]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/verbs.c
IB/hfi1: Fix adaptive pio packet corruption
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/random.h>
56 #include <linux/vmalloc.h>
57
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64
65 static unsigned int hfi1_lkey_table_size = 16;
66 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
67                    S_IRUGO);
68 MODULE_PARM_DESC(lkey_table_size,
69                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
70
71 static unsigned int hfi1_max_pds = 0xFFFF;
72 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
73 MODULE_PARM_DESC(max_pds,
74                  "Maximum number of protection domains to support");
75
76 static unsigned int hfi1_max_ahs = 0xFFFF;
77 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
79
80 unsigned int hfi1_max_cqes = 0x2FFFF;
81 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_cqes,
83                  "Maximum number of completion queue entries to support");
84
85 unsigned int hfi1_max_cqs = 0x1FFFF;
86 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
87 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
88
89 unsigned int hfi1_max_qp_wrs = 0x3FFF;
90 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
91 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
92
93 unsigned int hfi1_max_qps = 16384;
94 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
95 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
96
97 unsigned int hfi1_max_sges = 0x60;
98 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
99 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
100
101 unsigned int hfi1_max_mcast_grps = 16384;
102 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
103 MODULE_PARM_DESC(max_mcast_grps,
104                  "Maximum number of multicast groups to support");
105
106 unsigned int hfi1_max_mcast_qp_attached = 16;
107 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
108                    uint, S_IRUGO);
109 MODULE_PARM_DESC(max_mcast_qp_attached,
110                  "Maximum number of attached QPs to support");
111
112 unsigned int hfi1_max_srqs = 1024;
113 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
114 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
115
116 unsigned int hfi1_max_srq_sges = 128;
117 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
118 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
119
120 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
121 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
122 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
123
124 unsigned short piothreshold;
125 module_param(piothreshold, ushort, S_IRUGO);
126 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
127
128 #define COPY_CACHELESS 1
129 #define COPY_ADAPTIVE  2
130 static unsigned int sge_copy_mode;
131 module_param(sge_copy_mode, uint, S_IRUGO);
132 MODULE_PARM_DESC(sge_copy_mode,
133                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
134
135 static void verbs_sdma_complete(
136         struct sdma_txreq *cookie,
137         int status);
138
139 static int pio_wait(struct rvt_qp *qp,
140                     struct send_context *sc,
141                     struct hfi1_pkt_state *ps,
142                     u32 flag);
143
144 /* Length of buffer to create verbs txreq cache name */
145 #define TXREQ_NAME_LEN 24
146
147 static uint wss_threshold;
148 module_param(wss_threshold, uint, S_IRUGO);
149 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
150 static uint wss_clean_period = 256;
151 module_param(wss_clean_period, uint, S_IRUGO);
152 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
153
154 /* memory working set size */
155 struct hfi1_wss {
156         unsigned long *entries;
157         atomic_t total_count;
158         atomic_t clean_counter;
159         atomic_t clean_entry;
160
161         int threshold;
162         int num_entries;
163         long pages_mask;
164 };
165
166 static struct hfi1_wss wss;
167
168 int hfi1_wss_init(void)
169 {
170         long llc_size;
171         long llc_bits;
172         long table_size;
173         long table_bits;
174
175         /* check for a valid percent range - default to 80 if none or invalid */
176         if (wss_threshold < 1 || wss_threshold > 100)
177                 wss_threshold = 80;
178         /* reject a wildly large period */
179         if (wss_clean_period > 1000000)
180                 wss_clean_period = 256;
181         /* reject a zero period */
182         if (wss_clean_period == 0)
183                 wss_clean_period = 1;
184
185         /*
186          * Calculate the table size - the next power of 2 larger than the
187          * LLC size.  LLC size is in KiB.
188          */
189         llc_size = wss_llc_size() * 1024;
190         table_size = roundup_pow_of_two(llc_size);
191
192         /* one bit per page in rounded up table */
193         llc_bits = llc_size / PAGE_SIZE;
194         table_bits = table_size / PAGE_SIZE;
195         wss.pages_mask = table_bits - 1;
196         wss.num_entries = table_bits / BITS_PER_LONG;
197
198         wss.threshold = (llc_bits * wss_threshold) / 100;
199         if (wss.threshold == 0)
200                 wss.threshold = 1;
201
202         atomic_set(&wss.clean_counter, wss_clean_period);
203
204         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
205                               GFP_KERNEL);
206         if (!wss.entries) {
207                 hfi1_wss_exit();
208                 return -ENOMEM;
209         }
210
211         return 0;
212 }
213
214 void hfi1_wss_exit(void)
215 {
216         /* coded to handle partially initialized and repeat callers */
217         kfree(wss.entries);
218         wss.entries = NULL;
219 }
220
221 /*
222  * Advance the clean counter.  When the clean period has expired,
223  * clean an entry.
224  *
225  * This is implemented in atomics to avoid locking.  Because multiple
226  * variables are involved, it can be racy which can lead to slightly
227  * inaccurate information.  Since this is only a heuristic, this is
228  * OK.  Any innaccuracies will clean themselves out as the counter
229  * advances.  That said, it is unlikely the entry clean operation will
230  * race - the next possible racer will not start until the next clean
231  * period.
232  *
233  * The clean counter is implemented as a decrement to zero.  When zero
234  * is reached an entry is cleaned.
235  */
236 static void wss_advance_clean_counter(void)
237 {
238         int entry;
239         int weight;
240         unsigned long bits;
241
242         /* become the cleaner if we decrement the counter to zero */
243         if (atomic_dec_and_test(&wss.clean_counter)) {
244                 /*
245                  * Set, not add, the clean period.  This avoids an issue
246                  * where the counter could decrement below the clean period.
247                  * Doing a set can result in lost decrements, slowing the
248                  * clean advance.  Since this a heuristic, this possible
249                  * slowdown is OK.
250                  *
251                  * An alternative is to loop, advancing the counter by a
252                  * clean period until the result is > 0. However, this could
253                  * lead to several threads keeping another in the clean loop.
254                  * This could be mitigated by limiting the number of times
255                  * we stay in the loop.
256                  */
257                 atomic_set(&wss.clean_counter, wss_clean_period);
258
259                 /*
260                  * Uniquely grab the entry to clean and move to next.
261                  * The current entry is always the lower bits of
262                  * wss.clean_entry.  The table size, wss.num_entries,
263                  * is always a power-of-2.
264                  */
265                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
266                         & (wss.num_entries - 1);
267
268                 /* clear the entry and count the bits */
269                 bits = xchg(&wss.entries[entry], 0);
270                 weight = hweight64((u64)bits);
271                 /* only adjust the contended total count if needed */
272                 if (weight)
273                         atomic_sub(weight, &wss.total_count);
274         }
275 }
276
277 /*
278  * Insert the given address into the working set array.
279  */
280 static void wss_insert(void *address)
281 {
282         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
283         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
284         u32 nr = page & (BITS_PER_LONG - 1);
285
286         if (!test_and_set_bit(nr, &wss.entries[entry]))
287                 atomic_inc(&wss.total_count);
288
289         wss_advance_clean_counter();
290 }
291
292 /*
293  * Is the working set larger than the threshold?
294  */
295 static inline int wss_exceeds_threshold(void)
296 {
297         return atomic_read(&wss.total_count) >= wss.threshold;
298 }
299
300 /*
301  * Translate ib_wr_opcode into ib_wc_opcode.
302  */
303 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
304         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
305         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
306         [IB_WR_SEND] = IB_WC_SEND,
307         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
308         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
309         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
310         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
311 };
312
313 /*
314  * Length of header by opcode, 0 --> not supported
315  */
316 const u8 hdr_len_by_opcode[256] = {
317         /* RC */
318         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
319         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
320         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
321         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
322         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
323         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
324         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
325         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
326         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
327         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
328         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
329         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
330         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
331         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
332         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
333         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
334         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
335         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
336         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
337         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
338         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
339         /* UC */
340         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
341         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
342         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
343         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
344         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
345         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
346         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
347         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
348         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
349         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
350         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
351         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
352         /* UD */
353         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
354         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
355 };
356
357 static const opcode_handler opcode_handler_tbl[256] = {
358         /* RC */
359         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
360         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
361         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
362         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
363         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
364         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
365         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
380         /* UC */
381         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
382         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
383         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
384         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
385         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
386         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
387         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
388         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
389         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
390         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
391         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
392         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
393         /* UD */
394         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
395         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
396         /* CNP */
397         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
398 };
399
400 /*
401  * System image GUID.
402  */
403 __be64 ib_hfi1_sys_image_guid;
404
405 /**
406  * hfi1_copy_sge - copy data to SGE memory
407  * @ss: the SGE state
408  * @data: the data to copy
409  * @length: the length of the data
410  * @copy_last: do a separate copy of the last 8 bytes
411  */
412 void hfi1_copy_sge(
413         struct rvt_sge_state *ss,
414         void *data, u32 length,
415         int release,
416         int copy_last)
417 {
418         struct rvt_sge *sge = &ss->sge;
419         int in_last = 0;
420         int i;
421         int cacheless_copy = 0;
422
423         if (sge_copy_mode == COPY_CACHELESS) {
424                 cacheless_copy = length >= PAGE_SIZE;
425         } else if (sge_copy_mode == COPY_ADAPTIVE) {
426                 if (length >= PAGE_SIZE) {
427                         /*
428                          * NOTE: this *assumes*:
429                          * o The first vaddr is the dest.
430                          * o If multiple pages, then vaddr is sequential.
431                          */
432                         wss_insert(sge->vaddr);
433                         if (length >= (2 * PAGE_SIZE))
434                                 wss_insert(sge->vaddr + PAGE_SIZE);
435
436                         cacheless_copy = wss_exceeds_threshold();
437                 } else {
438                         wss_advance_clean_counter();
439                 }
440         }
441         if (copy_last) {
442                 if (length > 8) {
443                         length -= 8;
444                 } else {
445                         copy_last = 0;
446                         in_last = 1;
447                 }
448         }
449
450 again:
451         while (length) {
452                 u32 len = sge->length;
453
454                 if (len > length)
455                         len = length;
456                 if (len > sge->sge_length)
457                         len = sge->sge_length;
458                 WARN_ON_ONCE(len == 0);
459                 if (unlikely(in_last)) {
460                         /* enforce byte transfer ordering */
461                         for (i = 0; i < len; i++)
462                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
463                 } else if (cacheless_copy) {
464                         cacheless_memcpy(sge->vaddr, data, len);
465                 } else {
466                         memcpy(sge->vaddr, data, len);
467                 }
468                 sge->vaddr += len;
469                 sge->length -= len;
470                 sge->sge_length -= len;
471                 if (sge->sge_length == 0) {
472                         if (release)
473                                 rvt_put_mr(sge->mr);
474                         if (--ss->num_sge)
475                                 *sge = *ss->sg_list++;
476                 } else if (sge->length == 0 && sge->mr->lkey) {
477                         if (++sge->n >= RVT_SEGSZ) {
478                                 if (++sge->m >= sge->mr->mapsz)
479                                         break;
480                                 sge->n = 0;
481                         }
482                         sge->vaddr =
483                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
484                         sge->length =
485                                 sge->mr->map[sge->m]->segs[sge->n].length;
486                 }
487                 data += len;
488                 length -= len;
489         }
490
491         if (copy_last) {
492                 copy_last = 0;
493                 in_last = 1;
494                 length = 8;
495                 goto again;
496         }
497 }
498
499 /**
500  * hfi1_skip_sge - skip over SGE memory
501  * @ss: the SGE state
502  * @length: the number of bytes to skip
503  */
504 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
505 {
506         struct rvt_sge *sge = &ss->sge;
507
508         while (length) {
509                 u32 len = sge->length;
510
511                 if (len > length)
512                         len = length;
513                 if (len > sge->sge_length)
514                         len = sge->sge_length;
515                 WARN_ON_ONCE(len == 0);
516                 sge->vaddr += len;
517                 sge->length -= len;
518                 sge->sge_length -= len;
519                 if (sge->sge_length == 0) {
520                         if (release)
521                                 rvt_put_mr(sge->mr);
522                         if (--ss->num_sge)
523                                 *sge = *ss->sg_list++;
524                 } else if (sge->length == 0 && sge->mr->lkey) {
525                         if (++sge->n >= RVT_SEGSZ) {
526                                 if (++sge->m >= sge->mr->mapsz)
527                                         break;
528                                 sge->n = 0;
529                         }
530                         sge->vaddr =
531                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
532                         sge->length =
533                                 sge->mr->map[sge->m]->segs[sge->n].length;
534                 }
535                 length -= len;
536         }
537 }
538
539 /*
540  * Make sure the QP is ready and able to accept the given opcode.
541  */
542 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
543 {
544         struct hfi1_ibport *ibp;
545
546         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
547                 goto dropit;
548         if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
549             (opcode == IB_OPCODE_CNP))
550                 return 1;
551 dropit:
552         ibp = &packet->rcd->ppd->ibport_data;
553         ibp->rvp.n_pkt_drops++;
554         return 0;
555 }
556
557 /**
558  * hfi1_ib_rcv - process an incoming packet
559  * @packet: data packet information
560  *
561  * This is called to process an incoming packet at interrupt level.
562  *
563  * Tlen is the length of the header + data + CRC in bytes.
564  */
565 void hfi1_ib_rcv(struct hfi1_packet *packet)
566 {
567         struct hfi1_ctxtdata *rcd = packet->rcd;
568         struct hfi1_ib_header *hdr = packet->hdr;
569         u32 tlen = packet->tlen;
570         struct hfi1_pportdata *ppd = rcd->ppd;
571         struct hfi1_ibport *ibp = &ppd->ibport_data;
572         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
573         unsigned long flags;
574         u32 qp_num;
575         int lnh;
576         u8 opcode;
577         u16 lid;
578
579         /* Check for GRH */
580         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
581         if (lnh == HFI1_LRH_BTH) {
582                 packet->ohdr = &hdr->u.oth;
583         } else if (lnh == HFI1_LRH_GRH) {
584                 u32 vtf;
585
586                 packet->ohdr = &hdr->u.l.oth;
587                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
588                         goto drop;
589                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
590                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
591                         goto drop;
592                 packet->rcv_flags |= HFI1_HAS_GRH;
593         } else {
594                 goto drop;
595         }
596
597         trace_input_ibhdr(rcd->dd, hdr);
598
599         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
600         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
601
602         /* Get the destination QP number. */
603         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
604         lid = be16_to_cpu(hdr->lrh[1]);
605         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
606                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
607                 struct rvt_mcast *mcast;
608                 struct rvt_mcast_qp *p;
609
610                 if (lnh != HFI1_LRH_GRH)
611                         goto drop;
612                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
613                 if (!mcast)
614                         goto drop;
615                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
616                         packet->qp = p->qp;
617                         spin_lock_irqsave(&packet->qp->r_lock, flags);
618                         if (likely((qp_ok(opcode, packet))))
619                                 opcode_handler_tbl[opcode](packet);
620                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
621                 }
622                 /*
623                  * Notify rvt_multicast_detach() if it is waiting for us
624                  * to finish.
625                  */
626                 if (atomic_dec_return(&mcast->refcount) <= 1)
627                         wake_up(&mcast->wait);
628         } else {
629                 rcu_read_lock();
630                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
631                 if (!packet->qp) {
632                         rcu_read_unlock();
633                         goto drop;
634                 }
635                 spin_lock_irqsave(&packet->qp->r_lock, flags);
636                 if (likely((qp_ok(opcode, packet))))
637                         opcode_handler_tbl[opcode](packet);
638                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
639                 rcu_read_unlock();
640         }
641         return;
642
643 drop:
644         ibp->rvp.n_pkt_drops++;
645 }
646
647 /*
648  * This is called from a timer to check for QPs
649  * which need kernel memory in order to send a packet.
650  */
651 static void mem_timer(unsigned long data)
652 {
653         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
654         struct list_head *list = &dev->memwait;
655         struct rvt_qp *qp = NULL;
656         struct iowait *wait;
657         unsigned long flags;
658         struct hfi1_qp_priv *priv;
659
660         write_seqlock_irqsave(&dev->iowait_lock, flags);
661         if (!list_empty(list)) {
662                 wait = list_first_entry(list, struct iowait, list);
663                 qp = iowait_to_qp(wait);
664                 priv = qp->priv;
665                 list_del_init(&priv->s_iowait.list);
666                 /* refcount held until actual wake up */
667                 if (!list_empty(list))
668                         mod_timer(&dev->mem_timer, jiffies + 1);
669         }
670         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
671
672         if (qp)
673                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
674 }
675
676 void update_sge(struct rvt_sge_state *ss, u32 length)
677 {
678         struct rvt_sge *sge = &ss->sge;
679
680         sge->vaddr += length;
681         sge->length -= length;
682         sge->sge_length -= length;
683         if (sge->sge_length == 0) {
684                 if (--ss->num_sge)
685                         *sge = *ss->sg_list++;
686         } else if (sge->length == 0 && sge->mr->lkey) {
687                 if (++sge->n >= RVT_SEGSZ) {
688                         if (++sge->m >= sge->mr->mapsz)
689                                 return;
690                         sge->n = 0;
691                 }
692                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
693                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
694         }
695 }
696
697 /*
698  * This is called with progress side lock held.
699  */
700 /* New API */
701 static void verbs_sdma_complete(
702         struct sdma_txreq *cookie,
703         int status)
704 {
705         struct verbs_txreq *tx =
706                 container_of(cookie, struct verbs_txreq, txreq);
707         struct rvt_qp *qp = tx->qp;
708
709         spin_lock(&qp->s_lock);
710         if (tx->wqe) {
711                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
712         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
713                 struct hfi1_ib_header *hdr;
714
715                 hdr = &tx->phdr.hdr;
716                 hfi1_rc_send_complete(qp, hdr);
717         }
718         spin_unlock(&qp->s_lock);
719
720         hfi1_put_txreq(tx);
721 }
722
723 static int wait_kmem(struct hfi1_ibdev *dev,
724                      struct rvt_qp *qp,
725                      struct hfi1_pkt_state *ps)
726 {
727         struct hfi1_qp_priv *priv = qp->priv;
728         unsigned long flags;
729         int ret = 0;
730
731         spin_lock_irqsave(&qp->s_lock, flags);
732         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
733                 write_seqlock(&dev->iowait_lock);
734                 list_add_tail(&ps->s_txreq->txreq.list,
735                               &priv->s_iowait.tx_head);
736                 if (list_empty(&priv->s_iowait.list)) {
737                         if (list_empty(&dev->memwait))
738                                 mod_timer(&dev->mem_timer, jiffies + 1);
739                         qp->s_flags |= RVT_S_WAIT_KMEM;
740                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
741                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
742                         atomic_inc(&qp->refcount);
743                 }
744                 write_sequnlock(&dev->iowait_lock);
745                 qp->s_flags &= ~RVT_S_BUSY;
746                 ret = -EBUSY;
747         }
748         spin_unlock_irqrestore(&qp->s_lock, flags);
749
750         return ret;
751 }
752
753 /*
754  * This routine calls txadds for each sg entry.
755  *
756  * Add failures will revert the sge cursor
757  */
758 static noinline int build_verbs_ulp_payload(
759         struct sdma_engine *sde,
760         struct rvt_sge_state *ss,
761         u32 length,
762         struct verbs_txreq *tx)
763 {
764         struct rvt_sge *sg_list = ss->sg_list;
765         struct rvt_sge sge = ss->sge;
766         u8 num_sge = ss->num_sge;
767         u32 len;
768         int ret = 0;
769
770         while (length) {
771                 len = ss->sge.length;
772                 if (len > length)
773                         len = length;
774                 if (len > ss->sge.sge_length)
775                         len = ss->sge.sge_length;
776                 WARN_ON_ONCE(len == 0);
777                 ret = sdma_txadd_kvaddr(
778                         sde->dd,
779                         &tx->txreq,
780                         ss->sge.vaddr,
781                         len);
782                 if (ret)
783                         goto bail_txadd;
784                 update_sge(ss, len);
785                 length -= len;
786         }
787         return ret;
788 bail_txadd:
789         /* unwind cursor */
790         ss->sge = sge;
791         ss->num_sge = num_sge;
792         ss->sg_list = sg_list;
793         return ret;
794 }
795
796 /*
797  * Build the number of DMA descriptors needed to send length bytes of data.
798  *
799  * NOTE: DMA mapping is held in the tx until completed in the ring or
800  *       the tx desc is freed without having been submitted to the ring
801  *
802  * This routine ensures all the helper routine calls succeed.
803  */
804 /* New API */
805 static int build_verbs_tx_desc(
806         struct sdma_engine *sde,
807         struct rvt_sge_state *ss,
808         u32 length,
809         struct verbs_txreq *tx,
810         struct ahg_ib_header *ahdr,
811         u64 pbc)
812 {
813         int ret = 0;
814         struct hfi1_pio_header *phdr = &tx->phdr;
815         u16 hdrbytes = tx->hdr_dwords << 2;
816
817         if (!ahdr->ahgcount) {
818                 ret = sdma_txinit_ahg(
819                         &tx->txreq,
820                         ahdr->tx_flags,
821                         hdrbytes + length,
822                         ahdr->ahgidx,
823                         0,
824                         NULL,
825                         0,
826                         verbs_sdma_complete);
827                 if (ret)
828                         goto bail_txadd;
829                 phdr->pbc = cpu_to_le64(pbc);
830                 ret = sdma_txadd_kvaddr(
831                         sde->dd,
832                         &tx->txreq,
833                         phdr,
834                         hdrbytes);
835                 if (ret)
836                         goto bail_txadd;
837         } else {
838                 ret = sdma_txinit_ahg(
839                         &tx->txreq,
840                         ahdr->tx_flags,
841                         length,
842                         ahdr->ahgidx,
843                         ahdr->ahgcount,
844                         ahdr->ahgdesc,
845                         hdrbytes,
846                         verbs_sdma_complete);
847                 if (ret)
848                         goto bail_txadd;
849         }
850
851         /* add the ulp payload - if any.  ss can be NULL for acks */
852         if (ss)
853                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
854 bail_txadd:
855         return ret;
856 }
857
858 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
859                         u64 pbc)
860 {
861         struct hfi1_qp_priv *priv = qp->priv;
862         struct ahg_ib_header *ahdr = priv->s_hdr;
863         u32 hdrwords = qp->s_hdrwords;
864         struct rvt_sge_state *ss = qp->s_cur_sge;
865         u32 len = qp->s_cur_size;
866         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
867         struct hfi1_ibdev *dev = ps->dev;
868         struct hfi1_pportdata *ppd = ps->ppd;
869         struct verbs_txreq *tx;
870         u64 pbc_flags = 0;
871         u8 sc5 = priv->s_sc;
872
873         int ret;
874
875         tx = ps->s_txreq;
876         if (!sdma_txreq_built(&tx->txreq)) {
877                 if (likely(pbc == 0)) {
878                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
879                         /* No vl15 here */
880                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
881                         pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
882
883                         pbc = create_pbc(ppd,
884                                          pbc_flags,
885                                          qp->srate_mbps,
886                                          vl,
887                                          plen);
888                 }
889                 tx->wqe = qp->s_wqe;
890                 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
891                 if (unlikely(ret))
892                         goto bail_build;
893         }
894         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
895         if (unlikely(ret < 0)) {
896                 if (ret == -ECOMM)
897                         goto bail_ecomm;
898                 return ret;
899         }
900         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
901                                 &ps->s_txreq->phdr.hdr);
902         return ret;
903
904 bail_ecomm:
905         /* The current one got "sent" */
906         return 0;
907 bail_build:
908         ret = wait_kmem(dev, qp, ps);
909         if (!ret) {
910                 /* free txreq - bad state */
911                 hfi1_put_txreq(ps->s_txreq);
912                 ps->s_txreq = NULL;
913         }
914         return ret;
915 }
916
917 /*
918  * If we are now in the error state, return zero to flush the
919  * send work request.
920  */
921 static int pio_wait(struct rvt_qp *qp,
922                     struct send_context *sc,
923                     struct hfi1_pkt_state *ps,
924                     u32 flag)
925 {
926         struct hfi1_qp_priv *priv = qp->priv;
927         struct hfi1_devdata *dd = sc->dd;
928         struct hfi1_ibdev *dev = &dd->verbs_dev;
929         unsigned long flags;
930         int ret = 0;
931
932         /*
933          * Note that as soon as want_buffer() is called and
934          * possibly before it returns, sc_piobufavail()
935          * could be called. Therefore, put QP on the I/O wait list before
936          * enabling the PIO avail interrupt.
937          */
938         spin_lock_irqsave(&qp->s_lock, flags);
939         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
940                 write_seqlock(&dev->iowait_lock);
941                 list_add_tail(&ps->s_txreq->txreq.list,
942                               &priv->s_iowait.tx_head);
943                 if (list_empty(&priv->s_iowait.list)) {
944                         struct hfi1_ibdev *dev = &dd->verbs_dev;
945                         int was_empty;
946
947                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
948                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
949                         dev->n_piowait++;
950                         qp->s_flags |= flag;
951                         was_empty = list_empty(&sc->piowait);
952                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
953                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
954                         atomic_inc(&qp->refcount);
955                         /* counting: only call wantpiobuf_intr if first user */
956                         if (was_empty)
957                                 hfi1_sc_wantpiobuf_intr(sc, 1);
958                 }
959                 write_sequnlock(&dev->iowait_lock);
960                 qp->s_flags &= ~RVT_S_BUSY;
961                 ret = -EBUSY;
962         }
963         spin_unlock_irqrestore(&qp->s_lock, flags);
964         return ret;
965 }
966
967 static void verbs_pio_complete(void *arg, int code)
968 {
969         struct rvt_qp *qp = (struct rvt_qp *)arg;
970         struct hfi1_qp_priv *priv = qp->priv;
971
972         if (iowait_pio_dec(&priv->s_iowait))
973                 iowait_drain_wakeup(&priv->s_iowait);
974 }
975
976 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
977                         u64 pbc)
978 {
979         struct hfi1_qp_priv *priv = qp->priv;
980         u32 hdrwords = qp->s_hdrwords;
981         struct rvt_sge_state *ss = qp->s_cur_sge;
982         u32 len = qp->s_cur_size;
983         u32 dwords = (len + 3) >> 2;
984         u32 plen = hdrwords + dwords + 2; /* includes pbc */
985         struct hfi1_pportdata *ppd = ps->ppd;
986         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
987         u64 pbc_flags = 0;
988         u8 sc5;
989         unsigned long flags = 0;
990         struct send_context *sc;
991         struct pio_buf *pbuf;
992         int wc_status = IB_WC_SUCCESS;
993         int ret = 0;
994         pio_release_cb cb = NULL;
995
996         /* only RC/UC use complete */
997         switch (qp->ibqp.qp_type) {
998         case IB_QPT_RC:
999         case IB_QPT_UC:
1000                 cb = verbs_pio_complete;
1001                 break;
1002         default:
1003                 break;
1004         }
1005
1006         /* vl15 special case taken care of in ud.c */
1007         sc5 = priv->s_sc;
1008         sc = ps->s_txreq->psc;
1009
1010         if (likely(pbc == 0)) {
1011                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1012                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1013                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1014                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1015         }
1016         if (cb)
1017                 iowait_pio_inc(&priv->s_iowait);
1018         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1019         if (unlikely(!pbuf)) {
1020                 if (cb)
1021                         verbs_pio_complete(qp, 0);
1022                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1023                         /*
1024                          * If we have filled the PIO buffers to capacity and are
1025                          * not in an active state this request is not going to
1026                          * go out to so just complete it with an error or else a
1027                          * ULP or the core may be stuck waiting.
1028                          */
1029                         hfi1_cdbg(
1030                                 PIO,
1031                                 "alloc failed. state not active, completing");
1032                         wc_status = IB_WC_GENERAL_ERR;
1033                         goto pio_bail;
1034                 } else {
1035                         /*
1036                          * This is a normal occurrence. The PIO buffs are full
1037                          * up but we are still happily sending, well we could be
1038                          * so lets continue to queue the request.
1039                          */
1040                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1041                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1042                         if (!ret)
1043                                 /* txreq not queued - free */
1044                                 goto bail;
1045                         /* tx consumed in wait */
1046                         return ret;
1047                 }
1048         }
1049
1050         if (len == 0) {
1051                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1052         } else {
1053                 if (ss) {
1054                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1055                         while (len) {
1056                                 void *addr = ss->sge.vaddr;
1057                                 u32 slen = ss->sge.length;
1058
1059                                 if (slen > len)
1060                                         slen = len;
1061                                 update_sge(ss, slen);
1062                                 seg_pio_copy_mid(pbuf, addr, slen);
1063                                 len -= slen;
1064                         }
1065                         seg_pio_copy_end(pbuf);
1066                 }
1067         }
1068
1069         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1070                                &ps->s_txreq->phdr.hdr);
1071
1072 pio_bail:
1073         if (qp->s_wqe) {
1074                 spin_lock_irqsave(&qp->s_lock, flags);
1075                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1076                 spin_unlock_irqrestore(&qp->s_lock, flags);
1077         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1078                 spin_lock_irqsave(&qp->s_lock, flags);
1079                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1080                 spin_unlock_irqrestore(&qp->s_lock, flags);
1081         }
1082
1083         ret = 0;
1084
1085 bail:
1086         hfi1_put_txreq(ps->s_txreq);
1087         return ret;
1088 }
1089
1090 /*
1091  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1092  * being an entry from the ingress partition key table), return 0
1093  * otherwise. Use the matching criteria for egress partition keys
1094  * specified in the OPAv1 spec., section 9.1l.7.
1095  */
1096 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1097 {
1098         u16 mkey = pkey & PKEY_LOW_15_MASK;
1099         u16 ment = ent & PKEY_LOW_15_MASK;
1100
1101         if (mkey == ment) {
1102                 /*
1103                  * If pkey[15] is set (full partition member),
1104                  * is bit 15 in the corresponding table element
1105                  * clear (limited member)?
1106                  */
1107                 if (pkey & PKEY_MEMBER_MASK)
1108                         return !!(ent & PKEY_MEMBER_MASK);
1109                 return 1;
1110         }
1111         return 0;
1112 }
1113
1114 /*
1115  * egress_pkey_check - return 0 if hdr's pkey matches according to the
1116  * criteria in the OPAv1 spec., section 9.11.7.
1117  */
1118 static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
1119                                     struct hfi1_ib_header *hdr,
1120                                     struct rvt_qp *qp)
1121 {
1122         struct hfi1_qp_priv *priv = qp->priv;
1123         struct hfi1_other_headers *ohdr;
1124         struct hfi1_devdata *dd;
1125         int i = 0;
1126         u16 pkey;
1127         u8 lnh, sc5 = priv->s_sc;
1128
1129         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1130                 return 0;
1131
1132         /* locate the pkey within the headers */
1133         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1134         if (lnh == HFI1_LRH_GRH)
1135                 ohdr = &hdr->u.l.oth;
1136         else
1137                 ohdr = &hdr->u.oth;
1138
1139         pkey = (u16)be32_to_cpu(ohdr->bth[0]);
1140
1141         /* If SC15, pkey[0:14] must be 0x7fff */
1142         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1143                 goto bad;
1144
1145         /* Is the pkey = 0x0, or 0x8000? */
1146         if ((pkey & PKEY_LOW_15_MASK) == 0)
1147                 goto bad;
1148
1149         /* The most likely matching pkey has index qp->s_pkey_index */
1150         if (unlikely(!egress_pkey_matches_entry(pkey,
1151                                                 ppd->pkeys
1152                                                 [qp->s_pkey_index]))) {
1153                 /* no match - try the entire table */
1154                 for (; i < MAX_PKEY_VALUES; i++) {
1155                         if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1156                                 break;
1157                 }
1158         }
1159
1160         if (i < MAX_PKEY_VALUES)
1161                 return 0;
1162 bad:
1163         incr_cntr64(&ppd->port_xmit_constraint_errors);
1164         dd = ppd->dd;
1165         if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
1166                 u16 slid = be16_to_cpu(hdr->lrh[3]);
1167
1168                 dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
1169                 dd->err_info_xmit_constraint.slid = slid;
1170                 dd->err_info_xmit_constraint.pkey = pkey;
1171         }
1172         return 1;
1173 }
1174
1175 /**
1176  * get_send_routine - choose an egress routine
1177  *
1178  * Choose an egress routine based on QP type
1179  * and size
1180  */
1181 static inline send_routine get_send_routine(struct rvt_qp *qp,
1182                                             struct verbs_txreq *tx)
1183 {
1184         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1185         struct hfi1_qp_priv *priv = qp->priv;
1186         struct hfi1_ib_header *h = &tx->phdr.hdr;
1187
1188         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1189                 return dd->process_pio_send;
1190         switch (qp->ibqp.qp_type) {
1191         case IB_QPT_SMI:
1192                 return dd->process_pio_send;
1193         case IB_QPT_GSI:
1194         case IB_QPT_UD:
1195                 break;
1196         case IB_QPT_RC:
1197                 if (piothreshold &&
1198                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1199                     (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1200                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1201                     !sdma_txreq_built(&tx->txreq))
1202                         return dd->process_pio_send;
1203                 break;
1204         case IB_QPT_UC:
1205                 if (piothreshold &&
1206                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1207                     (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1208                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1209                     !sdma_txreq_built(&tx->txreq))
1210                         return dd->process_pio_send;
1211                 break;
1212         default:
1213                 break;
1214         }
1215         return dd->process_dma_send;
1216 }
1217
1218 /**
1219  * hfi1_verbs_send - send a packet
1220  * @qp: the QP to send on
1221  * @ps: the state of the packet to send
1222  *
1223  * Return zero if packet is sent or queued OK.
1224  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1225  */
1226 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1227 {
1228         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1229         struct hfi1_qp_priv *priv = qp->priv;
1230         send_routine sr;
1231         int ret;
1232
1233         sr = get_send_routine(qp, ps->s_txreq);
1234         ret = egress_pkey_check(dd->pport, &ps->s_txreq->phdr.hdr, qp);
1235         if (unlikely(ret)) {
1236                 /*
1237                  * The value we are returning here does not get propagated to
1238                  * the verbs caller. Thus we need to complete the request with
1239                  * error otherwise the caller could be sitting waiting on the
1240                  * completion event. Only do this for PIO. SDMA has its own
1241                  * mechanism for handling the errors. So for SDMA we can just
1242                  * return.
1243                  */
1244                 if (sr == dd->process_pio_send) {
1245                         unsigned long flags;
1246
1247                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1248                                   __func__);
1249                         spin_lock_irqsave(&qp->s_lock, flags);
1250                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1251                         spin_unlock_irqrestore(&qp->s_lock, flags);
1252                 }
1253                 return -EINVAL;
1254         }
1255         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1256                 return pio_wait(qp,
1257                                 ps->s_txreq->psc,
1258                                 ps,
1259                                 RVT_S_WAIT_PIO_DRAIN);
1260         return sr(qp, ps, 0);
1261 }
1262
1263 /**
1264  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1265  * @dd: the device data structure
1266  */
1267 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1268 {
1269         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1270
1271         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1272
1273         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1274                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1275                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1276                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1277         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1278         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1279         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1280         rdi->dparms.props.hw_ver = dd->minrev;
1281         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1282         rdi->dparms.props.max_mr_size = ~0ULL;
1283         rdi->dparms.props.max_qp = hfi1_max_qps;
1284         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1285         rdi->dparms.props.max_sge = hfi1_max_sges;
1286         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1287         rdi->dparms.props.max_cq = hfi1_max_cqs;
1288         rdi->dparms.props.max_ah = hfi1_max_ahs;
1289         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1290         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1291         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1292         rdi->dparms.props.max_map_per_fmr = 32767;
1293         rdi->dparms.props.max_pd = hfi1_max_pds;
1294         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1295         rdi->dparms.props.max_qp_init_rd_atom = 255;
1296         rdi->dparms.props.max_srq = hfi1_max_srqs;
1297         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1298         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1299         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1300         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1301         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1302         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1303         rdi->dparms.props.max_total_mcast_qp_attach =
1304                                         rdi->dparms.props.max_mcast_qp_attach *
1305                                         rdi->dparms.props.max_mcast_grp;
1306 }
1307
1308 static inline u16 opa_speed_to_ib(u16 in)
1309 {
1310         u16 out = 0;
1311
1312         if (in & OPA_LINK_SPEED_25G)
1313                 out |= IB_SPEED_EDR;
1314         if (in & OPA_LINK_SPEED_12_5G)
1315                 out |= IB_SPEED_FDR;
1316
1317         return out;
1318 }
1319
1320 /*
1321  * Convert a single OPA link width (no multiple flags) to an IB value.
1322  * A zero OPA link width means link down, which means the IB width value
1323  * is a don't care.
1324  */
1325 static inline u16 opa_width_to_ib(u16 in)
1326 {
1327         switch (in) {
1328         case OPA_LINK_WIDTH_1X:
1329         /* map 2x and 3x to 1x as they don't exist in IB */
1330         case OPA_LINK_WIDTH_2X:
1331         case OPA_LINK_WIDTH_3X:
1332                 return IB_WIDTH_1X;
1333         default: /* link down or unknown, return our largest width */
1334         case OPA_LINK_WIDTH_4X:
1335                 return IB_WIDTH_4X;
1336         }
1337 }
1338
1339 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1340                       struct ib_port_attr *props)
1341 {
1342         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1343         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1344         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1345         u16 lid = ppd->lid;
1346
1347         props->lid = lid ? lid : 0;
1348         props->lmc = ppd->lmc;
1349         /* OPA logical states match IB logical states */
1350         props->state = driver_lstate(ppd);
1351         props->phys_state = hfi1_ibphys_portstate(ppd);
1352         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1353         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1354         /* see rate_show() in ib core/sysfs.c */
1355         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1356         props->max_vl_num = ppd->vls_supported;
1357
1358         /* Once we are a "first class" citizen and have added the OPA MTUs to
1359          * the core we can advertise the larger MTU enum to the ULPs, for now
1360          * advertise only 4K.
1361          *
1362          * Those applications which are either OPA aware or pass the MTU enum
1363          * from the Path Records to us will get the new 8k MTU.  Those that
1364          * attempt to process the MTU enum may fail in various ways.
1365          */
1366         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1367                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1368         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1369                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1370
1371         return 0;
1372 }
1373
1374 static int modify_device(struct ib_device *device,
1375                          int device_modify_mask,
1376                          struct ib_device_modify *device_modify)
1377 {
1378         struct hfi1_devdata *dd = dd_from_ibdev(device);
1379         unsigned i;
1380         int ret;
1381
1382         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1383                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1384                 ret = -EOPNOTSUPP;
1385                 goto bail;
1386         }
1387
1388         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1389                 memcpy(device->node_desc, device_modify->node_desc, 64);
1390                 for (i = 0; i < dd->num_pports; i++) {
1391                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1392
1393                         hfi1_node_desc_chg(ibp);
1394                 }
1395         }
1396
1397         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1398                 ib_hfi1_sys_image_guid =
1399                         cpu_to_be64(device_modify->sys_image_guid);
1400                 for (i = 0; i < dd->num_pports; i++) {
1401                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1402
1403                         hfi1_sys_guid_chg(ibp);
1404                 }
1405         }
1406
1407         ret = 0;
1408
1409 bail:
1410         return ret;
1411 }
1412
1413 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1414 {
1415         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1416         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1417         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1418         int ret;
1419
1420         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1421                              OPA_LINKDOWN_REASON_UNKNOWN);
1422         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1423         return ret;
1424 }
1425
1426 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1427                             int guid_index, __be64 *guid)
1428 {
1429         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1430         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1431
1432         if (guid_index == 0)
1433                 *guid = cpu_to_be64(ppd->guid);
1434         else if (guid_index < HFI1_GUIDS_PER_PORT)
1435                 *guid = ibp->guids[guid_index - 1];
1436         else
1437                 return -EINVAL;
1438
1439         return 0;
1440 }
1441
1442 /*
1443  * convert ah port,sl to sc
1444  */
1445 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1446 {
1447         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1448
1449         return ibp->sl_to_sc[ah->sl];
1450 }
1451
1452 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1453 {
1454         struct hfi1_ibport *ibp;
1455         struct hfi1_pportdata *ppd;
1456         struct hfi1_devdata *dd;
1457         u8 sc5;
1458
1459         /* test the mapping for validity */
1460         ibp = to_iport(ibdev, ah_attr->port_num);
1461         ppd = ppd_from_ibp(ibp);
1462         sc5 = ibp->sl_to_sc[ah_attr->sl];
1463         dd = dd_from_ppd(ppd);
1464         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1465                 return -EINVAL;
1466         return 0;
1467 }
1468
1469 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1470                                struct ib_ah_attr *ah_attr,
1471                                struct rvt_ah *ah)
1472 {
1473         struct hfi1_ibport *ibp;
1474         struct hfi1_pportdata *ppd;
1475         struct hfi1_devdata *dd;
1476         u8 sc5;
1477
1478         /*
1479          * Do not trust reading anything from rvt_ah at this point as it is not
1480          * done being setup. We can however modify things which we need to set.
1481          */
1482
1483         ibp = to_iport(ibdev, ah_attr->port_num);
1484         ppd = ppd_from_ibp(ibp);
1485         sc5 = ibp->sl_to_sc[ah->attr.sl];
1486         dd = dd_from_ppd(ppd);
1487         ah->vl = sc_to_vlt(dd, sc5);
1488         if (ah->vl < num_vls || ah->vl == 15)
1489                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1490 }
1491
1492 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1493 {
1494         struct ib_ah_attr attr;
1495         struct ib_ah *ah = ERR_PTR(-EINVAL);
1496         struct rvt_qp *qp0;
1497
1498         memset(&attr, 0, sizeof(attr));
1499         attr.dlid = dlid;
1500         attr.port_num = ppd_from_ibp(ibp)->port;
1501         rcu_read_lock();
1502         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1503         if (qp0)
1504                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1505         rcu_read_unlock();
1506         return ah;
1507 }
1508
1509 /**
1510  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1511  * @dd: the hfi1_ib device
1512  */
1513 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1514 {
1515         return ARRAY_SIZE(dd->pport[0].pkeys);
1516 }
1517
1518 static void init_ibport(struct hfi1_pportdata *ppd)
1519 {
1520         struct hfi1_ibport *ibp = &ppd->ibport_data;
1521         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1522         int i;
1523
1524         for (i = 0; i < sz; i++) {
1525                 ibp->sl_to_sc[i] = i;
1526                 ibp->sc_to_sl[i] = i;
1527         }
1528
1529         spin_lock_init(&ibp->rvp.lock);
1530         /* Set the prefix to the default value (see ch. 4.1.1) */
1531         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1532         ibp->rvp.sm_lid = 0;
1533         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1534         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1535                 IB_PORT_CAP_MASK_NOTICE_SUP;
1536         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1537         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1538         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1539         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1540         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1541
1542         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1543         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1544 }
1545
1546 /**
1547  * hfi1_register_ib_device - register our device with the infiniband core
1548  * @dd: the device data structure
1549  * Return 0 if successful, errno if unsuccessful.
1550  */
1551 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1552 {
1553         struct hfi1_ibdev *dev = &dd->verbs_dev;
1554         struct ib_device *ibdev = &dev->rdi.ibdev;
1555         struct hfi1_pportdata *ppd = dd->pport;
1556         unsigned i;
1557         int ret;
1558         size_t lcpysz = IB_DEVICE_NAME_MAX;
1559
1560         for (i = 0; i < dd->num_pports; i++)
1561                 init_ibport(ppd + i);
1562
1563         /* Only need to initialize non-zero fields. */
1564
1565         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1566
1567         seqlock_init(&dev->iowait_lock);
1568         INIT_LIST_HEAD(&dev->txwait);
1569         INIT_LIST_HEAD(&dev->memwait);
1570
1571         ret = verbs_txreq_init(dev);
1572         if (ret)
1573                 goto err_verbs_txreq;
1574
1575         /*
1576          * The system image GUID is supposed to be the same for all
1577          * HFIs in a single system but since there can be other
1578          * device types in the system, we can't be sure this is unique.
1579          */
1580         if (!ib_hfi1_sys_image_guid)
1581                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1582         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1583         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1584         ibdev->owner = THIS_MODULE;
1585         ibdev->node_guid = cpu_to_be64(ppd->guid);
1586         ibdev->phys_port_cnt = dd->num_pports;
1587         ibdev->dma_device = &dd->pcidev->dev;
1588         ibdev->modify_device = modify_device;
1589
1590         /* keep process mad in the driver */
1591         ibdev->process_mad = hfi1_process_mad;
1592
1593         strncpy(ibdev->node_desc, init_utsname()->nodename,
1594                 sizeof(ibdev->node_desc));
1595
1596         /*
1597          * Fill in rvt info object.
1598          */
1599         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1600         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1601         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1602         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1603         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1604         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1605         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1606         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1607         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1608         /*
1609          * Fill in rvt info device attributes.
1610          */
1611         hfi1_fill_device_attr(dd);
1612
1613         /* queue pair */
1614         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1615         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1616         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1617         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1618         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1619         dd->verbs_dev.rdi.dparms.qpn_res_end =
1620         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1621         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1622         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1623         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1624         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1625         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1626         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1627
1628         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1629         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1630         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1631         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1632         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1633         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1634         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1635         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1636         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1637         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1638         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1639         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1640         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1641         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1642         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1643         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1644         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1645         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1646
1647         /* completeion queue */
1648         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1649                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1650                  "hfi1_cq%d", dd->unit);
1651         dd->verbs_dev.rdi.dparms.node = dd->node;
1652
1653         /* misc settings */
1654         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1655         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1656         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1657         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1658
1659         ppd = dd->pport;
1660         for (i = 0; i < dd->num_pports; i++, ppd++)
1661                 rvt_init_port(&dd->verbs_dev.rdi,
1662                               &ppd->ibport_data.rvp,
1663                               i,
1664                               ppd->pkeys);
1665
1666         ret = rvt_register_device(&dd->verbs_dev.rdi);
1667         if (ret)
1668                 goto err_verbs_txreq;
1669
1670         ret = hfi1_verbs_register_sysfs(dd);
1671         if (ret)
1672                 goto err_class;
1673
1674         return ret;
1675
1676 err_class:
1677         rvt_unregister_device(&dd->verbs_dev.rdi);
1678 err_verbs_txreq:
1679         verbs_txreq_exit(dev);
1680         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1681         return ret;
1682 }
1683
1684 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1685 {
1686         struct hfi1_ibdev *dev = &dd->verbs_dev;
1687
1688         hfi1_verbs_unregister_sysfs(dd);
1689
1690         rvt_unregister_device(&dd->verbs_dev.rdi);
1691
1692         if (!list_empty(&dev->txwait))
1693                 dd_dev_err(dd, "txwait list not empty!\n");
1694         if (!list_empty(&dev->memwait))
1695                 dd_dev_err(dd, "memwait list not empty!\n");
1696
1697         del_timer_sync(&dev->mem_timer);
1698         verbs_txreq_exit(dev);
1699 }
1700
1701 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1702 {
1703         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1704         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1705         struct hfi1_ib_header *hdr = packet->hdr;
1706         struct rvt_qp *qp = packet->qp;
1707         u32 lqpn, rqpn = 0;
1708         u16 rlid = 0;
1709         u8 sl, sc5, sc4_bit, svc_type;
1710         bool sc4_set = has_sc4_bit(packet);
1711
1712         switch (packet->qp->ibqp.qp_type) {
1713         case IB_QPT_UC:
1714                 rlid = qp->remote_ah_attr.dlid;
1715                 rqpn = qp->remote_qpn;
1716                 svc_type = IB_CC_SVCTYPE_UC;
1717                 break;
1718         case IB_QPT_RC:
1719                 rlid = qp->remote_ah_attr.dlid;
1720                 rqpn = qp->remote_qpn;
1721                 svc_type = IB_CC_SVCTYPE_RC;
1722                 break;
1723         case IB_QPT_SMI:
1724         case IB_QPT_GSI:
1725         case IB_QPT_UD:
1726                 svc_type = IB_CC_SVCTYPE_UD;
1727                 break;
1728         default:
1729                 ibp->rvp.n_pkt_drops++;
1730                 return;
1731         }
1732
1733         sc4_bit = sc4_set << 4;
1734         sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
1735         sc5 |= sc4_bit;
1736         sl = ibp->sc_to_sl[sc5];
1737         lqpn = qp->ibqp.qp_num;
1738
1739         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1740 }