]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/staging/vt6656/rxtx.c
staging: vt6656: rxtx.c remove dead code rts_cts void
[karo-tx-linux.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: rxtx.c
20  *
21  * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      s_vGenerateTxParameter - Generate tx dma required parameter.
29  *      s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30  *      csBeacon_xmit - beacon tx function
31  *      csMgmt_xmit - management tx function
32  *      s_uGetDataDuration - get tx data required duration
33  *      s_uFillDataHead- fulfill tx data duration header
34  *      s_uGetRTSCTSDuration- get rtx/cts required duration
35  *      s_uGetRTSCTSRsvTime- get rts/cts reserved time
36  *      s_uGetTxRsvTime- get frame reserved time
37  *      s_vFillCTSHead- fulfill CTS ctl header
38  *      s_vFillFragParameter- Set fragment ctl parameter.
39  *      s_vFillRTSHead- fulfill RTS ctl header
40  *      s_vFillTxKey- fulfill tx encrypt key
41  *      s_vSWencryption- Software encrypt header
42  *      vDMA0_tx_80211- tx 802.11 frame via dma0
43  *      vGenerateFIFOHeader- Generate tx FIFO ctl header
44  *
45  * Revision History:
46  *
47  */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int          msglevel                = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68         {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69         {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70     };
71
72 const u16 wFB_Opt0[2][5] = {
73         {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74         {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75     };
76 const u16 wFB_Opt1[2][5] = {
77         {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78         {RATE_6M , RATE_6M,  RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79     };
80
81 #define RTSDUR_BB       0
82 #define RTSDUR_BA       1
83 #define RTSDUR_AA       2
84 #define CTSDUR_BA       3
85 #define RTSDUR_BA_F0    4
86 #define RTSDUR_AA_F0    5
87 #define RTSDUR_BA_F1    6
88 #define RTSDUR_AA_F1    7
89 #define CTSDUR_BA_F0    8
90 #define CTSDUR_BA_F1    9
91 #define DATADUR_B       10
92 #define DATADUR_A       11
93 #define DATADUR_A_F0    12
94 #define DATADUR_A_F1    13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103         struct vnt_mic_hdr **mic_hdr, u32 need_mic, u32 cbFrameSize,
104         int bNeedACK, u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108         u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116         struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122         u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125         u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129         int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136         u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139         u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140         int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144         struct vnt_usb_send_context *pContext = NULL;
145         struct vnt_usb_send_context *pReturnContext = NULL;
146         int ii;
147
148     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150     for (ii = 0; ii < pDevice->cbTD; ii++) {
151         pContext = pDevice->apTD[ii];
152         if (pContext->bBoolInUse == false) {
153             pContext->bBoolInUse = true;
154                 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155             pReturnContext = pContext;
156             break;
157         }
158     }
159     if ( ii == pDevice->cbTD ) {
160         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161     }
162     return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168         PSStatCounter pStatistic = &pDevice->scStatistic;
169
170     if (is_broadcast_ether_addr(pbyDestAddr))
171         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172     else if (is_multicast_ether_addr(pbyDestAddr))
173         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174     else
175         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177     pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178     pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179     memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180            pbyDestAddr,
181            ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186         u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188         u32 *pdwIV = (u32 *)pbyIVHead;
189         u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191         u32 dwRevIVCounter;
192
193         /* Fill TXKEY */
194         if (pTransmitKey == NULL)
195                 return;
196
197         dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198         *pdwIV = pDevice->dwIVCounter;
199         pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201         switch (pTransmitKey->byCipherSuite) {
202         case KEY_CTL_WEP:
203                 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204                         memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205                         memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206                                                 pTransmitKey->uKeyLength);
207                 } else {
208                         memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209                         memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210                                                 pTransmitKey->uKeyLength);
211                         if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212                                 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213                         memcpy(pbyBuf+11, pTransmitKey->abyKey,
214                                                 pTransmitKey->uKeyLength);
215                         }
216
217                         memcpy(pDevice->abyPRNG, pbyBuf, 16);
218                 }
219                 /* Append IV after Mac Header */
220                 *pdwIV &= WEP_IV_MASK;
221                 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222                 *pdwIV = cpu_to_le32(*pdwIV);
223
224                 pDevice->dwIVCounter++;
225                 if (pDevice->dwIVCounter > WEP_IV_MASK)
226                         pDevice->dwIVCounter = 0;
227
228                 break;
229         case KEY_CTL_TKIP:
230                 pTransmitKey->wTSC15_0++;
231                 if (pTransmitKey->wTSC15_0 == 0)
232                         pTransmitKey->dwTSC47_16++;
233
234                 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235                         pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236                                                         pDevice->abyPRNG);
237                 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239                 /* Make IV */
240                 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243                                                         0xc0) | 0x20);
244                 /*  Append IV&ExtIV after Mac Header */
245                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248                         "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250                 break;
251         case KEY_CTL_CCMP:
252                 pTransmitKey->wTSC15_0++;
253                 if (pTransmitKey->wTSC15_0 == 0)
254                         pTransmitKey->dwTSC47_16++;
255
256                 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258                 /* Make IV */
259                 *pdwIV = 0;
260                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261                                                         0xc0) | 0x20);
262
263                 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265                 /* Append IV&ExtIV after Mac Header */
266                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268                 if (!mic_hdr)
269                         return;
270
271                 /* MICHDR0 */
272                 mic_hdr->id = 0x59;
273                 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274                 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276                 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277                 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279                 /* MICHDR1 */
280                 if (pDevice->bLongHeader)
281                         mic_hdr->hlen = cpu_to_be16(28);
282                 else
283                         mic_hdr->hlen = cpu_to_be16(22);
284
285                 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286                 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288                 /* MICHDR2 */
289                 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290                 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291                                                                 & 0xc78f);
292                 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294                 if (pDevice->bLongHeader)
295                         memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296         }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302         u32 cbICVlen = 4;
303         u32 dwICV = 0xffffffff;
304         u32 *pdwICV;
305
306     if (pTransmitKey == NULL)
307         return;
308
309     if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310         //=======================================================================
311         // Append ICV after payload
312         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314         // finally, we must invert dwCRC to get the correct answer
315         *pdwICV = cpu_to_le32(~dwICV);
316         // RC4 encryption
317         rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319         //=======================================================================
320     } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321         //=======================================================================
322         //Append ICV after payload
323         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325         // finally, we must invert dwCRC to get the correct answer
326         *pdwICV = cpu_to_le32(~dwICV);
327         // RC4 encryption
328         rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330         //=======================================================================
331     }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336         return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337                                                         [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A     0
341              PK_TYPE_11B     1
342              PK_TYPE_11GB    2
343              PK_TYPE_11GA    3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346         u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348         u32 uDataTime, uAckTime;
349
350     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351     if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353     } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355     }
356
357     if (bNeedAck) {
358         return (uDataTime + pDevice->uSIFS + uAckTime);
359     }
360     else {
361         return uDataTime;
362     }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366         u32 frame_length, u16 rate, int need_ack)
367 {
368         return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369                 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374         u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376         u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378     uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381     if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384     }
385     else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389     }
390     else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393     }
394     else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397         uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398         return uRrvTime;
399     }
400
401     //RTSRrvTime
402     uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403         return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408                                         u8 byPktType, int bNeedAck)
409 {
410         u32 uAckTime = 0;
411
412         if (bNeedAck) {
413                 if (byPktType == PK_TYPE_11B)
414                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415                                 byPktType, 14, pDevice->byTopCCKBasicRate);
416                 else
417                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418                                 byPktType, 14, pDevice->byTopOFDMBasicRate);
419                 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420         }
421
422         return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427         u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428         u8 byFBOption)
429 {
430         u32 uCTSTime = 0, uDurTime = 0;
431
432     switch (byDurType) {
433
434     case RTSDUR_BB:    //RTSDuration_bb
435         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437         break;
438
439     case RTSDUR_BA:    //RTSDuration_ba
440         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442         break;
443
444     case RTSDUR_AA:    //RTSDuration_aa
445         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447         break;
448
449     case CTSDUR_BA:    //CTSDuration_ba
450         uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451         break;
452
453     case RTSDUR_BA_F0: //RTSDuration_ba_f0
454         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459         }
460         break;
461
462     case RTSDUR_AA_F0: //RTSDuration_aa_f0
463         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468         }
469         break;
470
471     case RTSDUR_BA_F1: //RTSDuration_ba_f1
472         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477         }
478         break;
479
480     case RTSDUR_AA_F1: //RTSDuration_aa_f1
481         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486         }
487         break;
488
489     case CTSDUR_BA_F0: //CTSDuration_ba_f0
490         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494         }
495         break;
496
497     case CTSDUR_BA_F1: //CTSDuration_ba_f1
498         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502         }
503         break;
504
505     default:
506         break;
507     }
508
509         return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514         u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517     if (pTxDataHead == NULL) {
518         return 0;
519     }
520
521     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522             if (byFBOption == AUTO_FB_NONE) {
523                 struct vnt_tx_datahead_g *pBuf =
524                                 (struct vnt_tx_datahead_g *)pTxDataHead;
525                 //Get SignalField,ServiceField,Length
526                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527                         byPktType, &pBuf->a);
528                 BBvCalculateParameter(pDevice, cbFrameLength,
529                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530                 //Get Duration and TimeStamp
531                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532                                                         byPktType, bNeedAck);
533                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534                                                         PK_TYPE_11B, bNeedAck);
535
536                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537                                                                 wCurrentRate);
538                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539                                                 pDevice->byTopCCKBasicRate);
540                 return (pBuf->wDuration_a);
541              } else {
542                 // Auto Fallback
543                 struct vnt_tx_datahead_g_fb *pBuf =
544                         (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545                 //Get SignalField,ServiceField,Length
546                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547                         byPktType, &pBuf->a);
548                 BBvCalculateParameter(pDevice, cbFrameLength,
549                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550                 //Get Duration and TimeStamp
551                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552                                                         byPktType, bNeedAck);
553                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554                                                         PK_TYPE_11B, bNeedAck);
555                 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556                                                         byPktType, bNeedAck);
557                 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558                                                         byPktType, bNeedAck);
559                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560                                                                 wCurrentRate);
561                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562                                                 pDevice->byTopCCKBasicRate);
563                 return (pBuf->wDuration_a);
564             } //if (byFBOption == AUTO_FB_NONE)
565     }
566     else if (byPktType == PK_TYPE_11A) {
567         if (byFBOption != AUTO_FB_NONE) {
568                 struct vnt_tx_datahead_a_fb *pBuf =
569                         (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570             //Get SignalField,ServiceField,Length
571                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572                         byPktType, &pBuf->a);
573             //Get Duration and TimeStampOff
574                 pBuf->wDuration = s_uGetDataDuration(pDevice,
575                                         byPktType, bNeedAck);
576                 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577                                         byPktType, bNeedAck);
578                 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579                                                         byPktType, bNeedAck);
580                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581                                                                 wCurrentRate);
582             return (pBuf->wDuration);
583         } else {
584                 struct vnt_tx_datahead_ab *pBuf =
585                         (struct vnt_tx_datahead_ab *)pTxDataHead;
586             //Get SignalField,ServiceField,Length
587                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588                         byPktType, &pBuf->ab);
589             //Get Duration and TimeStampOff
590                 pBuf->wDuration = s_uGetDataDuration(pDevice,
591                                 byPktType, bNeedAck);
592                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593                                                                 wCurrentRate);
594             return (pBuf->wDuration);
595         }
596     }
597     else if (byPktType == PK_TYPE_11B) {
598                 struct vnt_tx_datahead_ab *pBuf =
599                         (struct vnt_tx_datahead_ab *)pTxDataHead;
600             //Get SignalField,ServiceField,Length
601                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602                         byPktType, &pBuf->ab);
603             //Get Duration and TimeStampOff
604                 pBuf->wDuration = s_uGetDataDuration(pDevice,
605                                 byPktType, bNeedAck);
606                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607                                                                 wCurrentRate);
608             return (pBuf->wDuration);
609     }
610     return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614         struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615                 u16 duration)
616 {
617         rts->duration = duration;
618         rts->frame_control = TYPE_CTL_RTS;
619
620         if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621                 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622         else
623                 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625         if (priv->eOPMode == OP_MODE_AP)
626                 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627         else
628                 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630         return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634         struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635         u8 pkt_type, u32 frame_len, int need_ack,
636         u16 current_rate, u8 fb_option)
637 {
638         u16 rts_frame_len = 20;
639
640         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641                 PK_TYPE_11B, &buf->b);
642         BBvCalculateParameter(priv, rts_frame_len,
643                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648                 pkt_type, current_rate, need_ack, fb_option);
649         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650                 pkt_type, current_rate, need_ack, fb_option);
651
652         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654         return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658         struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659         u8 pkt_type, u32 frame_len, int need_ack,
660         u16 current_rate, u8 fb_option)
661 {
662         u16 rts_frame_len = 20;
663
664         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665                 PK_TYPE_11B, &buf->b);
666         BBvCalculateParameter(priv, rts_frame_len,
667                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673                 pkt_type, current_rate, need_ack, fb_option);
674         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675                 pkt_type, current_rate, need_ack, fb_option);
676
677
678         buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679                 frame_len, pkt_type, current_rate, need_ack, fb_option);
680         buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681                 frame_len, pkt_type, current_rate, need_ack, fb_option);
682         buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683                 frame_len, pkt_type, current_rate, need_ack, fb_option);
684         buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685                 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689         return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693         struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694         u8 pkt_type, u32 frame_len, int need_ack,
695         u16 current_rate, u8 fb_option)
696 {
697         u16 rts_frame_len = 20;
698
699         BBvCalculateParameter(priv, rts_frame_len,
700                 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703                 pkt_type, current_rate, need_ack, fb_option);
704
705         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707         return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711         struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712         u8 pkt_type, u32 frame_len, int need_ack,
713         u16 current_rate, u8 fb_option)
714 {
715         u16 rts_frame_len = 20;
716
717         BBvCalculateParameter(priv, rts_frame_len,
718                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721                 pkt_type, current_rate, need_ack, fb_option);
722
723         buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724                 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726         buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727                 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731         return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739         if (!head)
740                 return;
741
742         /* Note: So far RTSHead doesn't appear in ATIM
743         *       & Beacom DMA, so we don't need to take them
744         *       into account.
745         *       Otherwise, we need to modified codes for them.
746         */
747         switch (byPktType) {
748         case PK_TYPE_11GB:
749         case PK_TYPE_11GA:
750                 if (byFBOption == AUTO_FB_NONE)
751                         vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752                                 psEthHeader, byPktType, cbFrameLength,
753                                 bNeedAck, wCurrentRate, byFBOption);
754                 else
755                         vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756                                 psEthHeader, byPktType, cbFrameLength,
757                                 bNeedAck, wCurrentRate, byFBOption);
758                 break;
759         case PK_TYPE_11A:
760                 if (byFBOption) {
761                         vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762                                 psEthHeader, byPktType, cbFrameLength,
763                                 bNeedAck, wCurrentRate, byFBOption);
764                         break;
765                 }
766         case PK_TYPE_11B:
767                 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768                         psEthHeader, byPktType, cbFrameLength,
769                         bNeedAck, wCurrentRate, byFBOption);
770         }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775         int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777         u32 uCTSFrameLen = 14;
778
779         if (!head)
780                 return;
781
782         if (byFBOption != AUTO_FB_NONE) {
783                 /* Auto Fall back */
784                 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785                 /* Get SignalField,ServiceField,Length */
786                 BBvCalculateParameter(pDevice, uCTSFrameLen,
787                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789                         cbFrameLength, byPktType,
790                         wCurrentRate, bNeedAck, byFBOption);
791                 /* Get CTSDuration_ba_f0 */
792                 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793                         CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794                         bNeedAck, byFBOption);
795                 /* Get CTSDuration_ba_f1 */
796                 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797                         CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798                         bNeedAck, byFBOption);
799                 /* Get CTS Frame body */
800                 pBuf->data.duration = pBuf->wDuration_ba;
801                 pBuf->data.frame_control = TYPE_CTL_CTS;
802                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803         } else {
804                 struct vnt_cts *pBuf = &head->cts_g;
805                 /* Get SignalField,ServiceField,Length */
806                 BBvCalculateParameter(pDevice, uCTSFrameLen,
807                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808                 /* Get CTSDuration_ba */
809                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810                         CTSDUR_BA, cbFrameLength, byPktType,
811                         wCurrentRate, bNeedAck, byFBOption);
812                 /*Get CTS Frame body*/
813                 pBuf->data.duration = pBuf->wDuration_ba;
814                 pBuf->data.frame_control = TYPE_CTL_CTS;
815                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816         }
817 }
818
819 /*+
820  *
821  * Description:
822  *      Generate FIFO control for MAC & Baseband controller
823  *
824  * Parameters:
825  *  In:
826  *      pDevice         - Pointer to adpater
827  *      pTxDataHead     - Transmit Data Buffer
828  *      pTxBufHead      - pTxBufHead
829  *      pvRrvTime        - pvRrvTime
830  *      pvRTS            - RTS Buffer
831  *      pCTS            - CTS Buffer
832  *      cbFrameSize     - Transmit Data Length (Hdr+Payload+FCS)
833  *      bNeedACK        - If need ACK
834  *      uDMAIdx         - DMA Index
835  *  Out:
836  *      none
837  *
838  * Return Value: none
839  *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
844         struct vnt_mic_hdr **mic_hdr, u32 need_mic, u32 cbFrameSize,
845         int bNeedACK, u32 uDMAIdx, struct ethhdr *psEthHeader, bool need_rts)
846 {
847         struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
848         union vnt_tx_data_head *head = NULL;
849         u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
850         u16 wFifoCtl;
851         u8 byFBOption = AUTO_FB_NONE;
852
853     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
854     pFifoHead->wReserved = wCurrentRate;
855     wFifoCtl = pFifoHead->wFIFOCtl;
856
857     if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
858         byFBOption = AUTO_FB_0;
859     }
860     else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
861         byFBOption = AUTO_FB_1;
862     }
863
864         if (!pFifoHead)
865                 return;
866
867     if (pDevice->bLongHeader)
868         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
869
870     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
871         if (need_rts) {
872             //Fill RsvTime
873                 struct vnt_rrv_time_rts *pBuf = &tx_buffer->tx_head.tx_rts.rts;
874
875                 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
876                                 byPktType, cbFrameSize, wCurrentRate);
877                 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
878                                 byPktType, cbFrameSize, wCurrentRate);
879                 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
880                                 byPktType, cbFrameSize, wCurrentRate);
881                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
882                         byPktType, cbFrameSize, wCurrentRate, bNeedACK);
883                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
884                         PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
885                                 bNeedACK);
886
887                 if (need_mic) {
888                         *mic_hdr = &tx_buffer->tx_head.tx_rts.tx.mic.hdr;
889                         head = &tx_buffer->tx_head.tx_rts.tx.mic.head;
890                 } else {
891                         head = &tx_buffer->tx_head.tx_rts.tx.head;
892                 }
893
894                 /* Fill RTS */
895                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
896                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
897         }
898         else {//RTS_needless, PCF mode
899             //Fill RsvTime
900                 struct vnt_rrv_time_cts *pBuf = &tx_buffer->tx_head.tx_cts.cts;
901
902                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
903                         cbFrameSize, wCurrentRate, bNeedACK);
904                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
905                         PK_TYPE_11B, cbFrameSize,
906                         pDevice->byTopCCKBasicRate, bNeedACK);
907                 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
908                                 byPktType, cbFrameSize, wCurrentRate);
909
910                 if (need_mic) {
911                         *mic_hdr = &tx_buffer->tx_head.tx_cts.tx.mic.hdr;
912                         head = &tx_buffer->tx_head.tx_cts.tx.mic.head;
913                 } else {
914                         head = &tx_buffer->tx_head.tx_cts.tx.head;
915                 }
916
917                 /* Fill CTS */
918                 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
919                         cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
920         }
921     }
922     else if (byPktType == PK_TYPE_11A) {
923         if (need_rts) {
924             //Fill RsvTime
925                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
926
927                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
928                                 byPktType, cbFrameSize, wCurrentRate);
929                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
930                                 cbFrameSize, wCurrentRate, bNeedACK);
931
932                 if (need_mic) {
933                         *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
934                         head = &tx_buffer->tx_head.tx_ab.tx.mic.head;
935                 } else {
936                         head = &tx_buffer->tx_head.tx_ab.tx.head;
937                 }
938
939                 /* Fill RTS */
940                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
941                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
942         } else {
943             //Fill RsvTime
944                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
945
946                 if (need_mic)
947                         *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
948
949                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
950                         cbFrameSize, wCurrentRate, bNeedACK);
951         }
952     }
953     else if (byPktType == PK_TYPE_11B) {
954         if (need_rts) {
955             //Fill RsvTime
956                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
957
958                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
959                                 byPktType, cbFrameSize, wCurrentRate);
960                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
961                                 cbFrameSize, wCurrentRate, bNeedACK);
962
963                 if (need_mic) {
964                         *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
965                         head = &tx_buffer->tx_head.tx_ab.tx.mic.head;
966                 } else {
967                         head = &tx_buffer->tx_head.tx_ab.tx.head;
968                 }
969
970                 /* Fill RTS */
971                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
972                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
973         }
974         else { //RTS_needless, non PCF mode
975             //Fill RsvTime
976                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.tx_ab.ab;
977
978                 if (need_mic)
979                         *mic_hdr = &tx_buffer->tx_head.tx_ab.tx.mic.hdr;
980
981                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
982                         cbFrameSize, wCurrentRate, bNeedACK);
983         }
984     }
985     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
986 }
987 /*
988     u8 * pbyBuffer,//point to pTxBufHead
989     u16  wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
990     unsigned int  cbFragmentSize,//Hdr+payoad+FCS
991 */
992
993 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
994         struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
995         u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
996         u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
997         u32 *pcbHeaderLen, u32 *pcbTotalLen)
998 {
999         struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
1000         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1001         u32 cbFrameSize, cbFrameBodySize;
1002         u32 cb802_1_H_len;
1003         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
1004         u32 cbFCSlen = 4, cbMICHDR = 0;
1005         int bNeedACK;
1006         bool bRTS = false;
1007         u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
1008         u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
1009         u8 abySNAP_Bridgetunnel[ETH_ALEN]
1010                 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
1011         u32 uDuration;
1012         u32 cbHeaderLength = 0, uPadding = 0;
1013         struct vnt_mic_hdr *pMICHDR;
1014         void *pvTxDataHd;
1015         u8 byFBOption = AUTO_FB_NONE, byFragType;
1016         u16 wTxBufSize;
1017         u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
1018         u32 *pdwMIC_L, *pdwMIC_R;
1019         int bSoftWEP = false;
1020
1021         pMICHDR = pvTxDataHd = NULL;
1022
1023         if (bNeedEncryption && pTransmitKey->pvKeyTable) {
1024                 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
1025                         bSoftWEP = true; /* WEP 256 */
1026         }
1027
1028     // Get pkt type
1029     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1030         if (pDevice->dwDiagRefCount == 0) {
1031             cb802_1_H_len = 8;
1032         } else {
1033             cb802_1_H_len = 2;
1034         }
1035     } else {
1036         cb802_1_H_len = 0;
1037     }
1038
1039     cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1040
1041     //Set packet type
1042     pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1043
1044     if (pDevice->dwDiagRefCount != 0) {
1045         bNeedACK = false;
1046         pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1047     } else { //if (pDevice->dwDiagRefCount != 0) {
1048         if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1049             (pDevice->eOPMode == OP_MODE_AP)) {
1050                 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1051                         bNeedACK = false;
1052                         pTxBufHead->wFIFOCtl =
1053                                 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1054                 } else {
1055                         bNeedACK = true;
1056                         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1057                 }
1058         }
1059         else {
1060             // MSDUs in Infra mode always need ACK
1061             bNeedACK = true;
1062             pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1063         }
1064     } //if (pDevice->dwDiagRefCount != 0) {
1065
1066     pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1067
1068     //Set FIFOCTL_LHEAD
1069     if (pDevice->bLongHeader)
1070         pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1071
1072     //Set FRAGCTL_MACHDCNT
1073     if (pDevice->bLongHeader) {
1074         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1075     } else {
1076         cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1077     }
1078     pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1079
1080     //Set FIFOCTL_GrpAckPolicy
1081     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1082         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1083     }
1084
1085     //Set Auto Fallback Ctl
1086     if (wCurrentRate >= RATE_18M) {
1087         if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1088             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1089             byFBOption = AUTO_FB_0;
1090         } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1091             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1092             byFBOption = AUTO_FB_1;
1093         }
1094     }
1095
1096     if (bSoftWEP != true) {
1097         if ((bNeedEncryption) && (pTransmitKey != NULL))  { //WEP enabled
1098             if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1099                 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1100             }
1101             if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1102                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1103                 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1104             }
1105             else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1106                 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1107             }
1108         }
1109     }
1110
1111     if ((bNeedEncryption) && (pTransmitKey != NULL))  {
1112         if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1113             cbIVlen = 4;
1114             cbICVlen = 4;
1115         }
1116         else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1117             cbIVlen = 8;//IV+ExtIV
1118             cbMIClen = 8;
1119             cbICVlen = 4;
1120         }
1121         if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1122             cbIVlen = 8;//RSN Header
1123             cbICVlen = 8;//MIC
1124             cbMICHDR = sizeof(struct vnt_mic_hdr);
1125         }
1126         if (bSoftWEP == false) {
1127             //MAC Header should be padding 0 to DW alignment.
1128             uPadding = 4 - (cbMACHdLen%4);
1129             uPadding %= 4;
1130         }
1131     }
1132
1133     cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1134
1135     if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1136         bRTS = false;
1137     } else {
1138         bRTS = true;
1139         pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1140     }
1141
1142     pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1143         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1144
1145     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1146         if (byFBOption == AUTO_FB_NONE) {
1147             if (bRTS == true) {//RTS_need
1148                 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1149                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1150                                 cbMICHDR + sizeof(struct vnt_rts_g));
1151                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1152                         cbMICHDR + sizeof(struct vnt_rts_g) +
1153                                 sizeof(struct vnt_tx_datahead_g);
1154             }
1155             else { //RTS_needless
1156                 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1157                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1158                                 cbMICHDR + sizeof(struct vnt_cts));
1159                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1160                         cbMICHDR + sizeof(struct vnt_cts) +
1161                                 sizeof(struct vnt_tx_datahead_g);
1162             }
1163         } else {
1164             // Auto Fall Back
1165             if (bRTS == true) {//RTS_need
1166                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1167                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1168                                 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1169                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1170                         cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1171                                 sizeof(struct vnt_tx_datahead_g_fb);
1172             }
1173             else if (bRTS == false) { //RTS_needless
1174                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1175                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1176                                 cbMICHDR + sizeof(struct vnt_cts_fb));
1177                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1178                                 cbMICHDR + sizeof(struct vnt_cts_fb) +
1179                                         sizeof(struct vnt_tx_datahead_g_fb);
1180             }
1181         } // Auto Fall Back
1182     }
1183     else {//802.11a/b packet
1184         if (byFBOption == AUTO_FB_NONE) {
1185             if (bRTS == true) {//RTS_need
1186                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1187                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1188                                                 sizeof(struct vnt_rts_ab));
1189                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1190                         cbMICHDR + sizeof(struct vnt_rts_ab) +
1191                                 sizeof(struct vnt_tx_datahead_ab);
1192             }
1193             else if (bRTS == false) { //RTS_needless, no MICHDR
1194                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1195                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1196                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1197                                 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1198             }
1199         } else {
1200             // Auto Fall Back
1201             if (bRTS == true) {//RTS_need
1202                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1203                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1204                                         sizeof(struct vnt_rts_a_fb));
1205                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1206                         cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1207                                         sizeof(struct vnt_tx_datahead_a_fb);
1208             }
1209             else if (bRTS == false) { //RTS_needless
1210                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1211                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1212                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1213                         cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1214             }
1215         } // Auto Fall Back
1216     }
1217
1218     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1219     pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1220     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1221
1222     //=========================
1223     //    No Fragmentation
1224     //=========================
1225     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1226     byFragType = FRAGCTL_NONFRAG;
1227     //uDMAIdx = TYPE_AC0DMA;
1228     //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1229
1230     //Fill FIFO,RrvTime,RTS,and CTS
1231     s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1232                 tx_buffer, &pMICHDR, cbMICHDR,
1233                 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1234     //Fill DataHead
1235     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1236                                 byFBOption);
1237     // Generate TX MAC Header
1238     s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1239                            byFragType, uDMAIdx, 0);
1240
1241     if (bNeedEncryption == true) {
1242         //Fill TXKEY
1243         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1244                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1245
1246         if (pDevice->bEnableHostWEP) {
1247             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1248             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1249         }
1250     }
1251
1252     // 802.1H
1253     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1254         if (pDevice->dwDiagRefCount == 0) {
1255                 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1256                     (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1257                         memcpy((u8 *) (pbyPayloadHead),
1258                                abySNAP_Bridgetunnel, 6);
1259             } else {
1260                 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1261             }
1262             pbyType = (u8 *) (pbyPayloadHead + 6);
1263             memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1264         } else {
1265             memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1266
1267         }
1268
1269     }
1270
1271     if (pPacket != NULL) {
1272         // Copy the Packet into a tx Buffer
1273         memcpy((pbyPayloadHead + cb802_1_H_len),
1274                  (pPacket + ETH_HLEN),
1275                  uSkbPacketLen - ETH_HLEN
1276                  );
1277
1278     } else {
1279         // while bRelayPacketSend psEthHeader is point to header+payload
1280         memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1281     }
1282
1283     if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1284
1285         ///////////////////////////////////////////////////////////////////
1286
1287         if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1288                 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1289                 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1290         }
1291         else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1292             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1293             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1294         }
1295         else {
1296             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1297             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1298         }
1299         // DO Software Michael
1300         MIC_vInit(dwMICKey0, dwMICKey1);
1301         MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1302         dwMIC_Priority = 0;
1303         MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1304         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1305                 dwMICKey0, dwMICKey1);
1306
1307         ///////////////////////////////////////////////////////////////////
1308
1309         //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1310         //for (ii = 0; ii < cbFrameBodySize; ii++) {
1311         //    DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1312         //}
1313         //DBG_PRN_GRP12(("\n\n\n"));
1314
1315         MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1316
1317         pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1318         pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1319
1320         MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1321         MIC_vUnInit();
1322
1323         if (pDevice->bTxMICFail == true) {
1324             *pdwMIC_L = 0;
1325             *pdwMIC_R = 0;
1326             pDevice->bTxMICFail = false;
1327         }
1328         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1329         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1330         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1331     }
1332
1333     if (bSoftWEP == true) {
1334
1335         s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1336
1337     } else if (  ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true))  ||
1338           ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true))   ||
1339           ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true))      ) {
1340         cbFrameSize -= cbICVlen;
1341     }
1342
1343         cbFrameSize -= cbFCSlen;
1344
1345     *pcbHeaderLen = cbHeaderLength;
1346     *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1347
1348     //Set FragCtl in TxBufferHead
1349     pTxBufHead->wFragCtl |= (u16)byFragType;
1350
1351     return true;
1352
1353 }
1354
1355 /*+
1356  *
1357  * Description:
1358  *      Translate 802.3 to 802.11 header
1359  *
1360  * Parameters:
1361  *  In:
1362  *      pDevice         - Pointer to adapter
1363  *      dwTxBufferAddr  - Transmit Buffer
1364  *      pPacket         - Packet from upper layer
1365  *      cbPacketSize    - Transmit Data Length
1366  *  Out:
1367  *      pcbHeadSize         - Header size of MAC&Baseband control and 802.11 Header
1368  *      pcbAppendPayload    - size of append payload for 802.1H translation
1369  *
1370  * Return Value: none
1371  *
1372 -*/
1373
1374 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1375         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1376         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1377 {
1378         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1379
1380         pMACHeader->frame_control = TYPE_802_11_DATA;
1381
1382     if (pDevice->eOPMode == OP_MODE_AP) {
1383         memcpy(&(pMACHeader->addr1[0]),
1384                &(psEthHeader->h_dest[0]),
1385                ETH_ALEN);
1386         memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1387         memcpy(&(pMACHeader->addr3[0]),
1388                &(psEthHeader->h_source[0]),
1389                ETH_ALEN);
1390         pMACHeader->frame_control |= FC_FROMDS;
1391     } else {
1392         if (pDevice->eOPMode == OP_MODE_ADHOC) {
1393                 memcpy(&(pMACHeader->addr1[0]),
1394                        &(psEthHeader->h_dest[0]),
1395                        ETH_ALEN);
1396                 memcpy(&(pMACHeader->addr2[0]),
1397                        &(psEthHeader->h_source[0]),
1398                        ETH_ALEN);
1399                 memcpy(&(pMACHeader->addr3[0]),
1400                        &(pDevice->abyBSSID[0]),
1401                        ETH_ALEN);
1402         } else {
1403                 memcpy(&(pMACHeader->addr3[0]),
1404                        &(psEthHeader->h_dest[0]),
1405                        ETH_ALEN);
1406                 memcpy(&(pMACHeader->addr2[0]),
1407                        &(psEthHeader->h_source[0]),
1408                        ETH_ALEN);
1409                 memcpy(&(pMACHeader->addr1[0]),
1410                        &(pDevice->abyBSSID[0]),
1411                        ETH_ALEN);
1412             pMACHeader->frame_control |= FC_TODS;
1413         }
1414     }
1415
1416     if (bNeedEncrypt)
1417         pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1418
1419     pMACHeader->duration_id = cpu_to_le16(wDuration);
1420
1421     if (pDevice->bLongHeader) {
1422         PWLAN_80211HDR_A4 pMACA4Header  = (PWLAN_80211HDR_A4) pbyBufferAddr;
1423         pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1424         memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1425     }
1426     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1427
1428     //Set FragNumber in Sequence Control
1429     pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1430
1431     if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1432         pDevice->wSeqCounter++;
1433         if (pDevice->wSeqCounter > 0x0fff)
1434             pDevice->wSeqCounter = 0;
1435     }
1436
1437     if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1438         pMACHeader->frame_control |= FC_MOREFRAG;
1439     }
1440 }
1441
1442 /*+
1443  *
1444  * Description:
1445  *      Request instructs a MAC to transmit a 802.11 management packet through
1446  *      the adapter onto the medium.
1447  *
1448  * Parameters:
1449  *  In:
1450  *      hDeviceContext  - Pointer to the adapter
1451  *      pPacket         - A pointer to a descriptor for the packet to transmit
1452  *  Out:
1453  *      none
1454  *
1455  * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1456  *
1457 -*/
1458
1459 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1460         struct vnt_tx_mgmt *pPacket)
1461 {
1462         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1463         struct vnt_tx_buffer *pTX_Buffer;
1464         struct vnt_usb_send_context *pContext;
1465         struct vnt_tx_fifo_head *pTxBufHead;
1466         struct ieee80211_hdr *pMACHeader;
1467         struct ethhdr sEthHeader;
1468         u8 byPktType, *pbyTxBufferAddr;
1469         void *pvTxDataHd;
1470         struct vnt_mic_hdr *pMICHDR = NULL;
1471         u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1472         int bNeedACK, bIsPSPOLL = false;
1473         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1474         u32 uPadding = 0;
1475         u16 wTxBufSize;
1476         u32 cbMacHdLen;
1477         u16 wCurrentRate = RATE_1M;
1478
1479         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1480
1481     if (NULL == pContext) {
1482         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1483         return CMD_STATUS_RESOURCES;
1484     }
1485
1486         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1487     cbFrameBodySize = pPacket->cbPayloadLen;
1488         pTxBufHead = &pTX_Buffer->fifo_head;
1489         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1490         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1491
1492     if (pDevice->byBBType == BB_TYPE_11A) {
1493         wCurrentRate = RATE_6M;
1494         byPktType = PK_TYPE_11A;
1495     } else {
1496         wCurrentRate = RATE_1M;
1497         byPktType = PK_TYPE_11B;
1498     }
1499
1500     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1501     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1502     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1503     //                    to set power here.
1504     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1505         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1506     } else {
1507         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1508     }
1509     pDevice->wCurrentRate = wCurrentRate;
1510
1511     //Set packet type
1512     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1513         pTxBufHead->wFIFOCtl = 0;
1514     }
1515     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1516         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1517     }
1518     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1519         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1520     }
1521     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1522         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1523     }
1524
1525     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1526     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1527
1528     if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1529         bNeedACK = false;
1530     }
1531     else {
1532         bNeedACK = true;
1533         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1534     };
1535
1536     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1537         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1538
1539         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1540         //Set Preamble type always long
1541         //pDevice->byPreambleType = PREAMBLE_LONG;
1542         // probe-response don't retry
1543         //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1544         //     bNeedACK = false;
1545         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1546         //}
1547     }
1548
1549     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1550
1551     if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1552         bIsPSPOLL = true;
1553         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1554     } else {
1555         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1556     }
1557
1558     //Set FRAGCTL_MACHDCNT
1559     pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1560
1561     // Notes:
1562     // Although spec says MMPDU can be fragmented; In most case,
1563     // no one will send a MMPDU under fragmentation. With RTS may occur.
1564     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1565
1566     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1567         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1568             cbIVlen = 4;
1569             cbICVlen = 4;
1570             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1571         }
1572         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1573             cbIVlen = 8;//IV+ExtIV
1574             cbMIClen = 8;
1575             cbICVlen = 4;
1576             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1577             //We need to get seed here for filling TxKey entry.
1578             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1579             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1580         }
1581         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1582             cbIVlen = 8;//RSN Header
1583             cbICVlen = 8;//MIC
1584             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1585             pDevice->bAES = true;
1586         }
1587         //MAC Header should be padding 0 to DW alignment.
1588         uPadding = 4 - (cbMacHdLen%4);
1589         uPadding %= 4;
1590     }
1591
1592     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1593
1594     //Set FIFOCTL_GrpAckPolicy
1595     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1596         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1597     }
1598     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1599
1600     //Set RrvTime/RTS/CTS Buffer
1601     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1602         pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1603                 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1604         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1605                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1606     }
1607     else { // 802.11a/b packet
1608         pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1609                 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1610         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1611                 sizeof(struct vnt_tx_datahead_ab);
1612     }
1613
1614     memcpy(&(sEthHeader.h_dest[0]),
1615            &(pPacket->p80211Header->sA3.abyAddr1[0]),
1616            ETH_ALEN);
1617     memcpy(&(sEthHeader.h_source[0]),
1618            &(pPacket->p80211Header->sA3.abyAddr2[0]),
1619            ETH_ALEN);
1620     //=========================
1621     //    No Fragmentation
1622     //=========================
1623     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1624
1625         /* Fill FIFO,RrvTime,RTS,and CTS */
1626         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1627                 pTX_Buffer, &pMICHDR, 0,
1628                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1629
1630     //Fill DataHead
1631     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1632                                 AUTO_FB_NONE);
1633
1634     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1635
1636     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1637
1638     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1639         u8 *           pbyIVHead;
1640         u8 *           pbyPayloadHead;
1641         u8 *           pbyBSSID;
1642         PSKeyItem       pTransmitKey = NULL;
1643
1644         pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1645         pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1646         do {
1647             if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1648                 (pDevice->bLinkPass == true)) {
1649                 pbyBSSID = pDevice->abyBSSID;
1650                 // get pairwise key
1651                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1652                     // get group key
1653                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1654                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1655                         break;
1656                     }
1657                 } else {
1658                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1659                     break;
1660                 }
1661             }
1662             // get group key
1663             pbyBSSID = pDevice->abyBroadcastAddr;
1664             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1665                 pTransmitKey = NULL;
1666                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1667             } else {
1668                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1669             }
1670         } while(false);
1671         //Fill TXKEY
1672         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1673                      (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1674
1675         memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1676         memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1677                  cbFrameBodySize);
1678     }
1679     else {
1680         // Copy the Packet into a tx Buffer
1681         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1682     }
1683
1684     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1685     pDevice->wSeqCounter++ ;
1686     if (pDevice->wSeqCounter > 0x0fff)
1687         pDevice->wSeqCounter = 0;
1688
1689     if (bIsPSPOLL) {
1690         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1691         // of FIFO control header.
1692         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1693         // in the same place of other packet's Duration-field).
1694         // And it will cause Cisco-AP to issue Disassociation-packet
1695         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1696                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1697                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1698                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1699                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1700         } else {
1701                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1702                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1703         }
1704     }
1705
1706     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1707     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1708     pTX_Buffer->byType = 0x00;
1709
1710     pContext->pPacket = NULL;
1711     pContext->Type = CONTEXT_MGMT_PACKET;
1712     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1713
1714     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1715         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1716                         &pMACHeader->addr1[0], (u16)cbFrameSize,
1717                         pTxBufHead->wFIFOCtl);
1718     }
1719     else {
1720         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1721                         &pMACHeader->addr3[0], (u16)cbFrameSize,
1722                         pTxBufHead->wFIFOCtl);
1723     }
1724
1725     PIPEnsSendBulkOut(pDevice,pContext);
1726     return CMD_STATUS_PENDING;
1727 }
1728
1729 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1730         struct vnt_tx_mgmt *pPacket)
1731 {
1732         struct vnt_beacon_buffer *pTX_Buffer;
1733         u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1734         u32 cbHeaderSize = 0;
1735         u16 wTxBufSize = sizeof(STxShortBufHead);
1736         PSTxShortBufHead pTxBufHead;
1737         struct ieee80211_hdr *pMACHeader;
1738         struct vnt_tx_datahead_ab *pTxDataHead;
1739         u16 wCurrentRate;
1740         u32 cbFrameBodySize;
1741         u32 cbReqCount;
1742         u8 *pbyTxBufferAddr;
1743         struct vnt_usb_send_context *pContext;
1744         CMD_STATUS status;
1745
1746         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1747     if (NULL == pContext) {
1748         status = CMD_STATUS_RESOURCES;
1749         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1750         return status ;
1751     }
1752
1753         pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1754     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1755
1756     cbFrameBodySize = pPacket->cbPayloadLen;
1757
1758     pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1759     wTxBufSize = sizeof(STxShortBufHead);
1760
1761     if (pDevice->byBBType == BB_TYPE_11A) {
1762         wCurrentRate = RATE_6M;
1763         pTxDataHead = (struct vnt_tx_datahead_ab *)
1764                         (pbyTxBufferAddr + wTxBufSize);
1765         //Get SignalField,ServiceField,Length
1766         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1767                                                         &pTxDataHead->ab);
1768         //Get Duration and TimeStampOff
1769         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1770                                                 PK_TYPE_11A, false);
1771         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1772         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1773     } else {
1774         wCurrentRate = RATE_1M;
1775         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1776         pTxDataHead = (struct vnt_tx_datahead_ab *)
1777                                 (pbyTxBufferAddr + wTxBufSize);
1778         //Get SignalField,ServiceField,Length
1779         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1780                                                         &pTxDataHead->ab);
1781         //Get Duration and TimeStampOff
1782         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1783                                                 PK_TYPE_11B, false);
1784         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1785         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1786     }
1787
1788     //Generate Beacon Header
1789     pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1790     memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1791
1792     pMACHeader->duration_id = 0;
1793     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1794     pDevice->wSeqCounter++ ;
1795     if (pDevice->wSeqCounter > 0x0fff)
1796         pDevice->wSeqCounter = 0;
1797
1798     cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1799
1800     pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1801     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1802     pTX_Buffer->byType = 0x01;
1803
1804     pContext->pPacket = NULL;
1805     pContext->Type = CONTEXT_MGMT_PACKET;
1806     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1807
1808     PIPEnsSendBulkOut(pDevice,pContext);
1809     return CMD_STATUS_PENDING;
1810
1811 }
1812
1813 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1814 {
1815         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1816         struct vnt_tx_buffer *pTX_Buffer;
1817         struct vnt_tx_fifo_head *pTxBufHead;
1818         u8 byPktType;
1819         u8 *pbyTxBufferAddr;
1820         void *pvTxDataHd;
1821         u32 uDuration, cbReqCount;
1822         struct ieee80211_hdr *pMACHeader;
1823         u32 cbHeaderSize, cbFrameBodySize;
1824         int bNeedACK, bIsPSPOLL = false;
1825         u32 cbFrameSize;
1826         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1827         u32 uPadding = 0;
1828         u32 cbMICHDR = 0, uLength = 0;
1829         u32 dwMICKey0, dwMICKey1;
1830         u32 dwMIC_Priority;
1831         u32 *pdwMIC_L, *pdwMIC_R;
1832         u16 wTxBufSize;
1833         u32 cbMacHdLen;
1834         struct ethhdr sEthHeader;
1835         struct vnt_mic_hdr *pMICHDR;
1836         u32 wCurrentRate = RATE_1M;
1837         PUWLAN_80211HDR  p80211Header;
1838         u32 uNodeIndex = 0;
1839         int bNodeExist = false;
1840         SKeyItem STempKey;
1841         PSKeyItem pTransmitKey = NULL;
1842         u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1843         u32 cbExtSuppRate = 0;
1844         struct vnt_usb_send_context *pContext;
1845
1846         pMICHDR = pvTxDataHd = NULL;
1847
1848     if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1849        cbFrameBodySize = 0;
1850     }
1851     else {
1852        cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1853     }
1854     p80211Header = (PUWLAN_80211HDR)skb->data;
1855
1856         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1857
1858     if (NULL == pContext) {
1859         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1860         dev_kfree_skb_irq(skb);
1861         return ;
1862     }
1863
1864         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1865         pTxBufHead = &pTX_Buffer->fifo_head;
1866         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1867         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1868
1869     if (pDevice->byBBType == BB_TYPE_11A) {
1870         wCurrentRate = RATE_6M;
1871         byPktType = PK_TYPE_11A;
1872     } else {
1873         wCurrentRate = RATE_1M;
1874         byPktType = PK_TYPE_11B;
1875     }
1876
1877     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1878     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1879     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1880     //                    to set power here.
1881     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1882         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1883     } else {
1884         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1885     }
1886
1887     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1888
1889     //Set packet type
1890     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1891         pTxBufHead->wFIFOCtl = 0;
1892     }
1893     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1894         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1895     }
1896     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1897         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1898     }
1899     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1900         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1901     }
1902
1903     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1904     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1905
1906     if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1907         bNeedACK = false;
1908         if (pDevice->bEnableHostWEP) {
1909             uNodeIndex = 0;
1910             bNodeExist = true;
1911         }
1912     }
1913     else {
1914         if (pDevice->bEnableHostWEP) {
1915             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1916                 bNodeExist = true;
1917         }
1918         bNeedACK = true;
1919         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1920     };
1921
1922     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1923         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1924
1925         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1926         //Set Preamble type always long
1927         //pDevice->byPreambleType = PREAMBLE_LONG;
1928
1929         // probe-response don't retry
1930         //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1931         //     bNeedACK = false;
1932         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1933         //}
1934     }
1935
1936     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1937
1938     if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1939         bIsPSPOLL = true;
1940         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1941     } else {
1942         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1943     }
1944
1945     // hostapd daemon ext support rate patch
1946     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1947
1948         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1949             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1950          }
1951
1952         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1953             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1954          }
1955
1956          if (cbExtSuppRate >0) {
1957             cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1958          }
1959     }
1960
1961     //Set FRAGCTL_MACHDCNT
1962     pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1963
1964     // Notes:
1965     // Although spec says MMPDU can be fragmented; In most case,
1966     // no one will send a MMPDU under fragmentation. With RTS may occur.
1967     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1968
1969     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1970         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1971             cbIVlen = 4;
1972             cbICVlen = 4;
1973             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1974         }
1975         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1976             cbIVlen = 8;//IV+ExtIV
1977             cbMIClen = 8;
1978             cbICVlen = 4;
1979             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1980             //We need to get seed here for filling TxKey entry.
1981             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1982             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1983         }
1984         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1985             cbIVlen = 8;//RSN Header
1986             cbICVlen = 8;//MIC
1987             cbMICHDR = sizeof(struct vnt_mic_hdr);
1988             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1989             pDevice->bAES = true;
1990         }
1991         //MAC Header should be padding 0 to DW alignment.
1992         uPadding = 4 - (cbMacHdLen%4);
1993         uPadding %= 4;
1994     }
1995
1996     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
1997
1998     //Set FIFOCTL_GrpAckPolicy
1999     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2000         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2001     }
2002     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2003
2004     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2005         pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2006                 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2007                                         sizeof(struct vnt_cts));
2008         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2009                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2010
2011     }
2012     else {//802.11a/b packet
2013         pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2014                 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2015         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2016                                         sizeof(struct vnt_tx_datahead_ab);
2017     }
2018     memcpy(&(sEthHeader.h_dest[0]),
2019            &(p80211Header->sA3.abyAddr1[0]),
2020            ETH_ALEN);
2021     memcpy(&(sEthHeader.h_source[0]),
2022            &(p80211Header->sA3.abyAddr2[0]),
2023            ETH_ALEN);
2024     //=========================
2025     //    No Fragmentation
2026     //=========================
2027     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2028
2029         /* Fill FIFO,RrvTime,RTS,and CTS */
2030         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2031                 pTX_Buffer, &pMICHDR, cbMICHDR,
2032                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2033
2034     //Fill DataHead
2035     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2036                                 AUTO_FB_NONE);
2037
2038     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2039
2040     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2041
2042     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2043     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2044     pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2045
2046     // Copy the Packet into a tx Buffer
2047     memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2048
2049     // version set to 0, patch for hostapd deamon
2050     pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2051     memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2052
2053     // replace support rate, patch for hostapd daemon( only support 11M)
2054     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2055         if (cbExtSuppRate != 0) {
2056             if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2057                 memcpy((pbyPayloadHead + cbFrameBodySize),
2058                         pMgmt->abyCurrSuppRates,
2059                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2060                        );
2061              if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2062                 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2063                         pMgmt->abyCurrExtSuppRates,
2064                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2065                        );
2066          }
2067     }
2068
2069     // Set wep
2070     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2071
2072         if (pDevice->bEnableHostWEP) {
2073             pTransmitKey = &STempKey;
2074             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2075             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2076             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2077             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2078             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2079             memcpy(pTransmitKey->abyKey,
2080                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2081                 pTransmitKey->uKeyLength
2082                 );
2083         }
2084
2085         if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2086
2087             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2088             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2089
2090             // DO Software Michael
2091             MIC_vInit(dwMICKey0, dwMICKey1);
2092             MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2093             dwMIC_Priority = 0;
2094             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2095                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2096                         " %X, %X\n", dwMICKey0, dwMICKey1);
2097
2098             uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2099
2100             MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2101
2102             pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2103             pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2104
2105             MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2106             MIC_vUnInit();
2107
2108             if (pDevice->bTxMICFail == true) {
2109                 *pdwMIC_L = 0;
2110                 *pdwMIC_R = 0;
2111                 pDevice->bTxMICFail = false;
2112             }
2113
2114             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2115             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2116                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2117                         *pdwMIC_L, *pdwMIC_R);
2118
2119         }
2120
2121         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2122                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2123
2124         if (pDevice->bEnableHostWEP) {
2125             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2126             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2127         }
2128
2129         if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2130             s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2131         }
2132     }
2133
2134     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2135     pDevice->wSeqCounter++ ;
2136     if (pDevice->wSeqCounter > 0x0fff)
2137         pDevice->wSeqCounter = 0;
2138
2139     if (bIsPSPOLL) {
2140         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2141         // of  FIFO control header.
2142         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2143         // in the same place of other packet's Duration-field).
2144         // And it will cause Cisco-AP to issue Disassociation-packet
2145         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2146                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2147                         cpu_to_le16(p80211Header->sA2.wDurationID);
2148                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2149                         cpu_to_le16(p80211Header->sA2.wDurationID);
2150         } else {
2151                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2152                         cpu_to_le16(p80211Header->sA2.wDurationID);
2153         }
2154     }
2155
2156     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2157     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2158     pTX_Buffer->byType = 0x00;
2159
2160     pContext->pPacket = skb;
2161     pContext->Type = CONTEXT_MGMT_PACKET;
2162     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
2163
2164     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2165         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2166                         &pMACHeader->addr1[0], (u16)cbFrameSize,
2167                         pTxBufHead->wFIFOCtl);
2168     }
2169     else {
2170         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2171                         &pMACHeader->addr3[0], (u16)cbFrameSize,
2172                         pTxBufHead->wFIFOCtl);
2173     }
2174     PIPEnsSendBulkOut(pDevice,pContext);
2175     return ;
2176
2177 }
2178
2179 //TYPE_AC0DMA data tx
2180 /*
2181  * Description:
2182  *      Tx packet via AC0DMA(DMA1)
2183  *
2184  * Parameters:
2185  *  In:
2186  *      pDevice         - Pointer to the adapter
2187  *      skb             - Pointer to tx skb packet
2188  *  Out:
2189  *      void
2190  *
2191  * Return Value: NULL
2192  */
2193
2194 int nsDMA_tx_packet(struct vnt_private *pDevice,
2195         u32 uDMAIdx, struct sk_buff *skb)
2196 {
2197         struct net_device_stats *pStats = &pDevice->stats;
2198         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2199         struct vnt_tx_buffer *pTX_Buffer;
2200         u32 BytesToWrite = 0, uHeaderLen = 0;
2201         u32 uNodeIndex = 0;
2202         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2203         u16 wAID;
2204         u8 byPktType;
2205         int bNeedEncryption = false;
2206         PSKeyItem pTransmitKey = NULL;
2207         SKeyItem STempKey;
2208         int ii;
2209         int bTKIP_UseGTK = false;
2210         int bNeedDeAuth = false;
2211         u8 *pbyBSSID;
2212         int bNodeExist = false;
2213         struct vnt_usb_send_context *pContext;
2214         bool fConvertedPacket;
2215         u32 status;
2216         u16 wKeepRate = pDevice->wCurrentRate;
2217         int bTxeapol_key = false;
2218
2219     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2220
2221         if (pDevice->uAssocCount == 0) {
2222             dev_kfree_skb_irq(skb);
2223             return 0;
2224         }
2225
2226         if (is_multicast_ether_addr((u8 *)(skb->data))) {
2227             uNodeIndex = 0;
2228             bNodeExist = true;
2229             if (pMgmt->sNodeDBTable[0].bPSEnable) {
2230
2231                 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2232                 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2233                 // set tx map
2234                 pMgmt->abyPSTxMap[0] |= byMask[0];
2235                 return 0;
2236             }
2237             // multicast/broadcast data rate
2238
2239             if (pDevice->byBBType != BB_TYPE_11A)
2240                 pDevice->wCurrentRate = RATE_2M;
2241             else
2242                 pDevice->wCurrentRate = RATE_24M;
2243             // long preamble type
2244             pDevice->byPreambleType = PREAMBLE_SHORT;
2245
2246         }else {
2247
2248             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2249
2250                 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2251
2252                     skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2253
2254                     pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2255                     // set tx map
2256                     wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2257                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
2258                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2259                              (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2260
2261                     return 0;
2262                 }
2263                 // AP rate decided from node
2264                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2265                 // tx preamble decided from node
2266
2267                 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2268                     pDevice->byPreambleType = pDevice->byShortPreamble;
2269
2270                 }else {
2271                     pDevice->byPreambleType = PREAMBLE_LONG;
2272                 }
2273                 bNodeExist = true;
2274             }
2275         }
2276
2277         if (bNodeExist == false) {
2278             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2279             dev_kfree_skb_irq(skb);
2280             return 0;
2281         }
2282     }
2283
2284         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2285
2286     if (pContext == NULL) {
2287         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2288         dev_kfree_skb_irq(skb);
2289         return STATUS_RESOURCES;
2290     }
2291
2292     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2293
2294 //mike add:station mode check eapol-key challenge--->
2295 {
2296     u8  Protocol_Version;    //802.1x Authentication
2297     u8  Packet_Type;           //802.1x Authentication
2298     u8  Descriptor_type;
2299     u16 Key_info;
2300
2301     Protocol_Version = skb->data[ETH_HLEN];
2302     Packet_Type = skb->data[ETH_HLEN+1];
2303     Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2304     Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2305         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2306                 /* 802.1x OR eapol-key challenge frame transfer */
2307                 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2308                         (Packet_Type == 3)) {
2309                         bTxeapol_key = true;
2310                        if(!(Key_info & BIT3) &&  //WPA or RSN group-key challenge
2311                            (Key_info & BIT8) && (Key_info & BIT9)) {    //send 2/2 key
2312                           if(Descriptor_type==254) {
2313                                pDevice->fWPA_Authened = true;
2314                              PRINT_K("WPA ");
2315                           }
2316                           else {
2317                                pDevice->fWPA_Authened = true;
2318                              PRINT_K("WPA2(re-keying) ");
2319                           }
2320                           PRINT_K("Authentication completed!!\n");
2321                         }
2322                     else if((Key_info & BIT3) && (Descriptor_type==2) &&  //RSN pairwise-key challenge
2323                                (Key_info & BIT8) && (Key_info & BIT9)) {
2324                           pDevice->fWPA_Authened = true;
2325                             PRINT_K("WPA2 Authentication completed!!\n");
2326                      }
2327              }
2328    }
2329 }
2330 //mike add:station mode check eapol-key challenge<---
2331
2332     if (pDevice->bEncryptionEnable == true) {
2333         bNeedEncryption = true;
2334         // get Transmit key
2335         do {
2336             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2337                 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2338                 pbyBSSID = pDevice->abyBSSID;
2339                 // get pairwise key
2340                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2341                     // get group key
2342                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2343                         bTKIP_UseGTK = true;
2344                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2345                         break;
2346                     }
2347                 } else {
2348                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2349                     break;
2350                 }
2351             }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2352               /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2353                 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2354                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2355                 for (ii = 0; ii< 6; ii++)
2356                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2357                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2358
2359                 // get pairwise key
2360                 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2361                     break;
2362             }
2363             // get group key
2364             pbyBSSID = pDevice->abyBroadcastAddr;
2365             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2366                 pTransmitKey = NULL;
2367                 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2368                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2369                 }
2370                 else
2371                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2372             } else {
2373                 bTKIP_UseGTK = true;
2374                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2375             }
2376         } while(false);
2377     }
2378
2379     if (pDevice->bEnableHostWEP) {
2380         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2381         if (pDevice->bEncryptionEnable == true) {
2382             pTransmitKey = &STempKey;
2383             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2384             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2385             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2386             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2387             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2388             memcpy(pTransmitKey->abyKey,
2389                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2390                 pTransmitKey->uKeyLength
2391                 );
2392          }
2393     }
2394
2395     byPktType = (u8)pDevice->byPacketType;
2396
2397     if (pDevice->bFixRate) {
2398         if (pDevice->byBBType == BB_TYPE_11B) {
2399             if (pDevice->uConnectionRate >= RATE_11M) {
2400                 pDevice->wCurrentRate = RATE_11M;
2401             } else {
2402                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2403             }
2404         } else {
2405             if ((pDevice->byBBType == BB_TYPE_11A) &&
2406                 (pDevice->uConnectionRate <= RATE_6M)) {
2407                 pDevice->wCurrentRate = RATE_6M;
2408             } else {
2409                 if (pDevice->uConnectionRate >= RATE_54M)
2410                     pDevice->wCurrentRate = RATE_54M;
2411                 else
2412                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2413             }
2414         }
2415     }
2416     else {
2417         if (pDevice->eOPMode == OP_MODE_ADHOC) {
2418             // Adhoc Tx rate decided from node DB
2419             if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2420                 // Multicast use highest data rate
2421                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2422                 // preamble type
2423                 pDevice->byPreambleType = pDevice->byShortPreamble;
2424             }
2425             else {
2426                 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2427                     pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2428                     if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2429                         pDevice->byPreambleType = pDevice->byShortPreamble;
2430
2431                     }
2432                     else {
2433                         pDevice->byPreambleType = PREAMBLE_LONG;
2434                     }
2435                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d]  Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2436                 }
2437                 else {
2438                     if (pDevice->byBBType != BB_TYPE_11A)
2439                        pDevice->wCurrentRate = RATE_2M;
2440                     else
2441                        pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2442                                                          // abyCurrExtSuppRates[]
2443                     pDevice->byPreambleType = PREAMBLE_SHORT;
2444                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2445                 }
2446             }
2447         }
2448         if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2449             // Infra STA rate decided from AP Node, index = 0
2450             pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2451         }
2452     }
2453
2454         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2455                 if (pDevice->byBBType != BB_TYPE_11A) {
2456                         pDevice->wCurrentRate = RATE_1M;
2457                         pDevice->byACKRate = RATE_1M;
2458                         pDevice->byTopCCKBasicRate = RATE_1M;
2459                         pDevice->byTopOFDMBasicRate = RATE_6M;
2460                 } else {
2461                         pDevice->wCurrentRate = RATE_6M;
2462                         pDevice->byACKRate = RATE_6M;
2463                         pDevice->byTopCCKBasicRate = RATE_1M;
2464                         pDevice->byTopOFDMBasicRate = RATE_6M;
2465                 }
2466         }
2467
2468     DBG_PRT(MSG_LEVEL_DEBUG,
2469             KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2470             pDevice->wCurrentRate);
2471
2472     if (wKeepRate != pDevice->wCurrentRate) {
2473         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2474     }
2475
2476     if (pDevice->wCurrentRate <= RATE_11M) {
2477         byPktType = PK_TYPE_11B;
2478     }
2479
2480     if (bNeedEncryption == true) {
2481         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2482         if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2483                 bNeedEncryption = false;
2484             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2485             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2486                 if (pTransmitKey == NULL) {
2487                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2488                 }
2489                 else {
2490                     if (bTKIP_UseGTK == true) {
2491                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2492                     }
2493                     else {
2494                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2495                                 pTransmitKey->dwKeyIndex);
2496                         bNeedEncryption = true;
2497                     }
2498                 }
2499             }
2500
2501             if (pDevice->bEnableHostWEP) {
2502                 if ((uNodeIndex != 0) &&
2503                     (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2504                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2505                                 pTransmitKey->dwKeyIndex);
2506                     bNeedEncryption = true;
2507                  }
2508              }
2509         }
2510         else {
2511
2512             if (pTransmitKey == NULL) {
2513                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2514                 pContext->bBoolInUse = false;
2515                 dev_kfree_skb_irq(skb);
2516                 pStats->tx_dropped++;
2517                 return STATUS_FAILURE;
2518             }
2519         }
2520     }
2521
2522         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2523
2524     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2525                         pTX_Buffer, bNeedEncryption,
2526                         skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2527                         (u8 *)skb->data, pTransmitKey, uNodeIndex,
2528                         pDevice->wCurrentRate,
2529                         &uHeaderLen, &BytesToWrite
2530                        );
2531
2532     if (fConvertedPacket == false) {
2533         pContext->bBoolInUse = false;
2534         dev_kfree_skb_irq(skb);
2535         return STATUS_FAILURE;
2536     }
2537
2538     if ( pDevice->bEnablePSMode == true ) {
2539         if ( !pDevice->bPSModeTxBurst ) {
2540                 bScheduleCommand((void *) pDevice,
2541                                  WLAN_CMD_MAC_DISPOWERSAVING,
2542                                  NULL);
2543             pDevice->bPSModeTxBurst = true;
2544         }
2545     }
2546
2547     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2548     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2549
2550     pContext->pPacket = skb;
2551     pContext->Type = CONTEXT_DATA_PACKET;
2552     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2553
2554     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2555                         &pContext->sEthHeader.h_dest[0],
2556                         (u16)(BytesToWrite-uHeaderLen),
2557                         pTX_Buffer->fifo_head.wFIFOCtl);
2558
2559     status = PIPEnsSendBulkOut(pDevice,pContext);
2560
2561     if (bNeedDeAuth == true) {
2562         u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2563
2564         bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2565     }
2566
2567   if(status!=STATUS_PENDING) {
2568      pContext->bBoolInUse = false;
2569     dev_kfree_skb_irq(skb);
2570     return STATUS_FAILURE;
2571   }
2572   else
2573     return 0;
2574
2575 }
2576
2577 /*
2578  * Description:
2579  *      Relay packet send (AC1DMA) from rx dpc.
2580  *
2581  * Parameters:
2582  *  In:
2583  *      pDevice         - Pointer to the adapter
2584  *      pPacket         - Pointer to rx packet
2585  *      cbPacketSize    - rx ethernet frame size
2586  *  Out:
2587  *      TURE, false
2588  *
2589  * Return Value: Return true if packet is copy to dma1; otherwise false
2590  */
2591
2592 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2593         u32 uNodeIndex)
2594 {
2595         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2596         struct vnt_tx_buffer *pTX_Buffer;
2597         u32 BytesToWrite = 0, uHeaderLen = 0;
2598         u8 byPktType = PK_TYPE_11B;
2599         int bNeedEncryption = false;
2600         SKeyItem STempKey;
2601         PSKeyItem pTransmitKey = NULL;
2602         u8 *pbyBSSID;
2603         struct vnt_usb_send_context *pContext;
2604         u8 byPktTyp;
2605         int fConvertedPacket;
2606         u32 status;
2607         u16 wKeepRate = pDevice->wCurrentRate;
2608
2609         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2610
2611     if (NULL == pContext) {
2612         return false;
2613     }
2614
2615     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2616
2617     if (pDevice->bEncryptionEnable == true) {
2618         bNeedEncryption = true;
2619         // get group key
2620         pbyBSSID = pDevice->abyBroadcastAddr;
2621         if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2622             pTransmitKey = NULL;
2623             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2624         } else {
2625             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2626         }
2627     }
2628
2629     if (pDevice->bEnableHostWEP) {
2630         if (uNodeIndex < MAX_NODE_NUM + 1) {
2631             pTransmitKey = &STempKey;
2632             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2633             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2634             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2635             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2636             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2637             memcpy(pTransmitKey->abyKey,
2638                     &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2639                     pTransmitKey->uKeyLength
2640                   );
2641         }
2642     }
2643
2644     if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2645         pContext->bBoolInUse = false;
2646         return false;
2647     }
2648
2649     byPktTyp = (u8)pDevice->byPacketType;
2650
2651     if (pDevice->bFixRate) {
2652         if (pDevice->byBBType == BB_TYPE_11B) {
2653             if (pDevice->uConnectionRate >= RATE_11M) {
2654                 pDevice->wCurrentRate = RATE_11M;
2655             } else {
2656                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2657             }
2658         } else {
2659             if ((pDevice->byBBType == BB_TYPE_11A) &&
2660                 (pDevice->uConnectionRate <= RATE_6M)) {
2661                 pDevice->wCurrentRate = RATE_6M;
2662             } else {
2663                 if (pDevice->uConnectionRate >= RATE_54M)
2664                     pDevice->wCurrentRate = RATE_54M;
2665                 else
2666                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2667             }
2668         }
2669     }
2670     else {
2671         pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2672     }
2673
2674     if (wKeepRate != pDevice->wCurrentRate) {
2675         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2676     }
2677
2678     if (pDevice->wCurrentRate <= RATE_11M)
2679         byPktType = PK_TYPE_11B;
2680
2681     BytesToWrite = uDataLen + ETH_FCS_LEN;
2682
2683     // Convert the packet to an usb frame and copy into our buffer
2684     // and send the irp.
2685
2686         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2687
2688     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2689                         pTX_Buffer, bNeedEncryption,
2690                          uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2691                          pbySkbData, pTransmitKey, uNodeIndex,
2692                          pDevice->wCurrentRate,
2693                          &uHeaderLen, &BytesToWrite
2694                         );
2695
2696     if (fConvertedPacket == false) {
2697         pContext->bBoolInUse = false;
2698         return false;
2699     }
2700
2701     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2702     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2703
2704     pContext->pPacket = NULL;
2705     pContext->Type = CONTEXT_DATA_PACKET;
2706     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2707
2708     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2709                 &pContext->sEthHeader.h_dest[0],
2710                 (u16)(BytesToWrite - uHeaderLen),
2711                 pTX_Buffer->fifo_head.wFIFOCtl);
2712
2713     status = PIPEnsSendBulkOut(pDevice,pContext);
2714
2715     return true;
2716 }
2717