]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/staging/vt6656/rxtx.c
staging: vt6656: rxtx.c s_vGenerateTxParameter replace pTxBufHead void pointer.
[karo-tx-linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: rxtx.c
20  *
21  * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      s_vGenerateTxParameter - Generate tx dma required parameter.
29  *      s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30  *      csBeacon_xmit - beacon tx function
31  *      csMgmt_xmit - management tx function
32  *      s_uGetDataDuration - get tx data required duration
33  *      s_uFillDataHead- fulfill tx data duration header
34  *      s_uGetRTSCTSDuration- get rtx/cts required duration
35  *      s_uGetRTSCTSRsvTime- get rts/cts reserved time
36  *      s_uGetTxRsvTime- get frame reserved time
37  *      s_vFillCTSHead- fulfill CTS ctl header
38  *      s_vFillFragParameter- Set fragment ctl parameter.
39  *      s_vFillRTSHead- fulfill RTS ctl header
40  *      s_vFillTxKey- fulfill tx encrypt key
41  *      s_vSWencryption- Software encrypt header
42  *      vDMA0_tx_80211- tx 802.11 frame via dma0
43  *      vGenerateFIFOHeader- Generate tx FIFO ctl header
44  *
45  * Revision History:
46  *
47  */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int          msglevel                = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68         {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69         {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70     };
71
72 const u16 wFB_Opt0[2][5] = {
73         {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74         {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75     };
76 const u16 wFB_Opt1[2][5] = {
77         {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78         {RATE_6M , RATE_6M,  RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79     };
80
81 #define RTSDUR_BB       0
82 #define RTSDUR_BA       1
83 #define RTSDUR_AA       2
84 #define CTSDUR_BA       3
85 #define RTSDUR_BA_F0    4
86 #define RTSDUR_AA_F0    5
87 #define RTSDUR_BA_F1    6
88 #define RTSDUR_AA_F1    7
89 #define CTSDUR_BA_F0    8
90 #define CTSDUR_BA_F1    9
91 #define DATADUR_B       10
92 #define DATADUR_A       11
93 #define DATADUR_A_F0    12
94 #define DATADUR_A_F1    13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103         void *pvRrvTime, void *rts_cts, u32 cbFrameSize, int bNeedACK,
104         u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108         u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116         struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122         u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125         u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129         int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136         u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139         u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140         int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144         struct vnt_usb_send_context *pContext = NULL;
145         struct vnt_usb_send_context *pReturnContext = NULL;
146         int ii;
147
148     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150     for (ii = 0; ii < pDevice->cbTD; ii++) {
151         pContext = pDevice->apTD[ii];
152         if (pContext->bBoolInUse == false) {
153             pContext->bBoolInUse = true;
154                 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155             pReturnContext = pContext;
156             break;
157         }
158     }
159     if ( ii == pDevice->cbTD ) {
160         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161     }
162     return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168         PSStatCounter pStatistic = &pDevice->scStatistic;
169
170     if (is_broadcast_ether_addr(pbyDestAddr))
171         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172     else if (is_multicast_ether_addr(pbyDestAddr))
173         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174     else
175         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177     pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178     pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179     memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180            pbyDestAddr,
181            ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186         u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188         u32 *pdwIV = (u32 *)pbyIVHead;
189         u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191         u32 dwRevIVCounter;
192
193         /* Fill TXKEY */
194         if (pTransmitKey == NULL)
195                 return;
196
197         dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198         *pdwIV = pDevice->dwIVCounter;
199         pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201         switch (pTransmitKey->byCipherSuite) {
202         case KEY_CTL_WEP:
203                 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204                         memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205                         memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206                                                 pTransmitKey->uKeyLength);
207                 } else {
208                         memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209                         memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210                                                 pTransmitKey->uKeyLength);
211                         if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212                                 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213                         memcpy(pbyBuf+11, pTransmitKey->abyKey,
214                                                 pTransmitKey->uKeyLength);
215                         }
216
217                         memcpy(pDevice->abyPRNG, pbyBuf, 16);
218                 }
219                 /* Append IV after Mac Header */
220                 *pdwIV &= WEP_IV_MASK;
221                 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222                 *pdwIV = cpu_to_le32(*pdwIV);
223
224                 pDevice->dwIVCounter++;
225                 if (pDevice->dwIVCounter > WEP_IV_MASK)
226                         pDevice->dwIVCounter = 0;
227
228                 break;
229         case KEY_CTL_TKIP:
230                 pTransmitKey->wTSC15_0++;
231                 if (pTransmitKey->wTSC15_0 == 0)
232                         pTransmitKey->dwTSC47_16++;
233
234                 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235                         pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236                                                         pDevice->abyPRNG);
237                 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239                 /* Make IV */
240                 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243                                                         0xc0) | 0x20);
244                 /*  Append IV&ExtIV after Mac Header */
245                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248                         "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250                 break;
251         case KEY_CTL_CCMP:
252                 pTransmitKey->wTSC15_0++;
253                 if (pTransmitKey->wTSC15_0 == 0)
254                         pTransmitKey->dwTSC47_16++;
255
256                 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258                 /* Make IV */
259                 *pdwIV = 0;
260                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261                                                         0xc0) | 0x20);
262
263                 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265                 /* Append IV&ExtIV after Mac Header */
266                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268                 if (!mic_hdr)
269                         return;
270
271                 /* MICHDR0 */
272                 mic_hdr->id = 0x59;
273                 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274                 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276                 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277                 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279                 /* MICHDR1 */
280                 if (pDevice->bLongHeader)
281                         mic_hdr->hlen = cpu_to_be16(28);
282                 else
283                         mic_hdr->hlen = cpu_to_be16(22);
284
285                 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286                 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288                 /* MICHDR2 */
289                 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290                 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291                                                                 & 0xc78f);
292                 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294                 if (pDevice->bLongHeader)
295                         memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296         }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302         u32 cbICVlen = 4;
303         u32 dwICV = 0xffffffff;
304         u32 *pdwICV;
305
306     if (pTransmitKey == NULL)
307         return;
308
309     if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310         //=======================================================================
311         // Append ICV after payload
312         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314         // finally, we must invert dwCRC to get the correct answer
315         *pdwICV = cpu_to_le32(~dwICV);
316         // RC4 encryption
317         rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319         //=======================================================================
320     } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321         //=======================================================================
322         //Append ICV after payload
323         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325         // finally, we must invert dwCRC to get the correct answer
326         *pdwICV = cpu_to_le32(~dwICV);
327         // RC4 encryption
328         rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330         //=======================================================================
331     }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336         return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337                                                         [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A     0
341              PK_TYPE_11B     1
342              PK_TYPE_11GB    2
343              PK_TYPE_11GA    3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346         u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348         u32 uDataTime, uAckTime;
349
350     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351     if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353     } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355     }
356
357     if (bNeedAck) {
358         return (uDataTime + pDevice->uSIFS + uAckTime);
359     }
360     else {
361         return uDataTime;
362     }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366         u32 frame_length, u16 rate, int need_ack)
367 {
368         return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369                 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374         u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376         u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378     uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381     if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384     }
385     else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389     }
390     else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393     }
394     else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397         uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398         return uRrvTime;
399     }
400
401     //RTSRrvTime
402     uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403         return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408                                         u8 byPktType, int bNeedAck)
409 {
410         u32 uAckTime = 0;
411
412         if (bNeedAck) {
413                 if (byPktType == PK_TYPE_11B)
414                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415                                 byPktType, 14, pDevice->byTopCCKBasicRate);
416                 else
417                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418                                 byPktType, 14, pDevice->byTopOFDMBasicRate);
419                 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420         }
421
422         return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427         u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428         u8 byFBOption)
429 {
430         u32 uCTSTime = 0, uDurTime = 0;
431
432     switch (byDurType) {
433
434     case RTSDUR_BB:    //RTSDuration_bb
435         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437         break;
438
439     case RTSDUR_BA:    //RTSDuration_ba
440         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442         break;
443
444     case RTSDUR_AA:    //RTSDuration_aa
445         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447         break;
448
449     case CTSDUR_BA:    //CTSDuration_ba
450         uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451         break;
452
453     case RTSDUR_BA_F0: //RTSDuration_ba_f0
454         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459         }
460         break;
461
462     case RTSDUR_AA_F0: //RTSDuration_aa_f0
463         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468         }
469         break;
470
471     case RTSDUR_BA_F1: //RTSDuration_ba_f1
472         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477         }
478         break;
479
480     case RTSDUR_AA_F1: //RTSDuration_aa_f1
481         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486         }
487         break;
488
489     case CTSDUR_BA_F0: //CTSDuration_ba_f0
490         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494         }
495         break;
496
497     case CTSDUR_BA_F1: //CTSDuration_ba_f1
498         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502         }
503         break;
504
505     default:
506         break;
507     }
508
509         return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514         u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517     if (pTxDataHead == NULL) {
518         return 0;
519     }
520
521     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522             if (byFBOption == AUTO_FB_NONE) {
523                 struct vnt_tx_datahead_g *pBuf =
524                                 (struct vnt_tx_datahead_g *)pTxDataHead;
525                 //Get SignalField,ServiceField,Length
526                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527                         byPktType, &pBuf->a);
528                 BBvCalculateParameter(pDevice, cbFrameLength,
529                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530                 //Get Duration and TimeStamp
531                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532                                                         byPktType, bNeedAck);
533                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534                                                         PK_TYPE_11B, bNeedAck);
535
536                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537                                                                 wCurrentRate);
538                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539                                                 pDevice->byTopCCKBasicRate);
540                 return (pBuf->wDuration_a);
541              } else {
542                 // Auto Fallback
543                 struct vnt_tx_datahead_g_fb *pBuf =
544                         (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545                 //Get SignalField,ServiceField,Length
546                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547                         byPktType, &pBuf->a);
548                 BBvCalculateParameter(pDevice, cbFrameLength,
549                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550                 //Get Duration and TimeStamp
551                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552                                                         byPktType, bNeedAck);
553                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554                                                         PK_TYPE_11B, bNeedAck);
555                 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556                                                         byPktType, bNeedAck);
557                 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558                                                         byPktType, bNeedAck);
559                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560                                                                 wCurrentRate);
561                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562                                                 pDevice->byTopCCKBasicRate);
563                 return (pBuf->wDuration_a);
564             } //if (byFBOption == AUTO_FB_NONE)
565     }
566     else if (byPktType == PK_TYPE_11A) {
567         if (byFBOption != AUTO_FB_NONE) {
568                 struct vnt_tx_datahead_a_fb *pBuf =
569                         (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570             //Get SignalField,ServiceField,Length
571                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572                         byPktType, &pBuf->a);
573             //Get Duration and TimeStampOff
574                 pBuf->wDuration = s_uGetDataDuration(pDevice,
575                                         byPktType, bNeedAck);
576                 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577                                         byPktType, bNeedAck);
578                 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579                                                         byPktType, bNeedAck);
580                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581                                                                 wCurrentRate);
582             return (pBuf->wDuration);
583         } else {
584                 struct vnt_tx_datahead_ab *pBuf =
585                         (struct vnt_tx_datahead_ab *)pTxDataHead;
586             //Get SignalField,ServiceField,Length
587                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588                         byPktType, &pBuf->ab);
589             //Get Duration and TimeStampOff
590                 pBuf->wDuration = s_uGetDataDuration(pDevice,
591                                 byPktType, bNeedAck);
592                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593                                                                 wCurrentRate);
594             return (pBuf->wDuration);
595         }
596     }
597     else if (byPktType == PK_TYPE_11B) {
598                 struct vnt_tx_datahead_ab *pBuf =
599                         (struct vnt_tx_datahead_ab *)pTxDataHead;
600             //Get SignalField,ServiceField,Length
601                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602                         byPktType, &pBuf->ab);
603             //Get Duration and TimeStampOff
604                 pBuf->wDuration = s_uGetDataDuration(pDevice,
605                                 byPktType, bNeedAck);
606                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607                                                                 wCurrentRate);
608             return (pBuf->wDuration);
609     }
610     return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614         struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615                 u16 duration)
616 {
617         rts->duration = duration;
618         rts->frame_control = TYPE_CTL_RTS;
619
620         if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621                 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622         else
623                 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625         if (priv->eOPMode == OP_MODE_AP)
626                 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627         else
628                 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630         return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634         struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635         u8 pkt_type, u32 frame_len, int need_ack,
636         u16 current_rate, u8 fb_option)
637 {
638         u16 rts_frame_len = 20;
639
640         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641                 PK_TYPE_11B, &buf->b);
642         BBvCalculateParameter(priv, rts_frame_len,
643                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648                 pkt_type, current_rate, need_ack, fb_option);
649         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650                 pkt_type, current_rate, need_ack, fb_option);
651
652         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654         return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658         struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659         u8 pkt_type, u32 frame_len, int need_ack,
660         u16 current_rate, u8 fb_option)
661 {
662         u16 rts_frame_len = 20;
663
664         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665                 PK_TYPE_11B, &buf->b);
666         BBvCalculateParameter(priv, rts_frame_len,
667                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673                 pkt_type, current_rate, need_ack, fb_option);
674         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675                 pkt_type, current_rate, need_ack, fb_option);
676
677
678         buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679                 frame_len, pkt_type, current_rate, need_ack, fb_option);
680         buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681                 frame_len, pkt_type, current_rate, need_ack, fb_option);
682         buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683                 frame_len, pkt_type, current_rate, need_ack, fb_option);
684         buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685                 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689         return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693         struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694         u8 pkt_type, u32 frame_len, int need_ack,
695         u16 current_rate, u8 fb_option)
696 {
697         u16 rts_frame_len = 20;
698
699         BBvCalculateParameter(priv, rts_frame_len,
700                 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703                 pkt_type, current_rate, need_ack, fb_option);
704
705         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707         return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711         struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712         u8 pkt_type, u32 frame_len, int need_ack,
713         u16 current_rate, u8 fb_option)
714 {
715         u16 rts_frame_len = 20;
716
717         BBvCalculateParameter(priv, rts_frame_len,
718                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721                 pkt_type, current_rate, need_ack, fb_option);
722
723         buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724                 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726         buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727                 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731         return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739         if (!head)
740                 return;
741
742         /* Note: So far RTSHead doesn't appear in ATIM
743         *       & Beacom DMA, so we don't need to take them
744         *       into account.
745         *       Otherwise, we need to modified codes for them.
746         */
747         switch (byPktType) {
748         case PK_TYPE_11GB:
749         case PK_TYPE_11GA:
750                 if (byFBOption == AUTO_FB_NONE)
751                         vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752                                 psEthHeader, byPktType, cbFrameLength,
753                                 bNeedAck, wCurrentRate, byFBOption);
754                 else
755                         vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756                                 psEthHeader, byPktType, cbFrameLength,
757                                 bNeedAck, wCurrentRate, byFBOption);
758                 break;
759         case PK_TYPE_11A:
760                 if (byFBOption) {
761                         vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762                                 psEthHeader, byPktType, cbFrameLength,
763                                 bNeedAck, wCurrentRate, byFBOption);
764                         break;
765                 }
766         case PK_TYPE_11B:
767                 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768                         psEthHeader, byPktType, cbFrameLength,
769                         bNeedAck, wCurrentRate, byFBOption);
770         }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775         int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777         u32 uCTSFrameLen = 14;
778
779         if (!head)
780                 return;
781
782         if (byFBOption != AUTO_FB_NONE) {
783                 /* Auto Fall back */
784                 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785                 /* Get SignalField,ServiceField,Length */
786                 BBvCalculateParameter(pDevice, uCTSFrameLen,
787                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789                         cbFrameLength, byPktType,
790                         wCurrentRate, bNeedAck, byFBOption);
791                 /* Get CTSDuration_ba_f0 */
792                 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793                         CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794                         bNeedAck, byFBOption);
795                 /* Get CTSDuration_ba_f1 */
796                 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797                         CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798                         bNeedAck, byFBOption);
799                 /* Get CTS Frame body */
800                 pBuf->data.duration = pBuf->wDuration_ba;
801                 pBuf->data.frame_control = TYPE_CTL_CTS;
802                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803         } else {
804                 struct vnt_cts *pBuf = &head->cts_g;
805                 /* Get SignalField,ServiceField,Length */
806                 BBvCalculateParameter(pDevice, uCTSFrameLen,
807                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808                 /* Get CTSDuration_ba */
809                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810                         CTSDUR_BA, cbFrameLength, byPktType,
811                         wCurrentRate, bNeedAck, byFBOption);
812                 /*Get CTS Frame body*/
813                 pBuf->data.duration = pBuf->wDuration_ba;
814                 pBuf->data.frame_control = TYPE_CTL_CTS;
815                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816         }
817 }
818
819 /*+
820  *
821  * Description:
822  *      Generate FIFO control for MAC & Baseband controller
823  *
824  * Parameters:
825  *  In:
826  *      pDevice         - Pointer to adpater
827  *      pTxDataHead     - Transmit Data Buffer
828  *      pTxBufHead      - pTxBufHead
829  *      pvRrvTime        - pvRrvTime
830  *      pvRTS            - RTS Buffer
831  *      pCTS            - CTS Buffer
832  *      cbFrameSize     - Transmit Data Length (Hdr+Payload+FCS)
833  *      bNeedACK        - If need ACK
834  *      uDMAIdx         - DMA Index
835  *  Out:
836  *      none
837  *
838  * Return Value: none
839  *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
844         void *pvRrvTime, void *rts_cts, u32 cbFrameSize, int bNeedACK,
845         u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts)
846 {
847         struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
848         union vnt_tx_data_head *head = rts_cts;
849         u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
850         u16 wFifoCtl;
851         u8 byFBOption = AUTO_FB_NONE;
852
853     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
854     pFifoHead->wReserved = wCurrentRate;
855     wFifoCtl = pFifoHead->wFIFOCtl;
856
857     if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
858         byFBOption = AUTO_FB_0;
859     }
860     else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
861         byFBOption = AUTO_FB_1;
862     }
863
864         if (!pvRrvTime)
865                 return;
866
867     if (pDevice->bLongHeader)
868         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
869
870     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
871         if (need_rts) {
872             //Fill RsvTime
873                 struct vnt_rrv_time_rts *pBuf =
874                         (struct vnt_rrv_time_rts *)pvRrvTime;
875                 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
876                                 byPktType, cbFrameSize, wCurrentRate);
877                 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
878                                 byPktType, cbFrameSize, wCurrentRate);
879                 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
880                                 byPktType, cbFrameSize, wCurrentRate);
881                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
882                         byPktType, cbFrameSize, wCurrentRate, bNeedACK);
883                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
884                         PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
885                                 bNeedACK);
886                 /* Fill RTS */
887                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
888                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
889         }
890         else {//RTS_needless, PCF mode
891             //Fill RsvTime
892                 struct vnt_rrv_time_cts *pBuf =
893                                 (struct vnt_rrv_time_cts *)pvRrvTime;
894                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
895                         cbFrameSize, wCurrentRate, bNeedACK);
896                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
897                         PK_TYPE_11B, cbFrameSize,
898                         pDevice->byTopCCKBasicRate, bNeedACK);
899                 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
900                                 byPktType, cbFrameSize, wCurrentRate);
901                 /* Fill CTS */
902                 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
903                         cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
904         }
905     }
906     else if (byPktType == PK_TYPE_11A) {
907         if (need_rts) {
908             //Fill RsvTime
909                 struct vnt_rrv_time_ab *pBuf =
910                                 (struct vnt_rrv_time_ab *)pvRrvTime;
911                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
912                                 byPktType, cbFrameSize, wCurrentRate);
913                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
914                                 cbFrameSize, wCurrentRate, bNeedACK);
915                 /* Fill RTS */
916                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
917                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
918         } else {
919             //Fill RsvTime
920                 struct vnt_rrv_time_ab *pBuf =
921                                 (struct vnt_rrv_time_ab *)pvRrvTime;
922                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
923                         cbFrameSize, wCurrentRate, bNeedACK);
924         }
925     }
926     else if (byPktType == PK_TYPE_11B) {
927         if (need_rts) {
928             //Fill RsvTime
929                 struct vnt_rrv_time_ab *pBuf =
930                                 (struct vnt_rrv_time_ab *)pvRrvTime;
931                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
932                                 byPktType, cbFrameSize, wCurrentRate);
933                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
934                                 cbFrameSize, wCurrentRate, bNeedACK);
935                 /* Fill RTS */
936                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
937                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
938         }
939         else { //RTS_needless, non PCF mode
940             //Fill RsvTime
941                 struct vnt_rrv_time_ab *pBuf =
942                                 (struct vnt_rrv_time_ab *)pvRrvTime;
943                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
944                         cbFrameSize, wCurrentRate, bNeedACK);
945         }
946     }
947     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
948 }
949 /*
950     u8 * pbyBuffer,//point to pTxBufHead
951     u16  wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
952     unsigned int  cbFragmentSize,//Hdr+payoad+FCS
953 */
954
955 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
956         struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
957         u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
958         u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
959         u32 *pcbHeaderLen, u32 *pcbTotalLen)
960 {
961         struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
962         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
963         u32 cbFrameSize, cbFrameBodySize;
964         u32 cb802_1_H_len;
965         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
966         u32 cbFCSlen = 4, cbMICHDR = 0;
967         int bNeedACK;
968         bool bRTS = false;
969         u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
970         u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
971         u8 abySNAP_Bridgetunnel[ETH_ALEN]
972                 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
973         u32 uDuration;
974         u32 cbHeaderLength = 0, uPadding = 0;
975         void *pvRrvTime;
976         struct vnt_mic_hdr *pMICHDR;
977         void *rts_cts = NULL;
978         void *pvTxDataHd;
979         u8 byFBOption = AUTO_FB_NONE, byFragType;
980         u16 wTxBufSize;
981         u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
982         u32 *pdwMIC_L, *pdwMIC_R;
983         int bSoftWEP = false;
984         pvRrvTime = pMICHDR = pvTxDataHd = NULL;
985
986         if (bNeedEncryption && pTransmitKey->pvKeyTable) {
987                 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
988                         bSoftWEP = true; /* WEP 256 */
989         }
990
991     // Get pkt type
992     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
993         if (pDevice->dwDiagRefCount == 0) {
994             cb802_1_H_len = 8;
995         } else {
996             cb802_1_H_len = 2;
997         }
998     } else {
999         cb802_1_H_len = 0;
1000     }
1001
1002     cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1003
1004     //Set packet type
1005     pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1006
1007     if (pDevice->dwDiagRefCount != 0) {
1008         bNeedACK = false;
1009         pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1010     } else { //if (pDevice->dwDiagRefCount != 0) {
1011         if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1012             (pDevice->eOPMode == OP_MODE_AP)) {
1013                 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1014                         bNeedACK = false;
1015                         pTxBufHead->wFIFOCtl =
1016                                 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1017                 } else {
1018                         bNeedACK = true;
1019                         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1020                 }
1021         }
1022         else {
1023             // MSDUs in Infra mode always need ACK
1024             bNeedACK = true;
1025             pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1026         }
1027     } //if (pDevice->dwDiagRefCount != 0) {
1028
1029     pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1030
1031     //Set FIFOCTL_LHEAD
1032     if (pDevice->bLongHeader)
1033         pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1034
1035     //Set FRAGCTL_MACHDCNT
1036     if (pDevice->bLongHeader) {
1037         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1038     } else {
1039         cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1040     }
1041     pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1042
1043     //Set FIFOCTL_GrpAckPolicy
1044     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1045         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1046     }
1047
1048     //Set Auto Fallback Ctl
1049     if (wCurrentRate >= RATE_18M) {
1050         if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1051             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1052             byFBOption = AUTO_FB_0;
1053         } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1054             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1055             byFBOption = AUTO_FB_1;
1056         }
1057     }
1058
1059     if (bSoftWEP != true) {
1060         if ((bNeedEncryption) && (pTransmitKey != NULL))  { //WEP enabled
1061             if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1062                 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1063             }
1064             if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1065                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1066                 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1067             }
1068             else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1069                 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1070             }
1071         }
1072     }
1073
1074     if ((bNeedEncryption) && (pTransmitKey != NULL))  {
1075         if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1076             cbIVlen = 4;
1077             cbICVlen = 4;
1078         }
1079         else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1080             cbIVlen = 8;//IV+ExtIV
1081             cbMIClen = 8;
1082             cbICVlen = 4;
1083         }
1084         if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1085             cbIVlen = 8;//RSN Header
1086             cbICVlen = 8;//MIC
1087             cbMICHDR = sizeof(struct vnt_mic_hdr);
1088         }
1089         if (bSoftWEP == false) {
1090             //MAC Header should be padding 0 to DW alignment.
1091             uPadding = 4 - (cbMACHdLen%4);
1092             uPadding %= 4;
1093         }
1094     }
1095
1096     cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1097
1098     if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1099         bRTS = false;
1100     } else {
1101         bRTS = true;
1102         pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1103     }
1104
1105     pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1106         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1107
1108     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1109         if (byFBOption == AUTO_FB_NONE) {
1110             if (bRTS == true) {//RTS_need
1111                 pvRrvTime = (struct vnt_rrv_time_rts *)
1112                                         (pbyTxBufferAddr + wTxBufSize);
1113                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1114                                         sizeof(struct vnt_rrv_time_rts));
1115                 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1116                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1117                 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1118                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1119                                 cbMICHDR + sizeof(struct vnt_rts_g));
1120                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1121                         cbMICHDR + sizeof(struct vnt_rts_g) +
1122                                 sizeof(struct vnt_tx_datahead_g);
1123             }
1124             else { //RTS_needless
1125                 pvRrvTime = (struct vnt_rrv_time_cts *)
1126                                 (pbyTxBufferAddr + wTxBufSize);
1127                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1128                         sizeof(struct vnt_rrv_time_cts));
1129                 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1130                                 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1131                 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1132                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1133                                 cbMICHDR + sizeof(struct vnt_cts));
1134                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1135                         cbMICHDR + sizeof(struct vnt_cts) +
1136                                 sizeof(struct vnt_tx_datahead_g);
1137             }
1138         } else {
1139             // Auto Fall Back
1140             if (bRTS == true) {//RTS_need
1141                 pvRrvTime = (struct vnt_rrv_time_rts *)(pbyTxBufferAddr +
1142                                                                 wTxBufSize);
1143                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1144                                         sizeof(struct vnt_rrv_time_rts));
1145                 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1146                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1147                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1148                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1149                                 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1150                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1151                         cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1152                                 sizeof(struct vnt_tx_datahead_g_fb);
1153             }
1154             else if (bRTS == false) { //RTS_needless
1155                 pvRrvTime = (struct vnt_rrv_time_cts *)
1156                                 (pbyTxBufferAddr + wTxBufSize);
1157                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1158                                 sizeof(struct vnt_rrv_time_cts));
1159                 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1160                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1161                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1162                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1163                                 cbMICHDR + sizeof(struct vnt_cts_fb));
1164                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1165                                 cbMICHDR + sizeof(struct vnt_cts_fb) +
1166                                         sizeof(struct vnt_tx_datahead_g_fb);
1167             }
1168         } // Auto Fall Back
1169     }
1170     else {//802.11a/b packet
1171         if (byFBOption == AUTO_FB_NONE) {
1172             if (bRTS == true) {//RTS_need
1173                 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr +
1174                                                                 wTxBufSize);
1175                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1176                                                 sizeof(struct vnt_rrv_time_ab));
1177                 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1178                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1179                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1180                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1181                                                 sizeof(struct vnt_rts_ab));
1182                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1183                         cbMICHDR + sizeof(struct vnt_rts_ab) +
1184                                 sizeof(struct vnt_tx_datahead_ab);
1185             }
1186             else if (bRTS == false) { //RTS_needless, no MICHDR
1187                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1188                                                                 wTxBufSize);
1189                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1190                                                 sizeof(struct vnt_rrv_time_ab));
1191                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1192                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1193                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1194                                 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1195             }
1196         } else {
1197             // Auto Fall Back
1198             if (bRTS == true) {//RTS_need
1199                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1200                                                 wTxBufSize);
1201                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1202                         sizeof(struct vnt_rrv_time_ab));
1203                 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1204                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1205                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1206                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1207                                         sizeof(struct vnt_rts_a_fb));
1208                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1209                         cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1210                                         sizeof(struct vnt_tx_datahead_a_fb);
1211             }
1212             else if (bRTS == false) { //RTS_needless
1213                 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1214                                                                 wTxBufSize);
1215                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1216                                                 sizeof(struct vnt_rrv_time_ab));
1217                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1218                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1219                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1220                         cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1221             }
1222         } // Auto Fall Back
1223     }
1224
1225     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1226     pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1227     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1228
1229     //=========================
1230     //    No Fragmentation
1231     //=========================
1232     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1233     byFragType = FRAGCTL_NONFRAG;
1234     //uDMAIdx = TYPE_AC0DMA;
1235     //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1236
1237     //Fill FIFO,RrvTime,RTS,and CTS
1238     s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1239                 tx_buffer, pvRrvTime, rts_cts,
1240                 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1241     //Fill DataHead
1242     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1243                                 byFBOption);
1244     // Generate TX MAC Header
1245     s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1246                            byFragType, uDMAIdx, 0);
1247
1248     if (bNeedEncryption == true) {
1249         //Fill TXKEY
1250         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1251                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1252
1253         if (pDevice->bEnableHostWEP) {
1254             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1255             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1256         }
1257     }
1258
1259     // 802.1H
1260     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1261         if (pDevice->dwDiagRefCount == 0) {
1262                 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1263                     (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1264                         memcpy((u8 *) (pbyPayloadHead),
1265                                abySNAP_Bridgetunnel, 6);
1266             } else {
1267                 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1268             }
1269             pbyType = (u8 *) (pbyPayloadHead + 6);
1270             memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1271         } else {
1272             memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1273
1274         }
1275
1276     }
1277
1278     if (pPacket != NULL) {
1279         // Copy the Packet into a tx Buffer
1280         memcpy((pbyPayloadHead + cb802_1_H_len),
1281                  (pPacket + ETH_HLEN),
1282                  uSkbPacketLen - ETH_HLEN
1283                  );
1284
1285     } else {
1286         // while bRelayPacketSend psEthHeader is point to header+payload
1287         memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1288     }
1289
1290     if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1291
1292         ///////////////////////////////////////////////////////////////////
1293
1294         if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1295                 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1296                 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1297         }
1298         else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1299             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1300             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1301         }
1302         else {
1303             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1304             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1305         }
1306         // DO Software Michael
1307         MIC_vInit(dwMICKey0, dwMICKey1);
1308         MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1309         dwMIC_Priority = 0;
1310         MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1311         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1312                 dwMICKey0, dwMICKey1);
1313
1314         ///////////////////////////////////////////////////////////////////
1315
1316         //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1317         //for (ii = 0; ii < cbFrameBodySize; ii++) {
1318         //    DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1319         //}
1320         //DBG_PRN_GRP12(("\n\n\n"));
1321
1322         MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1323
1324         pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1325         pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1326
1327         MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1328         MIC_vUnInit();
1329
1330         if (pDevice->bTxMICFail == true) {
1331             *pdwMIC_L = 0;
1332             *pdwMIC_R = 0;
1333             pDevice->bTxMICFail = false;
1334         }
1335         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1336         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1337         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1338     }
1339
1340     if (bSoftWEP == true) {
1341
1342         s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1343
1344     } else if (  ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true))  ||
1345           ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true))   ||
1346           ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true))      ) {
1347         cbFrameSize -= cbICVlen;
1348     }
1349
1350         cbFrameSize -= cbFCSlen;
1351
1352     *pcbHeaderLen = cbHeaderLength;
1353     *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1354
1355     //Set FragCtl in TxBufferHead
1356     pTxBufHead->wFragCtl |= (u16)byFragType;
1357
1358     return true;
1359
1360 }
1361
1362 /*+
1363  *
1364  * Description:
1365  *      Translate 802.3 to 802.11 header
1366  *
1367  * Parameters:
1368  *  In:
1369  *      pDevice         - Pointer to adapter
1370  *      dwTxBufferAddr  - Transmit Buffer
1371  *      pPacket         - Packet from upper layer
1372  *      cbPacketSize    - Transmit Data Length
1373  *  Out:
1374  *      pcbHeadSize         - Header size of MAC&Baseband control and 802.11 Header
1375  *      pcbAppendPayload    - size of append payload for 802.1H translation
1376  *
1377  * Return Value: none
1378  *
1379 -*/
1380
1381 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1382         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1383         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1384 {
1385         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1386
1387         pMACHeader->frame_control = TYPE_802_11_DATA;
1388
1389     if (pDevice->eOPMode == OP_MODE_AP) {
1390         memcpy(&(pMACHeader->addr1[0]),
1391                &(psEthHeader->h_dest[0]),
1392                ETH_ALEN);
1393         memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1394         memcpy(&(pMACHeader->addr3[0]),
1395                &(psEthHeader->h_source[0]),
1396                ETH_ALEN);
1397         pMACHeader->frame_control |= FC_FROMDS;
1398     } else {
1399         if (pDevice->eOPMode == OP_MODE_ADHOC) {
1400                 memcpy(&(pMACHeader->addr1[0]),
1401                        &(psEthHeader->h_dest[0]),
1402                        ETH_ALEN);
1403                 memcpy(&(pMACHeader->addr2[0]),
1404                        &(psEthHeader->h_source[0]),
1405                        ETH_ALEN);
1406                 memcpy(&(pMACHeader->addr3[0]),
1407                        &(pDevice->abyBSSID[0]),
1408                        ETH_ALEN);
1409         } else {
1410                 memcpy(&(pMACHeader->addr3[0]),
1411                        &(psEthHeader->h_dest[0]),
1412                        ETH_ALEN);
1413                 memcpy(&(pMACHeader->addr2[0]),
1414                        &(psEthHeader->h_source[0]),
1415                        ETH_ALEN);
1416                 memcpy(&(pMACHeader->addr1[0]),
1417                        &(pDevice->abyBSSID[0]),
1418                        ETH_ALEN);
1419             pMACHeader->frame_control |= FC_TODS;
1420         }
1421     }
1422
1423     if (bNeedEncrypt)
1424         pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1425
1426     pMACHeader->duration_id = cpu_to_le16(wDuration);
1427
1428     if (pDevice->bLongHeader) {
1429         PWLAN_80211HDR_A4 pMACA4Header  = (PWLAN_80211HDR_A4) pbyBufferAddr;
1430         pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1431         memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1432     }
1433     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1434
1435     //Set FragNumber in Sequence Control
1436     pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1437
1438     if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1439         pDevice->wSeqCounter++;
1440         if (pDevice->wSeqCounter > 0x0fff)
1441             pDevice->wSeqCounter = 0;
1442     }
1443
1444     if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1445         pMACHeader->frame_control |= FC_MOREFRAG;
1446     }
1447 }
1448
1449 /*+
1450  *
1451  * Description:
1452  *      Request instructs a MAC to transmit a 802.11 management packet through
1453  *      the adapter onto the medium.
1454  *
1455  * Parameters:
1456  *  In:
1457  *      hDeviceContext  - Pointer to the adapter
1458  *      pPacket         - A pointer to a descriptor for the packet to transmit
1459  *  Out:
1460  *      none
1461  *
1462  * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1463  *
1464 -*/
1465
1466 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1467         struct vnt_tx_mgmt *pPacket)
1468 {
1469         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1470         struct vnt_tx_buffer *pTX_Buffer;
1471         struct vnt_usb_send_context *pContext;
1472         struct vnt_tx_fifo_head *pTxBufHead;
1473         struct ieee80211_hdr *pMACHeader;
1474         struct ethhdr sEthHeader;
1475         u8 byPktType, *pbyTxBufferAddr;
1476         void *rts_cts = NULL;
1477         void *pvTxDataHd, *pvRrvTime, *pMICHDR;
1478         u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1479         int bNeedACK, bIsPSPOLL = false;
1480         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1481         u32 uPadding = 0;
1482         u16 wTxBufSize;
1483         u32 cbMacHdLen;
1484         u16 wCurrentRate = RATE_1M;
1485
1486         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1487
1488     if (NULL == pContext) {
1489         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1490         return CMD_STATUS_RESOURCES;
1491     }
1492
1493         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1494     cbFrameBodySize = pPacket->cbPayloadLen;
1495         pTxBufHead = &pTX_Buffer->fifo_head;
1496         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1497         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1498
1499     if (pDevice->byBBType == BB_TYPE_11A) {
1500         wCurrentRate = RATE_6M;
1501         byPktType = PK_TYPE_11A;
1502     } else {
1503         wCurrentRate = RATE_1M;
1504         byPktType = PK_TYPE_11B;
1505     }
1506
1507     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1508     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1509     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1510     //                    to set power here.
1511     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1512         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1513     } else {
1514         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1515     }
1516     pDevice->wCurrentRate = wCurrentRate;
1517
1518     //Set packet type
1519     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1520         pTxBufHead->wFIFOCtl = 0;
1521     }
1522     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1523         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1524     }
1525     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1526         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1527     }
1528     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1529         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1530     }
1531
1532     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1533     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1534
1535     if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1536         bNeedACK = false;
1537     }
1538     else {
1539         bNeedACK = true;
1540         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1541     };
1542
1543     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1544         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1545
1546         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1547         //Set Preamble type always long
1548         //pDevice->byPreambleType = PREAMBLE_LONG;
1549         // probe-response don't retry
1550         //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1551         //     bNeedACK = false;
1552         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1553         //}
1554     }
1555
1556     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1557
1558     if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1559         bIsPSPOLL = true;
1560         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1561     } else {
1562         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1563     }
1564
1565     //Set FRAGCTL_MACHDCNT
1566     pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1567
1568     // Notes:
1569     // Although spec says MMPDU can be fragmented; In most case,
1570     // no one will send a MMPDU under fragmentation. With RTS may occur.
1571     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1572
1573     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1574         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1575             cbIVlen = 4;
1576             cbICVlen = 4;
1577             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1578         }
1579         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1580             cbIVlen = 8;//IV+ExtIV
1581             cbMIClen = 8;
1582             cbICVlen = 4;
1583             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1584             //We need to get seed here for filling TxKey entry.
1585             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1586             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1587         }
1588         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1589             cbIVlen = 8;//RSN Header
1590             cbICVlen = 8;//MIC
1591             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1592             pDevice->bAES = true;
1593         }
1594         //MAC Header should be padding 0 to DW alignment.
1595         uPadding = 4 - (cbMacHdLen%4);
1596         uPadding %= 4;
1597     }
1598
1599     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1600
1601     //Set FIFOCTL_GrpAckPolicy
1602     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1603         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1604     }
1605     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1606
1607     //Set RrvTime/RTS/CTS Buffer
1608     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1609
1610         pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
1611         pMICHDR = NULL;
1612         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1613                                         sizeof(struct vnt_rrv_time_cts));
1614         pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1615                 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1616         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1617                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1618     }
1619     else { // 802.11a/b packet
1620         pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
1621         pMICHDR = NULL;
1622         pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1623                 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1624         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1625                 sizeof(struct vnt_tx_datahead_ab);
1626     }
1627
1628     memcpy(&(sEthHeader.h_dest[0]),
1629            &(pPacket->p80211Header->sA3.abyAddr1[0]),
1630            ETH_ALEN);
1631     memcpy(&(sEthHeader.h_source[0]),
1632            &(pPacket->p80211Header->sA3.abyAddr2[0]),
1633            ETH_ALEN);
1634     //=========================
1635     //    No Fragmentation
1636     //=========================
1637     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1638
1639         /* Fill FIFO,RrvTime,RTS,and CTS */
1640         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1641                 pTX_Buffer, pvRrvTime, rts_cts,
1642                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1643
1644     //Fill DataHead
1645     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1646                                 AUTO_FB_NONE);
1647
1648     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1649
1650     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1651
1652     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1653         u8 *           pbyIVHead;
1654         u8 *           pbyPayloadHead;
1655         u8 *           pbyBSSID;
1656         PSKeyItem       pTransmitKey = NULL;
1657
1658         pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1659         pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1660         do {
1661             if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1662                 (pDevice->bLinkPass == true)) {
1663                 pbyBSSID = pDevice->abyBSSID;
1664                 // get pairwise key
1665                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1666                     // get group key
1667                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1668                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1669                         break;
1670                     }
1671                 } else {
1672                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1673                     break;
1674                 }
1675             }
1676             // get group key
1677             pbyBSSID = pDevice->abyBroadcastAddr;
1678             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1679                 pTransmitKey = NULL;
1680                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1681             } else {
1682                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1683             }
1684         } while(false);
1685         //Fill TXKEY
1686         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1687                      (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1688
1689         memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1690         memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1691                  cbFrameBodySize);
1692     }
1693     else {
1694         // Copy the Packet into a tx Buffer
1695         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1696     }
1697
1698     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1699     pDevice->wSeqCounter++ ;
1700     if (pDevice->wSeqCounter > 0x0fff)
1701         pDevice->wSeqCounter = 0;
1702
1703     if (bIsPSPOLL) {
1704         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1705         // of FIFO control header.
1706         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1707         // in the same place of other packet's Duration-field).
1708         // And it will cause Cisco-AP to issue Disassociation-packet
1709         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1710                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1711                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1712                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1713                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1714         } else {
1715                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1716                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1717         }
1718     }
1719
1720     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1721     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1722     pTX_Buffer->byType = 0x00;
1723
1724     pContext->pPacket = NULL;
1725     pContext->Type = CONTEXT_MGMT_PACKET;
1726     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1727
1728     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1729         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1730                         &pMACHeader->addr1[0], (u16)cbFrameSize,
1731                         pTxBufHead->wFIFOCtl);
1732     }
1733     else {
1734         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1735                         &pMACHeader->addr3[0], (u16)cbFrameSize,
1736                         pTxBufHead->wFIFOCtl);
1737     }
1738
1739     PIPEnsSendBulkOut(pDevice,pContext);
1740     return CMD_STATUS_PENDING;
1741 }
1742
1743 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1744         struct vnt_tx_mgmt *pPacket)
1745 {
1746         struct vnt_beacon_buffer *pTX_Buffer;
1747         u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1748         u32 cbHeaderSize = 0;
1749         u16 wTxBufSize = sizeof(STxShortBufHead);
1750         PSTxShortBufHead pTxBufHead;
1751         struct ieee80211_hdr *pMACHeader;
1752         struct vnt_tx_datahead_ab *pTxDataHead;
1753         u16 wCurrentRate;
1754         u32 cbFrameBodySize;
1755         u32 cbReqCount;
1756         u8 *pbyTxBufferAddr;
1757         struct vnt_usb_send_context *pContext;
1758         CMD_STATUS status;
1759
1760         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1761     if (NULL == pContext) {
1762         status = CMD_STATUS_RESOURCES;
1763         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1764         return status ;
1765     }
1766
1767         pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1768     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1769
1770     cbFrameBodySize = pPacket->cbPayloadLen;
1771
1772     pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1773     wTxBufSize = sizeof(STxShortBufHead);
1774
1775     if (pDevice->byBBType == BB_TYPE_11A) {
1776         wCurrentRate = RATE_6M;
1777         pTxDataHead = (struct vnt_tx_datahead_ab *)
1778                         (pbyTxBufferAddr + wTxBufSize);
1779         //Get SignalField,ServiceField,Length
1780         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1781                                                         &pTxDataHead->ab);
1782         //Get Duration and TimeStampOff
1783         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1784                                                 PK_TYPE_11A, false);
1785         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1786         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1787     } else {
1788         wCurrentRate = RATE_1M;
1789         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1790         pTxDataHead = (struct vnt_tx_datahead_ab *)
1791                                 (pbyTxBufferAddr + wTxBufSize);
1792         //Get SignalField,ServiceField,Length
1793         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1794                                                         &pTxDataHead->ab);
1795         //Get Duration and TimeStampOff
1796         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1797                                                 PK_TYPE_11B, false);
1798         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1799         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1800     }
1801
1802     //Generate Beacon Header
1803     pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1804     memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1805
1806     pMACHeader->duration_id = 0;
1807     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1808     pDevice->wSeqCounter++ ;
1809     if (pDevice->wSeqCounter > 0x0fff)
1810         pDevice->wSeqCounter = 0;
1811
1812     cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1813
1814     pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1815     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1816     pTX_Buffer->byType = 0x01;
1817
1818     pContext->pPacket = NULL;
1819     pContext->Type = CONTEXT_MGMT_PACKET;
1820     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1821
1822     PIPEnsSendBulkOut(pDevice,pContext);
1823     return CMD_STATUS_PENDING;
1824
1825 }
1826
1827 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1828 {
1829         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1830         struct vnt_tx_buffer *pTX_Buffer;
1831         struct vnt_tx_fifo_head *pTxBufHead;
1832         u8 byPktType;
1833         u8 *pbyTxBufferAddr;
1834         void *rts_cts = NULL;
1835         void *pvTxDataHd;
1836         u32 uDuration, cbReqCount;
1837         struct ieee80211_hdr *pMACHeader;
1838         u32 cbHeaderSize, cbFrameBodySize;
1839         int bNeedACK, bIsPSPOLL = false;
1840         u32 cbFrameSize;
1841         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1842         u32 uPadding = 0;
1843         u32 cbMICHDR = 0, uLength = 0;
1844         u32 dwMICKey0, dwMICKey1;
1845         u32 dwMIC_Priority;
1846         u32 *pdwMIC_L, *pdwMIC_R;
1847         u16 wTxBufSize;
1848         u32 cbMacHdLen;
1849         struct ethhdr sEthHeader;
1850         void *pvRrvTime, *pMICHDR;
1851         u32 wCurrentRate = RATE_1M;
1852         PUWLAN_80211HDR  p80211Header;
1853         u32 uNodeIndex = 0;
1854         int bNodeExist = false;
1855         SKeyItem STempKey;
1856         PSKeyItem pTransmitKey = NULL;
1857         u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1858         u32 cbExtSuppRate = 0;
1859         struct vnt_usb_send_context *pContext;
1860
1861         pvRrvTime = pMICHDR = pvTxDataHd = NULL;
1862
1863     if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1864        cbFrameBodySize = 0;
1865     }
1866     else {
1867        cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1868     }
1869     p80211Header = (PUWLAN_80211HDR)skb->data;
1870
1871         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1872
1873     if (NULL == pContext) {
1874         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1875         dev_kfree_skb_irq(skb);
1876         return ;
1877     }
1878
1879         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1880         pTxBufHead = &pTX_Buffer->fifo_head;
1881         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1882         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1883
1884     if (pDevice->byBBType == BB_TYPE_11A) {
1885         wCurrentRate = RATE_6M;
1886         byPktType = PK_TYPE_11A;
1887     } else {
1888         wCurrentRate = RATE_1M;
1889         byPktType = PK_TYPE_11B;
1890     }
1891
1892     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1893     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1894     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1895     //                    to set power here.
1896     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1897         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1898     } else {
1899         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1900     }
1901
1902     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1903
1904     //Set packet type
1905     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1906         pTxBufHead->wFIFOCtl = 0;
1907     }
1908     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1909         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1910     }
1911     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1912         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1913     }
1914     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1915         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1916     }
1917
1918     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1919     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1920
1921     if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1922         bNeedACK = false;
1923         if (pDevice->bEnableHostWEP) {
1924             uNodeIndex = 0;
1925             bNodeExist = true;
1926         }
1927     }
1928     else {
1929         if (pDevice->bEnableHostWEP) {
1930             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1931                 bNodeExist = true;
1932         }
1933         bNeedACK = true;
1934         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1935     };
1936
1937     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1938         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1939
1940         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1941         //Set Preamble type always long
1942         //pDevice->byPreambleType = PREAMBLE_LONG;
1943
1944         // probe-response don't retry
1945         //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1946         //     bNeedACK = false;
1947         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1948         //}
1949     }
1950
1951     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1952
1953     if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1954         bIsPSPOLL = true;
1955         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1956     } else {
1957         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1958     }
1959
1960     // hostapd daemon ext support rate patch
1961     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1962
1963         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1964             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1965          }
1966
1967         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1968             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1969          }
1970
1971          if (cbExtSuppRate >0) {
1972             cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1973          }
1974     }
1975
1976     //Set FRAGCTL_MACHDCNT
1977     pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1978
1979     // Notes:
1980     // Although spec says MMPDU can be fragmented; In most case,
1981     // no one will send a MMPDU under fragmentation. With RTS may occur.
1982     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1983
1984     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1985         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1986             cbIVlen = 4;
1987             cbICVlen = 4;
1988             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1989         }
1990         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1991             cbIVlen = 8;//IV+ExtIV
1992             cbMIClen = 8;
1993             cbICVlen = 4;
1994             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1995             //We need to get seed here for filling TxKey entry.
1996             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1997             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1998         }
1999         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
2000             cbIVlen = 8;//RSN Header
2001             cbICVlen = 8;//MIC
2002             cbMICHDR = sizeof(struct vnt_mic_hdr);
2003             pTxBufHead->wFragCtl |= FRAGCTL_AES;
2004             pDevice->bAES = true;
2005         }
2006         //MAC Header should be padding 0 to DW alignment.
2007         uPadding = 4 - (cbMacHdLen%4);
2008         uPadding %= 4;
2009     }
2010
2011     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
2012
2013     //Set FIFOCTL_GrpAckPolicy
2014     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2015         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2016     }
2017     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2018
2019     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2020         pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
2021         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2022                                         sizeof(struct vnt_rrv_time_cts));
2023         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2024                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2025         pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2026                 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2027                                         sizeof(struct vnt_cts));
2028         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2029                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2030
2031     }
2032     else {//802.11a/b packet
2033
2034         pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
2035         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2036                 sizeof(struct vnt_rrv_time_ab));
2037         pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2038                 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2039         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2040                                         sizeof(struct vnt_tx_datahead_ab);
2041     }
2042     memcpy(&(sEthHeader.h_dest[0]),
2043            &(p80211Header->sA3.abyAddr1[0]),
2044            ETH_ALEN);
2045     memcpy(&(sEthHeader.h_source[0]),
2046            &(p80211Header->sA3.abyAddr2[0]),
2047            ETH_ALEN);
2048     //=========================
2049     //    No Fragmentation
2050     //=========================
2051     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2052
2053         /* Fill FIFO,RrvTime,RTS,and CTS */
2054         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2055                 pTX_Buffer, pvRrvTime, rts_cts,
2056                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2057
2058     //Fill DataHead
2059     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2060                                 AUTO_FB_NONE);
2061
2062     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2063
2064     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2065
2066     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2067     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2068     pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2069
2070     // Copy the Packet into a tx Buffer
2071     memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2072
2073     // version set to 0, patch for hostapd deamon
2074     pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2075     memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2076
2077     // replace support rate, patch for hostapd daemon( only support 11M)
2078     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2079         if (cbExtSuppRate != 0) {
2080             if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2081                 memcpy((pbyPayloadHead + cbFrameBodySize),
2082                         pMgmt->abyCurrSuppRates,
2083                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2084                        );
2085              if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2086                 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2087                         pMgmt->abyCurrExtSuppRates,
2088                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2089                        );
2090          }
2091     }
2092
2093     // Set wep
2094     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2095
2096         if (pDevice->bEnableHostWEP) {
2097             pTransmitKey = &STempKey;
2098             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2099             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2100             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2101             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2102             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2103             memcpy(pTransmitKey->abyKey,
2104                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2105                 pTransmitKey->uKeyLength
2106                 );
2107         }
2108
2109         if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2110
2111             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2112             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2113
2114             // DO Software Michael
2115             MIC_vInit(dwMICKey0, dwMICKey1);
2116             MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2117             dwMIC_Priority = 0;
2118             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2119                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2120                         " %X, %X\n", dwMICKey0, dwMICKey1);
2121
2122             uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2123
2124             MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2125
2126             pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2127             pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2128
2129             MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2130             MIC_vUnInit();
2131
2132             if (pDevice->bTxMICFail == true) {
2133                 *pdwMIC_L = 0;
2134                 *pdwMIC_R = 0;
2135                 pDevice->bTxMICFail = false;
2136             }
2137
2138             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2139             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2140                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2141                         *pdwMIC_L, *pdwMIC_R);
2142
2143         }
2144
2145         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2146                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2147
2148         if (pDevice->bEnableHostWEP) {
2149             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2150             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2151         }
2152
2153         if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2154             s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2155         }
2156     }
2157
2158     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2159     pDevice->wSeqCounter++ ;
2160     if (pDevice->wSeqCounter > 0x0fff)
2161         pDevice->wSeqCounter = 0;
2162
2163     if (bIsPSPOLL) {
2164         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2165         // of  FIFO control header.
2166         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2167         // in the same place of other packet's Duration-field).
2168         // And it will cause Cisco-AP to issue Disassociation-packet
2169         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2170                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2171                         cpu_to_le16(p80211Header->sA2.wDurationID);
2172                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2173                         cpu_to_le16(p80211Header->sA2.wDurationID);
2174         } else {
2175                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2176                         cpu_to_le16(p80211Header->sA2.wDurationID);
2177         }
2178     }
2179
2180     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2181     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2182     pTX_Buffer->byType = 0x00;
2183
2184     pContext->pPacket = skb;
2185     pContext->Type = CONTEXT_MGMT_PACKET;
2186     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
2187
2188     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2189         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2190                         &pMACHeader->addr1[0], (u16)cbFrameSize,
2191                         pTxBufHead->wFIFOCtl);
2192     }
2193     else {
2194         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2195                         &pMACHeader->addr3[0], (u16)cbFrameSize,
2196                         pTxBufHead->wFIFOCtl);
2197     }
2198     PIPEnsSendBulkOut(pDevice,pContext);
2199     return ;
2200
2201 }
2202
2203 //TYPE_AC0DMA data tx
2204 /*
2205  * Description:
2206  *      Tx packet via AC0DMA(DMA1)
2207  *
2208  * Parameters:
2209  *  In:
2210  *      pDevice         - Pointer to the adapter
2211  *      skb             - Pointer to tx skb packet
2212  *  Out:
2213  *      void
2214  *
2215  * Return Value: NULL
2216  */
2217
2218 int nsDMA_tx_packet(struct vnt_private *pDevice,
2219         u32 uDMAIdx, struct sk_buff *skb)
2220 {
2221         struct net_device_stats *pStats = &pDevice->stats;
2222         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2223         struct vnt_tx_buffer *pTX_Buffer;
2224         u32 BytesToWrite = 0, uHeaderLen = 0;
2225         u32 uNodeIndex = 0;
2226         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2227         u16 wAID;
2228         u8 byPktType;
2229         int bNeedEncryption = false;
2230         PSKeyItem pTransmitKey = NULL;
2231         SKeyItem STempKey;
2232         int ii;
2233         int bTKIP_UseGTK = false;
2234         int bNeedDeAuth = false;
2235         u8 *pbyBSSID;
2236         int bNodeExist = false;
2237         struct vnt_usb_send_context *pContext;
2238         bool fConvertedPacket;
2239         u32 status;
2240         u16 wKeepRate = pDevice->wCurrentRate;
2241         int bTxeapol_key = false;
2242
2243     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2244
2245         if (pDevice->uAssocCount == 0) {
2246             dev_kfree_skb_irq(skb);
2247             return 0;
2248         }
2249
2250         if (is_multicast_ether_addr((u8 *)(skb->data))) {
2251             uNodeIndex = 0;
2252             bNodeExist = true;
2253             if (pMgmt->sNodeDBTable[0].bPSEnable) {
2254
2255                 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2256                 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2257                 // set tx map
2258                 pMgmt->abyPSTxMap[0] |= byMask[0];
2259                 return 0;
2260             }
2261             // multicast/broadcast data rate
2262
2263             if (pDevice->byBBType != BB_TYPE_11A)
2264                 pDevice->wCurrentRate = RATE_2M;
2265             else
2266                 pDevice->wCurrentRate = RATE_24M;
2267             // long preamble type
2268             pDevice->byPreambleType = PREAMBLE_SHORT;
2269
2270         }else {
2271
2272             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2273
2274                 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2275
2276                     skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2277
2278                     pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2279                     // set tx map
2280                     wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2281                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
2282                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2283                              (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2284
2285                     return 0;
2286                 }
2287                 // AP rate decided from node
2288                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2289                 // tx preamble decided from node
2290
2291                 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2292                     pDevice->byPreambleType = pDevice->byShortPreamble;
2293
2294                 }else {
2295                     pDevice->byPreambleType = PREAMBLE_LONG;
2296                 }
2297                 bNodeExist = true;
2298             }
2299         }
2300
2301         if (bNodeExist == false) {
2302             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2303             dev_kfree_skb_irq(skb);
2304             return 0;
2305         }
2306     }
2307
2308         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2309
2310     if (pContext == NULL) {
2311         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2312         dev_kfree_skb_irq(skb);
2313         return STATUS_RESOURCES;
2314     }
2315
2316     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2317
2318 //mike add:station mode check eapol-key challenge--->
2319 {
2320     u8  Protocol_Version;    //802.1x Authentication
2321     u8  Packet_Type;           //802.1x Authentication
2322     u8  Descriptor_type;
2323     u16 Key_info;
2324
2325     Protocol_Version = skb->data[ETH_HLEN];
2326     Packet_Type = skb->data[ETH_HLEN+1];
2327     Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2328     Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2329         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2330                 /* 802.1x OR eapol-key challenge frame transfer */
2331                 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2332                         (Packet_Type == 3)) {
2333                         bTxeapol_key = true;
2334                        if(!(Key_info & BIT3) &&  //WPA or RSN group-key challenge
2335                            (Key_info & BIT8) && (Key_info & BIT9)) {    //send 2/2 key
2336                           if(Descriptor_type==254) {
2337                                pDevice->fWPA_Authened = true;
2338                              PRINT_K("WPA ");
2339                           }
2340                           else {
2341                                pDevice->fWPA_Authened = true;
2342                              PRINT_K("WPA2(re-keying) ");
2343                           }
2344                           PRINT_K("Authentication completed!!\n");
2345                         }
2346                     else if((Key_info & BIT3) && (Descriptor_type==2) &&  //RSN pairwise-key challenge
2347                                (Key_info & BIT8) && (Key_info & BIT9)) {
2348                           pDevice->fWPA_Authened = true;
2349                             PRINT_K("WPA2 Authentication completed!!\n");
2350                      }
2351              }
2352    }
2353 }
2354 //mike add:station mode check eapol-key challenge<---
2355
2356     if (pDevice->bEncryptionEnable == true) {
2357         bNeedEncryption = true;
2358         // get Transmit key
2359         do {
2360             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2361                 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2362                 pbyBSSID = pDevice->abyBSSID;
2363                 // get pairwise key
2364                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2365                     // get group key
2366                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2367                         bTKIP_UseGTK = true;
2368                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2369                         break;
2370                     }
2371                 } else {
2372                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2373                     break;
2374                 }
2375             }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2376               /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2377                 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2378                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2379                 for (ii = 0; ii< 6; ii++)
2380                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2381                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2382
2383                 // get pairwise key
2384                 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2385                     break;
2386             }
2387             // get group key
2388             pbyBSSID = pDevice->abyBroadcastAddr;
2389             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2390                 pTransmitKey = NULL;
2391                 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2392                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2393                 }
2394                 else
2395                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2396             } else {
2397                 bTKIP_UseGTK = true;
2398                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2399             }
2400         } while(false);
2401     }
2402
2403     if (pDevice->bEnableHostWEP) {
2404         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2405         if (pDevice->bEncryptionEnable == true) {
2406             pTransmitKey = &STempKey;
2407             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2408             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2409             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2410             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2411             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2412             memcpy(pTransmitKey->abyKey,
2413                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2414                 pTransmitKey->uKeyLength
2415                 );
2416          }
2417     }
2418
2419     byPktType = (u8)pDevice->byPacketType;
2420
2421     if (pDevice->bFixRate) {
2422         if (pDevice->byBBType == BB_TYPE_11B) {
2423             if (pDevice->uConnectionRate >= RATE_11M) {
2424                 pDevice->wCurrentRate = RATE_11M;
2425             } else {
2426                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2427             }
2428         } else {
2429             if ((pDevice->byBBType == BB_TYPE_11A) &&
2430                 (pDevice->uConnectionRate <= RATE_6M)) {
2431                 pDevice->wCurrentRate = RATE_6M;
2432             } else {
2433                 if (pDevice->uConnectionRate >= RATE_54M)
2434                     pDevice->wCurrentRate = RATE_54M;
2435                 else
2436                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2437             }
2438         }
2439     }
2440     else {
2441         if (pDevice->eOPMode == OP_MODE_ADHOC) {
2442             // Adhoc Tx rate decided from node DB
2443             if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2444                 // Multicast use highest data rate
2445                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2446                 // preamble type
2447                 pDevice->byPreambleType = pDevice->byShortPreamble;
2448             }
2449             else {
2450                 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2451                     pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2452                     if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2453                         pDevice->byPreambleType = pDevice->byShortPreamble;
2454
2455                     }
2456                     else {
2457                         pDevice->byPreambleType = PREAMBLE_LONG;
2458                     }
2459                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d]  Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2460                 }
2461                 else {
2462                     if (pDevice->byBBType != BB_TYPE_11A)
2463                        pDevice->wCurrentRate = RATE_2M;
2464                     else
2465                        pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2466                                                          // abyCurrExtSuppRates[]
2467                     pDevice->byPreambleType = PREAMBLE_SHORT;
2468                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2469                 }
2470             }
2471         }
2472         if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2473             // Infra STA rate decided from AP Node, index = 0
2474             pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2475         }
2476     }
2477
2478         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2479                 if (pDevice->byBBType != BB_TYPE_11A) {
2480                         pDevice->wCurrentRate = RATE_1M;
2481                         pDevice->byACKRate = RATE_1M;
2482                         pDevice->byTopCCKBasicRate = RATE_1M;
2483                         pDevice->byTopOFDMBasicRate = RATE_6M;
2484                 } else {
2485                         pDevice->wCurrentRate = RATE_6M;
2486                         pDevice->byACKRate = RATE_6M;
2487                         pDevice->byTopCCKBasicRate = RATE_1M;
2488                         pDevice->byTopOFDMBasicRate = RATE_6M;
2489                 }
2490         }
2491
2492     DBG_PRT(MSG_LEVEL_DEBUG,
2493             KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2494             pDevice->wCurrentRate);
2495
2496     if (wKeepRate != pDevice->wCurrentRate) {
2497         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2498     }
2499
2500     if (pDevice->wCurrentRate <= RATE_11M) {
2501         byPktType = PK_TYPE_11B;
2502     }
2503
2504     if (bNeedEncryption == true) {
2505         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2506         if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2507                 bNeedEncryption = false;
2508             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2509             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2510                 if (pTransmitKey == NULL) {
2511                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2512                 }
2513                 else {
2514                     if (bTKIP_UseGTK == true) {
2515                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2516                     }
2517                     else {
2518                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2519                                 pTransmitKey->dwKeyIndex);
2520                         bNeedEncryption = true;
2521                     }
2522                 }
2523             }
2524
2525             if (pDevice->bEnableHostWEP) {
2526                 if ((uNodeIndex != 0) &&
2527                     (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2528                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2529                                 pTransmitKey->dwKeyIndex);
2530                     bNeedEncryption = true;
2531                  }
2532              }
2533         }
2534         else {
2535
2536             if (pTransmitKey == NULL) {
2537                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2538                 pContext->bBoolInUse = false;
2539                 dev_kfree_skb_irq(skb);
2540                 pStats->tx_dropped++;
2541                 return STATUS_FAILURE;
2542             }
2543         }
2544     }
2545
2546         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2547
2548     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2549                         pTX_Buffer, bNeedEncryption,
2550                         skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2551                         (u8 *)skb->data, pTransmitKey, uNodeIndex,
2552                         pDevice->wCurrentRate,
2553                         &uHeaderLen, &BytesToWrite
2554                        );
2555
2556     if (fConvertedPacket == false) {
2557         pContext->bBoolInUse = false;
2558         dev_kfree_skb_irq(skb);
2559         return STATUS_FAILURE;
2560     }
2561
2562     if ( pDevice->bEnablePSMode == true ) {
2563         if ( !pDevice->bPSModeTxBurst ) {
2564                 bScheduleCommand((void *) pDevice,
2565                                  WLAN_CMD_MAC_DISPOWERSAVING,
2566                                  NULL);
2567             pDevice->bPSModeTxBurst = true;
2568         }
2569     }
2570
2571     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2572     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2573
2574     pContext->pPacket = skb;
2575     pContext->Type = CONTEXT_DATA_PACKET;
2576     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2577
2578     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2579                         &pContext->sEthHeader.h_dest[0],
2580                         (u16)(BytesToWrite-uHeaderLen),
2581                         pTX_Buffer->fifo_head.wFIFOCtl);
2582
2583     status = PIPEnsSendBulkOut(pDevice,pContext);
2584
2585     if (bNeedDeAuth == true) {
2586         u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2587
2588         bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2589     }
2590
2591   if(status!=STATUS_PENDING) {
2592      pContext->bBoolInUse = false;
2593     dev_kfree_skb_irq(skb);
2594     return STATUS_FAILURE;
2595   }
2596   else
2597     return 0;
2598
2599 }
2600
2601 /*
2602  * Description:
2603  *      Relay packet send (AC1DMA) from rx dpc.
2604  *
2605  * Parameters:
2606  *  In:
2607  *      pDevice         - Pointer to the adapter
2608  *      pPacket         - Pointer to rx packet
2609  *      cbPacketSize    - rx ethernet frame size
2610  *  Out:
2611  *      TURE, false
2612  *
2613  * Return Value: Return true if packet is copy to dma1; otherwise false
2614  */
2615
2616 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2617         u32 uNodeIndex)
2618 {
2619         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2620         struct vnt_tx_buffer *pTX_Buffer;
2621         u32 BytesToWrite = 0, uHeaderLen = 0;
2622         u8 byPktType = PK_TYPE_11B;
2623         int bNeedEncryption = false;
2624         SKeyItem STempKey;
2625         PSKeyItem pTransmitKey = NULL;
2626         u8 *pbyBSSID;
2627         struct vnt_usb_send_context *pContext;
2628         u8 byPktTyp;
2629         int fConvertedPacket;
2630         u32 status;
2631         u16 wKeepRate = pDevice->wCurrentRate;
2632
2633         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2634
2635     if (NULL == pContext) {
2636         return false;
2637     }
2638
2639     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2640
2641     if (pDevice->bEncryptionEnable == true) {
2642         bNeedEncryption = true;
2643         // get group key
2644         pbyBSSID = pDevice->abyBroadcastAddr;
2645         if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2646             pTransmitKey = NULL;
2647             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2648         } else {
2649             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2650         }
2651     }
2652
2653     if (pDevice->bEnableHostWEP) {
2654         if (uNodeIndex < MAX_NODE_NUM + 1) {
2655             pTransmitKey = &STempKey;
2656             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2657             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2658             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2659             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2660             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2661             memcpy(pTransmitKey->abyKey,
2662                     &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2663                     pTransmitKey->uKeyLength
2664                   );
2665         }
2666     }
2667
2668     if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2669         pContext->bBoolInUse = false;
2670         return false;
2671     }
2672
2673     byPktTyp = (u8)pDevice->byPacketType;
2674
2675     if (pDevice->bFixRate) {
2676         if (pDevice->byBBType == BB_TYPE_11B) {
2677             if (pDevice->uConnectionRate >= RATE_11M) {
2678                 pDevice->wCurrentRate = RATE_11M;
2679             } else {
2680                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2681             }
2682         } else {
2683             if ((pDevice->byBBType == BB_TYPE_11A) &&
2684                 (pDevice->uConnectionRate <= RATE_6M)) {
2685                 pDevice->wCurrentRate = RATE_6M;
2686             } else {
2687                 if (pDevice->uConnectionRate >= RATE_54M)
2688                     pDevice->wCurrentRate = RATE_54M;
2689                 else
2690                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2691             }
2692         }
2693     }
2694     else {
2695         pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2696     }
2697
2698     if (wKeepRate != pDevice->wCurrentRate) {
2699         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2700     }
2701
2702     if (pDevice->wCurrentRate <= RATE_11M)
2703         byPktType = PK_TYPE_11B;
2704
2705     BytesToWrite = uDataLen + ETH_FCS_LEN;
2706
2707     // Convert the packet to an usb frame and copy into our buffer
2708     // and send the irp.
2709
2710         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2711
2712     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2713                         pTX_Buffer, bNeedEncryption,
2714                          uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2715                          pbySkbData, pTransmitKey, uNodeIndex,
2716                          pDevice->wCurrentRate,
2717                          &uHeaderLen, &BytesToWrite
2718                         );
2719
2720     if (fConvertedPacket == false) {
2721         pContext->bBoolInUse = false;
2722         return false;
2723     }
2724
2725     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2726     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2727
2728     pContext->pPacket = NULL;
2729     pContext->Type = CONTEXT_DATA_PACKET;
2730     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2731
2732     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2733                 &pContext->sEthHeader.h_dest[0],
2734                 (u16)(BytesToWrite - uHeaderLen),
2735                 pTX_Buffer->fifo_head.wFIFOCtl);
2736
2737     status = PIPEnsSendBulkOut(pDevice,pContext);
2738
2739     return true;
2740 }
2741