]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge tag 'trace-3.8-rc3-regression-fix' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         unsigned int bypass:1;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87         struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96                                   unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98                                      int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100                                           struct device *dev,
101                                           const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105         if (rdev->constraints && rdev->constraints->name)
106                 return rdev->constraints->name;
107         else if (rdev->desc->name)
108                 return rdev->desc->name;
109         else
110                 return "";
111 }
112
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124         struct device_node *regnode = NULL;
125         char prop_name[32]; /* 32 is max size of property name */
126
127         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129         snprintf(prop_name, 32, "%s-supply", supply);
130         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132         if (!regnode) {
133                 dev_dbg(dev, "Looking up %s property in node %s failed",
134                                 prop_name, dev->of_node->full_name);
135                 return NULL;
136         }
137         return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142         if (!rdev->constraints)
143                 return 0;
144
145         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146                 return 1;
147         else
148                 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153                                    int *min_uV, int *max_uV)
154 {
155         BUG_ON(*min_uV > *max_uV);
156
157         if (!rdev->constraints) {
158                 rdev_err(rdev, "no constraints\n");
159                 return -ENODEV;
160         }
161         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162                 rdev_err(rdev, "operation not allowed\n");
163                 return -EPERM;
164         }
165
166         if (*max_uV > rdev->constraints->max_uV)
167                 *max_uV = rdev->constraints->max_uV;
168         if (*min_uV < rdev->constraints->min_uV)
169                 *min_uV = rdev->constraints->min_uV;
170
171         if (*min_uV > *max_uV) {
172                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173                          *min_uV, *max_uV);
174                 return -EINVAL;
175         }
176
177         return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184                                      int *min_uV, int *max_uV)
185 {
186         struct regulator *regulator;
187
188         list_for_each_entry(regulator, &rdev->consumer_list, list) {
189                 /*
190                  * Assume consumers that didn't say anything are OK
191                  * with anything in the constraint range.
192                  */
193                 if (!regulator->min_uV && !regulator->max_uV)
194                         continue;
195
196                 if (*max_uV > regulator->max_uV)
197                         *max_uV = regulator->max_uV;
198                 if (*min_uV < regulator->min_uV)
199                         *min_uV = regulator->min_uV;
200         }
201
202         if (*min_uV > *max_uV) {
203                 dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
204                         regulator->min_uV, regulator->max_uV);
205                 return -EINVAL;
206         }
207
208         return 0;
209 }
210
211 /* current constraint check */
212 static int regulator_check_current_limit(struct regulator_dev *rdev,
213                                         int *min_uA, int *max_uA)
214 {
215         BUG_ON(*min_uA > *max_uA);
216
217         if (!rdev->constraints) {
218                 rdev_err(rdev, "no constraints\n");
219                 return -ENODEV;
220         }
221         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222                 rdev_err(rdev, "operation not allowed\n");
223                 return -EPERM;
224         }
225
226         if (*max_uA > rdev->constraints->max_uA)
227                 *max_uA = rdev->constraints->max_uA;
228         if (*min_uA < rdev->constraints->min_uA)
229                 *min_uA = rdev->constraints->min_uA;
230
231         if (*min_uA > *max_uA) {
232                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233                          *min_uA, *max_uA);
234                 return -EINVAL;
235         }
236
237         return 0;
238 }
239
240 /* operating mode constraint check */
241 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242 {
243         switch (*mode) {
244         case REGULATOR_MODE_FAST:
245         case REGULATOR_MODE_NORMAL:
246         case REGULATOR_MODE_IDLE:
247         case REGULATOR_MODE_STANDBY:
248                 break;
249         default:
250                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
251                 return -EINVAL;
252         }
253
254         if (!rdev->constraints) {
255                 rdev_err(rdev, "no constraints\n");
256                 return -ENODEV;
257         }
258         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259                 rdev_err(rdev, "operation not allowed\n");
260                 return -EPERM;
261         }
262
263         /* The modes are bitmasks, the most power hungry modes having
264          * the lowest values. If the requested mode isn't supported
265          * try higher modes. */
266         while (*mode) {
267                 if (rdev->constraints->valid_modes_mask & *mode)
268                         return 0;
269                 *mode /= 2;
270         }
271
272         return -EINVAL;
273 }
274
275 /* dynamic regulator mode switching constraint check */
276 static int regulator_check_drms(struct regulator_dev *rdev)
277 {
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283                 rdev_err(rdev, "operation not allowed\n");
284                 return -EPERM;
285         }
286         return 0;
287 }
288
289 static ssize_t regulator_uV_show(struct device *dev,
290                                 struct device_attribute *attr, char *buf)
291 {
292         struct regulator_dev *rdev = dev_get_drvdata(dev);
293         ssize_t ret;
294
295         mutex_lock(&rdev->mutex);
296         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297         mutex_unlock(&rdev->mutex);
298
299         return ret;
300 }
301 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303 static ssize_t regulator_uA_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309 }
310 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312 static ssize_t regulator_name_show(struct device *dev,
313                              struct device_attribute *attr, char *buf)
314 {
315         struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317         return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 }
319
320 static ssize_t regulator_print_opmode(char *buf, int mode)
321 {
322         switch (mode) {
323         case REGULATOR_MODE_FAST:
324                 return sprintf(buf, "fast\n");
325         case REGULATOR_MODE_NORMAL:
326                 return sprintf(buf, "normal\n");
327         case REGULATOR_MODE_IDLE:
328                 return sprintf(buf, "idle\n");
329         case REGULATOR_MODE_STANDBY:
330                 return sprintf(buf, "standby\n");
331         }
332         return sprintf(buf, "unknown\n");
333 }
334
335 static ssize_t regulator_opmode_show(struct device *dev,
336                                     struct device_attribute *attr, char *buf)
337 {
338         struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341 }
342 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344 static ssize_t regulator_print_state(char *buf, int state)
345 {
346         if (state > 0)
347                 return sprintf(buf, "enabled\n");
348         else if (state == 0)
349                 return sprintf(buf, "disabled\n");
350         else
351                 return sprintf(buf, "unknown\n");
352 }
353
354 static ssize_t regulator_state_show(struct device *dev,
355                                    struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358         ssize_t ret;
359
360         mutex_lock(&rdev->mutex);
361         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362         mutex_unlock(&rdev->mutex);
363
364         return ret;
365 }
366 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368 static ssize_t regulator_status_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         int status;
373         char *label;
374
375         status = rdev->desc->ops->get_status(rdev);
376         if (status < 0)
377                 return status;
378
379         switch (status) {
380         case REGULATOR_STATUS_OFF:
381                 label = "off";
382                 break;
383         case REGULATOR_STATUS_ON:
384                 label = "on";
385                 break;
386         case REGULATOR_STATUS_ERROR:
387                 label = "error";
388                 break;
389         case REGULATOR_STATUS_FAST:
390                 label = "fast";
391                 break;
392         case REGULATOR_STATUS_NORMAL:
393                 label = "normal";
394                 break;
395         case REGULATOR_STATUS_IDLE:
396                 label = "idle";
397                 break;
398         case REGULATOR_STATUS_STANDBY:
399                 label = "standby";
400                 break;
401         case REGULATOR_STATUS_BYPASS:
402                 label = "bypass";
403                 break;
404         case REGULATOR_STATUS_UNDEFINED:
405                 label = "undefined";
406                 break;
407         default:
408                 return -ERANGE;
409         }
410
411         return sprintf(buf, "%s\n", label);
412 }
413 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415 static ssize_t regulator_min_uA_show(struct device *dev,
416                                     struct device_attribute *attr, char *buf)
417 {
418         struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420         if (!rdev->constraints)
421                 return sprintf(buf, "constraint not defined\n");
422
423         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424 }
425 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427 static ssize_t regulator_max_uA_show(struct device *dev,
428                                     struct device_attribute *attr, char *buf)
429 {
430         struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432         if (!rdev->constraints)
433                 return sprintf(buf, "constraint not defined\n");
434
435         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436 }
437 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439 static ssize_t regulator_min_uV_show(struct device *dev,
440                                     struct device_attribute *attr, char *buf)
441 {
442         struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444         if (!rdev->constraints)
445                 return sprintf(buf, "constraint not defined\n");
446
447         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448 }
449 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451 static ssize_t regulator_max_uV_show(struct device *dev,
452                                     struct device_attribute *attr, char *buf)
453 {
454         struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456         if (!rdev->constraints)
457                 return sprintf(buf, "constraint not defined\n");
458
459         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460 }
461 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463 static ssize_t regulator_total_uA_show(struct device *dev,
464                                       struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467         struct regulator *regulator;
468         int uA = 0;
469
470         mutex_lock(&rdev->mutex);
471         list_for_each_entry(regulator, &rdev->consumer_list, list)
472                 uA += regulator->uA_load;
473         mutex_unlock(&rdev->mutex);
474         return sprintf(buf, "%d\n", uA);
475 }
476 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478 static ssize_t regulator_num_users_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         return sprintf(buf, "%d\n", rdev->use_count);
483 }
484
485 static ssize_t regulator_type_show(struct device *dev,
486                                   struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490         switch (rdev->desc->type) {
491         case REGULATOR_VOLTAGE:
492                 return sprintf(buf, "voltage\n");
493         case REGULATOR_CURRENT:
494                 return sprintf(buf, "current\n");
495         }
496         return sprintf(buf, "unknown\n");
497 }
498
499 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500                                 struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505 }
506 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507                 regulator_suspend_mem_uV_show, NULL);
508
509 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510                                 struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515 }
516 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517                 regulator_suspend_disk_uV_show, NULL);
518
519 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525 }
526 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527                 regulator_suspend_standby_uV_show, NULL);
528
529 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530                                 struct device_attribute *attr, char *buf)
531 {
532         struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534         return regulator_print_opmode(buf,
535                 rdev->constraints->state_mem.mode);
536 }
537 static DEVICE_ATTR(suspend_mem_mode, 0444,
538                 regulator_suspend_mem_mode_show, NULL);
539
540 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return regulator_print_opmode(buf,
546                 rdev->constraints->state_disk.mode);
547 }
548 static DEVICE_ATTR(suspend_disk_mode, 0444,
549                 regulator_suspend_disk_mode_show, NULL);
550
551 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552                                 struct device_attribute *attr, char *buf)
553 {
554         struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556         return regulator_print_opmode(buf,
557                 rdev->constraints->state_standby.mode);
558 }
559 static DEVICE_ATTR(suspend_standby_mode, 0444,
560                 regulator_suspend_standby_mode_show, NULL);
561
562 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563                                    struct device_attribute *attr, char *buf)
564 {
565         struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567         return regulator_print_state(buf,
568                         rdev->constraints->state_mem.enabled);
569 }
570 static DEVICE_ATTR(suspend_mem_state, 0444,
571                 regulator_suspend_mem_state_show, NULL);
572
573 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574                                    struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return regulator_print_state(buf,
579                         rdev->constraints->state_disk.enabled);
580 }
581 static DEVICE_ATTR(suspend_disk_state, 0444,
582                 regulator_suspend_disk_state_show, NULL);
583
584 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585                                    struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589         return regulator_print_state(buf,
590                         rdev->constraints->state_standby.enabled);
591 }
592 static DEVICE_ATTR(suspend_standby_state, 0444,
593                 regulator_suspend_standby_state_show, NULL);
594
595 static ssize_t regulator_bypass_show(struct device *dev,
596                                      struct device_attribute *attr, char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599         const char *report;
600         bool bypass;
601         int ret;
602
603         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605         if (ret != 0)
606                 report = "unknown";
607         else if (bypass)
608                 report = "enabled";
609         else
610                 report = "disabled";
611
612         return sprintf(buf, "%s\n", report);
613 }
614 static DEVICE_ATTR(bypass, 0444,
615                    regulator_bypass_show, NULL);
616
617 /*
618  * These are the only attributes are present for all regulators.
619  * Other attributes are a function of regulator functionality.
620  */
621 static struct device_attribute regulator_dev_attrs[] = {
622         __ATTR(name, 0444, regulator_name_show, NULL),
623         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
624         __ATTR(type, 0444, regulator_type_show, NULL),
625         __ATTR_NULL,
626 };
627
628 static void regulator_dev_release(struct device *dev)
629 {
630         struct regulator_dev *rdev = dev_get_drvdata(dev);
631         kfree(rdev);
632 }
633
634 static struct class regulator_class = {
635         .name = "regulator",
636         .dev_release = regulator_dev_release,
637         .dev_attrs = regulator_dev_attrs,
638 };
639
640 /* Calculate the new optimum regulator operating mode based on the new total
641  * consumer load. All locks held by caller */
642 static void drms_uA_update(struct regulator_dev *rdev)
643 {
644         struct regulator *sibling;
645         int current_uA = 0, output_uV, input_uV, err;
646         unsigned int mode;
647
648         err = regulator_check_drms(rdev);
649         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650             (!rdev->desc->ops->get_voltage &&
651              !rdev->desc->ops->get_voltage_sel) ||
652             !rdev->desc->ops->set_mode)
653                 return;
654
655         /* get output voltage */
656         output_uV = _regulator_get_voltage(rdev);
657         if (output_uV <= 0)
658                 return;
659
660         /* get input voltage */
661         input_uV = 0;
662         if (rdev->supply)
663                 input_uV = regulator_get_voltage(rdev->supply);
664         if (input_uV <= 0)
665                 input_uV = rdev->constraints->input_uV;
666         if (input_uV <= 0)
667                 return;
668
669         /* calc total requested load */
670         list_for_each_entry(sibling, &rdev->consumer_list, list)
671                 current_uA += sibling->uA_load;
672
673         /* now get the optimum mode for our new total regulator load */
674         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675                                                   output_uV, current_uA);
676
677         /* check the new mode is allowed */
678         err = regulator_mode_constrain(rdev, &mode);
679         if (err == 0)
680                 rdev->desc->ops->set_mode(rdev, mode);
681 }
682
683 static int suspend_set_state(struct regulator_dev *rdev,
684         struct regulator_state *rstate)
685 {
686         int ret = 0;
687
688         /* If we have no suspend mode configration don't set anything;
689          * only warn if the driver implements set_suspend_voltage or
690          * set_suspend_mode callback.
691          */
692         if (!rstate->enabled && !rstate->disabled) {
693                 if (rdev->desc->ops->set_suspend_voltage ||
694                     rdev->desc->ops->set_suspend_mode)
695                         rdev_warn(rdev, "No configuration\n");
696                 return 0;
697         }
698
699         if (rstate->enabled && rstate->disabled) {
700                 rdev_err(rdev, "invalid configuration\n");
701                 return -EINVAL;
702         }
703
704         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705                 ret = rdev->desc->ops->set_suspend_enable(rdev);
706         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707                 ret = rdev->desc->ops->set_suspend_disable(rdev);
708         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709                 ret = 0;
710
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         if (!count)
810                 sprintf(buf, "no parameters");
811
812         rdev_info(rdev, "%s\n", buf);
813
814         if ((constraints->min_uV != constraints->max_uV) &&
815             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816                 rdev_warn(rdev,
817                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 }
819
820 static int machine_constraints_voltage(struct regulator_dev *rdev,
821         struct regulation_constraints *constraints)
822 {
823         struct regulator_ops *ops = rdev->desc->ops;
824         int ret;
825
826         /* do we need to apply the constraint voltage */
827         if (rdev->constraints->apply_uV &&
828             rdev->constraints->min_uV == rdev->constraints->max_uV) {
829                 ret = _regulator_do_set_voltage(rdev,
830                                                 rdev->constraints->min_uV,
831                                                 rdev->constraints->max_uV);
832                 if (ret < 0) {
833                         rdev_err(rdev, "failed to apply %duV constraint\n",
834                                  rdev->constraints->min_uV);
835                         return ret;
836                 }
837         }
838
839         /* constrain machine-level voltage specs to fit
840          * the actual range supported by this regulator.
841          */
842         if (ops->list_voltage && rdev->desc->n_voltages) {
843                 int     count = rdev->desc->n_voltages;
844                 int     i;
845                 int     min_uV = INT_MAX;
846                 int     max_uV = INT_MIN;
847                 int     cmin = constraints->min_uV;
848                 int     cmax = constraints->max_uV;
849
850                 /* it's safe to autoconfigure fixed-voltage supplies
851                    and the constraints are used by list_voltage. */
852                 if (count == 1 && !cmin) {
853                         cmin = 1;
854                         cmax = INT_MAX;
855                         constraints->min_uV = cmin;
856                         constraints->max_uV = cmax;
857                 }
858
859                 /* voltage constraints are optional */
860                 if ((cmin == 0) && (cmax == 0))
861                         return 0;
862
863                 /* else require explicit machine-level constraints */
864                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865                         rdev_err(rdev, "invalid voltage constraints\n");
866                         return -EINVAL;
867                 }
868
869                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870                 for (i = 0; i < count; i++) {
871                         int     value;
872
873                         value = ops->list_voltage(rdev, i);
874                         if (value <= 0)
875                                 continue;
876
877                         /* maybe adjust [min_uV..max_uV] */
878                         if (value >= cmin && value < min_uV)
879                                 min_uV = value;
880                         if (value <= cmax && value > max_uV)
881                                 max_uV = value;
882                 }
883
884                 /* final: [min_uV..max_uV] valid iff constraints valid */
885                 if (max_uV < min_uV) {
886                         rdev_err(rdev,
887                                  "unsupportable voltage constraints %u-%uuV\n",
888                                  min_uV, max_uV);
889                         return -EINVAL;
890                 }
891
892                 /* use regulator's subset of machine constraints */
893                 if (constraints->min_uV < min_uV) {
894                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895                                  constraints->min_uV, min_uV);
896                         constraints->min_uV = min_uV;
897                 }
898                 if (constraints->max_uV > max_uV) {
899                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900                                  constraints->max_uV, max_uV);
901                         constraints->max_uV = max_uV;
902                 }
903         }
904
905         return 0;
906 }
907
908 /**
909  * set_machine_constraints - sets regulator constraints
910  * @rdev: regulator source
911  * @constraints: constraints to apply
912  *
913  * Allows platform initialisation code to define and constrain
914  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915  * Constraints *must* be set by platform code in order for some
916  * regulator operations to proceed i.e. set_voltage, set_current_limit,
917  * set_mode.
918  */
919 static int set_machine_constraints(struct regulator_dev *rdev,
920         const struct regulation_constraints *constraints)
921 {
922         int ret = 0;
923         struct regulator_ops *ops = rdev->desc->ops;
924
925         if (constraints)
926                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927                                             GFP_KERNEL);
928         else
929                 rdev->constraints = kzalloc(sizeof(*constraints),
930                                             GFP_KERNEL);
931         if (!rdev->constraints)
932                 return -ENOMEM;
933
934         ret = machine_constraints_voltage(rdev, rdev->constraints);
935         if (ret != 0)
936                 goto out;
937
938         /* do we need to setup our suspend state */
939         if (rdev->constraints->initial_state) {
940                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941                 if (ret < 0) {
942                         rdev_err(rdev, "failed to set suspend state\n");
943                         goto out;
944                 }
945         }
946
947         if (rdev->constraints->initial_mode) {
948                 if (!ops->set_mode) {
949                         rdev_err(rdev, "no set_mode operation\n");
950                         ret = -EINVAL;
951                         goto out;
952                 }
953
954                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955                 if (ret < 0) {
956                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957                         goto out;
958                 }
959         }
960
961         /* If the constraints say the regulator should be on at this point
962          * and we have control then make sure it is enabled.
963          */
964         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965             ops->enable) {
966                 ret = ops->enable(rdev);
967                 if (ret < 0) {
968                         rdev_err(rdev, "failed to enable\n");
969                         goto out;
970                 }
971         }
972
973         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975                 if (ret < 0) {
976                         rdev_err(rdev, "failed to set ramp_delay\n");
977                         goto out;
978                 }
979         }
980
981         print_constraints(rdev);
982         return 0;
983 out:
984         kfree(rdev->constraints);
985         rdev->constraints = NULL;
986         return ret;
987 }
988
989 /**
990  * set_supply - set regulator supply regulator
991  * @rdev: regulator name
992  * @supply_rdev: supply regulator name
993  *
994  * Called by platform initialisation code to set the supply regulator for this
995  * regulator. This ensures that a regulators supply will also be enabled by the
996  * core if it's child is enabled.
997  */
998 static int set_supply(struct regulator_dev *rdev,
999                       struct regulator_dev *supply_rdev)
1000 {
1001         int err;
1002
1003         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006         if (rdev->supply == NULL) {
1007                 err = -ENOMEM;
1008                 return err;
1009         }
1010         supply_rdev->open_count++;
1011
1012         return 0;
1013 }
1014
1015 /**
1016  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017  * @rdev:         regulator source
1018  * @consumer_dev_name: dev_name() string for device supply applies to
1019  * @supply:       symbolic name for supply
1020  *
1021  * Allows platform initialisation code to map physical regulator
1022  * sources to symbolic names for supplies for use by devices.  Devices
1023  * should use these symbolic names to request regulators, avoiding the
1024  * need to provide board-specific regulator names as platform data.
1025  */
1026 static int set_consumer_device_supply(struct regulator_dev *rdev,
1027                                       const char *consumer_dev_name,
1028                                       const char *supply)
1029 {
1030         struct regulator_map *node;
1031         int has_dev;
1032
1033         if (supply == NULL)
1034                 return -EINVAL;
1035
1036         if (consumer_dev_name != NULL)
1037                 has_dev = 1;
1038         else
1039                 has_dev = 0;
1040
1041         list_for_each_entry(node, &regulator_map_list, list) {
1042                 if (node->dev_name && consumer_dev_name) {
1043                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044                                 continue;
1045                 } else if (node->dev_name || consumer_dev_name) {
1046                         continue;
1047                 }
1048
1049                 if (strcmp(node->supply, supply) != 0)
1050                         continue;
1051
1052                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053                          consumer_dev_name,
1054                          dev_name(&node->regulator->dev),
1055                          node->regulator->desc->name,
1056                          supply,
1057                          dev_name(&rdev->dev), rdev_get_name(rdev));
1058                 return -EBUSY;
1059         }
1060
1061         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062         if (node == NULL)
1063                 return -ENOMEM;
1064
1065         node->regulator = rdev;
1066         node->supply = supply;
1067
1068         if (has_dev) {
1069                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070                 if (node->dev_name == NULL) {
1071                         kfree(node);
1072                         return -ENOMEM;
1073                 }
1074         }
1075
1076         list_add(&node->list, &regulator_map_list);
1077         return 0;
1078 }
1079
1080 static void unset_regulator_supplies(struct regulator_dev *rdev)
1081 {
1082         struct regulator_map *node, *n;
1083
1084         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085                 if (rdev == node->regulator) {
1086                         list_del(&node->list);
1087                         kfree(node->dev_name);
1088                         kfree(node);
1089                 }
1090         }
1091 }
1092
1093 #define REG_STR_SIZE    64
1094
1095 static struct regulator *create_regulator(struct regulator_dev *rdev,
1096                                           struct device *dev,
1097                                           const char *supply_name)
1098 {
1099         struct regulator *regulator;
1100         char buf[REG_STR_SIZE];
1101         int err, size;
1102
1103         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104         if (regulator == NULL)
1105                 return NULL;
1106
1107         mutex_lock(&rdev->mutex);
1108         regulator->rdev = rdev;
1109         list_add(&regulator->list, &rdev->consumer_list);
1110
1111         if (dev) {
1112                 regulator->dev = dev;
1113
1114                 /* Add a link to the device sysfs entry */
1115                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116                                  dev->kobj.name, supply_name);
1117                 if (size >= REG_STR_SIZE)
1118                         goto overflow_err;
1119
1120                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121                 if (regulator->supply_name == NULL)
1122                         goto overflow_err;
1123
1124                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125                                         buf);
1126                 if (err) {
1127                         rdev_warn(rdev, "could not add device link %s err %d\n",
1128                                   dev->kobj.name, err);
1129                         /* non-fatal */
1130                 }
1131         } else {
1132                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133                 if (regulator->supply_name == NULL)
1134                         goto overflow_err;
1135         }
1136
1137         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138                                                 rdev->debugfs);
1139         if (!regulator->debugfs) {
1140                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1141         } else {
1142                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143                                    &regulator->uA_load);
1144                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145                                    &regulator->min_uV);
1146                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147                                    &regulator->max_uV);
1148         }
1149
1150         /*
1151          * Check now if the regulator is an always on regulator - if
1152          * it is then we don't need to do nearly so much work for
1153          * enable/disable calls.
1154          */
1155         if (!_regulator_can_change_status(rdev) &&
1156             _regulator_is_enabled(rdev))
1157                 regulator->always_on = true;
1158
1159         mutex_unlock(&rdev->mutex);
1160         return regulator;
1161 overflow_err:
1162         list_del(&regulator->list);
1163         kfree(regulator);
1164         mutex_unlock(&rdev->mutex);
1165         return NULL;
1166 }
1167
1168 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169 {
1170         if (!rdev->desc->ops->enable_time)
1171                 return rdev->desc->enable_time;
1172         return rdev->desc->ops->enable_time(rdev);
1173 }
1174
1175 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176                                                   const char *supply,
1177                                                   int *ret)
1178 {
1179         struct regulator_dev *r;
1180         struct device_node *node;
1181         struct regulator_map *map;
1182         const char *devname = NULL;
1183
1184         /* first do a dt based lookup */
1185         if (dev && dev->of_node) {
1186                 node = of_get_regulator(dev, supply);
1187                 if (node) {
1188                         list_for_each_entry(r, &regulator_list, list)
1189                                 if (r->dev.parent &&
1190                                         node == r->dev.of_node)
1191                                         return r;
1192                 } else {
1193                         /*
1194                          * If we couldn't even get the node then it's
1195                          * not just that the device didn't register
1196                          * yet, there's no node and we'll never
1197                          * succeed.
1198                          */
1199                         *ret = -ENODEV;
1200                 }
1201         }
1202
1203         /* if not found, try doing it non-dt way */
1204         if (dev)
1205                 devname = dev_name(dev);
1206
1207         list_for_each_entry(r, &regulator_list, list)
1208                 if (strcmp(rdev_get_name(r), supply) == 0)
1209                         return r;
1210
1211         list_for_each_entry(map, &regulator_map_list, list) {
1212                 /* If the mapping has a device set up it must match */
1213                 if (map->dev_name &&
1214                     (!devname || strcmp(map->dev_name, devname)))
1215                         continue;
1216
1217                 if (strcmp(map->supply, supply) == 0)
1218                         return map->regulator;
1219         }
1220
1221
1222         return NULL;
1223 }
1224
1225 /* Internal regulator request function */
1226 static struct regulator *_regulator_get(struct device *dev, const char *id,
1227                                         int exclusive)
1228 {
1229         struct regulator_dev *rdev;
1230         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231         const char *devname = NULL;
1232         int ret;
1233
1234         if (id == NULL) {
1235                 pr_err("get() with no identifier\n");
1236                 return regulator;
1237         }
1238
1239         if (dev)
1240                 devname = dev_name(dev);
1241
1242         mutex_lock(&regulator_list_mutex);
1243
1244         rdev = regulator_dev_lookup(dev, id, &ret);
1245         if (rdev)
1246                 goto found;
1247
1248         if (board_wants_dummy_regulator) {
1249                 rdev = dummy_regulator_rdev;
1250                 goto found;
1251         }
1252
1253 #ifdef CONFIG_REGULATOR_DUMMY
1254         if (!devname)
1255                 devname = "deviceless";
1256
1257         /* If the board didn't flag that it was fully constrained then
1258          * substitute in a dummy regulator so consumers can continue.
1259          */
1260         if (!has_full_constraints) {
1261                 pr_warn("%s supply %s not found, using dummy regulator\n",
1262                         devname, id);
1263                 rdev = dummy_regulator_rdev;
1264                 goto found;
1265         }
1266 #endif
1267
1268         mutex_unlock(&regulator_list_mutex);
1269         return regulator;
1270
1271 found:
1272         if (rdev->exclusive) {
1273                 regulator = ERR_PTR(-EPERM);
1274                 goto out;
1275         }
1276
1277         if (exclusive && rdev->open_count) {
1278                 regulator = ERR_PTR(-EBUSY);
1279                 goto out;
1280         }
1281
1282         if (!try_module_get(rdev->owner))
1283                 goto out;
1284
1285         regulator = create_regulator(rdev, dev, id);
1286         if (regulator == NULL) {
1287                 regulator = ERR_PTR(-ENOMEM);
1288                 module_put(rdev->owner);
1289                 goto out;
1290         }
1291
1292         rdev->open_count++;
1293         if (exclusive) {
1294                 rdev->exclusive = 1;
1295
1296                 ret = _regulator_is_enabled(rdev);
1297                 if (ret > 0)
1298                         rdev->use_count = 1;
1299                 else
1300                         rdev->use_count = 0;
1301         }
1302
1303 out:
1304         mutex_unlock(&regulator_list_mutex);
1305
1306         return regulator;
1307 }
1308
1309 /**
1310  * regulator_get - lookup and obtain a reference to a regulator.
1311  * @dev: device for regulator "consumer"
1312  * @id: Supply name or regulator ID.
1313  *
1314  * Returns a struct regulator corresponding to the regulator producer,
1315  * or IS_ERR() condition containing errno.
1316  *
1317  * Use of supply names configured via regulator_set_device_supply() is
1318  * strongly encouraged.  It is recommended that the supply name used
1319  * should match the name used for the supply and/or the relevant
1320  * device pins in the datasheet.
1321  */
1322 struct regulator *regulator_get(struct device *dev, const char *id)
1323 {
1324         return _regulator_get(dev, id, 0);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_get);
1327
1328 static void devm_regulator_release(struct device *dev, void *res)
1329 {
1330         regulator_put(*(struct regulator **)res);
1331 }
1332
1333 /**
1334  * devm_regulator_get - Resource managed regulator_get()
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Managed regulator_get(). Regulators returned from this function are
1339  * automatically regulator_put() on driver detach. See regulator_get() for more
1340  * information.
1341  */
1342 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343 {
1344         struct regulator **ptr, *regulator;
1345
1346         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347         if (!ptr)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         regulator = regulator_get(dev, id);
1351         if (!IS_ERR(regulator)) {
1352                 *ptr = regulator;
1353                 devres_add(dev, ptr);
1354         } else {
1355                 devres_free(ptr);
1356         }
1357
1358         return regulator;
1359 }
1360 EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362 /**
1363  * regulator_get_exclusive - obtain exclusive access to a regulator.
1364  * @dev: device for regulator "consumer"
1365  * @id: Supply name or regulator ID.
1366  *
1367  * Returns a struct regulator corresponding to the regulator producer,
1368  * or IS_ERR() condition containing errno.  Other consumers will be
1369  * unable to obtain this reference is held and the use count for the
1370  * regulator will be initialised to reflect the current state of the
1371  * regulator.
1372  *
1373  * This is intended for use by consumers which cannot tolerate shared
1374  * use of the regulator such as those which need to force the
1375  * regulator off for correct operation of the hardware they are
1376  * controlling.
1377  *
1378  * Use of supply names configured via regulator_set_device_supply() is
1379  * strongly encouraged.  It is recommended that the supply name used
1380  * should match the name used for the supply and/or the relevant
1381  * device pins in the datasheet.
1382  */
1383 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384 {
1385         return _regulator_get(dev, id, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389 /* Locks held by regulator_put() */
1390 static void _regulator_put(struct regulator *regulator)
1391 {
1392         struct regulator_dev *rdev;
1393
1394         if (regulator == NULL || IS_ERR(regulator))
1395                 return;
1396
1397         rdev = regulator->rdev;
1398
1399         debugfs_remove_recursive(regulator->debugfs);
1400
1401         /* remove any sysfs entries */
1402         if (regulator->dev)
1403                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404         kfree(regulator->supply_name);
1405         list_del(&regulator->list);
1406         kfree(regulator);
1407
1408         rdev->open_count--;
1409         rdev->exclusive = 0;
1410
1411         module_put(rdev->owner);
1412 }
1413
1414 /**
1415  * regulator_put - "free" the regulator source
1416  * @regulator: regulator source
1417  *
1418  * Note: drivers must ensure that all regulator_enable calls made on this
1419  * regulator source are balanced by regulator_disable calls prior to calling
1420  * this function.
1421  */
1422 void regulator_put(struct regulator *regulator)
1423 {
1424         mutex_lock(&regulator_list_mutex);
1425         _regulator_put(regulator);
1426         mutex_unlock(&regulator_list_mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_put);
1429
1430 static int devm_regulator_match(struct device *dev, void *res, void *data)
1431 {
1432         struct regulator **r = res;
1433         if (!r || !*r) {
1434                 WARN_ON(!r || !*r);
1435                 return 0;
1436         }
1437         return *r == data;
1438 }
1439
1440 /**
1441  * devm_regulator_put - Resource managed regulator_put()
1442  * @regulator: regulator to free
1443  *
1444  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445  * this function will not need to be called and the resource management
1446  * code will ensure that the resource is freed.
1447  */
1448 void devm_regulator_put(struct regulator *regulator)
1449 {
1450         int rc;
1451
1452         rc = devres_release(regulator->dev, devm_regulator_release,
1453                             devm_regulator_match, regulator);
1454         if (rc != 0)
1455                 WARN_ON(rc);
1456 }
1457 EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459 static int _regulator_do_enable(struct regulator_dev *rdev)
1460 {
1461         int ret, delay;
1462
1463         /* Query before enabling in case configuration dependent.  */
1464         ret = _regulator_get_enable_time(rdev);
1465         if (ret >= 0) {
1466                 delay = ret;
1467         } else {
1468                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469                 delay = 0;
1470         }
1471
1472         trace_regulator_enable(rdev_get_name(rdev));
1473
1474         if (rdev->ena_gpio) {
1475                 gpio_set_value_cansleep(rdev->ena_gpio,
1476                                         !rdev->ena_gpio_invert);
1477                 rdev->ena_gpio_state = 1;
1478         } else if (rdev->desc->ops->enable) {
1479                 ret = rdev->desc->ops->enable(rdev);
1480                 if (ret < 0)
1481                         return ret;
1482         } else {
1483                 return -EINVAL;
1484         }
1485
1486         /* Allow the regulator to ramp; it would be useful to extend
1487          * this for bulk operations so that the regulators can ramp
1488          * together.  */
1489         trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491         if (delay >= 1000) {
1492                 mdelay(delay / 1000);
1493                 udelay(delay % 1000);
1494         } else if (delay) {
1495                 udelay(delay);
1496         }
1497
1498         trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500         return 0;
1501 }
1502
1503 /* locks held by regulator_enable() */
1504 static int _regulator_enable(struct regulator_dev *rdev)
1505 {
1506         int ret;
1507
1508         /* check voltage and requested load before enabling */
1509         if (rdev->constraints &&
1510             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511                 drms_uA_update(rdev);
1512
1513         if (rdev->use_count == 0) {
1514                 /* The regulator may on if it's not switchable or left on */
1515                 ret = _regulator_is_enabled(rdev);
1516                 if (ret == -EINVAL || ret == 0) {
1517                         if (!_regulator_can_change_status(rdev))
1518                                 return -EPERM;
1519
1520                         ret = _regulator_do_enable(rdev);
1521                         if (ret < 0)
1522                                 return ret;
1523
1524                 } else if (ret < 0) {
1525                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526                         return ret;
1527                 }
1528                 /* Fallthrough on positive return values - already enabled */
1529         }
1530
1531         rdev->use_count++;
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * regulator_enable - enable regulator output
1538  * @regulator: regulator source
1539  *
1540  * Request that the regulator be enabled with the regulator output at
1541  * the predefined voltage or current value.  Calls to regulator_enable()
1542  * must be balanced with calls to regulator_disable().
1543  *
1544  * NOTE: the output value can be set by other drivers, boot loader or may be
1545  * hardwired in the regulator.
1546  */
1547 int regulator_enable(struct regulator *regulator)
1548 {
1549         struct regulator_dev *rdev = regulator->rdev;
1550         int ret = 0;
1551
1552         if (regulator->always_on)
1553                 return 0;
1554
1555         if (rdev->supply) {
1556                 ret = regulator_enable(rdev->supply);
1557                 if (ret != 0)
1558                         return ret;
1559         }
1560
1561         mutex_lock(&rdev->mutex);
1562         ret = _regulator_enable(rdev);
1563         mutex_unlock(&rdev->mutex);
1564
1565         if (ret != 0 && rdev->supply)
1566                 regulator_disable(rdev->supply);
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572 static int _regulator_do_disable(struct regulator_dev *rdev)
1573 {
1574         int ret;
1575
1576         trace_regulator_disable(rdev_get_name(rdev));
1577
1578         if (rdev->ena_gpio) {
1579                 gpio_set_value_cansleep(rdev->ena_gpio,
1580                                         rdev->ena_gpio_invert);
1581                 rdev->ena_gpio_state = 0;
1582
1583         } else if (rdev->desc->ops->disable) {
1584                 ret = rdev->desc->ops->disable(rdev);
1585                 if (ret != 0)
1586                         return ret;
1587         }
1588
1589         trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592                              NULL);
1593         return 0;
1594 }
1595
1596 /* locks held by regulator_disable() */
1597 static int _regulator_disable(struct regulator_dev *rdev)
1598 {
1599         int ret = 0;
1600
1601         if (WARN(rdev->use_count <= 0,
1602                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603                 return -EIO;
1604
1605         /* are we the last user and permitted to disable ? */
1606         if (rdev->use_count == 1 &&
1607             (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609                 /* we are last user */
1610                 if (_regulator_can_change_status(rdev)) {
1611                         ret = _regulator_do_disable(rdev);
1612                         if (ret < 0) {
1613                                 rdev_err(rdev, "failed to disable\n");
1614                                 return ret;
1615                         }
1616                 }
1617
1618                 rdev->use_count = 0;
1619         } else if (rdev->use_count > 1) {
1620
1621                 if (rdev->constraints &&
1622                         (rdev->constraints->valid_ops_mask &
1623                         REGULATOR_CHANGE_DRMS))
1624                         drms_uA_update(rdev);
1625
1626                 rdev->use_count--;
1627         }
1628
1629         return ret;
1630 }
1631
1632 /**
1633  * regulator_disable - disable regulator output
1634  * @regulator: regulator source
1635  *
1636  * Disable the regulator output voltage or current.  Calls to
1637  * regulator_enable() must be balanced with calls to
1638  * regulator_disable().
1639  *
1640  * NOTE: this will only disable the regulator output if no other consumer
1641  * devices have it enabled, the regulator device supports disabling and
1642  * machine constraints permit this operation.
1643  */
1644 int regulator_disable(struct regulator *regulator)
1645 {
1646         struct regulator_dev *rdev = regulator->rdev;
1647         int ret = 0;
1648
1649         if (regulator->always_on)
1650                 return 0;
1651
1652         mutex_lock(&rdev->mutex);
1653         ret = _regulator_disable(rdev);
1654         mutex_unlock(&rdev->mutex);
1655
1656         if (ret == 0 && rdev->supply)
1657                 regulator_disable(rdev->supply);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663 /* locks held by regulator_force_disable() */
1664 static int _regulator_force_disable(struct regulator_dev *rdev)
1665 {
1666         int ret = 0;
1667
1668         /* force disable */
1669         if (rdev->desc->ops->disable) {
1670                 /* ah well, who wants to live forever... */
1671                 ret = rdev->desc->ops->disable(rdev);
1672                 if (ret < 0) {
1673                         rdev_err(rdev, "failed to force disable\n");
1674                         return ret;
1675                 }
1676                 /* notify other consumers that power has been forced off */
1677                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678                         REGULATOR_EVENT_DISABLE, NULL);
1679         }
1680
1681         return ret;
1682 }
1683
1684 /**
1685  * regulator_force_disable - force disable regulator output
1686  * @regulator: regulator source
1687  *
1688  * Forcibly disable the regulator output voltage or current.
1689  * NOTE: this *will* disable the regulator output even if other consumer
1690  * devices have it enabled. This should be used for situations when device
1691  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692  */
1693 int regulator_force_disable(struct regulator *regulator)
1694 {
1695         struct regulator_dev *rdev = regulator->rdev;
1696         int ret;
1697
1698         mutex_lock(&rdev->mutex);
1699         regulator->uA_load = 0;
1700         ret = _regulator_force_disable(regulator->rdev);
1701         mutex_unlock(&rdev->mutex);
1702
1703         if (rdev->supply)
1704                 while (rdev->open_count--)
1705                         regulator_disable(rdev->supply);
1706
1707         return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711 static void regulator_disable_work(struct work_struct *work)
1712 {
1713         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714                                                   disable_work.work);
1715         int count, i, ret;
1716
1717         mutex_lock(&rdev->mutex);
1718
1719         BUG_ON(!rdev->deferred_disables);
1720
1721         count = rdev->deferred_disables;
1722         rdev->deferred_disables = 0;
1723
1724         for (i = 0; i < count; i++) {
1725                 ret = _regulator_disable(rdev);
1726                 if (ret != 0)
1727                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728         }
1729
1730         mutex_unlock(&rdev->mutex);
1731
1732         if (rdev->supply) {
1733                 for (i = 0; i < count; i++) {
1734                         ret = regulator_disable(rdev->supply);
1735                         if (ret != 0) {
1736                                 rdev_err(rdev,
1737                                          "Supply disable failed: %d\n", ret);
1738                         }
1739                 }
1740         }
1741 }
1742
1743 /**
1744  * regulator_disable_deferred - disable regulator output with delay
1745  * @regulator: regulator source
1746  * @ms: miliseconds until the regulator is disabled
1747  *
1748  * Execute regulator_disable() on the regulator after a delay.  This
1749  * is intended for use with devices that require some time to quiesce.
1750  *
1751  * NOTE: this will only disable the regulator output if no other consumer
1752  * devices have it enabled, the regulator device supports disabling and
1753  * machine constraints permit this operation.
1754  */
1755 int regulator_disable_deferred(struct regulator *regulator, int ms)
1756 {
1757         struct regulator_dev *rdev = regulator->rdev;
1758         int ret;
1759
1760         if (regulator->always_on)
1761                 return 0;
1762
1763         if (!ms)
1764                 return regulator_disable(regulator);
1765
1766         mutex_lock(&rdev->mutex);
1767         rdev->deferred_disables++;
1768         mutex_unlock(&rdev->mutex);
1769
1770         ret = schedule_delayed_work(&rdev->disable_work,
1771                                     msecs_to_jiffies(ms));
1772         if (ret < 0)
1773                 return ret;
1774         else
1775                 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779 /**
1780  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781  *
1782  * @rdev: regulator to operate on
1783  *
1784  * Regulators that use regmap for their register I/O can set the
1785  * enable_reg and enable_mask fields in their descriptor and then use
1786  * this as their is_enabled operation, saving some code.
1787  */
1788 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789 {
1790         unsigned int val;
1791         int ret;
1792
1793         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794         if (ret != 0)
1795                 return ret;
1796
1797         return (val & rdev->desc->enable_mask) != 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801 /**
1802  * regulator_enable_regmap - standard enable() for regmap users
1803  *
1804  * @rdev: regulator to operate on
1805  *
1806  * Regulators that use regmap for their register I/O can set the
1807  * enable_reg and enable_mask fields in their descriptor and then use
1808  * this as their enable() operation, saving some code.
1809  */
1810 int regulator_enable_regmap(struct regulator_dev *rdev)
1811 {
1812         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813                                   rdev->desc->enable_mask,
1814                                   rdev->desc->enable_mask);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818 /**
1819  * regulator_disable_regmap - standard disable() for regmap users
1820  *
1821  * @rdev: regulator to operate on
1822  *
1823  * Regulators that use regmap for their register I/O can set the
1824  * enable_reg and enable_mask fields in their descriptor and then use
1825  * this as their disable() operation, saving some code.
1826  */
1827 int regulator_disable_regmap(struct regulator_dev *rdev)
1828 {
1829         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830                                   rdev->desc->enable_mask, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834 static int _regulator_is_enabled(struct regulator_dev *rdev)
1835 {
1836         /* A GPIO control always takes precedence */
1837         if (rdev->ena_gpio)
1838                 return rdev->ena_gpio_state;
1839
1840         /* If we don't know then assume that the regulator is always on */
1841         if (!rdev->desc->ops->is_enabled)
1842                 return 1;
1843
1844         return rdev->desc->ops->is_enabled(rdev);
1845 }
1846
1847 /**
1848  * regulator_is_enabled - is the regulator output enabled
1849  * @regulator: regulator source
1850  *
1851  * Returns positive if the regulator driver backing the source/client
1852  * has requested that the device be enabled, zero if it hasn't, else a
1853  * negative errno code.
1854  *
1855  * Note that the device backing this regulator handle can have multiple
1856  * users, so it might be enabled even if regulator_enable() was never
1857  * called for this particular source.
1858  */
1859 int regulator_is_enabled(struct regulator *regulator)
1860 {
1861         int ret;
1862
1863         if (regulator->always_on)
1864                 return 1;
1865
1866         mutex_lock(&regulator->rdev->mutex);
1867         ret = _regulator_is_enabled(regulator->rdev);
1868         mutex_unlock(&regulator->rdev->mutex);
1869
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874 /**
1875  * regulator_can_change_voltage - check if regulator can change voltage
1876  * @regulator: regulator source
1877  *
1878  * Returns positive if the regulator driver backing the source/client
1879  * can change its voltage, false otherwise. Usefull for detecting fixed
1880  * or dummy regulators and disabling voltage change logic in the client
1881  * driver.
1882  */
1883 int regulator_can_change_voltage(struct regulator *regulator)
1884 {
1885         struct regulator_dev    *rdev = regulator->rdev;
1886
1887         if (rdev->constraints &&
1888             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1889                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1890                         return 1;
1891
1892                 if (rdev->desc->continuous_voltage_range &&
1893                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
1894                     rdev->constraints->min_uV != rdev->constraints->max_uV)
1895                         return 1;
1896         }
1897
1898         return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1901
1902 /**
1903  * regulator_count_voltages - count regulator_list_voltage() selectors
1904  * @regulator: regulator source
1905  *
1906  * Returns number of selectors, or negative errno.  Selectors are
1907  * numbered starting at zero, and typically correspond to bitfields
1908  * in hardware registers.
1909  */
1910 int regulator_count_voltages(struct regulator *regulator)
1911 {
1912         struct regulator_dev    *rdev = regulator->rdev;
1913
1914         return rdev->desc->n_voltages ? : -EINVAL;
1915 }
1916 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1917
1918 /**
1919  * regulator_list_voltage_linear - List voltages with simple calculation
1920  *
1921  * @rdev: Regulator device
1922  * @selector: Selector to convert into a voltage
1923  *
1924  * Regulators with a simple linear mapping between voltages and
1925  * selectors can set min_uV and uV_step in the regulator descriptor
1926  * and then use this function as their list_voltage() operation,
1927  */
1928 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1929                                   unsigned int selector)
1930 {
1931         if (selector >= rdev->desc->n_voltages)
1932                 return -EINVAL;
1933         if (selector < rdev->desc->linear_min_sel)
1934                 return 0;
1935
1936         selector -= rdev->desc->linear_min_sel;
1937
1938         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1941
1942 /**
1943  * regulator_list_voltage_table - List voltages with table based mapping
1944  *
1945  * @rdev: Regulator device
1946  * @selector: Selector to convert into a voltage
1947  *
1948  * Regulators with table based mapping between voltages and
1949  * selectors can set volt_table in the regulator descriptor
1950  * and then use this function as their list_voltage() operation.
1951  */
1952 int regulator_list_voltage_table(struct regulator_dev *rdev,
1953                                  unsigned int selector)
1954 {
1955         if (!rdev->desc->volt_table) {
1956                 BUG_ON(!rdev->desc->volt_table);
1957                 return -EINVAL;
1958         }
1959
1960         if (selector >= rdev->desc->n_voltages)
1961                 return -EINVAL;
1962
1963         return rdev->desc->volt_table[selector];
1964 }
1965 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1966
1967 /**
1968  * regulator_list_voltage - enumerate supported voltages
1969  * @regulator: regulator source
1970  * @selector: identify voltage to list
1971  * Context: can sleep
1972  *
1973  * Returns a voltage that can be passed to @regulator_set_voltage(),
1974  * zero if this selector code can't be used on this system, or a
1975  * negative errno.
1976  */
1977 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1978 {
1979         struct regulator_dev    *rdev = regulator->rdev;
1980         struct regulator_ops    *ops = rdev->desc->ops;
1981         int                     ret;
1982
1983         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1984                 return -EINVAL;
1985
1986         mutex_lock(&rdev->mutex);
1987         ret = ops->list_voltage(rdev, selector);
1988         mutex_unlock(&rdev->mutex);
1989
1990         if (ret > 0) {
1991                 if (ret < rdev->constraints->min_uV)
1992                         ret = 0;
1993                 else if (ret > rdev->constraints->max_uV)
1994                         ret = 0;
1995         }
1996
1997         return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2000
2001 /**
2002  * regulator_is_supported_voltage - check if a voltage range can be supported
2003  *
2004  * @regulator: Regulator to check.
2005  * @min_uV: Minimum required voltage in uV.
2006  * @max_uV: Maximum required voltage in uV.
2007  *
2008  * Returns a boolean or a negative error code.
2009  */
2010 int regulator_is_supported_voltage(struct regulator *regulator,
2011                                    int min_uV, int max_uV)
2012 {
2013         struct regulator_dev *rdev = regulator->rdev;
2014         int i, voltages, ret;
2015
2016         /* If we can't change voltage check the current voltage */
2017         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2018                 ret = regulator_get_voltage(regulator);
2019                 if (ret >= 0)
2020                         return (min_uV <= ret && ret <= max_uV);
2021                 else
2022                         return ret;
2023         }
2024
2025         /* Any voltage within constrains range is fine? */
2026         if (rdev->desc->continuous_voltage_range)
2027                 return min_uV >= rdev->constraints->min_uV &&
2028                                 max_uV <= rdev->constraints->max_uV;
2029
2030         ret = regulator_count_voltages(regulator);
2031         if (ret < 0)
2032                 return ret;
2033         voltages = ret;
2034
2035         for (i = 0; i < voltages; i++) {
2036                 ret = regulator_list_voltage(regulator, i);
2037
2038                 if (ret >= min_uV && ret <= max_uV)
2039                         return 1;
2040         }
2041
2042         return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2045
2046 /**
2047  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2048  *
2049  * @rdev: regulator to operate on
2050  *
2051  * Regulators that use regmap for their register I/O can set the
2052  * vsel_reg and vsel_mask fields in their descriptor and then use this
2053  * as their get_voltage_vsel operation, saving some code.
2054  */
2055 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2056 {
2057         unsigned int val;
2058         int ret;
2059
2060         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2061         if (ret != 0)
2062                 return ret;
2063
2064         val &= rdev->desc->vsel_mask;
2065         val >>= ffs(rdev->desc->vsel_mask) - 1;
2066
2067         return val;
2068 }
2069 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2070
2071 /**
2072  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2073  *
2074  * @rdev: regulator to operate on
2075  * @sel: Selector to set
2076  *
2077  * Regulators that use regmap for their register I/O can set the
2078  * vsel_reg and vsel_mask fields in their descriptor and then use this
2079  * as their set_voltage_vsel operation, saving some code.
2080  */
2081 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2082 {
2083         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2084
2085         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2086                                   rdev->desc->vsel_mask, sel);
2087 }
2088 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2089
2090 /**
2091  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2092  *
2093  * @rdev: Regulator to operate on
2094  * @min_uV: Lower bound for voltage
2095  * @max_uV: Upper bound for voltage
2096  *
2097  * Drivers implementing set_voltage_sel() and list_voltage() can use
2098  * this as their map_voltage() operation.  It will find a suitable
2099  * voltage by calling list_voltage() until it gets something in bounds
2100  * for the requested voltages.
2101  */
2102 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2103                                   int min_uV, int max_uV)
2104 {
2105         int best_val = INT_MAX;
2106         int selector = 0;
2107         int i, ret;
2108
2109         /* Find the smallest voltage that falls within the specified
2110          * range.
2111          */
2112         for (i = 0; i < rdev->desc->n_voltages; i++) {
2113                 ret = rdev->desc->ops->list_voltage(rdev, i);
2114                 if (ret < 0)
2115                         continue;
2116
2117                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2118                         best_val = ret;
2119                         selector = i;
2120                 }
2121         }
2122
2123         if (best_val != INT_MAX)
2124                 return selector;
2125         else
2126                 return -EINVAL;
2127 }
2128 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2129
2130 /**
2131  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2132  *
2133  * @rdev: Regulator to operate on
2134  * @min_uV: Lower bound for voltage
2135  * @max_uV: Upper bound for voltage
2136  *
2137  * Drivers providing min_uV and uV_step in their regulator_desc can
2138  * use this as their map_voltage() operation.
2139  */
2140 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2141                                  int min_uV, int max_uV)
2142 {
2143         int ret, voltage;
2144
2145         /* Allow uV_step to be 0 for fixed voltage */
2146         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2147                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2148                         return 0;
2149                 else
2150                         return -EINVAL;
2151         }
2152
2153         if (!rdev->desc->uV_step) {
2154                 BUG_ON(!rdev->desc->uV_step);
2155                 return -EINVAL;
2156         }
2157
2158         if (min_uV < rdev->desc->min_uV)
2159                 min_uV = rdev->desc->min_uV;
2160
2161         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2162         if (ret < 0)
2163                 return ret;
2164
2165         ret += rdev->desc->linear_min_sel;
2166
2167         /* Map back into a voltage to verify we're still in bounds */
2168         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2169         if (voltage < min_uV || voltage > max_uV)
2170                 return -EINVAL;
2171
2172         return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2175
2176 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2177                                      int min_uV, int max_uV)
2178 {
2179         int ret;
2180         int delay = 0;
2181         int best_val = 0;
2182         unsigned int selector;
2183         int old_selector = -1;
2184
2185         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2186
2187         min_uV += rdev->constraints->uV_offset;
2188         max_uV += rdev->constraints->uV_offset;
2189
2190         /*
2191          * If we can't obtain the old selector there is not enough
2192          * info to call set_voltage_time_sel().
2193          */
2194         if (_regulator_is_enabled(rdev) &&
2195             rdev->desc->ops->set_voltage_time_sel &&
2196             rdev->desc->ops->get_voltage_sel) {
2197                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2198                 if (old_selector < 0)
2199                         return old_selector;
2200         }
2201
2202         if (rdev->desc->ops->set_voltage) {
2203                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2204                                                    &selector);
2205
2206                 if (ret >= 0) {
2207                         if (rdev->desc->ops->list_voltage)
2208                                 best_val = rdev->desc->ops->list_voltage(rdev,
2209                                                                          selector);
2210                         else
2211                                 best_val = _regulator_get_voltage(rdev);
2212                 }
2213
2214         } else if (rdev->desc->ops->set_voltage_sel) {
2215                 if (rdev->desc->ops->map_voltage) {
2216                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2217                                                            max_uV);
2218                 } else {
2219                         if (rdev->desc->ops->list_voltage ==
2220                             regulator_list_voltage_linear)
2221                                 ret = regulator_map_voltage_linear(rdev,
2222                                                                 min_uV, max_uV);
2223                         else
2224                                 ret = regulator_map_voltage_iterate(rdev,
2225                                                                 min_uV, max_uV);
2226                 }
2227
2228                 if (ret >= 0) {
2229                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2230                         if (min_uV <= best_val && max_uV >= best_val) {
2231                                 selector = ret;
2232                                 ret = rdev->desc->ops->set_voltage_sel(rdev,
2233                                                                        ret);
2234                         } else {
2235                                 ret = -EINVAL;
2236                         }
2237                 }
2238         } else {
2239                 ret = -EINVAL;
2240         }
2241
2242         /* Call set_voltage_time_sel if successfully obtained old_selector */
2243         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2244             rdev->desc->ops->set_voltage_time_sel) {
2245
2246                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2247                                                 old_selector, selector);
2248                 if (delay < 0) {
2249                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2250                                   delay);
2251                         delay = 0;
2252                 }
2253
2254                 /* Insert any necessary delays */
2255                 if (delay >= 1000) {
2256                         mdelay(delay / 1000);
2257                         udelay(delay % 1000);
2258                 } else if (delay) {
2259                         udelay(delay);
2260                 }
2261         }
2262
2263         if (ret == 0 && best_val >= 0) {
2264                 unsigned long data = best_val;
2265
2266                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2267                                      (void *)data);
2268         }
2269
2270         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2271
2272         return ret;
2273 }
2274
2275 /**
2276  * regulator_set_voltage - set regulator output voltage
2277  * @regulator: regulator source
2278  * @min_uV: Minimum required voltage in uV
2279  * @max_uV: Maximum acceptable voltage in uV
2280  *
2281  * Sets a voltage regulator to the desired output voltage. This can be set
2282  * during any regulator state. IOW, regulator can be disabled or enabled.
2283  *
2284  * If the regulator is enabled then the voltage will change to the new value
2285  * immediately otherwise if the regulator is disabled the regulator will
2286  * output at the new voltage when enabled.
2287  *
2288  * NOTE: If the regulator is shared between several devices then the lowest
2289  * request voltage that meets the system constraints will be used.
2290  * Regulator system constraints must be set for this regulator before
2291  * calling this function otherwise this call will fail.
2292  */
2293 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2294 {
2295         struct regulator_dev *rdev = regulator->rdev;
2296         int ret = 0;
2297
2298         mutex_lock(&rdev->mutex);
2299
2300         /* If we're setting the same range as last time the change
2301          * should be a noop (some cpufreq implementations use the same
2302          * voltage for multiple frequencies, for example).
2303          */
2304         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2305                 goto out;
2306
2307         /* sanity check */
2308         if (!rdev->desc->ops->set_voltage &&
2309             !rdev->desc->ops->set_voltage_sel) {
2310                 ret = -EINVAL;
2311                 goto out;
2312         }
2313
2314         /* constraints check */
2315         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2316         if (ret < 0)
2317                 goto out;
2318         regulator->min_uV = min_uV;
2319         regulator->max_uV = max_uV;
2320
2321         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2322         if (ret < 0)
2323                 goto out;
2324
2325         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2326
2327 out:
2328         mutex_unlock(&rdev->mutex);
2329         return ret;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2332
2333 /**
2334  * regulator_set_voltage_time - get raise/fall time
2335  * @regulator: regulator source
2336  * @old_uV: starting voltage in microvolts
2337  * @new_uV: target voltage in microvolts
2338  *
2339  * Provided with the starting and ending voltage, this function attempts to
2340  * calculate the time in microseconds required to rise or fall to this new
2341  * voltage.
2342  */
2343 int regulator_set_voltage_time(struct regulator *regulator,
2344                                int old_uV, int new_uV)
2345 {
2346         struct regulator_dev    *rdev = regulator->rdev;
2347         struct regulator_ops    *ops = rdev->desc->ops;
2348         int old_sel = -1;
2349         int new_sel = -1;
2350         int voltage;
2351         int i;
2352
2353         /* Currently requires operations to do this */
2354         if (!ops->list_voltage || !ops->set_voltage_time_sel
2355             || !rdev->desc->n_voltages)
2356                 return -EINVAL;
2357
2358         for (i = 0; i < rdev->desc->n_voltages; i++) {
2359                 /* We only look for exact voltage matches here */
2360                 voltage = regulator_list_voltage(regulator, i);
2361                 if (voltage < 0)
2362                         return -EINVAL;
2363                 if (voltage == 0)
2364                         continue;
2365                 if (voltage == old_uV)
2366                         old_sel = i;
2367                 if (voltage == new_uV)
2368                         new_sel = i;
2369         }
2370
2371         if (old_sel < 0 || new_sel < 0)
2372                 return -EINVAL;
2373
2374         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2375 }
2376 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2377
2378 /**
2379  * regulator_set_voltage_time_sel - get raise/fall time
2380  * @rdev: regulator source device
2381  * @old_selector: selector for starting voltage
2382  * @new_selector: selector for target voltage
2383  *
2384  * Provided with the starting and target voltage selectors, this function
2385  * returns time in microseconds required to rise or fall to this new voltage
2386  *
2387  * Drivers providing ramp_delay in regulation_constraints can use this as their
2388  * set_voltage_time_sel() operation.
2389  */
2390 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2391                                    unsigned int old_selector,
2392                                    unsigned int new_selector)
2393 {
2394         unsigned int ramp_delay = 0;
2395         int old_volt, new_volt;
2396
2397         if (rdev->constraints->ramp_delay)
2398                 ramp_delay = rdev->constraints->ramp_delay;
2399         else if (rdev->desc->ramp_delay)
2400                 ramp_delay = rdev->desc->ramp_delay;
2401
2402         if (ramp_delay == 0) {
2403                 rdev_warn(rdev, "ramp_delay not set\n");
2404                 return 0;
2405         }
2406
2407         /* sanity check */
2408         if (!rdev->desc->ops->list_voltage)
2409                 return -EINVAL;
2410
2411         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2412         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2413
2414         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2415 }
2416 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2417
2418 /**
2419  * regulator_sync_voltage - re-apply last regulator output voltage
2420  * @regulator: regulator source
2421  *
2422  * Re-apply the last configured voltage.  This is intended to be used
2423  * where some external control source the consumer is cooperating with
2424  * has caused the configured voltage to change.
2425  */
2426 int regulator_sync_voltage(struct regulator *regulator)
2427 {
2428         struct regulator_dev *rdev = regulator->rdev;
2429         int ret, min_uV, max_uV;
2430
2431         mutex_lock(&rdev->mutex);
2432
2433         if (!rdev->desc->ops->set_voltage &&
2434             !rdev->desc->ops->set_voltage_sel) {
2435                 ret = -EINVAL;
2436                 goto out;
2437         }
2438
2439         /* This is only going to work if we've had a voltage configured. */
2440         if (!regulator->min_uV && !regulator->max_uV) {
2441                 ret = -EINVAL;
2442                 goto out;
2443         }
2444
2445         min_uV = regulator->min_uV;
2446         max_uV = regulator->max_uV;
2447
2448         /* This should be a paranoia check... */
2449         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2450         if (ret < 0)
2451                 goto out;
2452
2453         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2454         if (ret < 0)
2455                 goto out;
2456
2457         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2458
2459 out:
2460         mutex_unlock(&rdev->mutex);
2461         return ret;
2462 }
2463 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2464
2465 static int _regulator_get_voltage(struct regulator_dev *rdev)
2466 {
2467         int sel, ret;
2468
2469         if (rdev->desc->ops->get_voltage_sel) {
2470                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2471                 if (sel < 0)
2472                         return sel;
2473                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2474         } else if (rdev->desc->ops->get_voltage) {
2475                 ret = rdev->desc->ops->get_voltage(rdev);
2476         } else if (rdev->desc->ops->list_voltage) {
2477                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2478         } else {
2479                 return -EINVAL;
2480         }
2481
2482         if (ret < 0)
2483                 return ret;
2484         return ret - rdev->constraints->uV_offset;
2485 }
2486
2487 /**
2488  * regulator_get_voltage - get regulator output voltage
2489  * @regulator: regulator source
2490  *
2491  * This returns the current regulator voltage in uV.
2492  *
2493  * NOTE: If the regulator is disabled it will return the voltage value. This
2494  * function should not be used to determine regulator state.
2495  */
2496 int regulator_get_voltage(struct regulator *regulator)
2497 {
2498         int ret;
2499
2500         mutex_lock(&regulator->rdev->mutex);
2501
2502         ret = _regulator_get_voltage(regulator->rdev);
2503
2504         mutex_unlock(&regulator->rdev->mutex);
2505
2506         return ret;
2507 }
2508 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2509
2510 /**
2511  * regulator_set_current_limit - set regulator output current limit
2512  * @regulator: regulator source
2513  * @min_uA: Minimuum supported current in uA
2514  * @max_uA: Maximum supported current in uA
2515  *
2516  * Sets current sink to the desired output current. This can be set during
2517  * any regulator state. IOW, regulator can be disabled or enabled.
2518  *
2519  * If the regulator is enabled then the current will change to the new value
2520  * immediately otherwise if the regulator is disabled the regulator will
2521  * output at the new current when enabled.
2522  *
2523  * NOTE: Regulator system constraints must be set for this regulator before
2524  * calling this function otherwise this call will fail.
2525  */
2526 int regulator_set_current_limit(struct regulator *regulator,
2527                                int min_uA, int max_uA)
2528 {
2529         struct regulator_dev *rdev = regulator->rdev;
2530         int ret;
2531
2532         mutex_lock(&rdev->mutex);
2533
2534         /* sanity check */
2535         if (!rdev->desc->ops->set_current_limit) {
2536                 ret = -EINVAL;
2537                 goto out;
2538         }
2539
2540         /* constraints check */
2541         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2542         if (ret < 0)
2543                 goto out;
2544
2545         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2546 out:
2547         mutex_unlock(&rdev->mutex);
2548         return ret;
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2551
2552 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2553 {
2554         int ret;
2555
2556         mutex_lock(&rdev->mutex);
2557
2558         /* sanity check */
2559         if (!rdev->desc->ops->get_current_limit) {
2560                 ret = -EINVAL;
2561                 goto out;
2562         }
2563
2564         ret = rdev->desc->ops->get_current_limit(rdev);
2565 out:
2566         mutex_unlock(&rdev->mutex);
2567         return ret;
2568 }
2569
2570 /**
2571  * regulator_get_current_limit - get regulator output current
2572  * @regulator: regulator source
2573  *
2574  * This returns the current supplied by the specified current sink in uA.
2575  *
2576  * NOTE: If the regulator is disabled it will return the current value. This
2577  * function should not be used to determine regulator state.
2578  */
2579 int regulator_get_current_limit(struct regulator *regulator)
2580 {
2581         return _regulator_get_current_limit(regulator->rdev);
2582 }
2583 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2584
2585 /**
2586  * regulator_set_mode - set regulator operating mode
2587  * @regulator: regulator source
2588  * @mode: operating mode - one of the REGULATOR_MODE constants
2589  *
2590  * Set regulator operating mode to increase regulator efficiency or improve
2591  * regulation performance.
2592  *
2593  * NOTE: Regulator system constraints must be set for this regulator before
2594  * calling this function otherwise this call will fail.
2595  */
2596 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2597 {
2598         struct regulator_dev *rdev = regulator->rdev;
2599         int ret;
2600         int regulator_curr_mode;
2601
2602         mutex_lock(&rdev->mutex);
2603
2604         /* sanity check */
2605         if (!rdev->desc->ops->set_mode) {
2606                 ret = -EINVAL;
2607                 goto out;
2608         }
2609
2610         /* return if the same mode is requested */
2611         if (rdev->desc->ops->get_mode) {
2612                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2613                 if (regulator_curr_mode == mode) {
2614                         ret = 0;
2615                         goto out;
2616                 }
2617         }
2618
2619         /* constraints check */
2620         ret = regulator_mode_constrain(rdev, &mode);
2621         if (ret < 0)
2622                 goto out;
2623
2624         ret = rdev->desc->ops->set_mode(rdev, mode);
2625 out:
2626         mutex_unlock(&rdev->mutex);
2627         return ret;
2628 }
2629 EXPORT_SYMBOL_GPL(regulator_set_mode);
2630
2631 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2632 {
2633         int ret;
2634
2635         mutex_lock(&rdev->mutex);
2636
2637         /* sanity check */
2638         if (!rdev->desc->ops->get_mode) {
2639                 ret = -EINVAL;
2640                 goto out;
2641         }
2642
2643         ret = rdev->desc->ops->get_mode(rdev);
2644 out:
2645         mutex_unlock(&rdev->mutex);
2646         return ret;
2647 }
2648
2649 /**
2650  * regulator_get_mode - get regulator operating mode
2651  * @regulator: regulator source
2652  *
2653  * Get the current regulator operating mode.
2654  */
2655 unsigned int regulator_get_mode(struct regulator *regulator)
2656 {
2657         return _regulator_get_mode(regulator->rdev);
2658 }
2659 EXPORT_SYMBOL_GPL(regulator_get_mode);
2660
2661 /**
2662  * regulator_set_optimum_mode - set regulator optimum operating mode
2663  * @regulator: regulator source
2664  * @uA_load: load current
2665  *
2666  * Notifies the regulator core of a new device load. This is then used by
2667  * DRMS (if enabled by constraints) to set the most efficient regulator
2668  * operating mode for the new regulator loading.
2669  *
2670  * Consumer devices notify their supply regulator of the maximum power
2671  * they will require (can be taken from device datasheet in the power
2672  * consumption tables) when they change operational status and hence power
2673  * state. Examples of operational state changes that can affect power
2674  * consumption are :-
2675  *
2676  *    o Device is opened / closed.
2677  *    o Device I/O is about to begin or has just finished.
2678  *    o Device is idling in between work.
2679  *
2680  * This information is also exported via sysfs to userspace.
2681  *
2682  * DRMS will sum the total requested load on the regulator and change
2683  * to the most efficient operating mode if platform constraints allow.
2684  *
2685  * Returns the new regulator mode or error.
2686  */
2687 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2688 {
2689         struct regulator_dev *rdev = regulator->rdev;
2690         struct regulator *consumer;
2691         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2692         unsigned int mode;
2693
2694         if (rdev->supply)
2695                 input_uV = regulator_get_voltage(rdev->supply);
2696
2697         mutex_lock(&rdev->mutex);
2698
2699         /*
2700          * first check to see if we can set modes at all, otherwise just
2701          * tell the consumer everything is OK.
2702          */
2703         regulator->uA_load = uA_load;
2704         ret = regulator_check_drms(rdev);
2705         if (ret < 0) {
2706                 ret = 0;
2707                 goto out;
2708         }
2709
2710         if (!rdev->desc->ops->get_optimum_mode)
2711                 goto out;
2712
2713         /*
2714          * we can actually do this so any errors are indicators of
2715          * potential real failure.
2716          */
2717         ret = -EINVAL;
2718
2719         if (!rdev->desc->ops->set_mode)
2720                 goto out;
2721
2722         /* get output voltage */
2723         output_uV = _regulator_get_voltage(rdev);
2724         if (output_uV <= 0) {
2725                 rdev_err(rdev, "invalid output voltage found\n");
2726                 goto out;
2727         }
2728
2729         /* No supply? Use constraint voltage */
2730         if (input_uV <= 0)
2731                 input_uV = rdev->constraints->input_uV;
2732         if (input_uV <= 0) {
2733                 rdev_err(rdev, "invalid input voltage found\n");
2734                 goto out;
2735         }
2736
2737         /* calc total requested load for this regulator */
2738         list_for_each_entry(consumer, &rdev->consumer_list, list)
2739                 total_uA_load += consumer->uA_load;
2740
2741         mode = rdev->desc->ops->get_optimum_mode(rdev,
2742                                                  input_uV, output_uV,
2743                                                  total_uA_load);
2744         ret = regulator_mode_constrain(rdev, &mode);
2745         if (ret < 0) {
2746                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2747                          total_uA_load, input_uV, output_uV);
2748                 goto out;
2749         }
2750
2751         ret = rdev->desc->ops->set_mode(rdev, mode);
2752         if (ret < 0) {
2753                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2754                 goto out;
2755         }
2756         ret = mode;
2757 out:
2758         mutex_unlock(&rdev->mutex);
2759         return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2762
2763 /**
2764  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2765  *
2766  * @rdev: device to operate on.
2767  * @enable: state to set.
2768  */
2769 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2770 {
2771         unsigned int val;
2772
2773         if (enable)
2774                 val = rdev->desc->bypass_mask;
2775         else
2776                 val = 0;
2777
2778         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2779                                   rdev->desc->bypass_mask, val);
2780 }
2781 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2782
2783 /**
2784  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2785  *
2786  * @rdev: device to operate on.
2787  * @enable: current state.
2788  */
2789 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2790 {
2791         unsigned int val;
2792         int ret;
2793
2794         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2795         if (ret != 0)
2796                 return ret;
2797
2798         *enable = val & rdev->desc->bypass_mask;
2799
2800         return 0;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2803
2804 /**
2805  * regulator_allow_bypass - allow the regulator to go into bypass mode
2806  *
2807  * @regulator: Regulator to configure
2808  * @allow: enable or disable bypass mode
2809  *
2810  * Allow the regulator to go into bypass mode if all other consumers
2811  * for the regulator also enable bypass mode and the machine
2812  * constraints allow this.  Bypass mode means that the regulator is
2813  * simply passing the input directly to the output with no regulation.
2814  */
2815 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2816 {
2817         struct regulator_dev *rdev = regulator->rdev;
2818         int ret = 0;
2819
2820         if (!rdev->desc->ops->set_bypass)
2821                 return 0;
2822
2823         if (rdev->constraints &&
2824             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2825                 return 0;
2826
2827         mutex_lock(&rdev->mutex);
2828
2829         if (enable && !regulator->bypass) {
2830                 rdev->bypass_count++;
2831
2832                 if (rdev->bypass_count == rdev->open_count) {
2833                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2834                         if (ret != 0)
2835                                 rdev->bypass_count--;
2836                 }
2837
2838         } else if (!enable && regulator->bypass) {
2839                 rdev->bypass_count--;
2840
2841                 if (rdev->bypass_count != rdev->open_count) {
2842                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2843                         if (ret != 0)
2844                                 rdev->bypass_count++;
2845                 }
2846         }
2847
2848         if (ret == 0)
2849                 regulator->bypass = enable;
2850
2851         mutex_unlock(&rdev->mutex);
2852
2853         return ret;
2854 }
2855 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2856
2857 /**
2858  * regulator_register_notifier - register regulator event notifier
2859  * @regulator: regulator source
2860  * @nb: notifier block
2861  *
2862  * Register notifier block to receive regulator events.
2863  */
2864 int regulator_register_notifier(struct regulator *regulator,
2865                               struct notifier_block *nb)
2866 {
2867         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2868                                                 nb);
2869 }
2870 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2871
2872 /**
2873  * regulator_unregister_notifier - unregister regulator event notifier
2874  * @regulator: regulator source
2875  * @nb: notifier block
2876  *
2877  * Unregister regulator event notifier block.
2878  */
2879 int regulator_unregister_notifier(struct regulator *regulator,
2880                                 struct notifier_block *nb)
2881 {
2882         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2883                                                   nb);
2884 }
2885 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2886
2887 /* notify regulator consumers and downstream regulator consumers.
2888  * Note mutex must be held by caller.
2889  */
2890 static void _notifier_call_chain(struct regulator_dev *rdev,
2891                                   unsigned long event, void *data)
2892 {
2893         /* call rdev chain first */
2894         blocking_notifier_call_chain(&rdev->notifier, event, data);
2895 }
2896
2897 /**
2898  * regulator_bulk_get - get multiple regulator consumers
2899  *
2900  * @dev:           Device to supply
2901  * @num_consumers: Number of consumers to register
2902  * @consumers:     Configuration of consumers; clients are stored here.
2903  *
2904  * @return 0 on success, an errno on failure.
2905  *
2906  * This helper function allows drivers to get several regulator
2907  * consumers in one operation.  If any of the regulators cannot be
2908  * acquired then any regulators that were allocated will be freed
2909  * before returning to the caller.
2910  */
2911 int regulator_bulk_get(struct device *dev, int num_consumers,
2912                        struct regulator_bulk_data *consumers)
2913 {
2914         int i;
2915         int ret;
2916
2917         for (i = 0; i < num_consumers; i++)
2918                 consumers[i].consumer = NULL;
2919
2920         for (i = 0; i < num_consumers; i++) {
2921                 consumers[i].consumer = regulator_get(dev,
2922                                                       consumers[i].supply);
2923                 if (IS_ERR(consumers[i].consumer)) {
2924                         ret = PTR_ERR(consumers[i].consumer);
2925                         dev_err(dev, "Failed to get supply '%s': %d\n",
2926                                 consumers[i].supply, ret);
2927                         consumers[i].consumer = NULL;
2928                         goto err;
2929                 }
2930         }
2931
2932         return 0;
2933
2934 err:
2935         while (--i >= 0)
2936                 regulator_put(consumers[i].consumer);
2937
2938         return ret;
2939 }
2940 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2941
2942 /**
2943  * devm_regulator_bulk_get - managed get multiple regulator consumers
2944  *
2945  * @dev:           Device to supply
2946  * @num_consumers: Number of consumers to register
2947  * @consumers:     Configuration of consumers; clients are stored here.
2948  *
2949  * @return 0 on success, an errno on failure.
2950  *
2951  * This helper function allows drivers to get several regulator
2952  * consumers in one operation with management, the regulators will
2953  * automatically be freed when the device is unbound.  If any of the
2954  * regulators cannot be acquired then any regulators that were
2955  * allocated will be freed before returning to the caller.
2956  */
2957 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2958                             struct regulator_bulk_data *consumers)
2959 {
2960         int i;
2961         int ret;
2962
2963         for (i = 0; i < num_consumers; i++)
2964                 consumers[i].consumer = NULL;
2965
2966         for (i = 0; i < num_consumers; i++) {
2967                 consumers[i].consumer = devm_regulator_get(dev,
2968                                                            consumers[i].supply);
2969                 if (IS_ERR(consumers[i].consumer)) {
2970                         ret = PTR_ERR(consumers[i].consumer);
2971                         dev_err(dev, "Failed to get supply '%s': %d\n",
2972                                 consumers[i].supply, ret);
2973                         consumers[i].consumer = NULL;
2974                         goto err;
2975                 }
2976         }
2977
2978         return 0;
2979
2980 err:
2981         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2982                 devm_regulator_put(consumers[i].consumer);
2983
2984         return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2987
2988 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2989 {
2990         struct regulator_bulk_data *bulk = data;
2991
2992         bulk->ret = regulator_enable(bulk->consumer);
2993 }
2994
2995 /**
2996  * regulator_bulk_enable - enable multiple regulator consumers
2997  *
2998  * @num_consumers: Number of consumers
2999  * @consumers:     Consumer data; clients are stored here.
3000  * @return         0 on success, an errno on failure
3001  *
3002  * This convenience API allows consumers to enable multiple regulator
3003  * clients in a single API call.  If any consumers cannot be enabled
3004  * then any others that were enabled will be disabled again prior to
3005  * return.
3006  */
3007 int regulator_bulk_enable(int num_consumers,
3008                           struct regulator_bulk_data *consumers)
3009 {
3010         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3011         int i;
3012         int ret = 0;
3013
3014         for (i = 0; i < num_consumers; i++) {
3015                 if (consumers[i].consumer->always_on)
3016                         consumers[i].ret = 0;
3017                 else
3018                         async_schedule_domain(regulator_bulk_enable_async,
3019                                               &consumers[i], &async_domain);
3020         }
3021
3022         async_synchronize_full_domain(&async_domain);
3023
3024         /* If any consumer failed we need to unwind any that succeeded */
3025         for (i = 0; i < num_consumers; i++) {
3026                 if (consumers[i].ret != 0) {
3027                         ret = consumers[i].ret;
3028                         goto err;
3029                 }
3030         }
3031
3032         return 0;
3033
3034 err:
3035         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3036         while (--i >= 0)
3037                 regulator_disable(consumers[i].consumer);
3038
3039         return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3042
3043 /**
3044  * regulator_bulk_disable - disable multiple regulator consumers
3045  *
3046  * @num_consumers: Number of consumers
3047  * @consumers:     Consumer data; clients are stored here.
3048  * @return         0 on success, an errno on failure
3049  *
3050  * This convenience API allows consumers to disable multiple regulator
3051  * clients in a single API call.  If any consumers cannot be disabled
3052  * then any others that were disabled will be enabled again prior to
3053  * return.
3054  */
3055 int regulator_bulk_disable(int num_consumers,
3056                            struct regulator_bulk_data *consumers)
3057 {
3058         int i;
3059         int ret, r;
3060
3061         for (i = num_consumers - 1; i >= 0; --i) {
3062                 ret = regulator_disable(consumers[i].consumer);
3063                 if (ret != 0)
3064                         goto err;
3065         }
3066
3067         return 0;
3068
3069 err:
3070         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3071         for (++i; i < num_consumers; ++i) {
3072                 r = regulator_enable(consumers[i].consumer);
3073                 if (r != 0)
3074                         pr_err("Failed to reename %s: %d\n",
3075                                consumers[i].supply, r);
3076         }
3077
3078         return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3081
3082 /**
3083  * regulator_bulk_force_disable - force disable multiple regulator consumers
3084  *
3085  * @num_consumers: Number of consumers
3086  * @consumers:     Consumer data; clients are stored here.
3087  * @return         0 on success, an errno on failure
3088  *
3089  * This convenience API allows consumers to forcibly disable multiple regulator
3090  * clients in a single API call.
3091  * NOTE: This should be used for situations when device damage will
3092  * likely occur if the regulators are not disabled (e.g. over temp).
3093  * Although regulator_force_disable function call for some consumers can
3094  * return error numbers, the function is called for all consumers.
3095  */
3096 int regulator_bulk_force_disable(int num_consumers,
3097                            struct regulator_bulk_data *consumers)
3098 {
3099         int i;
3100         int ret;
3101
3102         for (i = 0; i < num_consumers; i++)
3103                 consumers[i].ret =
3104                             regulator_force_disable(consumers[i].consumer);
3105
3106         for (i = 0; i < num_consumers; i++) {
3107                 if (consumers[i].ret != 0) {
3108                         ret = consumers[i].ret;
3109                         goto out;
3110                 }
3111         }
3112
3113         return 0;
3114 out:
3115         return ret;
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3118
3119 /**
3120  * regulator_bulk_free - free multiple regulator consumers
3121  *
3122  * @num_consumers: Number of consumers
3123  * @consumers:     Consumer data; clients are stored here.
3124  *
3125  * This convenience API allows consumers to free multiple regulator
3126  * clients in a single API call.
3127  */
3128 void regulator_bulk_free(int num_consumers,
3129                          struct regulator_bulk_data *consumers)
3130 {
3131         int i;
3132
3133         for (i = 0; i < num_consumers; i++) {
3134                 regulator_put(consumers[i].consumer);
3135                 consumers[i].consumer = NULL;
3136         }
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3139
3140 /**
3141  * regulator_notifier_call_chain - call regulator event notifier
3142  * @rdev: regulator source
3143  * @event: notifier block
3144  * @data: callback-specific data.
3145  *
3146  * Called by regulator drivers to notify clients a regulator event has
3147  * occurred. We also notify regulator clients downstream.
3148  * Note lock must be held by caller.
3149  */
3150 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3151                                   unsigned long event, void *data)
3152 {
3153         _notifier_call_chain(rdev, event, data);
3154         return NOTIFY_DONE;
3155
3156 }
3157 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3158
3159 /**
3160  * regulator_mode_to_status - convert a regulator mode into a status
3161  *
3162  * @mode: Mode to convert
3163  *
3164  * Convert a regulator mode into a status.
3165  */
3166 int regulator_mode_to_status(unsigned int mode)
3167 {
3168         switch (mode) {
3169         case REGULATOR_MODE_FAST:
3170                 return REGULATOR_STATUS_FAST;
3171         case REGULATOR_MODE_NORMAL:
3172                 return REGULATOR_STATUS_NORMAL;
3173         case REGULATOR_MODE_IDLE:
3174                 return REGULATOR_STATUS_IDLE;
3175         case REGULATOR_MODE_STANDBY:
3176                 return REGULATOR_STATUS_STANDBY;
3177         default:
3178                 return REGULATOR_STATUS_UNDEFINED;
3179         }
3180 }
3181 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3182
3183 /*
3184  * To avoid cluttering sysfs (and memory) with useless state, only
3185  * create attributes that can be meaningfully displayed.
3186  */
3187 static int add_regulator_attributes(struct regulator_dev *rdev)
3188 {
3189         struct device           *dev = &rdev->dev;
3190         struct regulator_ops    *ops = rdev->desc->ops;
3191         int                     status = 0;
3192
3193         /* some attributes need specific methods to be displayed */
3194         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3195             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3196             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3197                 status = device_create_file(dev, &dev_attr_microvolts);
3198                 if (status < 0)
3199                         return status;
3200         }
3201         if (ops->get_current_limit) {
3202                 status = device_create_file(dev, &dev_attr_microamps);
3203                 if (status < 0)
3204                         return status;
3205         }
3206         if (ops->get_mode) {
3207                 status = device_create_file(dev, &dev_attr_opmode);
3208                 if (status < 0)
3209                         return status;
3210         }
3211         if (ops->is_enabled) {
3212                 status = device_create_file(dev, &dev_attr_state);
3213                 if (status < 0)
3214                         return status;
3215         }
3216         if (ops->get_status) {
3217                 status = device_create_file(dev, &dev_attr_status);
3218                 if (status < 0)
3219                         return status;
3220         }
3221         if (ops->get_bypass) {
3222                 status = device_create_file(dev, &dev_attr_bypass);
3223                 if (status < 0)
3224                         return status;
3225         }
3226
3227         /* some attributes are type-specific */
3228         if (rdev->desc->type == REGULATOR_CURRENT) {
3229                 status = device_create_file(dev, &dev_attr_requested_microamps);
3230                 if (status < 0)
3231                         return status;
3232         }
3233
3234         /* all the other attributes exist to support constraints;
3235          * don't show them if there are no constraints, or if the
3236          * relevant supporting methods are missing.
3237          */
3238         if (!rdev->constraints)
3239                 return status;
3240
3241         /* constraints need specific supporting methods */
3242         if (ops->set_voltage || ops->set_voltage_sel) {
3243                 status = device_create_file(dev, &dev_attr_min_microvolts);
3244                 if (status < 0)
3245                         return status;
3246                 status = device_create_file(dev, &dev_attr_max_microvolts);
3247                 if (status < 0)
3248                         return status;
3249         }
3250         if (ops->set_current_limit) {
3251                 status = device_create_file(dev, &dev_attr_min_microamps);
3252                 if (status < 0)
3253                         return status;
3254                 status = device_create_file(dev, &dev_attr_max_microamps);
3255                 if (status < 0)
3256                         return status;
3257         }
3258
3259         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3260         if (status < 0)
3261                 return status;
3262         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3263         if (status < 0)
3264                 return status;
3265         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3266         if (status < 0)
3267                 return status;
3268
3269         if (ops->set_suspend_voltage) {
3270                 status = device_create_file(dev,
3271                                 &dev_attr_suspend_standby_microvolts);
3272                 if (status < 0)
3273                         return status;
3274                 status = device_create_file(dev,
3275                                 &dev_attr_suspend_mem_microvolts);
3276                 if (status < 0)
3277                         return status;
3278                 status = device_create_file(dev,
3279                                 &dev_attr_suspend_disk_microvolts);
3280                 if (status < 0)
3281                         return status;
3282         }
3283
3284         if (ops->set_suspend_mode) {
3285                 status = device_create_file(dev,
3286                                 &dev_attr_suspend_standby_mode);
3287                 if (status < 0)
3288                         return status;
3289                 status = device_create_file(dev,
3290                                 &dev_attr_suspend_mem_mode);
3291                 if (status < 0)
3292                         return status;
3293                 status = device_create_file(dev,
3294                                 &dev_attr_suspend_disk_mode);
3295                 if (status < 0)
3296                         return status;
3297         }
3298
3299         return status;
3300 }
3301
3302 static void rdev_init_debugfs(struct regulator_dev *rdev)
3303 {
3304         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3305         if (!rdev->debugfs) {
3306                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3307                 return;
3308         }
3309
3310         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3311                            &rdev->use_count);
3312         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3313                            &rdev->open_count);
3314         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3315                            &rdev->bypass_count);
3316 }
3317
3318 /**
3319  * regulator_register - register regulator
3320  * @regulator_desc: regulator to register
3321  * @config: runtime configuration for regulator
3322  *
3323  * Called by regulator drivers to register a regulator.
3324  * Returns a valid pointer to struct regulator_dev on success
3325  * or an ERR_PTR() on error.
3326  */
3327 struct regulator_dev *
3328 regulator_register(const struct regulator_desc *regulator_desc,
3329                    const struct regulator_config *config)
3330 {
3331         const struct regulation_constraints *constraints = NULL;
3332         const struct regulator_init_data *init_data;
3333         static atomic_t regulator_no = ATOMIC_INIT(0);
3334         struct regulator_dev *rdev;
3335         struct device *dev;
3336         int ret, i;
3337         const char *supply = NULL;
3338
3339         if (regulator_desc == NULL || config == NULL)
3340                 return ERR_PTR(-EINVAL);
3341
3342         dev = config->dev;
3343         WARN_ON(!dev);
3344
3345         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3346                 return ERR_PTR(-EINVAL);
3347
3348         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3349             regulator_desc->type != REGULATOR_CURRENT)
3350                 return ERR_PTR(-EINVAL);
3351
3352         /* Only one of each should be implemented */
3353         WARN_ON(regulator_desc->ops->get_voltage &&
3354                 regulator_desc->ops->get_voltage_sel);
3355         WARN_ON(regulator_desc->ops->set_voltage &&
3356                 regulator_desc->ops->set_voltage_sel);
3357
3358         /* If we're using selectors we must implement list_voltage. */
3359         if (regulator_desc->ops->get_voltage_sel &&
3360             !regulator_desc->ops->list_voltage) {
3361                 return ERR_PTR(-EINVAL);
3362         }
3363         if (regulator_desc->ops->set_voltage_sel &&
3364             !regulator_desc->ops->list_voltage) {
3365                 return ERR_PTR(-EINVAL);
3366         }
3367
3368         init_data = config->init_data;
3369
3370         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3371         if (rdev == NULL)
3372                 return ERR_PTR(-ENOMEM);
3373
3374         mutex_lock(&regulator_list_mutex);
3375
3376         mutex_init(&rdev->mutex);
3377         rdev->reg_data = config->driver_data;
3378         rdev->owner = regulator_desc->owner;
3379         rdev->desc = regulator_desc;
3380         if (config->regmap)
3381                 rdev->regmap = config->regmap;
3382         else if (dev_get_regmap(dev, NULL))
3383                 rdev->regmap = dev_get_regmap(dev, NULL);
3384         else if (dev->parent)
3385                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3386         INIT_LIST_HEAD(&rdev->consumer_list);
3387         INIT_LIST_HEAD(&rdev->list);
3388         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3389         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3390
3391         /* preform any regulator specific init */
3392         if (init_data && init_data->regulator_init) {
3393                 ret = init_data->regulator_init(rdev->reg_data);
3394                 if (ret < 0)
3395                         goto clean;
3396         }
3397
3398         /* register with sysfs */
3399         rdev->dev.class = &regulator_class;
3400         rdev->dev.of_node = config->of_node;
3401         rdev->dev.parent = dev;
3402         dev_set_name(&rdev->dev, "regulator.%d",
3403                      atomic_inc_return(&regulator_no) - 1);
3404         ret = device_register(&rdev->dev);
3405         if (ret != 0) {
3406                 put_device(&rdev->dev);
3407                 goto clean;
3408         }
3409
3410         dev_set_drvdata(&rdev->dev, rdev);
3411
3412         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3413                 ret = gpio_request_one(config->ena_gpio,
3414                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
3415                                        rdev_get_name(rdev));
3416                 if (ret != 0) {
3417                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3418                                  config->ena_gpio, ret);
3419                         goto wash;
3420                 }
3421
3422                 rdev->ena_gpio = config->ena_gpio;
3423                 rdev->ena_gpio_invert = config->ena_gpio_invert;
3424
3425                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3426                         rdev->ena_gpio_state = 1;
3427
3428                 if (rdev->ena_gpio_invert)
3429                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3430         }
3431
3432         /* set regulator constraints */
3433         if (init_data)
3434                 constraints = &init_data->constraints;
3435
3436         ret = set_machine_constraints(rdev, constraints);
3437         if (ret < 0)
3438                 goto scrub;
3439
3440         /* add attributes supported by this regulator */
3441         ret = add_regulator_attributes(rdev);
3442         if (ret < 0)
3443                 goto scrub;
3444
3445         if (init_data && init_data->supply_regulator)
3446                 supply = init_data->supply_regulator;
3447         else if (regulator_desc->supply_name)
3448                 supply = regulator_desc->supply_name;
3449
3450         if (supply) {
3451                 struct regulator_dev *r;
3452
3453                 r = regulator_dev_lookup(dev, supply, &ret);
3454
3455                 if (!r) {
3456                         dev_err(dev, "Failed to find supply %s\n", supply);
3457                         ret = -EPROBE_DEFER;
3458                         goto scrub;
3459                 }
3460
3461                 ret = set_supply(rdev, r);
3462                 if (ret < 0)
3463                         goto scrub;
3464
3465                 /* Enable supply if rail is enabled */
3466                 if (_regulator_is_enabled(rdev)) {
3467                         ret = regulator_enable(rdev->supply);
3468                         if (ret < 0)
3469                                 goto scrub;
3470                 }
3471         }
3472
3473         /* add consumers devices */
3474         if (init_data) {
3475                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3476                         ret = set_consumer_device_supply(rdev,
3477                                 init_data->consumer_supplies[i].dev_name,
3478                                 init_data->consumer_supplies[i].supply);
3479                         if (ret < 0) {
3480                                 dev_err(dev, "Failed to set supply %s\n",
3481                                         init_data->consumer_supplies[i].supply);
3482                                 goto unset_supplies;
3483                         }
3484                 }
3485         }
3486
3487         list_add(&rdev->list, &regulator_list);
3488
3489         rdev_init_debugfs(rdev);
3490 out:
3491         mutex_unlock(&regulator_list_mutex);
3492         return rdev;
3493
3494 unset_supplies:
3495         unset_regulator_supplies(rdev);
3496
3497 scrub:
3498         if (rdev->supply)
3499                 _regulator_put(rdev->supply);
3500         if (rdev->ena_gpio)
3501                 gpio_free(rdev->ena_gpio);
3502         kfree(rdev->constraints);
3503 wash:
3504         device_unregister(&rdev->dev);
3505         /* device core frees rdev */
3506         rdev = ERR_PTR(ret);
3507         goto out;
3508
3509 clean:
3510         kfree(rdev);
3511         rdev = ERR_PTR(ret);
3512         goto out;
3513 }
3514 EXPORT_SYMBOL_GPL(regulator_register);
3515
3516 /**
3517  * regulator_unregister - unregister regulator
3518  * @rdev: regulator to unregister
3519  *
3520  * Called by regulator drivers to unregister a regulator.
3521  */
3522 void regulator_unregister(struct regulator_dev *rdev)
3523 {
3524         if (rdev == NULL)
3525                 return;
3526
3527         if (rdev->supply)
3528                 regulator_put(rdev->supply);
3529         mutex_lock(&regulator_list_mutex);
3530         debugfs_remove_recursive(rdev->debugfs);
3531         flush_work(&rdev->disable_work.work);
3532         WARN_ON(rdev->open_count);
3533         unset_regulator_supplies(rdev);
3534         list_del(&rdev->list);
3535         kfree(rdev->constraints);
3536         if (rdev->ena_gpio)
3537                 gpio_free(rdev->ena_gpio);
3538         device_unregister(&rdev->dev);
3539         mutex_unlock(&regulator_list_mutex);
3540 }
3541 EXPORT_SYMBOL_GPL(regulator_unregister);
3542
3543 /**
3544  * regulator_suspend_prepare - prepare regulators for system wide suspend
3545  * @state: system suspend state
3546  *
3547  * Configure each regulator with it's suspend operating parameters for state.
3548  * This will usually be called by machine suspend code prior to supending.
3549  */
3550 int regulator_suspend_prepare(suspend_state_t state)
3551 {
3552         struct regulator_dev *rdev;
3553         int ret = 0;
3554
3555         /* ON is handled by regulator active state */
3556         if (state == PM_SUSPEND_ON)
3557                 return -EINVAL;
3558
3559         mutex_lock(&regulator_list_mutex);
3560         list_for_each_entry(rdev, &regulator_list, list) {
3561
3562                 mutex_lock(&rdev->mutex);
3563                 ret = suspend_prepare(rdev, state);
3564                 mutex_unlock(&rdev->mutex);
3565
3566                 if (ret < 0) {
3567                         rdev_err(rdev, "failed to prepare\n");
3568                         goto out;
3569                 }
3570         }
3571 out:
3572         mutex_unlock(&regulator_list_mutex);
3573         return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3576
3577 /**
3578  * regulator_suspend_finish - resume regulators from system wide suspend
3579  *
3580  * Turn on regulators that might be turned off by regulator_suspend_prepare
3581  * and that should be turned on according to the regulators properties.
3582  */
3583 int regulator_suspend_finish(void)
3584 {
3585         struct regulator_dev *rdev;
3586         int ret = 0, error;
3587
3588         mutex_lock(&regulator_list_mutex);
3589         list_for_each_entry(rdev, &regulator_list, list) {
3590                 struct regulator_ops *ops = rdev->desc->ops;
3591
3592                 mutex_lock(&rdev->mutex);
3593                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3594                                 ops->enable) {
3595                         error = ops->enable(rdev);
3596                         if (error)
3597                                 ret = error;
3598                 } else {
3599                         if (!has_full_constraints)
3600                                 goto unlock;
3601                         if (!ops->disable)
3602                                 goto unlock;
3603                         if (!_regulator_is_enabled(rdev))
3604                                 goto unlock;
3605
3606                         error = ops->disable(rdev);
3607                         if (error)
3608                                 ret = error;
3609                 }
3610 unlock:
3611                 mutex_unlock(&rdev->mutex);
3612         }
3613         mutex_unlock(&regulator_list_mutex);
3614         return ret;
3615 }
3616 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3617
3618 /**
3619  * regulator_has_full_constraints - the system has fully specified constraints
3620  *
3621  * Calling this function will cause the regulator API to disable all
3622  * regulators which have a zero use count and don't have an always_on
3623  * constraint in a late_initcall.
3624  *
3625  * The intention is that this will become the default behaviour in a
3626  * future kernel release so users are encouraged to use this facility
3627  * now.
3628  */
3629 void regulator_has_full_constraints(void)
3630 {
3631         has_full_constraints = 1;
3632 }
3633 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3634
3635 /**
3636  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3637  *
3638  * Calling this function will cause the regulator API to provide a
3639  * dummy regulator to consumers if no physical regulator is found,
3640  * allowing most consumers to proceed as though a regulator were
3641  * configured.  This allows systems such as those with software
3642  * controllable regulators for the CPU core only to be brought up more
3643  * readily.
3644  */
3645 void regulator_use_dummy_regulator(void)
3646 {
3647         board_wants_dummy_regulator = true;
3648 }
3649 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3650
3651 /**
3652  * rdev_get_drvdata - get rdev regulator driver data
3653  * @rdev: regulator
3654  *
3655  * Get rdev regulator driver private data. This call can be used in the
3656  * regulator driver context.
3657  */
3658 void *rdev_get_drvdata(struct regulator_dev *rdev)
3659 {
3660         return rdev->reg_data;
3661 }
3662 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3663
3664 /**
3665  * regulator_get_drvdata - get regulator driver data
3666  * @regulator: regulator
3667  *
3668  * Get regulator driver private data. This call can be used in the consumer
3669  * driver context when non API regulator specific functions need to be called.
3670  */
3671 void *regulator_get_drvdata(struct regulator *regulator)
3672 {
3673         return regulator->rdev->reg_data;
3674 }
3675 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3676
3677 /**
3678  * regulator_set_drvdata - set regulator driver data
3679  * @regulator: regulator
3680  * @data: data
3681  */
3682 void regulator_set_drvdata(struct regulator *regulator, void *data)
3683 {
3684         regulator->rdev->reg_data = data;
3685 }
3686 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3687
3688 /**
3689  * regulator_get_id - get regulator ID
3690  * @rdev: regulator
3691  */
3692 int rdev_get_id(struct regulator_dev *rdev)
3693 {
3694         return rdev->desc->id;
3695 }
3696 EXPORT_SYMBOL_GPL(rdev_get_id);
3697
3698 struct device *rdev_get_dev(struct regulator_dev *rdev)
3699 {
3700         return &rdev->dev;
3701 }
3702 EXPORT_SYMBOL_GPL(rdev_get_dev);
3703
3704 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3705 {
3706         return reg_init_data->driver_data;
3707 }
3708 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3709
3710 #ifdef CONFIG_DEBUG_FS
3711 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3712                                     size_t count, loff_t *ppos)
3713 {
3714         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3715         ssize_t len, ret = 0;
3716         struct regulator_map *map;
3717
3718         if (!buf)
3719                 return -ENOMEM;
3720
3721         list_for_each_entry(map, &regulator_map_list, list) {
3722                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3723                                "%s -> %s.%s\n",
3724                                rdev_get_name(map->regulator), map->dev_name,
3725                                map->supply);
3726                 if (len >= 0)
3727                         ret += len;
3728                 if (ret > PAGE_SIZE) {
3729                         ret = PAGE_SIZE;
3730                         break;
3731                 }
3732         }
3733
3734         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3735
3736         kfree(buf);
3737
3738         return ret;
3739 }
3740 #endif
3741
3742 static const struct file_operations supply_map_fops = {
3743 #ifdef CONFIG_DEBUG_FS
3744         .read = supply_map_read_file,
3745         .llseek = default_llseek,
3746 #endif
3747 };
3748
3749 static int __init regulator_init(void)
3750 {
3751         int ret;
3752
3753         ret = class_register(&regulator_class);
3754
3755         debugfs_root = debugfs_create_dir("regulator", NULL);
3756         if (!debugfs_root)
3757                 pr_warn("regulator: Failed to create debugfs directory\n");
3758
3759         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3760                             &supply_map_fops);
3761
3762         regulator_dummy_init();
3763
3764         return ret;
3765 }
3766
3767 /* init early to allow our consumers to complete system booting */
3768 core_initcall(regulator_init);
3769
3770 static int __init regulator_init_complete(void)
3771 {
3772         struct regulator_dev *rdev;
3773         struct regulator_ops *ops;
3774         struct regulation_constraints *c;
3775         int enabled, ret;
3776
3777         /*
3778          * Since DT doesn't provide an idiomatic mechanism for
3779          * enabling full constraints and since it's much more natural
3780          * with DT to provide them just assume that a DT enabled
3781          * system has full constraints.
3782          */
3783         if (of_have_populated_dt())
3784                 has_full_constraints = true;
3785
3786         mutex_lock(&regulator_list_mutex);
3787
3788         /* If we have a full configuration then disable any regulators
3789          * which are not in use or always_on.  This will become the
3790          * default behaviour in the future.
3791          */
3792         list_for_each_entry(rdev, &regulator_list, list) {
3793                 ops = rdev->desc->ops;
3794                 c = rdev->constraints;
3795
3796                 if (!ops->disable || (c && c->always_on))
3797                         continue;
3798
3799                 mutex_lock(&rdev->mutex);
3800
3801                 if (rdev->use_count)
3802                         goto unlock;
3803
3804                 /* If we can't read the status assume it's on. */
3805                 if (ops->is_enabled)
3806                         enabled = ops->is_enabled(rdev);
3807                 else
3808                         enabled = 1;
3809
3810                 if (!enabled)
3811                         goto unlock;
3812
3813                 if (has_full_constraints) {
3814                         /* We log since this may kill the system if it
3815                          * goes wrong. */
3816                         rdev_info(rdev, "disabling\n");
3817                         ret = ops->disable(rdev);
3818                         if (ret != 0) {
3819                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3820                         }
3821                 } else {
3822                         /* The intention is that in future we will
3823                          * assume that full constraints are provided
3824                          * so warn even if we aren't going to do
3825                          * anything here.
3826                          */
3827                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3828                 }
3829
3830 unlock:
3831                 mutex_unlock(&rdev->mutex);
3832         }
3833
3834         mutex_unlock(&regulator_list_mutex);
3835
3836         return 0;
3837 }
3838 late_initcall(regulator_init_complete);