]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/libsas/sas_expander.c
e6abe9d4589f2fc3aca7373f8e957fdcd8f2781c
[karo-tx-linux.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 /* ---------- SMP task management ---------- */
41
42 static void smp_task_timedout(unsigned long _task)
43 {
44         struct sas_task *task = (void *) _task;
45         unsigned long flags;
46
47         spin_lock_irqsave(&task->task_state_lock, flags);
48         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50         spin_unlock_irqrestore(&task->task_state_lock, flags);
51
52         complete(&task->completion);
53 }
54
55 static void smp_task_done(struct sas_task *task)
56 {
57         if (!del_timer(&task->timer))
58                 return;
59         complete(&task->completion);
60 }
61
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
64
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66                             void *resp, int resp_size)
67 {
68         int res, retry;
69         struct sas_task *task = NULL;
70         struct sas_internal *i =
71                 to_sas_internal(dev->port->ha->core.shost->transportt);
72
73         for (retry = 0; retry < 3; retry++) {
74                 task = sas_alloc_task(GFP_KERNEL);
75                 if (!task)
76                         return -ENOMEM;
77
78                 task->dev = dev;
79                 task->task_proto = dev->tproto;
80                 sg_init_one(&task->smp_task.smp_req, req, req_size);
81                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
82
83                 task->task_done = smp_task_done;
84
85                 task->timer.data = (unsigned long) task;
86                 task->timer.function = smp_task_timedout;
87                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88                 add_timer(&task->timer);
89
90                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
91
92                 if (res) {
93                         del_timer(&task->timer);
94                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
95                         goto ex_err;
96                 }
97
98                 wait_for_completion(&task->completion);
99                 res = -ECOMM;
100                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101                         SAS_DPRINTK("smp task timed out or aborted\n");
102                         i->dft->lldd_abort_task(task);
103                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104                                 SAS_DPRINTK("SMP task aborted and not done\n");
105                                 goto ex_err;
106                         }
107                 }
108                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109                     task->task_status.stat == SAM_GOOD) {
110                         res = 0;
111                         break;
112                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
113                       task->task_status.stat == SAS_DATA_UNDERRUN) {
114                         /* no error, but return the number of bytes of
115                          * underrun */
116                         res = task->task_status.residual;
117                         break;
118                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
119                       task->task_status.stat == SAS_DATA_OVERRUN) {
120                         res = -EMSGSIZE;
121                         break;
122                 } else {
123                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
124                                     "status 0x%x\n", __func__,
125                                     SAS_ADDR(dev->sas_addr),
126                                     task->task_status.resp,
127                                     task->task_status.stat);
128                         sas_free_task(task);
129                         task = NULL;
130                 }
131         }
132 ex_err:
133         BUG_ON(retry == 3 && task != NULL);
134         if (task != NULL) {
135                 sas_free_task(task);
136         }
137         return res;
138 }
139
140 /* ---------- Allocations ---------- */
141
142 static inline void *alloc_smp_req(int size)
143 {
144         u8 *p = kzalloc(size, GFP_KERNEL);
145         if (p)
146                 p[0] = SMP_REQUEST;
147         return p;
148 }
149
150 static inline void *alloc_smp_resp(int size)
151 {
152         return kzalloc(size, GFP_KERNEL);
153 }
154
155 /* ---------- Expander configuration ---------- */
156
157 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
158                            void *disc_resp)
159 {
160         struct expander_device *ex = &dev->ex_dev;
161         struct ex_phy *phy = &ex->ex_phy[phy_id];
162         struct smp_resp *resp = disc_resp;
163         struct discover_resp *dr = &resp->disc;
164         struct sas_rphy *rphy = dev->rphy;
165         int rediscover = (phy->phy != NULL);
166
167         if (!rediscover) {
168                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
169
170                 /* FIXME: error_handling */
171                 BUG_ON(!phy->phy);
172         }
173
174         switch (resp->result) {
175         case SMP_RESP_PHY_VACANT:
176                 phy->phy_state = PHY_VACANT;
177                 return;
178         default:
179                 phy->phy_state = PHY_NOT_PRESENT;
180                 return;
181         case SMP_RESP_FUNC_ACC:
182                 phy->phy_state = PHY_EMPTY; /* do not know yet */
183                 break;
184         }
185
186         phy->phy_id = phy_id;
187         phy->attached_dev_type = dr->attached_dev_type;
188         phy->linkrate = dr->linkrate;
189         phy->attached_sata_host = dr->attached_sata_host;
190         phy->attached_sata_dev  = dr->attached_sata_dev;
191         phy->attached_sata_ps   = dr->attached_sata_ps;
192         phy->attached_iproto = dr->iproto << 1;
193         phy->attached_tproto = dr->tproto << 1;
194         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
195         phy->attached_phy_id = dr->attached_phy_id;
196         phy->phy_change_count = dr->change_count;
197         phy->routing_attr = dr->routing_attr;
198         phy->virtual = dr->virtual;
199         phy->last_da_index = -1;
200
201         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
202         phy->phy->identify.target_port_protocols = phy->attached_tproto;
203         phy->phy->identify.phy_identifier = phy_id;
204         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
205         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
206         phy->phy->minimum_linkrate = dr->pmin_linkrate;
207         phy->phy->maximum_linkrate = dr->pmax_linkrate;
208         phy->phy->negotiated_linkrate = phy->linkrate;
209
210         if (!rediscover)
211                 sas_phy_add(phy->phy);
212
213         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
214                     SAS_ADDR(dev->sas_addr), phy->phy_id,
215                     phy->routing_attr == TABLE_ROUTING ? 'T' :
216                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
217                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
218                     SAS_ADDR(phy->attached_sas_addr));
219
220         return;
221 }
222
223 #define DISCOVER_REQ_SIZE  16
224 #define DISCOVER_RESP_SIZE 56
225
226 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
227                                       u8 *disc_resp, int single)
228 {
229         int i, res;
230
231         disc_req[9] = single;
232         for (i = 1 ; i < 3; i++) {
233                 struct discover_resp *dr;
234
235                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
236                                        disc_resp, DISCOVER_RESP_SIZE);
237                 if (res)
238                         return res;
239                 /* This is detecting a failure to transmit inital
240                  * dev to host FIS as described in section G.5 of
241                  * sas-2 r 04b */
242                 dr = &((struct smp_resp *)disc_resp)->disc;
243                 if (!(dr->attached_dev_type == 0 &&
244                       dr->attached_sata_dev))
245                         break;
246                 /* In order to generate the dev to host FIS, we
247                  * send a link reset to the expander port */
248                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
249                 /* Wait for the reset to trigger the negotiation */
250                 msleep(500);
251         }
252         sas_set_ex_phy(dev, single, disc_resp);
253         return 0;
254 }
255
256 static int sas_ex_phy_discover(struct domain_device *dev, int single)
257 {
258         struct expander_device *ex = &dev->ex_dev;
259         int  res = 0;
260         u8   *disc_req;
261         u8   *disc_resp;
262
263         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
264         if (!disc_req)
265                 return -ENOMEM;
266
267         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
268         if (!disc_resp) {
269                 kfree(disc_req);
270                 return -ENOMEM;
271         }
272
273         disc_req[1] = SMP_DISCOVER;
274
275         if (0 <= single && single < ex->num_phys) {
276                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
277         } else {
278                 int i;
279
280                 for (i = 0; i < ex->num_phys; i++) {
281                         res = sas_ex_phy_discover_helper(dev, disc_req,
282                                                          disc_resp, i);
283                         if (res)
284                                 goto out_err;
285                 }
286         }
287 out_err:
288         kfree(disc_resp);
289         kfree(disc_req);
290         return res;
291 }
292
293 static int sas_expander_discover(struct domain_device *dev)
294 {
295         struct expander_device *ex = &dev->ex_dev;
296         int res = -ENOMEM;
297
298         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
299         if (!ex->ex_phy)
300                 return -ENOMEM;
301
302         res = sas_ex_phy_discover(dev, -1);
303         if (res)
304                 goto out_err;
305
306         return 0;
307  out_err:
308         kfree(ex->ex_phy);
309         ex->ex_phy = NULL;
310         return res;
311 }
312
313 #define MAX_EXPANDER_PHYS 128
314
315 static void ex_assign_report_general(struct domain_device *dev,
316                                             struct smp_resp *resp)
317 {
318         struct report_general_resp *rg = &resp->rg;
319
320         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
321         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
322         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
323         dev->ex_dev.conf_route_table = rg->conf_route_table;
324         dev->ex_dev.configuring = rg->configuring;
325         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
326 }
327
328 #define RG_REQ_SIZE   8
329 #define RG_RESP_SIZE 32
330
331 static int sas_ex_general(struct domain_device *dev)
332 {
333         u8 *rg_req;
334         struct smp_resp *rg_resp;
335         int res;
336         int i;
337
338         rg_req = alloc_smp_req(RG_REQ_SIZE);
339         if (!rg_req)
340                 return -ENOMEM;
341
342         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
343         if (!rg_resp) {
344                 kfree(rg_req);
345                 return -ENOMEM;
346         }
347
348         rg_req[1] = SMP_REPORT_GENERAL;
349
350         for (i = 0; i < 5; i++) {
351                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
352                                        RG_RESP_SIZE);
353
354                 if (res) {
355                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
356                                     SAS_ADDR(dev->sas_addr), res);
357                         goto out;
358                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
359                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
360                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
361                         res = rg_resp->result;
362                         goto out;
363                 }
364
365                 ex_assign_report_general(dev, rg_resp);
366
367                 if (dev->ex_dev.configuring) {
368                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
369                                     SAS_ADDR(dev->sas_addr));
370                         schedule_timeout_interruptible(5*HZ);
371                 } else
372                         break;
373         }
374 out:
375         kfree(rg_req);
376         kfree(rg_resp);
377         return res;
378 }
379
380 static void ex_assign_manuf_info(struct domain_device *dev, void
381                                         *_mi_resp)
382 {
383         u8 *mi_resp = _mi_resp;
384         struct sas_rphy *rphy = dev->rphy;
385         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
386
387         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
388         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
389         memcpy(edev->product_rev, mi_resp + 36,
390                SAS_EXPANDER_PRODUCT_REV_LEN);
391
392         if (mi_resp[8] & 1) {
393                 memcpy(edev->component_vendor_id, mi_resp + 40,
394                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
395                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
396                 edev->component_revision_id = mi_resp[50];
397         }
398 }
399
400 #define MI_REQ_SIZE   8
401 #define MI_RESP_SIZE 64
402
403 static int sas_ex_manuf_info(struct domain_device *dev)
404 {
405         u8 *mi_req;
406         u8 *mi_resp;
407         int res;
408
409         mi_req = alloc_smp_req(MI_REQ_SIZE);
410         if (!mi_req)
411                 return -ENOMEM;
412
413         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
414         if (!mi_resp) {
415                 kfree(mi_req);
416                 return -ENOMEM;
417         }
418
419         mi_req[1] = SMP_REPORT_MANUF_INFO;
420
421         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
422         if (res) {
423                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
424                             SAS_ADDR(dev->sas_addr), res);
425                 goto out;
426         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
427                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
428                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
429                 goto out;
430         }
431
432         ex_assign_manuf_info(dev, mi_resp);
433 out:
434         kfree(mi_req);
435         kfree(mi_resp);
436         return res;
437 }
438
439 #define PC_REQ_SIZE  44
440 #define PC_RESP_SIZE 8
441
442 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
443                         enum phy_func phy_func,
444                         struct sas_phy_linkrates *rates)
445 {
446         u8 *pc_req;
447         u8 *pc_resp;
448         int res;
449
450         pc_req = alloc_smp_req(PC_REQ_SIZE);
451         if (!pc_req)
452                 return -ENOMEM;
453
454         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
455         if (!pc_resp) {
456                 kfree(pc_req);
457                 return -ENOMEM;
458         }
459
460         pc_req[1] = SMP_PHY_CONTROL;
461         pc_req[9] = phy_id;
462         pc_req[10]= phy_func;
463         if (rates) {
464                 pc_req[32] = rates->minimum_linkrate << 4;
465                 pc_req[33] = rates->maximum_linkrate << 4;
466         }
467
468         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
469
470         kfree(pc_resp);
471         kfree(pc_req);
472         return res;
473 }
474
475 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
476 {
477         struct expander_device *ex = &dev->ex_dev;
478         struct ex_phy *phy = &ex->ex_phy[phy_id];
479
480         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
481         phy->linkrate = SAS_PHY_DISABLED;
482 }
483
484 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
485 {
486         struct expander_device *ex = &dev->ex_dev;
487         int i;
488
489         for (i = 0; i < ex->num_phys; i++) {
490                 struct ex_phy *phy = &ex->ex_phy[i];
491
492                 if (phy->phy_state == PHY_VACANT ||
493                     phy->phy_state == PHY_NOT_PRESENT)
494                         continue;
495
496                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
497                         sas_ex_disable_phy(dev, i);
498         }
499 }
500
501 static int sas_dev_present_in_domain(struct asd_sas_port *port,
502                                             u8 *sas_addr)
503 {
504         struct domain_device *dev;
505
506         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
507                 return 1;
508         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
509                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
510                         return 1;
511         }
512         return 0;
513 }
514
515 #define RPEL_REQ_SIZE   16
516 #define RPEL_RESP_SIZE  32
517 int sas_smp_get_phy_events(struct sas_phy *phy)
518 {
519         int res;
520         u8 *req;
521         u8 *resp;
522         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
523         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
524
525         req = alloc_smp_req(RPEL_REQ_SIZE);
526         if (!req)
527                 return -ENOMEM;
528
529         resp = alloc_smp_resp(RPEL_RESP_SIZE);
530         if (!resp) {
531                 kfree(req);
532                 return -ENOMEM;
533         }
534
535         req[1] = SMP_REPORT_PHY_ERR_LOG;
536         req[9] = phy->number;
537
538         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
539                                     resp, RPEL_RESP_SIZE);
540
541         if (!res)
542                 goto out;
543
544         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
545         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
546         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
547         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
548
549  out:
550         kfree(resp);
551         return res;
552
553 }
554
555 #ifdef CONFIG_SCSI_SAS_ATA
556
557 #define RPS_REQ_SIZE  16
558 #define RPS_RESP_SIZE 60
559
560 static int sas_get_report_phy_sata(struct domain_device *dev,
561                                           int phy_id,
562                                           struct smp_resp *rps_resp)
563 {
564         int res;
565         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
566         u8 *resp = (u8 *)rps_resp;
567
568         if (!rps_req)
569                 return -ENOMEM;
570
571         rps_req[1] = SMP_REPORT_PHY_SATA;
572         rps_req[9] = phy_id;
573
574         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
575                                     rps_resp, RPS_RESP_SIZE);
576
577         /* 0x34 is the FIS type for the D2H fis.  There's a potential
578          * standards cockup here.  sas-2 explicitly specifies the FIS
579          * should be encoded so that FIS type is in resp[24].
580          * However, some expanders endian reverse this.  Undo the
581          * reversal here */
582         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
583                 int i;
584
585                 for (i = 0; i < 5; i++) {
586                         int j = 24 + (i*4);
587                         u8 a, b;
588                         a = resp[j + 0];
589                         b = resp[j + 1];
590                         resp[j + 0] = resp[j + 3];
591                         resp[j + 1] = resp[j + 2];
592                         resp[j + 2] = b;
593                         resp[j + 3] = a;
594                 }
595         }
596
597         kfree(rps_req);
598         return res;
599 }
600 #endif
601
602 static void sas_ex_get_linkrate(struct domain_device *parent,
603                                        struct domain_device *child,
604                                        struct ex_phy *parent_phy)
605 {
606         struct expander_device *parent_ex = &parent->ex_dev;
607         struct sas_port *port;
608         int i;
609
610         child->pathways = 0;
611
612         port = parent_phy->port;
613
614         for (i = 0; i < parent_ex->num_phys; i++) {
615                 struct ex_phy *phy = &parent_ex->ex_phy[i];
616
617                 if (phy->phy_state == PHY_VACANT ||
618                     phy->phy_state == PHY_NOT_PRESENT)
619                         continue;
620
621                 if (SAS_ADDR(phy->attached_sas_addr) ==
622                     SAS_ADDR(child->sas_addr)) {
623
624                         child->min_linkrate = min(parent->min_linkrate,
625                                                   phy->linkrate);
626                         child->max_linkrate = max(parent->max_linkrate,
627                                                   phy->linkrate);
628                         child->pathways++;
629                         sas_port_add_phy(port, phy->phy);
630                 }
631         }
632         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
633         child->pathways = min(child->pathways, parent->pathways);
634 }
635
636 static struct domain_device *sas_ex_discover_end_dev(
637         struct domain_device *parent, int phy_id)
638 {
639         struct expander_device *parent_ex = &parent->ex_dev;
640         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
641         struct domain_device *child = NULL;
642         struct sas_rphy *rphy;
643         int res;
644
645         if (phy->attached_sata_host || phy->attached_sata_ps)
646                 return NULL;
647
648         child = kzalloc(sizeof(*child), GFP_KERNEL);
649         if (!child)
650                 return NULL;
651
652         child->parent = parent;
653         child->port   = parent->port;
654         child->iproto = phy->attached_iproto;
655         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
656         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
657         if (!phy->port) {
658                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
659                 if (unlikely(!phy->port))
660                         goto out_err;
661                 if (unlikely(sas_port_add(phy->port) != 0)) {
662                         sas_port_free(phy->port);
663                         goto out_err;
664                 }
665         }
666         sas_ex_get_linkrate(parent, child, phy);
667
668 #ifdef CONFIG_SCSI_SAS_ATA
669         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
670                 child->dev_type = SATA_DEV;
671                 if (phy->attached_tproto & SAS_PROTOCOL_STP)
672                         child->tproto = phy->attached_tproto;
673                 if (phy->attached_sata_dev)
674                         child->tproto |= SATA_DEV;
675                 res = sas_get_report_phy_sata(parent, phy_id,
676                                               &child->sata_dev.rps_resp);
677                 if (res) {
678                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
679                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
680                                     phy_id, res);
681                         goto out_free;
682                 }
683                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
684                        sizeof(struct dev_to_host_fis));
685
686                 rphy = sas_end_device_alloc(phy->port);
687                 if (unlikely(!rphy))
688                         goto out_free;
689
690                 sas_init_dev(child);
691
692                 child->rphy = rphy;
693
694                 spin_lock_irq(&parent->port->dev_list_lock);
695                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
696                 spin_unlock_irq(&parent->port->dev_list_lock);
697
698                 res = sas_discover_sata(child);
699                 if (res) {
700                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
701                                     "%016llx:0x%x returned 0x%x\n",
702                                     SAS_ADDR(child->sas_addr),
703                                     SAS_ADDR(parent->sas_addr), phy_id, res);
704                         goto out_list_del;
705                 }
706         } else
707 #endif
708           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
709                 child->dev_type = SAS_END_DEV;
710                 rphy = sas_end_device_alloc(phy->port);
711                 /* FIXME: error handling */
712                 if (unlikely(!rphy))
713                         goto out_free;
714                 child->tproto = phy->attached_tproto;
715                 sas_init_dev(child);
716
717                 child->rphy = rphy;
718                 sas_fill_in_rphy(child, rphy);
719
720                 spin_lock_irq(&parent->port->dev_list_lock);
721                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
722                 spin_unlock_irq(&parent->port->dev_list_lock);
723
724                 res = sas_discover_end_dev(child);
725                 if (res) {
726                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
727                                     "at %016llx:0x%x returned 0x%x\n",
728                                     SAS_ADDR(child->sas_addr),
729                                     SAS_ADDR(parent->sas_addr), phy_id, res);
730                         goto out_list_del;
731                 }
732         } else {
733                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
734                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
735                             phy_id);
736                 goto out_free;
737         }
738
739         list_add_tail(&child->siblings, &parent_ex->children);
740         return child;
741
742  out_list_del:
743         sas_rphy_free(child->rphy);
744         child->rphy = NULL;
745         list_del(&child->dev_list_node);
746  out_free:
747         sas_port_delete(phy->port);
748  out_err:
749         phy->port = NULL;
750         kfree(child);
751         return NULL;
752 }
753
754 /* See if this phy is part of a wide port */
755 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
756 {
757         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
758         int i;
759
760         for (i = 0; i < parent->ex_dev.num_phys; i++) {
761                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
762
763                 if (ephy == phy)
764                         continue;
765
766                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
767                             SAS_ADDR_SIZE) && ephy->port) {
768                         sas_port_add_phy(ephy->port, phy->phy);
769                         phy->port = ephy->port;
770                         phy->phy_state = PHY_DEVICE_DISCOVERED;
771                         return 0;
772                 }
773         }
774
775         return -ENODEV;
776 }
777
778 static struct domain_device *sas_ex_discover_expander(
779         struct domain_device *parent, int phy_id)
780 {
781         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
782         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
783         struct domain_device *child = NULL;
784         struct sas_rphy *rphy;
785         struct sas_expander_device *edev;
786         struct asd_sas_port *port;
787         int res;
788
789         if (phy->routing_attr == DIRECT_ROUTING) {
790                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
791                             "allowed\n",
792                             SAS_ADDR(parent->sas_addr), phy_id,
793                             SAS_ADDR(phy->attached_sas_addr),
794                             phy->attached_phy_id);
795                 return NULL;
796         }
797         child = kzalloc(sizeof(*child), GFP_KERNEL);
798         if (!child)
799                 return NULL;
800
801         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802         /* FIXME: better error handling */
803         BUG_ON(sas_port_add(phy->port) != 0);
804
805
806         switch (phy->attached_dev_type) {
807         case EDGE_DEV:
808                 rphy = sas_expander_alloc(phy->port,
809                                           SAS_EDGE_EXPANDER_DEVICE);
810                 break;
811         case FANOUT_DEV:
812                 rphy = sas_expander_alloc(phy->port,
813                                           SAS_FANOUT_EXPANDER_DEVICE);
814                 break;
815         default:
816                 rphy = NULL;    /* shut gcc up */
817                 BUG();
818         }
819         port = parent->port;
820         child->rphy = rphy;
821         edev = rphy_to_expander_device(rphy);
822         child->dev_type = phy->attached_dev_type;
823         child->parent = parent;
824         child->port = port;
825         child->iproto = phy->attached_iproto;
826         child->tproto = phy->attached_tproto;
827         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
828         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
829         sas_ex_get_linkrate(parent, child, phy);
830         edev->level = parent_ex->level + 1;
831         parent->port->disc.max_level = max(parent->port->disc.max_level,
832                                            edev->level);
833         sas_init_dev(child);
834         sas_fill_in_rphy(child, rphy);
835         sas_rphy_add(rphy);
836
837         spin_lock_irq(&parent->port->dev_list_lock);
838         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
839         spin_unlock_irq(&parent->port->dev_list_lock);
840
841         res = sas_discover_expander(child);
842         if (res) {
843                 spin_lock_irq(&parent->port->dev_list_lock);
844                 list_del(&child->dev_list_node);
845                 spin_unlock_irq(&parent->port->dev_list_lock);
846                 kfree(child);
847                 return NULL;
848         }
849         list_add_tail(&child->siblings, &parent->ex_dev.children);
850         return child;
851 }
852
853 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
854 {
855         struct expander_device *ex = &dev->ex_dev;
856         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
857         struct domain_device *child = NULL;
858         int res = 0;
859
860         /* Phy state */
861         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
862                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
863                         res = sas_ex_phy_discover(dev, phy_id);
864                 if (res)
865                         return res;
866         }
867
868         /* Parent and domain coherency */
869         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
870                              SAS_ADDR(dev->port->sas_addr))) {
871                 sas_add_parent_port(dev, phy_id);
872                 return 0;
873         }
874         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
875                             SAS_ADDR(dev->parent->sas_addr))) {
876                 sas_add_parent_port(dev, phy_id);
877                 if (ex_phy->routing_attr == TABLE_ROUTING)
878                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
879                 return 0;
880         }
881
882         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
883                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
884
885         if (ex_phy->attached_dev_type == NO_DEVICE) {
886                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
887                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
888                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
889                 }
890                 return 0;
891         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
892                 return 0;
893
894         if (ex_phy->attached_dev_type != SAS_END_DEV &&
895             ex_phy->attached_dev_type != FANOUT_DEV &&
896             ex_phy->attached_dev_type != EDGE_DEV) {
897                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
898                             "phy 0x%x\n", ex_phy->attached_dev_type,
899                             SAS_ADDR(dev->sas_addr),
900                             phy_id);
901                 return 0;
902         }
903
904         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
905         if (res) {
906                 SAS_DPRINTK("configure routing for dev %016llx "
907                             "reported 0x%x. Forgotten\n",
908                             SAS_ADDR(ex_phy->attached_sas_addr), res);
909                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
910                 return res;
911         }
912
913         res = sas_ex_join_wide_port(dev, phy_id);
914         if (!res) {
915                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
916                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
917                 return res;
918         }
919
920         switch (ex_phy->attached_dev_type) {
921         case SAS_END_DEV:
922                 child = sas_ex_discover_end_dev(dev, phy_id);
923                 break;
924         case FANOUT_DEV:
925                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
926                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
927                                     "attached to ex %016llx phy 0x%x\n",
928                                     SAS_ADDR(ex_phy->attached_sas_addr),
929                                     ex_phy->attached_phy_id,
930                                     SAS_ADDR(dev->sas_addr),
931                                     phy_id);
932                         sas_ex_disable_phy(dev, phy_id);
933                         break;
934                 } else
935                         memcpy(dev->port->disc.fanout_sas_addr,
936                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
937                 /* fallthrough */
938         case EDGE_DEV:
939                 child = sas_ex_discover_expander(dev, phy_id);
940                 break;
941         default:
942                 break;
943         }
944
945         if (child) {
946                 int i;
947
948                 for (i = 0; i < ex->num_phys; i++) {
949                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
950                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
951                                 continue;
952                         /*
953                          * Due to races, the phy might not get added to the
954                          * wide port, so we add the phy to the wide port here.
955                          */
956                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
957                             SAS_ADDR(child->sas_addr)) {
958                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
959                                 res = sas_ex_join_wide_port(dev, i);
960                                 if (!res)
961                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
962                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
963
964                         }
965                 }
966         }
967
968         return res;
969 }
970
971 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
972 {
973         struct expander_device *ex = &dev->ex_dev;
974         int i;
975
976         for (i = 0; i < ex->num_phys; i++) {
977                 struct ex_phy *phy = &ex->ex_phy[i];
978
979                 if (phy->phy_state == PHY_VACANT ||
980                     phy->phy_state == PHY_NOT_PRESENT)
981                         continue;
982
983                 if ((phy->attached_dev_type == EDGE_DEV ||
984                      phy->attached_dev_type == FANOUT_DEV) &&
985                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
986
987                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
988
989                         return 1;
990                 }
991         }
992         return 0;
993 }
994
995 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
996 {
997         struct expander_device *ex = &dev->ex_dev;
998         struct domain_device *child;
999         u8 sub_addr[8] = {0, };
1000
1001         list_for_each_entry(child, &ex->children, siblings) {
1002                 if (child->dev_type != EDGE_DEV &&
1003                     child->dev_type != FANOUT_DEV)
1004                         continue;
1005                 if (sub_addr[0] == 0) {
1006                         sas_find_sub_addr(child, sub_addr);
1007                         continue;
1008                 } else {
1009                         u8 s2[8];
1010
1011                         if (sas_find_sub_addr(child, s2) &&
1012                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1013
1014                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1015                                             "diverges from subtractive "
1016                                             "boundary %016llx\n",
1017                                             SAS_ADDR(dev->sas_addr),
1018                                             SAS_ADDR(child->sas_addr),
1019                                             SAS_ADDR(s2),
1020                                             SAS_ADDR(sub_addr));
1021
1022                                 sas_ex_disable_port(child, s2);
1023                         }
1024                 }
1025         }
1026         return 0;
1027 }
1028 /**
1029  * sas_ex_discover_devices -- discover devices attached to this expander
1030  * dev: pointer to the expander domain device
1031  * single: if you want to do a single phy, else set to -1;
1032  *
1033  * Configure this expander for use with its devices and register the
1034  * devices of this expander.
1035  */
1036 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1037 {
1038         struct expander_device *ex = &dev->ex_dev;
1039         int i = 0, end = ex->num_phys;
1040         int res = 0;
1041
1042         if (0 <= single && single < end) {
1043                 i = single;
1044                 end = i+1;
1045         }
1046
1047         for ( ; i < end; i++) {
1048                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1049
1050                 if (ex_phy->phy_state == PHY_VACANT ||
1051                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1052                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1053                         continue;
1054
1055                 switch (ex_phy->linkrate) {
1056                 case SAS_PHY_DISABLED:
1057                 case SAS_PHY_RESET_PROBLEM:
1058                 case SAS_SATA_PORT_SELECTOR:
1059                         continue;
1060                 default:
1061                         res = sas_ex_discover_dev(dev, i);
1062                         if (res)
1063                                 break;
1064                         continue;
1065                 }
1066         }
1067
1068         if (!res)
1069                 sas_check_level_subtractive_boundary(dev);
1070
1071         return res;
1072 }
1073
1074 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1075 {
1076         struct expander_device *ex = &dev->ex_dev;
1077         int i;
1078         u8  *sub_sas_addr = NULL;
1079
1080         if (dev->dev_type != EDGE_DEV)
1081                 return 0;
1082
1083         for (i = 0; i < ex->num_phys; i++) {
1084                 struct ex_phy *phy = &ex->ex_phy[i];
1085
1086                 if (phy->phy_state == PHY_VACANT ||
1087                     phy->phy_state == PHY_NOT_PRESENT)
1088                         continue;
1089
1090                 if ((phy->attached_dev_type == FANOUT_DEV ||
1091                      phy->attached_dev_type == EDGE_DEV) &&
1092                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1093
1094                         if (!sub_sas_addr)
1095                                 sub_sas_addr = &phy->attached_sas_addr[0];
1096                         else if (SAS_ADDR(sub_sas_addr) !=
1097                                  SAS_ADDR(phy->attached_sas_addr)) {
1098
1099                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1100                                             "diverges(%016llx) on subtractive "
1101                                             "boundary(%016llx). Disabled\n",
1102                                             SAS_ADDR(dev->sas_addr), i,
1103                                             SAS_ADDR(phy->attached_sas_addr),
1104                                             SAS_ADDR(sub_sas_addr));
1105                                 sas_ex_disable_phy(dev, i);
1106                         }
1107                 }
1108         }
1109         return 0;
1110 }
1111
1112 static void sas_print_parent_topology_bug(struct domain_device *child,
1113                                                  struct ex_phy *parent_phy,
1114                                                  struct ex_phy *child_phy)
1115 {
1116         static const char ra_char[] = {
1117                 [DIRECT_ROUTING] = 'D',
1118                 [SUBTRACTIVE_ROUTING] = 'S',
1119                 [TABLE_ROUTING] = 'T',
1120         };
1121         static const char *ex_type[] = {
1122                 [EDGE_DEV] = "edge",
1123                 [FANOUT_DEV] = "fanout",
1124         };
1125         struct domain_device *parent = child->parent;
1126
1127         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1128                    "has %c:%c routing link!\n",
1129
1130                    ex_type[parent->dev_type],
1131                    SAS_ADDR(parent->sas_addr),
1132                    parent_phy->phy_id,
1133
1134                    ex_type[child->dev_type],
1135                    SAS_ADDR(child->sas_addr),
1136                    child_phy->phy_id,
1137
1138                    ra_char[parent_phy->routing_attr],
1139                    ra_char[child_phy->routing_attr]);
1140 }
1141
1142 static int sas_check_eeds(struct domain_device *child,
1143                                  struct ex_phy *parent_phy,
1144                                  struct ex_phy *child_phy)
1145 {
1146         int res = 0;
1147         struct domain_device *parent = child->parent;
1148
1149         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1150                 res = -ENODEV;
1151                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1152                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1153                             SAS_ADDR(parent->sas_addr),
1154                             parent_phy->phy_id,
1155                             SAS_ADDR(child->sas_addr),
1156                             child_phy->phy_id,
1157                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1158         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1159                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1160                        SAS_ADDR_SIZE);
1161                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1162                        SAS_ADDR_SIZE);
1163         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1164                     SAS_ADDR(parent->sas_addr)) ||
1165                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1166                     SAS_ADDR(child->sas_addr)))
1167                    &&
1168                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1169                      SAS_ADDR(parent->sas_addr)) ||
1170                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1171                      SAS_ADDR(child->sas_addr))))
1172                 ;
1173         else {
1174                 res = -ENODEV;
1175                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1176                             "phy 0x%x link forms a third EEDS!\n",
1177                             SAS_ADDR(parent->sas_addr),
1178                             parent_phy->phy_id,
1179                             SAS_ADDR(child->sas_addr),
1180                             child_phy->phy_id);
1181         }
1182
1183         return res;
1184 }
1185
1186 /* Here we spill over 80 columns.  It is intentional.
1187  */
1188 static int sas_check_parent_topology(struct domain_device *child)
1189 {
1190         struct expander_device *child_ex = &child->ex_dev;
1191         struct expander_device *parent_ex;
1192         int i;
1193         int res = 0;
1194
1195         if (!child->parent)
1196                 return 0;
1197
1198         if (child->parent->dev_type != EDGE_DEV &&
1199             child->parent->dev_type != FANOUT_DEV)
1200                 return 0;
1201
1202         parent_ex = &child->parent->ex_dev;
1203
1204         for (i = 0; i < parent_ex->num_phys; i++) {
1205                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1206                 struct ex_phy *child_phy;
1207
1208                 if (parent_phy->phy_state == PHY_VACANT ||
1209                     parent_phy->phy_state == PHY_NOT_PRESENT)
1210                         continue;
1211
1212                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1213                         continue;
1214
1215                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1216
1217                 switch (child->parent->dev_type) {
1218                 case EDGE_DEV:
1219                         if (child->dev_type == FANOUT_DEV) {
1220                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1221                                     child_phy->routing_attr != TABLE_ROUTING) {
1222                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1223                                         res = -ENODEV;
1224                                 }
1225                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1226                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1227                                         res = sas_check_eeds(child, parent_phy, child_phy);
1228                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1229                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1230                                         res = -ENODEV;
1231                                 }
1232                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1233                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1234                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1235                                 res = -ENODEV;
1236                         }
1237                         break;
1238                 case FANOUT_DEV:
1239                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1240                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1241                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1242                                 res = -ENODEV;
1243                         }
1244                         break;
1245                 default:
1246                         break;
1247                 }
1248         }
1249
1250         return res;
1251 }
1252
1253 #define RRI_REQ_SIZE  16
1254 #define RRI_RESP_SIZE 44
1255
1256 static int sas_configure_present(struct domain_device *dev, int phy_id,
1257                                  u8 *sas_addr, int *index, int *present)
1258 {
1259         int i, res = 0;
1260         struct expander_device *ex = &dev->ex_dev;
1261         struct ex_phy *phy = &ex->ex_phy[phy_id];
1262         u8 *rri_req;
1263         u8 *rri_resp;
1264
1265         *present = 0;
1266         *index = 0;
1267
1268         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1269         if (!rri_req)
1270                 return -ENOMEM;
1271
1272         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1273         if (!rri_resp) {
1274                 kfree(rri_req);
1275                 return -ENOMEM;
1276         }
1277
1278         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1279         rri_req[9] = phy_id;
1280
1281         for (i = 0; i < ex->max_route_indexes ; i++) {
1282                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1283                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1284                                        RRI_RESP_SIZE);
1285                 if (res)
1286                         goto out;
1287                 res = rri_resp[2];
1288                 if (res == SMP_RESP_NO_INDEX) {
1289                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1290                                     "phy 0x%x index 0x%x\n",
1291                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1292                         goto out;
1293                 } else if (res != SMP_RESP_FUNC_ACC) {
1294                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1295                                     "result 0x%x\n", __func__,
1296                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1297                         goto out;
1298                 }
1299                 if (SAS_ADDR(sas_addr) != 0) {
1300                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1301                                 *index = i;
1302                                 if ((rri_resp[12] & 0x80) == 0x80)
1303                                         *present = 0;
1304                                 else
1305                                         *present = 1;
1306                                 goto out;
1307                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1308                                 *index = i;
1309                                 *present = 0;
1310                                 goto out;
1311                         }
1312                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1313                            phy->last_da_index < i) {
1314                         phy->last_da_index = i;
1315                         *index = i;
1316                         *present = 0;
1317                         goto out;
1318                 }
1319         }
1320         res = -1;
1321 out:
1322         kfree(rri_req);
1323         kfree(rri_resp);
1324         return res;
1325 }
1326
1327 #define CRI_REQ_SIZE  44
1328 #define CRI_RESP_SIZE  8
1329
1330 static int sas_configure_set(struct domain_device *dev, int phy_id,
1331                              u8 *sas_addr, int index, int include)
1332 {
1333         int res;
1334         u8 *cri_req;
1335         u8 *cri_resp;
1336
1337         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1338         if (!cri_req)
1339                 return -ENOMEM;
1340
1341         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1342         if (!cri_resp) {
1343                 kfree(cri_req);
1344                 return -ENOMEM;
1345         }
1346
1347         cri_req[1] = SMP_CONF_ROUTE_INFO;
1348         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1349         cri_req[9] = phy_id;
1350         if (SAS_ADDR(sas_addr) == 0 || !include)
1351                 cri_req[12] |= 0x80;
1352         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1353
1354         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1355                                CRI_RESP_SIZE);
1356         if (res)
1357                 goto out;
1358         res = cri_resp[2];
1359         if (res == SMP_RESP_NO_INDEX) {
1360                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1361                             "index 0x%x\n",
1362                             SAS_ADDR(dev->sas_addr), phy_id, index);
1363         }
1364 out:
1365         kfree(cri_req);
1366         kfree(cri_resp);
1367         return res;
1368 }
1369
1370 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1371                                     u8 *sas_addr, int include)
1372 {
1373         int index;
1374         int present;
1375         int res;
1376
1377         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1378         if (res)
1379                 return res;
1380         if (include ^ present)
1381                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1382
1383         return res;
1384 }
1385
1386 /**
1387  * sas_configure_parent -- configure routing table of parent
1388  * parent: parent expander
1389  * child: child expander
1390  * sas_addr: SAS port identifier of device directly attached to child
1391  */
1392 static int sas_configure_parent(struct domain_device *parent,
1393                                 struct domain_device *child,
1394                                 u8 *sas_addr, int include)
1395 {
1396         struct expander_device *ex_parent = &parent->ex_dev;
1397         int res = 0;
1398         int i;
1399
1400         if (parent->parent) {
1401                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1402                                            include);
1403                 if (res)
1404                         return res;
1405         }
1406
1407         if (ex_parent->conf_route_table == 0) {
1408                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1409                             SAS_ADDR(parent->sas_addr));
1410                 return 0;
1411         }
1412
1413         for (i = 0; i < ex_parent->num_phys; i++) {
1414                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1415
1416                 if ((phy->routing_attr == TABLE_ROUTING) &&
1417                     (SAS_ADDR(phy->attached_sas_addr) ==
1418                      SAS_ADDR(child->sas_addr))) {
1419                         res = sas_configure_phy(parent, i, sas_addr, include);
1420                         if (res)
1421                                 return res;
1422                 }
1423         }
1424
1425         return res;
1426 }
1427
1428 /**
1429  * sas_configure_routing -- configure routing
1430  * dev: expander device
1431  * sas_addr: port identifier of device directly attached to the expander device
1432  */
1433 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1434 {
1435         if (dev->parent)
1436                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1437         return 0;
1438 }
1439
1440 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1441 {
1442         if (dev->parent)
1443                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1444         return 0;
1445 }
1446
1447 /**
1448  * sas_discover_expander -- expander discovery
1449  * @ex: pointer to expander domain device
1450  *
1451  * See comment in sas_discover_sata().
1452  */
1453 static int sas_discover_expander(struct domain_device *dev)
1454 {
1455         int res;
1456
1457         res = sas_notify_lldd_dev_found(dev);
1458         if (res)
1459                 return res;
1460
1461         res = sas_ex_general(dev);
1462         if (res)
1463                 goto out_err;
1464         res = sas_ex_manuf_info(dev);
1465         if (res)
1466                 goto out_err;
1467
1468         res = sas_expander_discover(dev);
1469         if (res) {
1470                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1471                             SAS_ADDR(dev->sas_addr), res);
1472                 goto out_err;
1473         }
1474
1475         sas_check_ex_subtractive_boundary(dev);
1476         res = sas_check_parent_topology(dev);
1477         if (res)
1478                 goto out_err;
1479         return 0;
1480 out_err:
1481         sas_notify_lldd_dev_gone(dev);
1482         return res;
1483 }
1484
1485 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1486 {
1487         int res = 0;
1488         struct domain_device *dev;
1489
1490         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1491                 if (dev->dev_type == EDGE_DEV ||
1492                     dev->dev_type == FANOUT_DEV) {
1493                         struct sas_expander_device *ex =
1494                                 rphy_to_expander_device(dev->rphy);
1495
1496                         if (level == ex->level)
1497                                 res = sas_ex_discover_devices(dev, -1);
1498                         else if (level > 0)
1499                                 res = sas_ex_discover_devices(port->port_dev, -1);
1500
1501                 }
1502         }
1503
1504         return res;
1505 }
1506
1507 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1508 {
1509         int res;
1510         int level;
1511
1512         do {
1513                 level = port->disc.max_level;
1514                 res = sas_ex_level_discovery(port, level);
1515                 mb();
1516         } while (level < port->disc.max_level);
1517
1518         return res;
1519 }
1520
1521 int sas_discover_root_expander(struct domain_device *dev)
1522 {
1523         int res;
1524         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1525
1526         res = sas_rphy_add(dev->rphy);
1527         if (res)
1528                 goto out_err;
1529
1530         ex->level = dev->port->disc.max_level; /* 0 */
1531         res = sas_discover_expander(dev);
1532         if (res)
1533                 goto out_err2;
1534
1535         sas_ex_bfs_disc(dev->port);
1536
1537         return res;
1538
1539 out_err2:
1540         sas_rphy_remove(dev->rphy);
1541 out_err:
1542         return res;
1543 }
1544
1545 /* ---------- Domain revalidation ---------- */
1546
1547 static int sas_get_phy_discover(struct domain_device *dev,
1548                                 int phy_id, struct smp_resp *disc_resp)
1549 {
1550         int res;
1551         u8 *disc_req;
1552
1553         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1554         if (!disc_req)
1555                 return -ENOMEM;
1556
1557         disc_req[1] = SMP_DISCOVER;
1558         disc_req[9] = phy_id;
1559
1560         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1561                                disc_resp, DISCOVER_RESP_SIZE);
1562         if (res)
1563                 goto out;
1564         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1565                 res = disc_resp->result;
1566                 goto out;
1567         }
1568 out:
1569         kfree(disc_req);
1570         return res;
1571 }
1572
1573 static int sas_get_phy_change_count(struct domain_device *dev,
1574                                     int phy_id, int *pcc)
1575 {
1576         int res;
1577         struct smp_resp *disc_resp;
1578
1579         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1580         if (!disc_resp)
1581                 return -ENOMEM;
1582
1583         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1584         if (!res)
1585                 *pcc = disc_resp->disc.change_count;
1586
1587         kfree(disc_resp);
1588         return res;
1589 }
1590
1591 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1592                                          int phy_id, u8 *attached_sas_addr)
1593 {
1594         int res;
1595         struct smp_resp *disc_resp;
1596         struct discover_resp *dr;
1597
1598         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1599         if (!disc_resp)
1600                 return -ENOMEM;
1601         dr = &disc_resp->disc;
1602
1603         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1604         if (!res) {
1605                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1606                 if (dr->attached_dev_type == 0)
1607                         memset(attached_sas_addr, 0, 8);
1608         }
1609         kfree(disc_resp);
1610         return res;
1611 }
1612
1613 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1614                               int from_phy, bool update)
1615 {
1616         struct expander_device *ex = &dev->ex_dev;
1617         int res = 0;
1618         int i;
1619
1620         for (i = from_phy; i < ex->num_phys; i++) {
1621                 int phy_change_count = 0;
1622
1623                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1624                 if (res)
1625                         goto out;
1626                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1627                         if (update)
1628                                 ex->ex_phy[i].phy_change_count =
1629                                         phy_change_count;
1630                         *phy_id = i;
1631                         return 0;
1632                 }
1633         }
1634 out:
1635         return res;
1636 }
1637
1638 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1639 {
1640         int res;
1641         u8  *rg_req;
1642         struct smp_resp  *rg_resp;
1643
1644         rg_req = alloc_smp_req(RG_REQ_SIZE);
1645         if (!rg_req)
1646                 return -ENOMEM;
1647
1648         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1649         if (!rg_resp) {
1650                 kfree(rg_req);
1651                 return -ENOMEM;
1652         }
1653
1654         rg_req[1] = SMP_REPORT_GENERAL;
1655
1656         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1657                                RG_RESP_SIZE);
1658         if (res)
1659                 goto out;
1660         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1661                 res = rg_resp->result;
1662                 goto out;
1663         }
1664
1665         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1666 out:
1667         kfree(rg_resp);
1668         kfree(rg_req);
1669         return res;
1670 }
1671 /**
1672  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1673  * @dev:domain device to be detect.
1674  * @src_dev: the device which originated BROADCAST(CHANGE).
1675  *
1676  * Add self-configuration expander suport. Suppose two expander cascading,
1677  * when the first level expander is self-configuring, hotplug the disks in
1678  * second level expander, BROADCAST(CHANGE) will not only be originated
1679  * in the second level expander, but also be originated in the first level
1680  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1681  * expander changed count in two level expanders will all increment at least
1682  * once, but the phy which chang count has changed is the source device which
1683  * we concerned.
1684  */
1685
1686 static int sas_find_bcast_dev(struct domain_device *dev,
1687                               struct domain_device **src_dev)
1688 {
1689         struct expander_device *ex = &dev->ex_dev;
1690         int ex_change_count = -1;
1691         int phy_id = -1;
1692         int res;
1693         struct domain_device *ch;
1694
1695         res = sas_get_ex_change_count(dev, &ex_change_count);
1696         if (res)
1697                 goto out;
1698         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1699                 /* Just detect if this expander phys phy change count changed,
1700                 * in order to determine if this expander originate BROADCAST,
1701                 * and do not update phy change count field in our structure.
1702                 */
1703                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1704                 if (phy_id != -1) {
1705                         *src_dev = dev;
1706                         ex->ex_change_count = ex_change_count;
1707                         SAS_DPRINTK("Expander phy change count has changed\n");
1708                         return res;
1709                 } else
1710                         SAS_DPRINTK("Expander phys DID NOT change\n");
1711         }
1712         list_for_each_entry(ch, &ex->children, siblings) {
1713                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1714                         res = sas_find_bcast_dev(ch, src_dev);
1715                         if (*src_dev)
1716                                 return res;
1717                 }
1718         }
1719 out:
1720         return res;
1721 }
1722
1723 static void sas_unregister_ex_tree(struct domain_device *dev)
1724 {
1725         struct expander_device *ex = &dev->ex_dev;
1726         struct domain_device *child, *n;
1727
1728         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1729                 if (child->dev_type == EDGE_DEV ||
1730                     child->dev_type == FANOUT_DEV)
1731                         sas_unregister_ex_tree(child);
1732                 else
1733                         sas_unregister_dev(child);
1734         }
1735         sas_unregister_dev(dev);
1736 }
1737
1738 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1739                                          int phy_id, bool last)
1740 {
1741         struct expander_device *ex_dev = &parent->ex_dev;
1742         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1743         struct domain_device *child, *n;
1744         if (last) {
1745                 list_for_each_entry_safe(child, n,
1746                         &ex_dev->children, siblings) {
1747                         if (SAS_ADDR(child->sas_addr) ==
1748                             SAS_ADDR(phy->attached_sas_addr)) {
1749                                 if (child->dev_type == EDGE_DEV ||
1750                                     child->dev_type == FANOUT_DEV)
1751                                         sas_unregister_ex_tree(child);
1752                                 else
1753                                         sas_unregister_dev(child);
1754                                 break;
1755                         }
1756                 }
1757                 sas_disable_routing(parent, phy->attached_sas_addr);
1758         }
1759         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1760         if (phy->port) {
1761                 sas_port_delete_phy(phy->port, phy->phy);
1762                 if (phy->port->num_phys == 0)
1763                         sas_port_delete(phy->port);
1764                 phy->port = NULL;
1765         }
1766 }
1767
1768 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1769                                           const int level)
1770 {
1771         struct expander_device *ex_root = &root->ex_dev;
1772         struct domain_device *child;
1773         int res = 0;
1774
1775         list_for_each_entry(child, &ex_root->children, siblings) {
1776                 if (child->dev_type == EDGE_DEV ||
1777                     child->dev_type == FANOUT_DEV) {
1778                         struct sas_expander_device *ex =
1779                                 rphy_to_expander_device(child->rphy);
1780
1781                         if (level > ex->level)
1782                                 res = sas_discover_bfs_by_root_level(child,
1783                                                                      level);
1784                         else if (level == ex->level)
1785                                 res = sas_ex_discover_devices(child, -1);
1786                 }
1787         }
1788         return res;
1789 }
1790
1791 static int sas_discover_bfs_by_root(struct domain_device *dev)
1792 {
1793         int res;
1794         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1795         int level = ex->level+1;
1796
1797         res = sas_ex_discover_devices(dev, -1);
1798         if (res)
1799                 goto out;
1800         do {
1801                 res = sas_discover_bfs_by_root_level(dev, level);
1802                 mb();
1803                 level += 1;
1804         } while (level <= dev->port->disc.max_level);
1805 out:
1806         return res;
1807 }
1808
1809 static int sas_discover_new(struct domain_device *dev, int phy_id)
1810 {
1811         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1812         struct domain_device *child;
1813         bool found = false;
1814         int res, i;
1815
1816         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1817                     SAS_ADDR(dev->sas_addr), phy_id);
1818         res = sas_ex_phy_discover(dev, phy_id);
1819         if (res)
1820                 goto out;
1821         /* to support the wide port inserted */
1822         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1823                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1824                 if (i == phy_id)
1825                         continue;
1826                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1827                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1828                         found = true;
1829                         break;
1830                 }
1831         }
1832         if (found) {
1833                 sas_ex_join_wide_port(dev, phy_id);
1834                 return 0;
1835         }
1836         res = sas_ex_discover_devices(dev, phy_id);
1837         if (!res)
1838                 goto out;
1839         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1840                 if (SAS_ADDR(child->sas_addr) ==
1841                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1842                         if (child->dev_type == EDGE_DEV ||
1843                             child->dev_type == FANOUT_DEV)
1844                                 res = sas_discover_bfs_by_root(child);
1845                         break;
1846                 }
1847         }
1848 out:
1849         return res;
1850 }
1851
1852 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1853 {
1854         struct expander_device *ex = &dev->ex_dev;
1855         struct ex_phy *phy = &ex->ex_phy[phy_id];
1856         u8 attached_sas_addr[8];
1857         int res;
1858
1859         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1860         switch (res) {
1861         case SMP_RESP_NO_PHY:
1862                 phy->phy_state = PHY_NOT_PRESENT;
1863                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1864                 goto out; break;
1865         case SMP_RESP_PHY_VACANT:
1866                 phy->phy_state = PHY_VACANT;
1867                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1868                 goto out; break;
1869         case SMP_RESP_FUNC_ACC:
1870                 break;
1871         }
1872
1873         if (SAS_ADDR(attached_sas_addr) == 0) {
1874                 phy->phy_state = PHY_EMPTY;
1875                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1876         } else if (SAS_ADDR(attached_sas_addr) ==
1877                    SAS_ADDR(phy->attached_sas_addr)) {
1878                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1879                             SAS_ADDR(dev->sas_addr), phy_id);
1880                 sas_ex_phy_discover(dev, phy_id);
1881         } else
1882                 res = sas_discover_new(dev, phy_id);
1883 out:
1884         return res;
1885 }
1886
1887 /**
1888  * sas_rediscover - revalidate the domain.
1889  * @dev:domain device to be detect.
1890  * @phy_id: the phy id will be detected.
1891  *
1892  * NOTE: this process _must_ quit (return) as soon as any connection
1893  * errors are encountered.  Connection recovery is done elsewhere.
1894  * Discover process only interrogates devices in order to discover the
1895  * domain.For plugging out, we un-register the device only when it is
1896  * the last phy in the port, for other phys in this port, we just delete it
1897  * from the port.For inserting, we do discovery when it is the
1898  * first phy,for other phys in this port, we add it to the port to
1899  * forming the wide-port.
1900  */
1901 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1902 {
1903         struct expander_device *ex = &dev->ex_dev;
1904         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1905         int res = 0;
1906         int i;
1907         bool last = true;       /* is this the last phy of the port */
1908
1909         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1910                     SAS_ADDR(dev->sas_addr), phy_id);
1911
1912         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1913                 for (i = 0; i < ex->num_phys; i++) {
1914                         struct ex_phy *phy = &ex->ex_phy[i];
1915
1916                         if (i == phy_id)
1917                                 continue;
1918                         if (SAS_ADDR(phy->attached_sas_addr) ==
1919                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1920                                 SAS_DPRINTK("phy%d part of wide port with "
1921                                             "phy%d\n", phy_id, i);
1922                                 last = false;
1923                                 break;
1924                         }
1925                 }
1926                 res = sas_rediscover_dev(dev, phy_id, last);
1927         } else
1928                 res = sas_discover_new(dev, phy_id);
1929         return res;
1930 }
1931
1932 /**
1933  * sas_revalidate_domain -- revalidate the domain
1934  * @port: port to the domain of interest
1935  *
1936  * NOTE: this process _must_ quit (return) as soon as any connection
1937  * errors are encountered.  Connection recovery is done elsewhere.
1938  * Discover process only interrogates devices in order to discover the
1939  * domain.
1940  */
1941 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1942 {
1943         int res;
1944         struct domain_device *dev = NULL;
1945
1946         res = sas_find_bcast_dev(port_dev, &dev);
1947         if (res)
1948                 goto out;
1949         if (dev) {
1950                 struct expander_device *ex = &dev->ex_dev;
1951                 int i = 0, phy_id;
1952
1953                 do {
1954                         phy_id = -1;
1955                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
1956                         if (phy_id == -1)
1957                                 break;
1958                         res = sas_rediscover(dev, phy_id);
1959                         i = phy_id + 1;
1960                 } while (i < ex->num_phys);
1961         }
1962 out:
1963         return res;
1964 }
1965
1966 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1967                     struct request *req)
1968 {
1969         struct domain_device *dev;
1970         int ret, type;
1971         struct request *rsp = req->next_rq;
1972
1973         if (!rsp) {
1974                 printk("%s: space for a smp response is missing\n",
1975                        __func__);
1976                 return -EINVAL;
1977         }
1978
1979         /* no rphy means no smp target support (ie aic94xx host) */
1980         if (!rphy)
1981                 return sas_smp_host_handler(shost, req, rsp);
1982
1983         type = rphy->identify.device_type;
1984
1985         if (type != SAS_EDGE_EXPANDER_DEVICE &&
1986             type != SAS_FANOUT_EXPANDER_DEVICE) {
1987                 printk("%s: can we send a smp request to a device?\n",
1988                        __func__);
1989                 return -EINVAL;
1990         }
1991
1992         dev = sas_find_dev_by_rphy(rphy);
1993         if (!dev) {
1994                 printk("%s: fail to find a domain_device?\n", __func__);
1995                 return -EINVAL;
1996         }
1997
1998         /* do we need to support multiple segments? */
1999         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2000                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2001                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2002                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2003                 return -EINVAL;
2004         }
2005
2006         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2007                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2008         if (ret > 0) {
2009                 /* positive number is the untransferred residual */
2010                 rsp->resid_len = ret;
2011                 req->resid_len = 0;
2012                 ret = 0;
2013         } else if (ret == 0) {
2014                 rsp->resid_len = 0;
2015                 req->resid_len = 0;
2016         }
2017
2018         return ret;
2019 }