]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/isci/host.c
d647b07ba1a3c6fa97daedca175c559ece7f0edd
[karo-tx-linux.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
71
72 #define smu_max_ports(dcc_value) \
73         (\
74                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76         )
77
78 #define smu_max_task_contexts(dcc_value)        \
79         (\
80                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82         )
83
84 #define smu_max_rncs(dcc_value) \
85         (\
86                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88         )
89
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
91
92 /**
93  *
94  *
95  * The number of milliseconds to wait while a given phy is consuming power
96  * before allowing another set of phys to consume power. Ultimately, this will
97  * be specified by OEM parameter.
98  */
99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100
101 /**
102  * NORMALIZE_PUT_POINTER() -
103  *
104  * This macro will normalize the completion queue put pointer so its value can
105  * be used as an array inde
106  */
107 #define NORMALIZE_PUT_POINTER(x) \
108         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
109
110
111 /**
112  * NORMALIZE_EVENT_POINTER() -
113  *
114  * This macro will normalize the completion queue event entry so its value can
115  * be used as an index.
116  */
117 #define NORMALIZE_EVENT_POINTER(x) \
118         (\
119                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
121         )
122
123 /**
124  * NORMALIZE_GET_POINTER() -
125  *
126  * This macro will normalize the completion queue get pointer so its value can
127  * be used as an index into an array
128  */
129 #define NORMALIZE_GET_POINTER(x) \
130         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131
132 /**
133  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
134  *
135  * This macro will normalize the completion queue cycle pointer so it matches
136  * the completion queue cycle bit
137  */
138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140
141 /**
142  * COMPLETION_QUEUE_CYCLE_BIT() -
143  *
144  * This macro will return the cycle bit of the completion queue entry
145  */
146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
147
148 /* Init the state machine and call the state entry function (if any) */
149 void sci_init_sm(struct sci_base_state_machine *sm,
150                  const struct sci_base_state *state_table, u32 initial_state)
151 {
152         sci_state_transition_t handler;
153
154         sm->initial_state_id    = initial_state;
155         sm->previous_state_id   = initial_state;
156         sm->current_state_id    = initial_state;
157         sm->state_table         = state_table;
158
159         handler = sm->state_table[initial_state].enter_state;
160         if (handler)
161                 handler(sm);
162 }
163
164 /* Call the state exit fn, update the current state, call the state entry fn */
165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
166 {
167         sci_state_transition_t handler;
168
169         handler = sm->state_table[sm->current_state_id].exit_state;
170         if (handler)
171                 handler(sm);
172
173         sm->previous_state_id = sm->current_state_id;
174         sm->current_state_id = next_state;
175
176         handler = sm->state_table[sm->current_state_id].enter_state;
177         if (handler)
178                 handler(sm);
179 }
180
181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182 {
183         u32 get_value = ihost->completion_queue_get;
184         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
185
186         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188                 return true;
189
190         return false;
191 }
192
193 static bool sci_controller_isr(struct isci_host *ihost)
194 {
195         if (sci_controller_completion_queue_has_entries(ihost)) {
196                 return true;
197         } else {
198                 /*
199                  * we have a spurious interrupt it could be that we have already
200                  * emptied the completion queue from a previous interrupt */
201                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
202
203                 /*
204                  * There is a race in the hardware that could cause us not to be notified
205                  * of an interrupt completion if we do not take this step.  We will mask
206                  * then unmask the interrupts so if there is another interrupt pending
207                  * the clearing of the interrupt source we get the next interrupt message. */
208                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
209                 writel(0, &ihost->smu_registers->interrupt_mask);
210         }
211
212         return false;
213 }
214
215 irqreturn_t isci_msix_isr(int vec, void *data)
216 {
217         struct isci_host *ihost = data;
218
219         if (sci_controller_isr(ihost))
220                 tasklet_schedule(&ihost->completion_tasklet);
221
222         return IRQ_HANDLED;
223 }
224
225 static bool sci_controller_error_isr(struct isci_host *ihost)
226 {
227         u32 interrupt_status;
228
229         interrupt_status =
230                 readl(&ihost->smu_registers->interrupt_status);
231         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
232
233         if (interrupt_status != 0) {
234                 /*
235                  * There is an error interrupt pending so let it through and handle
236                  * in the callback */
237                 return true;
238         }
239
240         /*
241          * There is a race in the hardware that could cause us not to be notified
242          * of an interrupt completion if we do not take this step.  We will mask
243          * then unmask the error interrupts so if there was another interrupt
244          * pending we will be notified.
245          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
246         writel(0xff, &ihost->smu_registers->interrupt_mask);
247         writel(0, &ihost->smu_registers->interrupt_mask);
248
249         return false;
250 }
251
252 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
253 {
254         u32 index = SCU_GET_COMPLETION_INDEX(ent);
255         struct isci_request *ireq = ihost->reqs[index];
256
257         /* Make sure that we really want to process this IO request */
258         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
259             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
260             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
261                 /* Yep this is a valid io request pass it along to the
262                  * io request handler
263                  */
264                 sci_io_request_tc_completion(ireq, ent);
265 }
266
267 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
268 {
269         u32 index;
270         struct isci_request *ireq;
271         struct isci_remote_device *idev;
272
273         index = SCU_GET_COMPLETION_INDEX(ent);
274
275         switch (scu_get_command_request_type(ent)) {
276         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
277         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
278                 ireq = ihost->reqs[index];
279                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
280                          __func__, ent, ireq);
281                 /* @todo For a post TC operation we need to fail the IO
282                  * request
283                  */
284                 break;
285         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
286         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
287         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
288                 idev = ihost->device_table[index];
289                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
290                          __func__, ent, idev);
291                 /* @todo For a port RNC operation we need to fail the
292                  * device
293                  */
294                 break;
295         default:
296                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
297                          __func__, ent);
298                 break;
299         }
300 }
301
302 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
303 {
304         u32 index;
305         u32 frame_index;
306
307         struct scu_unsolicited_frame_header *frame_header;
308         struct isci_phy *iphy;
309         struct isci_remote_device *idev;
310
311         enum sci_status result = SCI_FAILURE;
312
313         frame_index = SCU_GET_FRAME_INDEX(ent);
314
315         frame_header = ihost->uf_control.buffers.array[frame_index].header;
316         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
317
318         if (SCU_GET_FRAME_ERROR(ent)) {
319                 /*
320                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
321                  * /       this cause a problem? We expect the phy initialization will
322                  * /       fail if there is an error in the frame. */
323                 sci_controller_release_frame(ihost, frame_index);
324                 return;
325         }
326
327         if (frame_header->is_address_frame) {
328                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
329                 iphy = &ihost->phys[index];
330                 result = sci_phy_frame_handler(iphy, frame_index);
331         } else {
332
333                 index = SCU_GET_COMPLETION_INDEX(ent);
334
335                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
336                         /*
337                          * This is a signature fis or a frame from a direct attached SATA
338                          * device that has not yet been created.  In either case forwared
339                          * the frame to the PE and let it take care of the frame data. */
340                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
341                         iphy = &ihost->phys[index];
342                         result = sci_phy_frame_handler(iphy, frame_index);
343                 } else {
344                         if (index < ihost->remote_node_entries)
345                                 idev = ihost->device_table[index];
346                         else
347                                 idev = NULL;
348
349                         if (idev != NULL)
350                                 result = sci_remote_device_frame_handler(idev, frame_index);
351                         else
352                                 sci_controller_release_frame(ihost, frame_index);
353                 }
354         }
355
356         if (result != SCI_SUCCESS) {
357                 /*
358                  * / @todo Is there any reason to report some additional error message
359                  * /       when we get this failure notifiction? */
360         }
361 }
362
363 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
364 {
365         struct isci_remote_device *idev;
366         struct isci_request *ireq;
367         struct isci_phy *iphy;
368         u32 index;
369
370         index = SCU_GET_COMPLETION_INDEX(ent);
371
372         switch (scu_get_event_type(ent)) {
373         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
374                 /* / @todo The driver did something wrong and we need to fix the condtion. */
375                 dev_err(&ihost->pdev->dev,
376                         "%s: SCIC Controller 0x%p received SMU command error "
377                         "0x%x\n",
378                         __func__,
379                         ihost,
380                         ent);
381                 break;
382
383         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
384         case SCU_EVENT_TYPE_SMU_ERROR:
385         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
386                 /*
387                  * / @todo This is a hardware failure and its likely that we want to
388                  * /       reset the controller. */
389                 dev_err(&ihost->pdev->dev,
390                         "%s: SCIC Controller 0x%p received fatal controller "
391                         "event  0x%x\n",
392                         __func__,
393                         ihost,
394                         ent);
395                 break;
396
397         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
398                 ireq = ihost->reqs[index];
399                 sci_io_request_event_handler(ireq, ent);
400                 break;
401
402         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
403                 switch (scu_get_event_specifier(ent)) {
404                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
405                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
406                         ireq = ihost->reqs[index];
407                         if (ireq != NULL)
408                                 sci_io_request_event_handler(ireq, ent);
409                         else
410                                 dev_warn(&ihost->pdev->dev,
411                                          "%s: SCIC Controller 0x%p received "
412                                          "event 0x%x for io request object "
413                                          "that doesnt exist.\n",
414                                          __func__,
415                                          ihost,
416                                          ent);
417
418                         break;
419
420                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
421                         idev = ihost->device_table[index];
422                         if (idev != NULL)
423                                 sci_remote_device_event_handler(idev, ent);
424                         else
425                                 dev_warn(&ihost->pdev->dev,
426                                          "%s: SCIC Controller 0x%p received "
427                                          "event 0x%x for remote device object "
428                                          "that doesnt exist.\n",
429                                          __func__,
430                                          ihost,
431                                          ent);
432
433                         break;
434                 }
435                 break;
436
437         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
438         /*
439          * direct the broadcast change event to the phy first and then let
440          * the phy redirect the broadcast change to the port object */
441         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
442         /*
443          * direct error counter event to the phy object since that is where
444          * we get the event notification.  This is a type 4 event. */
445         case SCU_EVENT_TYPE_OSSP_EVENT:
446                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
447                 iphy = &ihost->phys[index];
448                 sci_phy_event_handler(iphy, ent);
449                 break;
450
451         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
452         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
453         case SCU_EVENT_TYPE_RNC_OPS_MISC:
454                 if (index < ihost->remote_node_entries) {
455                         idev = ihost->device_table[index];
456
457                         if (idev != NULL)
458                                 sci_remote_device_event_handler(idev, ent);
459                 } else
460                         dev_err(&ihost->pdev->dev,
461                                 "%s: SCIC Controller 0x%p received event 0x%x "
462                                 "for remote device object 0x%0x that doesnt "
463                                 "exist.\n",
464                                 __func__,
465                                 ihost,
466                                 ent,
467                                 index);
468
469                 break;
470
471         default:
472                 dev_warn(&ihost->pdev->dev,
473                          "%s: SCIC Controller received unknown event code %x\n",
474                          __func__,
475                          ent);
476                 break;
477         }
478 }
479
480 static void sci_controller_process_completions(struct isci_host *ihost)
481 {
482         u32 completion_count = 0;
483         u32 ent;
484         u32 get_index;
485         u32 get_cycle;
486         u32 event_get;
487         u32 event_cycle;
488
489         dev_dbg(&ihost->pdev->dev,
490                 "%s: completion queue begining get:0x%08x\n",
491                 __func__,
492                 ihost->completion_queue_get);
493
494         /* Get the component parts of the completion queue */
495         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
496         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
497
498         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
499         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
500
501         while (
502                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
503                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
504                 ) {
505                 completion_count++;
506
507                 ent = ihost->completion_queue[get_index];
508
509                 /* increment the get pointer and check for rollover to toggle the cycle bit */
510                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
511                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
512                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
513
514                 dev_dbg(&ihost->pdev->dev,
515                         "%s: completion queue entry:0x%08x\n",
516                         __func__,
517                         ent);
518
519                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
520                 case SCU_COMPLETION_TYPE_TASK:
521                         sci_controller_task_completion(ihost, ent);
522                         break;
523
524                 case SCU_COMPLETION_TYPE_SDMA:
525                         sci_controller_sdma_completion(ihost, ent);
526                         break;
527
528                 case SCU_COMPLETION_TYPE_UFI:
529                         sci_controller_unsolicited_frame(ihost, ent);
530                         break;
531
532                 case SCU_COMPLETION_TYPE_EVENT:
533                         sci_controller_event_completion(ihost, ent);
534                         break;
535
536                 case SCU_COMPLETION_TYPE_NOTIFY: {
537                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
538                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
539                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
540
541                         sci_controller_event_completion(ihost, ent);
542                         break;
543                 }
544                 default:
545                         dev_warn(&ihost->pdev->dev,
546                                  "%s: SCIC Controller received unknown "
547                                  "completion type %x\n",
548                                  __func__,
549                                  ent);
550                         break;
551                 }
552         }
553
554         /* Update the get register if we completed one or more entries */
555         if (completion_count > 0) {
556                 ihost->completion_queue_get =
557                         SMU_CQGR_GEN_BIT(ENABLE) |
558                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
559                         event_cycle |
560                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
561                         get_cycle |
562                         SMU_CQGR_GEN_VAL(POINTER, get_index);
563
564                 writel(ihost->completion_queue_get,
565                        &ihost->smu_registers->completion_queue_get);
566
567         }
568
569         dev_dbg(&ihost->pdev->dev,
570                 "%s: completion queue ending get:0x%08x\n",
571                 __func__,
572                 ihost->completion_queue_get);
573
574 }
575
576 static void sci_controller_error_handler(struct isci_host *ihost)
577 {
578         u32 interrupt_status;
579
580         interrupt_status =
581                 readl(&ihost->smu_registers->interrupt_status);
582
583         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
584             sci_controller_completion_queue_has_entries(ihost)) {
585
586                 sci_controller_process_completions(ihost);
587                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
588         } else {
589                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
590                         interrupt_status);
591
592                 sci_change_state(&ihost->sm, SCIC_FAILED);
593
594                 return;
595         }
596
597         /* If we dont process any completions I am not sure that we want to do this.
598          * We are in the middle of a hardware fault and should probably be reset.
599          */
600         writel(0, &ihost->smu_registers->interrupt_mask);
601 }
602
603 irqreturn_t isci_intx_isr(int vec, void *data)
604 {
605         irqreturn_t ret = IRQ_NONE;
606         struct isci_host *ihost = data;
607
608         if (sci_controller_isr(ihost)) {
609                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
610                 tasklet_schedule(&ihost->completion_tasklet);
611                 ret = IRQ_HANDLED;
612         } else if (sci_controller_error_isr(ihost)) {
613                 spin_lock(&ihost->scic_lock);
614                 sci_controller_error_handler(ihost);
615                 spin_unlock(&ihost->scic_lock);
616                 ret = IRQ_HANDLED;
617         }
618
619         return ret;
620 }
621
622 irqreturn_t isci_error_isr(int vec, void *data)
623 {
624         struct isci_host *ihost = data;
625
626         if (sci_controller_error_isr(ihost))
627                 sci_controller_error_handler(ihost);
628
629         return IRQ_HANDLED;
630 }
631
632 /**
633  * isci_host_start_complete() - This function is called by the core library,
634  *    through the ISCI Module, to indicate controller start status.
635  * @isci_host: This parameter specifies the ISCI host object
636  * @completion_status: This parameter specifies the completion status from the
637  *    core library.
638  *
639  */
640 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
641 {
642         if (completion_status != SCI_SUCCESS)
643                 dev_info(&ihost->pdev->dev,
644                         "controller start timed out, continuing...\n");
645         clear_bit(IHOST_START_PENDING, &ihost->flags);
646         wake_up(&ihost->eventq);
647 }
648
649 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
650 {
651         struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
652         struct isci_host *ihost = ha->lldd_ha;
653
654         if (test_bit(IHOST_START_PENDING, &ihost->flags))
655                 return 0;
656
657         sas_drain_work(ha);
658
659         return 1;
660 }
661
662 /**
663  * sci_controller_get_suggested_start_timeout() - This method returns the
664  *    suggested sci_controller_start() timeout amount.  The user is free to
665  *    use any timeout value, but this method provides the suggested minimum
666  *    start timeout value.  The returned value is based upon empirical
667  *    information determined as a result of interoperability testing.
668  * @controller: the handle to the controller object for which to return the
669  *    suggested start timeout.
670  *
671  * This method returns the number of milliseconds for the suggested start
672  * operation timeout.
673  */
674 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
675 {
676         /* Validate the user supplied parameters. */
677         if (!ihost)
678                 return 0;
679
680         /*
681          * The suggested minimum timeout value for a controller start operation:
682          *
683          *     Signature FIS Timeout
684          *   + Phy Start Timeout
685          *   + Number of Phy Spin Up Intervals
686          *   ---------------------------------
687          *   Number of milliseconds for the controller start operation.
688          *
689          * NOTE: The number of phy spin up intervals will be equivalent
690          *       to the number of phys divided by the number phys allowed
691          *       per interval - 1 (once OEM parameters are supported).
692          *       Currently we assume only 1 phy per interval. */
693
694         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
695                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
696                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
697 }
698
699 static void sci_controller_enable_interrupts(struct isci_host *ihost)
700 {
701         BUG_ON(ihost->smu_registers == NULL);
702         writel(0, &ihost->smu_registers->interrupt_mask);
703 }
704
705 void sci_controller_disable_interrupts(struct isci_host *ihost)
706 {
707         BUG_ON(ihost->smu_registers == NULL);
708         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
709 }
710
711 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
712 {
713         u32 port_task_scheduler_value;
714
715         port_task_scheduler_value =
716                 readl(&ihost->scu_registers->peg0.ptsg.control);
717         port_task_scheduler_value |=
718                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
719                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
720         writel(port_task_scheduler_value,
721                &ihost->scu_registers->peg0.ptsg.control);
722 }
723
724 static void sci_controller_assign_task_entries(struct isci_host *ihost)
725 {
726         u32 task_assignment;
727
728         /*
729          * Assign all the TCs to function 0
730          * TODO: Do we actually need to read this register to write it back?
731          */
732
733         task_assignment =
734                 readl(&ihost->smu_registers->task_context_assignment[0]);
735
736         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
737                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
738                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
739
740         writel(task_assignment,
741                 &ihost->smu_registers->task_context_assignment[0]);
742
743 }
744
745 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
746 {
747         u32 index;
748         u32 completion_queue_control_value;
749         u32 completion_queue_get_value;
750         u32 completion_queue_put_value;
751
752         ihost->completion_queue_get = 0;
753
754         completion_queue_control_value =
755                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
756                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
757
758         writel(completion_queue_control_value,
759                &ihost->smu_registers->completion_queue_control);
760
761
762         /* Set the completion queue get pointer and enable the queue */
763         completion_queue_get_value = (
764                 (SMU_CQGR_GEN_VAL(POINTER, 0))
765                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
766                 | (SMU_CQGR_GEN_BIT(ENABLE))
767                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
768                 );
769
770         writel(completion_queue_get_value,
771                &ihost->smu_registers->completion_queue_get);
772
773         /* Set the completion queue put pointer */
774         completion_queue_put_value = (
775                 (SMU_CQPR_GEN_VAL(POINTER, 0))
776                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
777                 );
778
779         writel(completion_queue_put_value,
780                &ihost->smu_registers->completion_queue_put);
781
782         /* Initialize the cycle bit of the completion queue entries */
783         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
784                 /*
785                  * If get.cycle_bit != completion_queue.cycle_bit
786                  * its not a valid completion queue entry
787                  * so at system start all entries are invalid */
788                 ihost->completion_queue[index] = 0x80000000;
789         }
790 }
791
792 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
793 {
794         u32 frame_queue_control_value;
795         u32 frame_queue_get_value;
796         u32 frame_queue_put_value;
797
798         /* Write the queue size */
799         frame_queue_control_value =
800                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
801
802         writel(frame_queue_control_value,
803                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
804
805         /* Setup the get pointer for the unsolicited frame queue */
806         frame_queue_get_value = (
807                 SCU_UFQGP_GEN_VAL(POINTER, 0)
808                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
809                 );
810
811         writel(frame_queue_get_value,
812                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
813         /* Setup the put pointer for the unsolicited frame queue */
814         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
815         writel(frame_queue_put_value,
816                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
817 }
818
819 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
820 {
821         if (ihost->sm.current_state_id == SCIC_STARTING) {
822                 /*
823                  * We move into the ready state, because some of the phys/ports
824                  * may be up and operational.
825                  */
826                 sci_change_state(&ihost->sm, SCIC_READY);
827
828                 isci_host_start_complete(ihost, status);
829         }
830 }
831
832 static bool is_phy_starting(struct isci_phy *iphy)
833 {
834         enum sci_phy_states state;
835
836         state = iphy->sm.current_state_id;
837         switch (state) {
838         case SCI_PHY_STARTING:
839         case SCI_PHY_SUB_INITIAL:
840         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
841         case SCI_PHY_SUB_AWAIT_IAF_UF:
842         case SCI_PHY_SUB_AWAIT_SAS_POWER:
843         case SCI_PHY_SUB_AWAIT_SATA_POWER:
844         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
845         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
846         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
847         case SCI_PHY_SUB_FINAL:
848                 return true;
849         default:
850                 return false;
851         }
852 }
853
854 /**
855  * sci_controller_start_next_phy - start phy
856  * @scic: controller
857  *
858  * If all the phys have been started, then attempt to transition the
859  * controller to the READY state and inform the user
860  * (sci_cb_controller_start_complete()).
861  */
862 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
863 {
864         struct sci_oem_params *oem = &ihost->oem_parameters;
865         struct isci_phy *iphy;
866         enum sci_status status;
867
868         status = SCI_SUCCESS;
869
870         if (ihost->phy_startup_timer_pending)
871                 return status;
872
873         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
874                 bool is_controller_start_complete = true;
875                 u32 state;
876                 u8 index;
877
878                 for (index = 0; index < SCI_MAX_PHYS; index++) {
879                         iphy = &ihost->phys[index];
880                         state = iphy->sm.current_state_id;
881
882                         if (!phy_get_non_dummy_port(iphy))
883                                 continue;
884
885                         /* The controller start operation is complete iff:
886                          * - all links have been given an opportunity to start
887                          * - have no indication of a connected device
888                          * - have an indication of a connected device and it has
889                          *   finished the link training process.
890                          */
891                         if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
892                             (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
893                             (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
894                             (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
895                                 is_controller_start_complete = false;
896                                 break;
897                         }
898                 }
899
900                 /*
901                  * The controller has successfully finished the start process.
902                  * Inform the SCI Core user and transition to the READY state. */
903                 if (is_controller_start_complete == true) {
904                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
905                         sci_del_timer(&ihost->phy_timer);
906                         ihost->phy_startup_timer_pending = false;
907                 }
908         } else {
909                 iphy = &ihost->phys[ihost->next_phy_to_start];
910
911                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
912                         if (phy_get_non_dummy_port(iphy) == NULL) {
913                                 ihost->next_phy_to_start++;
914
915                                 /* Caution recursion ahead be forwarned
916                                  *
917                                  * The PHY was never added to a PORT in MPC mode
918                                  * so start the next phy in sequence This phy
919                                  * will never go link up and will not draw power
920                                  * the OEM parameters either configured the phy
921                                  * incorrectly for the PORT or it was never
922                                  * assigned to a PORT
923                                  */
924                                 return sci_controller_start_next_phy(ihost);
925                         }
926                 }
927
928                 status = sci_phy_start(iphy);
929
930                 if (status == SCI_SUCCESS) {
931                         sci_mod_timer(&ihost->phy_timer,
932                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
933                         ihost->phy_startup_timer_pending = true;
934                 } else {
935                         dev_warn(&ihost->pdev->dev,
936                                  "%s: Controller stop operation failed "
937                                  "to stop phy %d because of status "
938                                  "%d.\n",
939                                  __func__,
940                                  ihost->phys[ihost->next_phy_to_start].phy_index,
941                                  status);
942                 }
943
944                 ihost->next_phy_to_start++;
945         }
946
947         return status;
948 }
949
950 static void phy_startup_timeout(unsigned long data)
951 {
952         struct sci_timer *tmr = (struct sci_timer *)data;
953         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
954         unsigned long flags;
955         enum sci_status status;
956
957         spin_lock_irqsave(&ihost->scic_lock, flags);
958
959         if (tmr->cancel)
960                 goto done;
961
962         ihost->phy_startup_timer_pending = false;
963
964         do {
965                 status = sci_controller_start_next_phy(ihost);
966         } while (status != SCI_SUCCESS);
967
968 done:
969         spin_unlock_irqrestore(&ihost->scic_lock, flags);
970 }
971
972 static u16 isci_tci_active(struct isci_host *ihost)
973 {
974         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
975 }
976
977 static enum sci_status sci_controller_start(struct isci_host *ihost,
978                                              u32 timeout)
979 {
980         enum sci_status result;
981         u16 index;
982
983         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
984                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
985                          __func__, ihost->sm.current_state_id);
986                 return SCI_FAILURE_INVALID_STATE;
987         }
988
989         /* Build the TCi free pool */
990         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
991         ihost->tci_head = 0;
992         ihost->tci_tail = 0;
993         for (index = 0; index < ihost->task_context_entries; index++)
994                 isci_tci_free(ihost, index);
995
996         /* Build the RNi free pool */
997         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
998                                          ihost->remote_node_entries);
999
1000         /*
1001          * Before anything else lets make sure we will not be
1002          * interrupted by the hardware.
1003          */
1004         sci_controller_disable_interrupts(ihost);
1005
1006         /* Enable the port task scheduler */
1007         sci_controller_enable_port_task_scheduler(ihost);
1008
1009         /* Assign all the task entries to ihost physical function */
1010         sci_controller_assign_task_entries(ihost);
1011
1012         /* Now initialize the completion queue */
1013         sci_controller_initialize_completion_queue(ihost);
1014
1015         /* Initialize the unsolicited frame queue for use */
1016         sci_controller_initialize_unsolicited_frame_queue(ihost);
1017
1018         /* Start all of the ports on this controller */
1019         for (index = 0; index < ihost->logical_port_entries; index++) {
1020                 struct isci_port *iport = &ihost->ports[index];
1021
1022                 result = sci_port_start(iport);
1023                 if (result)
1024                         return result;
1025         }
1026
1027         sci_controller_start_next_phy(ihost);
1028
1029         sci_mod_timer(&ihost->timer, timeout);
1030
1031         sci_change_state(&ihost->sm, SCIC_STARTING);
1032
1033         return SCI_SUCCESS;
1034 }
1035
1036 void isci_host_scan_start(struct Scsi_Host *shost)
1037 {
1038         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1039         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1040
1041         set_bit(IHOST_START_PENDING, &ihost->flags);
1042
1043         spin_lock_irq(&ihost->scic_lock);
1044         sci_controller_start(ihost, tmo);
1045         sci_controller_enable_interrupts(ihost);
1046         spin_unlock_irq(&ihost->scic_lock);
1047 }
1048
1049 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1050 {
1051         sci_controller_disable_interrupts(ihost);
1052         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1053         wake_up(&ihost->eventq);
1054 }
1055
1056 static void sci_controller_completion_handler(struct isci_host *ihost)
1057 {
1058         /* Empty out the completion queue */
1059         if (sci_controller_completion_queue_has_entries(ihost))
1060                 sci_controller_process_completions(ihost);
1061
1062         /* Clear the interrupt and enable all interrupts again */
1063         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1064         /* Could we write the value of SMU_ISR_COMPLETION? */
1065         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1066         writel(0, &ihost->smu_registers->interrupt_mask);
1067 }
1068
1069 /**
1070  * isci_host_completion_routine() - This function is the delayed service
1071  *    routine that calls the sci core library's completion handler. It's
1072  *    scheduled as a tasklet from the interrupt service routine when interrupts
1073  *    in use, or set as the timeout function in polled mode.
1074  * @data: This parameter specifies the ISCI host object
1075  *
1076  */
1077 static void isci_host_completion_routine(unsigned long data)
1078 {
1079         struct isci_host *ihost = (struct isci_host *)data;
1080         struct list_head    completed_request_list;
1081         struct list_head    errored_request_list;
1082         struct list_head    *current_position;
1083         struct list_head    *next_position;
1084         struct isci_request *request;
1085         struct isci_request *next_request;
1086         struct sas_task     *task;
1087         u16 active;
1088
1089         INIT_LIST_HEAD(&completed_request_list);
1090         INIT_LIST_HEAD(&errored_request_list);
1091
1092         spin_lock_irq(&ihost->scic_lock);
1093
1094         sci_controller_completion_handler(ihost);
1095
1096         /* Take the lists of completed I/Os from the host. */
1097
1098         list_splice_init(&ihost->requests_to_complete,
1099                          &completed_request_list);
1100
1101         /* Take the list of errored I/Os from the host. */
1102         list_splice_init(&ihost->requests_to_errorback,
1103                          &errored_request_list);
1104
1105         spin_unlock_irq(&ihost->scic_lock);
1106
1107         /* Process any completions in the lists. */
1108         list_for_each_safe(current_position, next_position,
1109                            &completed_request_list) {
1110
1111                 request = list_entry(current_position, struct isci_request,
1112                                      completed_node);
1113                 task = isci_request_access_task(request);
1114
1115                 /* Normal notification (task_done) */
1116                 dev_dbg(&ihost->pdev->dev,
1117                         "%s: Normal - request/task = %p/%p\n",
1118                         __func__,
1119                         request,
1120                         task);
1121
1122                 /* Return the task to libsas */
1123                 if (task != NULL) {
1124
1125                         task->lldd_task = NULL;
1126                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1127
1128                                 /* If the task is already in the abort path,
1129                                 * the task_done callback cannot be called.
1130                                 */
1131                                 task->task_done(task);
1132                         }
1133                 }
1134
1135                 spin_lock_irq(&ihost->scic_lock);
1136                 isci_free_tag(ihost, request->io_tag);
1137                 spin_unlock_irq(&ihost->scic_lock);
1138         }
1139         list_for_each_entry_safe(request, next_request, &errored_request_list,
1140                                  completed_node) {
1141
1142                 task = isci_request_access_task(request);
1143
1144                 /* Use sas_task_abort */
1145                 dev_warn(&ihost->pdev->dev,
1146                          "%s: Error - request/task = %p/%p\n",
1147                          __func__,
1148                          request,
1149                          task);
1150
1151                 if (task != NULL) {
1152
1153                         /* Put the task into the abort path if it's not there
1154                          * already.
1155                          */
1156                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1157                                 sas_task_abort(task);
1158
1159                 } else {
1160                         /* This is a case where the request has completed with a
1161                          * status such that it needed further target servicing,
1162                          * but the sas_task reference has already been removed
1163                          * from the request.  Since it was errored, it was not
1164                          * being aborted, so there is nothing to do except free
1165                          * it.
1166                          */
1167
1168                         spin_lock_irq(&ihost->scic_lock);
1169                         /* Remove the request from the remote device's list
1170                         * of pending requests.
1171                         */
1172                         list_del_init(&request->dev_node);
1173                         isci_free_tag(ihost, request->io_tag);
1174                         spin_unlock_irq(&ihost->scic_lock);
1175                 }
1176         }
1177
1178         /* the coalesence timeout doubles at each encoding step, so
1179          * update it based on the ilog2 value of the outstanding requests
1180          */
1181         active = isci_tci_active(ihost);
1182         writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1183                SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1184                &ihost->smu_registers->interrupt_coalesce_control);
1185 }
1186
1187 /**
1188  * sci_controller_stop() - This method will stop an individual controller
1189  *    object.This method will invoke the associated user callback upon
1190  *    completion.  The completion callback is called when the following
1191  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1192  *    controller has been quiesced. This method will ensure that all IO
1193  *    requests are quiesced, phys are stopped, and all additional operation by
1194  *    the hardware is halted.
1195  * @controller: the handle to the controller object to stop.
1196  * @timeout: This parameter specifies the number of milliseconds in which the
1197  *    stop operation should complete.
1198  *
1199  * The controller must be in the STARTED or STOPPED state. Indicate if the
1200  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1201  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1202  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1203  * controller is not either in the STARTED or STOPPED states.
1204  */
1205 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1206 {
1207         if (ihost->sm.current_state_id != SCIC_READY) {
1208                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1209                          __func__, ihost->sm.current_state_id);
1210                 return SCI_FAILURE_INVALID_STATE;
1211         }
1212
1213         sci_mod_timer(&ihost->timer, timeout);
1214         sci_change_state(&ihost->sm, SCIC_STOPPING);
1215         return SCI_SUCCESS;
1216 }
1217
1218 /**
1219  * sci_controller_reset() - This method will reset the supplied core
1220  *    controller regardless of the state of said controller.  This operation is
1221  *    considered destructive.  In other words, all current operations are wiped
1222  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1223  *    requests are not aborted or completed at the actual remote device.
1224  * @controller: the handle to the controller object to reset.
1225  *
1226  * Indicate if the controller reset method succeeded or failed in some way.
1227  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1228  * the controller reset operation is unable to complete.
1229  */
1230 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1231 {
1232         switch (ihost->sm.current_state_id) {
1233         case SCIC_RESET:
1234         case SCIC_READY:
1235         case SCIC_STOPPED:
1236         case SCIC_FAILED:
1237                 /*
1238                  * The reset operation is not a graceful cleanup, just
1239                  * perform the state transition.
1240                  */
1241                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1242                 return SCI_SUCCESS;
1243         default:
1244                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1245                          __func__, ihost->sm.current_state_id);
1246                 return SCI_FAILURE_INVALID_STATE;
1247         }
1248 }
1249
1250 void isci_host_deinit(struct isci_host *ihost)
1251 {
1252         int i;
1253
1254         /* disable output data selects */
1255         for (i = 0; i < isci_gpio_count(ihost); i++)
1256                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1257
1258         for (i = 0; i < SCI_MAX_PORTS; i++) {
1259                 struct isci_port *iport = &ihost->ports[i];
1260                 struct isci_remote_device *idev, *d;
1261
1262                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1263                         if (test_bit(IDEV_ALLOCATED, &idev->flags))
1264                                 isci_remote_device_stop(ihost, idev);
1265                 }
1266         }
1267
1268         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1269
1270         spin_lock_irq(&ihost->scic_lock);
1271         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1272         spin_unlock_irq(&ihost->scic_lock);
1273
1274         wait_for_stop(ihost);
1275
1276         /* disable sgpio: where the above wait should give time for the
1277          * enclosure to sample the gpios going inactive
1278          */
1279         writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1280
1281         sci_controller_reset(ihost);
1282
1283         /* Cancel any/all outstanding port timers */
1284         for (i = 0; i < ihost->logical_port_entries; i++) {
1285                 struct isci_port *iport = &ihost->ports[i];
1286                 del_timer_sync(&iport->timer.timer);
1287         }
1288
1289         /* Cancel any/all outstanding phy timers */
1290         for (i = 0; i < SCI_MAX_PHYS; i++) {
1291                 struct isci_phy *iphy = &ihost->phys[i];
1292                 del_timer_sync(&iphy->sata_timer.timer);
1293         }
1294
1295         del_timer_sync(&ihost->port_agent.timer.timer);
1296
1297         del_timer_sync(&ihost->power_control.timer.timer);
1298
1299         del_timer_sync(&ihost->timer.timer);
1300
1301         del_timer_sync(&ihost->phy_timer.timer);
1302 }
1303
1304 static void __iomem *scu_base(struct isci_host *isci_host)
1305 {
1306         struct pci_dev *pdev = isci_host->pdev;
1307         int id = isci_host->id;
1308
1309         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1310 }
1311
1312 static void __iomem *smu_base(struct isci_host *isci_host)
1313 {
1314         struct pci_dev *pdev = isci_host->pdev;
1315         int id = isci_host->id;
1316
1317         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1318 }
1319
1320 static void isci_user_parameters_get(struct sci_user_parameters *u)
1321 {
1322         int i;
1323
1324         for (i = 0; i < SCI_MAX_PHYS; i++) {
1325                 struct sci_phy_user_params *u_phy = &u->phys[i];
1326
1327                 u_phy->max_speed_generation = phy_gen;
1328
1329                 /* we are not exporting these for now */
1330                 u_phy->align_insertion_frequency = 0x7f;
1331                 u_phy->in_connection_align_insertion_frequency = 0xff;
1332                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1333         }
1334
1335         u->stp_inactivity_timeout = stp_inactive_to;
1336         u->ssp_inactivity_timeout = ssp_inactive_to;
1337         u->stp_max_occupancy_timeout = stp_max_occ_to;
1338         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1339         u->no_outbound_task_timeout = no_outbound_task_to;
1340         u->max_concurr_spinup = max_concurr_spinup;
1341 }
1342
1343 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1344 {
1345         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1346
1347         sci_change_state(&ihost->sm, SCIC_RESET);
1348 }
1349
1350 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1351 {
1352         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1353
1354         sci_del_timer(&ihost->timer);
1355 }
1356
1357 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1358 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1359 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1360 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1361 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1362 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1363
1364 /**
1365  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1366  *    configure the interrupt coalescence.
1367  * @controller: This parameter represents the handle to the controller object
1368  *    for which its interrupt coalesce register is overridden.
1369  * @coalesce_number: Used to control the number of entries in the Completion
1370  *    Queue before an interrupt is generated. If the number of entries exceed
1371  *    this number, an interrupt will be generated. The valid range of the input
1372  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1373  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1374  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1375  *    interrupt coalescing timeout.
1376  *
1377  * Indicate if the user successfully set the interrupt coalesce parameters.
1378  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1379  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1380  */
1381 static enum sci_status
1382 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1383                                          u32 coalesce_number,
1384                                          u32 coalesce_timeout)
1385 {
1386         u8 timeout_encode = 0;
1387         u32 min = 0;
1388         u32 max = 0;
1389
1390         /* Check if the input parameters fall in the range. */
1391         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1392                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1393
1394         /*
1395          *  Defined encoding for interrupt coalescing timeout:
1396          *              Value   Min      Max     Units
1397          *              -----   ---      ---     -----
1398          *              0       -        -       Disabled
1399          *              1       13.3     20.0    ns
1400          *              2       26.7     40.0
1401          *              3       53.3     80.0
1402          *              4       106.7    160.0
1403          *              5       213.3    320.0
1404          *              6       426.7    640.0
1405          *              7       853.3    1280.0
1406          *              8       1.7      2.6     us
1407          *              9       3.4      5.1
1408          *              10      6.8      10.2
1409          *              11      13.7     20.5
1410          *              12      27.3     41.0
1411          *              13      54.6     81.9
1412          *              14      109.2    163.8
1413          *              15      218.5    327.7
1414          *              16      436.9    655.4
1415          *              17      873.8    1310.7
1416          *              18      1.7      2.6     ms
1417          *              19      3.5      5.2
1418          *              20      7.0      10.5
1419          *              21      14.0     21.0
1420          *              22      28.0     41.9
1421          *              23      55.9     83.9
1422          *              24      111.8    167.8
1423          *              25      223.7    335.5
1424          *              26      447.4    671.1
1425          *              27      894.8    1342.2
1426          *              28      1.8      2.7     s
1427          *              Others Undefined */
1428
1429         /*
1430          * Use the table above to decide the encode of interrupt coalescing timeout
1431          * value for register writing. */
1432         if (coalesce_timeout == 0)
1433                 timeout_encode = 0;
1434         else{
1435                 /* make the timeout value in unit of (10 ns). */
1436                 coalesce_timeout = coalesce_timeout * 100;
1437                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1438                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1439
1440                 /* get the encode of timeout for register writing. */
1441                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1442                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1443                       timeout_encode++) {
1444                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1445                                 break;
1446                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1447                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1448                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1449                                         break;
1450                                 else{
1451                                         timeout_encode++;
1452                                         break;
1453                                 }
1454                         } else {
1455                                 max = max * 2;
1456                                 min = min * 2;
1457                         }
1458                 }
1459
1460                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1461                         /* the value is out of range. */
1462                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1463         }
1464
1465         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1466                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1467                &ihost->smu_registers->interrupt_coalesce_control);
1468
1469
1470         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1471         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1472
1473         return SCI_SUCCESS;
1474 }
1475
1476
1477 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1478 {
1479         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1480         u32 val;
1481
1482         /* enable clock gating for power control of the scu unit */
1483         val = readl(&ihost->smu_registers->clock_gating_control);
1484         val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1485                  SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1486                  SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1487         val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1488         writel(val, &ihost->smu_registers->clock_gating_control);
1489
1490         /* set the default interrupt coalescence number and timeout value. */
1491         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1492 }
1493
1494 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1495 {
1496         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1497
1498         /* disable interrupt coalescence. */
1499         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1500 }
1501
1502 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1503 {
1504         u32 index;
1505         enum sci_status status;
1506         enum sci_status phy_status;
1507
1508         status = SCI_SUCCESS;
1509
1510         for (index = 0; index < SCI_MAX_PHYS; index++) {
1511                 phy_status = sci_phy_stop(&ihost->phys[index]);
1512
1513                 if (phy_status != SCI_SUCCESS &&
1514                     phy_status != SCI_FAILURE_INVALID_STATE) {
1515                         status = SCI_FAILURE;
1516
1517                         dev_warn(&ihost->pdev->dev,
1518                                  "%s: Controller stop operation failed to stop "
1519                                  "phy %d because of status %d.\n",
1520                                  __func__,
1521                                  ihost->phys[index].phy_index, phy_status);
1522                 }
1523         }
1524
1525         return status;
1526 }
1527
1528 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1529 {
1530         u32 index;
1531         enum sci_status port_status;
1532         enum sci_status status = SCI_SUCCESS;
1533
1534         for (index = 0; index < ihost->logical_port_entries; index++) {
1535                 struct isci_port *iport = &ihost->ports[index];
1536
1537                 port_status = sci_port_stop(iport);
1538
1539                 if ((port_status != SCI_SUCCESS) &&
1540                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1541                         status = SCI_FAILURE;
1542
1543                         dev_warn(&ihost->pdev->dev,
1544                                  "%s: Controller stop operation failed to "
1545                                  "stop port %d because of status %d.\n",
1546                                  __func__,
1547                                  iport->logical_port_index,
1548                                  port_status);
1549                 }
1550         }
1551
1552         return status;
1553 }
1554
1555 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1556 {
1557         u32 index;
1558         enum sci_status status;
1559         enum sci_status device_status;
1560
1561         status = SCI_SUCCESS;
1562
1563         for (index = 0; index < ihost->remote_node_entries; index++) {
1564                 if (ihost->device_table[index] != NULL) {
1565                         /* / @todo What timeout value do we want to provide to this request? */
1566                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1567
1568                         if ((device_status != SCI_SUCCESS) &&
1569                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1570                                 dev_warn(&ihost->pdev->dev,
1571                                          "%s: Controller stop operation failed "
1572                                          "to stop device 0x%p because of "
1573                                          "status %d.\n",
1574                                          __func__,
1575                                          ihost->device_table[index], device_status);
1576                         }
1577                 }
1578         }
1579
1580         return status;
1581 }
1582
1583 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1584 {
1585         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1586
1587         /* Stop all of the components for this controller */
1588         sci_controller_stop_phys(ihost);
1589         sci_controller_stop_ports(ihost);
1590         sci_controller_stop_devices(ihost);
1591 }
1592
1593 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1594 {
1595         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1596
1597         sci_del_timer(&ihost->timer);
1598 }
1599
1600 static void sci_controller_reset_hardware(struct isci_host *ihost)
1601 {
1602         /* Disable interrupts so we dont take any spurious interrupts */
1603         sci_controller_disable_interrupts(ihost);
1604
1605         /* Reset the SCU */
1606         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1607
1608         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1609         udelay(1000);
1610
1611         /* The write to the CQGR clears the CQP */
1612         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1613
1614         /* The write to the UFQGP clears the UFQPR */
1615         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1616 }
1617
1618 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1619 {
1620         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1621
1622         sci_controller_reset_hardware(ihost);
1623         sci_change_state(&ihost->sm, SCIC_RESET);
1624 }
1625
1626 static const struct sci_base_state sci_controller_state_table[] = {
1627         [SCIC_INITIAL] = {
1628                 .enter_state = sci_controller_initial_state_enter,
1629         },
1630         [SCIC_RESET] = {},
1631         [SCIC_INITIALIZING] = {},
1632         [SCIC_INITIALIZED] = {},
1633         [SCIC_STARTING] = {
1634                 .exit_state  = sci_controller_starting_state_exit,
1635         },
1636         [SCIC_READY] = {
1637                 .enter_state = sci_controller_ready_state_enter,
1638                 .exit_state  = sci_controller_ready_state_exit,
1639         },
1640         [SCIC_RESETTING] = {
1641                 .enter_state = sci_controller_resetting_state_enter,
1642         },
1643         [SCIC_STOPPING] = {
1644                 .enter_state = sci_controller_stopping_state_enter,
1645                 .exit_state = sci_controller_stopping_state_exit,
1646         },
1647         [SCIC_STOPPED] = {},
1648         [SCIC_FAILED] = {}
1649 };
1650
1651 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1652 {
1653         /* these defaults are overridden by the platform / firmware */
1654         u16 index;
1655
1656         /* Default to APC mode. */
1657         ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1658
1659         /* Default to APC mode. */
1660         ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1661
1662         /* Default to no SSC operation. */
1663         ihost->oem_parameters.controller.do_enable_ssc = false;
1664
1665         /* Default to short cables on all phys. */
1666         ihost->oem_parameters.controller.cable_selection_mask = 0;
1667
1668         /* Initialize all of the port parameter information to narrow ports. */
1669         for (index = 0; index < SCI_MAX_PORTS; index++) {
1670                 ihost->oem_parameters.ports[index].phy_mask = 0;
1671         }
1672
1673         /* Initialize all of the phy parameter information. */
1674         for (index = 0; index < SCI_MAX_PHYS; index++) {
1675                 /* Default to 3G (i.e. Gen 2). */
1676                 ihost->user_parameters.phys[index].max_speed_generation =
1677                         SCIC_SDS_PARM_GEN2_SPEED;
1678
1679                 /* the frequencies cannot be 0 */
1680                 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1681                 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1682                 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1683
1684                 /*
1685                  * Previous Vitesse based expanders had a arbitration issue that
1686                  * is worked around by having the upper 32-bits of SAS address
1687                  * with a value greater then the Vitesse company identifier.
1688                  * Hence, usage of 0x5FCFFFFF. */
1689                 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1690                 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1691         }
1692
1693         ihost->user_parameters.stp_inactivity_timeout = 5;
1694         ihost->user_parameters.ssp_inactivity_timeout = 5;
1695         ihost->user_parameters.stp_max_occupancy_timeout = 5;
1696         ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1697         ihost->user_parameters.no_outbound_task_timeout = 2;
1698 }
1699
1700 static void controller_timeout(unsigned long data)
1701 {
1702         struct sci_timer *tmr = (struct sci_timer *)data;
1703         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1704         struct sci_base_state_machine *sm = &ihost->sm;
1705         unsigned long flags;
1706
1707         spin_lock_irqsave(&ihost->scic_lock, flags);
1708
1709         if (tmr->cancel)
1710                 goto done;
1711
1712         if (sm->current_state_id == SCIC_STARTING)
1713                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1714         else if (sm->current_state_id == SCIC_STOPPING) {
1715                 sci_change_state(sm, SCIC_FAILED);
1716                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1717         } else  /* / @todo Now what do we want to do in this case? */
1718                 dev_err(&ihost->pdev->dev,
1719                         "%s: Controller timer fired when controller was not "
1720                         "in a state being timed.\n",
1721                         __func__);
1722
1723 done:
1724         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1725 }
1726
1727 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1728                                                 void __iomem *scu_base,
1729                                                 void __iomem *smu_base)
1730 {
1731         u8 i;
1732
1733         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1734
1735         ihost->scu_registers = scu_base;
1736         ihost->smu_registers = smu_base;
1737
1738         sci_port_configuration_agent_construct(&ihost->port_agent);
1739
1740         /* Construct the ports for this controller */
1741         for (i = 0; i < SCI_MAX_PORTS; i++)
1742                 sci_port_construct(&ihost->ports[i], i, ihost);
1743         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1744
1745         /* Construct the phys for this controller */
1746         for (i = 0; i < SCI_MAX_PHYS; i++) {
1747                 /* Add all the PHYs to the dummy port */
1748                 sci_phy_construct(&ihost->phys[i],
1749                                   &ihost->ports[SCI_MAX_PORTS], i);
1750         }
1751
1752         ihost->invalid_phy_mask = 0;
1753
1754         sci_init_timer(&ihost->timer, controller_timeout);
1755
1756         /* Initialize the User and OEM parameters to default values. */
1757         sci_controller_set_default_config_parameters(ihost);
1758
1759         return sci_controller_reset(ihost);
1760 }
1761
1762 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1763 {
1764         int i;
1765
1766         for (i = 0; i < SCI_MAX_PORTS; i++)
1767                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1768                         return -EINVAL;
1769
1770         for (i = 0; i < SCI_MAX_PHYS; i++)
1771                 if (oem->phys[i].sas_address.high == 0 &&
1772                     oem->phys[i].sas_address.low == 0)
1773                         return -EINVAL;
1774
1775         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1776                 for (i = 0; i < SCI_MAX_PHYS; i++)
1777                         if (oem->ports[i].phy_mask != 0)
1778                                 return -EINVAL;
1779         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1780                 u8 phy_mask = 0;
1781
1782                 for (i = 0; i < SCI_MAX_PHYS; i++)
1783                         phy_mask |= oem->ports[i].phy_mask;
1784
1785                 if (phy_mask == 0)
1786                         return -EINVAL;
1787         } else
1788                 return -EINVAL;
1789
1790         if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1791             oem->controller.max_concurr_spin_up < 1)
1792                 return -EINVAL;
1793
1794         if (oem->controller.do_enable_ssc) {
1795                 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1796                         return -EINVAL;
1797
1798                 if (version >= ISCI_ROM_VER_1_1) {
1799                         u8 test = oem->controller.ssc_sata_tx_spread_level;
1800
1801                         switch (test) {
1802                         case 0:
1803                         case 2:
1804                         case 3:
1805                         case 6:
1806                         case 7:
1807                                 break;
1808                         default:
1809                                 return -EINVAL;
1810                         }
1811
1812                         test = oem->controller.ssc_sas_tx_spread_level;
1813                         if (oem->controller.ssc_sas_tx_type == 0) {
1814                                 switch (test) {
1815                                 case 0:
1816                                 case 2:
1817                                 case 3:
1818                                         break;
1819                                 default:
1820                                         return -EINVAL;
1821                                 }
1822                         } else if (oem->controller.ssc_sas_tx_type == 1) {
1823                                 switch (test) {
1824                                 case 0:
1825                                 case 3:
1826                                 case 6:
1827                                         break;
1828                                 default:
1829                                         return -EINVAL;
1830                                 }
1831                         }
1832                 }
1833         }
1834
1835         return 0;
1836 }
1837
1838 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1839 {
1840         u32 state = ihost->sm.current_state_id;
1841         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
1842
1843         if (state == SCIC_RESET ||
1844             state == SCIC_INITIALIZING ||
1845             state == SCIC_INITIALIZED) {
1846                 u8 oem_version = pci_info->orom ? pci_info->orom->hdr.version :
1847                         ISCI_ROM_VER_1_0;
1848
1849                 if (sci_oem_parameters_validate(&ihost->oem_parameters,
1850                                                 oem_version))
1851                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1852
1853                 return SCI_SUCCESS;
1854         }
1855
1856         return SCI_FAILURE_INVALID_STATE;
1857 }
1858
1859 static u8 max_spin_up(struct isci_host *ihost)
1860 {
1861         if (ihost->user_parameters.max_concurr_spinup)
1862                 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1863                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1864         else
1865                 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1866                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1867 }
1868
1869 static void power_control_timeout(unsigned long data)
1870 {
1871         struct sci_timer *tmr = (struct sci_timer *)data;
1872         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1873         struct isci_phy *iphy;
1874         unsigned long flags;
1875         u8 i;
1876
1877         spin_lock_irqsave(&ihost->scic_lock, flags);
1878
1879         if (tmr->cancel)
1880                 goto done;
1881
1882         ihost->power_control.phys_granted_power = 0;
1883
1884         if (ihost->power_control.phys_waiting == 0) {
1885                 ihost->power_control.timer_started = false;
1886                 goto done;
1887         }
1888
1889         for (i = 0; i < SCI_MAX_PHYS; i++) {
1890
1891                 if (ihost->power_control.phys_waiting == 0)
1892                         break;
1893
1894                 iphy = ihost->power_control.requesters[i];
1895                 if (iphy == NULL)
1896                         continue;
1897
1898                 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1899                         break;
1900
1901                 ihost->power_control.requesters[i] = NULL;
1902                 ihost->power_control.phys_waiting--;
1903                 ihost->power_control.phys_granted_power++;
1904                 sci_phy_consume_power_handler(iphy);
1905
1906                 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1907                         u8 j;
1908
1909                         for (j = 0; j < SCI_MAX_PHYS; j++) {
1910                                 struct isci_phy *requester = ihost->power_control.requesters[j];
1911
1912                                 /*
1913                                  * Search the power_control queue to see if there are other phys
1914                                  * attached to the same remote device. If found, take all of
1915                                  * them out of await_sas_power state.
1916                                  */
1917                                 if (requester != NULL && requester != iphy) {
1918                                         u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1919                                                           iphy->frame_rcvd.iaf.sas_addr,
1920                                                           sizeof(requester->frame_rcvd.iaf.sas_addr));
1921
1922                                         if (other == 0) {
1923                                                 ihost->power_control.requesters[j] = NULL;
1924                                                 ihost->power_control.phys_waiting--;
1925                                                 sci_phy_consume_power_handler(requester);
1926                                         }
1927                                 }
1928                         }
1929                 }
1930         }
1931
1932         /*
1933          * It doesn't matter if the power list is empty, we need to start the
1934          * timer in case another phy becomes ready.
1935          */
1936         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1937         ihost->power_control.timer_started = true;
1938
1939 done:
1940         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1941 }
1942
1943 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1944                                                struct isci_phy *iphy)
1945 {
1946         BUG_ON(iphy == NULL);
1947
1948         if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1949                 ihost->power_control.phys_granted_power++;
1950                 sci_phy_consume_power_handler(iphy);
1951
1952                 /*
1953                  * stop and start the power_control timer. When the timer fires, the
1954                  * no_of_phys_granted_power will be set to 0
1955                  */
1956                 if (ihost->power_control.timer_started)
1957                         sci_del_timer(&ihost->power_control.timer);
1958
1959                 sci_mod_timer(&ihost->power_control.timer,
1960                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1961                 ihost->power_control.timer_started = true;
1962
1963         } else {
1964                 /*
1965                  * There are phys, attached to the same sas address as this phy, are
1966                  * already in READY state, this phy don't need wait.
1967                  */
1968                 u8 i;
1969                 struct isci_phy *current_phy;
1970
1971                 for (i = 0; i < SCI_MAX_PHYS; i++) {
1972                         u8 other;
1973                         current_phy = &ihost->phys[i];
1974
1975                         other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1976                                        iphy->frame_rcvd.iaf.sas_addr,
1977                                        sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1978
1979                         if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1980                             current_phy->protocol == SAS_PROTOCOL_SSP &&
1981                             other == 0) {
1982                                 sci_phy_consume_power_handler(iphy);
1983                                 break;
1984                         }
1985                 }
1986
1987                 if (i == SCI_MAX_PHYS) {
1988                         /* Add the phy in the waiting list */
1989                         ihost->power_control.requesters[iphy->phy_index] = iphy;
1990                         ihost->power_control.phys_waiting++;
1991                 }
1992         }
1993 }
1994
1995 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1996                                                struct isci_phy *iphy)
1997 {
1998         BUG_ON(iphy == NULL);
1999
2000         if (ihost->power_control.requesters[iphy->phy_index])
2001                 ihost->power_control.phys_waiting--;
2002
2003         ihost->power_control.requesters[iphy->phy_index] = NULL;
2004 }
2005
2006 static int is_long_cable(int phy, unsigned char selection_byte)
2007 {
2008         return !!(selection_byte & (1 << phy));
2009 }
2010
2011 static int is_medium_cable(int phy, unsigned char selection_byte)
2012 {
2013         return !!(selection_byte & (1 << (phy + 4)));
2014 }
2015
2016 static enum cable_selections decode_selection_byte(
2017         int phy,
2018         unsigned char selection_byte)
2019 {
2020         return ((selection_byte & (1 << phy)) ? 1 : 0)
2021                 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
2022 }
2023
2024 static unsigned char *to_cable_select(struct isci_host *ihost)
2025 {
2026         if (is_cable_select_overridden())
2027                 return ((unsigned char *)&cable_selection_override)
2028                         + ihost->id;
2029         else
2030                 return &ihost->oem_parameters.controller.cable_selection_mask;
2031 }
2032
2033 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
2034 {
2035         return decode_selection_byte(phy, *to_cable_select(ihost));
2036 }
2037
2038 char *lookup_cable_names(enum cable_selections selection)
2039 {
2040         static char *cable_names[] = {
2041                 [short_cable]     = "short",
2042                 [long_cable]      = "long",
2043                 [medium_cable]    = "medium",
2044                 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
2045         };
2046         return (selection <= undefined_cable) ? cable_names[selection]
2047                                               : cable_names[undefined_cable];
2048 }
2049
2050 #define AFE_REGISTER_WRITE_DELAY 10
2051
2052 static void sci_controller_afe_initialization(struct isci_host *ihost)
2053 {
2054         struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
2055         const struct sci_oem_params *oem = &ihost->oem_parameters;
2056         struct pci_dev *pdev = ihost->pdev;
2057         u32 afe_status;
2058         u32 phy_id;
2059         unsigned char cable_selection_mask = *to_cable_select(ihost);
2060
2061         /* Clear DFX Status registers */
2062         writel(0x0081000f, &afe->afe_dfx_master_control0);
2063         udelay(AFE_REGISTER_WRITE_DELAY);
2064
2065         if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
2066                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2067                  * Timer, PM Stagger Timer
2068                  */
2069                 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
2070                 udelay(AFE_REGISTER_WRITE_DELAY);
2071         }
2072
2073         /* Configure bias currents to normal */
2074         if (is_a2(pdev))
2075                 writel(0x00005A00, &afe->afe_bias_control);
2076         else if (is_b0(pdev) || is_c0(pdev))
2077                 writel(0x00005F00, &afe->afe_bias_control);
2078         else if (is_c1(pdev))
2079                 writel(0x00005500, &afe->afe_bias_control);
2080
2081         udelay(AFE_REGISTER_WRITE_DELAY);
2082
2083         /* Enable PLL */
2084         if (is_a2(pdev))
2085                 writel(0x80040908, &afe->afe_pll_control0);
2086         else if (is_b0(pdev) || is_c0(pdev))
2087                 writel(0x80040A08, &afe->afe_pll_control0);
2088         else if (is_c1(pdev)) {
2089                 writel(0x80000B08, &afe->afe_pll_control0);
2090                 udelay(AFE_REGISTER_WRITE_DELAY);
2091                 writel(0x00000B08, &afe->afe_pll_control0);
2092                 udelay(AFE_REGISTER_WRITE_DELAY);
2093                 writel(0x80000B08, &afe->afe_pll_control0);
2094         }
2095
2096         udelay(AFE_REGISTER_WRITE_DELAY);
2097
2098         /* Wait for the PLL to lock */
2099         do {
2100                 afe_status = readl(&afe->afe_common_block_status);
2101                 udelay(AFE_REGISTER_WRITE_DELAY);
2102         } while ((afe_status & 0x00001000) == 0);
2103
2104         if (is_a2(pdev)) {
2105                 /* Shorten SAS SNW lock time (RxLock timer value from 76
2106                  * us to 50 us)
2107                  */
2108                 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2109                 udelay(AFE_REGISTER_WRITE_DELAY);
2110         }
2111
2112         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2113                 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2114                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2115                 int cable_length_long =
2116                         is_long_cable(phy_id, cable_selection_mask);
2117                 int cable_length_medium =
2118                         is_medium_cable(phy_id, cable_selection_mask);
2119
2120                 if (is_a2(pdev)) {
2121                         /* All defaults, except the Receive Word
2122                          * Alignament/Comma Detect Enable....(0xe800)
2123                          */
2124                         writel(0x00004512, &xcvr->afe_xcvr_control0);
2125                         udelay(AFE_REGISTER_WRITE_DELAY);
2126
2127                         writel(0x0050100F, &xcvr->afe_xcvr_control1);
2128                         udelay(AFE_REGISTER_WRITE_DELAY);
2129                 } else if (is_b0(pdev)) {
2130                         /* Configure transmitter SSC parameters */
2131                         writel(0x00030000, &xcvr->afe_tx_ssc_control);
2132                         udelay(AFE_REGISTER_WRITE_DELAY);
2133                 } else if (is_c0(pdev)) {
2134                         /* Configure transmitter SSC parameters */
2135                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2136                         udelay(AFE_REGISTER_WRITE_DELAY);
2137
2138                         /* All defaults, except the Receive Word
2139                          * Alignament/Comma Detect Enable....(0xe800)
2140                          */
2141                         writel(0x00014500, &xcvr->afe_xcvr_control0);
2142                         udelay(AFE_REGISTER_WRITE_DELAY);
2143                 } else if (is_c1(pdev)) {
2144                         /* Configure transmitter SSC parameters */
2145                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2146                         udelay(AFE_REGISTER_WRITE_DELAY);
2147
2148                         /* All defaults, except the Receive Word
2149                          * Alignament/Comma Detect Enable....(0xe800)
2150                          */
2151                         writel(0x0001C500, &xcvr->afe_xcvr_control0);
2152                         udelay(AFE_REGISTER_WRITE_DELAY);
2153                 }
2154
2155                 /* Power up TX and RX out from power down (PWRDNTX and
2156                  * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2157                  */
2158                 if (is_a2(pdev))
2159                         writel(0x000003F0, &xcvr->afe_channel_control);
2160                 else if (is_b0(pdev)) {
2161                         writel(0x000003D7, &xcvr->afe_channel_control);
2162                         udelay(AFE_REGISTER_WRITE_DELAY);
2163
2164                         writel(0x000003D4, &xcvr->afe_channel_control);
2165                 } else if (is_c0(pdev)) {
2166                         writel(0x000001E7, &xcvr->afe_channel_control);
2167                         udelay(AFE_REGISTER_WRITE_DELAY);
2168
2169                         writel(0x000001E4, &xcvr->afe_channel_control);
2170                 } else if (is_c1(pdev)) {
2171                         writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2172                                &xcvr->afe_channel_control);
2173                         udelay(AFE_REGISTER_WRITE_DELAY);
2174
2175                         writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2176                                &xcvr->afe_channel_control);
2177                 }
2178                 udelay(AFE_REGISTER_WRITE_DELAY);
2179
2180                 if (is_a2(pdev)) {
2181                         /* Enable TX equalization (0xe824) */
2182                         writel(0x00040000, &xcvr->afe_tx_control);
2183                         udelay(AFE_REGISTER_WRITE_DELAY);
2184                 }
2185
2186                 if (is_a2(pdev) || is_b0(pdev))
2187                         /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2188                          * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2189                          * Enabled) ....(0xe800)
2190                          */
2191                         writel(0x00004100, &xcvr->afe_xcvr_control0);
2192                 else if (is_c0(pdev))
2193                         writel(0x00014100, &xcvr->afe_xcvr_control0);
2194                 else if (is_c1(pdev))
2195                         writel(0x0001C100, &xcvr->afe_xcvr_control0);
2196                 udelay(AFE_REGISTER_WRITE_DELAY);
2197
2198                 /* Leave DFE/FFE on */
2199                 if (is_a2(pdev))
2200                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2201                 else if (is_b0(pdev)) {
2202                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2203                         udelay(AFE_REGISTER_WRITE_DELAY);
2204                         /* Enable TX equalization (0xe824) */
2205                         writel(0x00040000, &xcvr->afe_tx_control);
2206                 } else if (is_c0(pdev)) {
2207                         writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2208                         udelay(AFE_REGISTER_WRITE_DELAY);
2209
2210                         writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2211                         udelay(AFE_REGISTER_WRITE_DELAY);
2212
2213                         /* Enable TX equalization (0xe824) */
2214                         writel(0x00040000, &xcvr->afe_tx_control);
2215                 } else if (is_c1(pdev)) {
2216                         writel(cable_length_long ? 0x01500C0C :
2217                                cable_length_medium ? 0x01400C0D : 0x02400C0D,
2218                                &xcvr->afe_xcvr_control1);
2219                         udelay(AFE_REGISTER_WRITE_DELAY);
2220
2221                         writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2222                         udelay(AFE_REGISTER_WRITE_DELAY);
2223
2224                         writel(cable_length_long ? 0x33091C1F :
2225                                cable_length_medium ? 0x3315181F : 0x2B17161F,
2226                                &xcvr->afe_rx_ssc_control0);
2227                         udelay(AFE_REGISTER_WRITE_DELAY);
2228
2229                         /* Enable TX equalization (0xe824) */
2230                         writel(0x00040000, &xcvr->afe_tx_control);
2231                 }
2232
2233                 udelay(AFE_REGISTER_WRITE_DELAY);
2234
2235                 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2236                 udelay(AFE_REGISTER_WRITE_DELAY);
2237
2238                 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2239                 udelay(AFE_REGISTER_WRITE_DELAY);
2240
2241                 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2242                 udelay(AFE_REGISTER_WRITE_DELAY);
2243
2244                 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2245                 udelay(AFE_REGISTER_WRITE_DELAY);
2246         }
2247
2248         /* Transfer control to the PEs */
2249         writel(0x00010f00, &afe->afe_dfx_master_control0);
2250         udelay(AFE_REGISTER_WRITE_DELAY);
2251 }
2252
2253 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2254 {
2255         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2256
2257         memset(ihost->power_control.requesters, 0,
2258                sizeof(ihost->power_control.requesters));
2259
2260         ihost->power_control.phys_waiting = 0;
2261         ihost->power_control.phys_granted_power = 0;
2262 }
2263
2264 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2265 {
2266         struct sci_base_state_machine *sm = &ihost->sm;
2267         enum sci_status result = SCI_FAILURE;
2268         unsigned long i, state, val;
2269
2270         if (ihost->sm.current_state_id != SCIC_RESET) {
2271                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2272                          __func__, ihost->sm.current_state_id);
2273                 return SCI_FAILURE_INVALID_STATE;
2274         }
2275
2276         sci_change_state(sm, SCIC_INITIALIZING);
2277
2278         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2279
2280         ihost->next_phy_to_start = 0;
2281         ihost->phy_startup_timer_pending = false;
2282
2283         sci_controller_initialize_power_control(ihost);
2284
2285         /*
2286          * There is nothing to do here for B0 since we do not have to
2287          * program the AFE registers.
2288          * / @todo The AFE settings are supposed to be correct for the B0 but
2289          * /       presently they seem to be wrong. */
2290         sci_controller_afe_initialization(ihost);
2291
2292
2293         /* Take the hardware out of reset */
2294         writel(0, &ihost->smu_registers->soft_reset_control);
2295
2296         /*
2297          * / @todo Provide meaningfull error code for hardware failure
2298          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2299         for (i = 100; i >= 1; i--) {
2300                 u32 status;
2301
2302                 /* Loop until the hardware reports success */
2303                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2304                 status = readl(&ihost->smu_registers->control_status);
2305
2306                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2307                         break;
2308         }
2309         if (i == 0)
2310                 goto out;
2311
2312         /*
2313          * Determine what are the actaul device capacities that the
2314          * hardware will support */
2315         val = readl(&ihost->smu_registers->device_context_capacity);
2316
2317         /* Record the smaller of the two capacity values */
2318         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2319         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2320         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2321
2322         /*
2323          * Make all PEs that are unassigned match up with the
2324          * logical ports
2325          */
2326         for (i = 0; i < ihost->logical_port_entries; i++) {
2327                 struct scu_port_task_scheduler_group_registers __iomem
2328                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2329
2330                 writel(i, &ptsg->protocol_engine[i]);
2331         }
2332
2333         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2334         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2335         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2336         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2337
2338         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2339         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2340         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2341
2342         /*
2343          * Initialize the PHYs before the PORTs because the PHY registers
2344          * are accessed during the port initialization.
2345          */
2346         for (i = 0; i < SCI_MAX_PHYS; i++) {
2347                 result = sci_phy_initialize(&ihost->phys[i],
2348                                             &ihost->scu_registers->peg0.pe[i].tl,
2349                                             &ihost->scu_registers->peg0.pe[i].ll);
2350                 if (result != SCI_SUCCESS)
2351                         goto out;
2352         }
2353
2354         for (i = 0; i < ihost->logical_port_entries; i++) {
2355                 struct isci_port *iport = &ihost->ports[i];
2356
2357                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2358                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2359                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2360         }
2361
2362         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2363
2364  out:
2365         /* Advance the controller state machine */
2366         if (result == SCI_SUCCESS)
2367                 state = SCIC_INITIALIZED;
2368         else
2369                 state = SCIC_FAILED;
2370         sci_change_state(sm, state);
2371
2372         return result;
2373 }
2374
2375 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2376                                                struct sci_user_parameters *sci_parms)
2377 {
2378         u32 state = ihost->sm.current_state_id;
2379
2380         if (state == SCIC_RESET ||
2381             state == SCIC_INITIALIZING ||
2382             state == SCIC_INITIALIZED) {
2383                 u16 index;
2384
2385                 /*
2386                  * Validate the user parameters.  If they are not legal, then
2387                  * return a failure.
2388                  */
2389                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2390                         struct sci_phy_user_params *user_phy;
2391
2392                         user_phy = &sci_parms->phys[index];
2393
2394                         if (!((user_phy->max_speed_generation <=
2395                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2396                               (user_phy->max_speed_generation >
2397                                                 SCIC_SDS_PARM_NO_SPEED)))
2398                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2399
2400                         if (user_phy->in_connection_align_insertion_frequency <
2401                                         3)
2402                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2403
2404                         if ((user_phy->in_connection_align_insertion_frequency <
2405                                                 3) ||
2406                             (user_phy->align_insertion_frequency == 0) ||
2407                             (user_phy->
2408                                 notify_enable_spin_up_insertion_frequency ==
2409                                                 0))
2410                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2411                 }
2412
2413                 if ((sci_parms->stp_inactivity_timeout == 0) ||
2414                     (sci_parms->ssp_inactivity_timeout == 0) ||
2415                     (sci_parms->stp_max_occupancy_timeout == 0) ||
2416                     (sci_parms->ssp_max_occupancy_timeout == 0) ||
2417                     (sci_parms->no_outbound_task_timeout == 0))
2418                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2419
2420                 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2421
2422                 return SCI_SUCCESS;
2423         }
2424
2425         return SCI_FAILURE_INVALID_STATE;
2426 }
2427
2428 static int sci_controller_mem_init(struct isci_host *ihost)
2429 {
2430         struct device *dev = &ihost->pdev->dev;
2431         dma_addr_t dma;
2432         size_t size;
2433         int err;
2434
2435         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2436         ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2437         if (!ihost->completion_queue)
2438                 return -ENOMEM;
2439
2440         writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2441         writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2442
2443         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2444         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2445                                                                GFP_KERNEL);
2446         if (!ihost->remote_node_context_table)
2447                 return -ENOMEM;
2448
2449         writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2450         writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2451
2452         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2453         ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2454         if (!ihost->task_context_table)
2455                 return -ENOMEM;
2456
2457         ihost->task_context_dma = dma;
2458         writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2459         writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2460
2461         err = sci_unsolicited_frame_control_construct(ihost);
2462         if (err)
2463                 return err;
2464
2465         /*
2466          * Inform the silicon as to the location of the UF headers and
2467          * address table.
2468          */
2469         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2470                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2471         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2472                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2473
2474         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2475                 &ihost->scu_registers->sdma.uf_address_table_lower);
2476         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2477                 &ihost->scu_registers->sdma.uf_address_table_upper);
2478
2479         return 0;
2480 }
2481
2482 int isci_host_init(struct isci_host *ihost)
2483 {
2484         int err = 0, i;
2485         enum sci_status status;
2486         struct sci_user_parameters sci_user_params;
2487         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2488
2489         spin_lock_init(&ihost->scic_lock);
2490         init_waitqueue_head(&ihost->eventq);
2491
2492         status = sci_controller_construct(ihost, scu_base(ihost),
2493                                           smu_base(ihost));
2494
2495         if (status != SCI_SUCCESS) {
2496                 dev_err(&ihost->pdev->dev,
2497                         "%s: sci_controller_construct failed - status = %x\n",
2498                         __func__,
2499                         status);
2500                 return -ENODEV;
2501         }
2502
2503         ihost->sas_ha.dev = &ihost->pdev->dev;
2504         ihost->sas_ha.lldd_ha = ihost;
2505
2506         /*
2507          * grab initial values stored in the controller object for OEM and USER
2508          * parameters
2509          */
2510         isci_user_parameters_get(&sci_user_params);
2511         status = sci_user_parameters_set(ihost, &sci_user_params);
2512         if (status != SCI_SUCCESS) {
2513                 dev_warn(&ihost->pdev->dev,
2514                          "%s: sci_user_parameters_set failed\n",
2515                          __func__);
2516                 return -ENODEV;
2517         }
2518
2519         /* grab any OEM parameters specified in orom */
2520         if (pci_info->orom) {
2521                 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2522                                                    pci_info->orom,
2523                                                    ihost->id);
2524                 if (status != SCI_SUCCESS) {
2525                         dev_warn(&ihost->pdev->dev,
2526                                  "parsing firmware oem parameters failed\n");
2527                         return -EINVAL;
2528                 }
2529         }
2530
2531         status = sci_oem_parameters_set(ihost);
2532         if (status != SCI_SUCCESS) {
2533                 dev_warn(&ihost->pdev->dev,
2534                                 "%s: sci_oem_parameters_set failed\n",
2535                                 __func__);
2536                 return -ENODEV;
2537         }
2538
2539         tasklet_init(&ihost->completion_tasklet,
2540                      isci_host_completion_routine, (unsigned long)ihost);
2541
2542         INIT_LIST_HEAD(&ihost->requests_to_complete);
2543         INIT_LIST_HEAD(&ihost->requests_to_errorback);
2544
2545         spin_lock_irq(&ihost->scic_lock);
2546         status = sci_controller_initialize(ihost);
2547         spin_unlock_irq(&ihost->scic_lock);
2548         if (status != SCI_SUCCESS) {
2549                 dev_warn(&ihost->pdev->dev,
2550                          "%s: sci_controller_initialize failed -"
2551                          " status = 0x%x\n",
2552                          __func__, status);
2553                 return -ENODEV;
2554         }
2555
2556         err = sci_controller_mem_init(ihost);
2557         if (err)
2558                 return err;
2559
2560         for (i = 0; i < SCI_MAX_PORTS; i++)
2561                 isci_port_init(&ihost->ports[i], ihost, i);
2562
2563         for (i = 0; i < SCI_MAX_PHYS; i++)
2564                 isci_phy_init(&ihost->phys[i], ihost, i);
2565
2566         /* enable sgpio */
2567         writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2568         for (i = 0; i < isci_gpio_count(ihost); i++)
2569                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2570         writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2571
2572         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2573                 struct isci_remote_device *idev = &ihost->devices[i];
2574
2575                 INIT_LIST_HEAD(&idev->reqs_in_process);
2576                 INIT_LIST_HEAD(&idev->node);
2577         }
2578
2579         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2580                 struct isci_request *ireq;
2581                 dma_addr_t dma;
2582
2583                 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2584                                            sizeof(struct isci_request), &dma,
2585                                            GFP_KERNEL);
2586                 if (!ireq)
2587                         return -ENOMEM;
2588
2589                 ireq->tc = &ihost->task_context_table[i];
2590                 ireq->owning_controller = ihost;
2591                 spin_lock_init(&ireq->state_lock);
2592                 ireq->request_daddr = dma;
2593                 ireq->isci_host = ihost;
2594                 ihost->reqs[i] = ireq;
2595         }
2596
2597         return 0;
2598 }
2599
2600 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2601                             struct isci_phy *iphy)
2602 {
2603         switch (ihost->sm.current_state_id) {
2604         case SCIC_STARTING:
2605                 sci_del_timer(&ihost->phy_timer);
2606                 ihost->phy_startup_timer_pending = false;
2607                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2608                                                   iport, iphy);
2609                 sci_controller_start_next_phy(ihost);
2610                 break;
2611         case SCIC_READY:
2612                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2613                                                   iport, iphy);
2614                 break;
2615         default:
2616                 dev_dbg(&ihost->pdev->dev,
2617                         "%s: SCIC Controller linkup event from phy %d in "
2618                         "unexpected state %d\n", __func__, iphy->phy_index,
2619                         ihost->sm.current_state_id);
2620         }
2621 }
2622
2623 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2624                               struct isci_phy *iphy)
2625 {
2626         switch (ihost->sm.current_state_id) {
2627         case SCIC_STARTING:
2628         case SCIC_READY:
2629                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2630                                                    iport, iphy);
2631                 break;
2632         default:
2633                 dev_dbg(&ihost->pdev->dev,
2634                         "%s: SCIC Controller linkdown event from phy %d in "
2635                         "unexpected state %d\n",
2636                         __func__,
2637                         iphy->phy_index,
2638                         ihost->sm.current_state_id);
2639         }
2640 }
2641
2642 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2643 {
2644         u32 index;
2645
2646         for (index = 0; index < ihost->remote_node_entries; index++) {
2647                 if ((ihost->device_table[index] != NULL) &&
2648                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2649                         return true;
2650         }
2651
2652         return false;
2653 }
2654
2655 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2656                                           struct isci_remote_device *idev)
2657 {
2658         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2659                 dev_dbg(&ihost->pdev->dev,
2660                         "SCIC Controller 0x%p remote device stopped event "
2661                         "from device 0x%p in unexpected state %d\n",
2662                         ihost, idev,
2663                         ihost->sm.current_state_id);
2664                 return;
2665         }
2666
2667         if (!sci_controller_has_remote_devices_stopping(ihost))
2668                 sci_change_state(&ihost->sm, SCIC_STOPPED);
2669 }
2670
2671 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2672 {
2673         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2674                 __func__, ihost->id, request);
2675
2676         writel(request, &ihost->smu_registers->post_context_port);
2677 }
2678
2679 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2680 {
2681         u16 task_index;
2682         u16 task_sequence;
2683
2684         task_index = ISCI_TAG_TCI(io_tag);
2685
2686         if (task_index < ihost->task_context_entries) {
2687                 struct isci_request *ireq = ihost->reqs[task_index];
2688
2689                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2690                         task_sequence = ISCI_TAG_SEQ(io_tag);
2691
2692                         if (task_sequence == ihost->io_request_sequence[task_index])
2693                                 return ireq;
2694                 }
2695         }
2696
2697         return NULL;
2698 }
2699
2700 /**
2701  * This method allocates remote node index and the reserves the remote node
2702  *    context space for use. This method can fail if there are no more remote
2703  *    node index available.
2704  * @scic: This is the controller object which contains the set of
2705  *    free remote node ids
2706  * @sci_dev: This is the device object which is requesting the a remote node
2707  *    id
2708  * @node_id: This is the remote node id that is assinged to the device if one
2709  *    is available
2710  *
2711  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2712  * node index available.
2713  */
2714 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2715                                                             struct isci_remote_device *idev,
2716                                                             u16 *node_id)
2717 {
2718         u16 node_index;
2719         u32 remote_node_count = sci_remote_device_node_count(idev);
2720
2721         node_index = sci_remote_node_table_allocate_remote_node(
2722                 &ihost->available_remote_nodes, remote_node_count
2723                 );
2724
2725         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2726                 ihost->device_table[node_index] = idev;
2727
2728                 *node_id = node_index;
2729
2730                 return SCI_SUCCESS;
2731         }
2732
2733         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2734 }
2735
2736 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2737                                              struct isci_remote_device *idev,
2738                                              u16 node_id)
2739 {
2740         u32 remote_node_count = sci_remote_device_node_count(idev);
2741
2742         if (ihost->device_table[node_id] == idev) {
2743                 ihost->device_table[node_id] = NULL;
2744
2745                 sci_remote_node_table_release_remote_node_index(
2746                         &ihost->available_remote_nodes, remote_node_count, node_id
2747                         );
2748         }
2749 }
2750
2751 void sci_controller_copy_sata_response(void *response_buffer,
2752                                        void *frame_header,
2753                                        void *frame_buffer)
2754 {
2755         /* XXX type safety? */
2756         memcpy(response_buffer, frame_header, sizeof(u32));
2757
2758         memcpy(response_buffer + sizeof(u32),
2759                frame_buffer,
2760                sizeof(struct dev_to_host_fis) - sizeof(u32));
2761 }
2762
2763 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2764 {
2765         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2766                 writel(ihost->uf_control.get,
2767                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2768 }
2769
2770 void isci_tci_free(struct isci_host *ihost, u16 tci)
2771 {
2772         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2773
2774         ihost->tci_pool[tail] = tci;
2775         ihost->tci_tail = tail + 1;
2776 }
2777
2778 static u16 isci_tci_alloc(struct isci_host *ihost)
2779 {
2780         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2781         u16 tci = ihost->tci_pool[head];
2782
2783         ihost->tci_head = head + 1;
2784         return tci;
2785 }
2786
2787 static u16 isci_tci_space(struct isci_host *ihost)
2788 {
2789         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2790 }
2791
2792 u16 isci_alloc_tag(struct isci_host *ihost)
2793 {
2794         if (isci_tci_space(ihost)) {
2795                 u16 tci = isci_tci_alloc(ihost);
2796                 u8 seq = ihost->io_request_sequence[tci];
2797
2798                 return ISCI_TAG(seq, tci);
2799         }
2800
2801         return SCI_CONTROLLER_INVALID_IO_TAG;
2802 }
2803
2804 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2805 {
2806         u16 tci = ISCI_TAG_TCI(io_tag);
2807         u16 seq = ISCI_TAG_SEQ(io_tag);
2808
2809         /* prevent tail from passing head */
2810         if (isci_tci_active(ihost) == 0)
2811                 return SCI_FAILURE_INVALID_IO_TAG;
2812
2813         if (seq == ihost->io_request_sequence[tci]) {
2814                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2815
2816                 isci_tci_free(ihost, tci);
2817
2818                 return SCI_SUCCESS;
2819         }
2820         return SCI_FAILURE_INVALID_IO_TAG;
2821 }
2822
2823 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2824                                         struct isci_remote_device *idev,
2825                                         struct isci_request *ireq)
2826 {
2827         enum sci_status status;
2828
2829         if (ihost->sm.current_state_id != SCIC_READY) {
2830                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2831                          __func__, ihost->sm.current_state_id);
2832                 return SCI_FAILURE_INVALID_STATE;
2833         }
2834
2835         status = sci_remote_device_start_io(ihost, idev, ireq);
2836         if (status != SCI_SUCCESS)
2837                 return status;
2838
2839         set_bit(IREQ_ACTIVE, &ireq->flags);
2840         sci_controller_post_request(ihost, ireq->post_context);
2841         return SCI_SUCCESS;
2842 }
2843
2844 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2845                                                  struct isci_remote_device *idev,
2846                                                  struct isci_request *ireq)
2847 {
2848         /* terminate an ongoing (i.e. started) core IO request.  This does not
2849          * abort the IO request at the target, but rather removes the IO
2850          * request from the host controller.
2851          */
2852         enum sci_status status;
2853
2854         if (ihost->sm.current_state_id != SCIC_READY) {
2855                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2856                          __func__, ihost->sm.current_state_id);
2857                 return SCI_FAILURE_INVALID_STATE;
2858         }
2859
2860         status = sci_io_request_terminate(ireq);
2861         if (status != SCI_SUCCESS)
2862                 return status;
2863
2864         /*
2865          * Utilize the original post context command and or in the POST_TC_ABORT
2866          * request sub-type.
2867          */
2868         sci_controller_post_request(ihost,
2869                                     ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2870         return SCI_SUCCESS;
2871 }
2872
2873 /**
2874  * sci_controller_complete_io() - This method will perform core specific
2875  *    completion operations for an IO request.  After this method is invoked,
2876  *    the user should consider the IO request as invalid until it is properly
2877  *    reused (i.e. re-constructed).
2878  * @ihost: The handle to the controller object for which to complete the
2879  *    IO request.
2880  * @idev: The handle to the remote device object for which to complete
2881  *    the IO request.
2882  * @ireq: the handle to the io request object to complete.
2883  */
2884 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2885                                            struct isci_remote_device *idev,
2886                                            struct isci_request *ireq)
2887 {
2888         enum sci_status status;
2889         u16 index;
2890
2891         switch (ihost->sm.current_state_id) {
2892         case SCIC_STOPPING:
2893                 /* XXX: Implement this function */
2894                 return SCI_FAILURE;
2895         case SCIC_READY:
2896                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2897                 if (status != SCI_SUCCESS)
2898                         return status;
2899
2900                 index = ISCI_TAG_TCI(ireq->io_tag);
2901                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2902                 return SCI_SUCCESS;
2903         default:
2904                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2905                          __func__, ihost->sm.current_state_id);
2906                 return SCI_FAILURE_INVALID_STATE;
2907         }
2908
2909 }
2910
2911 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2912 {
2913         struct isci_host *ihost = ireq->owning_controller;
2914
2915         if (ihost->sm.current_state_id != SCIC_READY) {
2916                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2917                          __func__, ihost->sm.current_state_id);
2918                 return SCI_FAILURE_INVALID_STATE;
2919         }
2920
2921         set_bit(IREQ_ACTIVE, &ireq->flags);
2922         sci_controller_post_request(ihost, ireq->post_context);
2923         return SCI_SUCCESS;
2924 }
2925
2926 /**
2927  * sci_controller_start_task() - This method is called by the SCIC user to
2928  *    send/start a framework task management request.
2929  * @controller: the handle to the controller object for which to start the task
2930  *    management request.
2931  * @remote_device: the handle to the remote device object for which to start
2932  *    the task management request.
2933  * @task_request: the handle to the task request object to start.
2934  */
2935 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2936                                                struct isci_remote_device *idev,
2937                                                struct isci_request *ireq)
2938 {
2939         enum sci_status status;
2940
2941         if (ihost->sm.current_state_id != SCIC_READY) {
2942                 dev_warn(&ihost->pdev->dev,
2943                          "%s: SCIC Controller starting task from invalid "
2944                          "state\n",
2945                          __func__);
2946                 return SCI_TASK_FAILURE_INVALID_STATE;
2947         }
2948
2949         status = sci_remote_device_start_task(ihost, idev, ireq);
2950         switch (status) {
2951         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2952                 set_bit(IREQ_ACTIVE, &ireq->flags);
2953
2954                 /*
2955                  * We will let framework know this task request started successfully,
2956                  * although core is still woring on starting the request (to post tc when
2957                  * RNC is resumed.)
2958                  */
2959                 return SCI_SUCCESS;
2960         case SCI_SUCCESS:
2961                 set_bit(IREQ_ACTIVE, &ireq->flags);
2962                 sci_controller_post_request(ihost, ireq->post_context);
2963                 break;
2964         default:
2965                 break;
2966         }
2967
2968         return status;
2969 }
2970
2971 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2972 {
2973         int d;
2974
2975         /* no support for TX_GP_CFG */
2976         if (reg_index == 0)
2977                 return -EINVAL;
2978
2979         for (d = 0; d < isci_gpio_count(ihost); d++) {
2980                 u32 val = 0x444; /* all ODx.n clear */
2981                 int i;
2982
2983                 for (i = 0; i < 3; i++) {
2984                         int bit = (i << 2) + 2;
2985
2986                         bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2987                                                        write_data, reg_index,
2988                                                        reg_count);
2989                         if (bit < 0)
2990                                 break;
2991
2992                         /* if od is set, clear the 'invert' bit */
2993                         val &= ~(bit << ((i << 2) + 2));
2994                 }
2995
2996                 if (i < 3)
2997                         break;
2998                 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2999         }
3000
3001         /* unless reg_index is > 1, we should always be able to write at
3002          * least one register
3003          */
3004         return d > 0;
3005 }
3006
3007 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
3008                     u8 reg_count, u8 *write_data)
3009 {
3010         struct isci_host *ihost = sas_ha->lldd_ha;
3011         int written;
3012
3013         switch (reg_type) {
3014         case SAS_GPIO_REG_TX_GP:
3015                 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
3016                 break;
3017         default:
3018                 written = -EINVAL;
3019         }
3020
3021         return written;
3022 }