]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi-sirf.c
Merge remote-tracking branches 'regulator/topic/s5m8767', 'regulator/topic/stub'...
[karo-tx-linux.git] / drivers / spi / spi-sirf.c
1 /*
2  * SPI bus driver for CSR SiRFprimaII
3  *
4  * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
5  *
6  * Licensed under GPLv2 or later.
7  */
8
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/clk.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/of.h>
16 #include <linux/bitops.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/of_gpio.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi_bitbang.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-direction.h>
24 #include <linux/dma-mapping.h>
25
26 #define DRIVER_NAME "sirfsoc_spi"
27
28 #define SIRFSOC_SPI_CTRL                0x0000
29 #define SIRFSOC_SPI_CMD                 0x0004
30 #define SIRFSOC_SPI_TX_RX_EN            0x0008
31 #define SIRFSOC_SPI_INT_EN              0x000C
32 #define SIRFSOC_SPI_INT_STATUS          0x0010
33 #define SIRFSOC_SPI_TX_DMA_IO_CTRL      0x0100
34 #define SIRFSOC_SPI_TX_DMA_IO_LEN       0x0104
35 #define SIRFSOC_SPI_TXFIFO_CTRL         0x0108
36 #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK    0x010C
37 #define SIRFSOC_SPI_TXFIFO_OP           0x0110
38 #define SIRFSOC_SPI_TXFIFO_STATUS       0x0114
39 #define SIRFSOC_SPI_TXFIFO_DATA         0x0118
40 #define SIRFSOC_SPI_RX_DMA_IO_CTRL      0x0120
41 #define SIRFSOC_SPI_RX_DMA_IO_LEN       0x0124
42 #define SIRFSOC_SPI_RXFIFO_CTRL         0x0128
43 #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK    0x012C
44 #define SIRFSOC_SPI_RXFIFO_OP           0x0130
45 #define SIRFSOC_SPI_RXFIFO_STATUS       0x0134
46 #define SIRFSOC_SPI_RXFIFO_DATA         0x0138
47 #define SIRFSOC_SPI_DUMMY_DELAY_CTL     0x0144
48
49 /* SPI CTRL register defines */
50 #define SIRFSOC_SPI_SLV_MODE            BIT(16)
51 #define SIRFSOC_SPI_CMD_MODE            BIT(17)
52 #define SIRFSOC_SPI_CS_IO_OUT           BIT(18)
53 #define SIRFSOC_SPI_CS_IO_MODE          BIT(19)
54 #define SIRFSOC_SPI_CLK_IDLE_STAT       BIT(20)
55 #define SIRFSOC_SPI_CS_IDLE_STAT        BIT(21)
56 #define SIRFSOC_SPI_TRAN_MSB            BIT(22)
57 #define SIRFSOC_SPI_DRV_POS_EDGE        BIT(23)
58 #define SIRFSOC_SPI_CS_HOLD_TIME        BIT(24)
59 #define SIRFSOC_SPI_CLK_SAMPLE_MODE     BIT(25)
60 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8   (0 << 26)
61 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12  (1 << 26)
62 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16  (2 << 26)
63 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32  (3 << 26)
64 #define SIRFSOC_SPI_CMD_BYTE_NUM(x)             ((x & 3) << 28)
65 #define SIRFSOC_SPI_ENA_AUTO_CLR                BIT(30)
66 #define SIRFSOC_SPI_MUL_DAT_MODE                BIT(31)
67
68 /* Interrupt Enable */
69 #define SIRFSOC_SPI_RX_DONE_INT_EN              BIT(0)
70 #define SIRFSOC_SPI_TX_DONE_INT_EN              BIT(1)
71 #define SIRFSOC_SPI_RX_OFLOW_INT_EN             BIT(2)
72 #define SIRFSOC_SPI_TX_UFLOW_INT_EN             BIT(3)
73 #define SIRFSOC_SPI_RX_IO_DMA_INT_EN    BIT(4)
74 #define SIRFSOC_SPI_TX_IO_DMA_INT_EN    BIT(5)
75 #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN  BIT(6)
76 #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
77 #define SIRFSOC_SPI_RXFIFO_THD_INT_EN   BIT(8)
78 #define SIRFSOC_SPI_TXFIFO_THD_INT_EN   BIT(9)
79 #define SIRFSOC_SPI_FRM_END_INT_EN      BIT(10)
80
81 #define SIRFSOC_SPI_INT_MASK_ALL                0x1FFF
82
83 /* Interrupt status */
84 #define SIRFSOC_SPI_RX_DONE             BIT(0)
85 #define SIRFSOC_SPI_TX_DONE             BIT(1)
86 #define SIRFSOC_SPI_RX_OFLOW            BIT(2)
87 #define SIRFSOC_SPI_TX_UFLOW            BIT(3)
88 #define SIRFSOC_SPI_RX_FIFO_FULL        BIT(6)
89 #define SIRFSOC_SPI_TXFIFO_EMPTY        BIT(7)
90 #define SIRFSOC_SPI_RXFIFO_THD_REACH    BIT(8)
91 #define SIRFSOC_SPI_TXFIFO_THD_REACH    BIT(9)
92 #define SIRFSOC_SPI_FRM_END             BIT(10)
93
94 /* TX RX enable */
95 #define SIRFSOC_SPI_RX_EN               BIT(0)
96 #define SIRFSOC_SPI_TX_EN               BIT(1)
97 #define SIRFSOC_SPI_CMD_TX_EN           BIT(2)
98
99 #define SIRFSOC_SPI_IO_MODE_SEL         BIT(0)
100 #define SIRFSOC_SPI_RX_DMA_FLUSH        BIT(2)
101
102 /* FIFO OPs */
103 #define SIRFSOC_SPI_FIFO_RESET          BIT(0)
104 #define SIRFSOC_SPI_FIFO_START          BIT(1)
105
106 /* FIFO CTRL */
107 #define SIRFSOC_SPI_FIFO_WIDTH_BYTE     (0 << 0)
108 #define SIRFSOC_SPI_FIFO_WIDTH_WORD     (1 << 0)
109 #define SIRFSOC_SPI_FIFO_WIDTH_DWORD    (2 << 0)
110
111 /* FIFO Status */
112 #define SIRFSOC_SPI_FIFO_LEVEL_MASK     0xFF
113 #define SIRFSOC_SPI_FIFO_FULL           BIT(8)
114 #define SIRFSOC_SPI_FIFO_EMPTY          BIT(9)
115
116 /* 256 bytes rx/tx FIFO */
117 #define SIRFSOC_SPI_FIFO_SIZE           256
118 #define SIRFSOC_SPI_DAT_FRM_LEN_MAX     (64 * 1024)
119
120 #define SIRFSOC_SPI_FIFO_SC(x)          ((x) & 0x3F)
121 #define SIRFSOC_SPI_FIFO_LC(x)          (((x) & 0x3F) << 10)
122 #define SIRFSOC_SPI_FIFO_HC(x)          (((x) & 0x3F) << 20)
123 #define SIRFSOC_SPI_FIFO_THD(x)         (((x) & 0xFF) << 2)
124
125 /*
126  * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
127  * due to the limitation of dma controller
128  */
129
130 #define ALIGNED(x) (!((u32)x & 0x3))
131 #define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
132         ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
133
134 #define SIRFSOC_MAX_CMD_BYTES   4
135
136 struct sirfsoc_spi {
137         struct spi_bitbang bitbang;
138         struct completion rx_done;
139         struct completion tx_done;
140
141         void __iomem *base;
142         u32 ctrl_freq;  /* SPI controller clock speed */
143         struct clk *clk;
144
145         /* rx & tx bufs from the spi_transfer */
146         const void *tx;
147         void *rx;
148
149         /* place received word into rx buffer */
150         void (*rx_word) (struct sirfsoc_spi *);
151         /* get word from tx buffer for sending */
152         void (*tx_word) (struct sirfsoc_spi *);
153
154         /* number of words left to be tranmitted/received */
155         unsigned int left_tx_word;
156         unsigned int left_rx_word;
157
158         /* rx & tx DMA channels */
159         struct dma_chan *rx_chan;
160         struct dma_chan *tx_chan;
161         dma_addr_t src_start;
162         dma_addr_t dst_start;
163         void *dummypage;
164         int word_width; /* in bytes */
165
166         /*
167          * if tx size is not more than 4 and rx size is NULL, use
168          * command model
169          */
170         bool    tx_by_cmd;
171
172         int chipselect[0];
173 };
174
175 static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
176 {
177         u32 data;
178         u8 *rx = sspi->rx;
179
180         data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
181
182         if (rx) {
183                 *rx++ = (u8) data;
184                 sspi->rx = rx;
185         }
186
187         sspi->left_rx_word--;
188 }
189
190 static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
191 {
192         u32 data = 0;
193         const u8 *tx = sspi->tx;
194
195         if (tx) {
196                 data = *tx++;
197                 sspi->tx = tx;
198         }
199
200         writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
201         sspi->left_tx_word--;
202 }
203
204 static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
205 {
206         u32 data;
207         u16 *rx = sspi->rx;
208
209         data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
210
211         if (rx) {
212                 *rx++ = (u16) data;
213                 sspi->rx = rx;
214         }
215
216         sspi->left_rx_word--;
217 }
218
219 static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
220 {
221         u32 data = 0;
222         const u16 *tx = sspi->tx;
223
224         if (tx) {
225                 data = *tx++;
226                 sspi->tx = tx;
227         }
228
229         writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
230         sspi->left_tx_word--;
231 }
232
233 static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
234 {
235         u32 data;
236         u32 *rx = sspi->rx;
237
238         data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
239
240         if (rx) {
241                 *rx++ = (u32) data;
242                 sspi->rx = rx;
243         }
244
245         sspi->left_rx_word--;
246
247 }
248
249 static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
250 {
251         u32 data = 0;
252         const u32 *tx = sspi->tx;
253
254         if (tx) {
255                 data = *tx++;
256                 sspi->tx = tx;
257         }
258
259         writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
260         sspi->left_tx_word--;
261 }
262
263 static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
264 {
265         struct sirfsoc_spi *sspi = dev_id;
266         u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
267
268         writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
269
270         if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
271                 complete(&sspi->tx_done);
272                 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
273                 return IRQ_HANDLED;
274         }
275
276         /* Error Conditions */
277         if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
278                         spi_stat & SIRFSOC_SPI_TX_UFLOW) {
279                 complete(&sspi->rx_done);
280                 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
281         }
282
283         if (spi_stat & (SIRFSOC_SPI_FRM_END
284                         | SIRFSOC_SPI_RXFIFO_THD_REACH))
285                 while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
286                                 & SIRFSOC_SPI_FIFO_EMPTY)) &&
287                                 sspi->left_rx_word)
288                         sspi->rx_word(sspi);
289
290         if (spi_stat & (SIRFSOC_SPI_TXFIFO_EMPTY |
291                         SIRFSOC_SPI_TXFIFO_THD_REACH))
292                 while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
293                                 & SIRFSOC_SPI_FIFO_FULL)) &&
294                                 sspi->left_tx_word)
295                         sspi->tx_word(sspi);
296
297         /* Received all words */
298         if ((sspi->left_rx_word == 0) && (sspi->left_tx_word == 0)) {
299                 complete(&sspi->rx_done);
300                 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
301         }
302         return IRQ_HANDLED;
303 }
304
305 static void spi_sirfsoc_dma_fini_callback(void *data)
306 {
307         struct completion *dma_complete = data;
308
309         complete(dma_complete);
310 }
311
312 static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
313 {
314         struct sirfsoc_spi *sspi;
315         int timeout = t->len * 10;
316         sspi = spi_master_get_devdata(spi->master);
317
318         sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
319         sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
320         sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
321         reinit_completion(&sspi->rx_done);
322         reinit_completion(&sspi->tx_done);
323
324         writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
325
326         /*
327          * fill tx_buf into command register and wait for its completion
328          */
329         if (sspi->tx_by_cmd) {
330                 u32 cmd;
331                 memcpy(&cmd, sspi->tx, t->len);
332
333                 if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
334                         cmd = cpu_to_be32(cmd) >>
335                                 ((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
336                 if (sspi->word_width == 2 && t->len == 4 &&
337                                 (!(spi->mode & SPI_LSB_FIRST)))
338                         cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
339
340                 writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
341                 writel(SIRFSOC_SPI_FRM_END_INT_EN,
342                         sspi->base + SIRFSOC_SPI_INT_EN);
343                 writel(SIRFSOC_SPI_CMD_TX_EN,
344                         sspi->base + SIRFSOC_SPI_TX_RX_EN);
345
346                 if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
347                         dev_err(&spi->dev, "transfer timeout\n");
348                         return 0;
349                 }
350
351                 return t->len;
352         }
353
354         if (sspi->left_tx_word == 1) {
355                 writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
356                         SIRFSOC_SPI_ENA_AUTO_CLR,
357                         sspi->base + SIRFSOC_SPI_CTRL);
358                 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
359                 writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
360         } else if ((sspi->left_tx_word > 1) && (sspi->left_tx_word <
361                                 SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
362                 writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
363                                 SIRFSOC_SPI_MUL_DAT_MODE |
364                                 SIRFSOC_SPI_ENA_AUTO_CLR,
365                         sspi->base + SIRFSOC_SPI_CTRL);
366                 writel(sspi->left_tx_word - 1,
367                                 sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
368                 writel(sspi->left_tx_word - 1,
369                                 sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
370         } else {
371                 writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
372                         sspi->base + SIRFSOC_SPI_CTRL);
373                 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
374                 writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
375         }
376
377         writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
378         writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
379         writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
380         writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
381
382         if (IS_DMA_VALID(t)) {
383                 struct dma_async_tx_descriptor *rx_desc, *tx_desc;
384
385                 sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
386                 rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
387                         sspi->dst_start, t->len, DMA_DEV_TO_MEM,
388                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
389                 rx_desc->callback = spi_sirfsoc_dma_fini_callback;
390                 rx_desc->callback_param = &sspi->rx_done;
391
392                 sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
393                 tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
394                         sspi->src_start, t->len, DMA_MEM_TO_DEV,
395                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
396                 tx_desc->callback = spi_sirfsoc_dma_fini_callback;
397                 tx_desc->callback_param = &sspi->tx_done;
398
399                 dmaengine_submit(tx_desc);
400                 dmaengine_submit(rx_desc);
401                 dma_async_issue_pending(sspi->tx_chan);
402                 dma_async_issue_pending(sspi->rx_chan);
403         } else {
404                 /* Send the first word to trigger the whole tx/rx process */
405                 sspi->tx_word(sspi);
406
407                 writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
408                         SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
409                         SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
410                         SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
411         }
412
413         writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
414
415         if (!IS_DMA_VALID(t)) { /* for PIO */
416                 if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
417                         dev_err(&spi->dev, "transfer timeout\n");
418         } else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
419                 dev_err(&spi->dev, "transfer timeout\n");
420                 dmaengine_terminate_all(sspi->rx_chan);
421         } else
422                 sspi->left_rx_word = 0;
423
424         /*
425          * we only wait tx-done event if transferring by DMA. for PIO,
426          * we get rx data by writing tx data, so if rx is done, tx has
427          * done earlier
428          */
429         if (IS_DMA_VALID(t)) {
430                 if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
431                         dev_err(&spi->dev, "transfer timeout\n");
432                         dmaengine_terminate_all(sspi->tx_chan);
433                 }
434         }
435
436         if (IS_DMA_VALID(t)) {
437                 dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
438                 dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
439         }
440
441         /* TX, RX FIFO stop */
442         writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
443         writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
444         writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
445         writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
446
447         return t->len - sspi->left_rx_word * sspi->word_width;
448 }
449
450 static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
451 {
452         struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
453
454         if (sspi->chipselect[spi->chip_select] == 0) {
455                 u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
456                 switch (value) {
457                 case BITBANG_CS_ACTIVE:
458                         if (spi->mode & SPI_CS_HIGH)
459                                 regval |= SIRFSOC_SPI_CS_IO_OUT;
460                         else
461                                 regval &= ~SIRFSOC_SPI_CS_IO_OUT;
462                         break;
463                 case BITBANG_CS_INACTIVE:
464                         if (spi->mode & SPI_CS_HIGH)
465                                 regval &= ~SIRFSOC_SPI_CS_IO_OUT;
466                         else
467                                 regval |= SIRFSOC_SPI_CS_IO_OUT;
468                         break;
469                 }
470                 writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
471         } else {
472                 int gpio = sspi->chipselect[spi->chip_select];
473                 switch (value) {
474                 case BITBANG_CS_ACTIVE:
475                         gpio_direction_output(gpio,
476                                         spi->mode & SPI_CS_HIGH ? 1 : 0);
477                         break;
478                 case BITBANG_CS_INACTIVE:
479                         gpio_direction_output(gpio,
480                                         spi->mode & SPI_CS_HIGH ? 0 : 1);
481                         break;
482                 }
483         }
484 }
485
486 static int
487 spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
488 {
489         struct sirfsoc_spi *sspi;
490         u8 bits_per_word = 0;
491         int hz = 0;
492         u32 regval;
493         u32 txfifo_ctrl, rxfifo_ctrl;
494         u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
495
496         sspi = spi_master_get_devdata(spi->master);
497
498         bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
499         hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
500
501         regval = (sspi->ctrl_freq / (2 * hz)) - 1;
502         if (regval > 0xFFFF || regval < 0) {
503                 dev_err(&spi->dev, "Speed %d not supported\n", hz);
504                 return -EINVAL;
505         }
506
507         switch (bits_per_word) {
508         case 8:
509                 regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
510                 sspi->rx_word = spi_sirfsoc_rx_word_u8;
511                 sspi->tx_word = spi_sirfsoc_tx_word_u8;
512                 break;
513         case 12:
514         case 16:
515                 regval |= (bits_per_word ==  12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
516                         SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
517                 sspi->rx_word = spi_sirfsoc_rx_word_u16;
518                 sspi->tx_word = spi_sirfsoc_tx_word_u16;
519                 break;
520         case 32:
521                 regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
522                 sspi->rx_word = spi_sirfsoc_rx_word_u32;
523                 sspi->tx_word = spi_sirfsoc_tx_word_u32;
524                 break;
525         default:
526                 BUG();
527         }
528
529         sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
530         txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
531                                            sspi->word_width;
532         rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
533                                            sspi->word_width;
534
535         if (!(spi->mode & SPI_CS_HIGH))
536                 regval |= SIRFSOC_SPI_CS_IDLE_STAT;
537         if (!(spi->mode & SPI_LSB_FIRST))
538                 regval |= SIRFSOC_SPI_TRAN_MSB;
539         if (spi->mode & SPI_CPOL)
540                 regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
541
542         /*
543          * Data should be driven at least 1/2 cycle before the fetch edge to make
544          * sure that data gets stable at the fetch edge.
545          */
546         if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
547             (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
548                 regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
549         else
550                 regval |= SIRFSOC_SPI_DRV_POS_EDGE;
551
552         writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
553                         SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
554                         SIRFSOC_SPI_FIFO_HC(2),
555                 sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
556         writel(SIRFSOC_SPI_FIFO_SC(2) |
557                         SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
558                         SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
559                 sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
560         writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
561         writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
562
563         if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) {
564                 regval |= (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
565                                 SIRFSOC_SPI_CMD_MODE);
566                 sspi->tx_by_cmd = true;
567         } else {
568                 regval &= ~SIRFSOC_SPI_CMD_MODE;
569                 sspi->tx_by_cmd = false;
570         }
571         /*
572          * set spi controller in RISC chipselect mode, we are controlling CS by
573          * software BITBANG_CS_ACTIVE and BITBANG_CS_INACTIVE.
574          */
575         regval |= SIRFSOC_SPI_CS_IO_MODE;
576         writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
577
578         if (IS_DMA_VALID(t)) {
579                 /* Enable DMA mode for RX, TX */
580                 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
581                 writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
582         } else {
583                 /* Enable IO mode for RX, TX */
584                 writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
585                 writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
586         }
587
588         return 0;
589 }
590
591 static int spi_sirfsoc_setup(struct spi_device *spi)
592 {
593         if (!spi->max_speed_hz)
594                 return -EINVAL;
595
596         return spi_sirfsoc_setup_transfer(spi, NULL);
597 }
598
599 static int spi_sirfsoc_probe(struct platform_device *pdev)
600 {
601         struct sirfsoc_spi *sspi;
602         struct spi_master *master;
603         struct resource *mem_res;
604         int num_cs, cs_gpio, irq;
605         int i;
606         int ret;
607
608         ret = of_property_read_u32(pdev->dev.of_node,
609                         "sirf,spi-num-chipselects", &num_cs);
610         if (ret < 0) {
611                 dev_err(&pdev->dev, "Unable to get chip select number\n");
612                 goto err_cs;
613         }
614
615         master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
616         if (!master) {
617                 dev_err(&pdev->dev, "Unable to allocate SPI master\n");
618                 return -ENOMEM;
619         }
620         platform_set_drvdata(pdev, master);
621         sspi = spi_master_get_devdata(master);
622
623         master->num_chipselect = num_cs;
624
625         for (i = 0; i < master->num_chipselect; i++) {
626                 cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
627                 if (cs_gpio < 0) {
628                         dev_err(&pdev->dev, "can't get cs gpio from DT\n");
629                         ret = -ENODEV;
630                         goto free_master;
631                 }
632
633                 sspi->chipselect[i] = cs_gpio;
634                 if (cs_gpio == 0)
635                         continue; /* use cs from spi controller */
636
637                 ret = gpio_request(cs_gpio, DRIVER_NAME);
638                 if (ret) {
639                         while (i > 0) {
640                                 i--;
641                                 if (sspi->chipselect[i] > 0)
642                                         gpio_free(sspi->chipselect[i]);
643                         }
644                         dev_err(&pdev->dev, "fail to request cs gpios\n");
645                         goto free_master;
646                 }
647         }
648
649         mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
650         sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
651         if (IS_ERR(sspi->base)) {
652                 ret = PTR_ERR(sspi->base);
653                 goto free_master;
654         }
655
656         irq = platform_get_irq(pdev, 0);
657         if (irq < 0) {
658                 ret = -ENXIO;
659                 goto free_master;
660         }
661         ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
662                                 DRIVER_NAME, sspi);
663         if (ret)
664                 goto free_master;
665
666         sspi->bitbang.master = master;
667         sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
668         sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
669         sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
670         sspi->bitbang.master->setup = spi_sirfsoc_setup;
671         master->bus_num = pdev->id;
672         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
673         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
674                                         SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
675         sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
676
677         /* request DMA channels */
678         sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
679         if (!sspi->rx_chan) {
680                 dev_err(&pdev->dev, "can not allocate rx dma channel\n");
681                 ret = -ENODEV;
682                 goto free_master;
683         }
684         sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
685         if (!sspi->tx_chan) {
686                 dev_err(&pdev->dev, "can not allocate tx dma channel\n");
687                 ret = -ENODEV;
688                 goto free_rx_dma;
689         }
690
691         sspi->clk = clk_get(&pdev->dev, NULL);
692         if (IS_ERR(sspi->clk)) {
693                 ret = PTR_ERR(sspi->clk);
694                 goto free_tx_dma;
695         }
696         clk_prepare_enable(sspi->clk);
697         sspi->ctrl_freq = clk_get_rate(sspi->clk);
698
699         init_completion(&sspi->rx_done);
700         init_completion(&sspi->tx_done);
701
702         writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
703         writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
704         writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
705         writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
706         /* We are not using dummy delay between command and data */
707         writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
708
709         sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
710         if (!sspi->dummypage) {
711                 ret = -ENOMEM;
712                 goto free_clk;
713         }
714
715         ret = spi_bitbang_start(&sspi->bitbang);
716         if (ret)
717                 goto free_dummypage;
718
719         dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
720
721         return 0;
722 free_dummypage:
723         kfree(sspi->dummypage);
724 free_clk:
725         clk_disable_unprepare(sspi->clk);
726         clk_put(sspi->clk);
727 free_tx_dma:
728         dma_release_channel(sspi->tx_chan);
729 free_rx_dma:
730         dma_release_channel(sspi->rx_chan);
731 free_master:
732         spi_master_put(master);
733 err_cs:
734         return ret;
735 }
736
737 static int  spi_sirfsoc_remove(struct platform_device *pdev)
738 {
739         struct spi_master *master;
740         struct sirfsoc_spi *sspi;
741         int i;
742
743         master = platform_get_drvdata(pdev);
744         sspi = spi_master_get_devdata(master);
745
746         spi_bitbang_stop(&sspi->bitbang);
747         for (i = 0; i < master->num_chipselect; i++) {
748                 if (sspi->chipselect[i] > 0)
749                         gpio_free(sspi->chipselect[i]);
750         }
751         kfree(sspi->dummypage);
752         clk_disable_unprepare(sspi->clk);
753         clk_put(sspi->clk);
754         dma_release_channel(sspi->rx_chan);
755         dma_release_channel(sspi->tx_chan);
756         spi_master_put(master);
757         return 0;
758 }
759
760 #ifdef CONFIG_PM_SLEEP
761 static int spi_sirfsoc_suspend(struct device *dev)
762 {
763         struct spi_master *master = dev_get_drvdata(dev);
764         struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
765         int ret;
766
767         ret = spi_master_suspend(master);
768         if (ret)
769                 return ret;
770
771         clk_disable(sspi->clk);
772         return 0;
773 }
774
775 static int spi_sirfsoc_resume(struct device *dev)
776 {
777         struct spi_master *master = dev_get_drvdata(dev);
778         struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
779
780         clk_enable(sspi->clk);
781         writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
782         writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
783         writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
784         writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
785
786         return spi_master_resume(master);
787 }
788 #endif
789
790 static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
791                          spi_sirfsoc_resume);
792
793 static const struct of_device_id spi_sirfsoc_of_match[] = {
794         { .compatible = "sirf,prima2-spi", },
795         { .compatible = "sirf,marco-spi", },
796         {}
797 };
798 MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
799
800 static struct platform_driver spi_sirfsoc_driver = {
801         .driver = {
802                 .name = DRIVER_NAME,
803                 .owner = THIS_MODULE,
804                 .pm     = &spi_sirfsoc_pm_ops,
805                 .of_match_table = spi_sirfsoc_of_match,
806         },
807         .probe = spi_sirfsoc_probe,
808         .remove = spi_sirfsoc_remove,
809 };
810 module_platform_driver(spi_sirfsoc_driver);
811
812 MODULE_DESCRIPTION("SiRF SoC SPI master driver");
813 MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
814                 "Barry Song <Baohua.Song@csr.com>");
815 MODULE_LICENSE("GPL v2");