]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'asoc/fix/sta529' into tmp
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         unsigned int bypass:1;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87         struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96                                   unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98                                      int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100                                           struct device *dev,
101                                           const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105         if (rdev->constraints && rdev->constraints->name)
106                 return rdev->constraints->name;
107         else if (rdev->desc->name)
108                 return rdev->desc->name;
109         else
110                 return "";
111 }
112
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124         struct device_node *regnode = NULL;
125         char prop_name[32]; /* 32 is max size of property name */
126
127         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129         snprintf(prop_name, 32, "%s-supply", supply);
130         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132         if (!regnode) {
133                 dev_dbg(dev, "Looking up %s property in node %s failed",
134                                 prop_name, dev->of_node->full_name);
135                 return NULL;
136         }
137         return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142         if (!rdev->constraints)
143                 return 0;
144
145         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146                 return 1;
147         else
148                 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153                                    int *min_uV, int *max_uV)
154 {
155         BUG_ON(*min_uV > *max_uV);
156
157         if (!rdev->constraints) {
158                 rdev_err(rdev, "no constraints\n");
159                 return -ENODEV;
160         }
161         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162                 rdev_err(rdev, "operation not allowed\n");
163                 return -EPERM;
164         }
165
166         if (*max_uV > rdev->constraints->max_uV)
167                 *max_uV = rdev->constraints->max_uV;
168         if (*min_uV < rdev->constraints->min_uV)
169                 *min_uV = rdev->constraints->min_uV;
170
171         if (*min_uV > *max_uV) {
172                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173                          *min_uV, *max_uV);
174                 return -EINVAL;
175         }
176
177         return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184                                      int *min_uV, int *max_uV)
185 {
186         struct regulator *regulator;
187
188         list_for_each_entry(regulator, &rdev->consumer_list, list) {
189                 /*
190                  * Assume consumers that didn't say anything are OK
191                  * with anything in the constraint range.
192                  */
193                 if (!regulator->min_uV && !regulator->max_uV)
194                         continue;
195
196                 if (*max_uV > regulator->max_uV)
197                         *max_uV = regulator->max_uV;
198                 if (*min_uV < regulator->min_uV)
199                         *min_uV = regulator->min_uV;
200         }
201
202         if (*min_uV > *max_uV) {
203                 dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
204                         regulator->min_uV, regulator->max_uV);
205                 return -EINVAL;
206         }
207
208         return 0;
209 }
210
211 /* current constraint check */
212 static int regulator_check_current_limit(struct regulator_dev *rdev,
213                                         int *min_uA, int *max_uA)
214 {
215         BUG_ON(*min_uA > *max_uA);
216
217         if (!rdev->constraints) {
218                 rdev_err(rdev, "no constraints\n");
219                 return -ENODEV;
220         }
221         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222                 rdev_err(rdev, "operation not allowed\n");
223                 return -EPERM;
224         }
225
226         if (*max_uA > rdev->constraints->max_uA)
227                 *max_uA = rdev->constraints->max_uA;
228         if (*min_uA < rdev->constraints->min_uA)
229                 *min_uA = rdev->constraints->min_uA;
230
231         if (*min_uA > *max_uA) {
232                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233                          *min_uA, *max_uA);
234                 return -EINVAL;
235         }
236
237         return 0;
238 }
239
240 /* operating mode constraint check */
241 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242 {
243         switch (*mode) {
244         case REGULATOR_MODE_FAST:
245         case REGULATOR_MODE_NORMAL:
246         case REGULATOR_MODE_IDLE:
247         case REGULATOR_MODE_STANDBY:
248                 break;
249         default:
250                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
251                 return -EINVAL;
252         }
253
254         if (!rdev->constraints) {
255                 rdev_err(rdev, "no constraints\n");
256                 return -ENODEV;
257         }
258         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259                 rdev_err(rdev, "operation not allowed\n");
260                 return -EPERM;
261         }
262
263         /* The modes are bitmasks, the most power hungry modes having
264          * the lowest values. If the requested mode isn't supported
265          * try higher modes. */
266         while (*mode) {
267                 if (rdev->constraints->valid_modes_mask & *mode)
268                         return 0;
269                 *mode /= 2;
270         }
271
272         return -EINVAL;
273 }
274
275 /* dynamic regulator mode switching constraint check */
276 static int regulator_check_drms(struct regulator_dev *rdev)
277 {
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283                 rdev_err(rdev, "operation not allowed\n");
284                 return -EPERM;
285         }
286         return 0;
287 }
288
289 static ssize_t regulator_uV_show(struct device *dev,
290                                 struct device_attribute *attr, char *buf)
291 {
292         struct regulator_dev *rdev = dev_get_drvdata(dev);
293         ssize_t ret;
294
295         mutex_lock(&rdev->mutex);
296         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297         mutex_unlock(&rdev->mutex);
298
299         return ret;
300 }
301 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303 static ssize_t regulator_uA_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309 }
310 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312 static ssize_t regulator_name_show(struct device *dev,
313                              struct device_attribute *attr, char *buf)
314 {
315         struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317         return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 }
319
320 static ssize_t regulator_print_opmode(char *buf, int mode)
321 {
322         switch (mode) {
323         case REGULATOR_MODE_FAST:
324                 return sprintf(buf, "fast\n");
325         case REGULATOR_MODE_NORMAL:
326                 return sprintf(buf, "normal\n");
327         case REGULATOR_MODE_IDLE:
328                 return sprintf(buf, "idle\n");
329         case REGULATOR_MODE_STANDBY:
330                 return sprintf(buf, "standby\n");
331         }
332         return sprintf(buf, "unknown\n");
333 }
334
335 static ssize_t regulator_opmode_show(struct device *dev,
336                                     struct device_attribute *attr, char *buf)
337 {
338         struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341 }
342 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344 static ssize_t regulator_print_state(char *buf, int state)
345 {
346         if (state > 0)
347                 return sprintf(buf, "enabled\n");
348         else if (state == 0)
349                 return sprintf(buf, "disabled\n");
350         else
351                 return sprintf(buf, "unknown\n");
352 }
353
354 static ssize_t regulator_state_show(struct device *dev,
355                                    struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358         ssize_t ret;
359
360         mutex_lock(&rdev->mutex);
361         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362         mutex_unlock(&rdev->mutex);
363
364         return ret;
365 }
366 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368 static ssize_t regulator_status_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         int status;
373         char *label;
374
375         status = rdev->desc->ops->get_status(rdev);
376         if (status < 0)
377                 return status;
378
379         switch (status) {
380         case REGULATOR_STATUS_OFF:
381                 label = "off";
382                 break;
383         case REGULATOR_STATUS_ON:
384                 label = "on";
385                 break;
386         case REGULATOR_STATUS_ERROR:
387                 label = "error";
388                 break;
389         case REGULATOR_STATUS_FAST:
390                 label = "fast";
391                 break;
392         case REGULATOR_STATUS_NORMAL:
393                 label = "normal";
394                 break;
395         case REGULATOR_STATUS_IDLE:
396                 label = "idle";
397                 break;
398         case REGULATOR_STATUS_STANDBY:
399                 label = "standby";
400                 break;
401         case REGULATOR_STATUS_BYPASS:
402                 label = "bypass";
403                 break;
404         case REGULATOR_STATUS_UNDEFINED:
405                 label = "undefined";
406                 break;
407         default:
408                 return -ERANGE;
409         }
410
411         return sprintf(buf, "%s\n", label);
412 }
413 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415 static ssize_t regulator_min_uA_show(struct device *dev,
416                                     struct device_attribute *attr, char *buf)
417 {
418         struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420         if (!rdev->constraints)
421                 return sprintf(buf, "constraint not defined\n");
422
423         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424 }
425 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427 static ssize_t regulator_max_uA_show(struct device *dev,
428                                     struct device_attribute *attr, char *buf)
429 {
430         struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432         if (!rdev->constraints)
433                 return sprintf(buf, "constraint not defined\n");
434
435         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436 }
437 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439 static ssize_t regulator_min_uV_show(struct device *dev,
440                                     struct device_attribute *attr, char *buf)
441 {
442         struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444         if (!rdev->constraints)
445                 return sprintf(buf, "constraint not defined\n");
446
447         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448 }
449 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451 static ssize_t regulator_max_uV_show(struct device *dev,
452                                     struct device_attribute *attr, char *buf)
453 {
454         struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456         if (!rdev->constraints)
457                 return sprintf(buf, "constraint not defined\n");
458
459         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460 }
461 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463 static ssize_t regulator_total_uA_show(struct device *dev,
464                                       struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467         struct regulator *regulator;
468         int uA = 0;
469
470         mutex_lock(&rdev->mutex);
471         list_for_each_entry(regulator, &rdev->consumer_list, list)
472                 uA += regulator->uA_load;
473         mutex_unlock(&rdev->mutex);
474         return sprintf(buf, "%d\n", uA);
475 }
476 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478 static ssize_t regulator_num_users_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         return sprintf(buf, "%d\n", rdev->use_count);
483 }
484
485 static ssize_t regulator_type_show(struct device *dev,
486                                   struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490         switch (rdev->desc->type) {
491         case REGULATOR_VOLTAGE:
492                 return sprintf(buf, "voltage\n");
493         case REGULATOR_CURRENT:
494                 return sprintf(buf, "current\n");
495         }
496         return sprintf(buf, "unknown\n");
497 }
498
499 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500                                 struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505 }
506 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507                 regulator_suspend_mem_uV_show, NULL);
508
509 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510                                 struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515 }
516 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517                 regulator_suspend_disk_uV_show, NULL);
518
519 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525 }
526 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527                 regulator_suspend_standby_uV_show, NULL);
528
529 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530                                 struct device_attribute *attr, char *buf)
531 {
532         struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534         return regulator_print_opmode(buf,
535                 rdev->constraints->state_mem.mode);
536 }
537 static DEVICE_ATTR(suspend_mem_mode, 0444,
538                 regulator_suspend_mem_mode_show, NULL);
539
540 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return regulator_print_opmode(buf,
546                 rdev->constraints->state_disk.mode);
547 }
548 static DEVICE_ATTR(suspend_disk_mode, 0444,
549                 regulator_suspend_disk_mode_show, NULL);
550
551 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552                                 struct device_attribute *attr, char *buf)
553 {
554         struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556         return regulator_print_opmode(buf,
557                 rdev->constraints->state_standby.mode);
558 }
559 static DEVICE_ATTR(suspend_standby_mode, 0444,
560                 regulator_suspend_standby_mode_show, NULL);
561
562 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563                                    struct device_attribute *attr, char *buf)
564 {
565         struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567         return regulator_print_state(buf,
568                         rdev->constraints->state_mem.enabled);
569 }
570 static DEVICE_ATTR(suspend_mem_state, 0444,
571                 regulator_suspend_mem_state_show, NULL);
572
573 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574                                    struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return regulator_print_state(buf,
579                         rdev->constraints->state_disk.enabled);
580 }
581 static DEVICE_ATTR(suspend_disk_state, 0444,
582                 regulator_suspend_disk_state_show, NULL);
583
584 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585                                    struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589         return regulator_print_state(buf,
590                         rdev->constraints->state_standby.enabled);
591 }
592 static DEVICE_ATTR(suspend_standby_state, 0444,
593                 regulator_suspend_standby_state_show, NULL);
594
595 static ssize_t regulator_bypass_show(struct device *dev,
596                                      struct device_attribute *attr, char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599         const char *report;
600         bool bypass;
601         int ret;
602
603         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605         if (ret != 0)
606                 report = "unknown";
607         else if (bypass)
608                 report = "enabled";
609         else
610                 report = "disabled";
611
612         return sprintf(buf, "%s\n", report);
613 }
614 static DEVICE_ATTR(bypass, 0444,
615                    regulator_bypass_show, NULL);
616
617 /*
618  * These are the only attributes are present for all regulators.
619  * Other attributes are a function of regulator functionality.
620  */
621 static struct device_attribute regulator_dev_attrs[] = {
622         __ATTR(name, 0444, regulator_name_show, NULL),
623         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
624         __ATTR(type, 0444, regulator_type_show, NULL),
625         __ATTR_NULL,
626 };
627
628 static void regulator_dev_release(struct device *dev)
629 {
630         struct regulator_dev *rdev = dev_get_drvdata(dev);
631         kfree(rdev);
632 }
633
634 static struct class regulator_class = {
635         .name = "regulator",
636         .dev_release = regulator_dev_release,
637         .dev_attrs = regulator_dev_attrs,
638 };
639
640 /* Calculate the new optimum regulator operating mode based on the new total
641  * consumer load. All locks held by caller */
642 static void drms_uA_update(struct regulator_dev *rdev)
643 {
644         struct regulator *sibling;
645         int current_uA = 0, output_uV, input_uV, err;
646         unsigned int mode;
647
648         err = regulator_check_drms(rdev);
649         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650             (!rdev->desc->ops->get_voltage &&
651              !rdev->desc->ops->get_voltage_sel) ||
652             !rdev->desc->ops->set_mode)
653                 return;
654
655         /* get output voltage */
656         output_uV = _regulator_get_voltage(rdev);
657         if (output_uV <= 0)
658                 return;
659
660         /* get input voltage */
661         input_uV = 0;
662         if (rdev->supply)
663                 input_uV = regulator_get_voltage(rdev->supply);
664         if (input_uV <= 0)
665                 input_uV = rdev->constraints->input_uV;
666         if (input_uV <= 0)
667                 return;
668
669         /* calc total requested load */
670         list_for_each_entry(sibling, &rdev->consumer_list, list)
671                 current_uA += sibling->uA_load;
672
673         /* now get the optimum mode for our new total regulator load */
674         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675                                                   output_uV, current_uA);
676
677         /* check the new mode is allowed */
678         err = regulator_mode_constrain(rdev, &mode);
679         if (err == 0)
680                 rdev->desc->ops->set_mode(rdev, mode);
681 }
682
683 static int suspend_set_state(struct regulator_dev *rdev,
684         struct regulator_state *rstate)
685 {
686         int ret = 0;
687
688         /* If we have no suspend mode configration don't set anything;
689          * only warn if the driver implements set_suspend_voltage or
690          * set_suspend_mode callback.
691          */
692         if (!rstate->enabled && !rstate->disabled) {
693                 if (rdev->desc->ops->set_suspend_voltage ||
694                     rdev->desc->ops->set_suspend_mode)
695                         rdev_warn(rdev, "No configuration\n");
696                 return 0;
697         }
698
699         if (rstate->enabled && rstate->disabled) {
700                 rdev_err(rdev, "invalid configuration\n");
701                 return -EINVAL;
702         }
703
704         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705                 ret = rdev->desc->ops->set_suspend_enable(rdev);
706         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707                 ret = rdev->desc->ops->set_suspend_disable(rdev);
708         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709                 ret = 0;
710
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         if (!count)
810                 sprintf(buf, "no parameters");
811
812         rdev_info(rdev, "%s\n", buf);
813
814         if ((constraints->min_uV != constraints->max_uV) &&
815             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816                 rdev_warn(rdev,
817                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 }
819
820 static int machine_constraints_voltage(struct regulator_dev *rdev,
821         struct regulation_constraints *constraints)
822 {
823         struct regulator_ops *ops = rdev->desc->ops;
824         int ret;
825
826         /* do we need to apply the constraint voltage */
827         if (rdev->constraints->apply_uV &&
828             rdev->constraints->min_uV == rdev->constraints->max_uV) {
829                 ret = _regulator_do_set_voltage(rdev,
830                                                 rdev->constraints->min_uV,
831                                                 rdev->constraints->max_uV);
832                 if (ret < 0) {
833                         rdev_err(rdev, "failed to apply %duV constraint\n",
834                                  rdev->constraints->min_uV);
835                         return ret;
836                 }
837         }
838
839         /* constrain machine-level voltage specs to fit
840          * the actual range supported by this regulator.
841          */
842         if (ops->list_voltage && rdev->desc->n_voltages) {
843                 int     count = rdev->desc->n_voltages;
844                 int     i;
845                 int     min_uV = INT_MAX;
846                 int     max_uV = INT_MIN;
847                 int     cmin = constraints->min_uV;
848                 int     cmax = constraints->max_uV;
849
850                 /* it's safe to autoconfigure fixed-voltage supplies
851                    and the constraints are used by list_voltage. */
852                 if (count == 1 && !cmin) {
853                         cmin = 1;
854                         cmax = INT_MAX;
855                         constraints->min_uV = cmin;
856                         constraints->max_uV = cmax;
857                 }
858
859                 /* voltage constraints are optional */
860                 if ((cmin == 0) && (cmax == 0))
861                         return 0;
862
863                 /* else require explicit machine-level constraints */
864                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865                         rdev_err(rdev, "invalid voltage constraints\n");
866                         return -EINVAL;
867                 }
868
869                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870                 for (i = 0; i < count; i++) {
871                         int     value;
872
873                         value = ops->list_voltage(rdev, i);
874                         if (value <= 0)
875                                 continue;
876
877                         /* maybe adjust [min_uV..max_uV] */
878                         if (value >= cmin && value < min_uV)
879                                 min_uV = value;
880                         if (value <= cmax && value > max_uV)
881                                 max_uV = value;
882                 }
883
884                 /* final: [min_uV..max_uV] valid iff constraints valid */
885                 if (max_uV < min_uV) {
886                         rdev_err(rdev,
887                                  "unsupportable voltage constraints %u-%uuV\n",
888                                  min_uV, max_uV);
889                         return -EINVAL;
890                 }
891
892                 /* use regulator's subset of machine constraints */
893                 if (constraints->min_uV < min_uV) {
894                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895                                  constraints->min_uV, min_uV);
896                         constraints->min_uV = min_uV;
897                 }
898                 if (constraints->max_uV > max_uV) {
899                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900                                  constraints->max_uV, max_uV);
901                         constraints->max_uV = max_uV;
902                 }
903         }
904
905         return 0;
906 }
907
908 /**
909  * set_machine_constraints - sets regulator constraints
910  * @rdev: regulator source
911  * @constraints: constraints to apply
912  *
913  * Allows platform initialisation code to define and constrain
914  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915  * Constraints *must* be set by platform code in order for some
916  * regulator operations to proceed i.e. set_voltage, set_current_limit,
917  * set_mode.
918  */
919 static int set_machine_constraints(struct regulator_dev *rdev,
920         const struct regulation_constraints *constraints)
921 {
922         int ret = 0;
923         struct regulator_ops *ops = rdev->desc->ops;
924
925         if (constraints)
926                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927                                             GFP_KERNEL);
928         else
929                 rdev->constraints = kzalloc(sizeof(*constraints),
930                                             GFP_KERNEL);
931         if (!rdev->constraints)
932                 return -ENOMEM;
933
934         ret = machine_constraints_voltage(rdev, rdev->constraints);
935         if (ret != 0)
936                 goto out;
937
938         /* do we need to setup our suspend state */
939         if (rdev->constraints->initial_state) {
940                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941                 if (ret < 0) {
942                         rdev_err(rdev, "failed to set suspend state\n");
943                         goto out;
944                 }
945         }
946
947         if (rdev->constraints->initial_mode) {
948                 if (!ops->set_mode) {
949                         rdev_err(rdev, "no set_mode operation\n");
950                         ret = -EINVAL;
951                         goto out;
952                 }
953
954                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955                 if (ret < 0) {
956                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957                         goto out;
958                 }
959         }
960
961         /* If the constraints say the regulator should be on at this point
962          * and we have control then make sure it is enabled.
963          */
964         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965             ops->enable) {
966                 ret = ops->enable(rdev);
967                 if (ret < 0) {
968                         rdev_err(rdev, "failed to enable\n");
969                         goto out;
970                 }
971         }
972
973         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975                 if (ret < 0) {
976                         rdev_err(rdev, "failed to set ramp_delay\n");
977                         goto out;
978                 }
979         }
980
981         print_constraints(rdev);
982         return 0;
983 out:
984         kfree(rdev->constraints);
985         rdev->constraints = NULL;
986         return ret;
987 }
988
989 /**
990  * set_supply - set regulator supply regulator
991  * @rdev: regulator name
992  * @supply_rdev: supply regulator name
993  *
994  * Called by platform initialisation code to set the supply regulator for this
995  * regulator. This ensures that a regulators supply will also be enabled by the
996  * core if it's child is enabled.
997  */
998 static int set_supply(struct regulator_dev *rdev,
999                       struct regulator_dev *supply_rdev)
1000 {
1001         int err;
1002
1003         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006         if (rdev->supply == NULL) {
1007                 err = -ENOMEM;
1008                 return err;
1009         }
1010         supply_rdev->open_count++;
1011
1012         return 0;
1013 }
1014
1015 /**
1016  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017  * @rdev:         regulator source
1018  * @consumer_dev_name: dev_name() string for device supply applies to
1019  * @supply:       symbolic name for supply
1020  *
1021  * Allows platform initialisation code to map physical regulator
1022  * sources to symbolic names for supplies for use by devices.  Devices
1023  * should use these symbolic names to request regulators, avoiding the
1024  * need to provide board-specific regulator names as platform data.
1025  */
1026 static int set_consumer_device_supply(struct regulator_dev *rdev,
1027                                       const char *consumer_dev_name,
1028                                       const char *supply)
1029 {
1030         struct regulator_map *node;
1031         int has_dev;
1032
1033         if (supply == NULL)
1034                 return -EINVAL;
1035
1036         if (consumer_dev_name != NULL)
1037                 has_dev = 1;
1038         else
1039                 has_dev = 0;
1040
1041         list_for_each_entry(node, &regulator_map_list, list) {
1042                 if (node->dev_name && consumer_dev_name) {
1043                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044                                 continue;
1045                 } else if (node->dev_name || consumer_dev_name) {
1046                         continue;
1047                 }
1048
1049                 if (strcmp(node->supply, supply) != 0)
1050                         continue;
1051
1052                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053                          consumer_dev_name,
1054                          dev_name(&node->regulator->dev),
1055                          node->regulator->desc->name,
1056                          supply,
1057                          dev_name(&rdev->dev), rdev_get_name(rdev));
1058                 return -EBUSY;
1059         }
1060
1061         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062         if (node == NULL)
1063                 return -ENOMEM;
1064
1065         node->regulator = rdev;
1066         node->supply = supply;
1067
1068         if (has_dev) {
1069                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070                 if (node->dev_name == NULL) {
1071                         kfree(node);
1072                         return -ENOMEM;
1073                 }
1074         }
1075
1076         list_add(&node->list, &regulator_map_list);
1077         return 0;
1078 }
1079
1080 static void unset_regulator_supplies(struct regulator_dev *rdev)
1081 {
1082         struct regulator_map *node, *n;
1083
1084         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085                 if (rdev == node->regulator) {
1086                         list_del(&node->list);
1087                         kfree(node->dev_name);
1088                         kfree(node);
1089                 }
1090         }
1091 }
1092
1093 #define REG_STR_SIZE    64
1094
1095 static struct regulator *create_regulator(struct regulator_dev *rdev,
1096                                           struct device *dev,
1097                                           const char *supply_name)
1098 {
1099         struct regulator *regulator;
1100         char buf[REG_STR_SIZE];
1101         int err, size;
1102
1103         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104         if (regulator == NULL)
1105                 return NULL;
1106
1107         mutex_lock(&rdev->mutex);
1108         regulator->rdev = rdev;
1109         list_add(&regulator->list, &rdev->consumer_list);
1110
1111         if (dev) {
1112                 regulator->dev = dev;
1113
1114                 /* Add a link to the device sysfs entry */
1115                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116                                  dev->kobj.name, supply_name);
1117                 if (size >= REG_STR_SIZE)
1118                         goto overflow_err;
1119
1120                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121                 if (regulator->supply_name == NULL)
1122                         goto overflow_err;
1123
1124                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125                                         buf);
1126                 if (err) {
1127                         rdev_warn(rdev, "could not add device link %s err %d\n",
1128                                   dev->kobj.name, err);
1129                         /* non-fatal */
1130                 }
1131         } else {
1132                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133                 if (regulator->supply_name == NULL)
1134                         goto overflow_err;
1135         }
1136
1137         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138                                                 rdev->debugfs);
1139         if (!regulator->debugfs) {
1140                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1141         } else {
1142                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143                                    &regulator->uA_load);
1144                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145                                    &regulator->min_uV);
1146                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147                                    &regulator->max_uV);
1148         }
1149
1150         /*
1151          * Check now if the regulator is an always on regulator - if
1152          * it is then we don't need to do nearly so much work for
1153          * enable/disable calls.
1154          */
1155         if (!_regulator_can_change_status(rdev) &&
1156             _regulator_is_enabled(rdev))
1157                 regulator->always_on = true;
1158
1159         mutex_unlock(&rdev->mutex);
1160         return regulator;
1161 overflow_err:
1162         list_del(&regulator->list);
1163         kfree(regulator);
1164         mutex_unlock(&rdev->mutex);
1165         return NULL;
1166 }
1167
1168 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169 {
1170         if (!rdev->desc->ops->enable_time)
1171                 return rdev->desc->enable_time;
1172         return rdev->desc->ops->enable_time(rdev);
1173 }
1174
1175 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176                                                   const char *supply,
1177                                                   int *ret)
1178 {
1179         struct regulator_dev *r;
1180         struct device_node *node;
1181         struct regulator_map *map;
1182         const char *devname = NULL;
1183
1184         /* first do a dt based lookup */
1185         if (dev && dev->of_node) {
1186                 node = of_get_regulator(dev, supply);
1187                 if (node) {
1188                         list_for_each_entry(r, &regulator_list, list)
1189                                 if (r->dev.parent &&
1190                                         node == r->dev.of_node)
1191                                         return r;
1192                 } else {
1193                         /*
1194                          * If we couldn't even get the node then it's
1195                          * not just that the device didn't register
1196                          * yet, there's no node and we'll never
1197                          * succeed.
1198                          */
1199                         *ret = -ENODEV;
1200                 }
1201         }
1202
1203         /* if not found, try doing it non-dt way */
1204         if (dev)
1205                 devname = dev_name(dev);
1206
1207         list_for_each_entry(r, &regulator_list, list)
1208                 if (strcmp(rdev_get_name(r), supply) == 0)
1209                         return r;
1210
1211         list_for_each_entry(map, &regulator_map_list, list) {
1212                 /* If the mapping has a device set up it must match */
1213                 if (map->dev_name &&
1214                     (!devname || strcmp(map->dev_name, devname)))
1215                         continue;
1216
1217                 if (strcmp(map->supply, supply) == 0)
1218                         return map->regulator;
1219         }
1220
1221
1222         return NULL;
1223 }
1224
1225 /* Internal regulator request function */
1226 static struct regulator *_regulator_get(struct device *dev, const char *id,
1227                                         int exclusive)
1228 {
1229         struct regulator_dev *rdev;
1230         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231         const char *devname = NULL;
1232         int ret;
1233
1234         if (id == NULL) {
1235                 pr_err("get() with no identifier\n");
1236                 return regulator;
1237         }
1238
1239         if (dev)
1240                 devname = dev_name(dev);
1241
1242         mutex_lock(&regulator_list_mutex);
1243
1244         rdev = regulator_dev_lookup(dev, id, &ret);
1245         if (rdev)
1246                 goto found;
1247
1248         if (board_wants_dummy_regulator) {
1249                 rdev = dummy_regulator_rdev;
1250                 goto found;
1251         }
1252
1253 #ifdef CONFIG_REGULATOR_DUMMY
1254         if (!devname)
1255                 devname = "deviceless";
1256
1257         /* If the board didn't flag that it was fully constrained then
1258          * substitute in a dummy regulator so consumers can continue.
1259          */
1260         if (!has_full_constraints) {
1261                 pr_warn("%s supply %s not found, using dummy regulator\n",
1262                         devname, id);
1263                 rdev = dummy_regulator_rdev;
1264                 goto found;
1265         }
1266 #endif
1267
1268         mutex_unlock(&regulator_list_mutex);
1269         return regulator;
1270
1271 found:
1272         if (rdev->exclusive) {
1273                 regulator = ERR_PTR(-EPERM);
1274                 goto out;
1275         }
1276
1277         if (exclusive && rdev->open_count) {
1278                 regulator = ERR_PTR(-EBUSY);
1279                 goto out;
1280         }
1281
1282         if (!try_module_get(rdev->owner))
1283                 goto out;
1284
1285         regulator = create_regulator(rdev, dev, id);
1286         if (regulator == NULL) {
1287                 regulator = ERR_PTR(-ENOMEM);
1288                 module_put(rdev->owner);
1289                 goto out;
1290         }
1291
1292         rdev->open_count++;
1293         if (exclusive) {
1294                 rdev->exclusive = 1;
1295
1296                 ret = _regulator_is_enabled(rdev);
1297                 if (ret > 0)
1298                         rdev->use_count = 1;
1299                 else
1300                         rdev->use_count = 0;
1301         }
1302
1303 out:
1304         mutex_unlock(&regulator_list_mutex);
1305
1306         return regulator;
1307 }
1308
1309 /**
1310  * regulator_get - lookup and obtain a reference to a regulator.
1311  * @dev: device for regulator "consumer"
1312  * @id: Supply name or regulator ID.
1313  *
1314  * Returns a struct regulator corresponding to the regulator producer,
1315  * or IS_ERR() condition containing errno.
1316  *
1317  * Use of supply names configured via regulator_set_device_supply() is
1318  * strongly encouraged.  It is recommended that the supply name used
1319  * should match the name used for the supply and/or the relevant
1320  * device pins in the datasheet.
1321  */
1322 struct regulator *regulator_get(struct device *dev, const char *id)
1323 {
1324         return _regulator_get(dev, id, 0);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_get);
1327
1328 static void devm_regulator_release(struct device *dev, void *res)
1329 {
1330         regulator_put(*(struct regulator **)res);
1331 }
1332
1333 /**
1334  * devm_regulator_get - Resource managed regulator_get()
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Managed regulator_get(). Regulators returned from this function are
1339  * automatically regulator_put() on driver detach. See regulator_get() for more
1340  * information.
1341  */
1342 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343 {
1344         struct regulator **ptr, *regulator;
1345
1346         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347         if (!ptr)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         regulator = regulator_get(dev, id);
1351         if (!IS_ERR(regulator)) {
1352                 *ptr = regulator;
1353                 devres_add(dev, ptr);
1354         } else {
1355                 devres_free(ptr);
1356         }
1357
1358         return regulator;
1359 }
1360 EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362 /**
1363  * regulator_get_exclusive - obtain exclusive access to a regulator.
1364  * @dev: device for regulator "consumer"
1365  * @id: Supply name or regulator ID.
1366  *
1367  * Returns a struct regulator corresponding to the regulator producer,
1368  * or IS_ERR() condition containing errno.  Other consumers will be
1369  * unable to obtain this reference is held and the use count for the
1370  * regulator will be initialised to reflect the current state of the
1371  * regulator.
1372  *
1373  * This is intended for use by consumers which cannot tolerate shared
1374  * use of the regulator such as those which need to force the
1375  * regulator off for correct operation of the hardware they are
1376  * controlling.
1377  *
1378  * Use of supply names configured via regulator_set_device_supply() is
1379  * strongly encouraged.  It is recommended that the supply name used
1380  * should match the name used for the supply and/or the relevant
1381  * device pins in the datasheet.
1382  */
1383 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384 {
1385         return _regulator_get(dev, id, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389 /* Locks held by regulator_put() */
1390 static void _regulator_put(struct regulator *regulator)
1391 {
1392         struct regulator_dev *rdev;
1393
1394         if (regulator == NULL || IS_ERR(regulator))
1395                 return;
1396
1397         rdev = regulator->rdev;
1398
1399         debugfs_remove_recursive(regulator->debugfs);
1400
1401         /* remove any sysfs entries */
1402         if (regulator->dev)
1403                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404         kfree(regulator->supply_name);
1405         list_del(&regulator->list);
1406         kfree(regulator);
1407
1408         rdev->open_count--;
1409         rdev->exclusive = 0;
1410
1411         module_put(rdev->owner);
1412 }
1413
1414 /**
1415  * regulator_put - "free" the regulator source
1416  * @regulator: regulator source
1417  *
1418  * Note: drivers must ensure that all regulator_enable calls made on this
1419  * regulator source are balanced by regulator_disable calls prior to calling
1420  * this function.
1421  */
1422 void regulator_put(struct regulator *regulator)
1423 {
1424         mutex_lock(&regulator_list_mutex);
1425         _regulator_put(regulator);
1426         mutex_unlock(&regulator_list_mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_put);
1429
1430 static int devm_regulator_match(struct device *dev, void *res, void *data)
1431 {
1432         struct regulator **r = res;
1433         if (!r || !*r) {
1434                 WARN_ON(!r || !*r);
1435                 return 0;
1436         }
1437         return *r == data;
1438 }
1439
1440 /**
1441  * devm_regulator_put - Resource managed regulator_put()
1442  * @regulator: regulator to free
1443  *
1444  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445  * this function will not need to be called and the resource management
1446  * code will ensure that the resource is freed.
1447  */
1448 void devm_regulator_put(struct regulator *regulator)
1449 {
1450         int rc;
1451
1452         rc = devres_release(regulator->dev, devm_regulator_release,
1453                             devm_regulator_match, regulator);
1454         if (rc != 0)
1455                 WARN_ON(rc);
1456 }
1457 EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459 static int _regulator_do_enable(struct regulator_dev *rdev)
1460 {
1461         int ret, delay;
1462
1463         /* Query before enabling in case configuration dependent.  */
1464         ret = _regulator_get_enable_time(rdev);
1465         if (ret >= 0) {
1466                 delay = ret;
1467         } else {
1468                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469                 delay = 0;
1470         }
1471
1472         trace_regulator_enable(rdev_get_name(rdev));
1473
1474         if (rdev->ena_gpio) {
1475                 gpio_set_value_cansleep(rdev->ena_gpio,
1476                                         !rdev->ena_gpio_invert);
1477                 rdev->ena_gpio_state = 1;
1478         } else if (rdev->desc->ops->enable) {
1479                 ret = rdev->desc->ops->enable(rdev);
1480                 if (ret < 0)
1481                         return ret;
1482         } else {
1483                 return -EINVAL;
1484         }
1485
1486         /* Allow the regulator to ramp; it would be useful to extend
1487          * this for bulk operations so that the regulators can ramp
1488          * together.  */
1489         trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491         if (delay >= 1000) {
1492                 mdelay(delay / 1000);
1493                 udelay(delay % 1000);
1494         } else if (delay) {
1495                 udelay(delay);
1496         }
1497
1498         trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500         return 0;
1501 }
1502
1503 /* locks held by regulator_enable() */
1504 static int _regulator_enable(struct regulator_dev *rdev)
1505 {
1506         int ret;
1507
1508         /* check voltage and requested load before enabling */
1509         if (rdev->constraints &&
1510             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511                 drms_uA_update(rdev);
1512
1513         if (rdev->use_count == 0) {
1514                 /* The regulator may on if it's not switchable or left on */
1515                 ret = _regulator_is_enabled(rdev);
1516                 if (ret == -EINVAL || ret == 0) {
1517                         if (!_regulator_can_change_status(rdev))
1518                                 return -EPERM;
1519
1520                         ret = _regulator_do_enable(rdev);
1521                         if (ret < 0)
1522                                 return ret;
1523
1524                 } else if (ret < 0) {
1525                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526                         return ret;
1527                 }
1528                 /* Fallthrough on positive return values - already enabled */
1529         }
1530
1531         rdev->use_count++;
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * regulator_enable - enable regulator output
1538  * @regulator: regulator source
1539  *
1540  * Request that the regulator be enabled with the regulator output at
1541  * the predefined voltage or current value.  Calls to regulator_enable()
1542  * must be balanced with calls to regulator_disable().
1543  *
1544  * NOTE: the output value can be set by other drivers, boot loader or may be
1545  * hardwired in the regulator.
1546  */
1547 int regulator_enable(struct regulator *regulator)
1548 {
1549         struct regulator_dev *rdev = regulator->rdev;
1550         int ret = 0;
1551
1552         if (regulator->always_on)
1553                 return 0;
1554
1555         if (rdev->supply) {
1556                 ret = regulator_enable(rdev->supply);
1557                 if (ret != 0)
1558                         return ret;
1559         }
1560
1561         mutex_lock(&rdev->mutex);
1562         ret = _regulator_enable(rdev);
1563         mutex_unlock(&rdev->mutex);
1564
1565         if (ret != 0 && rdev->supply)
1566                 regulator_disable(rdev->supply);
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572 static int _regulator_do_disable(struct regulator_dev *rdev)
1573 {
1574         int ret;
1575
1576         trace_regulator_disable(rdev_get_name(rdev));
1577
1578         if (rdev->ena_gpio) {
1579                 gpio_set_value_cansleep(rdev->ena_gpio,
1580                                         rdev->ena_gpio_invert);
1581                 rdev->ena_gpio_state = 0;
1582
1583         } else if (rdev->desc->ops->disable) {
1584                 ret = rdev->desc->ops->disable(rdev);
1585                 if (ret != 0)
1586                         return ret;
1587         }
1588
1589         trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592                              NULL);
1593         return 0;
1594 }
1595
1596 /* locks held by regulator_disable() */
1597 static int _regulator_disable(struct regulator_dev *rdev)
1598 {
1599         int ret = 0;
1600
1601         if (WARN(rdev->use_count <= 0,
1602                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603                 return -EIO;
1604
1605         /* are we the last user and permitted to disable ? */
1606         if (rdev->use_count == 1 &&
1607             (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609                 /* we are last user */
1610                 if (_regulator_can_change_status(rdev)) {
1611                         ret = _regulator_do_disable(rdev);
1612                         if (ret < 0) {
1613                                 rdev_err(rdev, "failed to disable\n");
1614                                 return ret;
1615                         }
1616                 }
1617
1618                 rdev->use_count = 0;
1619         } else if (rdev->use_count > 1) {
1620
1621                 if (rdev->constraints &&
1622                         (rdev->constraints->valid_ops_mask &
1623                         REGULATOR_CHANGE_DRMS))
1624                         drms_uA_update(rdev);
1625
1626                 rdev->use_count--;
1627         }
1628
1629         return ret;
1630 }
1631
1632 /**
1633  * regulator_disable - disable regulator output
1634  * @regulator: regulator source
1635  *
1636  * Disable the regulator output voltage or current.  Calls to
1637  * regulator_enable() must be balanced with calls to
1638  * regulator_disable().
1639  *
1640  * NOTE: this will only disable the regulator output if no other consumer
1641  * devices have it enabled, the regulator device supports disabling and
1642  * machine constraints permit this operation.
1643  */
1644 int regulator_disable(struct regulator *regulator)
1645 {
1646         struct regulator_dev *rdev = regulator->rdev;
1647         int ret = 0;
1648
1649         if (regulator->always_on)
1650                 return 0;
1651
1652         mutex_lock(&rdev->mutex);
1653         ret = _regulator_disable(rdev);
1654         mutex_unlock(&rdev->mutex);
1655
1656         if (ret == 0 && rdev->supply)
1657                 regulator_disable(rdev->supply);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663 /* locks held by regulator_force_disable() */
1664 static int _regulator_force_disable(struct regulator_dev *rdev)
1665 {
1666         int ret = 0;
1667
1668         /* force disable */
1669         if (rdev->desc->ops->disable) {
1670                 /* ah well, who wants to live forever... */
1671                 ret = rdev->desc->ops->disable(rdev);
1672                 if (ret < 0) {
1673                         rdev_err(rdev, "failed to force disable\n");
1674                         return ret;
1675                 }
1676                 /* notify other consumers that power has been forced off */
1677                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678                         REGULATOR_EVENT_DISABLE, NULL);
1679         }
1680
1681         return ret;
1682 }
1683
1684 /**
1685  * regulator_force_disable - force disable regulator output
1686  * @regulator: regulator source
1687  *
1688  * Forcibly disable the regulator output voltage or current.
1689  * NOTE: this *will* disable the regulator output even if other consumer
1690  * devices have it enabled. This should be used for situations when device
1691  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692  */
1693 int regulator_force_disable(struct regulator *regulator)
1694 {
1695         struct regulator_dev *rdev = regulator->rdev;
1696         int ret;
1697
1698         mutex_lock(&rdev->mutex);
1699         regulator->uA_load = 0;
1700         ret = _regulator_force_disable(regulator->rdev);
1701         mutex_unlock(&rdev->mutex);
1702
1703         if (rdev->supply)
1704                 while (rdev->open_count--)
1705                         regulator_disable(rdev->supply);
1706
1707         return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711 static void regulator_disable_work(struct work_struct *work)
1712 {
1713         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714                                                   disable_work.work);
1715         int count, i, ret;
1716
1717         mutex_lock(&rdev->mutex);
1718
1719         BUG_ON(!rdev->deferred_disables);
1720
1721         count = rdev->deferred_disables;
1722         rdev->deferred_disables = 0;
1723
1724         for (i = 0; i < count; i++) {
1725                 ret = _regulator_disable(rdev);
1726                 if (ret != 0)
1727                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728         }
1729
1730         mutex_unlock(&rdev->mutex);
1731
1732         if (rdev->supply) {
1733                 for (i = 0; i < count; i++) {
1734                         ret = regulator_disable(rdev->supply);
1735                         if (ret != 0) {
1736                                 rdev_err(rdev,
1737                                          "Supply disable failed: %d\n", ret);
1738                         }
1739                 }
1740         }
1741 }
1742
1743 /**
1744  * regulator_disable_deferred - disable regulator output with delay
1745  * @regulator: regulator source
1746  * @ms: miliseconds until the regulator is disabled
1747  *
1748  * Execute regulator_disable() on the regulator after a delay.  This
1749  * is intended for use with devices that require some time to quiesce.
1750  *
1751  * NOTE: this will only disable the regulator output if no other consumer
1752  * devices have it enabled, the regulator device supports disabling and
1753  * machine constraints permit this operation.
1754  */
1755 int regulator_disable_deferred(struct regulator *regulator, int ms)
1756 {
1757         struct regulator_dev *rdev = regulator->rdev;
1758         int ret;
1759
1760         if (regulator->always_on)
1761                 return 0;
1762
1763         if (!ms)
1764                 return regulator_disable(regulator);
1765
1766         mutex_lock(&rdev->mutex);
1767         rdev->deferred_disables++;
1768         mutex_unlock(&rdev->mutex);
1769
1770         ret = schedule_delayed_work(&rdev->disable_work,
1771                                     msecs_to_jiffies(ms));
1772         if (ret < 0)
1773                 return ret;
1774         else
1775                 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779 /**
1780  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781  *
1782  * @rdev: regulator to operate on
1783  *
1784  * Regulators that use regmap for their register I/O can set the
1785  * enable_reg and enable_mask fields in their descriptor and then use
1786  * this as their is_enabled operation, saving some code.
1787  */
1788 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789 {
1790         unsigned int val;
1791         int ret;
1792
1793         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794         if (ret != 0)
1795                 return ret;
1796
1797         return (val & rdev->desc->enable_mask) != 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801 /**
1802  * regulator_enable_regmap - standard enable() for regmap users
1803  *
1804  * @rdev: regulator to operate on
1805  *
1806  * Regulators that use regmap for their register I/O can set the
1807  * enable_reg and enable_mask fields in their descriptor and then use
1808  * this as their enable() operation, saving some code.
1809  */
1810 int regulator_enable_regmap(struct regulator_dev *rdev)
1811 {
1812         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813                                   rdev->desc->enable_mask,
1814                                   rdev->desc->enable_mask);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818 /**
1819  * regulator_disable_regmap - standard disable() for regmap users
1820  *
1821  * @rdev: regulator to operate on
1822  *
1823  * Regulators that use regmap for their register I/O can set the
1824  * enable_reg and enable_mask fields in their descriptor and then use
1825  * this as their disable() operation, saving some code.
1826  */
1827 int regulator_disable_regmap(struct regulator_dev *rdev)
1828 {
1829         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830                                   rdev->desc->enable_mask, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834 static int _regulator_is_enabled(struct regulator_dev *rdev)
1835 {
1836         /* A GPIO control always takes precedence */
1837         if (rdev->ena_gpio)
1838                 return rdev->ena_gpio_state;
1839
1840         /* If we don't know then assume that the regulator is always on */
1841         if (!rdev->desc->ops->is_enabled)
1842                 return 1;
1843
1844         return rdev->desc->ops->is_enabled(rdev);
1845 }
1846
1847 /**
1848  * regulator_is_enabled - is the regulator output enabled
1849  * @regulator: regulator source
1850  *
1851  * Returns positive if the regulator driver backing the source/client
1852  * has requested that the device be enabled, zero if it hasn't, else a
1853  * negative errno code.
1854  *
1855  * Note that the device backing this regulator handle can have multiple
1856  * users, so it might be enabled even if regulator_enable() was never
1857  * called for this particular source.
1858  */
1859 int regulator_is_enabled(struct regulator *regulator)
1860 {
1861         int ret;
1862
1863         if (regulator->always_on)
1864                 return 1;
1865
1866         mutex_lock(&regulator->rdev->mutex);
1867         ret = _regulator_is_enabled(regulator->rdev);
1868         mutex_unlock(&regulator->rdev->mutex);
1869
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874 /**
1875  * regulator_can_change_voltage - check if regulator can change voltage
1876  * @regulator: regulator source
1877  *
1878  * Returns positive if the regulator driver backing the source/client
1879  * can change its voltage, false otherwise. Usefull for detecting fixed
1880  * or dummy regulators and disabling voltage change logic in the client
1881  * driver.
1882  */
1883 int regulator_can_change_voltage(struct regulator *regulator)
1884 {
1885         struct regulator_dev    *rdev = regulator->rdev;
1886
1887         if (rdev->constraints &&
1888             rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE &&
1889             (rdev->desc->n_voltages - rdev->desc->linear_min_sel) > 1)
1890                 return 1;
1891
1892         return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1895
1896 /**
1897  * regulator_count_voltages - count regulator_list_voltage() selectors
1898  * @regulator: regulator source
1899  *
1900  * Returns number of selectors, or negative errno.  Selectors are
1901  * numbered starting at zero, and typically correspond to bitfields
1902  * in hardware registers.
1903  */
1904 int regulator_count_voltages(struct regulator *regulator)
1905 {
1906         struct regulator_dev    *rdev = regulator->rdev;
1907
1908         return rdev->desc->n_voltages ? : -EINVAL;
1909 }
1910 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1911
1912 /**
1913  * regulator_list_voltage_linear - List voltages with simple calculation
1914  *
1915  * @rdev: Regulator device
1916  * @selector: Selector to convert into a voltage
1917  *
1918  * Regulators with a simple linear mapping between voltages and
1919  * selectors can set min_uV and uV_step in the regulator descriptor
1920  * and then use this function as their list_voltage() operation,
1921  */
1922 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1923                                   unsigned int selector)
1924 {
1925         if (selector >= rdev->desc->n_voltages)
1926                 return -EINVAL;
1927         if (selector < rdev->desc->linear_min_sel)
1928                 return 0;
1929
1930         selector -= rdev->desc->linear_min_sel;
1931
1932         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1933 }
1934 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1935
1936 /**
1937  * regulator_list_voltage_table - List voltages with table based mapping
1938  *
1939  * @rdev: Regulator device
1940  * @selector: Selector to convert into a voltage
1941  *
1942  * Regulators with table based mapping between voltages and
1943  * selectors can set volt_table in the regulator descriptor
1944  * and then use this function as their list_voltage() operation.
1945  */
1946 int regulator_list_voltage_table(struct regulator_dev *rdev,
1947                                  unsigned int selector)
1948 {
1949         if (!rdev->desc->volt_table) {
1950                 BUG_ON(!rdev->desc->volt_table);
1951                 return -EINVAL;
1952         }
1953
1954         if (selector >= rdev->desc->n_voltages)
1955                 return -EINVAL;
1956
1957         return rdev->desc->volt_table[selector];
1958 }
1959 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1960
1961 /**
1962  * regulator_list_voltage - enumerate supported voltages
1963  * @regulator: regulator source
1964  * @selector: identify voltage to list
1965  * Context: can sleep
1966  *
1967  * Returns a voltage that can be passed to @regulator_set_voltage(),
1968  * zero if this selector code can't be used on this system, or a
1969  * negative errno.
1970  */
1971 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1972 {
1973         struct regulator_dev    *rdev = regulator->rdev;
1974         struct regulator_ops    *ops = rdev->desc->ops;
1975         int                     ret;
1976
1977         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1978                 return -EINVAL;
1979
1980         mutex_lock(&rdev->mutex);
1981         ret = ops->list_voltage(rdev, selector);
1982         mutex_unlock(&rdev->mutex);
1983
1984         if (ret > 0) {
1985                 if (ret < rdev->constraints->min_uV)
1986                         ret = 0;
1987                 else if (ret > rdev->constraints->max_uV)
1988                         ret = 0;
1989         }
1990
1991         return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1994
1995 /**
1996  * regulator_is_supported_voltage - check if a voltage range can be supported
1997  *
1998  * @regulator: Regulator to check.
1999  * @min_uV: Minimum required voltage in uV.
2000  * @max_uV: Maximum required voltage in uV.
2001  *
2002  * Returns a boolean or a negative error code.
2003  */
2004 int regulator_is_supported_voltage(struct regulator *regulator,
2005                                    int min_uV, int max_uV)
2006 {
2007         struct regulator_dev *rdev = regulator->rdev;
2008         int i, voltages, ret;
2009
2010         /* If we can't change voltage check the current voltage */
2011         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2012                 ret = regulator_get_voltage(regulator);
2013                 if (ret >= 0)
2014                         return (min_uV <= ret && ret <= max_uV);
2015                 else
2016                         return ret;
2017         }
2018
2019         /* Any voltage within constrains range is fine? */
2020         if (rdev->desc->continuous_voltage_range)
2021                 return min_uV >= rdev->constraints->min_uV &&
2022                                 max_uV <= rdev->constraints->max_uV;
2023
2024         ret = regulator_count_voltages(regulator);
2025         if (ret < 0)
2026                 return ret;
2027         voltages = ret;
2028
2029         for (i = 0; i < voltages; i++) {
2030                 ret = regulator_list_voltage(regulator, i);
2031
2032                 if (ret >= min_uV && ret <= max_uV)
2033                         return 1;
2034         }
2035
2036         return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2039
2040 /**
2041  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2042  *
2043  * @rdev: regulator to operate on
2044  *
2045  * Regulators that use regmap for their register I/O can set the
2046  * vsel_reg and vsel_mask fields in their descriptor and then use this
2047  * as their get_voltage_vsel operation, saving some code.
2048  */
2049 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2050 {
2051         unsigned int val;
2052         int ret;
2053
2054         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2055         if (ret != 0)
2056                 return ret;
2057
2058         val &= rdev->desc->vsel_mask;
2059         val >>= ffs(rdev->desc->vsel_mask) - 1;
2060
2061         return val;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2064
2065 /**
2066  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2067  *
2068  * @rdev: regulator to operate on
2069  * @sel: Selector to set
2070  *
2071  * Regulators that use regmap for their register I/O can set the
2072  * vsel_reg and vsel_mask fields in their descriptor and then use this
2073  * as their set_voltage_vsel operation, saving some code.
2074  */
2075 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2076 {
2077         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2078
2079         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2080                                   rdev->desc->vsel_mask, sel);
2081 }
2082 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2083
2084 /**
2085  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2086  *
2087  * @rdev: Regulator to operate on
2088  * @min_uV: Lower bound for voltage
2089  * @max_uV: Upper bound for voltage
2090  *
2091  * Drivers implementing set_voltage_sel() and list_voltage() can use
2092  * this as their map_voltage() operation.  It will find a suitable
2093  * voltage by calling list_voltage() until it gets something in bounds
2094  * for the requested voltages.
2095  */
2096 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2097                                   int min_uV, int max_uV)
2098 {
2099         int best_val = INT_MAX;
2100         int selector = 0;
2101         int i, ret;
2102
2103         /* Find the smallest voltage that falls within the specified
2104          * range.
2105          */
2106         for (i = 0; i < rdev->desc->n_voltages; i++) {
2107                 ret = rdev->desc->ops->list_voltage(rdev, i);
2108                 if (ret < 0)
2109                         continue;
2110
2111                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2112                         best_val = ret;
2113                         selector = i;
2114                 }
2115         }
2116
2117         if (best_val != INT_MAX)
2118                 return selector;
2119         else
2120                 return -EINVAL;
2121 }
2122 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2123
2124 /**
2125  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2126  *
2127  * @rdev: Regulator to operate on
2128  * @min_uV: Lower bound for voltage
2129  * @max_uV: Upper bound for voltage
2130  *
2131  * Drivers providing min_uV and uV_step in their regulator_desc can
2132  * use this as their map_voltage() operation.
2133  */
2134 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2135                                  int min_uV, int max_uV)
2136 {
2137         int ret, voltage;
2138
2139         /* Allow uV_step to be 0 for fixed voltage */
2140         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2141                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2142                         return 0;
2143                 else
2144                         return -EINVAL;
2145         }
2146
2147         if (!rdev->desc->uV_step) {
2148                 BUG_ON(!rdev->desc->uV_step);
2149                 return -EINVAL;
2150         }
2151
2152         if (min_uV < rdev->desc->min_uV)
2153                 min_uV = rdev->desc->min_uV;
2154
2155         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2156         if (ret < 0)
2157                 return ret;
2158
2159         ret += rdev->desc->linear_min_sel;
2160
2161         /* Map back into a voltage to verify we're still in bounds */
2162         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2163         if (voltage < min_uV || voltage > max_uV)
2164                 return -EINVAL;
2165
2166         return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2169
2170 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2171                                      int min_uV, int max_uV)
2172 {
2173         int ret;
2174         int delay = 0;
2175         int best_val = 0;
2176         unsigned int selector;
2177         int old_selector = -1;
2178
2179         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2180
2181         min_uV += rdev->constraints->uV_offset;
2182         max_uV += rdev->constraints->uV_offset;
2183
2184         /*
2185          * If we can't obtain the old selector there is not enough
2186          * info to call set_voltage_time_sel().
2187          */
2188         if (_regulator_is_enabled(rdev) &&
2189             rdev->desc->ops->set_voltage_time_sel &&
2190             rdev->desc->ops->get_voltage_sel) {
2191                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2192                 if (old_selector < 0)
2193                         return old_selector;
2194         }
2195
2196         if (rdev->desc->ops->set_voltage) {
2197                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2198                                                    &selector);
2199
2200                 if (ret >= 0) {
2201                         if (rdev->desc->ops->list_voltage)
2202                                 best_val = rdev->desc->ops->list_voltage(rdev,
2203                                                                          selector);
2204                         else
2205                                 best_val = _regulator_get_voltage(rdev);
2206                 }
2207
2208         } else if (rdev->desc->ops->set_voltage_sel) {
2209                 if (rdev->desc->ops->map_voltage) {
2210                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2211                                                            max_uV);
2212                 } else {
2213                         if (rdev->desc->ops->list_voltage ==
2214                             regulator_list_voltage_linear)
2215                                 ret = regulator_map_voltage_linear(rdev,
2216                                                                 min_uV, max_uV);
2217                         else
2218                                 ret = regulator_map_voltage_iterate(rdev,
2219                                                                 min_uV, max_uV);
2220                 }
2221
2222                 if (ret >= 0) {
2223                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2224                         if (min_uV <= best_val && max_uV >= best_val) {
2225                                 selector = ret;
2226                                 ret = rdev->desc->ops->set_voltage_sel(rdev,
2227                                                                        ret);
2228                         } else {
2229                                 ret = -EINVAL;
2230                         }
2231                 }
2232         } else {
2233                 ret = -EINVAL;
2234         }
2235
2236         /* Call set_voltage_time_sel if successfully obtained old_selector */
2237         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2238             rdev->desc->ops->set_voltage_time_sel) {
2239
2240                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2241                                                 old_selector, selector);
2242                 if (delay < 0) {
2243                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2244                                   delay);
2245                         delay = 0;
2246                 }
2247
2248                 /* Insert any necessary delays */
2249                 if (delay >= 1000) {
2250                         mdelay(delay / 1000);
2251                         udelay(delay % 1000);
2252                 } else if (delay) {
2253                         udelay(delay);
2254                 }
2255         }
2256
2257         if (ret == 0 && best_val >= 0) {
2258                 unsigned long data = best_val;
2259
2260                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2261                                      (void *)data);
2262         }
2263
2264         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2265
2266         return ret;
2267 }
2268
2269 /**
2270  * regulator_set_voltage - set regulator output voltage
2271  * @regulator: regulator source
2272  * @min_uV: Minimum required voltage in uV
2273  * @max_uV: Maximum acceptable voltage in uV
2274  *
2275  * Sets a voltage regulator to the desired output voltage. This can be set
2276  * during any regulator state. IOW, regulator can be disabled or enabled.
2277  *
2278  * If the regulator is enabled then the voltage will change to the new value
2279  * immediately otherwise if the regulator is disabled the regulator will
2280  * output at the new voltage when enabled.
2281  *
2282  * NOTE: If the regulator is shared between several devices then the lowest
2283  * request voltage that meets the system constraints will be used.
2284  * Regulator system constraints must be set for this regulator before
2285  * calling this function otherwise this call will fail.
2286  */
2287 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2288 {
2289         struct regulator_dev *rdev = regulator->rdev;
2290         int ret = 0;
2291
2292         mutex_lock(&rdev->mutex);
2293
2294         /* If we're setting the same range as last time the change
2295          * should be a noop (some cpufreq implementations use the same
2296          * voltage for multiple frequencies, for example).
2297          */
2298         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2299                 goto out;
2300
2301         /* sanity check */
2302         if (!rdev->desc->ops->set_voltage &&
2303             !rdev->desc->ops->set_voltage_sel) {
2304                 ret = -EINVAL;
2305                 goto out;
2306         }
2307
2308         /* constraints check */
2309         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2310         if (ret < 0)
2311                 goto out;
2312         regulator->min_uV = min_uV;
2313         regulator->max_uV = max_uV;
2314
2315         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2316         if (ret < 0)
2317                 goto out;
2318
2319         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2320
2321 out:
2322         mutex_unlock(&rdev->mutex);
2323         return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2326
2327 /**
2328  * regulator_set_voltage_time - get raise/fall time
2329  * @regulator: regulator source
2330  * @old_uV: starting voltage in microvolts
2331  * @new_uV: target voltage in microvolts
2332  *
2333  * Provided with the starting and ending voltage, this function attempts to
2334  * calculate the time in microseconds required to rise or fall to this new
2335  * voltage.
2336  */
2337 int regulator_set_voltage_time(struct regulator *regulator,
2338                                int old_uV, int new_uV)
2339 {
2340         struct regulator_dev    *rdev = regulator->rdev;
2341         struct regulator_ops    *ops = rdev->desc->ops;
2342         int old_sel = -1;
2343         int new_sel = -1;
2344         int voltage;
2345         int i;
2346
2347         /* Currently requires operations to do this */
2348         if (!ops->list_voltage || !ops->set_voltage_time_sel
2349             || !rdev->desc->n_voltages)
2350                 return -EINVAL;
2351
2352         for (i = 0; i < rdev->desc->n_voltages; i++) {
2353                 /* We only look for exact voltage matches here */
2354                 voltage = regulator_list_voltage(regulator, i);
2355                 if (voltage < 0)
2356                         return -EINVAL;
2357                 if (voltage == 0)
2358                         continue;
2359                 if (voltage == old_uV)
2360                         old_sel = i;
2361                 if (voltage == new_uV)
2362                         new_sel = i;
2363         }
2364
2365         if (old_sel < 0 || new_sel < 0)
2366                 return -EINVAL;
2367
2368         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2369 }
2370 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2371
2372 /**
2373  * regulator_set_voltage_time_sel - get raise/fall time
2374  * @rdev: regulator source device
2375  * @old_selector: selector for starting voltage
2376  * @new_selector: selector for target voltage
2377  *
2378  * Provided with the starting and target voltage selectors, this function
2379  * returns time in microseconds required to rise or fall to this new voltage
2380  *
2381  * Drivers providing ramp_delay in regulation_constraints can use this as their
2382  * set_voltage_time_sel() operation.
2383  */
2384 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2385                                    unsigned int old_selector,
2386                                    unsigned int new_selector)
2387 {
2388         unsigned int ramp_delay = 0;
2389         int old_volt, new_volt;
2390
2391         if (rdev->constraints->ramp_delay)
2392                 ramp_delay = rdev->constraints->ramp_delay;
2393         else if (rdev->desc->ramp_delay)
2394                 ramp_delay = rdev->desc->ramp_delay;
2395
2396         if (ramp_delay == 0) {
2397                 rdev_warn(rdev, "ramp_delay not set\n");
2398                 return 0;
2399         }
2400
2401         /* sanity check */
2402         if (!rdev->desc->ops->list_voltage)
2403                 return -EINVAL;
2404
2405         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2406         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2407
2408         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2409 }
2410 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2411
2412 /**
2413  * regulator_sync_voltage - re-apply last regulator output voltage
2414  * @regulator: regulator source
2415  *
2416  * Re-apply the last configured voltage.  This is intended to be used
2417  * where some external control source the consumer is cooperating with
2418  * has caused the configured voltage to change.
2419  */
2420 int regulator_sync_voltage(struct regulator *regulator)
2421 {
2422         struct regulator_dev *rdev = regulator->rdev;
2423         int ret, min_uV, max_uV;
2424
2425         mutex_lock(&rdev->mutex);
2426
2427         if (!rdev->desc->ops->set_voltage &&
2428             !rdev->desc->ops->set_voltage_sel) {
2429                 ret = -EINVAL;
2430                 goto out;
2431         }
2432
2433         /* This is only going to work if we've had a voltage configured. */
2434         if (!regulator->min_uV && !regulator->max_uV) {
2435                 ret = -EINVAL;
2436                 goto out;
2437         }
2438
2439         min_uV = regulator->min_uV;
2440         max_uV = regulator->max_uV;
2441
2442         /* This should be a paranoia check... */
2443         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2444         if (ret < 0)
2445                 goto out;
2446
2447         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2448         if (ret < 0)
2449                 goto out;
2450
2451         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2452
2453 out:
2454         mutex_unlock(&rdev->mutex);
2455         return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2458
2459 static int _regulator_get_voltage(struct regulator_dev *rdev)
2460 {
2461         int sel, ret;
2462
2463         if (rdev->desc->ops->get_voltage_sel) {
2464                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2465                 if (sel < 0)
2466                         return sel;
2467                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2468         } else if (rdev->desc->ops->get_voltage) {
2469                 ret = rdev->desc->ops->get_voltage(rdev);
2470         } else if (rdev->desc->ops->list_voltage) {
2471                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2472         } else {
2473                 return -EINVAL;
2474         }
2475
2476         if (ret < 0)
2477                 return ret;
2478         return ret - rdev->constraints->uV_offset;
2479 }
2480
2481 /**
2482  * regulator_get_voltage - get regulator output voltage
2483  * @regulator: regulator source
2484  *
2485  * This returns the current regulator voltage in uV.
2486  *
2487  * NOTE: If the regulator is disabled it will return the voltage value. This
2488  * function should not be used to determine regulator state.
2489  */
2490 int regulator_get_voltage(struct regulator *regulator)
2491 {
2492         int ret;
2493
2494         mutex_lock(&regulator->rdev->mutex);
2495
2496         ret = _regulator_get_voltage(regulator->rdev);
2497
2498         mutex_unlock(&regulator->rdev->mutex);
2499
2500         return ret;
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2503
2504 /**
2505  * regulator_set_current_limit - set regulator output current limit
2506  * @regulator: regulator source
2507  * @min_uA: Minimuum supported current in uA
2508  * @max_uA: Maximum supported current in uA
2509  *
2510  * Sets current sink to the desired output current. This can be set during
2511  * any regulator state. IOW, regulator can be disabled or enabled.
2512  *
2513  * If the regulator is enabled then the current will change to the new value
2514  * immediately otherwise if the regulator is disabled the regulator will
2515  * output at the new current when enabled.
2516  *
2517  * NOTE: Regulator system constraints must be set for this regulator before
2518  * calling this function otherwise this call will fail.
2519  */
2520 int regulator_set_current_limit(struct regulator *regulator,
2521                                int min_uA, int max_uA)
2522 {
2523         struct regulator_dev *rdev = regulator->rdev;
2524         int ret;
2525
2526         mutex_lock(&rdev->mutex);
2527
2528         /* sanity check */
2529         if (!rdev->desc->ops->set_current_limit) {
2530                 ret = -EINVAL;
2531                 goto out;
2532         }
2533
2534         /* constraints check */
2535         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2536         if (ret < 0)
2537                 goto out;
2538
2539         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2540 out:
2541         mutex_unlock(&rdev->mutex);
2542         return ret;
2543 }
2544 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2545
2546 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2547 {
2548         int ret;
2549
2550         mutex_lock(&rdev->mutex);
2551
2552         /* sanity check */
2553         if (!rdev->desc->ops->get_current_limit) {
2554                 ret = -EINVAL;
2555                 goto out;
2556         }
2557
2558         ret = rdev->desc->ops->get_current_limit(rdev);
2559 out:
2560         mutex_unlock(&rdev->mutex);
2561         return ret;
2562 }
2563
2564 /**
2565  * regulator_get_current_limit - get regulator output current
2566  * @regulator: regulator source
2567  *
2568  * This returns the current supplied by the specified current sink in uA.
2569  *
2570  * NOTE: If the regulator is disabled it will return the current value. This
2571  * function should not be used to determine regulator state.
2572  */
2573 int regulator_get_current_limit(struct regulator *regulator)
2574 {
2575         return _regulator_get_current_limit(regulator->rdev);
2576 }
2577 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2578
2579 /**
2580  * regulator_set_mode - set regulator operating mode
2581  * @regulator: regulator source
2582  * @mode: operating mode - one of the REGULATOR_MODE constants
2583  *
2584  * Set regulator operating mode to increase regulator efficiency or improve
2585  * regulation performance.
2586  *
2587  * NOTE: Regulator system constraints must be set for this regulator before
2588  * calling this function otherwise this call will fail.
2589  */
2590 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2591 {
2592         struct regulator_dev *rdev = regulator->rdev;
2593         int ret;
2594         int regulator_curr_mode;
2595
2596         mutex_lock(&rdev->mutex);
2597
2598         /* sanity check */
2599         if (!rdev->desc->ops->set_mode) {
2600                 ret = -EINVAL;
2601                 goto out;
2602         }
2603
2604         /* return if the same mode is requested */
2605         if (rdev->desc->ops->get_mode) {
2606                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2607                 if (regulator_curr_mode == mode) {
2608                         ret = 0;
2609                         goto out;
2610                 }
2611         }
2612
2613         /* constraints check */
2614         ret = regulator_mode_constrain(rdev, &mode);
2615         if (ret < 0)
2616                 goto out;
2617
2618         ret = rdev->desc->ops->set_mode(rdev, mode);
2619 out:
2620         mutex_unlock(&rdev->mutex);
2621         return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(regulator_set_mode);
2624
2625 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2626 {
2627         int ret;
2628
2629         mutex_lock(&rdev->mutex);
2630
2631         /* sanity check */
2632         if (!rdev->desc->ops->get_mode) {
2633                 ret = -EINVAL;
2634                 goto out;
2635         }
2636
2637         ret = rdev->desc->ops->get_mode(rdev);
2638 out:
2639         mutex_unlock(&rdev->mutex);
2640         return ret;
2641 }
2642
2643 /**
2644  * regulator_get_mode - get regulator operating mode
2645  * @regulator: regulator source
2646  *
2647  * Get the current regulator operating mode.
2648  */
2649 unsigned int regulator_get_mode(struct regulator *regulator)
2650 {
2651         return _regulator_get_mode(regulator->rdev);
2652 }
2653 EXPORT_SYMBOL_GPL(regulator_get_mode);
2654
2655 /**
2656  * regulator_set_optimum_mode - set regulator optimum operating mode
2657  * @regulator: regulator source
2658  * @uA_load: load current
2659  *
2660  * Notifies the regulator core of a new device load. This is then used by
2661  * DRMS (if enabled by constraints) to set the most efficient regulator
2662  * operating mode for the new regulator loading.
2663  *
2664  * Consumer devices notify their supply regulator of the maximum power
2665  * they will require (can be taken from device datasheet in the power
2666  * consumption tables) when they change operational status and hence power
2667  * state. Examples of operational state changes that can affect power
2668  * consumption are :-
2669  *
2670  *    o Device is opened / closed.
2671  *    o Device I/O is about to begin or has just finished.
2672  *    o Device is idling in between work.
2673  *
2674  * This information is also exported via sysfs to userspace.
2675  *
2676  * DRMS will sum the total requested load on the regulator and change
2677  * to the most efficient operating mode if platform constraints allow.
2678  *
2679  * Returns the new regulator mode or error.
2680  */
2681 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2682 {
2683         struct regulator_dev *rdev = regulator->rdev;
2684         struct regulator *consumer;
2685         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2686         unsigned int mode;
2687
2688         if (rdev->supply)
2689                 input_uV = regulator_get_voltage(rdev->supply);
2690
2691         mutex_lock(&rdev->mutex);
2692
2693         /*
2694          * first check to see if we can set modes at all, otherwise just
2695          * tell the consumer everything is OK.
2696          */
2697         regulator->uA_load = uA_load;
2698         ret = regulator_check_drms(rdev);
2699         if (ret < 0) {
2700                 ret = 0;
2701                 goto out;
2702         }
2703
2704         if (!rdev->desc->ops->get_optimum_mode)
2705                 goto out;
2706
2707         /*
2708          * we can actually do this so any errors are indicators of
2709          * potential real failure.
2710          */
2711         ret = -EINVAL;
2712
2713         if (!rdev->desc->ops->set_mode)
2714                 goto out;
2715
2716         /* get output voltage */
2717         output_uV = _regulator_get_voltage(rdev);
2718         if (output_uV <= 0) {
2719                 rdev_err(rdev, "invalid output voltage found\n");
2720                 goto out;
2721         }
2722
2723         /* No supply? Use constraint voltage */
2724         if (input_uV <= 0)
2725                 input_uV = rdev->constraints->input_uV;
2726         if (input_uV <= 0) {
2727                 rdev_err(rdev, "invalid input voltage found\n");
2728                 goto out;
2729         }
2730
2731         /* calc total requested load for this regulator */
2732         list_for_each_entry(consumer, &rdev->consumer_list, list)
2733                 total_uA_load += consumer->uA_load;
2734
2735         mode = rdev->desc->ops->get_optimum_mode(rdev,
2736                                                  input_uV, output_uV,
2737                                                  total_uA_load);
2738         ret = regulator_mode_constrain(rdev, &mode);
2739         if (ret < 0) {
2740                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2741                          total_uA_load, input_uV, output_uV);
2742                 goto out;
2743         }
2744
2745         ret = rdev->desc->ops->set_mode(rdev, mode);
2746         if (ret < 0) {
2747                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2748                 goto out;
2749         }
2750         ret = mode;
2751 out:
2752         mutex_unlock(&rdev->mutex);
2753         return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2756
2757 /**
2758  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2759  *
2760  * @rdev: device to operate on.
2761  * @enable: state to set.
2762  */
2763 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2764 {
2765         unsigned int val;
2766
2767         if (enable)
2768                 val = rdev->desc->bypass_mask;
2769         else
2770                 val = 0;
2771
2772         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2773                                   rdev->desc->bypass_mask, val);
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2776
2777 /**
2778  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2779  *
2780  * @rdev: device to operate on.
2781  * @enable: current state.
2782  */
2783 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2784 {
2785         unsigned int val;
2786         int ret;
2787
2788         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2789         if (ret != 0)
2790                 return ret;
2791
2792         *enable = val & rdev->desc->bypass_mask;
2793
2794         return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2797
2798 /**
2799  * regulator_allow_bypass - allow the regulator to go into bypass mode
2800  *
2801  * @regulator: Regulator to configure
2802  * @allow: enable or disable bypass mode
2803  *
2804  * Allow the regulator to go into bypass mode if all other consumers
2805  * for the regulator also enable bypass mode and the machine
2806  * constraints allow this.  Bypass mode means that the regulator is
2807  * simply passing the input directly to the output with no regulation.
2808  */
2809 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2810 {
2811         struct regulator_dev *rdev = regulator->rdev;
2812         int ret = 0;
2813
2814         if (!rdev->desc->ops->set_bypass)
2815                 return 0;
2816
2817         if (rdev->constraints &&
2818             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2819                 return 0;
2820
2821         mutex_lock(&rdev->mutex);
2822
2823         if (enable && !regulator->bypass) {
2824                 rdev->bypass_count++;
2825
2826                 if (rdev->bypass_count == rdev->open_count) {
2827                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2828                         if (ret != 0)
2829                                 rdev->bypass_count--;
2830                 }
2831
2832         } else if (!enable && regulator->bypass) {
2833                 rdev->bypass_count--;
2834
2835                 if (rdev->bypass_count != rdev->open_count) {
2836                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2837                         if (ret != 0)
2838                                 rdev->bypass_count++;
2839                 }
2840         }
2841
2842         if (ret == 0)
2843                 regulator->bypass = enable;
2844
2845         mutex_unlock(&rdev->mutex);
2846
2847         return ret;
2848 }
2849 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2850
2851 /**
2852  * regulator_register_notifier - register regulator event notifier
2853  * @regulator: regulator source
2854  * @nb: notifier block
2855  *
2856  * Register notifier block to receive regulator events.
2857  */
2858 int regulator_register_notifier(struct regulator *regulator,
2859                               struct notifier_block *nb)
2860 {
2861         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2862                                                 nb);
2863 }
2864 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2865
2866 /**
2867  * regulator_unregister_notifier - unregister regulator event notifier
2868  * @regulator: regulator source
2869  * @nb: notifier block
2870  *
2871  * Unregister regulator event notifier block.
2872  */
2873 int regulator_unregister_notifier(struct regulator *regulator,
2874                                 struct notifier_block *nb)
2875 {
2876         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2877                                                   nb);
2878 }
2879 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2880
2881 /* notify regulator consumers and downstream regulator consumers.
2882  * Note mutex must be held by caller.
2883  */
2884 static void _notifier_call_chain(struct regulator_dev *rdev,
2885                                   unsigned long event, void *data)
2886 {
2887         /* call rdev chain first */
2888         blocking_notifier_call_chain(&rdev->notifier, event, data);
2889 }
2890
2891 /**
2892  * regulator_bulk_get - get multiple regulator consumers
2893  *
2894  * @dev:           Device to supply
2895  * @num_consumers: Number of consumers to register
2896  * @consumers:     Configuration of consumers; clients are stored here.
2897  *
2898  * @return 0 on success, an errno on failure.
2899  *
2900  * This helper function allows drivers to get several regulator
2901  * consumers in one operation.  If any of the regulators cannot be
2902  * acquired then any regulators that were allocated will be freed
2903  * before returning to the caller.
2904  */
2905 int regulator_bulk_get(struct device *dev, int num_consumers,
2906                        struct regulator_bulk_data *consumers)
2907 {
2908         int i;
2909         int ret;
2910
2911         for (i = 0; i < num_consumers; i++)
2912                 consumers[i].consumer = NULL;
2913
2914         for (i = 0; i < num_consumers; i++) {
2915                 consumers[i].consumer = regulator_get(dev,
2916                                                       consumers[i].supply);
2917                 if (IS_ERR(consumers[i].consumer)) {
2918                         ret = PTR_ERR(consumers[i].consumer);
2919                         dev_err(dev, "Failed to get supply '%s': %d\n",
2920                                 consumers[i].supply, ret);
2921                         consumers[i].consumer = NULL;
2922                         goto err;
2923                 }
2924         }
2925
2926         return 0;
2927
2928 err:
2929         while (--i >= 0)
2930                 regulator_put(consumers[i].consumer);
2931
2932         return ret;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2935
2936 /**
2937  * devm_regulator_bulk_get - managed get multiple regulator consumers
2938  *
2939  * @dev:           Device to supply
2940  * @num_consumers: Number of consumers to register
2941  * @consumers:     Configuration of consumers; clients are stored here.
2942  *
2943  * @return 0 on success, an errno on failure.
2944  *
2945  * This helper function allows drivers to get several regulator
2946  * consumers in one operation with management, the regulators will
2947  * automatically be freed when the device is unbound.  If any of the
2948  * regulators cannot be acquired then any regulators that were
2949  * allocated will be freed before returning to the caller.
2950  */
2951 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2952                             struct regulator_bulk_data *consumers)
2953 {
2954         int i;
2955         int ret;
2956
2957         for (i = 0; i < num_consumers; i++)
2958                 consumers[i].consumer = NULL;
2959
2960         for (i = 0; i < num_consumers; i++) {
2961                 consumers[i].consumer = devm_regulator_get(dev,
2962                                                            consumers[i].supply);
2963                 if (IS_ERR(consumers[i].consumer)) {
2964                         ret = PTR_ERR(consumers[i].consumer);
2965                         dev_err(dev, "Failed to get supply '%s': %d\n",
2966                                 consumers[i].supply, ret);
2967                         consumers[i].consumer = NULL;
2968                         goto err;
2969                 }
2970         }
2971
2972         return 0;
2973
2974 err:
2975         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2976                 devm_regulator_put(consumers[i].consumer);
2977
2978         return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2981
2982 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2983 {
2984         struct regulator_bulk_data *bulk = data;
2985
2986         bulk->ret = regulator_enable(bulk->consumer);
2987 }
2988
2989 /**
2990  * regulator_bulk_enable - enable multiple regulator consumers
2991  *
2992  * @num_consumers: Number of consumers
2993  * @consumers:     Consumer data; clients are stored here.
2994  * @return         0 on success, an errno on failure
2995  *
2996  * This convenience API allows consumers to enable multiple regulator
2997  * clients in a single API call.  If any consumers cannot be enabled
2998  * then any others that were enabled will be disabled again prior to
2999  * return.
3000  */
3001 int regulator_bulk_enable(int num_consumers,
3002                           struct regulator_bulk_data *consumers)
3003 {
3004         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3005         int i;
3006         int ret = 0;
3007
3008         for (i = 0; i < num_consumers; i++) {
3009                 if (consumers[i].consumer->always_on)
3010                         consumers[i].ret = 0;
3011                 else
3012                         async_schedule_domain(regulator_bulk_enable_async,
3013                                               &consumers[i], &async_domain);
3014         }
3015
3016         async_synchronize_full_domain(&async_domain);
3017
3018         /* If any consumer failed we need to unwind any that succeeded */
3019         for (i = 0; i < num_consumers; i++) {
3020                 if (consumers[i].ret != 0) {
3021                         ret = consumers[i].ret;
3022                         goto err;
3023                 }
3024         }
3025
3026         return 0;
3027
3028 err:
3029         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3030         while (--i >= 0)
3031                 regulator_disable(consumers[i].consumer);
3032
3033         return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3036
3037 /**
3038  * regulator_bulk_disable - disable multiple regulator consumers
3039  *
3040  * @num_consumers: Number of consumers
3041  * @consumers:     Consumer data; clients are stored here.
3042  * @return         0 on success, an errno on failure
3043  *
3044  * This convenience API allows consumers to disable multiple regulator
3045  * clients in a single API call.  If any consumers cannot be disabled
3046  * then any others that were disabled will be enabled again prior to
3047  * return.
3048  */
3049 int regulator_bulk_disable(int num_consumers,
3050                            struct regulator_bulk_data *consumers)
3051 {
3052         int i;
3053         int ret, r;
3054
3055         for (i = num_consumers - 1; i >= 0; --i) {
3056                 ret = regulator_disable(consumers[i].consumer);
3057                 if (ret != 0)
3058                         goto err;
3059         }
3060
3061         return 0;
3062
3063 err:
3064         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3065         for (++i; i < num_consumers; ++i) {
3066                 r = regulator_enable(consumers[i].consumer);
3067                 if (r != 0)
3068                         pr_err("Failed to reename %s: %d\n",
3069                                consumers[i].supply, r);
3070         }
3071
3072         return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3075
3076 /**
3077  * regulator_bulk_force_disable - force disable multiple regulator consumers
3078  *
3079  * @num_consumers: Number of consumers
3080  * @consumers:     Consumer data; clients are stored here.
3081  * @return         0 on success, an errno on failure
3082  *
3083  * This convenience API allows consumers to forcibly disable multiple regulator
3084  * clients in a single API call.
3085  * NOTE: This should be used for situations when device damage will
3086  * likely occur if the regulators are not disabled (e.g. over temp).
3087  * Although regulator_force_disable function call for some consumers can
3088  * return error numbers, the function is called for all consumers.
3089  */
3090 int regulator_bulk_force_disable(int num_consumers,
3091                            struct regulator_bulk_data *consumers)
3092 {
3093         int i;
3094         int ret;
3095
3096         for (i = 0; i < num_consumers; i++)
3097                 consumers[i].ret =
3098                             regulator_force_disable(consumers[i].consumer);
3099
3100         for (i = 0; i < num_consumers; i++) {
3101                 if (consumers[i].ret != 0) {
3102                         ret = consumers[i].ret;
3103                         goto out;
3104                 }
3105         }
3106
3107         return 0;
3108 out:
3109         return ret;
3110 }
3111 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3112
3113 /**
3114  * regulator_bulk_free - free multiple regulator consumers
3115  *
3116  * @num_consumers: Number of consumers
3117  * @consumers:     Consumer data; clients are stored here.
3118  *
3119  * This convenience API allows consumers to free multiple regulator
3120  * clients in a single API call.
3121  */
3122 void regulator_bulk_free(int num_consumers,
3123                          struct regulator_bulk_data *consumers)
3124 {
3125         int i;
3126
3127         for (i = 0; i < num_consumers; i++) {
3128                 regulator_put(consumers[i].consumer);
3129                 consumers[i].consumer = NULL;
3130         }
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3133
3134 /**
3135  * regulator_notifier_call_chain - call regulator event notifier
3136  * @rdev: regulator source
3137  * @event: notifier block
3138  * @data: callback-specific data.
3139  *
3140  * Called by regulator drivers to notify clients a regulator event has
3141  * occurred. We also notify regulator clients downstream.
3142  * Note lock must be held by caller.
3143  */
3144 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3145                                   unsigned long event, void *data)
3146 {
3147         _notifier_call_chain(rdev, event, data);
3148         return NOTIFY_DONE;
3149
3150 }
3151 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3152
3153 /**
3154  * regulator_mode_to_status - convert a regulator mode into a status
3155  *
3156  * @mode: Mode to convert
3157  *
3158  * Convert a regulator mode into a status.
3159  */
3160 int regulator_mode_to_status(unsigned int mode)
3161 {
3162         switch (mode) {
3163         case REGULATOR_MODE_FAST:
3164                 return REGULATOR_STATUS_FAST;
3165         case REGULATOR_MODE_NORMAL:
3166                 return REGULATOR_STATUS_NORMAL;
3167         case REGULATOR_MODE_IDLE:
3168                 return REGULATOR_STATUS_IDLE;
3169         case REGULATOR_MODE_STANDBY:
3170                 return REGULATOR_STATUS_STANDBY;
3171         default:
3172                 return REGULATOR_STATUS_UNDEFINED;
3173         }
3174 }
3175 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3176
3177 /*
3178  * To avoid cluttering sysfs (and memory) with useless state, only
3179  * create attributes that can be meaningfully displayed.
3180  */
3181 static int add_regulator_attributes(struct regulator_dev *rdev)
3182 {
3183         struct device           *dev = &rdev->dev;
3184         struct regulator_ops    *ops = rdev->desc->ops;
3185         int                     status = 0;
3186
3187         /* some attributes need specific methods to be displayed */
3188         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3189             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3190             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3191                 status = device_create_file(dev, &dev_attr_microvolts);
3192                 if (status < 0)
3193                         return status;
3194         }
3195         if (ops->get_current_limit) {
3196                 status = device_create_file(dev, &dev_attr_microamps);
3197                 if (status < 0)
3198                         return status;
3199         }
3200         if (ops->get_mode) {
3201                 status = device_create_file(dev, &dev_attr_opmode);
3202                 if (status < 0)
3203                         return status;
3204         }
3205         if (ops->is_enabled) {
3206                 status = device_create_file(dev, &dev_attr_state);
3207                 if (status < 0)
3208                         return status;
3209         }
3210         if (ops->get_status) {
3211                 status = device_create_file(dev, &dev_attr_status);
3212                 if (status < 0)
3213                         return status;
3214         }
3215         if (ops->get_bypass) {
3216                 status = device_create_file(dev, &dev_attr_bypass);
3217                 if (status < 0)
3218                         return status;
3219         }
3220
3221         /* some attributes are type-specific */
3222         if (rdev->desc->type == REGULATOR_CURRENT) {
3223                 status = device_create_file(dev, &dev_attr_requested_microamps);
3224                 if (status < 0)
3225                         return status;
3226         }
3227
3228         /* all the other attributes exist to support constraints;
3229          * don't show them if there are no constraints, or if the
3230          * relevant supporting methods are missing.
3231          */
3232         if (!rdev->constraints)
3233                 return status;
3234
3235         /* constraints need specific supporting methods */
3236         if (ops->set_voltage || ops->set_voltage_sel) {
3237                 status = device_create_file(dev, &dev_attr_min_microvolts);
3238                 if (status < 0)
3239                         return status;
3240                 status = device_create_file(dev, &dev_attr_max_microvolts);
3241                 if (status < 0)
3242                         return status;
3243         }
3244         if (ops->set_current_limit) {
3245                 status = device_create_file(dev, &dev_attr_min_microamps);
3246                 if (status < 0)
3247                         return status;
3248                 status = device_create_file(dev, &dev_attr_max_microamps);
3249                 if (status < 0)
3250                         return status;
3251         }
3252
3253         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3254         if (status < 0)
3255                 return status;
3256         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3257         if (status < 0)
3258                 return status;
3259         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3260         if (status < 0)
3261                 return status;
3262
3263         if (ops->set_suspend_voltage) {
3264                 status = device_create_file(dev,
3265                                 &dev_attr_suspend_standby_microvolts);
3266                 if (status < 0)
3267                         return status;
3268                 status = device_create_file(dev,
3269                                 &dev_attr_suspend_mem_microvolts);
3270                 if (status < 0)
3271                         return status;
3272                 status = device_create_file(dev,
3273                                 &dev_attr_suspend_disk_microvolts);
3274                 if (status < 0)
3275                         return status;
3276         }
3277
3278         if (ops->set_suspend_mode) {
3279                 status = device_create_file(dev,
3280                                 &dev_attr_suspend_standby_mode);
3281                 if (status < 0)
3282                         return status;
3283                 status = device_create_file(dev,
3284                                 &dev_attr_suspend_mem_mode);
3285                 if (status < 0)
3286                         return status;
3287                 status = device_create_file(dev,
3288                                 &dev_attr_suspend_disk_mode);
3289                 if (status < 0)
3290                         return status;
3291         }
3292
3293         return status;
3294 }
3295
3296 static void rdev_init_debugfs(struct regulator_dev *rdev)
3297 {
3298         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3299         if (!rdev->debugfs) {
3300                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3301                 return;
3302         }
3303
3304         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3305                            &rdev->use_count);
3306         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3307                            &rdev->open_count);
3308         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3309                            &rdev->bypass_count);
3310 }
3311
3312 /**
3313  * regulator_register - register regulator
3314  * @regulator_desc: regulator to register
3315  * @config: runtime configuration for regulator
3316  *
3317  * Called by regulator drivers to register a regulator.
3318  * Returns 0 on success.
3319  */
3320 struct regulator_dev *
3321 regulator_register(const struct regulator_desc *regulator_desc,
3322                    const struct regulator_config *config)
3323 {
3324         const struct regulation_constraints *constraints = NULL;
3325         const struct regulator_init_data *init_data;
3326         static atomic_t regulator_no = ATOMIC_INIT(0);
3327         struct regulator_dev *rdev;
3328         struct device *dev;
3329         int ret, i;
3330         const char *supply = NULL;
3331
3332         if (regulator_desc == NULL || config == NULL)
3333                 return ERR_PTR(-EINVAL);
3334
3335         dev = config->dev;
3336         WARN_ON(!dev);
3337
3338         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3339                 return ERR_PTR(-EINVAL);
3340
3341         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3342             regulator_desc->type != REGULATOR_CURRENT)
3343                 return ERR_PTR(-EINVAL);
3344
3345         /* Only one of each should be implemented */
3346         WARN_ON(regulator_desc->ops->get_voltage &&
3347                 regulator_desc->ops->get_voltage_sel);
3348         WARN_ON(regulator_desc->ops->set_voltage &&
3349                 regulator_desc->ops->set_voltage_sel);
3350
3351         /* If we're using selectors we must implement list_voltage. */
3352         if (regulator_desc->ops->get_voltage_sel &&
3353             !regulator_desc->ops->list_voltage) {
3354                 return ERR_PTR(-EINVAL);
3355         }
3356         if (regulator_desc->ops->set_voltage_sel &&
3357             !regulator_desc->ops->list_voltage) {
3358                 return ERR_PTR(-EINVAL);
3359         }
3360
3361         init_data = config->init_data;
3362
3363         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3364         if (rdev == NULL)
3365                 return ERR_PTR(-ENOMEM);
3366
3367         mutex_lock(&regulator_list_mutex);
3368
3369         mutex_init(&rdev->mutex);
3370         rdev->reg_data = config->driver_data;
3371         rdev->owner = regulator_desc->owner;
3372         rdev->desc = regulator_desc;
3373         if (config->regmap)
3374                 rdev->regmap = config->regmap;
3375         else if (dev_get_regmap(dev, NULL))
3376                 rdev->regmap = dev_get_regmap(dev, NULL);
3377         else if (dev->parent)
3378                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3379         INIT_LIST_HEAD(&rdev->consumer_list);
3380         INIT_LIST_HEAD(&rdev->list);
3381         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3382         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3383
3384         /* preform any regulator specific init */
3385         if (init_data && init_data->regulator_init) {
3386                 ret = init_data->regulator_init(rdev->reg_data);
3387                 if (ret < 0)
3388                         goto clean;
3389         }
3390
3391         /* register with sysfs */
3392         rdev->dev.class = &regulator_class;
3393         rdev->dev.of_node = config->of_node;
3394         rdev->dev.parent = dev;
3395         dev_set_name(&rdev->dev, "regulator.%d",
3396                      atomic_inc_return(&regulator_no) - 1);
3397         ret = device_register(&rdev->dev);
3398         if (ret != 0) {
3399                 put_device(&rdev->dev);
3400                 goto clean;
3401         }
3402
3403         dev_set_drvdata(&rdev->dev, rdev);
3404
3405         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3406                 ret = gpio_request_one(config->ena_gpio,
3407                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
3408                                        rdev_get_name(rdev));
3409                 if (ret != 0) {
3410                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3411                                  config->ena_gpio, ret);
3412                         goto wash;
3413                 }
3414
3415                 rdev->ena_gpio = config->ena_gpio;
3416                 rdev->ena_gpio_invert = config->ena_gpio_invert;
3417
3418                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3419                         rdev->ena_gpio_state = 1;
3420
3421                 if (rdev->ena_gpio_invert)
3422                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3423         }
3424
3425         /* set regulator constraints */
3426         if (init_data)
3427                 constraints = &init_data->constraints;
3428
3429         ret = set_machine_constraints(rdev, constraints);
3430         if (ret < 0)
3431                 goto scrub;
3432
3433         /* add attributes supported by this regulator */
3434         ret = add_regulator_attributes(rdev);
3435         if (ret < 0)
3436                 goto scrub;
3437
3438         if (init_data && init_data->supply_regulator)
3439                 supply = init_data->supply_regulator;
3440         else if (regulator_desc->supply_name)
3441                 supply = regulator_desc->supply_name;
3442
3443         if (supply) {
3444                 struct regulator_dev *r;
3445
3446                 r = regulator_dev_lookup(dev, supply, &ret);
3447
3448                 if (!r) {
3449                         dev_err(dev, "Failed to find supply %s\n", supply);
3450                         ret = -EPROBE_DEFER;
3451                         goto scrub;
3452                 }
3453
3454                 ret = set_supply(rdev, r);
3455                 if (ret < 0)
3456                         goto scrub;
3457
3458                 /* Enable supply if rail is enabled */
3459                 if (_regulator_is_enabled(rdev)) {
3460                         ret = regulator_enable(rdev->supply);
3461                         if (ret < 0)
3462                                 goto scrub;
3463                 }
3464         }
3465
3466         /* add consumers devices */
3467         if (init_data) {
3468                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3469                         ret = set_consumer_device_supply(rdev,
3470                                 init_data->consumer_supplies[i].dev_name,
3471                                 init_data->consumer_supplies[i].supply);
3472                         if (ret < 0) {
3473                                 dev_err(dev, "Failed to set supply %s\n",
3474                                         init_data->consumer_supplies[i].supply);
3475                                 goto unset_supplies;
3476                         }
3477                 }
3478         }
3479
3480         list_add(&rdev->list, &regulator_list);
3481
3482         rdev_init_debugfs(rdev);
3483 out:
3484         mutex_unlock(&regulator_list_mutex);
3485         return rdev;
3486
3487 unset_supplies:
3488         unset_regulator_supplies(rdev);
3489
3490 scrub:
3491         if (rdev->supply)
3492                 _regulator_put(rdev->supply);
3493         if (rdev->ena_gpio)
3494                 gpio_free(rdev->ena_gpio);
3495         kfree(rdev->constraints);
3496 wash:
3497         device_unregister(&rdev->dev);
3498         /* device core frees rdev */
3499         rdev = ERR_PTR(ret);
3500         goto out;
3501
3502 clean:
3503         kfree(rdev);
3504         rdev = ERR_PTR(ret);
3505         goto out;
3506 }
3507 EXPORT_SYMBOL_GPL(regulator_register);
3508
3509 /**
3510  * regulator_unregister - unregister regulator
3511  * @rdev: regulator to unregister
3512  *
3513  * Called by regulator drivers to unregister a regulator.
3514  */
3515 void regulator_unregister(struct regulator_dev *rdev)
3516 {
3517         if (rdev == NULL)
3518                 return;
3519
3520         if (rdev->supply)
3521                 regulator_put(rdev->supply);
3522         mutex_lock(&regulator_list_mutex);
3523         debugfs_remove_recursive(rdev->debugfs);
3524         flush_work(&rdev->disable_work.work);
3525         WARN_ON(rdev->open_count);
3526         unset_regulator_supplies(rdev);
3527         list_del(&rdev->list);
3528         kfree(rdev->constraints);
3529         if (rdev->ena_gpio)
3530                 gpio_free(rdev->ena_gpio);
3531         device_unregister(&rdev->dev);
3532         mutex_unlock(&regulator_list_mutex);
3533 }
3534 EXPORT_SYMBOL_GPL(regulator_unregister);
3535
3536 /**
3537  * regulator_suspend_prepare - prepare regulators for system wide suspend
3538  * @state: system suspend state
3539  *
3540  * Configure each regulator with it's suspend operating parameters for state.
3541  * This will usually be called by machine suspend code prior to supending.
3542  */
3543 int regulator_suspend_prepare(suspend_state_t state)
3544 {
3545         struct regulator_dev *rdev;
3546         int ret = 0;
3547
3548         /* ON is handled by regulator active state */
3549         if (state == PM_SUSPEND_ON)
3550                 return -EINVAL;
3551
3552         mutex_lock(&regulator_list_mutex);
3553         list_for_each_entry(rdev, &regulator_list, list) {
3554
3555                 mutex_lock(&rdev->mutex);
3556                 ret = suspend_prepare(rdev, state);
3557                 mutex_unlock(&rdev->mutex);
3558
3559                 if (ret < 0) {
3560                         rdev_err(rdev, "failed to prepare\n");
3561                         goto out;
3562                 }
3563         }
3564 out:
3565         mutex_unlock(&regulator_list_mutex);
3566         return ret;
3567 }
3568 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3569
3570 /**
3571  * regulator_suspend_finish - resume regulators from system wide suspend
3572  *
3573  * Turn on regulators that might be turned off by regulator_suspend_prepare
3574  * and that should be turned on according to the regulators properties.
3575  */
3576 int regulator_suspend_finish(void)
3577 {
3578         struct regulator_dev *rdev;
3579         int ret = 0, error;
3580
3581         mutex_lock(&regulator_list_mutex);
3582         list_for_each_entry(rdev, &regulator_list, list) {
3583                 struct regulator_ops *ops = rdev->desc->ops;
3584
3585                 mutex_lock(&rdev->mutex);
3586                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3587                                 ops->enable) {
3588                         error = ops->enable(rdev);
3589                         if (error)
3590                                 ret = error;
3591                 } else {
3592                         if (!has_full_constraints)
3593                                 goto unlock;
3594                         if (!ops->disable)
3595                                 goto unlock;
3596                         if (!_regulator_is_enabled(rdev))
3597                                 goto unlock;
3598
3599                         error = ops->disable(rdev);
3600                         if (error)
3601                                 ret = error;
3602                 }
3603 unlock:
3604                 mutex_unlock(&rdev->mutex);
3605         }
3606         mutex_unlock(&regulator_list_mutex);
3607         return ret;
3608 }
3609 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3610
3611 /**
3612  * regulator_has_full_constraints - the system has fully specified constraints
3613  *
3614  * Calling this function will cause the regulator API to disable all
3615  * regulators which have a zero use count and don't have an always_on
3616  * constraint in a late_initcall.
3617  *
3618  * The intention is that this will become the default behaviour in a
3619  * future kernel release so users are encouraged to use this facility
3620  * now.
3621  */
3622 void regulator_has_full_constraints(void)
3623 {
3624         has_full_constraints = 1;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3627
3628 /**
3629  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3630  *
3631  * Calling this function will cause the regulator API to provide a
3632  * dummy regulator to consumers if no physical regulator is found,
3633  * allowing most consumers to proceed as though a regulator were
3634  * configured.  This allows systems such as those with software
3635  * controllable regulators for the CPU core only to be brought up more
3636  * readily.
3637  */
3638 void regulator_use_dummy_regulator(void)
3639 {
3640         board_wants_dummy_regulator = true;
3641 }
3642 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3643
3644 /**
3645  * rdev_get_drvdata - get rdev regulator driver data
3646  * @rdev: regulator
3647  *
3648  * Get rdev regulator driver private data. This call can be used in the
3649  * regulator driver context.
3650  */
3651 void *rdev_get_drvdata(struct regulator_dev *rdev)
3652 {
3653         return rdev->reg_data;
3654 }
3655 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3656
3657 /**
3658  * regulator_get_drvdata - get regulator driver data
3659  * @regulator: regulator
3660  *
3661  * Get regulator driver private data. This call can be used in the consumer
3662  * driver context when non API regulator specific functions need to be called.
3663  */
3664 void *regulator_get_drvdata(struct regulator *regulator)
3665 {
3666         return regulator->rdev->reg_data;
3667 }
3668 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3669
3670 /**
3671  * regulator_set_drvdata - set regulator driver data
3672  * @regulator: regulator
3673  * @data: data
3674  */
3675 void regulator_set_drvdata(struct regulator *regulator, void *data)
3676 {
3677         regulator->rdev->reg_data = data;
3678 }
3679 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3680
3681 /**
3682  * regulator_get_id - get regulator ID
3683  * @rdev: regulator
3684  */
3685 int rdev_get_id(struct regulator_dev *rdev)
3686 {
3687         return rdev->desc->id;
3688 }
3689 EXPORT_SYMBOL_GPL(rdev_get_id);
3690
3691 struct device *rdev_get_dev(struct regulator_dev *rdev)
3692 {
3693         return &rdev->dev;
3694 }
3695 EXPORT_SYMBOL_GPL(rdev_get_dev);
3696
3697 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3698 {
3699         return reg_init_data->driver_data;
3700 }
3701 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3702
3703 #ifdef CONFIG_DEBUG_FS
3704 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3705                                     size_t count, loff_t *ppos)
3706 {
3707         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3708         ssize_t len, ret = 0;
3709         struct regulator_map *map;
3710
3711         if (!buf)
3712                 return -ENOMEM;
3713
3714         list_for_each_entry(map, &regulator_map_list, list) {
3715                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3716                                "%s -> %s.%s\n",
3717                                rdev_get_name(map->regulator), map->dev_name,
3718                                map->supply);
3719                 if (len >= 0)
3720                         ret += len;
3721                 if (ret > PAGE_SIZE) {
3722                         ret = PAGE_SIZE;
3723                         break;
3724                 }
3725         }
3726
3727         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3728
3729         kfree(buf);
3730
3731         return ret;
3732 }
3733 #endif
3734
3735 static const struct file_operations supply_map_fops = {
3736 #ifdef CONFIG_DEBUG_FS
3737         .read = supply_map_read_file,
3738         .llseek = default_llseek,
3739 #endif
3740 };
3741
3742 static int __init regulator_init(void)
3743 {
3744         int ret;
3745
3746         ret = class_register(&regulator_class);
3747
3748         debugfs_root = debugfs_create_dir("regulator", NULL);
3749         if (!debugfs_root)
3750                 pr_warn("regulator: Failed to create debugfs directory\n");
3751
3752         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3753                             &supply_map_fops);
3754
3755         regulator_dummy_init();
3756
3757         return ret;
3758 }
3759
3760 /* init early to allow our consumers to complete system booting */
3761 core_initcall(regulator_init);
3762
3763 static int __init regulator_init_complete(void)
3764 {
3765         struct regulator_dev *rdev;
3766         struct regulator_ops *ops;
3767         struct regulation_constraints *c;
3768         int enabled, ret;
3769
3770         /*
3771          * Since DT doesn't provide an idiomatic mechanism for
3772          * enabling full constraints and since it's much more natural
3773          * with DT to provide them just assume that a DT enabled
3774          * system has full constraints.
3775          */
3776         if (of_have_populated_dt())
3777                 has_full_constraints = true;
3778
3779         mutex_lock(&regulator_list_mutex);
3780
3781         /* If we have a full configuration then disable any regulators
3782          * which are not in use or always_on.  This will become the
3783          * default behaviour in the future.
3784          */
3785         list_for_each_entry(rdev, &regulator_list, list) {
3786                 ops = rdev->desc->ops;
3787                 c = rdev->constraints;
3788
3789                 if (!ops->disable || (c && c->always_on))
3790                         continue;
3791
3792                 mutex_lock(&rdev->mutex);
3793
3794                 if (rdev->use_count)
3795                         goto unlock;
3796
3797                 /* If we can't read the status assume it's on. */
3798                 if (ops->is_enabled)
3799                         enabled = ops->is_enabled(rdev);
3800                 else
3801                         enabled = 1;
3802
3803                 if (!enabled)
3804                         goto unlock;
3805
3806                 if (has_full_constraints) {
3807                         /* We log since this may kill the system if it
3808                          * goes wrong. */
3809                         rdev_info(rdev, "disabling\n");
3810                         ret = ops->disable(rdev);
3811                         if (ret != 0) {
3812                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3813                         }
3814                 } else {
3815                         /* The intention is that in future we will
3816                          * assume that full constraints are provided
3817                          * so warn even if we aren't going to do
3818                          * anything here.
3819                          */
3820                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3821                 }
3822
3823 unlock:
3824                 mutex_unlock(&rdev->mutex);
3825         }
3826
3827         mutex_unlock(&regulator_list_mutex);
3828
3829         return 0;
3830 }
3831 late_initcall(regulator_init_complete);