]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi-atmel.c
spi: atmel: add support for the internal chip-select of the spi controller
[karo-tx-linux.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30
31 /* SPI register offsets */
32 #define SPI_CR                                  0x0000
33 #define SPI_MR                                  0x0004
34 #define SPI_RDR                                 0x0008
35 #define SPI_TDR                                 0x000c
36 #define SPI_SR                                  0x0010
37 #define SPI_IER                                 0x0014
38 #define SPI_IDR                                 0x0018
39 #define SPI_IMR                                 0x001c
40 #define SPI_CSR0                                0x0030
41 #define SPI_CSR1                                0x0034
42 #define SPI_CSR2                                0x0038
43 #define SPI_CSR3                                0x003c
44 #define SPI_VERSION                             0x00fc
45 #define SPI_RPR                                 0x0100
46 #define SPI_RCR                                 0x0104
47 #define SPI_TPR                                 0x0108
48 #define SPI_TCR                                 0x010c
49 #define SPI_RNPR                                0x0110
50 #define SPI_RNCR                                0x0114
51 #define SPI_TNPR                                0x0118
52 #define SPI_TNCR                                0x011c
53 #define SPI_PTCR                                0x0120
54 #define SPI_PTSR                                0x0124
55
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET                        0
58 #define SPI_SPIEN_SIZE                          1
59 #define SPI_SPIDIS_OFFSET                       1
60 #define SPI_SPIDIS_SIZE                         1
61 #define SPI_SWRST_OFFSET                        7
62 #define SPI_SWRST_SIZE                          1
63 #define SPI_LASTXFER_OFFSET                     24
64 #define SPI_LASTXFER_SIZE                       1
65
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET                         0
68 #define SPI_MSTR_SIZE                           1
69 #define SPI_PS_OFFSET                           1
70 #define SPI_PS_SIZE                             1
71 #define SPI_PCSDEC_OFFSET                       2
72 #define SPI_PCSDEC_SIZE                         1
73 #define SPI_FDIV_OFFSET                         3
74 #define SPI_FDIV_SIZE                           1
75 #define SPI_MODFDIS_OFFSET                      4
76 #define SPI_MODFDIS_SIZE                        1
77 #define SPI_WDRBT_OFFSET                        5
78 #define SPI_WDRBT_SIZE                          1
79 #define SPI_LLB_OFFSET                          7
80 #define SPI_LLB_SIZE                            1
81 #define SPI_PCS_OFFSET                          16
82 #define SPI_PCS_SIZE                            4
83 #define SPI_DLYBCS_OFFSET                       24
84 #define SPI_DLYBCS_SIZE                         8
85
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET                           0
88 #define SPI_RD_SIZE                             16
89
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET                           0
92 #define SPI_TD_SIZE                             16
93
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET                         0
96 #define SPI_RDRF_SIZE                           1
97 #define SPI_TDRE_OFFSET                         1
98 #define SPI_TDRE_SIZE                           1
99 #define SPI_MODF_OFFSET                         2
100 #define SPI_MODF_SIZE                           1
101 #define SPI_OVRES_OFFSET                        3
102 #define SPI_OVRES_SIZE                          1
103 #define SPI_ENDRX_OFFSET                        4
104 #define SPI_ENDRX_SIZE                          1
105 #define SPI_ENDTX_OFFSET                        5
106 #define SPI_ENDTX_SIZE                          1
107 #define SPI_RXBUFF_OFFSET                       6
108 #define SPI_RXBUFF_SIZE                         1
109 #define SPI_TXBUFE_OFFSET                       7
110 #define SPI_TXBUFE_SIZE                         1
111 #define SPI_NSSR_OFFSET                         8
112 #define SPI_NSSR_SIZE                           1
113 #define SPI_TXEMPTY_OFFSET                      9
114 #define SPI_TXEMPTY_SIZE                        1
115 #define SPI_SPIENS_OFFSET                       16
116 #define SPI_SPIENS_SIZE                         1
117
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET                         0
120 #define SPI_CPOL_SIZE                           1
121 #define SPI_NCPHA_OFFSET                        1
122 #define SPI_NCPHA_SIZE                          1
123 #define SPI_CSAAT_OFFSET                        3
124 #define SPI_CSAAT_SIZE                          1
125 #define SPI_BITS_OFFSET                         4
126 #define SPI_BITS_SIZE                           4
127 #define SPI_SCBR_OFFSET                         8
128 #define SPI_SCBR_SIZE                           8
129 #define SPI_DLYBS_OFFSET                        16
130 #define SPI_DLYBS_SIZE                          8
131 #define SPI_DLYBCT_OFFSET                       24
132 #define SPI_DLYBCT_SIZE                         8
133
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET                        0
136 #define SPI_RXCTR_SIZE                          16
137
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET                        0
140 #define SPI_TXCTR_SIZE                          16
141
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET                        0
144 #define SPI_RXNCR_SIZE                          16
145
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET                        0
148 #define SPI_TXNCR_SIZE                          16
149
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET                        0
152 #define SPI_RXTEN_SIZE                          1
153 #define SPI_RXTDIS_OFFSET                       1
154 #define SPI_RXTDIS_SIZE                         1
155 #define SPI_TXTEN_OFFSET                        8
156 #define SPI_TXTEN_SIZE                          1
157 #define SPI_TXTDIS_OFFSET                       9
158 #define SPI_TXTDIS_SIZE                         1
159
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT                          0
162 #define SPI_BITS_9_BPT                          1
163 #define SPI_BITS_10_BPT                         2
164 #define SPI_BITS_11_BPT                         3
165 #define SPI_BITS_12_BPT                         4
166 #define SPI_BITS_13_BPT                         5
167 #define SPI_BITS_14_BPT                         6
168 #define SPI_BITS_15_BPT                         7
169 #define SPI_BITS_16_BPT                         8
170
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173         (1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180           | SPI_BF(name, value))
181
182 /* Register access macros */
183 #ifdef CONFIG_AVR32
184 #define spi_readl(port, reg) \
185         __raw_readl((port)->regs + SPI_##reg)
186 #define spi_writel(port, reg, value) \
187         __raw_writel((value), (port)->regs + SPI_##reg)
188 #else
189 #define spi_readl(port, reg) \
190         readl_relaxed((port)->regs + SPI_##reg)
191 #define spi_writel(port, reg, value) \
192         writel_relaxed((value), (port)->regs + SPI_##reg)
193 #endif
194 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
195  * cache operations; better heuristics consider wordsize and bitrate.
196  */
197 #define DMA_MIN_BYTES   16
198
199 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
200
201 #define AUTOSUSPEND_TIMEOUT     2000
202
203 struct atmel_spi_dma {
204         struct dma_chan                 *chan_rx;
205         struct dma_chan                 *chan_tx;
206         struct scatterlist              sgrx;
207         struct scatterlist              sgtx;
208         struct dma_async_tx_descriptor  *data_desc_rx;
209         struct dma_async_tx_descriptor  *data_desc_tx;
210
211         struct at_dma_slave     dma_slave;
212 };
213
214 struct atmel_spi_caps {
215         bool    is_spi2;
216         bool    has_wdrbt;
217         bool    has_dma_support;
218 };
219
220 /*
221  * The core SPI transfer engine just talks to a register bank to set up
222  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
223  * framework provides the base clock, subdivided for each spi_device.
224  */
225 struct atmel_spi {
226         spinlock_t              lock;
227         unsigned long           flags;
228
229         phys_addr_t             phybase;
230         void __iomem            *regs;
231         int                     irq;
232         struct clk              *clk;
233         struct platform_device  *pdev;
234
235         struct spi_transfer     *current_transfer;
236         int                     current_remaining_bytes;
237         int                     done_status;
238
239         struct completion       xfer_completion;
240
241         /* scratch buffer */
242         void                    *buffer;
243         dma_addr_t              buffer_dma;
244
245         struct atmel_spi_caps   caps;
246
247         bool                    use_dma;
248         bool                    use_pdc;
249         bool                    use_cs_gpios;
250         /* dmaengine data */
251         struct atmel_spi_dma    dma;
252
253         bool                    keep_cs;
254         bool                    cs_active;
255 };
256
257 /* Controller-specific per-slave state */
258 struct atmel_spi_device {
259         unsigned int            npcs_pin;
260         u32                     csr;
261 };
262
263 #define BUFFER_SIZE             PAGE_SIZE
264 #define INVALID_DMA_ADDRESS     0xffffffff
265
266 /*
267  * Version 2 of the SPI controller has
268  *  - CR.LASTXFER
269  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
270  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
271  *  - SPI_CSRx.CSAAT
272  *  - SPI_CSRx.SBCR allows faster clocking
273  */
274 static bool atmel_spi_is_v2(struct atmel_spi *as)
275 {
276         return as->caps.is_spi2;
277 }
278
279 /*
280  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
281  * they assume that spi slave device state will not change on deselect, so
282  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
283  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
284  * controllers have CSAAT and friends.
285  *
286  * Since the CSAAT functionality is a bit weird on newer controllers as
287  * well, we use GPIO to control nCSx pins on all controllers, updating
288  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
289  * support active-high chipselects despite the controller's belief that
290  * only active-low devices/systems exists.
291  *
292  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
293  * right when driven with GPIO.  ("Mode Fault does not allow more than one
294  * Master on Chip Select 0.")  No workaround exists for that ... so for
295  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
296  * and (c) will trigger that first erratum in some cases.
297  */
298
299 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
300 {
301         struct atmel_spi_device *asd = spi->controller_state;
302         unsigned active = spi->mode & SPI_CS_HIGH;
303         u32 mr;
304
305         if (atmel_spi_is_v2(as)) {
306                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
307                 /* For the low SPI version, there is a issue that PDC transfer
308                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
309                  */
310                 spi_writel(as, CSR0, asd->csr);
311                 if (as->caps.has_wdrbt) {
312                         spi_writel(as, MR,
313                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
314                                         | SPI_BIT(WDRBT)
315                                         | SPI_BIT(MODFDIS)
316                                         | SPI_BIT(MSTR));
317                 } else {
318                         spi_writel(as, MR,
319                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
320                                         | SPI_BIT(MODFDIS)
321                                         | SPI_BIT(MSTR));
322                 }
323
324                 mr = spi_readl(as, MR);
325                 if (as->use_cs_gpios)
326                         gpio_set_value(asd->npcs_pin, active);
327         } else {
328                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
329                 int i;
330                 u32 csr;
331
332                 /* Make sure clock polarity is correct */
333                 for (i = 0; i < spi->master->num_chipselect; i++) {
334                         csr = spi_readl(as, CSR0 + 4 * i);
335                         if ((csr ^ cpol) & SPI_BIT(CPOL))
336                                 spi_writel(as, CSR0 + 4 * i,
337                                                 csr ^ SPI_BIT(CPOL));
338                 }
339
340                 mr = spi_readl(as, MR);
341                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
342                 if (as->use_cs_gpios && spi->chip_select != 0)
343                         gpio_set_value(asd->npcs_pin, active);
344                 spi_writel(as, MR, mr);
345         }
346
347         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
348                         asd->npcs_pin, active ? " (high)" : "",
349                         mr);
350 }
351
352 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
353 {
354         struct atmel_spi_device *asd = spi->controller_state;
355         unsigned active = spi->mode & SPI_CS_HIGH;
356         u32 mr;
357
358         /* only deactivate *this* device; sometimes transfers to
359          * another device may be active when this routine is called.
360          */
361         mr = spi_readl(as, MR);
362         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
363                 mr = SPI_BFINS(PCS, 0xf, mr);
364                 spi_writel(as, MR, mr);
365         }
366
367         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
368                         asd->npcs_pin, active ? " (low)" : "",
369                         mr);
370
371         if (!as->use_cs_gpios)
372                 spi_writel(as, CR, SPI_BIT(LASTXFER));
373         else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
374                 gpio_set_value(asd->npcs_pin, !active);
375 }
376
377 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
378 {
379         spin_lock_irqsave(&as->lock, as->flags);
380 }
381
382 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
383 {
384         spin_unlock_irqrestore(&as->lock, as->flags);
385 }
386
387 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
388                                 struct spi_transfer *xfer)
389 {
390         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
391 }
392
393 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
394                                 struct dma_slave_config *slave_config,
395                                 u8 bits_per_word)
396 {
397         int err = 0;
398
399         if (bits_per_word > 8) {
400                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
401                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
402         } else {
403                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
404                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
405         }
406
407         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
408         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
409         slave_config->src_maxburst = 1;
410         slave_config->dst_maxburst = 1;
411         slave_config->device_fc = false;
412
413         slave_config->direction = DMA_MEM_TO_DEV;
414         if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
415                 dev_err(&as->pdev->dev,
416                         "failed to configure tx dma channel\n");
417                 err = -EINVAL;
418         }
419
420         slave_config->direction = DMA_DEV_TO_MEM;
421         if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
422                 dev_err(&as->pdev->dev,
423                         "failed to configure rx dma channel\n");
424                 err = -EINVAL;
425         }
426
427         return err;
428 }
429
430 static int atmel_spi_configure_dma(struct atmel_spi *as)
431 {
432         struct dma_slave_config slave_config;
433         struct device *dev = &as->pdev->dev;
434         int err;
435
436         dma_cap_mask_t mask;
437         dma_cap_zero(mask);
438         dma_cap_set(DMA_SLAVE, mask);
439
440         as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
441         if (IS_ERR(as->dma.chan_tx)) {
442                 err = PTR_ERR(as->dma.chan_tx);
443                 if (err == -EPROBE_DEFER) {
444                         dev_warn(dev, "no DMA channel available at the moment\n");
445                         return err;
446                 }
447                 dev_err(dev,
448                         "DMA TX channel not available, SPI unable to use DMA\n");
449                 err = -EBUSY;
450                 goto error;
451         }
452
453         /*
454          * No reason to check EPROBE_DEFER here since we have already requested
455          * tx channel. If it fails here, it's for another reason.
456          */
457         as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
458
459         if (!as->dma.chan_rx) {
460                 dev_err(dev,
461                         "DMA RX channel not available, SPI unable to use DMA\n");
462                 err = -EBUSY;
463                 goto error;
464         }
465
466         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
467         if (err)
468                 goto error;
469
470         dev_info(&as->pdev->dev,
471                         "Using %s (tx) and %s (rx) for DMA transfers\n",
472                         dma_chan_name(as->dma.chan_tx),
473                         dma_chan_name(as->dma.chan_rx));
474         return 0;
475 error:
476         if (as->dma.chan_rx)
477                 dma_release_channel(as->dma.chan_rx);
478         if (!IS_ERR(as->dma.chan_tx))
479                 dma_release_channel(as->dma.chan_tx);
480         return err;
481 }
482
483 static void atmel_spi_stop_dma(struct atmel_spi *as)
484 {
485         if (as->dma.chan_rx)
486                 dmaengine_terminate_all(as->dma.chan_rx);
487         if (as->dma.chan_tx)
488                 dmaengine_terminate_all(as->dma.chan_tx);
489 }
490
491 static void atmel_spi_release_dma(struct atmel_spi *as)
492 {
493         if (as->dma.chan_rx)
494                 dma_release_channel(as->dma.chan_rx);
495         if (as->dma.chan_tx)
496                 dma_release_channel(as->dma.chan_tx);
497 }
498
499 /* This function is called by the DMA driver from tasklet context */
500 static void dma_callback(void *data)
501 {
502         struct spi_master       *master = data;
503         struct atmel_spi        *as = spi_master_get_devdata(master);
504
505         complete(&as->xfer_completion);
506 }
507
508 /*
509  * Next transfer using PIO.
510  */
511 static void atmel_spi_next_xfer_pio(struct spi_master *master,
512                                 struct spi_transfer *xfer)
513 {
514         struct atmel_spi        *as = spi_master_get_devdata(master);
515         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
516
517         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
518
519         /* Make sure data is not remaining in RDR */
520         spi_readl(as, RDR);
521         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
522                 spi_readl(as, RDR);
523                 cpu_relax();
524         }
525
526         if (xfer->tx_buf) {
527                 if (xfer->bits_per_word > 8)
528                         spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
529                 else
530                         spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
531         } else {
532                 spi_writel(as, TDR, 0);
533         }
534
535         dev_dbg(master->dev.parent,
536                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
537                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
538                 xfer->bits_per_word);
539
540         /* Enable relevant interrupts */
541         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
542 }
543
544 /*
545  * Submit next transfer for DMA.
546  */
547 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
548                                 struct spi_transfer *xfer,
549                                 u32 *plen)
550 {
551         struct atmel_spi        *as = spi_master_get_devdata(master);
552         struct dma_chan         *rxchan = as->dma.chan_rx;
553         struct dma_chan         *txchan = as->dma.chan_tx;
554         struct dma_async_tx_descriptor *rxdesc;
555         struct dma_async_tx_descriptor *txdesc;
556         struct dma_slave_config slave_config;
557         dma_cookie_t            cookie;
558         u32     len = *plen;
559
560         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
561
562         /* Check that the channels are available */
563         if (!rxchan || !txchan)
564                 return -ENODEV;
565
566         /* release lock for DMA operations */
567         atmel_spi_unlock(as);
568
569         /* prepare the RX dma transfer */
570         sg_init_table(&as->dma.sgrx, 1);
571         if (xfer->rx_buf) {
572                 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
573         } else {
574                 as->dma.sgrx.dma_address = as->buffer_dma;
575                 if (len > BUFFER_SIZE)
576                         len = BUFFER_SIZE;
577         }
578
579         /* prepare the TX dma transfer */
580         sg_init_table(&as->dma.sgtx, 1);
581         if (xfer->tx_buf) {
582                 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
583         } else {
584                 as->dma.sgtx.dma_address = as->buffer_dma;
585                 if (len > BUFFER_SIZE)
586                         len = BUFFER_SIZE;
587                 memset(as->buffer, 0, len);
588         }
589
590         sg_dma_len(&as->dma.sgtx) = len;
591         sg_dma_len(&as->dma.sgrx) = len;
592
593         *plen = len;
594
595         if (atmel_spi_dma_slave_config(as, &slave_config, 8))
596                 goto err_exit;
597
598         /* Send both scatterlists */
599         rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
600                                          DMA_FROM_DEVICE,
601                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
602         if (!rxdesc)
603                 goto err_dma;
604
605         txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
606                                          DMA_TO_DEVICE,
607                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
608         if (!txdesc)
609                 goto err_dma;
610
611         dev_dbg(master->dev.parent,
612                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
613                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
614                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
615
616         /* Enable relevant interrupts */
617         spi_writel(as, IER, SPI_BIT(OVRES));
618
619         /* Put the callback on the RX transfer only, that should finish last */
620         rxdesc->callback = dma_callback;
621         rxdesc->callback_param = master;
622
623         /* Submit and fire RX and TX with TX last so we're ready to read! */
624         cookie = rxdesc->tx_submit(rxdesc);
625         if (dma_submit_error(cookie))
626                 goto err_dma;
627         cookie = txdesc->tx_submit(txdesc);
628         if (dma_submit_error(cookie))
629                 goto err_dma;
630         rxchan->device->device_issue_pending(rxchan);
631         txchan->device->device_issue_pending(txchan);
632
633         /* take back lock */
634         atmel_spi_lock(as);
635         return 0;
636
637 err_dma:
638         spi_writel(as, IDR, SPI_BIT(OVRES));
639         atmel_spi_stop_dma(as);
640 err_exit:
641         atmel_spi_lock(as);
642         return -ENOMEM;
643 }
644
645 static void atmel_spi_next_xfer_data(struct spi_master *master,
646                                 struct spi_transfer *xfer,
647                                 dma_addr_t *tx_dma,
648                                 dma_addr_t *rx_dma,
649                                 u32 *plen)
650 {
651         struct atmel_spi        *as = spi_master_get_devdata(master);
652         u32                     len = *plen;
653
654         /* use scratch buffer only when rx or tx data is unspecified */
655         if (xfer->rx_buf)
656                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
657         else {
658                 *rx_dma = as->buffer_dma;
659                 if (len > BUFFER_SIZE)
660                         len = BUFFER_SIZE;
661         }
662
663         if (xfer->tx_buf)
664                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
665         else {
666                 *tx_dma = as->buffer_dma;
667                 if (len > BUFFER_SIZE)
668                         len = BUFFER_SIZE;
669                 memset(as->buffer, 0, len);
670                 dma_sync_single_for_device(&as->pdev->dev,
671                                 as->buffer_dma, len, DMA_TO_DEVICE);
672         }
673
674         *plen = len;
675 }
676
677 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
678                                     struct spi_device *spi,
679                                     struct spi_transfer *xfer)
680 {
681         u32                     scbr, csr;
682         unsigned long           bus_hz;
683
684         /* v1 chips start out at half the peripheral bus speed. */
685         bus_hz = clk_get_rate(as->clk);
686         if (!atmel_spi_is_v2(as))
687                 bus_hz /= 2;
688
689         /*
690          * Calculate the lowest divider that satisfies the
691          * constraint, assuming div32/fdiv/mbz == 0.
692          */
693         if (xfer->speed_hz)
694                 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
695         else
696                 /*
697                  * This can happend if max_speed is null.
698                  * In this case, we set the lowest possible speed
699                  */
700                 scbr = 0xff;
701
702         /*
703          * If the resulting divider doesn't fit into the
704          * register bitfield, we can't satisfy the constraint.
705          */
706         if (scbr >= (1 << SPI_SCBR_SIZE)) {
707                 dev_err(&spi->dev,
708                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
709                         xfer->speed_hz, scbr, bus_hz/255);
710                 return -EINVAL;
711         }
712         if (scbr == 0) {
713                 dev_err(&spi->dev,
714                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
715                         xfer->speed_hz, scbr, bus_hz);
716                 return -EINVAL;
717         }
718         csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
719         csr = SPI_BFINS(SCBR, scbr, csr);
720         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
721
722         return 0;
723 }
724
725 /*
726  * Submit next transfer for PDC.
727  * lock is held, spi irq is blocked
728  */
729 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
730                                         struct spi_message *msg,
731                                         struct spi_transfer *xfer)
732 {
733         struct atmel_spi        *as = spi_master_get_devdata(master);
734         u32                     len;
735         dma_addr_t              tx_dma, rx_dma;
736
737         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
738
739         len = as->current_remaining_bytes;
740         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
741         as->current_remaining_bytes -= len;
742
743         spi_writel(as, RPR, rx_dma);
744         spi_writel(as, TPR, tx_dma);
745
746         if (msg->spi->bits_per_word > 8)
747                 len >>= 1;
748         spi_writel(as, RCR, len);
749         spi_writel(as, TCR, len);
750
751         dev_dbg(&msg->spi->dev,
752                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
753                 xfer, xfer->len, xfer->tx_buf,
754                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
755                 (unsigned long long)xfer->rx_dma);
756
757         if (as->current_remaining_bytes) {
758                 len = as->current_remaining_bytes;
759                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
760                 as->current_remaining_bytes -= len;
761
762                 spi_writel(as, RNPR, rx_dma);
763                 spi_writel(as, TNPR, tx_dma);
764
765                 if (msg->spi->bits_per_word > 8)
766                         len >>= 1;
767                 spi_writel(as, RNCR, len);
768                 spi_writel(as, TNCR, len);
769
770                 dev_dbg(&msg->spi->dev,
771                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
772                         xfer, xfer->len, xfer->tx_buf,
773                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
774                         (unsigned long long)xfer->rx_dma);
775         }
776
777         /* REVISIT: We're waiting for RXBUFF before we start the next
778          * transfer because we need to handle some difficult timing
779          * issues otherwise. If we wait for TXBUFE in one transfer and
780          * then starts waiting for RXBUFF in the next, it's difficult
781          * to tell the difference between the RXBUFF interrupt we're
782          * actually waiting for and the RXBUFF interrupt of the
783          * previous transfer.
784          *
785          * It should be doable, though. Just not now...
786          */
787         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
788         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
789 }
790
791 /*
792  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
793  *  - The buffer is either valid for CPU access, else NULL
794  *  - If the buffer is valid, so is its DMA address
795  *
796  * This driver manages the dma address unless message->is_dma_mapped.
797  */
798 static int
799 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
800 {
801         struct device   *dev = &as->pdev->dev;
802
803         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
804         if (xfer->tx_buf) {
805                 /* tx_buf is a const void* where we need a void * for the dma
806                  * mapping */
807                 void *nonconst_tx = (void *)xfer->tx_buf;
808
809                 xfer->tx_dma = dma_map_single(dev,
810                                 nonconst_tx, xfer->len,
811                                 DMA_TO_DEVICE);
812                 if (dma_mapping_error(dev, xfer->tx_dma))
813                         return -ENOMEM;
814         }
815         if (xfer->rx_buf) {
816                 xfer->rx_dma = dma_map_single(dev,
817                                 xfer->rx_buf, xfer->len,
818                                 DMA_FROM_DEVICE);
819                 if (dma_mapping_error(dev, xfer->rx_dma)) {
820                         if (xfer->tx_buf)
821                                 dma_unmap_single(dev,
822                                                 xfer->tx_dma, xfer->len,
823                                                 DMA_TO_DEVICE);
824                         return -ENOMEM;
825                 }
826         }
827         return 0;
828 }
829
830 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
831                                      struct spi_transfer *xfer)
832 {
833         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
834                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
835                                  xfer->len, DMA_TO_DEVICE);
836         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
837                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
838                                  xfer->len, DMA_FROM_DEVICE);
839 }
840
841 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
842 {
843         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
844 }
845
846 /* Called from IRQ
847  *
848  * Must update "current_remaining_bytes" to keep track of data
849  * to transfer.
850  */
851 static void
852 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
853 {
854         u8              *rxp;
855         u16             *rxp16;
856         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
857
858         if (xfer->rx_buf) {
859                 if (xfer->bits_per_word > 8) {
860                         rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
861                         *rxp16 = spi_readl(as, RDR);
862                 } else {
863                         rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
864                         *rxp = spi_readl(as, RDR);
865                 }
866         } else {
867                 spi_readl(as, RDR);
868         }
869         if (xfer->bits_per_word > 8) {
870                 if (as->current_remaining_bytes > 2)
871                         as->current_remaining_bytes -= 2;
872                 else
873                         as->current_remaining_bytes = 0;
874         } else {
875                 as->current_remaining_bytes--;
876         }
877 }
878
879 /* Interrupt
880  *
881  * No need for locking in this Interrupt handler: done_status is the
882  * only information modified.
883  */
884 static irqreturn_t
885 atmel_spi_pio_interrupt(int irq, void *dev_id)
886 {
887         struct spi_master       *master = dev_id;
888         struct atmel_spi        *as = spi_master_get_devdata(master);
889         u32                     status, pending, imr;
890         struct spi_transfer     *xfer;
891         int                     ret = IRQ_NONE;
892
893         imr = spi_readl(as, IMR);
894         status = spi_readl(as, SR);
895         pending = status & imr;
896
897         if (pending & SPI_BIT(OVRES)) {
898                 ret = IRQ_HANDLED;
899                 spi_writel(as, IDR, SPI_BIT(OVRES));
900                 dev_warn(master->dev.parent, "overrun\n");
901
902                 /*
903                  * When we get an overrun, we disregard the current
904                  * transfer. Data will not be copied back from any
905                  * bounce buffer and msg->actual_len will not be
906                  * updated with the last xfer.
907                  *
908                  * We will also not process any remaning transfers in
909                  * the message.
910                  */
911                 as->done_status = -EIO;
912                 smp_wmb();
913
914                 /* Clear any overrun happening while cleaning up */
915                 spi_readl(as, SR);
916
917                 complete(&as->xfer_completion);
918
919         } else if (pending & SPI_BIT(RDRF)) {
920                 atmel_spi_lock(as);
921
922                 if (as->current_remaining_bytes) {
923                         ret = IRQ_HANDLED;
924                         xfer = as->current_transfer;
925                         atmel_spi_pump_pio_data(as, xfer);
926                         if (!as->current_remaining_bytes)
927                                 spi_writel(as, IDR, pending);
928
929                         complete(&as->xfer_completion);
930                 }
931
932                 atmel_spi_unlock(as);
933         } else {
934                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
935                 ret = IRQ_HANDLED;
936                 spi_writel(as, IDR, pending);
937         }
938
939         return ret;
940 }
941
942 static irqreturn_t
943 atmel_spi_pdc_interrupt(int irq, void *dev_id)
944 {
945         struct spi_master       *master = dev_id;
946         struct atmel_spi        *as = spi_master_get_devdata(master);
947         u32                     status, pending, imr;
948         int                     ret = IRQ_NONE;
949
950         imr = spi_readl(as, IMR);
951         status = spi_readl(as, SR);
952         pending = status & imr;
953
954         if (pending & SPI_BIT(OVRES)) {
955
956                 ret = IRQ_HANDLED;
957
958                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
959                                      | SPI_BIT(OVRES)));
960
961                 /* Clear any overrun happening while cleaning up */
962                 spi_readl(as, SR);
963
964                 as->done_status = -EIO;
965
966                 complete(&as->xfer_completion);
967
968         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
969                 ret = IRQ_HANDLED;
970
971                 spi_writel(as, IDR, pending);
972
973                 complete(&as->xfer_completion);
974         }
975
976         return ret;
977 }
978
979 static int atmel_spi_setup(struct spi_device *spi)
980 {
981         struct atmel_spi        *as;
982         struct atmel_spi_device *asd;
983         u32                     csr;
984         unsigned int            bits = spi->bits_per_word;
985         unsigned int            npcs_pin;
986         int                     ret;
987
988         as = spi_master_get_devdata(spi->master);
989
990         /* see notes above re chipselect */
991         if (!atmel_spi_is_v2(as)
992                         && spi->chip_select == 0
993                         && (spi->mode & SPI_CS_HIGH)) {
994                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
995                 return -EINVAL;
996         }
997
998         csr = SPI_BF(BITS, bits - 8);
999         if (spi->mode & SPI_CPOL)
1000                 csr |= SPI_BIT(CPOL);
1001         if (!(spi->mode & SPI_CPHA))
1002                 csr |= SPI_BIT(NCPHA);
1003         if (!as->use_cs_gpios)
1004                 csr |= SPI_BIT(CSAAT);
1005
1006         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1007          *
1008          * DLYBCT would add delays between words, slowing down transfers.
1009          * It could potentially be useful to cope with DMA bottlenecks, but
1010          * in those cases it's probably best to just use a lower bitrate.
1011          */
1012         csr |= SPI_BF(DLYBS, 0);
1013         csr |= SPI_BF(DLYBCT, 0);
1014
1015         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1016         npcs_pin = (unsigned long)spi->controller_data;
1017
1018         if (!as->use_cs_gpios)
1019                 npcs_pin = spi->chip_select;
1020         else if (gpio_is_valid(spi->cs_gpio))
1021                 npcs_pin = spi->cs_gpio;
1022
1023         asd = spi->controller_state;
1024         if (!asd) {
1025                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1026                 if (!asd)
1027                         return -ENOMEM;
1028
1029                 if (as->use_cs_gpios) {
1030                         ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1031                         if (ret) {
1032                                 kfree(asd);
1033                                 return ret;
1034                         }
1035
1036                         gpio_direction_output(npcs_pin,
1037                                               !(spi->mode & SPI_CS_HIGH));
1038                 }
1039
1040                 asd->npcs_pin = npcs_pin;
1041                 spi->controller_state = asd;
1042         }
1043
1044         asd->csr = csr;
1045
1046         dev_dbg(&spi->dev,
1047                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1048                 bits, spi->mode, spi->chip_select, csr);
1049
1050         if (!atmel_spi_is_v2(as))
1051                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1052
1053         return 0;
1054 }
1055
1056 static int atmel_spi_one_transfer(struct spi_master *master,
1057                                         struct spi_message *msg,
1058                                         struct spi_transfer *xfer)
1059 {
1060         struct atmel_spi        *as;
1061         struct spi_device       *spi = msg->spi;
1062         u8                      bits;
1063         u32                     len;
1064         struct atmel_spi_device *asd;
1065         int                     timeout;
1066         int                     ret;
1067         unsigned long           dma_timeout;
1068
1069         as = spi_master_get_devdata(master);
1070
1071         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1072                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1073                 return -EINVAL;
1074         }
1075
1076         if (xfer->bits_per_word) {
1077                 asd = spi->controller_state;
1078                 bits = (asd->csr >> 4) & 0xf;
1079                 if (bits != xfer->bits_per_word - 8) {
1080                         dev_dbg(&spi->dev,
1081                         "you can't yet change bits_per_word in transfers\n");
1082                         return -ENOPROTOOPT;
1083                 }
1084         }
1085
1086         /*
1087          * DMA map early, for performance (empties dcache ASAP) and
1088          * better fault reporting.
1089          */
1090         if ((!msg->is_dma_mapped)
1091                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1092                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1093                         return -ENOMEM;
1094         }
1095
1096         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1097
1098         as->done_status = 0;
1099         as->current_transfer = xfer;
1100         as->current_remaining_bytes = xfer->len;
1101         while (as->current_remaining_bytes) {
1102                 reinit_completion(&as->xfer_completion);
1103
1104                 if (as->use_pdc) {
1105                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1106                 } else if (atmel_spi_use_dma(as, xfer)) {
1107                         len = as->current_remaining_bytes;
1108                         ret = atmel_spi_next_xfer_dma_submit(master,
1109                                                                 xfer, &len);
1110                         if (ret) {
1111                                 dev_err(&spi->dev,
1112                                         "unable to use DMA, fallback to PIO\n");
1113                                 atmel_spi_next_xfer_pio(master, xfer);
1114                         } else {
1115                                 as->current_remaining_bytes -= len;
1116                                 if (as->current_remaining_bytes < 0)
1117                                         as->current_remaining_bytes = 0;
1118                         }
1119                 } else {
1120                         atmel_spi_next_xfer_pio(master, xfer);
1121                 }
1122
1123                 /* interrupts are disabled, so free the lock for schedule */
1124                 atmel_spi_unlock(as);
1125                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1126                                                           SPI_DMA_TIMEOUT);
1127                 atmel_spi_lock(as);
1128                 if (WARN_ON(dma_timeout == 0)) {
1129                         dev_err(&spi->dev, "spi transfer timeout\n");
1130                         as->done_status = -EIO;
1131                 }
1132
1133                 if (as->done_status)
1134                         break;
1135         }
1136
1137         if (as->done_status) {
1138                 if (as->use_pdc) {
1139                         dev_warn(master->dev.parent,
1140                                 "overrun (%u/%u remaining)\n",
1141                                 spi_readl(as, TCR), spi_readl(as, RCR));
1142
1143                         /*
1144                          * Clean up DMA registers and make sure the data
1145                          * registers are empty.
1146                          */
1147                         spi_writel(as, RNCR, 0);
1148                         spi_writel(as, TNCR, 0);
1149                         spi_writel(as, RCR, 0);
1150                         spi_writel(as, TCR, 0);
1151                         for (timeout = 1000; timeout; timeout--)
1152                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1153                                         break;
1154                         if (!timeout)
1155                                 dev_warn(master->dev.parent,
1156                                          "timeout waiting for TXEMPTY");
1157                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1158                                 spi_readl(as, RDR);
1159
1160                         /* Clear any overrun happening while cleaning up */
1161                         spi_readl(as, SR);
1162
1163                 } else if (atmel_spi_use_dma(as, xfer)) {
1164                         atmel_spi_stop_dma(as);
1165                 }
1166
1167                 if (!msg->is_dma_mapped
1168                         && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1169                         atmel_spi_dma_unmap_xfer(master, xfer);
1170
1171                 return 0;
1172
1173         } else {
1174                 /* only update length if no error */
1175                 msg->actual_length += xfer->len;
1176         }
1177
1178         if (!msg->is_dma_mapped
1179                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1180                 atmel_spi_dma_unmap_xfer(master, xfer);
1181
1182         if (xfer->delay_usecs)
1183                 udelay(xfer->delay_usecs);
1184
1185         if (xfer->cs_change) {
1186                 if (list_is_last(&xfer->transfer_list,
1187                                  &msg->transfers)) {
1188                         as->keep_cs = true;
1189                 } else {
1190                         as->cs_active = !as->cs_active;
1191                         if (as->cs_active)
1192                                 cs_activate(as, msg->spi);
1193                         else
1194                                 cs_deactivate(as, msg->spi);
1195                 }
1196         }
1197
1198         return 0;
1199 }
1200
1201 static int atmel_spi_transfer_one_message(struct spi_master *master,
1202                                                 struct spi_message *msg)
1203 {
1204         struct atmel_spi *as;
1205         struct spi_transfer *xfer;
1206         struct spi_device *spi = msg->spi;
1207         int ret = 0;
1208
1209         as = spi_master_get_devdata(master);
1210
1211         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1212                                         msg, dev_name(&spi->dev));
1213
1214         atmel_spi_lock(as);
1215         cs_activate(as, spi);
1216
1217         as->cs_active = true;
1218         as->keep_cs = false;
1219
1220         msg->status = 0;
1221         msg->actual_length = 0;
1222
1223         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1224                 ret = atmel_spi_one_transfer(master, msg, xfer);
1225                 if (ret)
1226                         goto msg_done;
1227         }
1228
1229         if (as->use_pdc)
1230                 atmel_spi_disable_pdc_transfer(as);
1231
1232         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1233                 dev_dbg(&spi->dev,
1234                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1235                         xfer, xfer->len,
1236                         xfer->tx_buf, &xfer->tx_dma,
1237                         xfer->rx_buf, &xfer->rx_dma);
1238         }
1239
1240 msg_done:
1241         if (!as->keep_cs)
1242                 cs_deactivate(as, msg->spi);
1243
1244         atmel_spi_unlock(as);
1245
1246         msg->status = as->done_status;
1247         spi_finalize_current_message(spi->master);
1248
1249         return ret;
1250 }
1251
1252 static void atmel_spi_cleanup(struct spi_device *spi)
1253 {
1254         struct atmel_spi_device *asd = spi->controller_state;
1255         unsigned                gpio = (unsigned long) spi->controller_data;
1256
1257         if (!asd)
1258                 return;
1259
1260         spi->controller_state = NULL;
1261         gpio_free(gpio);
1262         kfree(asd);
1263 }
1264
1265 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1266 {
1267         return spi_readl(as, VERSION) & 0x00000fff;
1268 }
1269
1270 static void atmel_get_caps(struct atmel_spi *as)
1271 {
1272         unsigned int version;
1273
1274         version = atmel_get_version(as);
1275         dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1276
1277         as->caps.is_spi2 = version > 0x121;
1278         as->caps.has_wdrbt = version >= 0x210;
1279         as->caps.has_dma_support = version >= 0x212;
1280 }
1281
1282 /*-------------------------------------------------------------------------*/
1283
1284 static int atmel_spi_probe(struct platform_device *pdev)
1285 {
1286         struct resource         *regs;
1287         int                     irq;
1288         struct clk              *clk;
1289         int                     ret;
1290         struct spi_master       *master;
1291         struct atmel_spi        *as;
1292
1293         /* Select default pin state */
1294         pinctrl_pm_select_default_state(&pdev->dev);
1295
1296         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297         if (!regs)
1298                 return -ENXIO;
1299
1300         irq = platform_get_irq(pdev, 0);
1301         if (irq < 0)
1302                 return irq;
1303
1304         clk = devm_clk_get(&pdev->dev, "spi_clk");
1305         if (IS_ERR(clk))
1306                 return PTR_ERR(clk);
1307
1308         /* setup spi core then atmel-specific driver state */
1309         ret = -ENOMEM;
1310         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1311         if (!master)
1312                 goto out_free;
1313
1314         /* the spi->mode bits understood by this driver: */
1315         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1316         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1317         master->dev.of_node = pdev->dev.of_node;
1318         master->bus_num = pdev->id;
1319         master->num_chipselect = master->dev.of_node ? 0 : 4;
1320         master->setup = atmel_spi_setup;
1321         master->transfer_one_message = atmel_spi_transfer_one_message;
1322         master->cleanup = atmel_spi_cleanup;
1323         master->auto_runtime_pm = true;
1324         platform_set_drvdata(pdev, master);
1325
1326         as = spi_master_get_devdata(master);
1327
1328         /*
1329          * Scratch buffer is used for throwaway rx and tx data.
1330          * It's coherent to minimize dcache pollution.
1331          */
1332         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1333                                         &as->buffer_dma, GFP_KERNEL);
1334         if (!as->buffer)
1335                 goto out_free;
1336
1337         spin_lock_init(&as->lock);
1338
1339         as->pdev = pdev;
1340         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1341         if (IS_ERR(as->regs)) {
1342                 ret = PTR_ERR(as->regs);
1343                 goto out_free_buffer;
1344         }
1345         as->phybase = regs->start;
1346         as->irq = irq;
1347         as->clk = clk;
1348
1349         init_completion(&as->xfer_completion);
1350
1351         atmel_get_caps(as);
1352
1353         as->use_cs_gpios = true;
1354         if (atmel_spi_is_v2(as) &&
1355             !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1356                 as->use_cs_gpios = false;
1357                 master->num_chipselect = 4;
1358         }
1359
1360         as->use_dma = false;
1361         as->use_pdc = false;
1362         if (as->caps.has_dma_support) {
1363                 ret = atmel_spi_configure_dma(as);
1364                 if (ret == 0)
1365                         as->use_dma = true;
1366                 else if (ret == -EPROBE_DEFER)
1367                         return ret;
1368         } else {
1369                 as->use_pdc = true;
1370         }
1371
1372         if (as->caps.has_dma_support && !as->use_dma)
1373                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1374
1375         if (as->use_pdc) {
1376                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1377                                         0, dev_name(&pdev->dev), master);
1378         } else {
1379                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1380                                         0, dev_name(&pdev->dev), master);
1381         }
1382         if (ret)
1383                 goto out_unmap_regs;
1384
1385         /* Initialize the hardware */
1386         ret = clk_prepare_enable(clk);
1387         if (ret)
1388                 goto out_free_irq;
1389         spi_writel(as, CR, SPI_BIT(SWRST));
1390         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1391         if (as->caps.has_wdrbt) {
1392                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1393                                 | SPI_BIT(MSTR));
1394         } else {
1395                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1396         }
1397
1398         if (as->use_pdc)
1399                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1400         spi_writel(as, CR, SPI_BIT(SPIEN));
1401
1402         /* go! */
1403         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1404                         (unsigned long)regs->start, irq);
1405
1406         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1407         pm_runtime_use_autosuspend(&pdev->dev);
1408         pm_runtime_set_active(&pdev->dev);
1409         pm_runtime_enable(&pdev->dev);
1410
1411         ret = devm_spi_register_master(&pdev->dev, master);
1412         if (ret)
1413                 goto out_free_dma;
1414
1415         return 0;
1416
1417 out_free_dma:
1418         pm_runtime_disable(&pdev->dev);
1419         pm_runtime_set_suspended(&pdev->dev);
1420
1421         if (as->use_dma)
1422                 atmel_spi_release_dma(as);
1423
1424         spi_writel(as, CR, SPI_BIT(SWRST));
1425         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426         clk_disable_unprepare(clk);
1427 out_free_irq:
1428 out_unmap_regs:
1429 out_free_buffer:
1430         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1431                         as->buffer_dma);
1432 out_free:
1433         spi_master_put(master);
1434         return ret;
1435 }
1436
1437 static int atmel_spi_remove(struct platform_device *pdev)
1438 {
1439         struct spi_master       *master = platform_get_drvdata(pdev);
1440         struct atmel_spi        *as = spi_master_get_devdata(master);
1441
1442         pm_runtime_get_sync(&pdev->dev);
1443
1444         /* reset the hardware and block queue progress */
1445         spin_lock_irq(&as->lock);
1446         if (as->use_dma) {
1447                 atmel_spi_stop_dma(as);
1448                 atmel_spi_release_dma(as);
1449         }
1450
1451         spi_writel(as, CR, SPI_BIT(SWRST));
1452         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1453         spi_readl(as, SR);
1454         spin_unlock_irq(&as->lock);
1455
1456         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1457                         as->buffer_dma);
1458
1459         clk_disable_unprepare(as->clk);
1460
1461         pm_runtime_put_noidle(&pdev->dev);
1462         pm_runtime_disable(&pdev->dev);
1463
1464         return 0;
1465 }
1466
1467 #ifdef CONFIG_PM
1468 static int atmel_spi_runtime_suspend(struct device *dev)
1469 {
1470         struct spi_master *master = dev_get_drvdata(dev);
1471         struct atmel_spi *as = spi_master_get_devdata(master);
1472
1473         clk_disable_unprepare(as->clk);
1474         pinctrl_pm_select_sleep_state(dev);
1475
1476         return 0;
1477 }
1478
1479 static int atmel_spi_runtime_resume(struct device *dev)
1480 {
1481         struct spi_master *master = dev_get_drvdata(dev);
1482         struct atmel_spi *as = spi_master_get_devdata(master);
1483
1484         pinctrl_pm_select_default_state(dev);
1485
1486         return clk_prepare_enable(as->clk);
1487 }
1488
1489 static int atmel_spi_suspend(struct device *dev)
1490 {
1491         struct spi_master *master = dev_get_drvdata(dev);
1492         int ret;
1493
1494         /* Stop the queue running */
1495         ret = spi_master_suspend(master);
1496         if (ret) {
1497                 dev_warn(dev, "cannot suspend master\n");
1498                 return ret;
1499         }
1500
1501         if (!pm_runtime_suspended(dev))
1502                 atmel_spi_runtime_suspend(dev);
1503
1504         return 0;
1505 }
1506
1507 static int atmel_spi_resume(struct device *dev)
1508 {
1509         struct spi_master *master = dev_get_drvdata(dev);
1510         int ret;
1511
1512         if (!pm_runtime_suspended(dev)) {
1513                 ret = atmel_spi_runtime_resume(dev);
1514                 if (ret)
1515                         return ret;
1516         }
1517
1518         /* Start the queue running */
1519         ret = spi_master_resume(master);
1520         if (ret)
1521                 dev_err(dev, "problem starting queue (%d)\n", ret);
1522
1523         return ret;
1524 }
1525
1526 static const struct dev_pm_ops atmel_spi_pm_ops = {
1527         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1528         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1529                            atmel_spi_runtime_resume, NULL)
1530 };
1531 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1532 #else
1533 #define ATMEL_SPI_PM_OPS        NULL
1534 #endif
1535
1536 #if defined(CONFIG_OF)
1537 static const struct of_device_id atmel_spi_dt_ids[] = {
1538         { .compatible = "atmel,at91rm9200-spi" },
1539         { /* sentinel */ }
1540 };
1541
1542 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1543 #endif
1544
1545 static struct platform_driver atmel_spi_driver = {
1546         .driver         = {
1547                 .name   = "atmel_spi",
1548                 .pm     = ATMEL_SPI_PM_OPS,
1549                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1550         },
1551         .probe          = atmel_spi_probe,
1552         .remove         = atmel_spi_remove,
1553 };
1554 module_platform_driver(atmel_spi_driver);
1555
1556 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1557 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1558 MODULE_LICENSE("GPL");
1559 MODULE_ALIAS("platform:atmel_spi");