]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/thermal/devfreq_cooling.c
sched/headers: Prepare for new header dependencies before moving code to <uapi/linux...
[karo-tx-linux.git] / drivers / thermal / devfreq_cooling.c
1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/thermal.h>
28
29 #include <trace/events/thermal.h>
30
31 static DEFINE_IDA(devfreq_ida);
32
33 /**
34  * struct devfreq_cooling_device - Devfreq cooling device
35  * @id:         unique integer value corresponding to each
36  *              devfreq_cooling_device registered.
37  * @cdev:       Pointer to associated thermal cooling device.
38  * @devfreq:    Pointer to associated devfreq device.
39  * @cooling_state:      Current cooling state.
40  * @power_table:        Pointer to table with maximum power draw for each
41  *                      cooling state. State is the index into the table, and
42  *                      the power is in mW.
43  * @freq_table: Pointer to a table with the frequencies sorted in descending
44  *              order.  You can index the table by cooling device state
45  * @freq_table_size:    Size of the @freq_table and @power_table
46  * @power_ops:  Pointer to devfreq_cooling_power, used to generate the
47  *              @power_table.
48  */
49 struct devfreq_cooling_device {
50         int id;
51         struct thermal_cooling_device *cdev;
52         struct devfreq *devfreq;
53         unsigned long cooling_state;
54         u32 *power_table;
55         u32 *freq_table;
56         size_t freq_table_size;
57         struct devfreq_cooling_power *power_ops;
58 };
59
60 /**
61  * partition_enable_opps() - disable all opps above a given state
62  * @dfc:        Pointer to devfreq we are operating on
63  * @cdev_state: cooling device state we're setting
64  *
65  * Go through the OPPs of the device, enabling all OPPs until
66  * @cdev_state and disabling those frequencies above it.
67  */
68 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
69                                  unsigned long cdev_state)
70 {
71         int i;
72         struct device *dev = dfc->devfreq->dev.parent;
73
74         for (i = 0; i < dfc->freq_table_size; i++) {
75                 struct dev_pm_opp *opp;
76                 int ret = 0;
77                 unsigned int freq = dfc->freq_table[i];
78                 bool want_enable = i >= cdev_state ? true : false;
79
80                 opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
81
82                 if (PTR_ERR(opp) == -ERANGE)
83                         continue;
84                 else if (IS_ERR(opp))
85                         return PTR_ERR(opp);
86
87                 dev_pm_opp_put(opp);
88
89                 if (want_enable)
90                         ret = dev_pm_opp_enable(dev, freq);
91                 else
92                         ret = dev_pm_opp_disable(dev, freq);
93
94                 if (ret)
95                         return ret;
96         }
97
98         return 0;
99 }
100
101 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
102                                          unsigned long *state)
103 {
104         struct devfreq_cooling_device *dfc = cdev->devdata;
105
106         *state = dfc->freq_table_size - 1;
107
108         return 0;
109 }
110
111 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
112                                          unsigned long *state)
113 {
114         struct devfreq_cooling_device *dfc = cdev->devdata;
115
116         *state = dfc->cooling_state;
117
118         return 0;
119 }
120
121 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
122                                          unsigned long state)
123 {
124         struct devfreq_cooling_device *dfc = cdev->devdata;
125         struct devfreq *df = dfc->devfreq;
126         struct device *dev = df->dev.parent;
127         int ret;
128
129         if (state == dfc->cooling_state)
130                 return 0;
131
132         dev_dbg(dev, "Setting cooling state %lu\n", state);
133
134         if (state >= dfc->freq_table_size)
135                 return -EINVAL;
136
137         ret = partition_enable_opps(dfc, state);
138         if (ret)
139                 return ret;
140
141         dfc->cooling_state = state;
142
143         return 0;
144 }
145
146 /**
147  * freq_get_state() - get the cooling state corresponding to a frequency
148  * @dfc:        Pointer to devfreq cooling device
149  * @freq:       frequency in Hz
150  *
151  * Return: the cooling state associated with the @freq, or
152  * THERMAL_CSTATE_INVALID if it wasn't found.
153  */
154 static unsigned long
155 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
156 {
157         int i;
158
159         for (i = 0; i < dfc->freq_table_size; i++) {
160                 if (dfc->freq_table[i] == freq)
161                         return i;
162         }
163
164         return THERMAL_CSTATE_INVALID;
165 }
166
167 /**
168  * get_static_power() - calculate the static power
169  * @dfc:        Pointer to devfreq cooling device
170  * @freq:       Frequency in Hz
171  *
172  * Calculate the static power in milliwatts using the supplied
173  * get_static_power().  The current voltage is calculated using the
174  * OPP library.  If no get_static_power() was supplied, assume the
175  * static power is negligible.
176  */
177 static unsigned long
178 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
179 {
180         struct devfreq *df = dfc->devfreq;
181         struct device *dev = df->dev.parent;
182         unsigned long voltage;
183         struct dev_pm_opp *opp;
184
185         if (!dfc->power_ops->get_static_power)
186                 return 0;
187
188         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
189         if (IS_ERR(opp) && (PTR_ERR(opp) == -ERANGE))
190                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
191
192         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
193         dev_pm_opp_put(opp);
194
195         if (voltage == 0) {
196                 dev_warn_ratelimited(dev,
197                                      "Failed to get voltage for frequency %lu: %ld\n",
198                                      freq, IS_ERR(opp) ? PTR_ERR(opp) : 0);
199                 return 0;
200         }
201
202         return dfc->power_ops->get_static_power(df, voltage);
203 }
204
205 /**
206  * get_dynamic_power - calculate the dynamic power
207  * @dfc:        Pointer to devfreq cooling device
208  * @freq:       Frequency in Hz
209  * @voltage:    Voltage in millivolts
210  *
211  * Calculate the dynamic power in milliwatts consumed by the device at
212  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
213  * was supplied as part of the devfreq_cooling_power struct, then that
214  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
215  * Voltage^2 * Frequency) is used.
216  */
217 static unsigned long
218 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
219                   unsigned long voltage)
220 {
221         u64 power;
222         u32 freq_mhz;
223         struct devfreq_cooling_power *dfc_power = dfc->power_ops;
224
225         if (dfc_power->get_dynamic_power)
226                 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
227                                                     voltage);
228
229         freq_mhz = freq / 1000000;
230         power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
231         do_div(power, 1000000000);
232
233         return power;
234 }
235
236 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
237                                                struct thermal_zone_device *tz,
238                                                u32 *power)
239 {
240         struct devfreq_cooling_device *dfc = cdev->devdata;
241         struct devfreq *df = dfc->devfreq;
242         struct devfreq_dev_status *status = &df->last_status;
243         unsigned long state;
244         unsigned long freq = status->current_frequency;
245         u32 dyn_power, static_power;
246
247         /* Get dynamic power for state */
248         state = freq_get_state(dfc, freq);
249         if (state == THERMAL_CSTATE_INVALID)
250                 return -EAGAIN;
251
252         dyn_power = dfc->power_table[state];
253
254         /* Scale dynamic power for utilization */
255         dyn_power = (dyn_power * status->busy_time) / status->total_time;
256
257         /* Get static power */
258         static_power = get_static_power(dfc, freq);
259
260         trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
261                                               static_power);
262
263         *power = dyn_power + static_power;
264
265         return 0;
266 }
267
268 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
269                                        struct thermal_zone_device *tz,
270                                        unsigned long state,
271                                        u32 *power)
272 {
273         struct devfreq_cooling_device *dfc = cdev->devdata;
274         unsigned long freq;
275         u32 static_power;
276
277         if (state >= dfc->freq_table_size)
278                 return -EINVAL;
279
280         freq = dfc->freq_table[state];
281         static_power = get_static_power(dfc, freq);
282
283         *power = dfc->power_table[state] + static_power;
284         return 0;
285 }
286
287 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
288                                        struct thermal_zone_device *tz,
289                                        u32 power, unsigned long *state)
290 {
291         struct devfreq_cooling_device *dfc = cdev->devdata;
292         struct devfreq *df = dfc->devfreq;
293         struct devfreq_dev_status *status = &df->last_status;
294         unsigned long freq = status->current_frequency;
295         unsigned long busy_time;
296         s32 dyn_power;
297         u32 static_power;
298         int i;
299
300         static_power = get_static_power(dfc, freq);
301
302         dyn_power = power - static_power;
303         dyn_power = dyn_power > 0 ? dyn_power : 0;
304
305         /* Scale dynamic power for utilization */
306         busy_time = status->busy_time ?: 1;
307         dyn_power = (dyn_power * status->total_time) / busy_time;
308
309         /*
310          * Find the first cooling state that is within the power
311          * budget for dynamic power.
312          */
313         for (i = 0; i < dfc->freq_table_size - 1; i++)
314                 if (dyn_power >= dfc->power_table[i])
315                         break;
316
317         *state = i;
318         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
319         return 0;
320 }
321
322 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
323         .get_max_state = devfreq_cooling_get_max_state,
324         .get_cur_state = devfreq_cooling_get_cur_state,
325         .set_cur_state = devfreq_cooling_set_cur_state,
326 };
327
328 /**
329  * devfreq_cooling_gen_tables() - Generate power and freq tables.
330  * @dfc: Pointer to devfreq cooling device.
331  *
332  * Generate power and frequency tables: the power table hold the
333  * device's maximum power usage at each cooling state (OPP).  The
334  * static and dynamic power using the appropriate voltage and
335  * frequency for the state, is acquired from the struct
336  * devfreq_cooling_power, and summed to make the maximum power draw.
337  *
338  * The frequency table holds the frequencies in descending order.
339  * That way its indexed by cooling device state.
340  *
341  * The tables are malloced, and pointers put in dfc.  They must be
342  * freed when unregistering the devfreq cooling device.
343  *
344  * Return: 0 on success, negative error code on failure.
345  */
346 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
347 {
348         struct devfreq *df = dfc->devfreq;
349         struct device *dev = df->dev.parent;
350         int ret, num_opps;
351         unsigned long freq;
352         u32 *power_table = NULL;
353         u32 *freq_table;
354         int i;
355
356         num_opps = dev_pm_opp_get_opp_count(dev);
357
358         if (dfc->power_ops) {
359                 power_table = kcalloc(num_opps, sizeof(*power_table),
360                                       GFP_KERNEL);
361                 if (!power_table)
362                         return -ENOMEM;
363         }
364
365         freq_table = kcalloc(num_opps, sizeof(*freq_table),
366                              GFP_KERNEL);
367         if (!freq_table) {
368                 ret = -ENOMEM;
369                 goto free_power_table;
370         }
371
372         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
373                 unsigned long power_dyn, voltage;
374                 struct dev_pm_opp *opp;
375
376                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
377                 if (IS_ERR(opp)) {
378                         ret = PTR_ERR(opp);
379                         goto free_tables;
380                 }
381
382                 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
383                 dev_pm_opp_put(opp);
384
385                 if (dfc->power_ops) {
386                         power_dyn = get_dynamic_power(dfc, freq, voltage);
387
388                         dev_dbg(dev, "Dynamic power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
389                                 freq / 1000000, voltage, power_dyn, power_dyn);
390
391                         power_table[i] = power_dyn;
392                 }
393
394                 freq_table[i] = freq;
395         }
396
397         if (dfc->power_ops)
398                 dfc->power_table = power_table;
399
400         dfc->freq_table = freq_table;
401         dfc->freq_table_size = num_opps;
402
403         return 0;
404
405 free_tables:
406         kfree(freq_table);
407 free_power_table:
408         kfree(power_table);
409
410         return ret;
411 }
412
413 /**
414  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
415  *                                      with OF and power information.
416  * @np: Pointer to OF device_node.
417  * @df: Pointer to devfreq device.
418  * @dfc_power:  Pointer to devfreq_cooling_power.
419  *
420  * Register a devfreq cooling device.  The available OPPs must be
421  * registered on the device.
422  *
423  * If @dfc_power is provided, the cooling device is registered with the
424  * power extensions.  For the power extensions to work correctly,
425  * devfreq should use the simple_ondemand governor, other governors
426  * are not currently supported.
427  */
428 struct thermal_cooling_device *
429 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
430                                   struct devfreq_cooling_power *dfc_power)
431 {
432         struct thermal_cooling_device *cdev;
433         struct devfreq_cooling_device *dfc;
434         char dev_name[THERMAL_NAME_LENGTH];
435         int err;
436
437         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
438         if (!dfc)
439                 return ERR_PTR(-ENOMEM);
440
441         dfc->devfreq = df;
442
443         if (dfc_power) {
444                 dfc->power_ops = dfc_power;
445
446                 devfreq_cooling_ops.get_requested_power =
447                         devfreq_cooling_get_requested_power;
448                 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
449                 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
450         }
451
452         err = devfreq_cooling_gen_tables(dfc);
453         if (err)
454                 goto free_dfc;
455
456         err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
457         if (err < 0)
458                 goto free_tables;
459         dfc->id = err;
460
461         snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
462
463         cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
464                                                   &devfreq_cooling_ops);
465         if (IS_ERR(cdev)) {
466                 err = PTR_ERR(cdev);
467                 dev_err(df->dev.parent,
468                         "Failed to register devfreq cooling device (%d)\n",
469                         err);
470                 goto release_ida;
471         }
472
473         dfc->cdev = cdev;
474
475         return cdev;
476
477 release_ida:
478         ida_simple_remove(&devfreq_ida, dfc->id);
479 free_tables:
480         kfree(dfc->power_table);
481         kfree(dfc->freq_table);
482 free_dfc:
483         kfree(dfc);
484
485         return ERR_PTR(err);
486 }
487 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
488
489 /**
490  * of_devfreq_cooling_register() - Register devfreq cooling device,
491  *                                with OF information.
492  * @np: Pointer to OF device_node.
493  * @df: Pointer to devfreq device.
494  */
495 struct thermal_cooling_device *
496 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
497 {
498         return of_devfreq_cooling_register_power(np, df, NULL);
499 }
500 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
501
502 /**
503  * devfreq_cooling_register() - Register devfreq cooling device.
504  * @df: Pointer to devfreq device.
505  */
506 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
507 {
508         return of_devfreq_cooling_register(NULL, df);
509 }
510 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
511
512 /**
513  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
514  * @dfc: Pointer to devfreq cooling device to unregister.
515  */
516 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
517 {
518         struct devfreq_cooling_device *dfc;
519
520         if (!cdev)
521                 return;
522
523         dfc = cdev->devdata;
524
525         thermal_cooling_device_unregister(dfc->cdev);
526         ida_simple_remove(&devfreq_ida, dfc->id);
527         kfree(dfc->power_table);
528         kfree(dfc->freq_table);
529
530         kfree(dfc);
531 }
532 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);