nvme_disable_ctrl(&dev->ctrl, cap);
1369         if (result < 0)
1370                 return result;
1371
1372         nvmeq = dev->queues[0];
1373         if (!nvmeq) {
1374                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1375                                         dev_to_node(dev->dev));
1376                 if (!nvmeq)
1377                         return -ENOMEM;
1378         }
1379
1380         aqa = nvmeq->q_depth - 1;
1381         aqa |= aqa << 16;
1382
1383         writel(aqa, dev->bar + NVME_REG_AQA);
1384         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1385         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1386
1387         result = nvme_enable_ctrl(&dev->ctrl, cap);
1388         if (result)
1389                 return result;
1390
1391         nvmeq->cq_vector = 0;
1392         result = queue_request_irq(nvmeq);
1393         if (result) {
1394                 nvmeq->cq_vector = -1;
1395                 return result;
1396         }
1397
1398         return result;
1399 }
1400
1401 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1402 {
1403
1404         /* If true, indicates loss of adapter communication, possibly by a
1405          * NVMe Subsystem reset.
1406          */
1407         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1408
1409         /* If there is a reset ongoing, we shouldn't reset again. */
1410         if (dev->ctrl.state == NVME_CTRL_RESETTING)
1411                 return false;
1412
1413         /* We shouldn't reset unless the controller is on fatal error state
1414          * _or_ if we lost the communication with it.
1415          */
1416         if (!(csts & NVME_CSTS_CFS) && !nssro)
1417                 return false;
1418
1419         /* If PCI error recovery process is happening, we cannot reset or
1420          * the recovery mechanism will surely fail.
1421          */
1422         if (pci_channel_offline(to_pci_dev(dev->dev)))
1423                 return false;
1424
1425         return true;
1426 }
1427
1428 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1429 {
1430         /* Read a config register to help see what died. */
1431         u16 pci_status;
1432         int result;
1433
1434         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1435                                       &pci_status);
1436         if (result == PCIBIOS_SUCCESSFUL)
1437                 dev_warn(dev->ctrl.device,
1438                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1439                          csts, pci_status);
1440         else
1441                 dev_warn(dev->ctrl.device,
1442                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1443                          csts, result);
1444 }
1445
1446 static void nvme_watchdog_timer(unsigned long data)
1447 {
1448         struct nvme_dev *dev = (struct nvme_dev *)data;
1449         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1450
1451         /* Skip controllers under certain specific conditions. */
1452         if (nvme_should_reset(dev, csts)) {
1453                 if (!nvme_reset(dev))
1454                         nvme_warn_reset(dev, csts);
1455                 return;
1456         }
1457
1458         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1459 }
1460
1461 static int nvme_create_io_queues(struct nvme_dev *dev)
1462 {
1463         unsigned i, max;
1464         int ret = 0;
1465
1466         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1467                 /* vector == qid - 1, match nvme_create_queue */
1468                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1469                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1470                         ret = -ENOMEM;
1471                         break;
1472                 }
1473         }
1474
1475         max = min(dev->max_qid, dev->queue_count - 1);
1476         for (i = dev->online_queues; i <= max; i++) {
1477                 ret = nvme_create_queue(dev->queues[i], i);
1478                 if (ret)
1479                         break;
1480         }
1481
1482         /*
1483          * Ignore failing Create SQ/CQ commands, we can continue with less
1484          * than the desired aount of queues, and even a controller without
1485          * I/O queues an still be used to issue admin commands.  This might
1486          * be useful to upgrade a buggy firmware for example.
1487          */
1488         return ret >= 0 ? 0 : ret;
1489 }
1490
1491 static ssize_t nvme_cmb_show(struct device *dev,
1492                              struct device_attribute *attr,
1493                              char *buf)
1494 {
1495         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1496
1497         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1498                        ndev->cmbloc, ndev->cmbsz);
1499 }
1500 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1501
1502 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1503 {
1504         u64 szu, size, offset;
1505         resource_size_t bar_size;
1506         struct pci_dev *pdev = to_pci_dev(dev->dev);
1507         void __iomem *cmb;
1508         dma_addr_t dma_addr;
1509
1510         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1511         if (!(NVME_CMB_SZ(dev->cmbsz)))
1512                 return NULL;
1513         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1514
1515         if (!use_cmb_sqes)
1516                 return NULL;
1517
1518         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1519         size = szu * NVME_CMB_SZ(dev->cmbsz);
1520         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1521         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1522
1523         if (offset > bar_size)
1524                 return NULL;
1525
1526         /*
1527          * Controllers may support a CMB size larger than their BAR,
1528          * for example, due to being behind a bridge. Reduce the CMB to
1529          * the reported size of the BAR
1530          */
1531         if (size > bar_size - offset)
1532                 size = bar_size - offset;
1533
1534         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1535         cmb = ioremap_wc(dma_addr, size);
1536         if (!cmb)
1537                 return NULL;
1538
1539         dev->cmb_dma_addr = dma_addr;
1540         dev->cmb_size = size;
1541         return cmb;
1542 }
1543
1544 static inline void nvme_release_cmb(struct nvme_dev *dev)
1545 {
1546         if (dev->cmb) {
1547                 iounmap(dev->cmb);
1548                 dev->cmb = NULL;
1549                 if (dev->cmbsz) {
1550                         sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1551                                                      &dev_attr_cmb.attr, NULL);
1552                         dev->cmbsz = 0;
1553                 }
1554         }
1555 }
1556
1557 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1558 {
1559         size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1560         struct nvme_command c;
1561         u64 dma_addr;
1562         int ret;
1563
1564         dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1565                         DMA_TO_DEVICE);
1566         if (dma_mapping_error(dev->dev, dma_addr))
1567                 return -ENOMEM;
1568
1569         memset(&c, 0, sizeof(c));
1570         c.features.opcode       = nvme_admin_set_features;
1571         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1572         c.features.dword11      = cpu_to_le32(bits);
1573         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1574                                               ilog2(dev->ctrl.page_size));
1575         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1576         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1577         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1578
1579         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1580         if (ret) {
1581                 dev_warn(dev->ctrl.device,
1582                          "failed to set host mem (err %d, flags %#x).\n",
1583                          ret, bits);
1584         }
1585         dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1586         return ret;
1587 }
1588
1589 static void nvme_free_host_mem(struct nvme_dev *dev)
1590 {
1591         int i;
1592
1593         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1594                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1595                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1596
1597                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1598                                 le64_to_cpu(desc->addr));
1599         }
1600
1601         kfree(dev->host_mem_desc_bufs);
1602         dev->host_mem_desc_bufs = NULL;
1603         kfree(dev->host_mem_descs);
1604         dev->host_mem_descs = NULL;
1605 }
1606
1607 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1608 {
1609         struct nvme_host_mem_buf_desc *descs;
1610         u32 chunk_size, max_entries, i = 0;
1611         void **bufs;
1612         u64 size, tmp;
1613
1614         /* start big and work our way down */
1615         chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1616 retry:
1617         tmp = (preferred + chunk_size - 1);
1618         do_div(tmp, chunk_size);
1619         max_entries = tmp;
1620         descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1621         if (!descs)
1622                 goto out;
1623
1624         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1625         if (!bufs)
1626                 goto out_free_descs;
1627
1628         for (size = 0; size < preferred; size += chunk_size) {
1629                 u32 len = min_t(u64, chunk_size, preferred - size);
1630                 dma_addr_t dma_addr;
1631
1632                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1633                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1634                 if (!bufs[i])
1635                         break;
1636
1637                 descs[i].addr = cpu_to_le64(dma_addr);
1638                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1639                 i++;
1640         }
1641
1642         if (!size || (min && size < min)) {
1643                 dev_warn(dev->ctrl.device,
1644                         "failed to allocate host memory buffer.\n");
1645                 goto out_free_bufs;
1646         }
1647
1648         dev_info(dev->ctrl.device,
1649                 "allocated %lld MiB host memory buffer.\n",
1650                 size >> ilog2(SZ_1M));
1651         dev->nr_host_mem_descs = i;
1652         dev->host_mem_size = size;
1653         dev->host_mem_descs = descs;
1654         dev->host_mem_desc_bufs = bufs;
1655         return 0;
1656
1657 out_free_bufs:
1658         while (--i >= 0) {
1659                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1660
1661                 dma_free_coherent(dev->dev, size, bufs[i],
1662                                 le64_to_cpu(descs[i].addr));
1663         }
1664
1665         kfree(bufs);
1666 out_free_descs:
1667         kfree(descs);
1668 out:
1669         /* try a smaller chunk size if we failed early */
1670         if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1671                 chunk_size /= 2;
1672                 goto retry;
1673         }
1674         dev->host_mem_descs = NULL;
1675         return -ENOMEM;
1676 }
1677
1678 static void nvme_setup_host_mem(struct nvme_dev *dev)
1679 {
1680         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1681         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1682         u64 min = (u64)dev->ctrl.hmmin * 4096;
1683         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1684
1685         preferred = min(preferred, max);
1686         if (min > max) {
1687                 dev_warn(dev->ctrl.device,
1688                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1689                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1690                 nvme_free_host_mem(dev);
1691                 return;
1692         }
1693
1694         /*
1695          * If we already have a buffer allocated check if we can reuse it.
1696          */
1697         if (dev->host_mem_descs) {
1698                 if (dev->host_mem_size >= min)
1699                         enable_bits |= NVME_HOST_MEM_RETURN;
1700                 else
1701                         nvme_free_host_mem(dev);
1702         }
1703
1704         if (!dev->host_mem_descs) {
1705                 if (nvme_alloc_host_mem(dev, min, preferred))
1706                         return;
1707         }
1708
1709         if (nvme_set_host_mem(dev, enable_bits))
1710                 nvme_free_host_mem(dev);
1711 }
1712
1713 static int nvme_setup_io_queues(struct nvme_dev *dev)
1714 {
1715         struct nvme_queue *adminq = dev->queues[0];
1716         struct pci_dev *pdev = to_pci_dev(dev->dev);
1717         int result, nr_io_queues;
1718         unsigned long size;
1719
1720         nr_io_queues = num_online_cpus();
1721         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1722         if (result < 0)
1723                 return result;
1724
1725         if (nr_io_queues == 0)
1726                 return 0;
1727
1728         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1729                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1730                                 sizeof(struct nvme_command));
1731                 if (result > 0)
1732                         dev->q_depth = result;
1733                 else
1734                         nvme_release_cmb(dev);
1735         }
1736
1737         do {
1738                 size = db_bar_size(dev, nr_io_queues);
1739                 result = nvme_remap_bar(dev, size);
1740                 if (!result)
1741                         break;
1742                 if (!--nr_io_queues)
1743                         return -ENOMEM;
1744         } while (1);
1745         adminq->q_db = dev->dbs;
1746
1747         /* Deregister the admin queue's interrupt */
1748         pci_free_irq(pdev, 0, adminq);
1749
1750         /*
1751          * If we enable msix early due to not intx, disable it again before
1752          * setting up the full range we need.
1753          */
1754         pci_free_irq_vectors(pdev);
1755         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1756                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1757         if (nr_io_queues <= 0)
1758                 return -EIO;
1759         dev->max_qid = nr_io_queues;
1760
1761         /*
1762          * Should investigate if there's a performance win from allocating
1763          * more queues than interrupt vectors; it might allow the submission
1764          * path to scale better, even if the receive path is limited by the
1765          * number of interrupts.
1766          */
1767
1768         result = queue_request_irq(adminq);
1769         if (result) {
1770                 adminq->cq_vector = -1;
1771                 return result;
1772         }
1773         return nvme_create_io_queues(dev);
1774 }
1775
1776 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1777 {
1778         struct nvme_queue *nvmeq = req->end_io_data;
1779
1780         blk_mq_free_request(req);
1781         complete(&nvmeq->dev->ioq_wait);
1782 }
1783
1784 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1785 {
1786         struct nvme_queue *nvmeq = req->end_io_data;
1787
1788         if (!error) {
1789                 unsigned long flags;
1790
1791                 /*
1792                  * We might be called with the AQ q_lock held
1793                  * and the I/O queue q_lock should always
1794                  * nest inside the AQ one.
1795                  */
1796                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1797                                         SINGLE_DEPTH_NESTING);
1798                 nvme_process_cq(nvmeq);
1799                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1800         }
1801
1802         nvme_del_queue_end(req, error);
1803 }
1804
1805 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1806 {
1807         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1808         struct request *req;
1809         struct nvme_command cmd;
1810
1811         memset(&cmd, 0, sizeof(cmd));
1812         cmd.delete_queue.opcode = opcode;
1813         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1814
1815         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1816         if (IS_ERR(req))
1817                 return PTR_ERR(req);
1818
1819         req->timeout = ADMIN_TIMEOUT;
1820         req->end_io_data = nvmeq;
1821
1822         blk_execute_rq_nowait(q, NULL, req, false,
1823                         opcode == nvme_admin_delete_cq ?
1824                                 nvme_del_cq_end : nvme_del_queue_end);
1825         return 0;
1826 }
1827
1828 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1829 {
1830         int pass;
1831         unsigned long timeout;
1832         u8 opcode = nvme_admin_delete_sq;
1833
1834         for (pass = 0; pass < 2; pass++) {
1835                 int sent = 0, i = queues;
1836
1837                 reinit_completion(&dev->ioq_wait);
1838  retry:
1839                 timeout = ADMIN_TIMEOUT;
1840                 for (; i > 0; i--, sent++)
1841                         if (nvme_delete_queue(dev->queues[i], opcode))
1842                                 break;
1843
1844                 while (sent--) {
1845                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1846                         if (timeout == 0)
1847                                 return;
1848                         if (i)
1849                                 goto retry;
1850                 }
1851                 opcode = nvme_admin_delete_cq;
1852         }
1853 }
1854
1855 /*
1856  * Return: error value if an error occurred setting up the queues or calling
1857  * Identify Device.  0 if these succeeded, even if adding some of the
1858  * namespaces failed.  At the moment, these failures are silent.  TBD which
1859  * failures should be reported.
1860  */
1861 static int nvme_dev_add(struct nvme_dev *dev)
1862 {
1863         if (!dev->ctrl.tagset) {
1864                 dev->tagset.ops = &nvme_mq_ops;
1865                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1866                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1867                 dev->tagset.numa_node = dev_to_node(dev->dev);
1868                 dev->tagset.queue_depth =
1869                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1870                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1871                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1872                 dev->tagset.driver_data = dev;
1873
1874                 if (blk_mq_alloc_tag_set(&dev->tagset))
1875                         return 0;
1876                 dev->ctrl.tagset = &dev->tagset;
1877
1878                 nvme_dbbuf_set(dev);
1879         } else {
1880                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1881
1882                 /* Free previously allocated queues that are no longer usable */
1883                 nvme_free_queues(dev, dev->online_queues);
1884         }
1885
1886         return 0;
1887 }
1888
1889 static int nvme_pci_enable(struct nvme_dev *dev)
1890 {
1891         u64 cap;
1892         int result = -ENOMEM;
1893         struct pci_dev *pdev = to_pci_dev(dev->dev);
1894
1895         if (pci_enable_device_mem(pdev))
1896                 return result;
1897
1898         pci_set_master(pdev);
1899
1900         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1901             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1902                 goto disable;
1903
1904         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1905                 result = -ENODEV;
1906                 goto disable;
1907         }
1908
1909         /*
1910          * Some devices and/or platforms don't advertise or work with INTx
1911          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1912          * adjust this later.
1913          */
1914         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1915         if (result < 0)
1916                 return result;
1917
1918         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1919
1920         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1921         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1922         dev->dbs = dev->bar + 4096;
1923
1924         /*
1925          * Temporary fix for the Apple controller found in the MacBook8,1 and
1926          * some MacBook7,1 to avoid controller resets and data loss.
1927          */
1928         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1929                 dev->q_depth = 2;
1930                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1931                         "set queue depth=%u to work around controller resets\n",
1932                         dev->q_depth);
1933         }
1934
1935         /*
1936          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1937          * populate sysfs if a CMB is implemented. Note that we add the
1938          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1939          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1940          * NULL as final argument to sysfs_add_file_to_group.
1941          */
1942
1943         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1944                 dev->cmb = nvme_map_cmb(dev);
1945
1946                 if (dev->cmbsz) {
1947                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1948                                                     &dev_attr_cmb.attr, NULL))
1949                                 dev_warn(dev->ctrl.device,
1950                                          "failed to add sysfs attribute for CMB\n");
1951                 }
1952         }
1953
1954         pci_enable_pcie_error_reporting(pdev);
1955         pci_save_state(pdev);
1956         return 0;
1957
1958  disable:
1959         pci_disable_device(pdev);
1960         return result;
1961 }
1962
1963 static void nvme_dev_unmap(struct nvme_dev *dev)
1964 {
1965         if (dev->bar)
1966                 iounmap(dev->bar);
1967         pci_release_mem_regions(to_pci_dev(dev->dev));
1968 }
1969
1970 static void nvme_pci_disable(struct nvme_dev *dev)
1971 {
1972         struct pci_dev *pdev = to_pci_dev(dev->dev);
1973
1974         nvme_release_cmb(dev);
1975         pci_free_irq_vectors(pdev);
1976
1977         if (pci_is_enabled(pdev)) {
1978                 pci_disable_pcie_error_reporting(pdev);
1979                 pci_disable_device(pdev);
1980         }
1981 }
1982
1983 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1984 {
1985         int i, queues;
1986         bool dead = true;
1987         struct pci_dev *pdev = to_pci_dev(dev->dev);
1988
1989         del_timer_sync(&dev->watchdog_timer);
1990
1991         mutex_lock(&dev->shutdown_lock);
1992         if (pci_is_enabled(pdev)) {
1993                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1994
1995                 if (dev->ctrl.state == NVME_CTRL_LIVE)
1996                         nvme_start_freeze(&dev->ctrl);
1997                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1998                         pdev->error_state  != pci_channel_io_normal);
1999         }
2000
2001         /*
2002          * Give the controller a chance to complete all entered requests if
2003          * doing a safe shutdown.
2004          */
2005         if (!dead) {
2006                 if (shutdown)
2007                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2008
2009                 /*
2010                  * If the controller is still alive tell it to stop using the
2011                  * host memory buffer.  In theory the shutdown / reset should
2012                  * make sure that it doesn't access the host memoery anymore,
2013                  * but I'd rather be safe than sorry..
2014                  */
2015                 if (dev->host_mem_descs)
2016                         nvme_set_host_mem(dev, 0);
2017
2018         }
2019         nvme_stop_queues(&dev->ctrl);
2020
2021         queues = dev->online_queues - 1;
2022         for (i = dev->queue_count - 1; i > 0; i--)
2023                 nvme_suspend_queue(dev->queues[i]);
2024
2025         if (dead) {
2026                 /* A device might become IO incapable very soon during
2027                  * probe, before the admin queue is configured. Thus,
2028                  * queue_count can be 0 here.
2029                  */
2030                 if (dev->queue_count)
2031                         nvme_suspend_queue(dev->queues[0]);
2032         } else {
2033                 nvme_disable_io_queues(dev, queues);
2034                 nvme_disable_admin_queue(dev, shutdown);
2035         }
2036         nvme_pci_disable(dev);
2037
2038         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2039         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2040
2041         /*
2042          * The driver will not be starting up queues again if shutting down so
2043          * must flush all entered requests to their failed completion to avoid
2044          * deadlocking blk-mq hot-cpu notifier.
2045          */
2046         if (shutdown)
2047                 nvme_start_queues(&dev->ctrl);
2048         mutex_unlock(&dev->shutdown_lock);
2049 }
2050
2051 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2052 {
2053         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2054                                                 PAGE_SIZE, PAGE_SIZE, 0);
2055         if (!dev->prp_page_pool)
2056                 return -ENOMEM;
2057
2058         /* Optimisation for I/Os between 4k and 128k */
2059         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2060                                                 256, 256, 0);
2061         if (!dev->prp_small_pool) {
2062                 dma_pool_destroy(dev->prp_page_pool);
2063                 return -ENOMEM;
2064         }
2065         return 0;
2066 }
2067
2068 static void nvme_release_prp_pools(struct nvme_dev *dev)
2069 {
2070         dma_pool_destroy(dev->prp_page_pool);
2071         dma_pool_destroy(dev->prp_small_pool);
2072 }
2073
2074 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2075 {
2076         struct nvme_dev *dev = to_nvme_dev(ctrl);
2077
2078         nvme_dbbuf_dma_free(dev);
2079         put_device(dev->dev);
2080         if (dev->tagset.tags)
2081                 blk_mq_free_tag_set(&dev->tagset);
2082         if (dev->ctrl.admin_q)
2083                 blk_put_queue(dev->ctrl.admin_q);
2084         kfree(dev->queues);
2085         free_opal_dev(dev->ctrl.opal_dev);
2086         kfree(dev);
2087 }
2088
2089 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2090 {
2091         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2092
2093         kref_get(&dev->ctrl.kref);
2094         nvme_dev_disable(dev, false);
2095         if (!schedule_work(&dev->remove_work))
2096                 nvme_put_ctrl(&dev->ctrl);
2097 }
2098
2099 static void nvme_reset_work(struct work_struct *work)
2100 {
2101         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2102         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2103         int result = -ENODEV;
2104
2105         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2106                 goto out;
2107
2108         /*
2109          * If we're called to reset a live controller first shut it down before
2110          * moving on.
2111          */
2112         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2113                 nvme_dev_disable(dev, false);
2114
2115         result = nvme_pci_enable(dev);
2116         if (result)
2117                 goto out;
2118
2119         result = nvme_configure_admin_queue(dev);
2120         if (result)
2121                 goto out;
2122
2123         nvme_init_queue(dev->queues[0], 0);
2124         result = nvme_alloc_admin_tags(dev);
2125         if (result)
2126                 goto out;
2127
2128         result = nvme_init_identify(&dev->ctrl);
2129         if (result)
2130                 goto out;
2131
2132         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2133                 if (!dev->ctrl.opal_dev)
2134                         dev->ctrl.opal_dev =
2135                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2136                 else if (was_suspend)
2137                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2138         } else {
2139                 free_opal_dev(dev->ctrl.opal_dev);
2140                 dev->ctrl.opal_dev = NULL;
2141         }
2142
2143         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2144                 result = nvme_dbbuf_dma_alloc(dev);
2145                 if (result)
2146                         dev_warn(dev->dev,
2147                                  "unable to allocate dma for dbbuf\n");
2148         }
2149
2150         if (dev->ctrl.hmpre)
2151                 nvme_setup_host_mem(dev);
2152
2153         result = nvme_setup_io_queues(dev);
2154         if (result)
2155                 goto out;
2156
2157         /*
2158          * A controller that can not execute IO typically requires user
2159          * intervention to correct. For such degraded controllers, the driver
2160          * should not submit commands the user did not request, so skip
2161          * registering for asynchronous event notification on this condition.
2162          */
2163         if (dev->online_queues > 1)
2164                 nvme_queue_async_events(&dev->ctrl);
2165
2166         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
2167
2168         /*
2169          * Keep the controller around but remove all namespaces if we don't have
2170          * any working I/O queue.
2171          */
2172         if (dev->online_queues < 2) {
2173                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2174                 nvme_kill_queues(&dev->ctrl);
2175                 nvme_remove_namespaces(&dev->ctrl);
2176         } else {
2177                 nvme_start_queues(&dev->ctrl);
2178                 nvme_wait_freeze(&dev->ctrl);
2179                 nvme_dev_add(dev);
2180                 nvme_unfreeze(&dev->ctrl);
2181         }
2182
2183         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2184                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2185                 goto out;
2186         }
2187
2188         if (dev->online_queues > 1)
2189                 nvme_queue_scan(&dev->ctrl);
2190         return;
2191
2192  out:
2193         nvme_remove_dead_ctrl(dev, result);
2194 }
2195
2196 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2197 {
2198         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2199         struct pci_dev *pdev = to_pci_dev(dev->dev);
2200
2201         nvme_kill_queues(&dev->ctrl);
2202         if (pci_get_drvdata(pdev))
2203                 device_release_driver(&pdev->dev);
2204         nvme_put_ctrl(&dev->ctrl);
2205 }
2206
2207 static int nvme_reset(struct nvme_dev *dev)
2208 {
2209         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2210                 return -ENODEV;
2211         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
2212                 return -EBUSY;
2213         if (!queue_work(nvme_wq, &dev->reset_work))
2214                 return -EBUSY;
2215         return 0;
2216 }
2217
2218 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2219 {
2220         *val = readl(to_nvme_dev(ctrl)->bar + off);
2221         return 0;
2222 }
2223
2224 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2225 {
2226         writel(val, to_nvme_dev(ctrl)->bar + off);
2227         return 0;
2228 }
2229
2230 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2231 {
2232         *val = readq(to_nvme_dev(ctrl)->bar + off);
2233         return 0;
2234 }
2235
2236 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2237 {
2238         struct nvme_dev *dev = to_nvme_dev(ctrl);
2239         int ret = nvme_reset(dev);
2240
2241         if (!ret)
2242                 flush_work(&dev->reset_work);
2243         return ret;
2244 }
2245
2246 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2247         .name                   = "pcie",
2248         .module                 = THIS_MODULE,
2249         .flags                  = NVME_F_METADATA_SUPPORTED,
2250         .reg_read32             = nvme_pci_reg_read32,
2251         .reg_write32            = nvme_pci_reg_write32,
2252         .reg_read64             = nvme_pci_reg_read64,
2253         .reset_ctrl             = nvme_pci_reset_ctrl,
2254         .free_ctrl              = nvme_pci_free_ctrl,
2255         .submit_async_event     = nvme_pci_submit_async_event,
2256 };
2257
2258 static int nvme_dev_map(struct nvme_dev *dev)
2259 {
2260         struct pci_dev *pdev = to_pci_dev(dev->dev);
2261
2262         if (pci_request_mem_regions(pdev, "nvme"))
2263                 return -ENODEV;
2264
2265         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2266                 goto release;
2267
2268         return 0;
2269   release:
2270         pci_release_mem_regions(pdev);
2271         return -ENODEV;
2272 }
2273
2274 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2275 {
2276         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2277                 /*
2278                  * Several Samsung devices seem to drop off the PCIe bus
2279                  * randomly when APST is on and uses the deepest sleep state.
2280                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2281                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2282                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2283                  * laptops.
2284                  */
2285                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2286                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2287                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2288                         return NVME_QUIRK_NO_DEEPEST_PS;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2295 {
2296         int node, result = -ENOMEM;
2297         struct nvme_dev *dev;
2298         unsigned long quirks = id->driver_data;
2299
2300         node = dev_to_node(&pdev->dev);
2301         if (node == NUMA_NO_NODE)
2302                 set_dev_node(&pdev->dev, first_memory_node);
2303
2304         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2305         if (!dev)
2306                 return -ENOMEM;
2307         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2308                                                         GFP_KERNEL, node);
2309         if (!dev->queues)
2310                 goto free;
2311
2312         dev->dev = get_device(&pdev->dev);
2313         pci_set_drvdata(pdev, dev);
2314
2315         result = nvme_dev_map(dev);
2316         if (result)
2317                 goto free;
2318
2319         INIT_WORK(&dev->reset_work, nvme_reset_work);
2320         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2321         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2322                 (unsigned long)dev);
2323         mutex_init(&dev->shutdown_lock);
2324         init_completion(&dev->ioq_wait);
2325
2326         result = nvme_setup_prp_pools(dev);
2327         if (result)
2328                 goto put_pci;
2329
2330         quirks |= check_dell_samsung_bug(pdev);
2331
2332         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2333                         quirks);
2334         if (result)
2335                 goto release_pools;
2336
2337         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2338         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2339
2340         queue_work(nvme_wq, &dev->reset_work);
2341         return 0;
2342
2343  release_pools:
2344         nvme_release_prp_pools(dev);
2345  put_pci:
2346         put_device(dev->dev);
2347         nvme_dev_unmap(dev);
2348  free:
2349         kfree(dev->queues);
2350         kfree(dev);
2351         return result;
2352 }
2353
2354 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2355 {
2356         struct nvme_dev *dev = pci_get_drvdata(pdev);
2357
2358         if (prepare)
2359                 nvme_dev_disable(dev, false);
2360         else
2361                 nvme_reset(dev);
2362 }
2363
2364 static void nvme_shutdown(struct pci_dev *pdev)
2365 {
2366         struct nvme_dev *dev = pci_get_drvdata(pdev);
2367         nvme_dev_disable(dev, true);
2368 }
2369
2370 /*
2371  * The driver's remove may be called on a device in a partially initialized
2372  * state. This function must not have any dependencies on the device state in
2373  * order to proceed.
2374  */
2375 static void nvme_remove(struct pci_dev *pdev)
2376 {
2377         struct nvme_dev *dev = pci_get_drvdata(pdev);
2378
2379         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2380
2381         cancel_work_sync(&dev->reset_work);
2382         pci_set_drvdata(pdev, NULL);
2383
2384         if (!pci_device_is_present(pdev)) {
2385                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2386                 nvme_dev_disable(dev, false);
2387         }
2388
2389         flush_work(&dev->reset_work);
2390         nvme_uninit_ctrl(&dev->ctrl);
2391         nvme_dev_disable(dev, true);
2392         nvme_free_host_mem(dev);
2393         nvme_dev_remove_admin(dev);
2394         nvme_free_queues(dev, 0);
2395         nvme_release_prp_pools(dev);
2396         nvme_dev_unmap(dev);
2397         nvme_put_ctrl(&dev->ctrl);
2398 }
2399
2400 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2401 {
2402         int ret = 0;
2403
2404         if (numvfs == 0) {
2405                 if (pci_vfs_assigned(pdev)) {
2406                         dev_warn(&pdev->dev,
2407                                 "Cannot disable SR-IOV VFs while assigned\n");
2408                         return -EPERM;
2409                 }
2410                 pci_disable_sriov(pdev);
2411                 return 0;
2412         }
2413
2414         ret = pci_enable_sriov(pdev, numvfs);
2415         return ret ? ret : numvfs;
2416 }
2417
2418 #ifdef CONFIG_PM_SLEEP
2419 static int nvme_suspend(struct device *dev)
2420 {
2421         struct pci_dev *pdev = to_pci_dev(dev);
2422         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2423
2424         nvme_dev_disable(ndev, true);
2425         return 0;
2426 }
2427
2428 static int nvme_resume(struct device *dev)
2429 {
2430         struct pci_dev *pdev = to_pci_dev(dev);
2431         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2432
2433         nvme_reset(ndev);
2434         return 0;
2435 }
2436 #endif
2437
2438 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2439
2440 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2441                                                 pci_channel_state_t state)
2442 {
2443         struct nvme_dev *dev = pci_get_drvdata(pdev);
2444
2445         /*
2446          * A frozen channel requires a reset. When detected, this method will
2447          * shutdown the controller to quiesce. The controller will be restarted
2448          * after the slot reset through driver's slot_reset callback.
2449          */
2450         switch (state) {
2451         case pci_channel_io_normal:
2452                 return PCI_ERS_RESULT_CAN_RECOVER;
2453         case pci_channel_io_frozen:
2454                 dev_warn(dev->ctrl.device,
2455                         "frozen state error detected, reset controller\n");
2456                 nvme_dev_disable(dev, false);
2457                 return PCI_ERS_RESULT_NEED_RESET;
2458         case pci_channel_io_perm_failure:
2459                 dev_warn(dev->ctrl.device,
2460                         "failure state error detected, request disconnect\n");
2461                 return PCI_ERS_RESULT_DISCONNECT;
2462         }
2463         return PCI_ERS_RESULT_NEED_RESET;
2464 }
2465
2466 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2467 {
2468         struct nvme_dev *dev = pci_get_drvdata(pdev);
2469
2470         dev_info(dev->ctrl.device, "restart after slot reset\n");
2471         pci_restore_state(pdev);
2472         nvme_reset(dev);
2473         return PCI_ERS_RESULT_RECOVERED;
2474 }
2475
2476 static void nvme_error_resume(struct pci_dev *pdev)
2477 {
2478         pci_cleanup_aer_uncorrect_error_status(pdev);
2479 }
2480
2481 static const struct pci_error_handlers nvme_err_handler = {
2482         .error_detected = nvme_error_detected,
2483         .slot_reset     = nvme_slot_reset,
2484         .resume         = nvme_error_resume,
2485         .reset_notify   = nvme_reset_notify,
2486 };
2487
2488 static const struct pci_device_id nvme_id_table[] = {
2489         { PCI_VDEVICE(INTEL, 0x0953),
2490                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2491                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2492         { PCI_VDEVICE(INTEL, 0x0a53),
2493                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2494                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2495         { PCI_VDEVICE(INTEL, 0x0a54),
2496                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2497                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2498         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2499                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2500         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2501                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2502         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2503                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2504         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2505                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2506         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2507         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2508         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2509         { 0, }
2510 };
2511 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2512
2513 static struct pci_driver nvme_driver = {
2514         .name           = "nvme",
2515         .id_table       = nvme_id_table,
2516         .probe          = nvme_probe,
2517         .remove         = nvme_remove,
2518         .shutdown       = nvme_shutdown,
2519         .driver         = {
2520                 .pm     = &nvme_dev_pm_ops,
2521         },
2522         .sriov_configure = nvme_pci_sriov_configure,
2523         .err_handler    = &nvme_err_handler,
2524 };
2525
2526 static int __init nvme_init(void)
2527 {
2528         return pci_register_driver(&nvme_driver);
2529 }
2530
2531 static void __exit nvme_exit(void)
2532 {
2533         pci_unregister_driver(&nvme_driver);
2534         _nvme_check_size();
2535 }
2536
2537 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2538 MODULE_LICENSE("GPL");
2539 MODULE_VERSION("1.0");
2540 module_init(nvme_init);
2541 module_exit(nvme_exit);