]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/target/target_core_transport.c
target: remove SCF_EMULATE_QUEUE_FULL
[karo-tx-linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76                 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80                 unsigned long long starting_lba,
81                 enum dma_data_direction data_direction,
82                 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
86                 struct se_queue_obj *qobj);
87 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
88 static void transport_stop_all_task_timers(struct se_cmd *cmd);
89
90 int init_se_kmem_caches(void)
91 {
92         se_cmd_cache = kmem_cache_create("se_cmd_cache",
93                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
94         if (!se_cmd_cache) {
95                 pr_err("kmem_cache_create for struct se_cmd failed\n");
96                 goto out;
97         }
98         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
99                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
100                         0, NULL);
101         if (!se_tmr_req_cache) {
102                 pr_err("kmem_cache_create() for struct se_tmr_req"
103                                 " failed\n");
104                 goto out;
105         }
106         se_sess_cache = kmem_cache_create("se_sess_cache",
107                         sizeof(struct se_session), __alignof__(struct se_session),
108                         0, NULL);
109         if (!se_sess_cache) {
110                 pr_err("kmem_cache_create() for struct se_session"
111                                 " failed\n");
112                 goto out;
113         }
114         se_ua_cache = kmem_cache_create("se_ua_cache",
115                         sizeof(struct se_ua), __alignof__(struct se_ua),
116                         0, NULL);
117         if (!se_ua_cache) {
118                 pr_err("kmem_cache_create() for struct se_ua failed\n");
119                 goto out;
120         }
121         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
122                         sizeof(struct t10_pr_registration),
123                         __alignof__(struct t10_pr_registration), 0, NULL);
124         if (!t10_pr_reg_cache) {
125                 pr_err("kmem_cache_create() for struct t10_pr_registration"
126                                 " failed\n");
127                 goto out;
128         }
129         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
130                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
131                         0, NULL);
132         if (!t10_alua_lu_gp_cache) {
133                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
134                                 " failed\n");
135                 goto out;
136         }
137         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
138                         sizeof(struct t10_alua_lu_gp_member),
139                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
140         if (!t10_alua_lu_gp_mem_cache) {
141                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
142                                 "cache failed\n");
143                 goto out;
144         }
145         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
146                         sizeof(struct t10_alua_tg_pt_gp),
147                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
148         if (!t10_alua_tg_pt_gp_cache) {
149                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
150                                 "cache failed\n");
151                 goto out;
152         }
153         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
154                         "t10_alua_tg_pt_gp_mem_cache",
155                         sizeof(struct t10_alua_tg_pt_gp_member),
156                         __alignof__(struct t10_alua_tg_pt_gp_member),
157                         0, NULL);
158         if (!t10_alua_tg_pt_gp_mem_cache) {
159                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
160                                 "mem_t failed\n");
161                 goto out;
162         }
163
164         return 0;
165 out:
166         if (se_cmd_cache)
167                 kmem_cache_destroy(se_cmd_cache);
168         if (se_tmr_req_cache)
169                 kmem_cache_destroy(se_tmr_req_cache);
170         if (se_sess_cache)
171                 kmem_cache_destroy(se_sess_cache);
172         if (se_ua_cache)
173                 kmem_cache_destroy(se_ua_cache);
174         if (t10_pr_reg_cache)
175                 kmem_cache_destroy(t10_pr_reg_cache);
176         if (t10_alua_lu_gp_cache)
177                 kmem_cache_destroy(t10_alua_lu_gp_cache);
178         if (t10_alua_lu_gp_mem_cache)
179                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
180         if (t10_alua_tg_pt_gp_cache)
181                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
182         if (t10_alua_tg_pt_gp_mem_cache)
183                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
184         return -ENOMEM;
185 }
186
187 void release_se_kmem_caches(void)
188 {
189         kmem_cache_destroy(se_cmd_cache);
190         kmem_cache_destroy(se_tmr_req_cache);
191         kmem_cache_destroy(se_sess_cache);
192         kmem_cache_destroy(se_ua_cache);
193         kmem_cache_destroy(t10_pr_reg_cache);
194         kmem_cache_destroy(t10_alua_lu_gp_cache);
195         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
196         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
197         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
198 }
199
200 /* This code ensures unique mib indexes are handed out. */
201 static DEFINE_SPINLOCK(scsi_mib_index_lock);
202 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
203
204 /*
205  * Allocate a new row index for the entry type specified
206  */
207 u32 scsi_get_new_index(scsi_index_t type)
208 {
209         u32 new_index;
210
211         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
212
213         spin_lock(&scsi_mib_index_lock);
214         new_index = ++scsi_mib_index[type];
215         spin_unlock(&scsi_mib_index_lock);
216
217         return new_index;
218 }
219
220 void transport_init_queue_obj(struct se_queue_obj *qobj)
221 {
222         atomic_set(&qobj->queue_cnt, 0);
223         INIT_LIST_HEAD(&qobj->qobj_list);
224         init_waitqueue_head(&qobj->thread_wq);
225         spin_lock_init(&qobj->cmd_queue_lock);
226 }
227 EXPORT_SYMBOL(transport_init_queue_obj);
228
229 static int transport_subsystem_reqmods(void)
230 {
231         int ret;
232
233         ret = request_module("target_core_iblock");
234         if (ret != 0)
235                 pr_err("Unable to load target_core_iblock\n");
236
237         ret = request_module("target_core_file");
238         if (ret != 0)
239                 pr_err("Unable to load target_core_file\n");
240
241         ret = request_module("target_core_pscsi");
242         if (ret != 0)
243                 pr_err("Unable to load target_core_pscsi\n");
244
245         ret = request_module("target_core_stgt");
246         if (ret != 0)
247                 pr_err("Unable to load target_core_stgt\n");
248
249         return 0;
250 }
251
252 int transport_subsystem_check_init(void)
253 {
254         int ret;
255
256         if (sub_api_initialized)
257                 return 0;
258         /*
259          * Request the loading of known TCM subsystem plugins..
260          */
261         ret = transport_subsystem_reqmods();
262         if (ret < 0)
263                 return ret;
264
265         sub_api_initialized = 1;
266         return 0;
267 }
268
269 struct se_session *transport_init_session(void)
270 {
271         struct se_session *se_sess;
272
273         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
274         if (!se_sess) {
275                 pr_err("Unable to allocate struct se_session from"
276                                 " se_sess_cache\n");
277                 return ERR_PTR(-ENOMEM);
278         }
279         INIT_LIST_HEAD(&se_sess->sess_list);
280         INIT_LIST_HEAD(&se_sess->sess_acl_list);
281
282         return se_sess;
283 }
284 EXPORT_SYMBOL(transport_init_session);
285
286 /*
287  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
288  */
289 void __transport_register_session(
290         struct se_portal_group *se_tpg,
291         struct se_node_acl *se_nacl,
292         struct se_session *se_sess,
293         void *fabric_sess_ptr)
294 {
295         unsigned char buf[PR_REG_ISID_LEN];
296
297         se_sess->se_tpg = se_tpg;
298         se_sess->fabric_sess_ptr = fabric_sess_ptr;
299         /*
300          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
301          *
302          * Only set for struct se_session's that will actually be moving I/O.
303          * eg: *NOT* discovery sessions.
304          */
305         if (se_nacl) {
306                 /*
307                  * If the fabric module supports an ISID based TransportID,
308                  * save this value in binary from the fabric I_T Nexus now.
309                  */
310                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
311                         memset(&buf[0], 0, PR_REG_ISID_LEN);
312                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
313                                         &buf[0], PR_REG_ISID_LEN);
314                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
315                 }
316                 spin_lock_irq(&se_nacl->nacl_sess_lock);
317                 /*
318                  * The se_nacl->nacl_sess pointer will be set to the
319                  * last active I_T Nexus for each struct se_node_acl.
320                  */
321                 se_nacl->nacl_sess = se_sess;
322
323                 list_add_tail(&se_sess->sess_acl_list,
324                               &se_nacl->acl_sess_list);
325                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
326         }
327         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
328
329         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
330                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
331 }
332 EXPORT_SYMBOL(__transport_register_session);
333
334 void transport_register_session(
335         struct se_portal_group *se_tpg,
336         struct se_node_acl *se_nacl,
337         struct se_session *se_sess,
338         void *fabric_sess_ptr)
339 {
340         spin_lock_bh(&se_tpg->session_lock);
341         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
342         spin_unlock_bh(&se_tpg->session_lock);
343 }
344 EXPORT_SYMBOL(transport_register_session);
345
346 void transport_deregister_session_configfs(struct se_session *se_sess)
347 {
348         struct se_node_acl *se_nacl;
349         unsigned long flags;
350         /*
351          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
352          */
353         se_nacl = se_sess->se_node_acl;
354         if (se_nacl) {
355                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
356                 list_del(&se_sess->sess_acl_list);
357                 /*
358                  * If the session list is empty, then clear the pointer.
359                  * Otherwise, set the struct se_session pointer from the tail
360                  * element of the per struct se_node_acl active session list.
361                  */
362                 if (list_empty(&se_nacl->acl_sess_list))
363                         se_nacl->nacl_sess = NULL;
364                 else {
365                         se_nacl->nacl_sess = container_of(
366                                         se_nacl->acl_sess_list.prev,
367                                         struct se_session, sess_acl_list);
368                 }
369                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
370         }
371 }
372 EXPORT_SYMBOL(transport_deregister_session_configfs);
373
374 void transport_free_session(struct se_session *se_sess)
375 {
376         kmem_cache_free(se_sess_cache, se_sess);
377 }
378 EXPORT_SYMBOL(transport_free_session);
379
380 void transport_deregister_session(struct se_session *se_sess)
381 {
382         struct se_portal_group *se_tpg = se_sess->se_tpg;
383         struct se_node_acl *se_nacl;
384         unsigned long flags;
385
386         if (!se_tpg) {
387                 transport_free_session(se_sess);
388                 return;
389         }
390
391         spin_lock_irqsave(&se_tpg->session_lock, flags);
392         list_del(&se_sess->sess_list);
393         se_sess->se_tpg = NULL;
394         se_sess->fabric_sess_ptr = NULL;
395         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
396
397         /*
398          * Determine if we need to do extra work for this initiator node's
399          * struct se_node_acl if it had been previously dynamically generated.
400          */
401         se_nacl = se_sess->se_node_acl;
402         if (se_nacl) {
403                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
404                 if (se_nacl->dynamic_node_acl) {
405                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
406                                         se_tpg)) {
407                                 list_del(&se_nacl->acl_list);
408                                 se_tpg->num_node_acls--;
409                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
410
411                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
412                                 core_free_device_list_for_node(se_nacl, se_tpg);
413                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
414                                                 se_nacl);
415                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
416                         }
417                 }
418                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419         }
420
421         transport_free_session(se_sess);
422
423         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
424                 se_tpg->se_tpg_tfo->get_fabric_name());
425 }
426 EXPORT_SYMBOL(transport_deregister_session);
427
428 /*
429  * Called with cmd->t_state_lock held.
430  */
431 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
432 {
433         struct se_device *dev = cmd->se_dev;
434         struct se_task *task;
435         unsigned long flags;
436
437         if (!dev)
438                 return;
439
440         list_for_each_entry(task, &cmd->t_task_list, t_list) {
441                 if (task->task_flags & TF_ACTIVE)
442                         continue;
443
444                 if (!atomic_read(&task->task_state_active))
445                         continue;
446
447                 spin_lock_irqsave(&dev->execute_task_lock, flags);
448                 list_del(&task->t_state_list);
449                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
450                         cmd->se_tfo->get_task_tag(cmd), dev, task);
451                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
452
453                 atomic_set(&task->task_state_active, 0);
454                 atomic_dec(&cmd->t_task_cdbs_ex_left);
455         }
456 }
457
458 /*      transport_cmd_check_stop():
459  *
460  *      'transport_off = 1' determines if t_transport_active should be cleared.
461  *      'transport_off = 2' determines if task_dev_state should be removed.
462  *
463  *      A non-zero u8 t_state sets cmd->t_state.
464  *      Returns 1 when command is stopped, else 0.
465  */
466 static int transport_cmd_check_stop(
467         struct se_cmd *cmd,
468         int transport_off,
469         u8 t_state)
470 {
471         unsigned long flags;
472
473         spin_lock_irqsave(&cmd->t_state_lock, flags);
474         /*
475          * Determine if IOCTL context caller in requesting the stopping of this
476          * command for LUN shutdown purposes.
477          */
478         if (atomic_read(&cmd->transport_lun_stop)) {
479                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
480                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
481                         cmd->se_tfo->get_task_tag(cmd));
482
483                 cmd->deferred_t_state = cmd->t_state;
484                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
485                 atomic_set(&cmd->t_transport_active, 0);
486                 if (transport_off == 2)
487                         transport_all_task_dev_remove_state(cmd);
488                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
489
490                 complete(&cmd->transport_lun_stop_comp);
491                 return 1;
492         }
493         /*
494          * Determine if frontend context caller is requesting the stopping of
495          * this command for frontend exceptions.
496          */
497         if (atomic_read(&cmd->t_transport_stop)) {
498                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
499                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
500                         cmd->se_tfo->get_task_tag(cmd));
501
502                 cmd->deferred_t_state = cmd->t_state;
503                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
504                 if (transport_off == 2)
505                         transport_all_task_dev_remove_state(cmd);
506
507                 /*
508                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
509                  * to FE.
510                  */
511                 if (transport_off == 2)
512                         cmd->se_lun = NULL;
513                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
514
515                 complete(&cmd->t_transport_stop_comp);
516                 return 1;
517         }
518         if (transport_off) {
519                 atomic_set(&cmd->t_transport_active, 0);
520                 if (transport_off == 2) {
521                         transport_all_task_dev_remove_state(cmd);
522                         /*
523                          * Clear struct se_cmd->se_lun before the transport_off == 2
524                          * handoff to fabric module.
525                          */
526                         cmd->se_lun = NULL;
527                         /*
528                          * Some fabric modules like tcm_loop can release
529                          * their internally allocated I/O reference now and
530                          * struct se_cmd now.
531                          */
532                         if (cmd->se_tfo->check_stop_free != NULL) {
533                                 spin_unlock_irqrestore(
534                                         &cmd->t_state_lock, flags);
535
536                                 cmd->se_tfo->check_stop_free(cmd);
537                                 return 1;
538                         }
539                 }
540                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
541
542                 return 0;
543         } else if (t_state)
544                 cmd->t_state = t_state;
545         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
546
547         return 0;
548 }
549
550 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
551 {
552         return transport_cmd_check_stop(cmd, 2, 0);
553 }
554
555 static void transport_lun_remove_cmd(struct se_cmd *cmd)
556 {
557         struct se_lun *lun = cmd->se_lun;
558         unsigned long flags;
559
560         if (!lun)
561                 return;
562
563         spin_lock_irqsave(&cmd->t_state_lock, flags);
564         if (!atomic_read(&cmd->transport_dev_active)) {
565                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
566                 goto check_lun;
567         }
568         atomic_set(&cmd->transport_dev_active, 0);
569         transport_all_task_dev_remove_state(cmd);
570         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
571
572
573 check_lun:
574         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
575         if (atomic_read(&cmd->transport_lun_active)) {
576                 list_del(&cmd->se_lun_node);
577                 atomic_set(&cmd->transport_lun_active, 0);
578 #if 0
579                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
580                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
581 #endif
582         }
583         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
584 }
585
586 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
587 {
588         if (!cmd->se_tmr_req)
589                 transport_lun_remove_cmd(cmd);
590
591         if (transport_cmd_check_stop_to_fabric(cmd))
592                 return;
593         if (remove) {
594                 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
595                 transport_put_cmd(cmd);
596         }
597 }
598
599 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
600                 bool at_head)
601 {
602         struct se_device *dev = cmd->se_dev;
603         struct se_queue_obj *qobj = &dev->dev_queue_obj;
604         unsigned long flags;
605
606         if (t_state) {
607                 spin_lock_irqsave(&cmd->t_state_lock, flags);
608                 cmd->t_state = t_state;
609                 atomic_set(&cmd->t_transport_active, 1);
610                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
611         }
612
613         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
614
615         /* If the cmd is already on the list, remove it before we add it */
616         if (!list_empty(&cmd->se_queue_node))
617                 list_del(&cmd->se_queue_node);
618         else
619                 atomic_inc(&qobj->queue_cnt);
620
621         if (at_head)
622                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
623         else
624                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
625         atomic_set(&cmd->t_transport_queue_active, 1);
626         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
627
628         wake_up_interruptible(&qobj->thread_wq);
629 }
630
631 static struct se_cmd *
632 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
633 {
634         struct se_cmd *cmd;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (list_empty(&qobj->qobj_list)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return NULL;
641         }
642         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
643
644         atomic_set(&cmd->t_transport_queue_active, 0);
645
646         list_del_init(&cmd->se_queue_node);
647         atomic_dec(&qobj->queue_cnt);
648         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
649
650         return cmd;
651 }
652
653 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
654                 struct se_queue_obj *qobj)
655 {
656         unsigned long flags;
657
658         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
659         if (!atomic_read(&cmd->t_transport_queue_active)) {
660                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
661                 return;
662         }
663         atomic_set(&cmd->t_transport_queue_active, 0);
664         atomic_dec(&qobj->queue_cnt);
665         list_del_init(&cmd->se_queue_node);
666         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
667
668         if (atomic_read(&cmd->t_transport_queue_active)) {
669                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
670                         cmd->se_tfo->get_task_tag(cmd),
671                         atomic_read(&cmd->t_transport_queue_active));
672         }
673 }
674
675 /*
676  * Completion function used by TCM subsystem plugins (such as FILEIO)
677  * for queueing up response from struct se_subsystem_api->do_task()
678  */
679 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
680 {
681         struct se_task *task = list_entry(cmd->t_task_list.next,
682                                 struct se_task, t_list);
683
684         if (good) {
685                 cmd->scsi_status = SAM_STAT_GOOD;
686                 task->task_scsi_status = GOOD;
687         } else {
688                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
689                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
690                 task->task_se_cmd->transport_error_status =
691                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
692         }
693
694         transport_complete_task(task, good);
695 }
696 EXPORT_SYMBOL(transport_complete_sync_cache);
697
698 /*      transport_complete_task():
699  *
700  *      Called from interrupt and non interrupt context depending
701  *      on the transport plugin.
702  */
703 void transport_complete_task(struct se_task *task, int success)
704 {
705         struct se_cmd *cmd = task->task_se_cmd;
706         struct se_device *dev = cmd->se_dev;
707         int t_state;
708         unsigned long flags;
709 #if 0
710         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
711                         cmd->t_task_cdb[0], dev);
712 #endif
713         if (dev)
714                 atomic_inc(&dev->depth_left);
715
716         spin_lock_irqsave(&cmd->t_state_lock, flags);
717         task->task_flags &= ~TF_ACTIVE;
718
719         /*
720          * See if any sense data exists, if so set the TASK_SENSE flag.
721          * Also check for any other post completion work that needs to be
722          * done by the plugins.
723          */
724         if (dev && dev->transport->transport_complete) {
725                 if (dev->transport->transport_complete(task) != 0) {
726                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
727                         task->task_sense = 1;
728                         success = 1;
729                 }
730         }
731
732         /*
733          * See if we are waiting for outstanding struct se_task
734          * to complete for an exception condition
735          */
736         if (task->task_flags & TF_REQUEST_STOP) {
737                 /*
738                  * Decrement cmd->t_se_count if this task had
739                  * previously thrown its timeout exception handler.
740                  */
741                 if (task->task_flags & TF_TIMEOUT) {
742                         atomic_dec(&cmd->t_se_count);
743                         task->task_flags &= ~TF_TIMEOUT;
744                 }
745                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
746
747                 complete(&task->task_stop_comp);
748                 return;
749         }
750         /*
751          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
752          * left counter to determine when the struct se_cmd is ready to be queued to
753          * the processing thread.
754          */
755         if (task->task_flags & TF_TIMEOUT) {
756                 if (!atomic_dec_and_test(
757                                 &cmd->t_task_cdbs_timeout_left)) {
758                         spin_unlock_irqrestore(&cmd->t_state_lock,
759                                 flags);
760                         return;
761                 }
762                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
763                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
764
765                 transport_add_cmd_to_queue(cmd, t_state, false);
766                 return;
767         }
768         atomic_dec(&cmd->t_task_cdbs_timeout_left);
769
770         /*
771          * Decrement the outstanding t_task_cdbs_left count.  The last
772          * struct se_task from struct se_cmd will complete itself into the
773          * device queue depending upon int success.
774          */
775         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
776                 if (!success)
777                         cmd->t_tasks_failed = 1;
778
779                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
780                 return;
781         }
782
783         if (!success || cmd->t_tasks_failed) {
784                 t_state = TRANSPORT_COMPLETE_FAILURE;
785                 if (!task->task_error_status) {
786                         task->task_error_status =
787                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
788                         cmd->transport_error_status =
789                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
790                 }
791         } else {
792                 atomic_set(&cmd->t_transport_complete, 1);
793                 t_state = TRANSPORT_COMPLETE_OK;
794         }
795         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
796
797         transport_add_cmd_to_queue(cmd, t_state, false);
798 }
799 EXPORT_SYMBOL(transport_complete_task);
800
801 /*
802  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
803  * struct se_task list are ready to be added to the active execution list
804  * struct se_device
805
806  * Called with se_dev_t->execute_task_lock called.
807  */
808 static inline int transport_add_task_check_sam_attr(
809         struct se_task *task,
810         struct se_task *task_prev,
811         struct se_device *dev)
812 {
813         /*
814          * No SAM Task attribute emulation enabled, add to tail of
815          * execution queue
816          */
817         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
818                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
819                 return 0;
820         }
821         /*
822          * HEAD_OF_QUEUE attribute for received CDB, which means
823          * the first task that is associated with a struct se_cmd goes to
824          * head of the struct se_device->execute_task_list, and task_prev
825          * after that for each subsequent task
826          */
827         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
828                 list_add(&task->t_execute_list,
829                                 (task_prev != NULL) ?
830                                 &task_prev->t_execute_list :
831                                 &dev->execute_task_list);
832
833                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
834                                 " in execution queue\n",
835                                 task->task_se_cmd->t_task_cdb[0]);
836                 return 1;
837         }
838         /*
839          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
840          * transitioned from Dermant -> Active state, and are added to the end
841          * of the struct se_device->execute_task_list
842          */
843         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
844         return 0;
845 }
846
847 /*      __transport_add_task_to_execute_queue():
848  *
849  *      Called with se_dev_t->execute_task_lock called.
850  */
851 static void __transport_add_task_to_execute_queue(
852         struct se_task *task,
853         struct se_task *task_prev,
854         struct se_device *dev)
855 {
856         int head_of_queue;
857
858         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
859         atomic_inc(&dev->execute_tasks);
860
861         if (atomic_read(&task->task_state_active))
862                 return;
863         /*
864          * Determine if this task needs to go to HEAD_OF_QUEUE for the
865          * state list as well.  Running with SAM Task Attribute emulation
866          * will always return head_of_queue == 0 here
867          */
868         if (head_of_queue)
869                 list_add(&task->t_state_list, (task_prev) ?
870                                 &task_prev->t_state_list :
871                                 &dev->state_task_list);
872         else
873                 list_add_tail(&task->t_state_list, &dev->state_task_list);
874
875         atomic_set(&task->task_state_active, 1);
876
877         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
878                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
879                 task, dev);
880 }
881
882 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
883 {
884         struct se_device *dev = cmd->se_dev;
885         struct se_task *task;
886         unsigned long flags;
887
888         spin_lock_irqsave(&cmd->t_state_lock, flags);
889         list_for_each_entry(task, &cmd->t_task_list, t_list) {
890                 if (atomic_read(&task->task_state_active))
891                         continue;
892
893                 spin_lock(&dev->execute_task_lock);
894                 list_add_tail(&task->t_state_list, &dev->state_task_list);
895                 atomic_set(&task->task_state_active, 1);
896
897                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
898                         task->task_se_cmd->se_tfo->get_task_tag(
899                         task->task_se_cmd), task, dev);
900
901                 spin_unlock(&dev->execute_task_lock);
902         }
903         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
904 }
905
906 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
907 {
908         struct se_device *dev = cmd->se_dev;
909         struct se_task *task, *task_prev = NULL;
910         unsigned long flags;
911
912         spin_lock_irqsave(&dev->execute_task_lock, flags);
913         list_for_each_entry(task, &cmd->t_task_list, t_list) {
914                 if (!list_empty(&task->t_execute_list))
915                         continue;
916                 /*
917                  * __transport_add_task_to_execute_queue() handles the
918                  * SAM Task Attribute emulation if enabled
919                  */
920                 __transport_add_task_to_execute_queue(task, task_prev, dev);
921                 task_prev = task;
922         }
923         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
924 }
925
926 void __transport_remove_task_from_execute_queue(struct se_task *task,
927                 struct se_device *dev)
928 {
929         list_del_init(&task->t_execute_list);
930         atomic_dec(&dev->execute_tasks);
931 }
932
933 void transport_remove_task_from_execute_queue(
934         struct se_task *task,
935         struct se_device *dev)
936 {
937         unsigned long flags;
938
939         if (WARN_ON(list_empty(&task->t_execute_list)))
940                 return;
941
942         spin_lock_irqsave(&dev->execute_task_lock, flags);
943         __transport_remove_task_from_execute_queue(task, dev);
944         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
945 }
946
947 /*
948  * Handle QUEUE_FULL / -EAGAIN status
949  */
950
951 static void target_qf_do_work(struct work_struct *work)
952 {
953         struct se_device *dev = container_of(work, struct se_device,
954                                         qf_work_queue);
955         LIST_HEAD(qf_cmd_list);
956         struct se_cmd *cmd, *cmd_tmp;
957
958         spin_lock_irq(&dev->qf_cmd_lock);
959         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
960         spin_unlock_irq(&dev->qf_cmd_lock);
961
962         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
963                 list_del(&cmd->se_qf_node);
964                 atomic_dec(&dev->dev_qf_count);
965                 smp_mb__after_atomic_dec();
966
967                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
968                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
969                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
970                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
971                         : "UNKNOWN");
972
973                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
974         }
975 }
976
977 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
978 {
979         switch (cmd->data_direction) {
980         case DMA_NONE:
981                 return "NONE";
982         case DMA_FROM_DEVICE:
983                 return "READ";
984         case DMA_TO_DEVICE:
985                 return "WRITE";
986         case DMA_BIDIRECTIONAL:
987                 return "BIDI";
988         default:
989                 break;
990         }
991
992         return "UNKNOWN";
993 }
994
995 void transport_dump_dev_state(
996         struct se_device *dev,
997         char *b,
998         int *bl)
999 {
1000         *bl += sprintf(b + *bl, "Status: ");
1001         switch (dev->dev_status) {
1002         case TRANSPORT_DEVICE_ACTIVATED:
1003                 *bl += sprintf(b + *bl, "ACTIVATED");
1004                 break;
1005         case TRANSPORT_DEVICE_DEACTIVATED:
1006                 *bl += sprintf(b + *bl, "DEACTIVATED");
1007                 break;
1008         case TRANSPORT_DEVICE_SHUTDOWN:
1009                 *bl += sprintf(b + *bl, "SHUTDOWN");
1010                 break;
1011         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1012         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1013                 *bl += sprintf(b + *bl, "OFFLINE");
1014                 break;
1015         default:
1016                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1017                 break;
1018         }
1019
1020         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1021                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1022                 dev->queue_depth);
1023         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1024                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1025         *bl += sprintf(b + *bl, "        ");
1026 }
1027
1028 void transport_dump_vpd_proto_id(
1029         struct t10_vpd *vpd,
1030         unsigned char *p_buf,
1031         int p_buf_len)
1032 {
1033         unsigned char buf[VPD_TMP_BUF_SIZE];
1034         int len;
1035
1036         memset(buf, 0, VPD_TMP_BUF_SIZE);
1037         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1038
1039         switch (vpd->protocol_identifier) {
1040         case 0x00:
1041                 sprintf(buf+len, "Fibre Channel\n");
1042                 break;
1043         case 0x10:
1044                 sprintf(buf+len, "Parallel SCSI\n");
1045                 break;
1046         case 0x20:
1047                 sprintf(buf+len, "SSA\n");
1048                 break;
1049         case 0x30:
1050                 sprintf(buf+len, "IEEE 1394\n");
1051                 break;
1052         case 0x40:
1053                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1054                                 " Protocol\n");
1055                 break;
1056         case 0x50:
1057                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1058                 break;
1059         case 0x60:
1060                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1061                 break;
1062         case 0x70:
1063                 sprintf(buf+len, "Automation/Drive Interface Transport"
1064                                 " Protocol\n");
1065                 break;
1066         case 0x80:
1067                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1068                 break;
1069         default:
1070                 sprintf(buf+len, "Unknown 0x%02x\n",
1071                                 vpd->protocol_identifier);
1072                 break;
1073         }
1074
1075         if (p_buf)
1076                 strncpy(p_buf, buf, p_buf_len);
1077         else
1078                 pr_debug("%s", buf);
1079 }
1080
1081 void
1082 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1083 {
1084         /*
1085          * Check if the Protocol Identifier Valid (PIV) bit is set..
1086          *
1087          * from spc3r23.pdf section 7.5.1
1088          */
1089          if (page_83[1] & 0x80) {
1090                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1091                 vpd->protocol_identifier_set = 1;
1092                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1093         }
1094 }
1095 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1096
1097 int transport_dump_vpd_assoc(
1098         struct t10_vpd *vpd,
1099         unsigned char *p_buf,
1100         int p_buf_len)
1101 {
1102         unsigned char buf[VPD_TMP_BUF_SIZE];
1103         int ret = 0;
1104         int len;
1105
1106         memset(buf, 0, VPD_TMP_BUF_SIZE);
1107         len = sprintf(buf, "T10 VPD Identifier Association: ");
1108
1109         switch (vpd->association) {
1110         case 0x00:
1111                 sprintf(buf+len, "addressed logical unit\n");
1112                 break;
1113         case 0x10:
1114                 sprintf(buf+len, "target port\n");
1115                 break;
1116         case 0x20:
1117                 sprintf(buf+len, "SCSI target device\n");
1118                 break;
1119         default:
1120                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1121                 ret = -EINVAL;
1122                 break;
1123         }
1124
1125         if (p_buf)
1126                 strncpy(p_buf, buf, p_buf_len);
1127         else
1128                 pr_debug("%s", buf);
1129
1130         return ret;
1131 }
1132
1133 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1134 {
1135         /*
1136          * The VPD identification association..
1137          *
1138          * from spc3r23.pdf Section 7.6.3.1 Table 297
1139          */
1140         vpd->association = (page_83[1] & 0x30);
1141         return transport_dump_vpd_assoc(vpd, NULL, 0);
1142 }
1143 EXPORT_SYMBOL(transport_set_vpd_assoc);
1144
1145 int transport_dump_vpd_ident_type(
1146         struct t10_vpd *vpd,
1147         unsigned char *p_buf,
1148         int p_buf_len)
1149 {
1150         unsigned char buf[VPD_TMP_BUF_SIZE];
1151         int ret = 0;
1152         int len;
1153
1154         memset(buf, 0, VPD_TMP_BUF_SIZE);
1155         len = sprintf(buf, "T10 VPD Identifier Type: ");
1156
1157         switch (vpd->device_identifier_type) {
1158         case 0x00:
1159                 sprintf(buf+len, "Vendor specific\n");
1160                 break;
1161         case 0x01:
1162                 sprintf(buf+len, "T10 Vendor ID based\n");
1163                 break;
1164         case 0x02:
1165                 sprintf(buf+len, "EUI-64 based\n");
1166                 break;
1167         case 0x03:
1168                 sprintf(buf+len, "NAA\n");
1169                 break;
1170         case 0x04:
1171                 sprintf(buf+len, "Relative target port identifier\n");
1172                 break;
1173         case 0x08:
1174                 sprintf(buf+len, "SCSI name string\n");
1175                 break;
1176         default:
1177                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1178                                 vpd->device_identifier_type);
1179                 ret = -EINVAL;
1180                 break;
1181         }
1182
1183         if (p_buf) {
1184                 if (p_buf_len < strlen(buf)+1)
1185                         return -EINVAL;
1186                 strncpy(p_buf, buf, p_buf_len);
1187         } else {
1188                 pr_debug("%s", buf);
1189         }
1190
1191         return ret;
1192 }
1193
1194 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1195 {
1196         /*
1197          * The VPD identifier type..
1198          *
1199          * from spc3r23.pdf Section 7.6.3.1 Table 298
1200          */
1201         vpd->device_identifier_type = (page_83[1] & 0x0f);
1202         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1203 }
1204 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1205
1206 int transport_dump_vpd_ident(
1207         struct t10_vpd *vpd,
1208         unsigned char *p_buf,
1209         int p_buf_len)
1210 {
1211         unsigned char buf[VPD_TMP_BUF_SIZE];
1212         int ret = 0;
1213
1214         memset(buf, 0, VPD_TMP_BUF_SIZE);
1215
1216         switch (vpd->device_identifier_code_set) {
1217         case 0x01: /* Binary */
1218                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1219                         &vpd->device_identifier[0]);
1220                 break;
1221         case 0x02: /* ASCII */
1222                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1223                         &vpd->device_identifier[0]);
1224                 break;
1225         case 0x03: /* UTF-8 */
1226                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1227                         &vpd->device_identifier[0]);
1228                 break;
1229         default:
1230                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1231                         " 0x%02x", vpd->device_identifier_code_set);
1232                 ret = -EINVAL;
1233                 break;
1234         }
1235
1236         if (p_buf)
1237                 strncpy(p_buf, buf, p_buf_len);
1238         else
1239                 pr_debug("%s", buf);
1240
1241         return ret;
1242 }
1243
1244 int
1245 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1246 {
1247         static const char hex_str[] = "0123456789abcdef";
1248         int j = 0, i = 4; /* offset to start of the identifer */
1249
1250         /*
1251          * The VPD Code Set (encoding)
1252          *
1253          * from spc3r23.pdf Section 7.6.3.1 Table 296
1254          */
1255         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1256         switch (vpd->device_identifier_code_set) {
1257         case 0x01: /* Binary */
1258                 vpd->device_identifier[j++] =
1259                                 hex_str[vpd->device_identifier_type];
1260                 while (i < (4 + page_83[3])) {
1261                         vpd->device_identifier[j++] =
1262                                 hex_str[(page_83[i] & 0xf0) >> 4];
1263                         vpd->device_identifier[j++] =
1264                                 hex_str[page_83[i] & 0x0f];
1265                         i++;
1266                 }
1267                 break;
1268         case 0x02: /* ASCII */
1269         case 0x03: /* UTF-8 */
1270                 while (i < (4 + page_83[3]))
1271                         vpd->device_identifier[j++] = page_83[i++];
1272                 break;
1273         default:
1274                 break;
1275         }
1276
1277         return transport_dump_vpd_ident(vpd, NULL, 0);
1278 }
1279 EXPORT_SYMBOL(transport_set_vpd_ident);
1280
1281 static void core_setup_task_attr_emulation(struct se_device *dev)
1282 {
1283         /*
1284          * If this device is from Target_Core_Mod/pSCSI, disable the
1285          * SAM Task Attribute emulation.
1286          *
1287          * This is currently not available in upsream Linux/SCSI Target
1288          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1289          */
1290         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1291                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1292                 return;
1293         }
1294
1295         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1296         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1297                 " device\n", dev->transport->name,
1298                 dev->transport->get_device_rev(dev));
1299 }
1300
1301 static void scsi_dump_inquiry(struct se_device *dev)
1302 {
1303         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1304         int i, device_type;
1305         /*
1306          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1307          */
1308         pr_debug("  Vendor: ");
1309         for (i = 0; i < 8; i++)
1310                 if (wwn->vendor[i] >= 0x20)
1311                         pr_debug("%c", wwn->vendor[i]);
1312                 else
1313                         pr_debug(" ");
1314
1315         pr_debug("  Model: ");
1316         for (i = 0; i < 16; i++)
1317                 if (wwn->model[i] >= 0x20)
1318                         pr_debug("%c", wwn->model[i]);
1319                 else
1320                         pr_debug(" ");
1321
1322         pr_debug("  Revision: ");
1323         for (i = 0; i < 4; i++)
1324                 if (wwn->revision[i] >= 0x20)
1325                         pr_debug("%c", wwn->revision[i]);
1326                 else
1327                         pr_debug(" ");
1328
1329         pr_debug("\n");
1330
1331         device_type = dev->transport->get_device_type(dev);
1332         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1333         pr_debug("                 ANSI SCSI revision: %02x\n",
1334                                 dev->transport->get_device_rev(dev));
1335 }
1336
1337 struct se_device *transport_add_device_to_core_hba(
1338         struct se_hba *hba,
1339         struct se_subsystem_api *transport,
1340         struct se_subsystem_dev *se_dev,
1341         u32 device_flags,
1342         void *transport_dev,
1343         struct se_dev_limits *dev_limits,
1344         const char *inquiry_prod,
1345         const char *inquiry_rev)
1346 {
1347         int force_pt;
1348         struct se_device  *dev;
1349
1350         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1351         if (!dev) {
1352                 pr_err("Unable to allocate memory for se_dev_t\n");
1353                 return NULL;
1354         }
1355
1356         transport_init_queue_obj(&dev->dev_queue_obj);
1357         dev->dev_flags          = device_flags;
1358         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1359         dev->dev_ptr            = transport_dev;
1360         dev->se_hba             = hba;
1361         dev->se_sub_dev         = se_dev;
1362         dev->transport          = transport;
1363         atomic_set(&dev->active_cmds, 0);
1364         INIT_LIST_HEAD(&dev->dev_list);
1365         INIT_LIST_HEAD(&dev->dev_sep_list);
1366         INIT_LIST_HEAD(&dev->dev_tmr_list);
1367         INIT_LIST_HEAD(&dev->execute_task_list);
1368         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1369         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1370         INIT_LIST_HEAD(&dev->state_task_list);
1371         INIT_LIST_HEAD(&dev->qf_cmd_list);
1372         spin_lock_init(&dev->execute_task_lock);
1373         spin_lock_init(&dev->delayed_cmd_lock);
1374         spin_lock_init(&dev->ordered_cmd_lock);
1375         spin_lock_init(&dev->state_task_lock);
1376         spin_lock_init(&dev->dev_alua_lock);
1377         spin_lock_init(&dev->dev_reservation_lock);
1378         spin_lock_init(&dev->dev_status_lock);
1379         spin_lock_init(&dev->dev_status_thr_lock);
1380         spin_lock_init(&dev->se_port_lock);
1381         spin_lock_init(&dev->se_tmr_lock);
1382         spin_lock_init(&dev->qf_cmd_lock);
1383
1384         dev->queue_depth        = dev_limits->queue_depth;
1385         atomic_set(&dev->depth_left, dev->queue_depth);
1386         atomic_set(&dev->dev_ordered_id, 0);
1387
1388         se_dev_set_default_attribs(dev, dev_limits);
1389
1390         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1391         dev->creation_time = get_jiffies_64();
1392         spin_lock_init(&dev->stats_lock);
1393
1394         spin_lock(&hba->device_lock);
1395         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1396         hba->dev_count++;
1397         spin_unlock(&hba->device_lock);
1398         /*
1399          * Setup the SAM Task Attribute emulation for struct se_device
1400          */
1401         core_setup_task_attr_emulation(dev);
1402         /*
1403          * Force PR and ALUA passthrough emulation with internal object use.
1404          */
1405         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1406         /*
1407          * Setup the Reservations infrastructure for struct se_device
1408          */
1409         core_setup_reservations(dev, force_pt);
1410         /*
1411          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1412          */
1413         if (core_setup_alua(dev, force_pt) < 0)
1414                 goto out;
1415
1416         /*
1417          * Startup the struct se_device processing thread
1418          */
1419         dev->process_thread = kthread_run(transport_processing_thread, dev,
1420                                           "LIO_%s", dev->transport->name);
1421         if (IS_ERR(dev->process_thread)) {
1422                 pr_err("Unable to create kthread: LIO_%s\n",
1423                         dev->transport->name);
1424                 goto out;
1425         }
1426         /*
1427          * Setup work_queue for QUEUE_FULL
1428          */
1429         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1430         /*
1431          * Preload the initial INQUIRY const values if we are doing
1432          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1433          * passthrough because this is being provided by the backend LLD.
1434          * This is required so that transport_get_inquiry() copies these
1435          * originals once back into DEV_T10_WWN(dev) for the virtual device
1436          * setup.
1437          */
1438         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1439                 if (!inquiry_prod || !inquiry_rev) {
1440                         pr_err("All non TCM/pSCSI plugins require"
1441                                 " INQUIRY consts\n");
1442                         goto out;
1443                 }
1444
1445                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1446                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1447                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1448         }
1449         scsi_dump_inquiry(dev);
1450
1451         return dev;
1452 out:
1453         kthread_stop(dev->process_thread);
1454
1455         spin_lock(&hba->device_lock);
1456         list_del(&dev->dev_list);
1457         hba->dev_count--;
1458         spin_unlock(&hba->device_lock);
1459
1460         se_release_vpd_for_dev(dev);
1461
1462         kfree(dev);
1463
1464         return NULL;
1465 }
1466 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1467
1468 /*      transport_generic_prepare_cdb():
1469  *
1470  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1471  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1472  *      The point of this is since we are mapping iSCSI LUNs to
1473  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1474  *      devices and HBAs for a loop.
1475  */
1476 static inline void transport_generic_prepare_cdb(
1477         unsigned char *cdb)
1478 {
1479         switch (cdb[0]) {
1480         case READ_10: /* SBC - RDProtect */
1481         case READ_12: /* SBC - RDProtect */
1482         case READ_16: /* SBC - RDProtect */
1483         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1484         case VERIFY: /* SBC - VRProtect */
1485         case VERIFY_16: /* SBC - VRProtect */
1486         case WRITE_VERIFY: /* SBC - VRProtect */
1487         case WRITE_VERIFY_12: /* SBC - VRProtect */
1488                 break;
1489         default:
1490                 cdb[1] &= 0x1f; /* clear logical unit number */
1491                 break;
1492         }
1493 }
1494
1495 static struct se_task *
1496 transport_generic_get_task(struct se_cmd *cmd,
1497                 enum dma_data_direction data_direction)
1498 {
1499         struct se_task *task;
1500         struct se_device *dev = cmd->se_dev;
1501
1502         task = dev->transport->alloc_task(cmd->t_task_cdb);
1503         if (!task) {
1504                 pr_err("Unable to allocate struct se_task\n");
1505                 return NULL;
1506         }
1507
1508         INIT_LIST_HEAD(&task->t_list);
1509         INIT_LIST_HEAD(&task->t_execute_list);
1510         INIT_LIST_HEAD(&task->t_state_list);
1511         init_completion(&task->task_stop_comp);
1512         task->task_se_cmd = cmd;
1513         task->task_data_direction = data_direction;
1514
1515         return task;
1516 }
1517
1518 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1519
1520 /*
1521  * Used by fabric modules containing a local struct se_cmd within their
1522  * fabric dependent per I/O descriptor.
1523  */
1524 void transport_init_se_cmd(
1525         struct se_cmd *cmd,
1526         struct target_core_fabric_ops *tfo,
1527         struct se_session *se_sess,
1528         u32 data_length,
1529         int data_direction,
1530         int task_attr,
1531         unsigned char *sense_buffer)
1532 {
1533         INIT_LIST_HEAD(&cmd->se_lun_node);
1534         INIT_LIST_HEAD(&cmd->se_delayed_node);
1535         INIT_LIST_HEAD(&cmd->se_ordered_node);
1536         INIT_LIST_HEAD(&cmd->se_qf_node);
1537         INIT_LIST_HEAD(&cmd->se_queue_node);
1538
1539         INIT_LIST_HEAD(&cmd->t_task_list);
1540         init_completion(&cmd->transport_lun_fe_stop_comp);
1541         init_completion(&cmd->transport_lun_stop_comp);
1542         init_completion(&cmd->t_transport_stop_comp);
1543         spin_lock_init(&cmd->t_state_lock);
1544         atomic_set(&cmd->transport_dev_active, 1);
1545
1546         cmd->se_tfo = tfo;
1547         cmd->se_sess = se_sess;
1548         cmd->data_length = data_length;
1549         cmd->data_direction = data_direction;
1550         cmd->sam_task_attr = task_attr;
1551         cmd->sense_buffer = sense_buffer;
1552 }
1553 EXPORT_SYMBOL(transport_init_se_cmd);
1554
1555 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1556 {
1557         /*
1558          * Check if SAM Task Attribute emulation is enabled for this
1559          * struct se_device storage object
1560          */
1561         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1562                 return 0;
1563
1564         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1565                 pr_debug("SAM Task Attribute ACA"
1566                         " emulation is not supported\n");
1567                 return -EINVAL;
1568         }
1569         /*
1570          * Used to determine when ORDERED commands should go from
1571          * Dormant to Active status.
1572          */
1573         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1574         smp_mb__after_atomic_inc();
1575         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1576                         cmd->se_ordered_id, cmd->sam_task_attr,
1577                         cmd->se_dev->transport->name);
1578         return 0;
1579 }
1580
1581 /*      transport_generic_allocate_tasks():
1582  *
1583  *      Called from fabric RX Thread.
1584  */
1585 int transport_generic_allocate_tasks(
1586         struct se_cmd *cmd,
1587         unsigned char *cdb)
1588 {
1589         int ret;
1590
1591         transport_generic_prepare_cdb(cdb);
1592         /*
1593          * Ensure that the received CDB is less than the max (252 + 8) bytes
1594          * for VARIABLE_LENGTH_CMD
1595          */
1596         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1597                 pr_err("Received SCSI CDB with command_size: %d that"
1598                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1599                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1600                 return -EINVAL;
1601         }
1602         /*
1603          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1604          * allocate the additional extended CDB buffer now..  Otherwise
1605          * setup the pointer from __t_task_cdb to t_task_cdb.
1606          */
1607         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1608                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1609                                                 GFP_KERNEL);
1610                 if (!cmd->t_task_cdb) {
1611                         pr_err("Unable to allocate cmd->t_task_cdb"
1612                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1613                                 scsi_command_size(cdb),
1614                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1615                         return -ENOMEM;
1616                 }
1617         } else
1618                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1619         /*
1620          * Copy the original CDB into cmd->
1621          */
1622         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1623         /*
1624          * Setup the received CDB based on SCSI defined opcodes and
1625          * perform unit attention, persistent reservations and ALUA
1626          * checks for virtual device backends.  The cmd->t_task_cdb
1627          * pointer is expected to be setup before we reach this point.
1628          */
1629         ret = transport_generic_cmd_sequencer(cmd, cdb);
1630         if (ret < 0)
1631                 return ret;
1632         /*
1633          * Check for SAM Task Attribute Emulation
1634          */
1635         if (transport_check_alloc_task_attr(cmd) < 0) {
1636                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1637                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1638                 return -EINVAL;
1639         }
1640         spin_lock(&cmd->se_lun->lun_sep_lock);
1641         if (cmd->se_lun->lun_sep)
1642                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1643         spin_unlock(&cmd->se_lun->lun_sep_lock);
1644         return 0;
1645 }
1646 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1647
1648 static void transport_generic_request_failure(struct se_cmd *,
1649                         struct se_device *, int, int);
1650 /*
1651  * Used by fabric module frontends to queue tasks directly.
1652  * Many only be used from process context only
1653  */
1654 int transport_handle_cdb_direct(
1655         struct se_cmd *cmd)
1656 {
1657         int ret;
1658
1659         if (!cmd->se_lun) {
1660                 dump_stack();
1661                 pr_err("cmd->se_lun is NULL\n");
1662                 return -EINVAL;
1663         }
1664         if (in_interrupt()) {
1665                 dump_stack();
1666                 pr_err("transport_generic_handle_cdb cannot be called"
1667                                 " from interrupt context\n");
1668                 return -EINVAL;
1669         }
1670         /*
1671          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1672          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1673          * in existing usage to ensure that outstanding descriptors are handled
1674          * correctly during shutdown via transport_wait_for_tasks()
1675          *
1676          * Also, we don't take cmd->t_state_lock here as we only expect
1677          * this to be called for initial descriptor submission.
1678          */
1679         cmd->t_state = TRANSPORT_NEW_CMD;
1680         atomic_set(&cmd->t_transport_active, 1);
1681         /*
1682          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1683          * so follow TRANSPORT_NEW_CMD processing thread context usage
1684          * and call transport_generic_request_failure() if necessary..
1685          */
1686         ret = transport_generic_new_cmd(cmd);
1687         if (ret == -EAGAIN)
1688                 return 0;
1689         else if (ret < 0) {
1690                 cmd->transport_error_status = ret;
1691                 transport_generic_request_failure(cmd, NULL, 0,
1692                                 (cmd->data_direction != DMA_TO_DEVICE));
1693         }
1694         return 0;
1695 }
1696 EXPORT_SYMBOL(transport_handle_cdb_direct);
1697
1698 /*
1699  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1700  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1701  * complete setup in TCM process context w/ TFO->new_cmd_map().
1702  */
1703 int transport_generic_handle_cdb_map(
1704         struct se_cmd *cmd)
1705 {
1706         if (!cmd->se_lun) {
1707                 dump_stack();
1708                 pr_err("cmd->se_lun is NULL\n");
1709                 return -EINVAL;
1710         }
1711
1712         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1713         return 0;
1714 }
1715 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1716
1717 /*      transport_generic_handle_data():
1718  *
1719  *
1720  */
1721 int transport_generic_handle_data(
1722         struct se_cmd *cmd)
1723 {
1724         /*
1725          * For the software fabric case, then we assume the nexus is being
1726          * failed/shutdown when signals are pending from the kthread context
1727          * caller, so we return a failure.  For the HW target mode case running
1728          * in interrupt code, the signal_pending() check is skipped.
1729          */
1730         if (!in_interrupt() && signal_pending(current))
1731                 return -EPERM;
1732         /*
1733          * If the received CDB has aleady been ABORTED by the generic
1734          * target engine, we now call transport_check_aborted_status()
1735          * to queue any delated TASK_ABORTED status for the received CDB to the
1736          * fabric module as we are expecting no further incoming DATA OUT
1737          * sequences at this point.
1738          */
1739         if (transport_check_aborted_status(cmd, 1) != 0)
1740                 return 0;
1741
1742         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1743         return 0;
1744 }
1745 EXPORT_SYMBOL(transport_generic_handle_data);
1746
1747 /*      transport_generic_handle_tmr():
1748  *
1749  *
1750  */
1751 int transport_generic_handle_tmr(
1752         struct se_cmd *cmd)
1753 {
1754         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1755         return 0;
1756 }
1757 EXPORT_SYMBOL(transport_generic_handle_tmr);
1758
1759 void transport_generic_free_cmd_intr(
1760         struct se_cmd *cmd)
1761 {
1762         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1763 }
1764 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1765
1766 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1767 {
1768         struct se_task *task, *task_tmp;
1769         unsigned long flags;
1770         int ret = 0;
1771
1772         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1773                 cmd->se_tfo->get_task_tag(cmd));
1774
1775         /*
1776          * No tasks remain in the execution queue
1777          */
1778         spin_lock_irqsave(&cmd->t_state_lock, flags);
1779         list_for_each_entry_safe(task, task_tmp,
1780                                 &cmd->t_task_list, t_list) {
1781                 pr_debug("Processing task %p\n", task);
1782                 /*
1783                  * If the struct se_task has not been sent and is not active,
1784                  * remove the struct se_task from the execution queue.
1785                  */
1786                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1787                         spin_unlock_irqrestore(&cmd->t_state_lock,
1788                                         flags);
1789                         transport_remove_task_from_execute_queue(task,
1790                                         cmd->se_dev);
1791
1792                         pr_debug("Task %p removed from execute queue\n", task);
1793                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1794                         continue;
1795                 }
1796
1797                 /*
1798                  * If the struct se_task is active, sleep until it is returned
1799                  * from the plugin.
1800                  */
1801                 if (task->task_flags & TF_ACTIVE) {
1802                         task->task_flags |= TF_REQUEST_STOP;
1803                         spin_unlock_irqrestore(&cmd->t_state_lock,
1804                                         flags);
1805
1806                         pr_debug("Task %p waiting to complete\n", task);
1807                         wait_for_completion(&task->task_stop_comp);
1808                         pr_debug("Task %p stopped successfully\n", task);
1809
1810                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1811                         atomic_dec(&cmd->t_task_cdbs_left);
1812                         task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1813                 } else {
1814                         pr_debug("Task %p - did nothing\n", task);
1815                         ret++;
1816                 }
1817
1818                 __transport_stop_task_timer(task, &flags);
1819         }
1820         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1821
1822         return ret;
1823 }
1824
1825 /*
1826  * Handle SAM-esque emulation for generic transport request failures.
1827  */
1828 static void transport_generic_request_failure(
1829         struct se_cmd *cmd,
1830         struct se_device *dev,
1831         int complete,
1832         int sc)
1833 {
1834         int ret = 0;
1835
1836         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1837                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1838                 cmd->t_task_cdb[0]);
1839         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1840                 " %d/%d transport_error_status: %d\n",
1841                 cmd->se_tfo->get_cmd_state(cmd),
1842                 cmd->t_state, cmd->deferred_t_state,
1843                 cmd->transport_error_status);
1844         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1845                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1846                 " t_transport_active: %d t_transport_stop: %d"
1847                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1848                 atomic_read(&cmd->t_task_cdbs_left),
1849                 atomic_read(&cmd->t_task_cdbs_sent),
1850                 atomic_read(&cmd->t_task_cdbs_ex_left),
1851                 atomic_read(&cmd->t_transport_active),
1852                 atomic_read(&cmd->t_transport_stop),
1853                 atomic_read(&cmd->t_transport_sent));
1854
1855         transport_stop_all_task_timers(cmd);
1856
1857         if (dev)
1858                 atomic_inc(&dev->depth_left);
1859         /*
1860          * For SAM Task Attribute emulation for failed struct se_cmd
1861          */
1862         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1863                 transport_complete_task_attr(cmd);
1864
1865         if (complete) {
1866                 transport_direct_request_timeout(cmd);
1867                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1868         }
1869
1870         switch (cmd->transport_error_status) {
1871         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1872                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1873                 break;
1874         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1875                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1876                 break;
1877         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1878                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1879                 break;
1880         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1881                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1882                 break;
1883         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1884                 if (!sc)
1885                         transport_new_cmd_failure(cmd);
1886                 /*
1887                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1888                  * we force this session to fall back to session
1889                  * recovery.
1890                  */
1891                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1892                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1893
1894                 goto check_stop;
1895         case PYX_TRANSPORT_LU_COMM_FAILURE:
1896         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1897                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1898                 break;
1899         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1900                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1901                 break;
1902         case PYX_TRANSPORT_WRITE_PROTECTED:
1903                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1904                 break;
1905         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1906                 /*
1907                  * No SENSE Data payload for this case, set SCSI Status
1908                  * and queue the response to $FABRIC_MOD.
1909                  *
1910                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1911                  */
1912                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1913                 /*
1914                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1915                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1916                  * CONFLICT STATUS.
1917                  *
1918                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1919                  */
1920                 if (cmd->se_sess &&
1921                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1922                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1923                                 cmd->orig_fe_lun, 0x2C,
1924                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1925
1926                 ret = cmd->se_tfo->queue_status(cmd);
1927                 if (ret == -EAGAIN)
1928                         goto queue_full;
1929                 goto check_stop;
1930         case PYX_TRANSPORT_USE_SENSE_REASON:
1931                 /*
1932                  * struct se_cmd->scsi_sense_reason already set
1933                  */
1934                 break;
1935         default:
1936                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1937                         cmd->t_task_cdb[0],
1938                         cmd->transport_error_status);
1939                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1940                 break;
1941         }
1942         /*
1943          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1944          * make the call to transport_send_check_condition_and_sense()
1945          * directly.  Otherwise expect the fabric to make the call to
1946          * transport_send_check_condition_and_sense() after handling
1947          * possible unsoliticied write data payloads.
1948          */
1949         if (!sc && !cmd->se_tfo->new_cmd_map)
1950                 transport_new_cmd_failure(cmd);
1951         else {
1952                 ret = transport_send_check_condition_and_sense(cmd,
1953                                 cmd->scsi_sense_reason, 0);
1954                 if (ret == -EAGAIN)
1955                         goto queue_full;
1956         }
1957
1958 check_stop:
1959         transport_lun_remove_cmd(cmd);
1960         if (!transport_cmd_check_stop_to_fabric(cmd))
1961                 ;
1962         return;
1963
1964 queue_full:
1965         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1966         transport_handle_queue_full(cmd, cmd->se_dev);
1967 }
1968
1969 static void transport_direct_request_timeout(struct se_cmd *cmd)
1970 {
1971         unsigned long flags;
1972
1973         spin_lock_irqsave(&cmd->t_state_lock, flags);
1974         if (!atomic_read(&cmd->t_transport_timeout)) {
1975                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1976                 return;
1977         }
1978         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1979                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1980                 return;
1981         }
1982
1983         atomic_sub(atomic_read(&cmd->t_transport_timeout),
1984                    &cmd->t_se_count);
1985         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1986 }
1987
1988 static void transport_generic_request_timeout(struct se_cmd *cmd)
1989 {
1990         unsigned long flags;
1991
1992         /*
1993          * Reset cmd->t_se_count to allow transport_put_cmd()
1994          * to allow last call to free memory resources.
1995          */
1996         spin_lock_irqsave(&cmd->t_state_lock, flags);
1997         if (atomic_read(&cmd->t_transport_timeout) > 1) {
1998                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
1999
2000                 atomic_sub(tmp, &cmd->t_se_count);
2001         }
2002         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2003
2004         transport_put_cmd(cmd);
2005 }
2006
2007 static inline u32 transport_lba_21(unsigned char *cdb)
2008 {
2009         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2010 }
2011
2012 static inline u32 transport_lba_32(unsigned char *cdb)
2013 {
2014         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2015 }
2016
2017 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2018 {
2019         unsigned int __v1, __v2;
2020
2021         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2022         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2023
2024         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2025 }
2026
2027 /*
2028  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2029  */
2030 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2031 {
2032         unsigned int __v1, __v2;
2033
2034         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2035         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2036
2037         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2038 }
2039
2040 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2041 {
2042         unsigned long flags;
2043
2044         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2045         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2046         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2047 }
2048
2049 /*
2050  * Called from interrupt context.
2051  */
2052 static void transport_task_timeout_handler(unsigned long data)
2053 {
2054         struct se_task *task = (struct se_task *)data;
2055         struct se_cmd *cmd = task->task_se_cmd;
2056         unsigned long flags;
2057
2058         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2059
2060         spin_lock_irqsave(&cmd->t_state_lock, flags);
2061         if (task->task_flags & TF_TIMER_STOP) {
2062                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2063                 return;
2064         }
2065         task->task_flags &= ~TF_TIMER_RUNNING;
2066
2067         /*
2068          * Determine if transport_complete_task() has already been called.
2069          */
2070         if (!(task->task_flags & TF_ACTIVE)) {
2071                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2072                          task, cmd);
2073                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2074                 return;
2075         }
2076
2077         atomic_inc(&cmd->t_se_count);
2078         atomic_inc(&cmd->t_transport_timeout);
2079         cmd->t_tasks_failed = 1;
2080
2081         task->task_flags |= TF_TIMEOUT;
2082         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2083         task->task_scsi_status = 1;
2084
2085         if (task->task_flags & TF_REQUEST_STOP) {
2086                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2087                                 " == 1\n", task, cmd);
2088                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2089                 complete(&task->task_stop_comp);
2090                 return;
2091         }
2092
2093         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2094                 pr_debug("transport task: %p cmd: %p timeout non zero"
2095                                 " t_task_cdbs_left\n", task, cmd);
2096                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2097                 return;
2098         }
2099         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2100                         task, cmd);
2101
2102         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2103         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2104
2105         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2106 }
2107
2108 /*
2109  * Called with cmd->t_state_lock held.
2110  */
2111 static void transport_start_task_timer(struct se_task *task)
2112 {
2113         struct se_device *dev = task->task_se_cmd->se_dev;
2114         int timeout;
2115
2116         if (task->task_flags & TF_TIMER_RUNNING)
2117                 return;
2118         /*
2119          * If the task_timeout is disabled, exit now.
2120          */
2121         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2122         if (!timeout)
2123                 return;
2124
2125         init_timer(&task->task_timer);
2126         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2127         task->task_timer.data = (unsigned long) task;
2128         task->task_timer.function = transport_task_timeout_handler;
2129
2130         task->task_flags |= TF_TIMER_RUNNING;
2131         add_timer(&task->task_timer);
2132 #if 0
2133         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2134                 " %d\n", task->task_se_cmd, task, timeout);
2135 #endif
2136 }
2137
2138 /*
2139  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2140  */
2141 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2142 {
2143         struct se_cmd *cmd = task->task_se_cmd;
2144
2145         if (!(task->task_flags & TF_TIMER_RUNNING))
2146                 return;
2147
2148         task->task_flags |= TF_TIMER_STOP;
2149         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2150
2151         del_timer_sync(&task->task_timer);
2152
2153         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2154         task->task_flags &= ~TF_TIMER_RUNNING;
2155         task->task_flags &= ~TF_TIMER_STOP;
2156 }
2157
2158 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2159 {
2160         struct se_task *task = NULL, *task_tmp;
2161         unsigned long flags;
2162
2163         spin_lock_irqsave(&cmd->t_state_lock, flags);
2164         list_for_each_entry_safe(task, task_tmp,
2165                                 &cmd->t_task_list, t_list)
2166                 __transport_stop_task_timer(task, &flags);
2167         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2168 }
2169
2170 static inline int transport_tcq_window_closed(struct se_device *dev)
2171 {
2172         if (dev->dev_tcq_window_closed++ <
2173                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2174                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2175         } else
2176                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2177
2178         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2179         return 0;
2180 }
2181
2182 /*
2183  * Called from Fabric Module context from transport_execute_tasks()
2184  *
2185  * The return of this function determins if the tasks from struct se_cmd
2186  * get added to the execution queue in transport_execute_tasks(),
2187  * or are added to the delayed or ordered lists here.
2188  */
2189 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2190 {
2191         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2192                 return 1;
2193         /*
2194          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2195          * to allow the passed struct se_cmd list of tasks to the front of the list.
2196          */
2197          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2198                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2199                 smp_mb__after_atomic_inc();
2200                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2201                         " 0x%02x, se_ordered_id: %u\n",
2202                         cmd->t_task_cdb[0],
2203                         cmd->se_ordered_id);
2204                 return 1;
2205         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2206                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2207                 list_add_tail(&cmd->se_ordered_node,
2208                                 &cmd->se_dev->ordered_cmd_list);
2209                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2210
2211                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2212                 smp_mb__after_atomic_inc();
2213
2214                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2215                                 " list, se_ordered_id: %u\n",
2216                                 cmd->t_task_cdb[0],
2217                                 cmd->se_ordered_id);
2218                 /*
2219                  * Add ORDERED command to tail of execution queue if
2220                  * no other older commands exist that need to be
2221                  * completed first.
2222                  */
2223                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2224                         return 1;
2225         } else {
2226                 /*
2227                  * For SIMPLE and UNTAGGED Task Attribute commands
2228                  */
2229                 atomic_inc(&cmd->se_dev->simple_cmds);
2230                 smp_mb__after_atomic_inc();
2231         }
2232         /*
2233          * Otherwise if one or more outstanding ORDERED task attribute exist,
2234          * add the dormant task(s) built for the passed struct se_cmd to the
2235          * execution queue and become in Active state for this struct se_device.
2236          */
2237         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2238                 /*
2239                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2240                  * will be drained upon completion of HEAD_OF_QUEUE task.
2241                  */
2242                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2243                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2244                 list_add_tail(&cmd->se_delayed_node,
2245                                 &cmd->se_dev->delayed_cmd_list);
2246                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2247
2248                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2249                         " delayed CMD list, se_ordered_id: %u\n",
2250                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2251                         cmd->se_ordered_id);
2252                 /*
2253                  * Return zero to let transport_execute_tasks() know
2254                  * not to add the delayed tasks to the execution list.
2255                  */
2256                 return 0;
2257         }
2258         /*
2259          * Otherwise, no ORDERED task attributes exist..
2260          */
2261         return 1;
2262 }
2263
2264 /*
2265  * Called from fabric module context in transport_generic_new_cmd() and
2266  * transport_generic_process_write()
2267  */
2268 static int transport_execute_tasks(struct se_cmd *cmd)
2269 {
2270         int add_tasks;
2271
2272         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2273                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2274                 transport_generic_request_failure(cmd, NULL, 0, 1);
2275                 return 0;
2276         }
2277
2278         /*
2279          * Call transport_cmd_check_stop() to see if a fabric exception
2280          * has occurred that prevents execution.
2281          */
2282         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2283                 /*
2284                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2285                  * attribute for the tasks of the received struct se_cmd CDB
2286                  */
2287                 add_tasks = transport_execute_task_attr(cmd);
2288                 if (!add_tasks)
2289                         goto execute_tasks;
2290                 /*
2291                  * This calls transport_add_tasks_from_cmd() to handle
2292                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2293                  * (if enabled) in __transport_add_task_to_execute_queue() and
2294                  * transport_add_task_check_sam_attr().
2295                  */
2296                 transport_add_tasks_from_cmd(cmd);
2297         }
2298         /*
2299          * Kick the execution queue for the cmd associated struct se_device
2300          * storage object.
2301          */
2302 execute_tasks:
2303         __transport_execute_tasks(cmd->se_dev);
2304         return 0;
2305 }
2306
2307 /*
2308  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2309  * from struct se_device->execute_task_list and
2310  *
2311  * Called from transport_processing_thread()
2312  */
2313 static int __transport_execute_tasks(struct se_device *dev)
2314 {
2315         int error;
2316         struct se_cmd *cmd = NULL;
2317         struct se_task *task = NULL;
2318         unsigned long flags;
2319
2320         /*
2321          * Check if there is enough room in the device and HBA queue to send
2322          * struct se_tasks to the selected transport.
2323          */
2324 check_depth:
2325         if (!atomic_read(&dev->depth_left))
2326                 return transport_tcq_window_closed(dev);
2327
2328         dev->dev_tcq_window_closed = 0;
2329
2330         spin_lock_irq(&dev->execute_task_lock);
2331         if (list_empty(&dev->execute_task_list)) {
2332                 spin_unlock_irq(&dev->execute_task_lock);
2333                 return 0;
2334         }
2335         task = list_first_entry(&dev->execute_task_list,
2336                                 struct se_task, t_execute_list);
2337         __transport_remove_task_from_execute_queue(task, dev);
2338         spin_unlock_irq(&dev->execute_task_lock);
2339
2340         atomic_dec(&dev->depth_left);
2341
2342         cmd = task->task_se_cmd;
2343
2344         spin_lock_irqsave(&cmd->t_state_lock, flags);
2345         task->task_flags |= (TF_ACTIVE | TF_SENT);
2346         atomic_inc(&cmd->t_task_cdbs_sent);
2347
2348         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2349             cmd->t_task_list_num)
2350                 atomic_set(&cmd->transport_sent, 1);
2351
2352         transport_start_task_timer(task);
2353         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2354         /*
2355          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2356          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2357          * struct se_subsystem_api->do_task() caller below.
2358          */
2359         if (cmd->transport_emulate_cdb) {
2360                 error = cmd->transport_emulate_cdb(cmd);
2361                 if (error != 0) {
2362                         cmd->transport_error_status = error;
2363                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2364                         task->task_flags &= ~TF_ACTIVE;
2365                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2366                         atomic_set(&cmd->transport_sent, 0);
2367                         transport_stop_tasks_for_cmd(cmd);
2368                         transport_generic_request_failure(cmd, dev, 0, 1);
2369                         goto check_depth;
2370                 }
2371                 /*
2372                  * Handle the successful completion for transport_emulate_cdb()
2373                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2374                  * Otherwise the caller is expected to complete the task with
2375                  * proper status.
2376                  */
2377                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2378                         cmd->scsi_status = SAM_STAT_GOOD;
2379                         task->task_scsi_status = GOOD;
2380                         transport_complete_task(task, 1);
2381                 }
2382         } else {
2383                 /*
2384                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2385                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2386                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2387                  * LUN emulation code.
2388                  *
2389                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2390                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2391                  * code handle the CDB emulation.
2392                  */
2393                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2394                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2395                         error = transport_emulate_control_cdb(task);
2396                 else
2397                         error = dev->transport->do_task(task);
2398
2399                 if (error != 0) {
2400                         cmd->transport_error_status = error;
2401                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2402                         task->task_flags &= ~TF_ACTIVE;
2403                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2404                         atomic_set(&cmd->transport_sent, 0);
2405                         transport_stop_tasks_for_cmd(cmd);
2406                         transport_generic_request_failure(cmd, dev, 0, 1);
2407                 }
2408         }
2409
2410         goto check_depth;
2411
2412         return 0;
2413 }
2414
2415 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2416 {
2417         unsigned long flags;
2418         /*
2419          * Any unsolicited data will get dumped for failed command inside of
2420          * the fabric plugin
2421          */
2422         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2423         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2424         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2425         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2426 }
2427
2428 static inline u32 transport_get_sectors_6(
2429         unsigned char *cdb,
2430         struct se_cmd *cmd,
2431         int *ret)
2432 {
2433         struct se_device *dev = cmd->se_dev;
2434
2435         /*
2436          * Assume TYPE_DISK for non struct se_device objects.
2437          * Use 8-bit sector value.
2438          */
2439         if (!dev)
2440                 goto type_disk;
2441
2442         /*
2443          * Use 24-bit allocation length for TYPE_TAPE.
2444          */
2445         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2446                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2447
2448         /*
2449          * Everything else assume TYPE_DISK Sector CDB location.
2450          * Use 8-bit sector value.
2451          */
2452 type_disk:
2453         return (u32)cdb[4];
2454 }
2455
2456 static inline u32 transport_get_sectors_10(
2457         unsigned char *cdb,
2458         struct se_cmd *cmd,
2459         int *ret)
2460 {
2461         struct se_device *dev = cmd->se_dev;
2462
2463         /*
2464          * Assume TYPE_DISK for non struct se_device objects.
2465          * Use 16-bit sector value.
2466          */
2467         if (!dev)
2468                 goto type_disk;
2469
2470         /*
2471          * XXX_10 is not defined in SSC, throw an exception
2472          */
2473         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2474                 *ret = -EINVAL;
2475                 return 0;
2476         }
2477
2478         /*
2479          * Everything else assume TYPE_DISK Sector CDB location.
2480          * Use 16-bit sector value.
2481          */
2482 type_disk:
2483         return (u32)(cdb[7] << 8) + cdb[8];
2484 }
2485
2486 static inline u32 transport_get_sectors_12(
2487         unsigned char *cdb,
2488         struct se_cmd *cmd,
2489         int *ret)
2490 {
2491         struct se_device *dev = cmd->se_dev;
2492
2493         /*
2494          * Assume TYPE_DISK for non struct se_device objects.
2495          * Use 32-bit sector value.
2496          */
2497         if (!dev)
2498                 goto type_disk;
2499
2500         /*
2501          * XXX_12 is not defined in SSC, throw an exception
2502          */
2503         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2504                 *ret = -EINVAL;
2505                 return 0;
2506         }
2507
2508         /*
2509          * Everything else assume TYPE_DISK Sector CDB location.
2510          * Use 32-bit sector value.
2511          */
2512 type_disk:
2513         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2514 }
2515
2516 static inline u32 transport_get_sectors_16(
2517         unsigned char *cdb,
2518         struct se_cmd *cmd,
2519         int *ret)
2520 {
2521         struct se_device *dev = cmd->se_dev;
2522
2523         /*
2524          * Assume TYPE_DISK for non struct se_device objects.
2525          * Use 32-bit sector value.
2526          */
2527         if (!dev)
2528                 goto type_disk;
2529
2530         /*
2531          * Use 24-bit allocation length for TYPE_TAPE.
2532          */
2533         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2534                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2535
2536 type_disk:
2537         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2538                     (cdb[12] << 8) + cdb[13];
2539 }
2540
2541 /*
2542  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2543  */
2544 static inline u32 transport_get_sectors_32(
2545         unsigned char *cdb,
2546         struct se_cmd *cmd,
2547         int *ret)
2548 {
2549         /*
2550          * Assume TYPE_DISK for non struct se_device objects.
2551          * Use 32-bit sector value.
2552          */
2553         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2554                     (cdb[30] << 8) + cdb[31];
2555
2556 }
2557
2558 static inline u32 transport_get_size(
2559         u32 sectors,
2560         unsigned char *cdb,
2561         struct se_cmd *cmd)
2562 {
2563         struct se_device *dev = cmd->se_dev;
2564
2565         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2566                 if (cdb[1] & 1) { /* sectors */
2567                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2568                 } else /* bytes */
2569                         return sectors;
2570         }
2571 #if 0
2572         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2573                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2574                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2575                         dev->transport->name);
2576 #endif
2577         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2578 }
2579
2580 static void transport_xor_callback(struct se_cmd *cmd)
2581 {
2582         unsigned char *buf, *addr;
2583         struct scatterlist *sg;
2584         unsigned int offset;
2585         int i;
2586         int count;
2587         /*
2588          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2589          *
2590          * 1) read the specified logical block(s);
2591          * 2) transfer logical blocks from the data-out buffer;
2592          * 3) XOR the logical blocks transferred from the data-out buffer with
2593          *    the logical blocks read, storing the resulting XOR data in a buffer;
2594          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2595          *    blocks transferred from the data-out buffer; and
2596          * 5) transfer the resulting XOR data to the data-in buffer.
2597          */
2598         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2599         if (!buf) {
2600                 pr_err("Unable to allocate xor_callback buf\n");
2601                 return;
2602         }
2603         /*
2604          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2605          * into the locally allocated *buf
2606          */
2607         sg_copy_to_buffer(cmd->t_data_sg,
2608                           cmd->t_data_nents,
2609                           buf,
2610                           cmd->data_length);
2611
2612         /*
2613          * Now perform the XOR against the BIDI read memory located at
2614          * cmd->t_mem_bidi_list
2615          */
2616
2617         offset = 0;
2618         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2619                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2620                 if (!addr)
2621                         goto out;
2622
2623                 for (i = 0; i < sg->length; i++)
2624                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2625
2626                 offset += sg->length;
2627                 kunmap_atomic(addr, KM_USER0);
2628         }
2629
2630 out:
2631         kfree(buf);
2632 }
2633
2634 /*
2635  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2636  */
2637 static int transport_get_sense_data(struct se_cmd *cmd)
2638 {
2639         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2640         struct se_device *dev = cmd->se_dev;
2641         struct se_task *task = NULL, *task_tmp;
2642         unsigned long flags;
2643         u32 offset = 0;
2644
2645         WARN_ON(!cmd->se_lun);
2646
2647         if (!dev)
2648                 return 0;
2649
2650         spin_lock_irqsave(&cmd->t_state_lock, flags);
2651         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2652                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2653                 return 0;
2654         }
2655
2656         list_for_each_entry_safe(task, task_tmp,
2657                                 &cmd->t_task_list, t_list) {
2658                 if (!task->task_sense)
2659                         continue;
2660
2661                 if (!dev->transport->get_sense_buffer) {
2662                         pr_err("dev->transport->get_sense_buffer"
2663                                         " is NULL\n");
2664                         continue;
2665                 }
2666
2667                 sense_buffer = dev->transport->get_sense_buffer(task);
2668                 if (!sense_buffer) {
2669                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2670                                 " sense buffer for task with sense\n",
2671                                 cmd->se_tfo->get_task_tag(cmd), task);
2672                         continue;
2673                 }
2674                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2675
2676                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2677                                 TRANSPORT_SENSE_BUFFER);
2678
2679                 memcpy(&buffer[offset], sense_buffer,
2680                                 TRANSPORT_SENSE_BUFFER);
2681                 cmd->scsi_status = task->task_scsi_status;
2682                 /* Automatically padded */
2683                 cmd->scsi_sense_length =
2684                                 (TRANSPORT_SENSE_BUFFER + offset);
2685
2686                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2687                                 " and sense\n",
2688                         dev->se_hba->hba_id, dev->transport->name,
2689                                 cmd->scsi_status);
2690                 return 0;
2691         }
2692         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2693
2694         return -1;
2695 }
2696
2697 static int
2698 transport_handle_reservation_conflict(struct se_cmd *cmd)
2699 {
2700         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2701         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2702         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2703         /*
2704          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2705          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2706          * CONFLICT STATUS.
2707          *
2708          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2709          */
2710         if (cmd->se_sess &&
2711             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2712                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2713                         cmd->orig_fe_lun, 0x2C,
2714                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2715         return -EINVAL;
2716 }
2717
2718 static inline long long transport_dev_end_lba(struct se_device *dev)
2719 {
2720         return dev->transport->get_blocks(dev) + 1;
2721 }
2722
2723 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2724 {
2725         struct se_device *dev = cmd->se_dev;
2726         u32 sectors;
2727
2728         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2729                 return 0;
2730
2731         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2732
2733         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2734                 pr_err("LBA: %llu Sectors: %u exceeds"
2735                         " transport_dev_end_lba(): %llu\n",
2736                         cmd->t_task_lba, sectors,
2737                         transport_dev_end_lba(dev));
2738                 return -EINVAL;
2739         }
2740
2741         return 0;
2742 }
2743
2744 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2745 {
2746         /*
2747          * Determine if the received WRITE_SAME is used to for direct
2748          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2749          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2750          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2751          */
2752         int passthrough = (dev->transport->transport_type ==
2753                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2754
2755         if (!passthrough) {
2756                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2757                         pr_err("WRITE_SAME PBDATA and LBDATA"
2758                                 " bits not supported for Block Discard"
2759                                 " Emulation\n");
2760                         return -ENOSYS;
2761                 }
2762                 /*
2763                  * Currently for the emulated case we only accept
2764                  * tpws with the UNMAP=1 bit set.
2765                  */
2766                 if (!(flags[0] & 0x08)) {
2767                         pr_err("WRITE_SAME w/o UNMAP bit not"
2768                                 " supported for Block Discard Emulation\n");
2769                         return -ENOSYS;
2770                 }
2771         }
2772
2773         return 0;
2774 }
2775
2776 /*      transport_generic_cmd_sequencer():
2777  *
2778  *      Generic Command Sequencer that should work for most DAS transport
2779  *      drivers.
2780  *
2781  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2782  *      RX Thread.
2783  *
2784  *      FIXME: Need to support other SCSI OPCODES where as well.
2785  */
2786 static int transport_generic_cmd_sequencer(
2787         struct se_cmd *cmd,
2788         unsigned char *cdb)
2789 {
2790         struct se_device *dev = cmd->se_dev;
2791         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2792         int ret = 0, sector_ret = 0, passthrough;
2793         u32 sectors = 0, size = 0, pr_reg_type = 0;
2794         u16 service_action;
2795         u8 alua_ascq = 0;
2796         /*
2797          * Check for an existing UNIT ATTENTION condition
2798          */
2799         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2800                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2801                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2802                 return -EINVAL;
2803         }
2804         /*
2805          * Check status of Asymmetric Logical Unit Assignment port
2806          */
2807         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2808         if (ret != 0) {
2809                 /*
2810                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2811                  * The ALUA additional sense code qualifier (ASCQ) is determined
2812                  * by the ALUA primary or secondary access state..
2813                  */
2814                 if (ret > 0) {
2815 #if 0
2816                         pr_debug("[%s]: ALUA TG Port not available,"
2817                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2818                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2819 #endif
2820                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2821                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2822                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2823                         return -EINVAL;
2824                 }
2825                 goto out_invalid_cdb_field;
2826         }
2827         /*
2828          * Check status for SPC-3 Persistent Reservations
2829          */
2830         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2831                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2832                                         cmd, cdb, pr_reg_type) != 0)
2833                         return transport_handle_reservation_conflict(cmd);
2834                 /*
2835                  * This means the CDB is allowed for the SCSI Initiator port
2836                  * when said port is *NOT* holding the legacy SPC-2 or
2837                  * SPC-3 Persistent Reservation.
2838                  */
2839         }
2840
2841         switch (cdb[0]) {
2842         case READ_6:
2843                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2844                 if (sector_ret)
2845                         goto out_unsupported_cdb;
2846                 size = transport_get_size(sectors, cdb, cmd);
2847                 cmd->t_task_lba = transport_lba_21(cdb);
2848                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2849                 break;
2850         case READ_10:
2851                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2852                 if (sector_ret)
2853                         goto out_unsupported_cdb;
2854                 size = transport_get_size(sectors, cdb, cmd);
2855                 cmd->t_task_lba = transport_lba_32(cdb);
2856                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2857                 break;
2858         case READ_12:
2859                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2860                 if (sector_ret)
2861                         goto out_unsupported_cdb;
2862                 size = transport_get_size(sectors, cdb, cmd);
2863                 cmd->t_task_lba = transport_lba_32(cdb);
2864                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2865                 break;
2866         case READ_16:
2867                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2868                 if (sector_ret)
2869                         goto out_unsupported_cdb;
2870                 size = transport_get_size(sectors, cdb, cmd);
2871                 cmd->t_task_lba = transport_lba_64(cdb);
2872                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2873                 break;
2874         case WRITE_6:
2875                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2876                 if (sector_ret)
2877                         goto out_unsupported_cdb;
2878                 size = transport_get_size(sectors, cdb, cmd);
2879                 cmd->t_task_lba = transport_lba_21(cdb);
2880                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2881                 break;
2882         case WRITE_10:
2883                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2884                 if (sector_ret)
2885                         goto out_unsupported_cdb;
2886                 size = transport_get_size(sectors, cdb, cmd);
2887                 cmd->t_task_lba = transport_lba_32(cdb);
2888                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2889                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2890                 break;
2891         case WRITE_12:
2892                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2893                 if (sector_ret)
2894                         goto out_unsupported_cdb;
2895                 size = transport_get_size(sectors, cdb, cmd);
2896                 cmd->t_task_lba = transport_lba_32(cdb);
2897                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2898                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2899                 break;
2900         case WRITE_16:
2901                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2902                 if (sector_ret)
2903                         goto out_unsupported_cdb;
2904                 size = transport_get_size(sectors, cdb, cmd);
2905                 cmd->t_task_lba = transport_lba_64(cdb);
2906                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2907                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2908                 break;
2909         case XDWRITEREAD_10:
2910                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2911                     !(cmd->t_tasks_bidi))
2912                         goto out_invalid_cdb_field;
2913                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2914                 if (sector_ret)
2915                         goto out_unsupported_cdb;
2916                 size = transport_get_size(sectors, cdb, cmd);
2917                 cmd->t_task_lba = transport_lba_32(cdb);
2918                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2919                 passthrough = (dev->transport->transport_type ==
2920                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2921                 /*
2922                  * Skip the remaining assignments for TCM/PSCSI passthrough
2923                  */
2924                 if (passthrough)
2925                         break;
2926                 /*
2927                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2928                  */
2929                 cmd->transport_complete_callback = &transport_xor_callback;
2930                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2931                 break;
2932         case VARIABLE_LENGTH_CMD:
2933                 service_action = get_unaligned_be16(&cdb[8]);
2934                 /*
2935                  * Determine if this is TCM/PSCSI device and we should disable
2936                  * internal emulation for this CDB.
2937                  */
2938                 passthrough = (dev->transport->transport_type ==
2939                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2940
2941                 switch (service_action) {
2942                 case XDWRITEREAD_32:
2943                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2944                         if (sector_ret)
2945                                 goto out_unsupported_cdb;
2946                         size = transport_get_size(sectors, cdb, cmd);
2947                         /*
2948                          * Use WRITE_32 and READ_32 opcodes for the emulated
2949                          * XDWRITE_READ_32 logic.
2950                          */
2951                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2952                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2953
2954                         /*
2955                          * Skip the remaining assignments for TCM/PSCSI passthrough
2956                          */
2957                         if (passthrough)
2958                                 break;
2959
2960                         /*
2961                          * Setup BIDI XOR callback to be run during
2962                          * transport_generic_complete_ok()
2963                          */
2964                         cmd->transport_complete_callback = &transport_xor_callback;
2965                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2966                         break;
2967                 case WRITE_SAME_32:
2968                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2969                         if (sector_ret)
2970                                 goto out_unsupported_cdb;
2971
2972                         if (sectors)
2973                                 size = transport_get_size(1, cdb, cmd);
2974                         else {
2975                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2976                                        " supported\n");
2977                                 goto out_invalid_cdb_field;
2978                         }
2979
2980                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2981                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2982
2983                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2984                                 goto out_invalid_cdb_field;
2985
2986                         break;
2987                 default:
2988                         pr_err("VARIABLE_LENGTH_CMD service action"
2989                                 " 0x%04x not supported\n", service_action);
2990                         goto out_unsupported_cdb;
2991                 }
2992                 break;
2993         case MAINTENANCE_IN:
2994                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2995                         /* MAINTENANCE_IN from SCC-2 */
2996                         /*
2997                          * Check for emulated MI_REPORT_TARGET_PGS.
2998                          */
2999                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3000                                 cmd->transport_emulate_cdb =
3001                                 (su_dev->t10_alua.alua_type ==
3002                                  SPC3_ALUA_EMULATED) ?
3003                                 core_emulate_report_target_port_groups :
3004                                 NULL;
3005                         }
3006                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3007                                (cdb[8] << 8) | cdb[9];
3008                 } else {
3009                         /* GPCMD_SEND_KEY from multi media commands */
3010                         size = (cdb[8] << 8) + cdb[9];
3011                 }
3012                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3013                 break;
3014         case MODE_SELECT:
3015                 size = cdb[4];
3016                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3017                 break;
3018         case MODE_SELECT_10:
3019                 size = (cdb[7] << 8) + cdb[8];
3020                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3021                 break;
3022         case MODE_SENSE:
3023                 size = cdb[4];
3024                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3025                 break;
3026         case MODE_SENSE_10:
3027         case GPCMD_READ_BUFFER_CAPACITY:
3028         case GPCMD_SEND_OPC:
3029         case LOG_SELECT:
3030         case LOG_SENSE:
3031                 size = (cdb[7] << 8) + cdb[8];
3032                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3033                 break;
3034         case READ_BLOCK_LIMITS:
3035                 size = READ_BLOCK_LEN;
3036                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3037                 break;
3038         case GPCMD_GET_CONFIGURATION:
3039         case GPCMD_READ_FORMAT_CAPACITIES:
3040         case GPCMD_READ_DISC_INFO:
3041         case GPCMD_READ_TRACK_RZONE_INFO:
3042                 size = (cdb[7] << 8) + cdb[8];
3043                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3044                 break;
3045         case PERSISTENT_RESERVE_IN:
3046         case PERSISTENT_RESERVE_OUT:
3047                 cmd->transport_emulate_cdb =
3048                         (su_dev->t10_pr.res_type ==
3049                          SPC3_PERSISTENT_RESERVATIONS) ?
3050                         core_scsi3_emulate_pr : NULL;
3051                 size = (cdb[7] << 8) + cdb[8];
3052                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3053                 break;
3054         case GPCMD_MECHANISM_STATUS:
3055         case GPCMD_READ_DVD_STRUCTURE:
3056                 size = (cdb[8] << 8) + cdb[9];
3057                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3058                 break;
3059         case READ_POSITION:
3060                 size = READ_POSITION_LEN;
3061                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3062                 break;
3063         case MAINTENANCE_OUT:
3064                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3065                         /* MAINTENANCE_OUT from SCC-2
3066                          *
3067                          * Check for emulated MO_SET_TARGET_PGS.
3068                          */
3069                         if (cdb[1] == MO_SET_TARGET_PGS) {
3070                                 cmd->transport_emulate_cdb =
3071                                 (su_dev->t10_alua.alua_type ==
3072                                         SPC3_ALUA_EMULATED) ?
3073                                 core_emulate_set_target_port_groups :
3074                                 NULL;
3075                         }
3076
3077                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3078                                (cdb[8] << 8) | cdb[9];
3079                 } else  {
3080                         /* GPCMD_REPORT_KEY from multi media commands */
3081                         size = (cdb[8] << 8) + cdb[9];
3082                 }
3083                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3084                 break;
3085         case INQUIRY:
3086                 size = (cdb[3] << 8) + cdb[4];
3087                 /*
3088                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3089                  * See spc4r17 section 5.3
3090                  */
3091                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3092                         cmd->sam_task_attr = MSG_HEAD_TAG;
3093                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3094                 break;
3095         case READ_BUFFER:
3096                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3097                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3098                 break;
3099         case READ_CAPACITY:
3100                 size = READ_CAP_LEN;
3101                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3102                 break;
3103         case READ_MEDIA_SERIAL_NUMBER:
3104         case SECURITY_PROTOCOL_IN:
3105         case SECURITY_PROTOCOL_OUT:
3106                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3107                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3108                 break;
3109         case SERVICE_ACTION_IN:
3110         case ACCESS_CONTROL_IN:
3111         case ACCESS_CONTROL_OUT:
3112         case EXTENDED_COPY:
3113         case READ_ATTRIBUTE:
3114         case RECEIVE_COPY_RESULTS:
3115         case WRITE_ATTRIBUTE:
3116                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3117                        (cdb[12] << 8) | cdb[13];
3118                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3119                 break;
3120         case RECEIVE_DIAGNOSTIC:
3121         case SEND_DIAGNOSTIC:
3122                 size = (cdb[3] << 8) | cdb[4];
3123                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3124                 break;
3125 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3126 #if 0
3127         case GPCMD_READ_CD:
3128                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3129                 size = (2336 * sectors);
3130                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3131                 break;
3132 #endif
3133         case READ_TOC:
3134                 size = cdb[8];
3135                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3136                 break;
3137         case REQUEST_SENSE:
3138                 size = cdb[4];
3139                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3140                 break;
3141         case READ_ELEMENT_STATUS:
3142                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3143                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3144                 break;
3145         case WRITE_BUFFER:
3146                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3147                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148                 break;
3149         case RESERVE:
3150         case RESERVE_10:
3151                 /*
3152                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3153                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3154                  */
3155                 if (cdb[0] == RESERVE_10)
3156                         size = (cdb[7] << 8) | cdb[8];
3157                 else
3158                         size = cmd->data_length;
3159
3160                 /*
3161                  * Setup the legacy emulated handler for SPC-2 and
3162                  * >= SPC-3 compatible reservation handling (CRH=1)
3163                  * Otherwise, we assume the underlying SCSI logic is
3164                  * is running in SPC_PASSTHROUGH, and wants reservations
3165                  * emulation disabled.
3166                  */
3167                 cmd->transport_emulate_cdb =
3168                                 (su_dev->t10_pr.res_type !=
3169                                  SPC_PASSTHROUGH) ?
3170                                 core_scsi2_emulate_crh : NULL;
3171                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3172                 break;
3173         case RELEASE:
3174         case RELEASE_10:
3175                 /*
3176                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3177                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3178                 */
3179                 if (cdb[0] == RELEASE_10)
3180                         size = (cdb[7] << 8) | cdb[8];
3181                 else
3182                         size = cmd->data_length;
3183
3184                 cmd->transport_emulate_cdb =
3185                                 (su_dev->t10_pr.res_type !=
3186                                  SPC_PASSTHROUGH) ?
3187                                 core_scsi2_emulate_crh : NULL;
3188                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3189                 break;
3190         case SYNCHRONIZE_CACHE:
3191         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3192                 /*
3193                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3194                  */
3195                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3196                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3197                         cmd->t_task_lba = transport_lba_32(cdb);
3198                 } else {
3199                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3200                         cmd->t_task_lba = transport_lba_64(cdb);
3201                 }
3202                 if (sector_ret)
3203                         goto out_unsupported_cdb;
3204
3205                 size = transport_get_size(sectors, cdb, cmd);
3206                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3207
3208                 /*
3209                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3210                  */
3211                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3212                         break;
3213                 /*
3214                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3215                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3216                  */
3217                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3218                 /*
3219                  * Check to ensure that LBA + Range does not exceed past end of
3220                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3221                  */
3222                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3223                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3224                                 goto out_invalid_cdb_field;
3225                 }
3226                 break;
3227         case UNMAP:
3228                 size = get_unaligned_be16(&cdb[7]);
3229                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3230                 break;
3231         case WRITE_SAME_16:
3232                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3233                 if (sector_ret)
3234                         goto out_unsupported_cdb;
3235
3236                 if (sectors)
3237                         size = transport_get_size(1, cdb, cmd);
3238                 else {
3239                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3240                         goto out_invalid_cdb_field;
3241                 }
3242
3243                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3244                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3245
3246                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3247                         goto out_invalid_cdb_field;
3248                 break;
3249         case WRITE_SAME:
3250                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3251                 if (sector_ret)
3252                         goto out_unsupported_cdb;
3253
3254                 if (sectors)
3255                         size = transport_get_size(1, cdb, cmd);
3256                 else {
3257                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3258                         goto out_invalid_cdb_field;
3259                 }
3260
3261                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3262                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3263                 /*
3264                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3265                  * of byte 1 bit 3 UNMAP instead of original reserved field
3266                  */
3267                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3268                         goto out_invalid_cdb_field;
3269                 break;
3270         case ALLOW_MEDIUM_REMOVAL:
3271         case GPCMD_CLOSE_TRACK:
3272         case ERASE:
3273         case INITIALIZE_ELEMENT_STATUS:
3274         case GPCMD_LOAD_UNLOAD:
3275         case REZERO_UNIT:
3276         case SEEK_10:
3277         case GPCMD_SET_SPEED:
3278         case SPACE:
3279         case START_STOP:
3280         case TEST_UNIT_READY:
3281         case VERIFY:
3282         case WRITE_FILEMARKS:
3283         case MOVE_MEDIUM:
3284                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3285                 break;
3286         case REPORT_LUNS:
3287                 cmd->transport_emulate_cdb =
3288                                 transport_core_report_lun_response;
3289                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3290                 /*
3291                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3292                  * See spc4r17 section 5.3
3293                  */
3294                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3295                         cmd->sam_task_attr = MSG_HEAD_TAG;
3296                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3297                 break;
3298         default:
3299                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3300                         " 0x%02x, sending CHECK_CONDITION.\n",
3301                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3302                 goto out_unsupported_cdb;
3303         }
3304
3305         if (size != cmd->data_length) {
3306                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3307                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3308                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3309                                 cmd->data_length, size, cdb[0]);
3310
3311                 cmd->cmd_spdtl = size;
3312
3313                 if (cmd->data_direction == DMA_TO_DEVICE) {
3314                         pr_err("Rejecting underflow/overflow"
3315                                         " WRITE data\n");
3316                         goto out_invalid_cdb_field;
3317                 }
3318                 /*
3319                  * Reject READ_* or WRITE_* with overflow/underflow for
3320                  * type SCF_SCSI_DATA_SG_IO_CDB.
3321                  */
3322                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3323                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3324                                 " CDB on non 512-byte sector setup subsystem"
3325                                 " plugin: %s\n", dev->transport->name);
3326                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3327                         goto out_invalid_cdb_field;
3328                 }
3329
3330                 if (size > cmd->data_length) {
3331                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3332                         cmd->residual_count = (size - cmd->data_length);
3333                 } else {
3334                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3335                         cmd->residual_count = (cmd->data_length - size);
3336                 }
3337                 cmd->data_length = size;
3338         }
3339
3340         /* Let's limit control cdbs to a page, for simplicity's sake. */
3341         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3342             size > PAGE_SIZE)
3343                 goto out_invalid_cdb_field;
3344
3345         transport_set_supported_SAM_opcode(cmd);
3346         return ret;
3347
3348 out_unsupported_cdb:
3349         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3350         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3351         return -EINVAL;
3352 out_invalid_cdb_field:
3353         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3354         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3355         return -EINVAL;
3356 }
3357
3358 /*
3359  * Called from transport_generic_complete_ok() and
3360  * transport_generic_request_failure() to determine which dormant/delayed
3361  * and ordered cmds need to have their tasks added to the execution queue.
3362  */
3363 static void transport_complete_task_attr(struct se_cmd *cmd)
3364 {
3365         struct se_device *dev = cmd->se_dev;
3366         struct se_cmd *cmd_p, *cmd_tmp;
3367         int new_active_tasks = 0;
3368
3369         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3370                 atomic_dec(&dev->simple_cmds);
3371                 smp_mb__after_atomic_dec();
3372                 dev->dev_cur_ordered_id++;
3373                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3374                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3375                         cmd->se_ordered_id);
3376         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3377                 atomic_dec(&dev->dev_hoq_count);
3378                 smp_mb__after_atomic_dec();
3379                 dev->dev_cur_ordered_id++;
3380                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3381                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3382                         cmd->se_ordered_id);
3383         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3384                 spin_lock(&dev->ordered_cmd_lock);
3385                 list_del(&cmd->se_ordered_node);
3386                 atomic_dec(&dev->dev_ordered_sync);
3387                 smp_mb__after_atomic_dec();
3388                 spin_unlock(&dev->ordered_cmd_lock);
3389
3390                 dev->dev_cur_ordered_id++;
3391                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3392                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3393         }
3394         /*
3395          * Process all commands up to the last received
3396          * ORDERED task attribute which requires another blocking
3397          * boundary
3398          */
3399         spin_lock(&dev->delayed_cmd_lock);
3400         list_for_each_entry_safe(cmd_p, cmd_tmp,
3401                         &dev->delayed_cmd_list, se_delayed_node) {
3402
3403                 list_del(&cmd_p->se_delayed_node);
3404                 spin_unlock(&dev->delayed_cmd_lock);
3405
3406                 pr_debug("Calling add_tasks() for"
3407                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3408                         " Dormant -> Active, se_ordered_id: %u\n",
3409                         cmd_p->t_task_cdb[0],
3410                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3411
3412                 transport_add_tasks_from_cmd(cmd_p);
3413                 new_active_tasks++;
3414
3415                 spin_lock(&dev->delayed_cmd_lock);
3416                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3417                         break;
3418         }
3419         spin_unlock(&dev->delayed_cmd_lock);
3420         /*
3421          * If new tasks have become active, wake up the transport thread
3422          * to do the processing of the Active tasks.
3423          */
3424         if (new_active_tasks != 0)
3425                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3426 }
3427
3428 static void transport_complete_qf(struct se_cmd *cmd)
3429 {
3430         int ret = 0;
3431
3432         transport_stop_all_task_timers(cmd);
3433         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3434                 transport_complete_task_attr(cmd);
3435
3436         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3437                 ret = cmd->se_tfo->queue_status(cmd);
3438                 if (ret)
3439                         goto out;
3440         }
3441
3442         switch (cmd->data_direction) {
3443         case DMA_FROM_DEVICE:
3444                 ret = cmd->se_tfo->queue_data_in(cmd);
3445                 break;
3446         case DMA_TO_DEVICE:
3447                 if (cmd->t_bidi_data_sg) {
3448                         ret = cmd->se_tfo->queue_data_in(cmd);
3449                         if (ret < 0)
3450                                 break;
3451                 }
3452                 /* Fall through for DMA_TO_DEVICE */
3453         case DMA_NONE:
3454                 ret = cmd->se_tfo->queue_status(cmd);
3455                 break;
3456         default:
3457                 break;
3458         }
3459
3460 out:
3461         if (ret < 0) {
3462                 transport_handle_queue_full(cmd, cmd->se_dev);
3463                 return;
3464         }
3465         transport_lun_remove_cmd(cmd);
3466         transport_cmd_check_stop_to_fabric(cmd);
3467 }
3468
3469 static void transport_handle_queue_full(
3470         struct se_cmd *cmd,
3471         struct se_device *dev)
3472 {
3473         spin_lock_irq(&dev->qf_cmd_lock);
3474         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3475         atomic_inc(&dev->dev_qf_count);
3476         smp_mb__after_atomic_inc();
3477         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3478
3479         schedule_work(&cmd->se_dev->qf_work_queue);
3480 }
3481
3482 static void transport_generic_complete_ok(struct se_cmd *cmd)
3483 {
3484         int reason = 0, ret;
3485         /*
3486          * Check if we need to move delayed/dormant tasks from cmds on the
3487          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3488          * Attribute.
3489          */
3490         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3491                 transport_complete_task_attr(cmd);
3492         /*
3493          * Check to schedule QUEUE_FULL work, or execute an existing
3494          * cmd->transport_qf_callback()
3495          */
3496         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3497                 schedule_work(&cmd->se_dev->qf_work_queue);
3498
3499         /*
3500          * Check if we need to retrieve a sense buffer from
3501          * the struct se_cmd in question.
3502          */
3503         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3504                 if (transport_get_sense_data(cmd) < 0)
3505                         reason = TCM_NON_EXISTENT_LUN;
3506
3507                 /*
3508                  * Only set when an struct se_task->task_scsi_status returned
3509                  * a non GOOD status.
3510                  */
3511                 if (cmd->scsi_status) {
3512                         ret = transport_send_check_condition_and_sense(
3513                                         cmd, reason, 1);
3514                         if (ret == -EAGAIN)
3515                                 goto queue_full;
3516
3517                         transport_lun_remove_cmd(cmd);
3518                         transport_cmd_check_stop_to_fabric(cmd);
3519                         return;
3520                 }
3521         }
3522         /*
3523          * Check for a callback, used by amongst other things
3524          * XDWRITE_READ_10 emulation.
3525          */
3526         if (cmd->transport_complete_callback)
3527                 cmd->transport_complete_callback(cmd);
3528
3529         switch (cmd->data_direction) {
3530         case DMA_FROM_DEVICE:
3531                 spin_lock(&cmd->se_lun->lun_sep_lock);
3532                 if (cmd->se_lun->lun_sep) {
3533                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3534                                         cmd->data_length;
3535                 }
3536                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3537
3538                 ret = cmd->se_tfo->queue_data_in(cmd);
3539                 if (ret == -EAGAIN)
3540                         goto queue_full;
3541                 break;
3542         case DMA_TO_DEVICE:
3543                 spin_lock(&cmd->se_lun->lun_sep_lock);
3544                 if (cmd->se_lun->lun_sep) {
3545                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3546                                 cmd->data_length;
3547                 }
3548                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3549                 /*
3550                  * Check if we need to send READ payload for BIDI-COMMAND
3551                  */
3552                 if (cmd->t_bidi_data_sg) {
3553                         spin_lock(&cmd->se_lun->lun_sep_lock);
3554                         if (cmd->se_lun->lun_sep) {
3555                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3556                                         cmd->data_length;
3557                         }
3558                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3559                         ret = cmd->se_tfo->queue_data_in(cmd);
3560                         if (ret == -EAGAIN)
3561                                 goto queue_full;
3562                         break;
3563                 }
3564                 /* Fall through for DMA_TO_DEVICE */
3565         case DMA_NONE:
3566                 ret = cmd->se_tfo->queue_status(cmd);
3567                 if (ret == -EAGAIN)
3568                         goto queue_full;
3569                 break;
3570         default:
3571                 break;
3572         }
3573
3574         transport_lun_remove_cmd(cmd);
3575         transport_cmd_check_stop_to_fabric(cmd);
3576         return;
3577
3578 queue_full:
3579         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3580                 " data_direction: %d\n", cmd, cmd->data_direction);
3581         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3582         transport_handle_queue_full(cmd, cmd->se_dev);
3583 }
3584
3585 static void transport_free_dev_tasks(struct se_cmd *cmd)
3586 {
3587         struct se_task *task, *task_tmp;
3588         unsigned long flags;
3589
3590         spin_lock_irqsave(&cmd->t_state_lock, flags);
3591         list_for_each_entry_safe(task, task_tmp,
3592                                 &cmd->t_task_list, t_list) {
3593                 if (task->task_flags & TF_ACTIVE)
3594                         continue;
3595
3596                 kfree(task->task_sg_bidi);
3597                 kfree(task->task_sg);
3598
3599                 list_del(&task->t_list);
3600
3601                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3602                 cmd->se_dev->transport->free_task(task);
3603                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3604         }
3605         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3606 }
3607
3608 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3609 {
3610         struct scatterlist *sg;
3611         int count;
3612
3613         for_each_sg(sgl, sg, nents, count)
3614                 __free_page(sg_page(sg));
3615
3616         kfree(sgl);
3617 }
3618
3619 static inline void transport_free_pages(struct se_cmd *cmd)
3620 {
3621         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3622                 return;
3623
3624         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3625         cmd->t_data_sg = NULL;
3626         cmd->t_data_nents = 0;
3627
3628         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3629         cmd->t_bidi_data_sg = NULL;
3630         cmd->t_bidi_data_nents = 0;
3631 }
3632
3633 /**
3634  * transport_put_cmd - release a reference to a command
3635  * @cmd:       command to release
3636  *
3637  * This routine releases our reference to the command and frees it if possible.
3638  */
3639 static void transport_put_cmd(struct se_cmd *cmd)
3640 {
3641         unsigned long flags;
3642         int free_tasks = 0;
3643
3644         spin_lock_irqsave(&cmd->t_state_lock, flags);
3645         if (atomic_read(&cmd->t_fe_count)) {
3646                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3647                         goto out_busy;
3648         }
3649
3650         if (atomic_read(&cmd->t_se_count)) {
3651                 if (!atomic_dec_and_test(&cmd->t_se_count))
3652                         goto out_busy;
3653         }
3654
3655         if (atomic_read(&cmd->transport_dev_active)) {
3656                 atomic_set(&cmd->transport_dev_active, 0);
3657                 transport_all_task_dev_remove_state(cmd);
3658                 free_tasks = 1;
3659         }
3660         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3661
3662         if (free_tasks != 0)
3663                 transport_free_dev_tasks(cmd);
3664
3665         transport_free_pages(cmd);
3666         transport_release_cmd(cmd);
3667         return;
3668 out_busy:
3669         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3670 }
3671
3672 /*
3673  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3674  * allocating in the core.
3675  * @cmd:  Associated se_cmd descriptor
3676  * @mem:  SGL style memory for TCM WRITE / READ
3677  * @sg_mem_num: Number of SGL elements
3678  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3679  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3680  *
3681  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3682  * of parameters.
3683  */
3684 int transport_generic_map_mem_to_cmd(
3685         struct se_cmd *cmd,
3686         struct scatterlist *sgl,
3687         u32 sgl_count,
3688         struct scatterlist *sgl_bidi,
3689         u32 sgl_bidi_count)
3690 {
3691         if (!sgl || !sgl_count)
3692                 return 0;
3693
3694         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3695             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3696
3697                 cmd->t_data_sg = sgl;
3698                 cmd->t_data_nents = sgl_count;
3699
3700                 if (sgl_bidi && sgl_bidi_count) {
3701                         cmd->t_bidi_data_sg = sgl_bidi;
3702                         cmd->t_bidi_data_nents = sgl_bidi_count;
3703                 }
3704                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3705         }
3706
3707         return 0;
3708 }
3709 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3710
3711 static int transport_new_cmd_obj(struct se_cmd *cmd)
3712 {
3713         struct se_device *dev = cmd->se_dev;
3714         int set_counts = 1, rc, task_cdbs;
3715
3716         /*
3717          * Setup any BIDI READ tasks and memory from
3718          * cmd->t_mem_bidi_list so the READ struct se_tasks
3719          * are queued first for the non pSCSI passthrough case.
3720          */
3721         if (cmd->t_bidi_data_sg &&
3722             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3723                 rc = transport_allocate_tasks(cmd,
3724                                               cmd->t_task_lba,
3725                                               DMA_FROM_DEVICE,
3726                                               cmd->t_bidi_data_sg,
3727                                               cmd->t_bidi_data_nents);
3728                 if (rc <= 0) {
3729                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3730                         cmd->scsi_sense_reason =
3731                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3732                         return -EINVAL;
3733                 }
3734                 atomic_inc(&cmd->t_fe_count);
3735                 atomic_inc(&cmd->t_se_count);
3736                 set_counts = 0;
3737         }
3738         /*
3739          * Setup the tasks and memory from cmd->t_mem_list
3740          * Note for BIDI transfers this will contain the WRITE payload
3741          */
3742         task_cdbs = transport_allocate_tasks(cmd,
3743                                              cmd->t_task_lba,
3744                                              cmd->data_direction,
3745                                              cmd->t_data_sg,
3746                                              cmd->t_data_nents);
3747         if (task_cdbs <= 0) {
3748                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3749                 cmd->scsi_sense_reason =
3750                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3751                 return -EINVAL;
3752         }
3753
3754         if (set_counts) {
3755                 atomic_inc(&cmd->t_fe_count);
3756                 atomic_inc(&cmd->t_se_count);
3757         }
3758
3759         cmd->t_task_list_num = task_cdbs;
3760
3761         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3762         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3763         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3764         return 0;
3765 }
3766
3767 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3768 {
3769         struct scatterlist *sg = cmd->t_data_sg;
3770
3771         BUG_ON(!sg);
3772         /*
3773          * We need to take into account a possible offset here for fabrics like
3774          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3775          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3776          */
3777         return kmap(sg_page(sg)) + sg->offset;
3778 }
3779 EXPORT_SYMBOL(transport_kmap_first_data_page);
3780
3781 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3782 {
3783         kunmap(sg_page(cmd->t_data_sg));
3784 }
3785 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3786
3787 static int
3788 transport_generic_get_mem(struct se_cmd *cmd)
3789 {
3790         u32 length = cmd->data_length;
3791         unsigned int nents;
3792         struct page *page;
3793         int i = 0;
3794
3795         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3796         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3797         if (!cmd->t_data_sg)
3798                 return -ENOMEM;
3799
3800         cmd->t_data_nents = nents;
3801         sg_init_table(cmd->t_data_sg, nents);
3802
3803         while (length) {
3804                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3805                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3806                 if (!page)
3807                         goto out;
3808
3809                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3810                 length -= page_len;
3811                 i++;
3812         }
3813         return 0;
3814
3815 out:
3816         while (i >= 0) {
3817                 __free_page(sg_page(&cmd->t_data_sg[i]));
3818                 i--;
3819         }
3820         kfree(cmd->t_data_sg);
3821         cmd->t_data_sg = NULL;
3822         return -ENOMEM;
3823 }
3824
3825 /* Reduce sectors if they are too long for the device */
3826 static inline sector_t transport_limit_task_sectors(
3827         struct se_device *dev,
3828         unsigned long long lba,
3829         sector_t sectors)
3830 {
3831         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3832
3833         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3834                 if ((lba + sectors) > transport_dev_end_lba(dev))
3835                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3836
3837         return sectors;
3838 }
3839
3840
3841 /*
3842  * This function can be used by HW target mode drivers to create a linked
3843  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3844  * This is intended to be called during the completion path by TCM Core
3845  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3846  */
3847 void transport_do_task_sg_chain(struct se_cmd *cmd)
3848 {
3849         struct scatterlist *sg_first = NULL;
3850         struct scatterlist *sg_prev = NULL;
3851         int sg_prev_nents = 0;
3852         struct scatterlist *sg;
3853         struct se_task *task;
3854         u32 chained_nents = 0;
3855         int i;
3856
3857         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3858
3859         /*
3860          * Walk the struct se_task list and setup scatterlist chains
3861          * for each contiguously allocated struct se_task->task_sg[].
3862          */
3863         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3864                 if (!task->task_sg)
3865                         continue;
3866
3867                 if (!sg_first) {
3868                         sg_first = task->task_sg;
3869                         chained_nents = task->task_sg_nents;
3870                 } else {
3871                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3872                         chained_nents += task->task_sg_nents;
3873                 }
3874                 /*
3875                  * For the padded tasks, use the extra SGL vector allocated
3876                  * in transport_allocate_data_tasks() for the sg_prev_nents
3877                  * offset into sg_chain() above.
3878                  *
3879                  * We do not need the padding for the last task (or a single
3880                  * task), but in that case we will never use the sg_prev_nents
3881                  * value below which would be incorrect.
3882                  */
3883                 sg_prev_nents = (task->task_sg_nents + 1);
3884                 sg_prev = task->task_sg;
3885         }
3886         /*
3887          * Setup the starting pointer and total t_tasks_sg_linked_no including
3888          * padding SGs for linking and to mark the end.
3889          */
3890         cmd->t_tasks_sg_chained = sg_first;
3891         cmd->t_tasks_sg_chained_no = chained_nents;
3892
3893         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3894                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3895                 cmd->t_tasks_sg_chained_no);
3896
3897         for_each_sg(cmd->t_tasks_sg_chained, sg,
3898                         cmd->t_tasks_sg_chained_no, i) {
3899
3900                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3901                         i, sg, sg_page(sg), sg->length, sg->offset);
3902                 if (sg_is_chain(sg))
3903                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3904                 if (sg_is_last(sg))
3905                         pr_debug("SG: %p sg_is_last=1\n", sg);
3906         }
3907 }
3908 EXPORT_SYMBOL(transport_do_task_sg_chain);
3909
3910 /*
3911  * Break up cmd into chunks transport can handle
3912  */
3913 static int transport_allocate_data_tasks(
3914         struct se_cmd *cmd,
3915         unsigned long long lba,
3916         enum dma_data_direction data_direction,
3917         struct scatterlist *sgl,
3918         unsigned int sgl_nents)
3919 {
3920         struct se_task *task;
3921         struct se_device *dev = cmd->se_dev;
3922         unsigned long flags;
3923         int task_count, i;
3924         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3925         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3926         struct scatterlist *sg;
3927         struct scatterlist *cmd_sg;
3928
3929         WARN_ON(cmd->data_length % sector_size);
3930         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3931         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3932         
3933         cmd_sg = sgl;
3934         for (i = 0; i < task_count; i++) {
3935                 unsigned int task_size, task_sg_nents_padded;
3936                 int count;
3937
3938                 task = transport_generic_get_task(cmd, data_direction);
3939                 if (!task)
3940                         return -ENOMEM;
3941
3942                 task->task_lba = lba;
3943                 task->task_sectors = min(sectors, dev_max_sectors);
3944                 task->task_size = task->task_sectors * sector_size;
3945
3946                 /*
3947                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3948                  * in order to calculate the number per task SGL entries
3949                  */
3950                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3951                 /*
3952                  * Check if the fabric module driver is requesting that all
3953                  * struct se_task->task_sg[] be chained together..  If so,
3954                  * then allocate an extra padding SG entry for linking and
3955                  * marking the end of the chained SGL for every task except
3956                  * the last one for (task_count > 1) operation, or skipping
3957                  * the extra padding for the (task_count == 1) case.
3958                  */
3959                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3960                         task_sg_nents_padded = (task->task_sg_nents + 1);
3961                 } else
3962                         task_sg_nents_padded = task->task_sg_nents;
3963
3964                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3965                                         task_sg_nents_padded, GFP_KERNEL);
3966                 if (!task->task_sg) {
3967                         cmd->se_dev->transport->free_task(task);
3968                         return -ENOMEM;
3969                 }
3970
3971                 sg_init_table(task->task_sg, task_sg_nents_padded);
3972
3973                 task_size = task->task_size;
3974
3975                 /* Build new sgl, only up to task_size */
3976                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3977                         if (cmd_sg->length > task_size)
3978                                 break;
3979
3980                         *sg = *cmd_sg;
3981                         task_size -= cmd_sg->length;
3982                         cmd_sg = sg_next(cmd_sg);
3983                 }
3984
3985                 lba += task->task_sectors;
3986                 sectors -= task->task_sectors;
3987
3988                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3989                 list_add_tail(&task->t_list, &cmd->t_task_list);
3990                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3991         }
3992
3993         return task_count;
3994 }
3995
3996 static int
3997 transport_allocate_control_task(struct se_cmd *cmd)
3998 {
3999         struct se_task *task;
4000         unsigned long flags;
4001
4002         task = transport_generic_get_task(cmd, cmd->data_direction);
4003         if (!task)
4004                 return -ENOMEM;
4005
4006         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4007                                 GFP_KERNEL);
4008         if (!task->task_sg) {
4009                 cmd->se_dev->transport->free_task(task);
4010                 return -ENOMEM;
4011         }
4012
4013         memcpy(task->task_sg, cmd->t_data_sg,
4014                sizeof(struct scatterlist) * cmd->t_data_nents);
4015         task->task_size = cmd->data_length;
4016         task->task_sg_nents = cmd->t_data_nents;
4017
4018         spin_lock_irqsave(&cmd->t_state_lock, flags);
4019         list_add_tail(&task->t_list, &cmd->t_task_list);
4020         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4021
4022         /* Success! Return number of tasks allocated */
4023         return 1;
4024 }
4025
4026 static u32 transport_allocate_tasks(
4027         struct se_cmd *cmd,
4028         unsigned long long lba,
4029         enum dma_data_direction data_direction,
4030         struct scatterlist *sgl,
4031         unsigned int sgl_nents)
4032 {
4033         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4034                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4035                         return -EINVAL;
4036
4037                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4038                                                      sgl, sgl_nents);
4039         } else
4040                 return transport_allocate_control_task(cmd);
4041
4042 }
4043
4044
4045 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4046  *
4047  *       Allocate storage transport resources from a set of values predefined
4048  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4049  *       Any non zero return here is treated as an "out of resource' op here.
4050  */
4051         /*
4052          * Generate struct se_task(s) and/or their payloads for this CDB.
4053          */
4054 int transport_generic_new_cmd(struct se_cmd *cmd)
4055 {
4056         int ret = 0;
4057
4058         /*
4059          * Determine is the TCM fabric module has already allocated physical
4060          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4061          * beforehand.
4062          */
4063         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4064             cmd->data_length) {
4065                 ret = transport_generic_get_mem(cmd);
4066                 if (ret < 0)
4067                         return ret;
4068         }
4069         /*
4070          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4071          * control or data CDB types, and perform the map to backend subsystem
4072          * code from SGL memory allocated here by transport_generic_get_mem(), or
4073          * via pre-existing SGL memory setup explictly by fabric module code with
4074          * transport_generic_map_mem_to_cmd().
4075          */
4076         ret = transport_new_cmd_obj(cmd);
4077         if (ret < 0)
4078                 return ret;
4079         /*
4080          * For WRITEs, let the fabric know its buffer is ready..
4081          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4082          * will be added to the struct se_device execution queue after its WRITE
4083          * data has arrived. (ie: It gets handled by the transport processing
4084          * thread a second time)
4085          */
4086         if (cmd->data_direction == DMA_TO_DEVICE) {
4087                 transport_add_tasks_to_state_queue(cmd);
4088                 return transport_generic_write_pending(cmd);
4089         }
4090         /*
4091          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4092          * to the execution queue.
4093          */
4094         transport_execute_tasks(cmd);
4095         return 0;
4096 }
4097 EXPORT_SYMBOL(transport_generic_new_cmd);
4098
4099 /*      transport_generic_process_write():
4100  *
4101  *
4102  */
4103 void transport_generic_process_write(struct se_cmd *cmd)
4104 {
4105         transport_execute_tasks(cmd);
4106 }
4107 EXPORT_SYMBOL(transport_generic_process_write);
4108
4109 static void transport_write_pending_qf(struct se_cmd *cmd)
4110 {
4111         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4112                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4113                          cmd);
4114                 transport_handle_queue_full(cmd, cmd->se_dev);
4115         }
4116 }
4117
4118 static int transport_generic_write_pending(struct se_cmd *cmd)
4119 {
4120         unsigned long flags;
4121         int ret;
4122
4123         spin_lock_irqsave(&cmd->t_state_lock, flags);
4124         cmd->t_state = TRANSPORT_WRITE_PENDING;
4125         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4126
4127         /*
4128          * Clear the se_cmd for WRITE_PENDING status in order to set
4129          * cmd->t_transport_active=0 so that transport_generic_handle_data
4130          * can be called from HW target mode interrupt code.  This is safe
4131          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4132          * because the se_cmd->se_lun pointer is not being cleared.
4133          */
4134         transport_cmd_check_stop(cmd, 1, 0);
4135
4136         /*
4137          * Call the fabric write_pending function here to let the
4138          * frontend know that WRITE buffers are ready.
4139          */
4140         ret = cmd->se_tfo->write_pending(cmd);
4141         if (ret == -EAGAIN)
4142                 goto queue_full;
4143         else if (ret < 0)
4144                 return ret;
4145
4146         return PYX_TRANSPORT_WRITE_PENDING;
4147
4148 queue_full:
4149         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4150         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4151         transport_handle_queue_full(cmd, cmd->se_dev);
4152         return ret;
4153 }
4154
4155 /**
4156  * transport_release_cmd - free a command
4157  * @cmd:       command to free
4158  *
4159  * This routine unconditionally frees a command, and reference counting
4160  * or list removal must be done in the caller.
4161  */
4162 void transport_release_cmd(struct se_cmd *cmd)
4163 {
4164         BUG_ON(!cmd->se_tfo);
4165
4166         if (cmd->se_tmr_req)
4167                 core_tmr_release_req(cmd->se_tmr_req);
4168         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4169                 kfree(cmd->t_task_cdb);
4170         cmd->se_tfo->release_cmd(cmd);
4171 }
4172 EXPORT_SYMBOL(transport_release_cmd);
4173
4174 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4175 {
4176         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4177                 if (wait_for_tasks && cmd->se_tmr_req)
4178                          transport_wait_for_tasks(cmd);
4179
4180                 transport_release_cmd(cmd);
4181         } else {
4182                 if (wait_for_tasks)
4183                         transport_wait_for_tasks(cmd);
4184
4185                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4186
4187                 if (cmd->se_lun)
4188                         transport_lun_remove_cmd(cmd);
4189
4190                 transport_free_dev_tasks(cmd);
4191
4192                 transport_put_cmd(cmd);
4193         }
4194 }
4195 EXPORT_SYMBOL(transport_generic_free_cmd);
4196
4197 /*      transport_lun_wait_for_tasks():
4198  *
4199  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4200  *      an struct se_lun to be successfully shutdown.
4201  */
4202 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4203 {
4204         unsigned long flags;
4205         int ret;
4206         /*
4207          * If the frontend has already requested this struct se_cmd to
4208          * be stopped, we can safely ignore this struct se_cmd.
4209          */
4210         spin_lock_irqsave(&cmd->t_state_lock, flags);
4211         if (atomic_read(&cmd->t_transport_stop)) {
4212                 atomic_set(&cmd->transport_lun_stop, 0);
4213                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4214                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4215                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4216                 transport_cmd_check_stop(cmd, 1, 0);
4217                 return -EPERM;
4218         }
4219         atomic_set(&cmd->transport_lun_fe_stop, 1);
4220         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4221
4222         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4223
4224         ret = transport_stop_tasks_for_cmd(cmd);
4225
4226         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4227                         " %d\n", cmd, cmd->t_task_list_num, ret);
4228         if (!ret) {
4229                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4230                                 cmd->se_tfo->get_task_tag(cmd));
4231                 wait_for_completion(&cmd->transport_lun_stop_comp);
4232                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4233                                 cmd->se_tfo->get_task_tag(cmd));
4234         }
4235         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4236
4237         return 0;
4238 }
4239
4240 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4241 {
4242         struct se_cmd *cmd = NULL;
4243         unsigned long lun_flags, cmd_flags;
4244         /*
4245          * Do exception processing and return CHECK_CONDITION status to the
4246          * Initiator Port.
4247          */
4248         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4249         while (!list_empty(&lun->lun_cmd_list)) {
4250                 cmd = list_first_entry(&lun->lun_cmd_list,
4251                        struct se_cmd, se_lun_node);
4252                 list_del(&cmd->se_lun_node);
4253
4254                 atomic_set(&cmd->transport_lun_active, 0);
4255                 /*
4256                  * This will notify iscsi_target_transport.c:
4257                  * transport_cmd_check_stop() that a LUN shutdown is in
4258                  * progress for the iscsi_cmd_t.
4259                  */
4260                 spin_lock(&cmd->t_state_lock);
4261                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4262                         "_lun_stop for  ITT: 0x%08x\n",
4263                         cmd->se_lun->unpacked_lun,
4264                         cmd->se_tfo->get_task_tag(cmd));
4265                 atomic_set(&cmd->transport_lun_stop, 1);
4266                 spin_unlock(&cmd->t_state_lock);
4267
4268                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4269
4270                 if (!cmd->se_lun) {
4271                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4272                                 cmd->se_tfo->get_task_tag(cmd),
4273                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4274                         BUG();
4275                 }
4276                 /*
4277                  * If the Storage engine still owns the iscsi_cmd_t, determine
4278                  * and/or stop its context.
4279                  */
4280                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4281                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4282                         cmd->se_tfo->get_task_tag(cmd));
4283
4284                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4285                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4286                         continue;
4287                 }
4288
4289                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4290                         "_wait_for_tasks(): SUCCESS\n",
4291                         cmd->se_lun->unpacked_lun,
4292                         cmd->se_tfo->get_task_tag(cmd));
4293
4294                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4295                 if (!atomic_read(&cmd->transport_dev_active)) {
4296                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4297                         goto check_cond;
4298                 }
4299                 atomic_set(&cmd->transport_dev_active, 0);
4300                 transport_all_task_dev_remove_state(cmd);
4301                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4302
4303                 transport_free_dev_tasks(cmd);
4304                 /*
4305                  * The Storage engine stopped this struct se_cmd before it was
4306                  * send to the fabric frontend for delivery back to the
4307                  * Initiator Node.  Return this SCSI CDB back with an
4308                  * CHECK_CONDITION status.
4309                  */
4310 check_cond:
4311                 transport_send_check_condition_and_sense(cmd,
4312                                 TCM_NON_EXISTENT_LUN, 0);
4313                 /*
4314                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4315                  * be released, notify the waiting thread now that LU has
4316                  * finished accessing it.
4317                  */
4318                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4319                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4320                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4321                                 " struct se_cmd: %p ITT: 0x%08x\n",
4322                                 lun->unpacked_lun,
4323                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4324
4325                         spin_unlock_irqrestore(&cmd->t_state_lock,
4326                                         cmd_flags);
4327                         transport_cmd_check_stop(cmd, 1, 0);
4328                         complete(&cmd->transport_lun_fe_stop_comp);
4329                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4330                         continue;
4331                 }
4332                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4333                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4334
4335                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4336                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4337         }
4338         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4339 }
4340
4341 static int transport_clear_lun_thread(void *p)
4342 {
4343         struct se_lun *lun = (struct se_lun *)p;
4344
4345         __transport_clear_lun_from_sessions(lun);
4346         complete(&lun->lun_shutdown_comp);
4347
4348         return 0;
4349 }
4350
4351 int transport_clear_lun_from_sessions(struct se_lun *lun)
4352 {
4353         struct task_struct *kt;
4354
4355         kt = kthread_run(transport_clear_lun_thread, lun,
4356                         "tcm_cl_%u", lun->unpacked_lun);
4357         if (IS_ERR(kt)) {
4358                 pr_err("Unable to start clear_lun thread\n");
4359                 return PTR_ERR(kt);
4360         }
4361         wait_for_completion(&lun->lun_shutdown_comp);
4362
4363         return 0;
4364 }
4365
4366 /**
4367  * transport_wait_for_tasks - wait for completion to occur
4368  * @cmd:        command to wait
4369  *
4370  * Called from frontend fabric context to wait for storage engine
4371  * to pause and/or release frontend generated struct se_cmd.
4372  */
4373 void transport_wait_for_tasks(struct se_cmd *cmd)
4374 {
4375         unsigned long flags;
4376
4377         spin_lock_irqsave(&cmd->t_state_lock, flags);
4378         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4379                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4380                 return;
4381         }
4382         /*
4383          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4384          * has been set in transport_set_supported_SAM_opcode().
4385          */
4386         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4387                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4388                 return;
4389         }
4390         /*
4391          * If we are already stopped due to an external event (ie: LUN shutdown)
4392          * sleep until the connection can have the passed struct se_cmd back.
4393          * The cmd->transport_lun_stopped_sem will be upped by
4394          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4395          * has completed its operation on the struct se_cmd.
4396          */
4397         if (atomic_read(&cmd->transport_lun_stop)) {
4398
4399                 pr_debug("wait_for_tasks: Stopping"
4400                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4401                         "_stop_comp); for ITT: 0x%08x\n",
4402                         cmd->se_tfo->get_task_tag(cmd));
4403                 /*
4404                  * There is a special case for WRITES where a FE exception +
4405                  * LUN shutdown means ConfigFS context is still sleeping on
4406                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4407                  * We go ahead and up transport_lun_stop_comp just to be sure
4408                  * here.
4409                  */
4410                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4411                 complete(&cmd->transport_lun_stop_comp);
4412                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4413                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4414
4415                 transport_all_task_dev_remove_state(cmd);
4416                 /*
4417                  * At this point, the frontend who was the originator of this
4418                  * struct se_cmd, now owns the structure and can be released through
4419                  * normal means below.
4420                  */
4421                 pr_debug("wait_for_tasks: Stopped"
4422                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4423                         "stop_comp); for ITT: 0x%08x\n",
4424                         cmd->se_tfo->get_task_tag(cmd));
4425
4426                 atomic_set(&cmd->transport_lun_stop, 0);
4427         }
4428         if (!atomic_read(&cmd->t_transport_active) ||
4429              atomic_read(&cmd->t_transport_aborted)) {
4430                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4431                 return;
4432         }
4433
4434         atomic_set(&cmd->t_transport_stop, 1);
4435
4436         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4437                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4438                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4439                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4440                 cmd->deferred_t_state);
4441
4442         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4443
4444         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4445
4446         wait_for_completion(&cmd->t_transport_stop_comp);
4447
4448         spin_lock_irqsave(&cmd->t_state_lock, flags);
4449         atomic_set(&cmd->t_transport_active, 0);
4450         atomic_set(&cmd->t_transport_stop, 0);
4451
4452         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4453                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4454                 cmd->se_tfo->get_task_tag(cmd));
4455
4456         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4457 }
4458 EXPORT_SYMBOL(transport_wait_for_tasks);
4459
4460 static int transport_get_sense_codes(
4461         struct se_cmd *cmd,
4462         u8 *asc,
4463         u8 *ascq)
4464 {
4465         *asc = cmd->scsi_asc;
4466         *ascq = cmd->scsi_ascq;
4467
4468         return 0;
4469 }
4470
4471 static int transport_set_sense_codes(
4472         struct se_cmd *cmd,
4473         u8 asc,
4474         u8 ascq)
4475 {
4476         cmd->scsi_asc = asc;
4477         cmd->scsi_ascq = ascq;
4478
4479         return 0;
4480 }
4481
4482 int transport_send_check_condition_and_sense(
4483         struct se_cmd *cmd,
4484         u8 reason,
4485         int from_transport)
4486 {
4487         unsigned char *buffer = cmd->sense_buffer;
4488         unsigned long flags;
4489         int offset;
4490         u8 asc = 0, ascq = 0;
4491
4492         spin_lock_irqsave(&cmd->t_state_lock, flags);
4493         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4494                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4495                 return 0;
4496         }
4497         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4498         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4499
4500         if (!reason && from_transport)
4501                 goto after_reason;
4502
4503         if (!from_transport)
4504                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4505         /*
4506          * Data Segment and SenseLength of the fabric response PDU.
4507          *
4508          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4509          * from include/scsi/scsi_cmnd.h
4510          */
4511         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4512                                 TRANSPORT_SENSE_BUFFER);
4513         /*
4514          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4515          * SENSE KEY values from include/scsi/scsi.h
4516          */
4517         switch (reason) {
4518         case TCM_NON_EXISTENT_LUN:
4519                 /* CURRENT ERROR */
4520                 buffer[offset] = 0x70;
4521                 /* ILLEGAL REQUEST */
4522                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4523                 /* LOGICAL UNIT NOT SUPPORTED */
4524                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4525                 break;
4526         case TCM_UNSUPPORTED_SCSI_OPCODE:
4527         case TCM_SECTOR_COUNT_TOO_MANY:
4528                 /* CURRENT ERROR */
4529                 buffer[offset] = 0x70;
4530                 /* ILLEGAL REQUEST */
4531                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4532                 /* INVALID COMMAND OPERATION CODE */
4533                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4534                 break;
4535         case TCM_UNKNOWN_MODE_PAGE:
4536                 /* CURRENT ERROR */
4537                 buffer[offset] = 0x70;
4538                 /* ILLEGAL REQUEST */
4539                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4540                 /* INVALID FIELD IN CDB */
4541                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4542                 break;
4543         case TCM_CHECK_CONDITION_ABORT_CMD:
4544                 /* CURRENT ERROR */
4545                 buffer[offset] = 0x70;
4546                 /* ABORTED COMMAND */
4547                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4548                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4549                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4550                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4551                 break;
4552         case TCM_INCORRECT_AMOUNT_OF_DATA:
4553                 /* CURRENT ERROR */
4554                 buffer[offset] = 0x70;
4555                 /* ABORTED COMMAND */
4556                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4557                 /* WRITE ERROR */
4558                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4559                 /* NOT ENOUGH UNSOLICITED DATA */
4560                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4561                 break;
4562         case TCM_INVALID_CDB_FIELD:
4563                 /* CURRENT ERROR */
4564                 buffer[offset] = 0x70;
4565                 /* ABORTED COMMAND */
4566                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4567                 /* INVALID FIELD IN CDB */
4568                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4569                 break;
4570         case TCM_INVALID_PARAMETER_LIST:
4571                 /* CURRENT ERROR */
4572                 buffer[offset] = 0x70;
4573                 /* ABORTED COMMAND */
4574                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4575                 /* INVALID FIELD IN PARAMETER LIST */
4576                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4577                 break;
4578         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4579                 /* CURRENT ERROR */
4580                 buffer[offset] = 0x70;
4581                 /* ABORTED COMMAND */
4582                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4583                 /* WRITE ERROR */
4584                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4585                 /* UNEXPECTED_UNSOLICITED_DATA */
4586                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4587                 break;
4588         case TCM_SERVICE_CRC_ERROR:
4589                 /* CURRENT ERROR */
4590                 buffer[offset] = 0x70;
4591                 /* ABORTED COMMAND */
4592                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4593                 /* PROTOCOL SERVICE CRC ERROR */
4594                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4595                 /* N/A */
4596                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4597                 break;
4598         case TCM_SNACK_REJECTED:
4599                 /* CURRENT ERROR */
4600                 buffer[offset] = 0x70;
4601                 /* ABORTED COMMAND */
4602                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4603                 /* READ ERROR */
4604                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4605                 /* FAILED RETRANSMISSION REQUEST */
4606                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4607                 break;
4608         case TCM_WRITE_PROTECTED:
4609                 /* CURRENT ERROR */
4610                 buffer[offset] = 0x70;
4611                 /* DATA PROTECT */
4612                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4613                 /* WRITE PROTECTED */
4614                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4615                 break;
4616         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4617                 /* CURRENT ERROR */
4618                 buffer[offset] = 0x70;
4619                 /* UNIT ATTENTION */
4620                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4621                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4622                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4623                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4624                 break;
4625         case TCM_CHECK_CONDITION_NOT_READY:
4626                 /* CURRENT ERROR */
4627                 buffer[offset] = 0x70;
4628                 /* Not Ready */
4629                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4630                 transport_get_sense_codes(cmd, &asc, &ascq);
4631                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4632                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4633                 break;
4634         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4635         default:
4636                 /* CURRENT ERROR */
4637                 buffer[offset] = 0x70;
4638                 /* ILLEGAL REQUEST */
4639                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4640                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4641                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4642                 break;
4643         }
4644         /*
4645          * This code uses linux/include/scsi/scsi.h SAM status codes!
4646          */
4647         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4648         /*
4649          * Automatically padded, this value is encoded in the fabric's
4650          * data_length response PDU containing the SCSI defined sense data.
4651          */
4652         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4653
4654 after_reason:
4655         return cmd->se_tfo->queue_status(cmd);
4656 }
4657 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4658
4659 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4660 {
4661         int ret = 0;
4662
4663         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4664                 if (!send_status ||
4665                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4666                         return 1;
4667 #if 0
4668                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4669                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4670                         cmd->t_task_cdb[0],
4671                         cmd->se_tfo->get_task_tag(cmd));
4672 #endif
4673                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4674                 cmd->se_tfo->queue_status(cmd);
4675                 ret = 1;
4676         }
4677         return ret;
4678 }
4679 EXPORT_SYMBOL(transport_check_aborted_status);
4680
4681 void transport_send_task_abort(struct se_cmd *cmd)
4682 {
4683         unsigned long flags;
4684
4685         spin_lock_irqsave(&cmd->t_state_lock, flags);
4686         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4687                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4688                 return;
4689         }
4690         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4691
4692         /*
4693          * If there are still expected incoming fabric WRITEs, we wait
4694          * until until they have completed before sending a TASK_ABORTED
4695          * response.  This response with TASK_ABORTED status will be
4696          * queued back to fabric module by transport_check_aborted_status().
4697          */
4698         if (cmd->data_direction == DMA_TO_DEVICE) {
4699                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4700                         atomic_inc(&cmd->t_transport_aborted);
4701                         smp_mb__after_atomic_inc();
4702                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4703                         transport_new_cmd_failure(cmd);
4704                         return;
4705                 }
4706         }
4707         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4708 #if 0
4709         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4710                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4711                 cmd->se_tfo->get_task_tag(cmd));
4712 #endif
4713         cmd->se_tfo->queue_status(cmd);
4714 }
4715
4716 /*      transport_generic_do_tmr():
4717  *
4718  *
4719  */
4720 int transport_generic_do_tmr(struct se_cmd *cmd)
4721 {
4722         struct se_device *dev = cmd->se_dev;
4723         struct se_tmr_req *tmr = cmd->se_tmr_req;
4724         int ret;
4725
4726         switch (tmr->function) {
4727         case TMR_ABORT_TASK:
4728                 tmr->response = TMR_FUNCTION_REJECTED;
4729                 break;
4730         case TMR_ABORT_TASK_SET:
4731         case TMR_CLEAR_ACA:
4732         case TMR_CLEAR_TASK_SET:
4733                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4734                 break;
4735         case TMR_LUN_RESET:
4736                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4737                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4738                                          TMR_FUNCTION_REJECTED;
4739                 break;
4740         case TMR_TARGET_WARM_RESET:
4741                 tmr->response = TMR_FUNCTION_REJECTED;
4742                 break;
4743         case TMR_TARGET_COLD_RESET:
4744                 tmr->response = TMR_FUNCTION_REJECTED;
4745                 break;
4746         default:
4747                 pr_err("Uknown TMR function: 0x%02x.\n",
4748                                 tmr->function);
4749                 tmr->response = TMR_FUNCTION_REJECTED;
4750                 break;
4751         }
4752
4753         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4754         cmd->se_tfo->queue_tm_rsp(cmd);
4755
4756         transport_cmd_check_stop(cmd, 2, 0);
4757         return 0;
4758 }
4759
4760 /*      transport_processing_thread():
4761  *
4762  *
4763  */
4764 static int transport_processing_thread(void *param)
4765 {
4766         int ret;
4767         struct se_cmd *cmd;
4768         struct se_device *dev = (struct se_device *) param;
4769
4770         set_user_nice(current, -20);
4771
4772         while (!kthread_should_stop()) {
4773                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4774                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4775                                 kthread_should_stop());
4776                 if (ret < 0)
4777                         goto out;
4778
4779 get_cmd:
4780                 __transport_execute_tasks(dev);
4781
4782                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4783                 if (!cmd)
4784                         continue;
4785
4786                 switch (cmd->t_state) {
4787                 case TRANSPORT_NEW_CMD:
4788                         BUG();
4789                         break;
4790                 case TRANSPORT_NEW_CMD_MAP:
4791                         if (!cmd->se_tfo->new_cmd_map) {
4792                                 pr_err("cmd->se_tfo->new_cmd_map is"
4793                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4794                                 BUG();
4795                         }
4796                         ret = cmd->se_tfo->new_cmd_map(cmd);
4797                         if (ret < 0) {
4798                                 cmd->transport_error_status = ret;
4799                                 transport_generic_request_failure(cmd, NULL,
4800                                                 0, (cmd->data_direction !=
4801                                                     DMA_TO_DEVICE));
4802                                 break;
4803                         }
4804                         ret = transport_generic_new_cmd(cmd);
4805                         if (ret == -EAGAIN)
4806                                 break;
4807                         else if (ret < 0) {
4808                                 cmd->transport_error_status = ret;
4809                                 transport_generic_request_failure(cmd, NULL,
4810                                         0, (cmd->data_direction !=
4811                                          DMA_TO_DEVICE));
4812                         }
4813                         break;
4814                 case TRANSPORT_PROCESS_WRITE:
4815                         transport_generic_process_write(cmd);
4816                         break;
4817                 case TRANSPORT_COMPLETE_OK:
4818                         transport_stop_all_task_timers(cmd);
4819                         transport_generic_complete_ok(cmd);
4820                         break;
4821                 case TRANSPORT_REMOVE:
4822                         transport_put_cmd(cmd);
4823                         break;
4824                 case TRANSPORT_FREE_CMD_INTR:
4825                         transport_generic_free_cmd(cmd, 0);
4826                         break;
4827                 case TRANSPORT_PROCESS_TMR:
4828                         transport_generic_do_tmr(cmd);
4829                         break;
4830                 case TRANSPORT_COMPLETE_FAILURE:
4831                         transport_generic_request_failure(cmd, NULL, 1, 1);
4832                         break;
4833                 case TRANSPORT_COMPLETE_TIMEOUT:
4834                         transport_stop_all_task_timers(cmd);
4835                         transport_generic_request_timeout(cmd);
4836                         break;
4837                 case TRANSPORT_COMPLETE_QF_WP:
4838                         transport_write_pending_qf(cmd);
4839                         break;
4840                 case TRANSPORT_COMPLETE_QF_OK:
4841                         transport_complete_qf(cmd);
4842                         break;
4843                 default:
4844                         pr_err("Unknown t_state: %d deferred_t_state:"
4845                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4846                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4847                                 cmd->se_tfo->get_task_tag(cmd),
4848                                 cmd->se_tfo->get_cmd_state(cmd),
4849                                 cmd->se_lun->unpacked_lun);
4850                         BUG();
4851                 }
4852
4853                 goto get_cmd;
4854         }
4855
4856 out:
4857         WARN_ON(!list_empty(&dev->state_task_list));
4858         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4859         dev->process_thread = NULL;
4860         return 0;
4861 }