]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/rdma.c
c4fd9d50b27b8d6ed57708bb1b2a85d6e2579039
[karo-tx-linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
38
39 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51         (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52
53 struct nvme_rdma_device {
54         struct ib_device       *dev;
55         struct ib_pd           *pd;
56         struct kref             ref;
57         struct list_head        entry;
58 };
59
60 struct nvme_rdma_qe {
61         struct ib_cqe           cqe;
62         void                    *data;
63         u64                     dma;
64 };
65
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68         struct nvme_request     req;
69         struct ib_mr            *mr;
70         struct nvme_rdma_qe     sqe;
71         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72         u32                     num_sge;
73         int                     nents;
74         bool                    inline_data;
75         struct ib_reg_wr        reg_wr;
76         struct ib_cqe           reg_cqe;
77         struct nvme_rdma_queue  *queue;
78         struct sg_table         sg_table;
79         struct scatterlist      first_sgl[];
80 };
81
82 enum nvme_rdma_queue_flags {
83         NVME_RDMA_Q_CONNECTED           = 0,
84         NVME_RDMA_IB_QUEUE_ALLOCATED    = 1,
85         NVME_RDMA_Q_DELETING            = 2,
86         NVME_RDMA_Q_LIVE                = 3,
87 };
88
89 struct nvme_rdma_queue {
90         struct nvme_rdma_qe     *rsp_ring;
91         u8                      sig_count;
92         int                     queue_size;
93         size_t                  cmnd_capsule_len;
94         struct nvme_rdma_ctrl   *ctrl;
95         struct nvme_rdma_device *device;
96         struct ib_cq            *ib_cq;
97         struct ib_qp            *qp;
98
99         unsigned long           flags;
100         struct rdma_cm_id       *cm_id;
101         int                     cm_error;
102         struct completion       cm_done;
103 };
104
105 struct nvme_rdma_ctrl {
106         /* read only in the hot path */
107         struct nvme_rdma_queue  *queues;
108         u32                     queue_count;
109
110         /* other member variables */
111         struct blk_mq_tag_set   tag_set;
112         struct work_struct      delete_work;
113         struct work_struct      reset_work;
114         struct work_struct      err_work;
115
116         struct nvme_rdma_qe     async_event_sqe;
117
118         struct delayed_work     reconnect_work;
119
120         struct list_head        list;
121
122         struct blk_mq_tag_set   admin_tag_set;
123         struct nvme_rdma_device *device;
124
125         u64                     cap;
126         u32                     max_fr_pages;
127
128         struct sockaddr_storage addr;
129         struct sockaddr_storage src_addr;
130
131         struct nvme_ctrl        ctrl;
132 };
133
134 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
135 {
136         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
137 }
138
139 static LIST_HEAD(device_list);
140 static DEFINE_MUTEX(device_list_mutex);
141
142 static LIST_HEAD(nvme_rdma_ctrl_list);
143 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
144
145 static struct workqueue_struct *nvme_rdma_wq;
146
147 /*
148  * Disabling this option makes small I/O goes faster, but is fundamentally
149  * unsafe.  With it turned off we will have to register a global rkey that
150  * allows read and write access to all physical memory.
151  */
152 static bool register_always = true;
153 module_param(register_always, bool, 0444);
154 MODULE_PARM_DESC(register_always,
155          "Use memory registration even for contiguous memory regions");
156
157 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
158                 struct rdma_cm_event *event);
159 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
160
161 /* XXX: really should move to a generic header sooner or later.. */
162 static inline void put_unaligned_le24(u32 val, u8 *p)
163 {
164         *p++ = val;
165         *p++ = val >> 8;
166         *p++ = val >> 16;
167 }
168
169 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
170 {
171         return queue - queue->ctrl->queues;
172 }
173
174 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
175 {
176         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
177 }
178
179 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
180                 size_t capsule_size, enum dma_data_direction dir)
181 {
182         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
183         kfree(qe->data);
184 }
185
186 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
187                 size_t capsule_size, enum dma_data_direction dir)
188 {
189         qe->data = kzalloc(capsule_size, GFP_KERNEL);
190         if (!qe->data)
191                 return -ENOMEM;
192
193         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
194         if (ib_dma_mapping_error(ibdev, qe->dma)) {
195                 kfree(qe->data);
196                 return -ENOMEM;
197         }
198
199         return 0;
200 }
201
202 static void nvme_rdma_free_ring(struct ib_device *ibdev,
203                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
204                 size_t capsule_size, enum dma_data_direction dir)
205 {
206         int i;
207
208         for (i = 0; i < ib_queue_size; i++)
209                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
210         kfree(ring);
211 }
212
213 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
214                 size_t ib_queue_size, size_t capsule_size,
215                 enum dma_data_direction dir)
216 {
217         struct nvme_rdma_qe *ring;
218         int i;
219
220         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
221         if (!ring)
222                 return NULL;
223
224         for (i = 0; i < ib_queue_size; i++) {
225                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
226                         goto out_free_ring;
227         }
228
229         return ring;
230
231 out_free_ring:
232         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
233         return NULL;
234 }
235
236 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
237 {
238         pr_debug("QP event %s (%d)\n",
239                  ib_event_msg(event->event), event->event);
240
241 }
242
243 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
244 {
245         wait_for_completion_interruptible_timeout(&queue->cm_done,
246                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
247         return queue->cm_error;
248 }
249
250 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
251 {
252         struct nvme_rdma_device *dev = queue->device;
253         struct ib_qp_init_attr init_attr;
254         int ret;
255
256         memset(&init_attr, 0, sizeof(init_attr));
257         init_attr.event_handler = nvme_rdma_qp_event;
258         /* +1 for drain */
259         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
260         /* +1 for drain */
261         init_attr.cap.max_recv_wr = queue->queue_size + 1;
262         init_attr.cap.max_recv_sge = 1;
263         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
264         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
265         init_attr.qp_type = IB_QPT_RC;
266         init_attr.send_cq = queue->ib_cq;
267         init_attr.recv_cq = queue->ib_cq;
268
269         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
270
271         queue->qp = queue->cm_id->qp;
272         return ret;
273 }
274
275 static int nvme_rdma_reinit_request(void *data, struct request *rq)
276 {
277         struct nvme_rdma_ctrl *ctrl = data;
278         struct nvme_rdma_device *dev = ctrl->device;
279         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
280         int ret = 0;
281
282         if (!req->mr->need_inval)
283                 goto out;
284
285         ib_dereg_mr(req->mr);
286
287         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
288                         ctrl->max_fr_pages);
289         if (IS_ERR(req->mr)) {
290                 ret = PTR_ERR(req->mr);
291                 req->mr = NULL;
292                 goto out;
293         }
294
295         req->mr->need_inval = false;
296
297 out:
298         return ret;
299 }
300
301 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
302                 struct request *rq, unsigned int queue_idx)
303 {
304         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
305         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
306         struct nvme_rdma_device *dev = queue->device;
307
308         if (req->mr)
309                 ib_dereg_mr(req->mr);
310
311         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
312                         DMA_TO_DEVICE);
313 }
314
315 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
316                 struct request *rq, unsigned int hctx_idx)
317 {
318         return __nvme_rdma_exit_request(set->driver_data, rq, hctx_idx + 1);
319 }
320
321 static void nvme_rdma_exit_admin_request(struct blk_mq_tag_set *set,
322                 struct request *rq, unsigned int hctx_idx)
323 {
324         return __nvme_rdma_exit_request(set->driver_data, rq, 0);
325 }
326
327 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
328                 struct request *rq, unsigned int queue_idx)
329 {
330         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
331         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
332         struct nvme_rdma_device *dev = queue->device;
333         struct ib_device *ibdev = dev->dev;
334         int ret;
335
336         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
337                         DMA_TO_DEVICE);
338         if (ret)
339                 return ret;
340
341         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
342                         ctrl->max_fr_pages);
343         if (IS_ERR(req->mr)) {
344                 ret = PTR_ERR(req->mr);
345                 goto out_free_qe;
346         }
347
348         req->queue = queue;
349
350         return 0;
351
352 out_free_qe:
353         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
354                         DMA_TO_DEVICE);
355         return -ENOMEM;
356 }
357
358 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
359                 struct request *rq, unsigned int hctx_idx,
360                 unsigned int numa_node)
361 {
362         return __nvme_rdma_init_request(set->driver_data, rq, hctx_idx + 1);
363 }
364
365 static int nvme_rdma_init_admin_request(struct blk_mq_tag_set *set,
366                 struct request *rq, unsigned int hctx_idx,
367                 unsigned int numa_node)
368 {
369         return __nvme_rdma_init_request(set->driver_data, rq, 0);
370 }
371
372 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373                 unsigned int hctx_idx)
374 {
375         struct nvme_rdma_ctrl *ctrl = data;
376         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
377
378         BUG_ON(hctx_idx >= ctrl->queue_count);
379
380         hctx->driver_data = queue;
381         return 0;
382 }
383
384 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
385                 unsigned int hctx_idx)
386 {
387         struct nvme_rdma_ctrl *ctrl = data;
388         struct nvme_rdma_queue *queue = &ctrl->queues[0];
389
390         BUG_ON(hctx_idx != 0);
391
392         hctx->driver_data = queue;
393         return 0;
394 }
395
396 static void nvme_rdma_free_dev(struct kref *ref)
397 {
398         struct nvme_rdma_device *ndev =
399                 container_of(ref, struct nvme_rdma_device, ref);
400
401         mutex_lock(&device_list_mutex);
402         list_del(&ndev->entry);
403         mutex_unlock(&device_list_mutex);
404
405         ib_dealloc_pd(ndev->pd);
406         kfree(ndev);
407 }
408
409 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
410 {
411         kref_put(&dev->ref, nvme_rdma_free_dev);
412 }
413
414 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
415 {
416         return kref_get_unless_zero(&dev->ref);
417 }
418
419 static struct nvme_rdma_device *
420 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
421 {
422         struct nvme_rdma_device *ndev;
423
424         mutex_lock(&device_list_mutex);
425         list_for_each_entry(ndev, &device_list, entry) {
426                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
427                     nvme_rdma_dev_get(ndev))
428                         goto out_unlock;
429         }
430
431         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
432         if (!ndev)
433                 goto out_err;
434
435         ndev->dev = cm_id->device;
436         kref_init(&ndev->ref);
437
438         ndev->pd = ib_alloc_pd(ndev->dev,
439                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
440         if (IS_ERR(ndev->pd))
441                 goto out_free_dev;
442
443         if (!(ndev->dev->attrs.device_cap_flags &
444               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
445                 dev_err(&ndev->dev->dev,
446                         "Memory registrations not supported.\n");
447                 goto out_free_pd;
448         }
449
450         list_add(&ndev->entry, &device_list);
451 out_unlock:
452         mutex_unlock(&device_list_mutex);
453         return ndev;
454
455 out_free_pd:
456         ib_dealloc_pd(ndev->pd);
457 out_free_dev:
458         kfree(ndev);
459 out_err:
460         mutex_unlock(&device_list_mutex);
461         return NULL;
462 }
463
464 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
465 {
466         struct nvme_rdma_device *dev;
467         struct ib_device *ibdev;
468
469         if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
470                 return;
471
472         dev = queue->device;
473         ibdev = dev->dev;
474         rdma_destroy_qp(queue->cm_id);
475         ib_free_cq(queue->ib_cq);
476
477         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
478                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
479
480         nvme_rdma_dev_put(dev);
481 }
482
483 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
484                 struct nvme_rdma_device *dev)
485 {
486         struct ib_device *ibdev = dev->dev;
487         const int send_wr_factor = 3;                   /* MR, SEND, INV */
488         const int cq_factor = send_wr_factor + 1;       /* + RECV */
489         int comp_vector, idx = nvme_rdma_queue_idx(queue);
490
491         int ret;
492
493         queue->device = dev;
494
495         /*
496          * The admin queue is barely used once the controller is live, so don't
497          * bother to spread it out.
498          */
499         if (idx == 0)
500                 comp_vector = 0;
501         else
502                 comp_vector = idx % ibdev->num_comp_vectors;
503
504
505         /* +1 for ib_stop_cq */
506         queue->ib_cq = ib_alloc_cq(dev->dev, queue,
507                                 cq_factor * queue->queue_size + 1, comp_vector,
508                                 IB_POLL_SOFTIRQ);
509         if (IS_ERR(queue->ib_cq)) {
510                 ret = PTR_ERR(queue->ib_cq);
511                 goto out;
512         }
513
514         ret = nvme_rdma_create_qp(queue, send_wr_factor);
515         if (ret)
516                 goto out_destroy_ib_cq;
517
518         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
519                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
520         if (!queue->rsp_ring) {
521                 ret = -ENOMEM;
522                 goto out_destroy_qp;
523         }
524         set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
525
526         return 0;
527
528 out_destroy_qp:
529         ib_destroy_qp(queue->qp);
530 out_destroy_ib_cq:
531         ib_free_cq(queue->ib_cq);
532 out:
533         return ret;
534 }
535
536 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
537                 int idx, size_t queue_size)
538 {
539         struct nvme_rdma_queue *queue;
540         struct sockaddr *src_addr = NULL;
541         int ret;
542
543         queue = &ctrl->queues[idx];
544         queue->ctrl = ctrl;
545         init_completion(&queue->cm_done);
546
547         if (idx > 0)
548                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
549         else
550                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
551
552         queue->queue_size = queue_size;
553
554         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
555                         RDMA_PS_TCP, IB_QPT_RC);
556         if (IS_ERR(queue->cm_id)) {
557                 dev_info(ctrl->ctrl.device,
558                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
559                 return PTR_ERR(queue->cm_id);
560         }
561
562         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
563                 src_addr = (struct sockaddr *)&ctrl->src_addr;
564
565         queue->cm_error = -ETIMEDOUT;
566         ret = rdma_resolve_addr(queue->cm_id, src_addr,
567                         (struct sockaddr *)&ctrl->addr,
568                         NVME_RDMA_CONNECT_TIMEOUT_MS);
569         if (ret) {
570                 dev_info(ctrl->ctrl.device,
571                         "rdma_resolve_addr failed (%d).\n", ret);
572                 goto out_destroy_cm_id;
573         }
574
575         ret = nvme_rdma_wait_for_cm(queue);
576         if (ret) {
577                 dev_info(ctrl->ctrl.device,
578                         "rdma_resolve_addr wait failed (%d).\n", ret);
579                 goto out_destroy_cm_id;
580         }
581
582         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
583         set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
584
585         return 0;
586
587 out_destroy_cm_id:
588         nvme_rdma_destroy_queue_ib(queue);
589         rdma_destroy_id(queue->cm_id);
590         return ret;
591 }
592
593 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
594 {
595         rdma_disconnect(queue->cm_id);
596         ib_drain_qp(queue->qp);
597 }
598
599 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
600 {
601         nvme_rdma_destroy_queue_ib(queue);
602         rdma_destroy_id(queue->cm_id);
603 }
604
605 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
606 {
607         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
608                 return;
609         nvme_rdma_stop_queue(queue);
610         nvme_rdma_free_queue(queue);
611 }
612
613 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
614 {
615         int i;
616
617         for (i = 1; i < ctrl->queue_count; i++)
618                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
619 }
620
621 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
622 {
623         int i, ret = 0;
624
625         for (i = 1; i < ctrl->queue_count; i++) {
626                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
627                 if (ret) {
628                         dev_info(ctrl->ctrl.device,
629                                 "failed to connect i/o queue: %d\n", ret);
630                         goto out_free_queues;
631                 }
632                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
633         }
634
635         return 0;
636
637 out_free_queues:
638         nvme_rdma_free_io_queues(ctrl);
639         return ret;
640 }
641
642 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
643 {
644         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
645         unsigned int nr_io_queues;
646         int i, ret;
647
648         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
649         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
650         if (ret)
651                 return ret;
652
653         ctrl->queue_count = nr_io_queues + 1;
654         if (ctrl->queue_count < 2)
655                 return 0;
656
657         dev_info(ctrl->ctrl.device,
658                 "creating %d I/O queues.\n", nr_io_queues);
659
660         for (i = 1; i < ctrl->queue_count; i++) {
661                 ret = nvme_rdma_init_queue(ctrl, i,
662                                            ctrl->ctrl.opts->queue_size);
663                 if (ret) {
664                         dev_info(ctrl->ctrl.device,
665                                 "failed to initialize i/o queue: %d\n", ret);
666                         goto out_free_queues;
667                 }
668         }
669
670         return 0;
671
672 out_free_queues:
673         for (i--; i >= 1; i--)
674                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
675
676         return ret;
677 }
678
679 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
680 {
681         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
682                         sizeof(struct nvme_command), DMA_TO_DEVICE);
683         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
684         blk_cleanup_queue(ctrl->ctrl.admin_q);
685         blk_mq_free_tag_set(&ctrl->admin_tag_set);
686         nvme_rdma_dev_put(ctrl->device);
687 }
688
689 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
690 {
691         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
692
693         if (list_empty(&ctrl->list))
694                 goto free_ctrl;
695
696         mutex_lock(&nvme_rdma_ctrl_mutex);
697         list_del(&ctrl->list);
698         mutex_unlock(&nvme_rdma_ctrl_mutex);
699
700         kfree(ctrl->queues);
701         nvmf_free_options(nctrl->opts);
702 free_ctrl:
703         kfree(ctrl);
704 }
705
706 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
707 {
708         /* If we are resetting/deleting then do nothing */
709         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
710                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
711                         ctrl->ctrl.state == NVME_CTRL_LIVE);
712                 return;
713         }
714
715         if (nvmf_should_reconnect(&ctrl->ctrl)) {
716                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
717                         ctrl->ctrl.opts->reconnect_delay);
718                 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
719                                 ctrl->ctrl.opts->reconnect_delay * HZ);
720         } else {
721                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
722                 queue_work(nvme_rdma_wq, &ctrl->delete_work);
723         }
724 }
725
726 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
727 {
728         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
729                         struct nvme_rdma_ctrl, reconnect_work);
730         bool changed;
731         int ret;
732
733         ++ctrl->ctrl.opts->nr_reconnects;
734
735         if (ctrl->queue_count > 1) {
736                 nvme_rdma_free_io_queues(ctrl);
737
738                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
739                 if (ret)
740                         goto requeue;
741         }
742
743         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
744
745         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
746         if (ret)
747                 goto requeue;
748
749         ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
750         if (ret)
751                 goto requeue;
752
753         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
754         if (ret)
755                 goto requeue;
756
757         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
758
759         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
760         if (ret)
761                 goto requeue;
762
763         nvme_start_keep_alive(&ctrl->ctrl);
764
765         if (ctrl->queue_count > 1) {
766                 ret = nvme_rdma_init_io_queues(ctrl);
767                 if (ret)
768                         goto requeue;
769
770                 ret = nvme_rdma_connect_io_queues(ctrl);
771                 if (ret)
772                         goto requeue;
773         }
774
775         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
776         WARN_ON_ONCE(!changed);
777         ctrl->ctrl.opts->nr_reconnects = 0;
778
779         if (ctrl->queue_count > 1) {
780                 nvme_queue_scan(&ctrl->ctrl);
781                 nvme_queue_async_events(&ctrl->ctrl);
782         }
783
784         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
785
786         return;
787
788 requeue:
789         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
790                         ctrl->ctrl.opts->nr_reconnects);
791         nvme_rdma_reconnect_or_remove(ctrl);
792 }
793
794 static void nvme_rdma_error_recovery_work(struct work_struct *work)
795 {
796         struct nvme_rdma_ctrl *ctrl = container_of(work,
797                         struct nvme_rdma_ctrl, err_work);
798         int i;
799
800         nvme_stop_keep_alive(&ctrl->ctrl);
801
802         for (i = 0; i < ctrl->queue_count; i++) {
803                 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
804                 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
805         }
806
807         if (ctrl->queue_count > 1)
808                 nvme_stop_queues(&ctrl->ctrl);
809         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
810
811         /* We must take care of fastfail/requeue all our inflight requests */
812         if (ctrl->queue_count > 1)
813                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
814                                         nvme_cancel_request, &ctrl->ctrl);
815         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
816                                 nvme_cancel_request, &ctrl->ctrl);
817
818         /*
819          * queues are not a live anymore, so restart the queues to fail fast
820          * new IO
821          */
822         blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
823         nvme_start_queues(&ctrl->ctrl);
824
825         nvme_rdma_reconnect_or_remove(ctrl);
826 }
827
828 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
829 {
830         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
831                 return;
832
833         queue_work(nvme_rdma_wq, &ctrl->err_work);
834 }
835
836 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
837                 const char *op)
838 {
839         struct nvme_rdma_queue *queue = cq->cq_context;
840         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
841
842         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
843                 dev_info(ctrl->ctrl.device,
844                              "%s for CQE 0x%p failed with status %s (%d)\n",
845                              op, wc->wr_cqe,
846                              ib_wc_status_msg(wc->status), wc->status);
847         nvme_rdma_error_recovery(ctrl);
848 }
849
850 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
851 {
852         if (unlikely(wc->status != IB_WC_SUCCESS))
853                 nvme_rdma_wr_error(cq, wc, "MEMREG");
854 }
855
856 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
857 {
858         if (unlikely(wc->status != IB_WC_SUCCESS))
859                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
860 }
861
862 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
863                 struct nvme_rdma_request *req)
864 {
865         struct ib_send_wr *bad_wr;
866         struct ib_send_wr wr = {
867                 .opcode             = IB_WR_LOCAL_INV,
868                 .next               = NULL,
869                 .num_sge            = 0,
870                 .send_flags         = 0,
871                 .ex.invalidate_rkey = req->mr->rkey,
872         };
873
874         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
875         wr.wr_cqe = &req->reg_cqe;
876
877         return ib_post_send(queue->qp, &wr, &bad_wr);
878 }
879
880 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
881                 struct request *rq)
882 {
883         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
884         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
885         struct nvme_rdma_device *dev = queue->device;
886         struct ib_device *ibdev = dev->dev;
887         int res;
888
889         if (!blk_rq_bytes(rq))
890                 return;
891
892         if (req->mr->need_inval) {
893                 res = nvme_rdma_inv_rkey(queue, req);
894                 if (res < 0) {
895                         dev_err(ctrl->ctrl.device,
896                                 "Queueing INV WR for rkey %#x failed (%d)\n",
897                                 req->mr->rkey, res);
898                         nvme_rdma_error_recovery(queue->ctrl);
899                 }
900         }
901
902         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
903                         req->nents, rq_data_dir(rq) ==
904                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
905
906         nvme_cleanup_cmd(rq);
907         sg_free_table_chained(&req->sg_table, true);
908 }
909
910 static int nvme_rdma_set_sg_null(struct nvme_command *c)
911 {
912         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
913
914         sg->addr = 0;
915         put_unaligned_le24(0, sg->length);
916         put_unaligned_le32(0, sg->key);
917         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
918         return 0;
919 }
920
921 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
922                 struct nvme_rdma_request *req, struct nvme_command *c)
923 {
924         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
925
926         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
927         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
928         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
929
930         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
931         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
932         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
933
934         req->inline_data = true;
935         req->num_sge++;
936         return 0;
937 }
938
939 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
940                 struct nvme_rdma_request *req, struct nvme_command *c)
941 {
942         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
943
944         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
945         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
946         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
947         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
948         return 0;
949 }
950
951 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
952                 struct nvme_rdma_request *req, struct nvme_command *c,
953                 int count)
954 {
955         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
956         int nr;
957
958         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
959         if (nr < count) {
960                 if (nr < 0)
961                         return nr;
962                 return -EINVAL;
963         }
964
965         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
966
967         req->reg_cqe.done = nvme_rdma_memreg_done;
968         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
969         req->reg_wr.wr.opcode = IB_WR_REG_MR;
970         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
971         req->reg_wr.wr.num_sge = 0;
972         req->reg_wr.mr = req->mr;
973         req->reg_wr.key = req->mr->rkey;
974         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
975                              IB_ACCESS_REMOTE_READ |
976                              IB_ACCESS_REMOTE_WRITE;
977
978         req->mr->need_inval = true;
979
980         sg->addr = cpu_to_le64(req->mr->iova);
981         put_unaligned_le24(req->mr->length, sg->length);
982         put_unaligned_le32(req->mr->rkey, sg->key);
983         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
984                         NVME_SGL_FMT_INVALIDATE;
985
986         return 0;
987 }
988
989 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
990                 struct request *rq, struct nvme_command *c)
991 {
992         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
993         struct nvme_rdma_device *dev = queue->device;
994         struct ib_device *ibdev = dev->dev;
995         int count, ret;
996
997         req->num_sge = 1;
998         req->inline_data = false;
999         req->mr->need_inval = false;
1000
1001         c->common.flags |= NVME_CMD_SGL_METABUF;
1002
1003         if (!blk_rq_bytes(rq))
1004                 return nvme_rdma_set_sg_null(c);
1005
1006         req->sg_table.sgl = req->first_sgl;
1007         ret = sg_alloc_table_chained(&req->sg_table,
1008                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1009         if (ret)
1010                 return -ENOMEM;
1011
1012         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1013
1014         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1015                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1016         if (unlikely(count <= 0)) {
1017                 sg_free_table_chained(&req->sg_table, true);
1018                 return -EIO;
1019         }
1020
1021         if (count == 1) {
1022                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1023                     blk_rq_payload_bytes(rq) <=
1024                                 nvme_rdma_inline_data_size(queue))
1025                         return nvme_rdma_map_sg_inline(queue, req, c);
1026
1027                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1028                         return nvme_rdma_map_sg_single(queue, req, c);
1029         }
1030
1031         return nvme_rdma_map_sg_fr(queue, req, c, count);
1032 }
1033
1034 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1035 {
1036         if (unlikely(wc->status != IB_WC_SUCCESS))
1037                 nvme_rdma_wr_error(cq, wc, "SEND");
1038 }
1039
1040 static inline int nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1041 {
1042         int sig_limit;
1043
1044         /*
1045          * We signal completion every queue depth/2 and also handle the
1046          * degenerated case of a  device with queue_depth=1, where we
1047          * would need to signal every message.
1048          */
1049         sig_limit = max(queue->queue_size / 2, 1);
1050         return (++queue->sig_count % sig_limit) == 0;
1051 }
1052
1053 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1054                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1055                 struct ib_send_wr *first, bool flush)
1056 {
1057         struct ib_send_wr wr, *bad_wr;
1058         int ret;
1059
1060         sge->addr   = qe->dma;
1061         sge->length = sizeof(struct nvme_command),
1062         sge->lkey   = queue->device->pd->local_dma_lkey;
1063
1064         qe->cqe.done = nvme_rdma_send_done;
1065
1066         wr.next       = NULL;
1067         wr.wr_cqe     = &qe->cqe;
1068         wr.sg_list    = sge;
1069         wr.num_sge    = num_sge;
1070         wr.opcode     = IB_WR_SEND;
1071         wr.send_flags = 0;
1072
1073         /*
1074          * Unsignalled send completions are another giant desaster in the
1075          * IB Verbs spec:  If we don't regularly post signalled sends
1076          * the send queue will fill up and only a QP reset will rescue us.
1077          * Would have been way to obvious to handle this in hardware or
1078          * at least the RDMA stack..
1079          *
1080          * Always signal the flushes. The magic request used for the flush
1081          * sequencer is not allocated in our driver's tagset and it's
1082          * triggered to be freed by blk_cleanup_queue(). So we need to
1083          * always mark it as signaled to ensure that the "wr_cqe", which is
1084          * embedded in request's payload, is not freed when __ib_process_cq()
1085          * calls wr_cqe->done().
1086          */
1087         if (nvme_rdma_queue_sig_limit(queue) || flush)
1088                 wr.send_flags |= IB_SEND_SIGNALED;
1089
1090         if (first)
1091                 first->next = &wr;
1092         else
1093                 first = &wr;
1094
1095         ret = ib_post_send(queue->qp, first, &bad_wr);
1096         if (ret) {
1097                 dev_err(queue->ctrl->ctrl.device,
1098                              "%s failed with error code %d\n", __func__, ret);
1099         }
1100         return ret;
1101 }
1102
1103 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1104                 struct nvme_rdma_qe *qe)
1105 {
1106         struct ib_recv_wr wr, *bad_wr;
1107         struct ib_sge list;
1108         int ret;
1109
1110         list.addr   = qe->dma;
1111         list.length = sizeof(struct nvme_completion);
1112         list.lkey   = queue->device->pd->local_dma_lkey;
1113
1114         qe->cqe.done = nvme_rdma_recv_done;
1115
1116         wr.next     = NULL;
1117         wr.wr_cqe   = &qe->cqe;
1118         wr.sg_list  = &list;
1119         wr.num_sge  = 1;
1120
1121         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1122         if (ret) {
1123                 dev_err(queue->ctrl->ctrl.device,
1124                         "%s failed with error code %d\n", __func__, ret);
1125         }
1126         return ret;
1127 }
1128
1129 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1130 {
1131         u32 queue_idx = nvme_rdma_queue_idx(queue);
1132
1133         if (queue_idx == 0)
1134                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1135         return queue->ctrl->tag_set.tags[queue_idx - 1];
1136 }
1137
1138 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1139 {
1140         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1141         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1142         struct ib_device *dev = queue->device->dev;
1143         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1144         struct nvme_command *cmd = sqe->data;
1145         struct ib_sge sge;
1146         int ret;
1147
1148         if (WARN_ON_ONCE(aer_idx != 0))
1149                 return;
1150
1151         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1152
1153         memset(cmd, 0, sizeof(*cmd));
1154         cmd->common.opcode = nvme_admin_async_event;
1155         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1156         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1157         nvme_rdma_set_sg_null(cmd);
1158
1159         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1160                         DMA_TO_DEVICE);
1161
1162         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1163         WARN_ON_ONCE(ret);
1164 }
1165
1166 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1167                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1168 {
1169         struct request *rq;
1170         struct nvme_rdma_request *req;
1171         int ret = 0;
1172
1173         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1174         if (!rq) {
1175                 dev_err(queue->ctrl->ctrl.device,
1176                         "tag 0x%x on QP %#x not found\n",
1177                         cqe->command_id, queue->qp->qp_num);
1178                 nvme_rdma_error_recovery(queue->ctrl);
1179                 return ret;
1180         }
1181         req = blk_mq_rq_to_pdu(rq);
1182
1183         if (rq->tag == tag)
1184                 ret = 1;
1185
1186         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1187             wc->ex.invalidate_rkey == req->mr->rkey)
1188                 req->mr->need_inval = false;
1189
1190         nvme_end_request(rq, cqe->status, cqe->result);
1191         return ret;
1192 }
1193
1194 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1195 {
1196         struct nvme_rdma_qe *qe =
1197                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1198         struct nvme_rdma_queue *queue = cq->cq_context;
1199         struct ib_device *ibdev = queue->device->dev;
1200         struct nvme_completion *cqe = qe->data;
1201         const size_t len = sizeof(struct nvme_completion);
1202         int ret = 0;
1203
1204         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1205                 nvme_rdma_wr_error(cq, wc, "RECV");
1206                 return 0;
1207         }
1208
1209         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1210         /*
1211          * AEN requests are special as they don't time out and can
1212          * survive any kind of queue freeze and often don't respond to
1213          * aborts.  We don't even bother to allocate a struct request
1214          * for them but rather special case them here.
1215          */
1216         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1217                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1218                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1219                                 &cqe->result);
1220         else
1221                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1222         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1223
1224         nvme_rdma_post_recv(queue, qe);
1225         return ret;
1226 }
1227
1228 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1229 {
1230         __nvme_rdma_recv_done(cq, wc, -1);
1231 }
1232
1233 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1234 {
1235         int ret, i;
1236
1237         for (i = 0; i < queue->queue_size; i++) {
1238                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1239                 if (ret)
1240                         goto out_destroy_queue_ib;
1241         }
1242
1243         return 0;
1244
1245 out_destroy_queue_ib:
1246         nvme_rdma_destroy_queue_ib(queue);
1247         return ret;
1248 }
1249
1250 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1251                 struct rdma_cm_event *ev)
1252 {
1253         struct rdma_cm_id *cm_id = queue->cm_id;
1254         int status = ev->status;
1255         const char *rej_msg;
1256         const struct nvme_rdma_cm_rej *rej_data;
1257         u8 rej_data_len;
1258
1259         rej_msg = rdma_reject_msg(cm_id, status);
1260         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1261
1262         if (rej_data && rej_data_len >= sizeof(u16)) {
1263                 u16 sts = le16_to_cpu(rej_data->sts);
1264
1265                 dev_err(queue->ctrl->ctrl.device,
1266                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1267                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1268         } else {
1269                 dev_err(queue->ctrl->ctrl.device,
1270                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1271         }
1272
1273         return -ECONNRESET;
1274 }
1275
1276 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1277 {
1278         struct nvme_rdma_device *dev;
1279         int ret;
1280
1281         dev = nvme_rdma_find_get_device(queue->cm_id);
1282         if (!dev) {
1283                 dev_err(queue->cm_id->device->dev.parent,
1284                         "no client data found!\n");
1285                 return -ECONNREFUSED;
1286         }
1287
1288         ret = nvme_rdma_create_queue_ib(queue, dev);
1289         if (ret) {
1290                 nvme_rdma_dev_put(dev);
1291                 goto out;
1292         }
1293
1294         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1295         if (ret) {
1296                 dev_err(queue->ctrl->ctrl.device,
1297                         "rdma_resolve_route failed (%d).\n",
1298                         queue->cm_error);
1299                 goto out_destroy_queue;
1300         }
1301
1302         return 0;
1303
1304 out_destroy_queue:
1305         nvme_rdma_destroy_queue_ib(queue);
1306 out:
1307         return ret;
1308 }
1309
1310 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1311 {
1312         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1313         struct rdma_conn_param param = { };
1314         struct nvme_rdma_cm_req priv = { };
1315         int ret;
1316
1317         param.qp_num = queue->qp->qp_num;
1318         param.flow_control = 1;
1319
1320         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1321         /* maximum retry count */
1322         param.retry_count = 7;
1323         param.rnr_retry_count = 7;
1324         param.private_data = &priv;
1325         param.private_data_len = sizeof(priv);
1326
1327         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1328         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1329         /*
1330          * set the admin queue depth to the minimum size
1331          * specified by the Fabrics standard.
1332          */
1333         if (priv.qid == 0) {
1334                 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1335                 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1336         } else {
1337                 /*
1338                  * current interpretation of the fabrics spec
1339                  * is at minimum you make hrqsize sqsize+1, or a
1340                  * 1's based representation of sqsize.
1341                  */
1342                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1343                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1344         }
1345
1346         ret = rdma_connect(queue->cm_id, &param);
1347         if (ret) {
1348                 dev_err(ctrl->ctrl.device,
1349                         "rdma_connect failed (%d).\n", ret);
1350                 goto out_destroy_queue_ib;
1351         }
1352
1353         return 0;
1354
1355 out_destroy_queue_ib:
1356         nvme_rdma_destroy_queue_ib(queue);
1357         return ret;
1358 }
1359
1360 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1361                 struct rdma_cm_event *ev)
1362 {
1363         struct nvme_rdma_queue *queue = cm_id->context;
1364         int cm_error = 0;
1365
1366         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1367                 rdma_event_msg(ev->event), ev->event,
1368                 ev->status, cm_id);
1369
1370         switch (ev->event) {
1371         case RDMA_CM_EVENT_ADDR_RESOLVED:
1372                 cm_error = nvme_rdma_addr_resolved(queue);
1373                 break;
1374         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1375                 cm_error = nvme_rdma_route_resolved(queue);
1376                 break;
1377         case RDMA_CM_EVENT_ESTABLISHED:
1378                 queue->cm_error = nvme_rdma_conn_established(queue);
1379                 /* complete cm_done regardless of success/failure */
1380                 complete(&queue->cm_done);
1381                 return 0;
1382         case RDMA_CM_EVENT_REJECTED:
1383                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1384                 break;
1385         case RDMA_CM_EVENT_ADDR_ERROR:
1386         case RDMA_CM_EVENT_ROUTE_ERROR:
1387         case RDMA_CM_EVENT_CONNECT_ERROR:
1388         case RDMA_CM_EVENT_UNREACHABLE:
1389                 dev_dbg(queue->ctrl->ctrl.device,
1390                         "CM error event %d\n", ev->event);
1391                 cm_error = -ECONNRESET;
1392                 break;
1393         case RDMA_CM_EVENT_DISCONNECTED:
1394         case RDMA_CM_EVENT_ADDR_CHANGE:
1395         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1396                 dev_dbg(queue->ctrl->ctrl.device,
1397                         "disconnect received - connection closed\n");
1398                 nvme_rdma_error_recovery(queue->ctrl);
1399                 break;
1400         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1401                 /* device removal is handled via the ib_client API */
1402                 break;
1403         default:
1404                 dev_err(queue->ctrl->ctrl.device,
1405                         "Unexpected RDMA CM event (%d)\n", ev->event);
1406                 nvme_rdma_error_recovery(queue->ctrl);
1407                 break;
1408         }
1409
1410         if (cm_error) {
1411                 queue->cm_error = cm_error;
1412                 complete(&queue->cm_done);
1413         }
1414
1415         return 0;
1416 }
1417
1418 static enum blk_eh_timer_return
1419 nvme_rdma_timeout(struct request *rq, bool reserved)
1420 {
1421         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1422
1423         /* queue error recovery */
1424         nvme_rdma_error_recovery(req->queue->ctrl);
1425
1426         /* fail with DNR on cmd timeout */
1427         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1428
1429         return BLK_EH_HANDLED;
1430 }
1431
1432 /*
1433  * We cannot accept any other command until the Connect command has completed.
1434  */
1435 static inline blk_status_t
1436 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1437 {
1438         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1439                 struct nvme_command *cmd = nvme_req(rq)->cmd;
1440
1441                 if (!blk_rq_is_passthrough(rq) ||
1442                     cmd->common.opcode != nvme_fabrics_command ||
1443                     cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1444                         /*
1445                          * reconnecting state means transport disruption, which
1446                          * can take a long time and even might fail permanently,
1447                          * so we can't let incoming I/O be requeued forever.
1448                          * fail it fast to allow upper layers a chance to
1449                          * failover.
1450                          */
1451                         if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1452                                 return BLK_STS_IOERR;
1453                         return BLK_STS_RESOURCE; /* try again later */
1454                 }
1455         }
1456
1457         return 0;
1458 }
1459
1460 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1461                 const struct blk_mq_queue_data *bd)
1462 {
1463         struct nvme_ns *ns = hctx->queue->queuedata;
1464         struct nvme_rdma_queue *queue = hctx->driver_data;
1465         struct request *rq = bd->rq;
1466         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1467         struct nvme_rdma_qe *sqe = &req->sqe;
1468         struct nvme_command *c = sqe->data;
1469         bool flush = false;
1470         struct ib_device *dev;
1471         blk_status_t ret;
1472         int err;
1473
1474         WARN_ON_ONCE(rq->tag < 0);
1475
1476         ret = nvme_rdma_queue_is_ready(queue, rq);
1477         if (unlikely(ret))
1478                 return ret;
1479
1480         dev = queue->device->dev;
1481         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1482                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1483
1484         ret = nvme_setup_cmd(ns, rq, c);
1485         if (ret)
1486                 return ret;
1487
1488         blk_mq_start_request(rq);
1489
1490         err = nvme_rdma_map_data(queue, rq, c);
1491         if (err < 0) {
1492                 dev_err(queue->ctrl->ctrl.device,
1493                              "Failed to map data (%d)\n", err);
1494                 nvme_cleanup_cmd(rq);
1495                 goto err;
1496         }
1497
1498         ib_dma_sync_single_for_device(dev, sqe->dma,
1499                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1500
1501         if (req_op(rq) == REQ_OP_FLUSH)
1502                 flush = true;
1503         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1504                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1505         if (err) {
1506                 nvme_rdma_unmap_data(queue, rq);
1507                 goto err;
1508         }
1509
1510         return BLK_STS_OK;
1511 err:
1512         if (err == -ENOMEM || err == -EAGAIN)
1513                 return BLK_STS_RESOURCE;
1514         return BLK_STS_IOERR;
1515 }
1516
1517 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1518 {
1519         struct nvme_rdma_queue *queue = hctx->driver_data;
1520         struct ib_cq *cq = queue->ib_cq;
1521         struct ib_wc wc;
1522         int found = 0;
1523
1524         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1525         while (ib_poll_cq(cq, 1, &wc) > 0) {
1526                 struct ib_cqe *cqe = wc.wr_cqe;
1527
1528                 if (cqe) {
1529                         if (cqe->done == nvme_rdma_recv_done)
1530                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1531                         else
1532                                 cqe->done(cq, &wc);
1533                 }
1534         }
1535
1536         return found;
1537 }
1538
1539 static void nvme_rdma_complete_rq(struct request *rq)
1540 {
1541         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1542
1543         nvme_rdma_unmap_data(req->queue, rq);
1544         nvme_complete_rq(rq);
1545 }
1546
1547 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1548         .queue_rq       = nvme_rdma_queue_rq,
1549         .complete       = nvme_rdma_complete_rq,
1550         .init_request   = nvme_rdma_init_request,
1551         .exit_request   = nvme_rdma_exit_request,
1552         .reinit_request = nvme_rdma_reinit_request,
1553         .init_hctx      = nvme_rdma_init_hctx,
1554         .poll           = nvme_rdma_poll,
1555         .timeout        = nvme_rdma_timeout,
1556 };
1557
1558 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1559         .queue_rq       = nvme_rdma_queue_rq,
1560         .complete       = nvme_rdma_complete_rq,
1561         .init_request   = nvme_rdma_init_admin_request,
1562         .exit_request   = nvme_rdma_exit_admin_request,
1563         .reinit_request = nvme_rdma_reinit_request,
1564         .init_hctx      = nvme_rdma_init_admin_hctx,
1565         .timeout        = nvme_rdma_timeout,
1566 };
1567
1568 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1569 {
1570         int error;
1571
1572         error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1573         if (error)
1574                 return error;
1575
1576         ctrl->device = ctrl->queues[0].device;
1577
1578         /*
1579          * We need a reference on the device as long as the tag_set is alive,
1580          * as the MRs in the request structures need a valid ib_device.
1581          */
1582         error = -EINVAL;
1583         if (!nvme_rdma_dev_get(ctrl->device))
1584                 goto out_free_queue;
1585
1586         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1587                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1588
1589         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1590         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1591         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1592         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1593         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1594         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1595                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1596         ctrl->admin_tag_set.driver_data = ctrl;
1597         ctrl->admin_tag_set.nr_hw_queues = 1;
1598         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1599
1600         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1601         if (error)
1602                 goto out_put_dev;
1603
1604         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1605         if (IS_ERR(ctrl->ctrl.admin_q)) {
1606                 error = PTR_ERR(ctrl->ctrl.admin_q);
1607                 goto out_free_tagset;
1608         }
1609
1610         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1611         if (error)
1612                 goto out_cleanup_queue;
1613
1614         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1615
1616         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1617         if (error) {
1618                 dev_err(ctrl->ctrl.device,
1619                         "prop_get NVME_REG_CAP failed\n");
1620                 goto out_cleanup_queue;
1621         }
1622
1623         ctrl->ctrl.sqsize =
1624                 min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->ctrl.sqsize);
1625
1626         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1627         if (error)
1628                 goto out_cleanup_queue;
1629
1630         ctrl->ctrl.max_hw_sectors =
1631                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1632
1633         error = nvme_init_identify(&ctrl->ctrl);
1634         if (error)
1635                 goto out_cleanup_queue;
1636
1637         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1638                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1639                         DMA_TO_DEVICE);
1640         if (error)
1641                 goto out_cleanup_queue;
1642
1643         nvme_start_keep_alive(&ctrl->ctrl);
1644
1645         return 0;
1646
1647 out_cleanup_queue:
1648         blk_cleanup_queue(ctrl->ctrl.admin_q);
1649 out_free_tagset:
1650         /* disconnect and drain the queue before freeing the tagset */
1651         nvme_rdma_stop_queue(&ctrl->queues[0]);
1652         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1653 out_put_dev:
1654         nvme_rdma_dev_put(ctrl->device);
1655 out_free_queue:
1656         nvme_rdma_free_queue(&ctrl->queues[0]);
1657         return error;
1658 }
1659
1660 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1661 {
1662         nvme_stop_keep_alive(&ctrl->ctrl);
1663         cancel_work_sync(&ctrl->err_work);
1664         cancel_delayed_work_sync(&ctrl->reconnect_work);
1665
1666         if (ctrl->queue_count > 1) {
1667                 nvme_stop_queues(&ctrl->ctrl);
1668                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1669                                         nvme_cancel_request, &ctrl->ctrl);
1670                 nvme_rdma_free_io_queues(ctrl);
1671         }
1672
1673         if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1674                 nvme_shutdown_ctrl(&ctrl->ctrl);
1675
1676         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1677         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1678                                 nvme_cancel_request, &ctrl->ctrl);
1679         nvme_rdma_destroy_admin_queue(ctrl);
1680 }
1681
1682 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1683 {
1684         nvme_uninit_ctrl(&ctrl->ctrl);
1685         if (shutdown)
1686                 nvme_rdma_shutdown_ctrl(ctrl);
1687
1688         if (ctrl->ctrl.tagset) {
1689                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1690                 blk_mq_free_tag_set(&ctrl->tag_set);
1691                 nvme_rdma_dev_put(ctrl->device);
1692         }
1693
1694         nvme_put_ctrl(&ctrl->ctrl);
1695 }
1696
1697 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1698 {
1699         struct nvme_rdma_ctrl *ctrl = container_of(work,
1700                                 struct nvme_rdma_ctrl, delete_work);
1701
1702         __nvme_rdma_remove_ctrl(ctrl, true);
1703 }
1704
1705 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1706 {
1707         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1708                 return -EBUSY;
1709
1710         if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1711                 return -EBUSY;
1712
1713         return 0;
1714 }
1715
1716 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1717 {
1718         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1719         int ret = 0;
1720
1721         /*
1722          * Keep a reference until all work is flushed since
1723          * __nvme_rdma_del_ctrl can free the ctrl mem
1724          */
1725         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1726                 return -EBUSY;
1727         ret = __nvme_rdma_del_ctrl(ctrl);
1728         if (!ret)
1729                 flush_work(&ctrl->delete_work);
1730         nvme_put_ctrl(&ctrl->ctrl);
1731         return ret;
1732 }
1733
1734 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1735 {
1736         struct nvme_rdma_ctrl *ctrl = container_of(work,
1737                                 struct nvme_rdma_ctrl, delete_work);
1738
1739         __nvme_rdma_remove_ctrl(ctrl, false);
1740 }
1741
1742 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1743 {
1744         struct nvme_rdma_ctrl *ctrl = container_of(work,
1745                                         struct nvme_rdma_ctrl, reset_work);
1746         int ret;
1747         bool changed;
1748
1749         nvme_rdma_shutdown_ctrl(ctrl);
1750
1751         ret = nvme_rdma_configure_admin_queue(ctrl);
1752         if (ret) {
1753                 /* ctrl is already shutdown, just remove the ctrl */
1754                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1755                 goto del_dead_ctrl;
1756         }
1757
1758         if (ctrl->queue_count > 1) {
1759                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1760                 if (ret)
1761                         goto del_dead_ctrl;
1762
1763                 ret = nvme_rdma_init_io_queues(ctrl);
1764                 if (ret)
1765                         goto del_dead_ctrl;
1766
1767                 ret = nvme_rdma_connect_io_queues(ctrl);
1768                 if (ret)
1769                         goto del_dead_ctrl;
1770         }
1771
1772         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1773         WARN_ON_ONCE(!changed);
1774
1775         if (ctrl->queue_count > 1) {
1776                 nvme_start_queues(&ctrl->ctrl);
1777                 nvme_queue_scan(&ctrl->ctrl);
1778                 nvme_queue_async_events(&ctrl->ctrl);
1779         }
1780
1781         return;
1782
1783 del_dead_ctrl:
1784         /* Deleting this dead controller... */
1785         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1786         WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1787 }
1788
1789 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1790 {
1791         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1792
1793         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1794                 return -EBUSY;
1795
1796         if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1797                 return -EBUSY;
1798
1799         flush_work(&ctrl->reset_work);
1800
1801         return 0;
1802 }
1803
1804 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1805         .name                   = "rdma",
1806         .module                 = THIS_MODULE,
1807         .flags                  = NVME_F_FABRICS,
1808         .reg_read32             = nvmf_reg_read32,
1809         .reg_read64             = nvmf_reg_read64,
1810         .reg_write32            = nvmf_reg_write32,
1811         .reset_ctrl             = nvme_rdma_reset_ctrl,
1812         .free_ctrl              = nvme_rdma_free_ctrl,
1813         .submit_async_event     = nvme_rdma_submit_async_event,
1814         .delete_ctrl            = nvme_rdma_del_ctrl,
1815         .get_subsysnqn          = nvmf_get_subsysnqn,
1816         .get_address            = nvmf_get_address,
1817 };
1818
1819 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1820 {
1821         int ret;
1822
1823         ret = nvme_rdma_init_io_queues(ctrl);
1824         if (ret)
1825                 return ret;
1826
1827         /*
1828          * We need a reference on the device as long as the tag_set is alive,
1829          * as the MRs in the request structures need a valid ib_device.
1830          */
1831         ret = -EINVAL;
1832         if (!nvme_rdma_dev_get(ctrl->device))
1833                 goto out_free_io_queues;
1834
1835         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1836         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1837         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1838         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1839         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1840         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1841         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1842                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1843         ctrl->tag_set.driver_data = ctrl;
1844         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1845         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1846
1847         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1848         if (ret)
1849                 goto out_put_dev;
1850         ctrl->ctrl.tagset = &ctrl->tag_set;
1851
1852         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1853         if (IS_ERR(ctrl->ctrl.connect_q)) {
1854                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1855                 goto out_free_tag_set;
1856         }
1857
1858         ret = nvme_rdma_connect_io_queues(ctrl);
1859         if (ret)
1860                 goto out_cleanup_connect_q;
1861
1862         return 0;
1863
1864 out_cleanup_connect_q:
1865         blk_cleanup_queue(ctrl->ctrl.connect_q);
1866 out_free_tag_set:
1867         blk_mq_free_tag_set(&ctrl->tag_set);
1868 out_put_dev:
1869         nvme_rdma_dev_put(ctrl->device);
1870 out_free_io_queues:
1871         nvme_rdma_free_io_queues(ctrl);
1872         return ret;
1873 }
1874
1875 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1876                 struct nvmf_ctrl_options *opts)
1877 {
1878         struct nvme_rdma_ctrl *ctrl;
1879         int ret;
1880         bool changed;
1881         char *port;
1882
1883         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1884         if (!ctrl)
1885                 return ERR_PTR(-ENOMEM);
1886         ctrl->ctrl.opts = opts;
1887         INIT_LIST_HEAD(&ctrl->list);
1888
1889         if (opts->mask & NVMF_OPT_TRSVCID)
1890                 port = opts->trsvcid;
1891         else
1892                 port = __stringify(NVME_RDMA_IP_PORT);
1893
1894         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1895                         opts->traddr, port, &ctrl->addr);
1896         if (ret) {
1897                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1898                 goto out_free_ctrl;
1899         }
1900
1901         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1902                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1903                         opts->host_traddr, NULL, &ctrl->src_addr);
1904                 if (ret) {
1905                         pr_err("malformed src address passed: %s\n",
1906                                opts->host_traddr);
1907                         goto out_free_ctrl;
1908                 }
1909         }
1910
1911         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1912                                 0 /* no quirks, we're perfect! */);
1913         if (ret)
1914                 goto out_free_ctrl;
1915
1916         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1917                         nvme_rdma_reconnect_ctrl_work);
1918         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1919         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1920         INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1921
1922         ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1923         ctrl->ctrl.sqsize = opts->queue_size - 1;
1924         ctrl->ctrl.kato = opts->kato;
1925
1926         ret = -ENOMEM;
1927         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1928                                 GFP_KERNEL);
1929         if (!ctrl->queues)
1930                 goto out_uninit_ctrl;
1931
1932         ret = nvme_rdma_configure_admin_queue(ctrl);
1933         if (ret)
1934                 goto out_kfree_queues;
1935
1936         /* sanity check icdoff */
1937         if (ctrl->ctrl.icdoff) {
1938                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1939                 goto out_remove_admin_queue;
1940         }
1941
1942         /* sanity check keyed sgls */
1943         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1944                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1945                 goto out_remove_admin_queue;
1946         }
1947
1948         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1949                 /* warn if maxcmd is lower than queue_size */
1950                 dev_warn(ctrl->ctrl.device,
1951                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1952                         opts->queue_size, ctrl->ctrl.maxcmd);
1953                 opts->queue_size = ctrl->ctrl.maxcmd;
1954         }
1955
1956         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1957                 /* warn if sqsize is lower than queue_size */
1958                 dev_warn(ctrl->ctrl.device,
1959                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1960                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1961                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1962         }
1963
1964         if (opts->nr_io_queues) {
1965                 ret = nvme_rdma_create_io_queues(ctrl);
1966                 if (ret)
1967                         goto out_remove_admin_queue;
1968         }
1969
1970         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1971         WARN_ON_ONCE(!changed);
1972
1973         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1974                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1975
1976         kref_get(&ctrl->ctrl.kref);
1977
1978         mutex_lock(&nvme_rdma_ctrl_mutex);
1979         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1980         mutex_unlock(&nvme_rdma_ctrl_mutex);
1981
1982         if (opts->nr_io_queues) {
1983                 nvme_queue_scan(&ctrl->ctrl);
1984                 nvme_queue_async_events(&ctrl->ctrl);
1985         }
1986
1987         return &ctrl->ctrl;
1988
1989 out_remove_admin_queue:
1990         nvme_stop_keep_alive(&ctrl->ctrl);
1991         nvme_rdma_destroy_admin_queue(ctrl);
1992 out_kfree_queues:
1993         kfree(ctrl->queues);
1994 out_uninit_ctrl:
1995         nvme_uninit_ctrl(&ctrl->ctrl);
1996         nvme_put_ctrl(&ctrl->ctrl);
1997         if (ret > 0)
1998                 ret = -EIO;
1999         return ERR_PTR(ret);
2000 out_free_ctrl:
2001         kfree(ctrl);
2002         return ERR_PTR(ret);
2003 }
2004
2005 static struct nvmf_transport_ops nvme_rdma_transport = {
2006         .name           = "rdma",
2007         .required_opts  = NVMF_OPT_TRADDR,
2008         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2009                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2010         .create_ctrl    = nvme_rdma_create_ctrl,
2011 };
2012
2013 static void nvme_rdma_add_one(struct ib_device *ib_device)
2014 {
2015 }
2016
2017 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2018 {
2019         struct nvme_rdma_ctrl *ctrl;
2020
2021         /* Delete all controllers using this device */
2022         mutex_lock(&nvme_rdma_ctrl_mutex);
2023         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2024                 if (ctrl->device->dev != ib_device)
2025                         continue;
2026                 dev_info(ctrl->ctrl.device,
2027                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
2028                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2029                 __nvme_rdma_del_ctrl(ctrl);
2030         }
2031         mutex_unlock(&nvme_rdma_ctrl_mutex);
2032
2033         flush_workqueue(nvme_rdma_wq);
2034 }
2035
2036 static struct ib_client nvme_rdma_ib_client = {
2037         .name   = "nvme_rdma",
2038         .add = nvme_rdma_add_one,
2039         .remove = nvme_rdma_remove_one
2040 };
2041
2042 static int __init nvme_rdma_init_module(void)
2043 {
2044         int ret;
2045
2046         nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2047         if (!nvme_rdma_wq)
2048                 return -ENOMEM;
2049
2050         ret = ib_register_client(&nvme_rdma_ib_client);
2051         if (ret)
2052                 goto err_destroy_wq;
2053
2054         ret = nvmf_register_transport(&nvme_rdma_transport);
2055         if (ret)
2056                 goto err_unreg_client;
2057
2058         return 0;
2059
2060 err_unreg_client:
2061         ib_unregister_client(&nvme_rdma_ib_client);
2062 err_destroy_wq:
2063         destroy_workqueue(nvme_rdma_wq);
2064         return ret;
2065 }
2066
2067 static void __exit nvme_rdma_cleanup_module(void)
2068 {
2069         nvmf_unregister_transport(&nvme_rdma_transport);
2070         ib_unregister_client(&nvme_rdma_ib_client);
2071         destroy_workqueue(nvme_rdma_wq);
2072 }
2073
2074 module_init(nvme_rdma_init_module);
2075 module_exit(nvme_rdma_cleanup_module);
2076
2077 MODULE_LICENSE("GPL v2");