]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/tty/tty_io.c
Merge tag 'tty-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[karo-tx-linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      __tty_hangup            -       actual handler for hangup events
537  *      @work: tty device
538  *
539  *      This can be called by a "kworker" kernel thread.  That is process
540  *      synchronous but doesn't hold any locks, so we need to make sure we
541  *      have the appropriate locks for what we're doing.
542  *
543  *      The hangup event clears any pending redirections onto the hung up
544  *      device. It ensures future writes will error and it does the needed
545  *      line discipline hangup and signal delivery. The tty object itself
546  *      remains intact.
547  *
548  *      Locking:
549  *              BTM
550  *                redirect lock for undoing redirection
551  *                file list lock for manipulating list of ttys
552  *                tty_ldisc_lock from called functions
553  *                termios_mutex resetting termios data
554  *                tasklist_lock to walk task list for hangup event
555  *                  ->siglock to protect ->signal/->sighand
556  */
557 static void __tty_hangup(struct tty_struct *tty)
558 {
559         struct file *cons_filp = NULL;
560         struct file *filp, *f = NULL;
561         struct task_struct *p;
562         struct tty_file_private *priv;
563         int    closecount = 0, n;
564         unsigned long flags;
565         int refs = 0;
566
567         if (!tty)
568                 return;
569
570
571         spin_lock(&redirect_lock);
572         if (redirect && file_tty(redirect) == tty) {
573                 f = redirect;
574                 redirect = NULL;
575         }
576         spin_unlock(&redirect_lock);
577
578         tty_lock(tty);
579
580         /* some functions below drop BTM, so we need this bit */
581         set_bit(TTY_HUPPING, &tty->flags);
582
583         /* inuse_filps is protected by the single tty lock,
584            this really needs to change if we want to flush the
585            workqueue with the lock held */
586         check_tty_count(tty, "tty_hangup");
587
588         spin_lock(&tty_files_lock);
589         /* This breaks for file handles being sent over AF_UNIX sockets ? */
590         list_for_each_entry(priv, &tty->tty_files, list) {
591                 filp = priv->file;
592                 if (filp->f_op->write == redirected_tty_write)
593                         cons_filp = filp;
594                 if (filp->f_op->write != tty_write)
595                         continue;
596                 closecount++;
597                 __tty_fasync(-1, filp, 0);      /* can't block */
598                 filp->f_op = &hung_up_tty_fops;
599         }
600         spin_unlock(&tty_files_lock);
601
602         /*
603          * it drops BTM and thus races with reopen
604          * we protect the race by TTY_HUPPING
605          */
606         tty_ldisc_hangup(tty);
607
608         read_lock(&tasklist_lock);
609         if (tty->session) {
610                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
611                         spin_lock_irq(&p->sighand->siglock);
612                         if (p->signal->tty == tty) {
613                                 p->signal->tty = NULL;
614                                 /* We defer the dereferences outside fo
615                                    the tasklist lock */
616                                 refs++;
617                         }
618                         if (!p->signal->leader) {
619                                 spin_unlock_irq(&p->sighand->siglock);
620                                 continue;
621                         }
622                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
623                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
624                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
625                         spin_lock_irqsave(&tty->ctrl_lock, flags);
626                         if (tty->pgrp)
627                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
628                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
629                         spin_unlock_irq(&p->sighand->siglock);
630                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
631         }
632         read_unlock(&tasklist_lock);
633
634         spin_lock_irqsave(&tty->ctrl_lock, flags);
635         clear_bit(TTY_THROTTLED, &tty->flags);
636         clear_bit(TTY_PUSH, &tty->flags);
637         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
638         put_pid(tty->session);
639         put_pid(tty->pgrp);
640         tty->session = NULL;
641         tty->pgrp = NULL;
642         tty->ctrl_status = 0;
643         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
644
645         /* Account for the p->signal references we killed */
646         while (refs--)
647                 tty_kref_put(tty);
648
649         /*
650          * If one of the devices matches a console pointer, we
651          * cannot just call hangup() because that will cause
652          * tty->count and state->count to go out of sync.
653          * So we just call close() the right number of times.
654          */
655         if (cons_filp) {
656                 if (tty->ops->close)
657                         for (n = 0; n < closecount; n++)
658                                 tty->ops->close(tty, cons_filp);
659         } else if (tty->ops->hangup)
660                 (tty->ops->hangup)(tty);
661         /*
662          * We don't want to have driver/ldisc interactions beyond
663          * the ones we did here. The driver layer expects no
664          * calls after ->hangup() from the ldisc side. However we
665          * can't yet guarantee all that.
666          */
667         set_bit(TTY_HUPPED, &tty->flags);
668         clear_bit(TTY_HUPPING, &tty->flags);
669         tty_ldisc_enable(tty);
670
671         tty_unlock(tty);
672
673         if (f)
674                 fput(f);
675 }
676
677 static void do_tty_hangup(struct work_struct *work)
678 {
679         struct tty_struct *tty =
680                 container_of(work, struct tty_struct, hangup_work);
681
682         __tty_hangup(tty);
683 }
684
685 /**
686  *      tty_hangup              -       trigger a hangup event
687  *      @tty: tty to hangup
688  *
689  *      A carrier loss (virtual or otherwise) has occurred on this like
690  *      schedule a hangup sequence to run after this event.
691  */
692
693 void tty_hangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696         char    buf[64];
697         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
698 #endif
699         schedule_work(&tty->hangup_work);
700 }
701
702 EXPORT_SYMBOL(tty_hangup);
703
704 /**
705  *      tty_vhangup             -       process vhangup
706  *      @tty: tty to hangup
707  *
708  *      The user has asked via system call for the terminal to be hung up.
709  *      We do this synchronously so that when the syscall returns the process
710  *      is complete. That guarantee is necessary for security reasons.
711  */
712
713 void tty_vhangup(struct tty_struct *tty)
714 {
715 #ifdef TTY_DEBUG_HANGUP
716         char    buf[64];
717
718         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
719 #endif
720         __tty_hangup(tty);
721 }
722
723 EXPORT_SYMBOL(tty_vhangup);
724
725
726 /**
727  *      tty_vhangup_self        -       process vhangup for own ctty
728  *
729  *      Perform a vhangup on the current controlling tty
730  */
731
732 void tty_vhangup_self(void)
733 {
734         struct tty_struct *tty;
735
736         tty = get_current_tty();
737         if (tty) {
738                 tty_vhangup(tty);
739                 tty_kref_put(tty);
740         }
741 }
742
743 /**
744  *      tty_hung_up_p           -       was tty hung up
745  *      @filp: file pointer of tty
746  *
747  *      Return true if the tty has been subject to a vhangup or a carrier
748  *      loss
749  */
750
751 int tty_hung_up_p(struct file *filp)
752 {
753         return (filp->f_op == &hung_up_tty_fops);
754 }
755
756 EXPORT_SYMBOL(tty_hung_up_p);
757
758 static void session_clear_tty(struct pid *session)
759 {
760         struct task_struct *p;
761         do_each_pid_task(session, PIDTYPE_SID, p) {
762                 proc_clear_tty(p);
763         } while_each_pid_task(session, PIDTYPE_SID, p);
764 }
765
766 /**
767  *      disassociate_ctty       -       disconnect controlling tty
768  *      @on_exit: true if exiting so need to "hang up" the session
769  *
770  *      This function is typically called only by the session leader, when
771  *      it wants to disassociate itself from its controlling tty.
772  *
773  *      It performs the following functions:
774  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
775  *      (2)  Clears the tty from being controlling the session
776  *      (3)  Clears the controlling tty for all processes in the
777  *              session group.
778  *
779  *      The argument on_exit is set to 1 if called when a process is
780  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
781  *
782  *      Locking:
783  *              BTM is taken for hysterical raisins, and held when
784  *                called from no_tty().
785  *                tty_mutex is taken to protect tty
786  *                ->siglock is taken to protect ->signal/->sighand
787  *                tasklist_lock is taken to walk process list for sessions
788  *                  ->siglock is taken to protect ->signal/->sighand
789  */
790
791 void disassociate_ctty(int on_exit)
792 {
793         struct tty_struct *tty;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 struct pid *tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806                 if (tty_pgrp) {
807                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
808                         if (!on_exit)
809                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810                         put_pid(tty_pgrp);
811                 }
812         } else if (on_exit) {
813                 struct pid *old_pgrp;
814                 spin_lock_irq(&current->sighand->siglock);
815                 old_pgrp = current->signal->tty_old_pgrp;
816                 current->signal->tty_old_pgrp = NULL;
817                 spin_unlock_irq(&current->sighand->siglock);
818                 if (old_pgrp) {
819                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
820                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
821                         put_pid(old_pgrp);
822                 }
823                 return;
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         /* FIXME: Review locking here. The tty_lock never covered any race
861            between a new association and proc_clear_tty but possible we need
862            to protect against this anyway */
863         struct task_struct *tsk = current;
864         disassociate_ctty(0);
865         proc_clear_tty(tsk);
866 }
867
868
869 /**
870  *      stop_tty        -       propagate flow control
871  *      @tty: tty to stop
872  *
873  *      Perform flow control to the driver. For PTY/TTY pairs we
874  *      must also propagate the TIOCKPKT status. May be called
875  *      on an already stopped device and will not re-call the driver
876  *      method.
877  *
878  *      This functionality is used by both the line disciplines for
879  *      halting incoming flow and by the driver. It may therefore be
880  *      called from any context, may be under the tty atomic_write_lock
881  *      but not always.
882  *
883  *      Locking:
884  *              Uses the tty control lock internally
885  */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889         unsigned long flags;
890         spin_lock_irqsave(&tty->ctrl_lock, flags);
891         if (tty->stopped) {
892                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893                 return;
894         }
895         tty->stopped = 1;
896         if (tty->link && tty->link->packet) {
897                 tty->ctrl_status &= ~TIOCPKT_START;
898                 tty->ctrl_status |= TIOCPKT_STOP;
899                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900         }
901         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902         if (tty->ops->stop)
903                 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909  *      start_tty       -       propagate flow control
910  *      @tty: tty to start
911  *
912  *      Start a tty that has been stopped if at all possible. Perform
913  *      any necessary wakeups and propagate the TIOCPKT status. If this
914  *      is the tty was previous stopped and is being started then the
915  *      driver start method is invoked and the line discipline woken.
916  *
917  *      Locking:
918  *              ctrl_lock
919  */
920
921 void start_tty(struct tty_struct *tty)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&tty->ctrl_lock, flags);
925         if (!tty->stopped || tty->flow_stopped) {
926                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927                 return;
928         }
929         tty->stopped = 0;
930         if (tty->link && tty->link->packet) {
931                 tty->ctrl_status &= ~TIOCPKT_STOP;
932                 tty->ctrl_status |= TIOCPKT_START;
933                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934         }
935         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936         if (tty->ops->start)
937                 (tty->ops->start)(tty);
938         /* If we have a running line discipline it may need kicking */
939         tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 /**
945  *      tty_read        -       read method for tty device files
946  *      @file: pointer to tty file
947  *      @buf: user buffer
948  *      @count: size of user buffer
949  *      @ppos: unused
950  *
951  *      Perform the read system call function on this terminal device. Checks
952  *      for hung up devices before calling the line discipline method.
953  *
954  *      Locking:
955  *              Locks the line discipline internally while needed. Multiple
956  *      read calls may be outstanding in parallel.
957  */
958
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960                         loff_t *ppos)
961 {
962         int i;
963         struct inode *inode = file->f_path.dentry->d_inode;
964         struct tty_struct *tty = file_tty(file);
965         struct tty_ldisc *ld;
966
967         if (tty_paranoia_check(tty, inode, "tty_read"))
968                 return -EIO;
969         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
970                 return -EIO;
971
972         /* We want to wait for the line discipline to sort out in this
973            situation */
974         ld = tty_ldisc_ref_wait(tty);
975         if (ld->ops->read)
976                 i = (ld->ops->read)(tty, file, buf, count);
977         else
978                 i = -EIO;
979         tty_ldisc_deref(ld);
980
981         return i;
982 }
983
984 void tty_write_unlock(struct tty_struct *tty)
985         __releases(&tty->atomic_write_lock)
986 {
987         mutex_unlock(&tty->atomic_write_lock);
988         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992         __acquires(&tty->atomic_write_lock)
993 {
994         if (!mutex_trylock(&tty->atomic_write_lock)) {
995                 if (ndelay)
996                         return -EAGAIN;
997                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
998                         return -ERESTARTSYS;
999         }
1000         return 0;
1001 }
1002
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009         struct tty_struct *tty,
1010         struct file *file,
1011         const char __user *buf,
1012         size_t count)
1013 {
1014         ssize_t ret, written = 0;
1015         unsigned int chunk;
1016
1017         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018         if (ret < 0)
1019                 return ret;
1020
1021         /*
1022          * We chunk up writes into a temporary buffer. This
1023          * simplifies low-level drivers immensely, since they
1024          * don't have locking issues and user mode accesses.
1025          *
1026          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027          * big chunk-size..
1028          *
1029          * The default chunk-size is 2kB, because the NTTY
1030          * layer has problems with bigger chunks. It will
1031          * claim to be able to handle more characters than
1032          * it actually does.
1033          *
1034          * FIXME: This can probably go away now except that 64K chunks
1035          * are too likely to fail unless switched to vmalloc...
1036          */
1037         chunk = 2048;
1038         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039                 chunk = 65536;
1040         if (count < chunk)
1041                 chunk = count;
1042
1043         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044         if (tty->write_cnt < chunk) {
1045                 unsigned char *buf_chunk;
1046
1047                 if (chunk < 1024)
1048                         chunk = 1024;
1049
1050                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051                 if (!buf_chunk) {
1052                         ret = -ENOMEM;
1053                         goto out;
1054                 }
1055                 kfree(tty->write_buf);
1056                 tty->write_cnt = chunk;
1057                 tty->write_buf = buf_chunk;
1058         }
1059
1060         /* Do the write .. */
1061         for (;;) {
1062                 size_t size = count;
1063                 if (size > chunk)
1064                         size = chunk;
1065                 ret = -EFAULT;
1066                 if (copy_from_user(tty->write_buf, buf, size))
1067                         break;
1068                 ret = write(tty, file, tty->write_buf, size);
1069                 if (ret <= 0)
1070                         break;
1071                 written += ret;
1072                 buf += ret;
1073                 count -= ret;
1074                 if (!count)
1075                         break;
1076                 ret = -ERESTARTSYS;
1077                 if (signal_pending(current))
1078                         break;
1079                 cond_resched();
1080         }
1081         if (written)
1082                 ret = written;
1083 out:
1084         tty_write_unlock(tty);
1085         return ret;
1086 }
1087
1088 /**
1089  * tty_write_message - write a message to a certain tty, not just the console.
1090  * @tty: the destination tty_struct
1091  * @msg: the message to write
1092  *
1093  * This is used for messages that need to be redirected to a specific tty.
1094  * We don't put it into the syslog queue right now maybe in the future if
1095  * really needed.
1096  *
1097  * We must still hold the BTM and test the CLOSING flag for the moment.
1098  */
1099
1100 void tty_write_message(struct tty_struct *tty, char *msg)
1101 {
1102         if (tty) {
1103                 mutex_lock(&tty->atomic_write_lock);
1104                 tty_lock(tty);
1105                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1106                         tty_unlock(tty);
1107                         tty->ops->write(tty, msg, strlen(msg));
1108                 } else
1109                         tty_unlock(tty);
1110                 tty_write_unlock(tty);
1111         }
1112         return;
1113 }
1114
1115
1116 /**
1117  *      tty_write               -       write method for tty device file
1118  *      @file: tty file pointer
1119  *      @buf: user data to write
1120  *      @count: bytes to write
1121  *      @ppos: unused
1122  *
1123  *      Write data to a tty device via the line discipline.
1124  *
1125  *      Locking:
1126  *              Locks the line discipline as required
1127  *              Writes to the tty driver are serialized by the atomic_write_lock
1128  *      and are then processed in chunks to the device. The line discipline
1129  *      write method will not be invoked in parallel for each device.
1130  */
1131
1132 static ssize_t tty_write(struct file *file, const char __user *buf,
1133                                                 size_t count, loff_t *ppos)
1134 {
1135         struct inode *inode = file->f_path.dentry->d_inode;
1136         struct tty_struct *tty = file_tty(file);
1137         struct tty_ldisc *ld;
1138         ssize_t ret;
1139
1140         if (tty_paranoia_check(tty, inode, "tty_write"))
1141                 return -EIO;
1142         if (!tty || !tty->ops->write ||
1143                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1144                         return -EIO;
1145         /* Short term debug to catch buggy drivers */
1146         if (tty->ops->write_room == NULL)
1147                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1148                         tty->driver->name);
1149         ld = tty_ldisc_ref_wait(tty);
1150         if (!ld->ops->write)
1151                 ret = -EIO;
1152         else
1153                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1154         tty_ldisc_deref(ld);
1155         return ret;
1156 }
1157
1158 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1159                                                 size_t count, loff_t *ppos)
1160 {
1161         struct file *p = NULL;
1162
1163         spin_lock(&redirect_lock);
1164         if (redirect)
1165                 p = get_file(redirect);
1166         spin_unlock(&redirect_lock);
1167
1168         if (p) {
1169                 ssize_t res;
1170                 res = vfs_write(p, buf, count, &p->f_pos);
1171                 fput(p);
1172                 return res;
1173         }
1174         return tty_write(file, buf, count, ppos);
1175 }
1176
1177 static char ptychar[] = "pqrstuvwxyzabcde";
1178
1179 /**
1180  *      pty_line_name   -       generate name for a pty
1181  *      @driver: the tty driver in use
1182  *      @index: the minor number
1183  *      @p: output buffer of at least 6 bytes
1184  *
1185  *      Generate a name from a driver reference and write it to the output
1186  *      buffer.
1187  *
1188  *      Locking: None
1189  */
1190 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1191 {
1192         int i = index + driver->name_base;
1193         /* ->name is initialized to "ttyp", but "tty" is expected */
1194         sprintf(p, "%s%c%x",
1195                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1196                 ptychar[i >> 4 & 0xf], i & 0xf);
1197 }
1198
1199 /**
1200  *      tty_line_name   -       generate name for a tty
1201  *      @driver: the tty driver in use
1202  *      @index: the minor number
1203  *      @p: output buffer of at least 7 bytes
1204  *
1205  *      Generate a name from a driver reference and write it to the output
1206  *      buffer.
1207  *
1208  *      Locking: None
1209  */
1210 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1211 {
1212         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1213                 strcpy(p, driver->name);
1214         else
1215                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1216 }
1217
1218 /**
1219  *      tty_driver_lookup_tty() - find an existing tty, if any
1220  *      @driver: the driver for the tty
1221  *      @idx:    the minor number
1222  *
1223  *      Return the tty, if found or ERR_PTR() otherwise.
1224  *
1225  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1226  *      be held until the 'fast-open' is also done. Will change once we
1227  *      have refcounting in the driver and per driver locking
1228  */
1229 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230                 struct inode *inode, int idx)
1231 {
1232         if (driver->ops->lookup)
1233                 return driver->ops->lookup(driver, inode, idx);
1234
1235         return driver->ttys[idx];
1236 }
1237
1238 /**
1239  *      tty_init_termios        -  helper for termios setup
1240  *      @tty: the tty to set up
1241  *
1242  *      Initialise the termios structures for this tty. Thus runs under
1243  *      the tty_mutex currently so we can be relaxed about ordering.
1244  */
1245
1246 int tty_init_termios(struct tty_struct *tty)
1247 {
1248         struct ktermios *tp;
1249         int idx = tty->index;
1250
1251         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1252                 tty->termios = tty->driver->init_termios;
1253         else {
1254                 /* Check for lazy saved data */
1255                 tp = tty->driver->termios[idx];
1256                 if (tp != NULL)
1257                         tty->termios = *tp;
1258                 else
1259                         tty->termios = tty->driver->init_termios;
1260         }
1261         /* Compatibility until drivers always set this */
1262         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1263         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1264         return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(tty_init_termios);
1267
1268 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1269 {
1270         int ret = tty_init_termios(tty);
1271         if (ret)
1272                 return ret;
1273
1274         tty_driver_kref_get(driver);
1275         tty->count++;
1276         driver->ttys[tty->index] = tty;
1277         return 0;
1278 }
1279 EXPORT_SYMBOL_GPL(tty_standard_install);
1280
1281 /**
1282  *      tty_driver_install_tty() - install a tty entry in the driver
1283  *      @driver: the driver for the tty
1284  *      @tty: the tty
1285  *
1286  *      Install a tty object into the driver tables. The tty->index field
1287  *      will be set by the time this is called. This method is responsible
1288  *      for ensuring any need additional structures are allocated and
1289  *      configured.
1290  *
1291  *      Locking: tty_mutex for now
1292  */
1293 static int tty_driver_install_tty(struct tty_driver *driver,
1294                                                 struct tty_struct *tty)
1295 {
1296         return driver->ops->install ? driver->ops->install(driver, tty) :
1297                 tty_standard_install(driver, tty);
1298 }
1299
1300 /**
1301  *      tty_driver_remove_tty() - remove a tty from the driver tables
1302  *      @driver: the driver for the tty
1303  *      @idx:    the minor number
1304  *
1305  *      Remvoe a tty object from the driver tables. The tty->index field
1306  *      will be set by the time this is called.
1307  *
1308  *      Locking: tty_mutex for now
1309  */
1310 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1311 {
1312         if (driver->ops->remove)
1313                 driver->ops->remove(driver, tty);
1314         else
1315                 driver->ttys[tty->index] = NULL;
1316 }
1317
1318 /*
1319  *      tty_reopen()    - fast re-open of an open tty
1320  *      @tty    - the tty to open
1321  *
1322  *      Return 0 on success, -errno on error.
1323  *
1324  *      Locking: tty_mutex must be held from the time the tty was found
1325  *               till this open completes.
1326  */
1327 static int tty_reopen(struct tty_struct *tty)
1328 {
1329         struct tty_driver *driver = tty->driver;
1330
1331         if (test_bit(TTY_CLOSING, &tty->flags) ||
1332                         test_bit(TTY_HUPPING, &tty->flags) ||
1333                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1334                 return -EIO;
1335
1336         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1337             driver->subtype == PTY_TYPE_MASTER) {
1338                 /*
1339                  * special case for PTY masters: only one open permitted,
1340                  * and the slave side open count is incremented as well.
1341                  */
1342                 if (tty->count)
1343                         return -EIO;
1344
1345                 tty->link->count++;
1346         }
1347         tty->count++;
1348
1349         mutex_lock(&tty->ldisc_mutex);
1350         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1351         mutex_unlock(&tty->ldisc_mutex);
1352
1353         return 0;
1354 }
1355
1356 /**
1357  *      tty_init_dev            -       initialise a tty device
1358  *      @driver: tty driver we are opening a device on
1359  *      @idx: device index
1360  *      @ret_tty: returned tty structure
1361  *
1362  *      Prepare a tty device. This may not be a "new" clean device but
1363  *      could also be an active device. The pty drivers require special
1364  *      handling because of this.
1365  *
1366  *      Locking:
1367  *              The function is called under the tty_mutex, which
1368  *      protects us from the tty struct or driver itself going away.
1369  *
1370  *      On exit the tty device has the line discipline attached and
1371  *      a reference count of 1. If a pair was created for pty/tty use
1372  *      and the other was a pty master then it too has a reference count of 1.
1373  *
1374  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1375  * failed open.  The new code protects the open with a mutex, so it's
1376  * really quite straightforward.  The mutex locking can probably be
1377  * relaxed for the (most common) case of reopening a tty.
1378  */
1379
1380 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1381 {
1382         struct tty_struct *tty;
1383         int retval;
1384
1385         /*
1386          * First time open is complex, especially for PTY devices.
1387          * This code guarantees that either everything succeeds and the
1388          * TTY is ready for operation, or else the table slots are vacated
1389          * and the allocated memory released.  (Except that the termios
1390          * and locked termios may be retained.)
1391          */
1392
1393         if (!try_module_get(driver->owner))
1394                 return ERR_PTR(-ENODEV);
1395
1396         tty = alloc_tty_struct();
1397         if (!tty) {
1398                 retval = -ENOMEM;
1399                 goto err_module_put;
1400         }
1401         initialize_tty_struct(tty, driver, idx);
1402
1403         tty_lock(tty);
1404         retval = tty_driver_install_tty(driver, tty);
1405         if (retval < 0)
1406                 goto err_deinit_tty;
1407
1408         if (!tty->port)
1409                 tty->port = driver->ports[idx];
1410
1411         WARN_RATELIMIT(!tty->port,
1412                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1413                         __func__, tty->driver->name);
1414
1415         tty->port->itty = tty;
1416
1417         /*
1418          * Structures all installed ... call the ldisc open routines.
1419          * If we fail here just call release_tty to clean up.  No need
1420          * to decrement the use counts, as release_tty doesn't care.
1421          */
1422         retval = tty_ldisc_setup(tty, tty->link);
1423         if (retval)
1424                 goto err_release_tty;
1425         /* Return the tty locked so that it cannot vanish under the caller */
1426         return tty;
1427
1428 err_deinit_tty:
1429         tty_unlock(tty);
1430         deinitialize_tty_struct(tty);
1431         free_tty_struct(tty);
1432 err_module_put:
1433         module_put(driver->owner);
1434         return ERR_PTR(retval);
1435
1436         /* call the tty release_tty routine to clean out this slot */
1437 err_release_tty:
1438         tty_unlock(tty);
1439         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1440                                  "clearing slot %d\n", idx);
1441         release_tty(tty, idx);
1442         return ERR_PTR(retval);
1443 }
1444
1445 void tty_free_termios(struct tty_struct *tty)
1446 {
1447         struct ktermios *tp;
1448         int idx = tty->index;
1449
1450         /* If the port is going to reset then it has no termios to save */
1451         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1452                 return;
1453
1454         /* Stash the termios data */
1455         tp = tty->driver->termios[idx];
1456         if (tp == NULL) {
1457                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1458                 if (tp == NULL) {
1459                         pr_warn("tty: no memory to save termios state.\n");
1460                         return;
1461                 }
1462                 tty->driver->termios[idx] = tp;
1463         }
1464         *tp = tty->termios;
1465 }
1466 EXPORT_SYMBOL(tty_free_termios);
1467
1468
1469 /**
1470  *      release_one_tty         -       release tty structure memory
1471  *      @kref: kref of tty we are obliterating
1472  *
1473  *      Releases memory associated with a tty structure, and clears out the
1474  *      driver table slots. This function is called when a device is no longer
1475  *      in use. It also gets called when setup of a device fails.
1476  *
1477  *      Locking:
1478  *              takes the file list lock internally when working on the list
1479  *      of ttys that the driver keeps.
1480  *
1481  *      This method gets called from a work queue so that the driver private
1482  *      cleanup ops can sleep (needed for USB at least)
1483  */
1484 static void release_one_tty(struct work_struct *work)
1485 {
1486         struct tty_struct *tty =
1487                 container_of(work, struct tty_struct, hangup_work);
1488         struct tty_driver *driver = tty->driver;
1489
1490         if (tty->ops->cleanup)
1491                 tty->ops->cleanup(tty);
1492
1493         tty->magic = 0;
1494         tty_driver_kref_put(driver);
1495         module_put(driver->owner);
1496
1497         spin_lock(&tty_files_lock);
1498         list_del_init(&tty->tty_files);
1499         spin_unlock(&tty_files_lock);
1500
1501         put_pid(tty->pgrp);
1502         put_pid(tty->session);
1503         free_tty_struct(tty);
1504 }
1505
1506 static void queue_release_one_tty(struct kref *kref)
1507 {
1508         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510         /* The hangup queue is now free so we can reuse it rather than
1511            waste a chunk of memory for each port */
1512         INIT_WORK(&tty->hangup_work, release_one_tty);
1513         schedule_work(&tty->hangup_work);
1514 }
1515
1516 /**
1517  *      tty_kref_put            -       release a tty kref
1518  *      @tty: tty device
1519  *
1520  *      Release a reference to a tty device and if need be let the kref
1521  *      layer destruct the object for us
1522  */
1523
1524 void tty_kref_put(struct tty_struct *tty)
1525 {
1526         if (tty)
1527                 kref_put(&tty->kref, queue_release_one_tty);
1528 }
1529 EXPORT_SYMBOL(tty_kref_put);
1530
1531 /**
1532  *      release_tty             -       release tty structure memory
1533  *
1534  *      Release both @tty and a possible linked partner (think pty pair),
1535  *      and decrement the refcount of the backing module.
1536  *
1537  *      Locking:
1538  *              tty_mutex
1539  *              takes the file list lock internally when working on the list
1540  *      of ttys that the driver keeps.
1541  *
1542  */
1543 static void release_tty(struct tty_struct *tty, int idx)
1544 {
1545         /* This should always be true but check for the moment */
1546         WARN_ON(tty->index != idx);
1547         WARN_ON(!mutex_is_locked(&tty_mutex));
1548         if (tty->ops->shutdown)
1549                 tty->ops->shutdown(tty);
1550         tty_free_termios(tty);
1551         tty_driver_remove_tty(tty->driver, tty);
1552         tty->port->itty = NULL;
1553
1554         if (tty->link)
1555                 tty_kref_put(tty->link);
1556         tty_kref_put(tty);
1557 }
1558
1559 /**
1560  *      tty_release_checks - check a tty before real release
1561  *      @tty: tty to check
1562  *      @o_tty: link of @tty (if any)
1563  *      @idx: index of the tty
1564  *
1565  *      Performs some paranoid checking before true release of the @tty.
1566  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1567  */
1568 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1569                 int idx)
1570 {
1571 #ifdef TTY_PARANOIA_CHECK
1572         if (idx < 0 || idx >= tty->driver->num) {
1573                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1574                                 __func__, tty->name);
1575                 return -1;
1576         }
1577
1578         /* not much to check for devpts */
1579         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1580                 return 0;
1581
1582         if (tty != tty->driver->ttys[idx]) {
1583                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1584                                 __func__, idx, tty->name);
1585                 return -1;
1586         }
1587         if (tty->driver->other) {
1588                 if (o_tty != tty->driver->other->ttys[idx]) {
1589                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1590                                         __func__, idx, tty->name);
1591                         return -1;
1592                 }
1593                 if (o_tty->link != tty) {
1594                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1595                         return -1;
1596                 }
1597         }
1598 #endif
1599         return 0;
1600 }
1601
1602 /**
1603  *      tty_release             -       vfs callback for close
1604  *      @inode: inode of tty
1605  *      @filp: file pointer for handle to tty
1606  *
1607  *      Called the last time each file handle is closed that references
1608  *      this tty. There may however be several such references.
1609  *
1610  *      Locking:
1611  *              Takes bkl. See tty_release_dev
1612  *
1613  * Even releasing the tty structures is a tricky business.. We have
1614  * to be very careful that the structures are all released at the
1615  * same time, as interrupts might otherwise get the wrong pointers.
1616  *
1617  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1618  * lead to double frees or releasing memory still in use.
1619  */
1620
1621 int tty_release(struct inode *inode, struct file *filp)
1622 {
1623         struct tty_struct *tty = file_tty(filp);
1624         struct tty_struct *o_tty;
1625         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1626         int     idx;
1627         char    buf[64];
1628
1629         if (tty_paranoia_check(tty, inode, __func__))
1630                 return 0;
1631
1632         tty_lock(tty);
1633         check_tty_count(tty, __func__);
1634
1635         __tty_fasync(-1, filp, 0);
1636
1637         idx = tty->index;
1638         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1639                       tty->driver->subtype == PTY_TYPE_MASTER);
1640         /* Review: parallel close */
1641         o_tty = tty->link;
1642
1643         if (tty_release_checks(tty, o_tty, idx)) {
1644                 tty_unlock(tty);
1645                 return 0;
1646         }
1647
1648 #ifdef TTY_DEBUG_HANGUP
1649         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1650                         tty_name(tty, buf), tty->count);
1651 #endif
1652
1653         if (tty->ops->close)
1654                 tty->ops->close(tty, filp);
1655
1656         tty_unlock(tty);
1657         /*
1658          * Sanity check: if tty->count is going to zero, there shouldn't be
1659          * any waiters on tty->read_wait or tty->write_wait.  We test the
1660          * wait queues and kick everyone out _before_ actually starting to
1661          * close.  This ensures that we won't block while releasing the tty
1662          * structure.
1663          *
1664          * The test for the o_tty closing is necessary, since the master and
1665          * slave sides may close in any order.  If the slave side closes out
1666          * first, its count will be one, since the master side holds an open.
1667          * Thus this test wouldn't be triggered at the time the slave closes,
1668          * so we do it now.
1669          *
1670          * Note that it's possible for the tty to be opened again while we're
1671          * flushing out waiters.  By recalculating the closing flags before
1672          * each iteration we avoid any problems.
1673          */
1674         while (1) {
1675                 /* Guard against races with tty->count changes elsewhere and
1676                    opens on /dev/tty */
1677
1678                 mutex_lock(&tty_mutex);
1679                 tty_lock_pair(tty, o_tty);
1680                 tty_closing = tty->count <= 1;
1681                 o_tty_closing = o_tty &&
1682                         (o_tty->count <= (pty_master ? 1 : 0));
1683                 do_sleep = 0;
1684
1685                 if (tty_closing) {
1686                         if (waitqueue_active(&tty->read_wait)) {
1687                                 wake_up_poll(&tty->read_wait, POLLIN);
1688                                 do_sleep++;
1689                         }
1690                         if (waitqueue_active(&tty->write_wait)) {
1691                                 wake_up_poll(&tty->write_wait, POLLOUT);
1692                                 do_sleep++;
1693                         }
1694                 }
1695                 if (o_tty_closing) {
1696                         if (waitqueue_active(&o_tty->read_wait)) {
1697                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1698                                 do_sleep++;
1699                         }
1700                         if (waitqueue_active(&o_tty->write_wait)) {
1701                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1702                                 do_sleep++;
1703                         }
1704                 }
1705                 if (!do_sleep)
1706                         break;
1707
1708                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1709                                 __func__, tty_name(tty, buf));
1710                 tty_unlock_pair(tty, o_tty);
1711                 mutex_unlock(&tty_mutex);
1712                 schedule();
1713         }
1714
1715         /*
1716          * The closing flags are now consistent with the open counts on
1717          * both sides, and we've completed the last operation that could
1718          * block, so it's safe to proceed with closing.
1719          *
1720          * We must *not* drop the tty_mutex until we ensure that a further
1721          * entry into tty_open can not pick up this tty.
1722          */
1723         if (pty_master) {
1724                 if (--o_tty->count < 0) {
1725                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1726                                 __func__, o_tty->count, tty_name(o_tty, buf));
1727                         o_tty->count = 0;
1728                 }
1729         }
1730         if (--tty->count < 0) {
1731                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1732                                 __func__, tty->count, tty_name(tty, buf));
1733                 tty->count = 0;
1734         }
1735
1736         /*
1737          * We've decremented tty->count, so we need to remove this file
1738          * descriptor off the tty->tty_files list; this serves two
1739          * purposes:
1740          *  - check_tty_count sees the correct number of file descriptors
1741          *    associated with this tty.
1742          *  - do_tty_hangup no longer sees this file descriptor as
1743          *    something that needs to be handled for hangups.
1744          */
1745         tty_del_file(filp);
1746
1747         /*
1748          * Perform some housekeeping before deciding whether to return.
1749          *
1750          * Set the TTY_CLOSING flag if this was the last open.  In the
1751          * case of a pty we may have to wait around for the other side
1752          * to close, and TTY_CLOSING makes sure we can't be reopened.
1753          */
1754         if (tty_closing)
1755                 set_bit(TTY_CLOSING, &tty->flags);
1756         if (o_tty_closing)
1757                 set_bit(TTY_CLOSING, &o_tty->flags);
1758
1759         /*
1760          * If _either_ side is closing, make sure there aren't any
1761          * processes that still think tty or o_tty is their controlling
1762          * tty.
1763          */
1764         if (tty_closing || o_tty_closing) {
1765                 read_lock(&tasklist_lock);
1766                 session_clear_tty(tty->session);
1767                 if (o_tty)
1768                         session_clear_tty(o_tty->session);
1769                 read_unlock(&tasklist_lock);
1770         }
1771
1772         mutex_unlock(&tty_mutex);
1773         tty_unlock_pair(tty, o_tty);
1774         /* At this point the TTY_CLOSING flag should ensure a dead tty
1775            cannot be re-opened by a racing opener */
1776
1777         /* check whether both sides are closing ... */
1778         if (!tty_closing || (o_tty && !o_tty_closing))
1779                 return 0;
1780
1781 #ifdef TTY_DEBUG_HANGUP
1782         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1783 #endif
1784         /*
1785          * Ask the line discipline code to release its structures
1786          */
1787         tty_ldisc_release(tty, o_tty);
1788         /*
1789          * The release_tty function takes care of the details of clearing
1790          * the slots and preserving the termios structure. The tty_unlock_pair
1791          * should be safe as we keep a kref while the tty is locked (so the
1792          * unlock never unlocks a freed tty).
1793          */
1794         mutex_lock(&tty_mutex);
1795         release_tty(tty, idx);
1796         mutex_unlock(&tty_mutex);
1797
1798         return 0;
1799 }
1800
1801 /**
1802  *      tty_open_current_tty - get tty of current task for open
1803  *      @device: device number
1804  *      @filp: file pointer to tty
1805  *      @return: tty of the current task iff @device is /dev/tty
1806  *
1807  *      We cannot return driver and index like for the other nodes because
1808  *      devpts will not work then. It expects inodes to be from devpts FS.
1809  *
1810  *      We need to move to returning a refcounted object from all the lookup
1811  *      paths including this one.
1812  */
1813 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1814 {
1815         struct tty_struct *tty;
1816
1817         if (device != MKDEV(TTYAUX_MAJOR, 0))
1818                 return NULL;
1819
1820         tty = get_current_tty();
1821         if (!tty)
1822                 return ERR_PTR(-ENXIO);
1823
1824         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1825         /* noctty = 1; */
1826         tty_kref_put(tty);
1827         /* FIXME: we put a reference and return a TTY! */
1828         /* This is only safe because the caller holds tty_mutex */
1829         return tty;
1830 }
1831
1832 /**
1833  *      tty_lookup_driver - lookup a tty driver for a given device file
1834  *      @device: device number
1835  *      @filp: file pointer to tty
1836  *      @noctty: set if the device should not become a controlling tty
1837  *      @index: index for the device in the @return driver
1838  *      @return: driver for this inode (with increased refcount)
1839  *
1840  *      If @return is not erroneous, the caller is responsible to decrement the
1841  *      refcount by tty_driver_kref_put.
1842  *
1843  *      Locking: tty_mutex protects get_tty_driver
1844  */
1845 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1846                 int *noctty, int *index)
1847 {
1848         struct tty_driver *driver;
1849
1850         switch (device) {
1851 #ifdef CONFIG_VT
1852         case MKDEV(TTY_MAJOR, 0): {
1853                 extern struct tty_driver *console_driver;
1854                 driver = tty_driver_kref_get(console_driver);
1855                 *index = fg_console;
1856                 *noctty = 1;
1857                 break;
1858         }
1859 #endif
1860         case MKDEV(TTYAUX_MAJOR, 1): {
1861                 struct tty_driver *console_driver = console_device(index);
1862                 if (console_driver) {
1863                         driver = tty_driver_kref_get(console_driver);
1864                         if (driver) {
1865                                 /* Don't let /dev/console block */
1866                                 filp->f_flags |= O_NONBLOCK;
1867                                 *noctty = 1;
1868                                 break;
1869                         }
1870                 }
1871                 return ERR_PTR(-ENODEV);
1872         }
1873         default:
1874                 driver = get_tty_driver(device, index);
1875                 if (!driver)
1876                         return ERR_PTR(-ENODEV);
1877                 break;
1878         }
1879         return driver;
1880 }
1881
1882 /**
1883  *      tty_open                -       open a tty device
1884  *      @inode: inode of device file
1885  *      @filp: file pointer to tty
1886  *
1887  *      tty_open and tty_release keep up the tty count that contains the
1888  *      number of opens done on a tty. We cannot use the inode-count, as
1889  *      different inodes might point to the same tty.
1890  *
1891  *      Open-counting is needed for pty masters, as well as for keeping
1892  *      track of serial lines: DTR is dropped when the last close happens.
1893  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1894  *
1895  *      The termios state of a pty is reset on first open so that
1896  *      settings don't persist across reuse.
1897  *
1898  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1899  *               tty->count should protect the rest.
1900  *               ->siglock protects ->signal/->sighand
1901  *
1902  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1903  *      tty_mutex
1904  */
1905
1906 static int tty_open(struct inode *inode, struct file *filp)
1907 {
1908         struct tty_struct *tty;
1909         int noctty, retval;
1910         struct tty_driver *driver = NULL;
1911         int index;
1912         dev_t device = inode->i_rdev;
1913         unsigned saved_flags = filp->f_flags;
1914
1915         nonseekable_open(inode, filp);
1916
1917 retry_open:
1918         retval = tty_alloc_file(filp);
1919         if (retval)
1920                 return -ENOMEM;
1921
1922         noctty = filp->f_flags & O_NOCTTY;
1923         index  = -1;
1924         retval = 0;
1925
1926         mutex_lock(&tty_mutex);
1927         /* This is protected by the tty_mutex */
1928         tty = tty_open_current_tty(device, filp);
1929         if (IS_ERR(tty)) {
1930                 retval = PTR_ERR(tty);
1931                 goto err_unlock;
1932         } else if (!tty) {
1933                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1934                 if (IS_ERR(driver)) {
1935                         retval = PTR_ERR(driver);
1936                         goto err_unlock;
1937                 }
1938
1939                 /* check whether we're reopening an existing tty */
1940                 tty = tty_driver_lookup_tty(driver, inode, index);
1941                 if (IS_ERR(tty)) {
1942                         retval = PTR_ERR(tty);
1943                         goto err_unlock;
1944                 }
1945         }
1946
1947         if (tty) {
1948                 tty_lock(tty);
1949                 retval = tty_reopen(tty);
1950                 if (retval < 0) {
1951                         tty_unlock(tty);
1952                         tty = ERR_PTR(retval);
1953                 }
1954         } else  /* Returns with the tty_lock held for now */
1955                 tty = tty_init_dev(driver, index);
1956
1957         mutex_unlock(&tty_mutex);
1958         if (driver)
1959                 tty_driver_kref_put(driver);
1960         if (IS_ERR(tty)) {
1961                 retval = PTR_ERR(tty);
1962                 goto err_file;
1963         }
1964
1965         tty_add_file(tty, filp);
1966
1967         check_tty_count(tty, __func__);
1968         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1969             tty->driver->subtype == PTY_TYPE_MASTER)
1970                 noctty = 1;
1971 #ifdef TTY_DEBUG_HANGUP
1972         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1973 #endif
1974         if (tty->ops->open)
1975                 retval = tty->ops->open(tty, filp);
1976         else
1977                 retval = -ENODEV;
1978         filp->f_flags = saved_flags;
1979
1980         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1981                                                 !capable(CAP_SYS_ADMIN))
1982                 retval = -EBUSY;
1983
1984         if (retval) {
1985 #ifdef TTY_DEBUG_HANGUP
1986                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1987                                 retval, tty->name);
1988 #endif
1989                 tty_unlock(tty); /* need to call tty_release without BTM */
1990                 tty_release(inode, filp);
1991                 if (retval != -ERESTARTSYS)
1992                         return retval;
1993
1994                 if (signal_pending(current))
1995                         return retval;
1996
1997                 schedule();
1998                 /*
1999                  * Need to reset f_op in case a hangup happened.
2000                  */
2001                 if (filp->f_op == &hung_up_tty_fops)
2002                         filp->f_op = &tty_fops;
2003                 goto retry_open;
2004         }
2005         tty_unlock(tty);
2006
2007
2008         mutex_lock(&tty_mutex);
2009         tty_lock(tty);
2010         spin_lock_irq(&current->sighand->siglock);
2011         if (!noctty &&
2012             current->signal->leader &&
2013             !current->signal->tty &&
2014             tty->session == NULL)
2015                 __proc_set_tty(current, tty);
2016         spin_unlock_irq(&current->sighand->siglock);
2017         tty_unlock(tty);
2018         mutex_unlock(&tty_mutex);
2019         return 0;
2020 err_unlock:
2021         mutex_unlock(&tty_mutex);
2022         /* after locks to avoid deadlock */
2023         if (!IS_ERR_OR_NULL(driver))
2024                 tty_driver_kref_put(driver);
2025 err_file:
2026         tty_free_file(filp);
2027         return retval;
2028 }
2029
2030
2031
2032 /**
2033  *      tty_poll        -       check tty status
2034  *      @filp: file being polled
2035  *      @wait: poll wait structures to update
2036  *
2037  *      Call the line discipline polling method to obtain the poll
2038  *      status of the device.
2039  *
2040  *      Locking: locks called line discipline but ldisc poll method
2041  *      may be re-entered freely by other callers.
2042  */
2043
2044 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2045 {
2046         struct tty_struct *tty = file_tty(filp);
2047         struct tty_ldisc *ld;
2048         int ret = 0;
2049
2050         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2051                 return 0;
2052
2053         ld = tty_ldisc_ref_wait(tty);
2054         if (ld->ops->poll)
2055                 ret = (ld->ops->poll)(tty, filp, wait);
2056         tty_ldisc_deref(ld);
2057         return ret;
2058 }
2059
2060 static int __tty_fasync(int fd, struct file *filp, int on)
2061 {
2062         struct tty_struct *tty = file_tty(filp);
2063         unsigned long flags;
2064         int retval = 0;
2065
2066         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2067                 goto out;
2068
2069         retval = fasync_helper(fd, filp, on, &tty->fasync);
2070         if (retval <= 0)
2071                 goto out;
2072
2073         if (on) {
2074                 enum pid_type type;
2075                 struct pid *pid;
2076                 if (!waitqueue_active(&tty->read_wait))
2077                         tty->minimum_to_wake = 1;
2078                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2079                 if (tty->pgrp) {
2080                         pid = tty->pgrp;
2081                         type = PIDTYPE_PGID;
2082                 } else {
2083                         pid = task_pid(current);
2084                         type = PIDTYPE_PID;
2085                 }
2086                 get_pid(pid);
2087                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2088                 retval = __f_setown(filp, pid, type, 0);
2089                 put_pid(pid);
2090                 if (retval)
2091                         goto out;
2092         } else {
2093                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2094                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2095         }
2096         retval = 0;
2097 out:
2098         return retval;
2099 }
2100
2101 static int tty_fasync(int fd, struct file *filp, int on)
2102 {
2103         struct tty_struct *tty = file_tty(filp);
2104         int retval;
2105
2106         tty_lock(tty);
2107         retval = __tty_fasync(fd, filp, on);
2108         tty_unlock(tty);
2109
2110         return retval;
2111 }
2112
2113 /**
2114  *      tiocsti                 -       fake input character
2115  *      @tty: tty to fake input into
2116  *      @p: pointer to character
2117  *
2118  *      Fake input to a tty device. Does the necessary locking and
2119  *      input management.
2120  *
2121  *      FIXME: does not honour flow control ??
2122  *
2123  *      Locking:
2124  *              Called functions take tty_ldisc_lock
2125  *              current->signal->tty check is safe without locks
2126  *
2127  *      FIXME: may race normal receive processing
2128  */
2129
2130 static int tiocsti(struct tty_struct *tty, char __user *p)
2131 {
2132         char ch, mbz = 0;
2133         struct tty_ldisc *ld;
2134
2135         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2136                 return -EPERM;
2137         if (get_user(ch, p))
2138                 return -EFAULT;
2139         tty_audit_tiocsti(tty, ch);
2140         ld = tty_ldisc_ref_wait(tty);
2141         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2142         tty_ldisc_deref(ld);
2143         return 0;
2144 }
2145
2146 /**
2147  *      tiocgwinsz              -       implement window query ioctl
2148  *      @tty; tty
2149  *      @arg: user buffer for result
2150  *
2151  *      Copies the kernel idea of the window size into the user buffer.
2152  *
2153  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2154  *              is consistent.
2155  */
2156
2157 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2158 {
2159         int err;
2160
2161         mutex_lock(&tty->termios_mutex);
2162         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2163         mutex_unlock(&tty->termios_mutex);
2164
2165         return err ? -EFAULT: 0;
2166 }
2167
2168 /**
2169  *      tty_do_resize           -       resize event
2170  *      @tty: tty being resized
2171  *      @rows: rows (character)
2172  *      @cols: cols (character)
2173  *
2174  *      Update the termios variables and send the necessary signals to
2175  *      peform a terminal resize correctly
2176  */
2177
2178 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2179 {
2180         struct pid *pgrp;
2181         unsigned long flags;
2182
2183         /* Lock the tty */
2184         mutex_lock(&tty->termios_mutex);
2185         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2186                 goto done;
2187         /* Get the PID values and reference them so we can
2188            avoid holding the tty ctrl lock while sending signals */
2189         spin_lock_irqsave(&tty->ctrl_lock, flags);
2190         pgrp = get_pid(tty->pgrp);
2191         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2192
2193         if (pgrp)
2194                 kill_pgrp(pgrp, SIGWINCH, 1);
2195         put_pid(pgrp);
2196
2197         tty->winsize = *ws;
2198 done:
2199         mutex_unlock(&tty->termios_mutex);
2200         return 0;
2201 }
2202
2203 /**
2204  *      tiocswinsz              -       implement window size set ioctl
2205  *      @tty; tty side of tty
2206  *      @arg: user buffer for result
2207  *
2208  *      Copies the user idea of the window size to the kernel. Traditionally
2209  *      this is just advisory information but for the Linux console it
2210  *      actually has driver level meaning and triggers a VC resize.
2211  *
2212  *      Locking:
2213  *              Driver dependent. The default do_resize method takes the
2214  *      tty termios mutex and ctrl_lock. The console takes its own lock
2215  *      then calls into the default method.
2216  */
2217
2218 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2219 {
2220         struct winsize tmp_ws;
2221         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2222                 return -EFAULT;
2223
2224         if (tty->ops->resize)
2225                 return tty->ops->resize(tty, &tmp_ws);
2226         else
2227                 return tty_do_resize(tty, &tmp_ws);
2228 }
2229
2230 /**
2231  *      tioccons        -       allow admin to move logical console
2232  *      @file: the file to become console
2233  *
2234  *      Allow the administrator to move the redirected console device
2235  *
2236  *      Locking: uses redirect_lock to guard the redirect information
2237  */
2238
2239 static int tioccons(struct file *file)
2240 {
2241         if (!capable(CAP_SYS_ADMIN))
2242                 return -EPERM;
2243         if (file->f_op->write == redirected_tty_write) {
2244                 struct file *f;
2245                 spin_lock(&redirect_lock);
2246                 f = redirect;
2247                 redirect = NULL;
2248                 spin_unlock(&redirect_lock);
2249                 if (f)
2250                         fput(f);
2251                 return 0;
2252         }
2253         spin_lock(&redirect_lock);
2254         if (redirect) {
2255                 spin_unlock(&redirect_lock);
2256                 return -EBUSY;
2257         }
2258         redirect = get_file(file);
2259         spin_unlock(&redirect_lock);
2260         return 0;
2261 }
2262
2263 /**
2264  *      fionbio         -       non blocking ioctl
2265  *      @file: file to set blocking value
2266  *      @p: user parameter
2267  *
2268  *      Historical tty interfaces had a blocking control ioctl before
2269  *      the generic functionality existed. This piece of history is preserved
2270  *      in the expected tty API of posix OS's.
2271  *
2272  *      Locking: none, the open file handle ensures it won't go away.
2273  */
2274
2275 static int fionbio(struct file *file, int __user *p)
2276 {
2277         int nonblock;
2278
2279         if (get_user(nonblock, p))
2280                 return -EFAULT;
2281
2282         spin_lock(&file->f_lock);
2283         if (nonblock)
2284                 file->f_flags |= O_NONBLOCK;
2285         else
2286                 file->f_flags &= ~O_NONBLOCK;
2287         spin_unlock(&file->f_lock);
2288         return 0;
2289 }
2290
2291 /**
2292  *      tiocsctty       -       set controlling tty
2293  *      @tty: tty structure
2294  *      @arg: user argument
2295  *
2296  *      This ioctl is used to manage job control. It permits a session
2297  *      leader to set this tty as the controlling tty for the session.
2298  *
2299  *      Locking:
2300  *              Takes tty_mutex() to protect tty instance
2301  *              Takes tasklist_lock internally to walk sessions
2302  *              Takes ->siglock() when updating signal->tty
2303  */
2304
2305 static int tiocsctty(struct tty_struct *tty, int arg)
2306 {
2307         int ret = 0;
2308         if (current->signal->leader && (task_session(current) == tty->session))
2309                 return ret;
2310
2311         mutex_lock(&tty_mutex);
2312         /*
2313          * The process must be a session leader and
2314          * not have a controlling tty already.
2315          */
2316         if (!current->signal->leader || current->signal->tty) {
2317                 ret = -EPERM;
2318                 goto unlock;
2319         }
2320
2321         if (tty->session) {
2322                 /*
2323                  * This tty is already the controlling
2324                  * tty for another session group!
2325                  */
2326                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2327                         /*
2328                          * Steal it away
2329                          */
2330                         read_lock(&tasklist_lock);
2331                         session_clear_tty(tty->session);
2332                         read_unlock(&tasklist_lock);
2333                 } else {
2334                         ret = -EPERM;
2335                         goto unlock;
2336                 }
2337         }
2338         proc_set_tty(current, tty);
2339 unlock:
2340         mutex_unlock(&tty_mutex);
2341         return ret;
2342 }
2343
2344 /**
2345  *      tty_get_pgrp    -       return a ref counted pgrp pid
2346  *      @tty: tty to read
2347  *
2348  *      Returns a refcounted instance of the pid struct for the process
2349  *      group controlling the tty.
2350  */
2351
2352 struct pid *tty_get_pgrp(struct tty_struct *tty)
2353 {
2354         unsigned long flags;
2355         struct pid *pgrp;
2356
2357         spin_lock_irqsave(&tty->ctrl_lock, flags);
2358         pgrp = get_pid(tty->pgrp);
2359         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2360
2361         return pgrp;
2362 }
2363 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2364
2365 /**
2366  *      tiocgpgrp               -       get process group
2367  *      @tty: tty passed by user
2368  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2369  *      @p: returned pid
2370  *
2371  *      Obtain the process group of the tty. If there is no process group
2372  *      return an error.
2373  *
2374  *      Locking: none. Reference to current->signal->tty is safe.
2375  */
2376
2377 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2378 {
2379         struct pid *pid;
2380         int ret;
2381         /*
2382          * (tty == real_tty) is a cheap way of
2383          * testing if the tty is NOT a master pty.
2384          */
2385         if (tty == real_tty && current->signal->tty != real_tty)
2386                 return -ENOTTY;
2387         pid = tty_get_pgrp(real_tty);
2388         ret =  put_user(pid_vnr(pid), p);
2389         put_pid(pid);
2390         return ret;
2391 }
2392
2393 /**
2394  *      tiocspgrp               -       attempt to set process group
2395  *      @tty: tty passed by user
2396  *      @real_tty: tty side device matching tty passed by user
2397  *      @p: pid pointer
2398  *
2399  *      Set the process group of the tty to the session passed. Only
2400  *      permitted where the tty session is our session.
2401  *
2402  *      Locking: RCU, ctrl lock
2403  */
2404
2405 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2406 {
2407         struct pid *pgrp;
2408         pid_t pgrp_nr;
2409         int retval = tty_check_change(real_tty);
2410         unsigned long flags;
2411
2412         if (retval == -EIO)
2413                 return -ENOTTY;
2414         if (retval)
2415                 return retval;
2416         if (!current->signal->tty ||
2417             (current->signal->tty != real_tty) ||
2418             (real_tty->session != task_session(current)))
2419                 return -ENOTTY;
2420         if (get_user(pgrp_nr, p))
2421                 return -EFAULT;
2422         if (pgrp_nr < 0)
2423                 return -EINVAL;
2424         rcu_read_lock();
2425         pgrp = find_vpid(pgrp_nr);
2426         retval = -ESRCH;
2427         if (!pgrp)
2428                 goto out_unlock;
2429         retval = -EPERM;
2430         if (session_of_pgrp(pgrp) != task_session(current))
2431                 goto out_unlock;
2432         retval = 0;
2433         spin_lock_irqsave(&tty->ctrl_lock, flags);
2434         put_pid(real_tty->pgrp);
2435         real_tty->pgrp = get_pid(pgrp);
2436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2437 out_unlock:
2438         rcu_read_unlock();
2439         return retval;
2440 }
2441
2442 /**
2443  *      tiocgsid                -       get session id
2444  *      @tty: tty passed by user
2445  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2446  *      @p: pointer to returned session id
2447  *
2448  *      Obtain the session id of the tty. If there is no session
2449  *      return an error.
2450  *
2451  *      Locking: none. Reference to current->signal->tty is safe.
2452  */
2453
2454 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2455 {
2456         /*
2457          * (tty == real_tty) is a cheap way of
2458          * testing if the tty is NOT a master pty.
2459         */
2460         if (tty == real_tty && current->signal->tty != real_tty)
2461                 return -ENOTTY;
2462         if (!real_tty->session)
2463                 return -ENOTTY;
2464         return put_user(pid_vnr(real_tty->session), p);
2465 }
2466
2467 /**
2468  *      tiocsetd        -       set line discipline
2469  *      @tty: tty device
2470  *      @p: pointer to user data
2471  *
2472  *      Set the line discipline according to user request.
2473  *
2474  *      Locking: see tty_set_ldisc, this function is just a helper
2475  */
2476
2477 static int tiocsetd(struct tty_struct *tty, int __user *p)
2478 {
2479         int ldisc;
2480         int ret;
2481
2482         if (get_user(ldisc, p))
2483                 return -EFAULT;
2484
2485         ret = tty_set_ldisc(tty, ldisc);
2486
2487         return ret;
2488 }
2489
2490 /**
2491  *      send_break      -       performed time break
2492  *      @tty: device to break on
2493  *      @duration: timeout in mS
2494  *
2495  *      Perform a timed break on hardware that lacks its own driver level
2496  *      timed break functionality.
2497  *
2498  *      Locking:
2499  *              atomic_write_lock serializes
2500  *
2501  */
2502
2503 static int send_break(struct tty_struct *tty, unsigned int duration)
2504 {
2505         int retval;
2506
2507         if (tty->ops->break_ctl == NULL)
2508                 return 0;
2509
2510         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2511                 retval = tty->ops->break_ctl(tty, duration);
2512         else {
2513                 /* Do the work ourselves */
2514                 if (tty_write_lock(tty, 0) < 0)
2515                         return -EINTR;
2516                 retval = tty->ops->break_ctl(tty, -1);
2517                 if (retval)
2518                         goto out;
2519                 if (!signal_pending(current))
2520                         msleep_interruptible(duration);
2521                 retval = tty->ops->break_ctl(tty, 0);
2522 out:
2523                 tty_write_unlock(tty);
2524                 if (signal_pending(current))
2525                         retval = -EINTR;
2526         }
2527         return retval;
2528 }
2529
2530 /**
2531  *      tty_tiocmget            -       get modem status
2532  *      @tty: tty device
2533  *      @file: user file pointer
2534  *      @p: pointer to result
2535  *
2536  *      Obtain the modem status bits from the tty driver if the feature
2537  *      is supported. Return -EINVAL if it is not available.
2538  *
2539  *      Locking: none (up to the driver)
2540  */
2541
2542 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2543 {
2544         int retval = -EINVAL;
2545
2546         if (tty->ops->tiocmget) {
2547                 retval = tty->ops->tiocmget(tty);
2548
2549                 if (retval >= 0)
2550                         retval = put_user(retval, p);
2551         }
2552         return retval;
2553 }
2554
2555 /**
2556  *      tty_tiocmset            -       set modem status
2557  *      @tty: tty device
2558  *      @cmd: command - clear bits, set bits or set all
2559  *      @p: pointer to desired bits
2560  *
2561  *      Set the modem status bits from the tty driver if the feature
2562  *      is supported. Return -EINVAL if it is not available.
2563  *
2564  *      Locking: none (up to the driver)
2565  */
2566
2567 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2568              unsigned __user *p)
2569 {
2570         int retval;
2571         unsigned int set, clear, val;
2572
2573         if (tty->ops->tiocmset == NULL)
2574                 return -EINVAL;
2575
2576         retval = get_user(val, p);
2577         if (retval)
2578                 return retval;
2579         set = clear = 0;
2580         switch (cmd) {
2581         case TIOCMBIS:
2582                 set = val;
2583                 break;
2584         case TIOCMBIC:
2585                 clear = val;
2586                 break;
2587         case TIOCMSET:
2588                 set = val;
2589                 clear = ~val;
2590                 break;
2591         }
2592         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2593         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2594         return tty->ops->tiocmset(tty, set, clear);
2595 }
2596
2597 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2598 {
2599         int retval = -EINVAL;
2600         struct serial_icounter_struct icount;
2601         memset(&icount, 0, sizeof(icount));
2602         if (tty->ops->get_icount)
2603                 retval = tty->ops->get_icount(tty, &icount);
2604         if (retval != 0)
2605                 return retval;
2606         if (copy_to_user(arg, &icount, sizeof(icount)))
2607                 return -EFAULT;
2608         return 0;
2609 }
2610
2611 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2612 {
2613         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2614             tty->driver->subtype == PTY_TYPE_MASTER)
2615                 tty = tty->link;
2616         return tty;
2617 }
2618 EXPORT_SYMBOL(tty_pair_get_tty);
2619
2620 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2621 {
2622         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2623             tty->driver->subtype == PTY_TYPE_MASTER)
2624             return tty;
2625         return tty->link;
2626 }
2627 EXPORT_SYMBOL(tty_pair_get_pty);
2628
2629 /*
2630  * Split this up, as gcc can choke on it otherwise..
2631  */
2632 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2633 {
2634         struct tty_struct *tty = file_tty(file);
2635         struct tty_struct *real_tty;
2636         void __user *p = (void __user *)arg;
2637         int retval;
2638         struct tty_ldisc *ld;
2639         struct inode *inode = file->f_dentry->d_inode;
2640
2641         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2642                 return -EINVAL;
2643
2644         real_tty = tty_pair_get_tty(tty);
2645
2646         /*
2647          * Factor out some common prep work
2648          */
2649         switch (cmd) {
2650         case TIOCSETD:
2651         case TIOCSBRK:
2652         case TIOCCBRK:
2653         case TCSBRK:
2654         case TCSBRKP:
2655                 retval = tty_check_change(tty);
2656                 if (retval)
2657                         return retval;
2658                 if (cmd != TIOCCBRK) {
2659                         tty_wait_until_sent(tty, 0);
2660                         if (signal_pending(current))
2661                                 return -EINTR;
2662                 }
2663                 break;
2664         }
2665
2666         /*
2667          *      Now do the stuff.
2668          */
2669         switch (cmd) {
2670         case TIOCSTI:
2671                 return tiocsti(tty, p);
2672         case TIOCGWINSZ:
2673                 return tiocgwinsz(real_tty, p);
2674         case TIOCSWINSZ:
2675                 return tiocswinsz(real_tty, p);
2676         case TIOCCONS:
2677                 return real_tty != tty ? -EINVAL : tioccons(file);
2678         case FIONBIO:
2679                 return fionbio(file, p);
2680         case TIOCEXCL:
2681                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2682                 return 0;
2683         case TIOCNXCL:
2684                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2685                 return 0;
2686         case TIOCGEXCL:
2687         {
2688                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2689                 return put_user(excl, (int __user *)p);
2690         }
2691         case TIOCNOTTY:
2692                 if (current->signal->tty != tty)
2693                         return -ENOTTY;
2694                 no_tty();
2695                 return 0;
2696         case TIOCSCTTY:
2697                 return tiocsctty(tty, arg);
2698         case TIOCGPGRP:
2699                 return tiocgpgrp(tty, real_tty, p);
2700         case TIOCSPGRP:
2701                 return tiocspgrp(tty, real_tty, p);
2702         case TIOCGSID:
2703                 return tiocgsid(tty, real_tty, p);
2704         case TIOCGETD:
2705                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2706         case TIOCSETD:
2707                 return tiocsetd(tty, p);
2708         case TIOCVHANGUP:
2709                 if (!capable(CAP_SYS_ADMIN))
2710                         return -EPERM;
2711                 tty_vhangup(tty);
2712                 return 0;
2713         case TIOCGDEV:
2714         {
2715                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2716                 return put_user(ret, (unsigned int __user *)p);
2717         }
2718         /*
2719          * Break handling
2720          */
2721         case TIOCSBRK:  /* Turn break on, unconditionally */
2722                 if (tty->ops->break_ctl)
2723                         return tty->ops->break_ctl(tty, -1);
2724                 return 0;
2725         case TIOCCBRK:  /* Turn break off, unconditionally */
2726                 if (tty->ops->break_ctl)
2727                         return tty->ops->break_ctl(tty, 0);
2728                 return 0;
2729         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2730                 /* non-zero arg means wait for all output data
2731                  * to be sent (performed above) but don't send break.
2732                  * This is used by the tcdrain() termios function.
2733                  */
2734                 if (!arg)
2735                         return send_break(tty, 250);
2736                 return 0;
2737         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2738                 return send_break(tty, arg ? arg*100 : 250);
2739
2740         case TIOCMGET:
2741                 return tty_tiocmget(tty, p);
2742         case TIOCMSET:
2743         case TIOCMBIC:
2744         case TIOCMBIS:
2745                 return tty_tiocmset(tty, cmd, p);
2746         case TIOCGICOUNT:
2747                 retval = tty_tiocgicount(tty, p);
2748                 /* For the moment allow fall through to the old method */
2749                 if (retval != -EINVAL)
2750                         return retval;
2751                 break;
2752         case TCFLSH:
2753                 switch (arg) {
2754                 case TCIFLUSH:
2755                 case TCIOFLUSH:
2756                 /* flush tty buffer and allow ldisc to process ioctl */
2757                         tty_buffer_flush(tty);
2758                         break;
2759                 }
2760                 break;
2761         }
2762         if (tty->ops->ioctl) {
2763                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2764                 if (retval != -ENOIOCTLCMD)
2765                         return retval;
2766         }
2767         ld = tty_ldisc_ref_wait(tty);
2768         retval = -EINVAL;
2769         if (ld->ops->ioctl) {
2770                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2771                 if (retval == -ENOIOCTLCMD)
2772                         retval = -ENOTTY;
2773         }
2774         tty_ldisc_deref(ld);
2775         return retval;
2776 }
2777
2778 #ifdef CONFIG_COMPAT
2779 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2780                                 unsigned long arg)
2781 {
2782         struct inode *inode = file->f_dentry->d_inode;
2783         struct tty_struct *tty = file_tty(file);
2784         struct tty_ldisc *ld;
2785         int retval = -ENOIOCTLCMD;
2786
2787         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2788                 return -EINVAL;
2789
2790         if (tty->ops->compat_ioctl) {
2791                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2792                 if (retval != -ENOIOCTLCMD)
2793                         return retval;
2794         }
2795
2796         ld = tty_ldisc_ref_wait(tty);
2797         if (ld->ops->compat_ioctl)
2798                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2799         else
2800                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2801         tty_ldisc_deref(ld);
2802
2803         return retval;
2804 }
2805 #endif
2806
2807 static int this_tty(const void *t, struct file *file, unsigned fd)
2808 {
2809         if (likely(file->f_op->read != tty_read))
2810                 return 0;
2811         return file_tty(file) != t ? 0 : fd + 1;
2812 }
2813         
2814 /*
2815  * This implements the "Secure Attention Key" ---  the idea is to
2816  * prevent trojan horses by killing all processes associated with this
2817  * tty when the user hits the "Secure Attention Key".  Required for
2818  * super-paranoid applications --- see the Orange Book for more details.
2819  *
2820  * This code could be nicer; ideally it should send a HUP, wait a few
2821  * seconds, then send a INT, and then a KILL signal.  But you then
2822  * have to coordinate with the init process, since all processes associated
2823  * with the current tty must be dead before the new getty is allowed
2824  * to spawn.
2825  *
2826  * Now, if it would be correct ;-/ The current code has a nasty hole -
2827  * it doesn't catch files in flight. We may send the descriptor to ourselves
2828  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2829  *
2830  * Nasty bug: do_SAK is being called in interrupt context.  This can
2831  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2832  */
2833 void __do_SAK(struct tty_struct *tty)
2834 {
2835 #ifdef TTY_SOFT_SAK
2836         tty_hangup(tty);
2837 #else
2838         struct task_struct *g, *p;
2839         struct pid *session;
2840         int             i;
2841
2842         if (!tty)
2843                 return;
2844         session = tty->session;
2845
2846         tty_ldisc_flush(tty);
2847
2848         tty_driver_flush_buffer(tty);
2849
2850         read_lock(&tasklist_lock);
2851         /* Kill the entire session */
2852         do_each_pid_task(session, PIDTYPE_SID, p) {
2853                 printk(KERN_NOTICE "SAK: killed process %d"
2854                         " (%s): task_session(p)==tty->session\n",
2855                         task_pid_nr(p), p->comm);
2856                 send_sig(SIGKILL, p, 1);
2857         } while_each_pid_task(session, PIDTYPE_SID, p);
2858         /* Now kill any processes that happen to have the
2859          * tty open.
2860          */
2861         do_each_thread(g, p) {
2862                 if (p->signal->tty == tty) {
2863                         printk(KERN_NOTICE "SAK: killed process %d"
2864                             " (%s): task_session(p)==tty->session\n",
2865                             task_pid_nr(p), p->comm);
2866                         send_sig(SIGKILL, p, 1);
2867                         continue;
2868                 }
2869                 task_lock(p);
2870                 i = iterate_fd(p->files, 0, this_tty, tty);
2871                 if (i != 0) {
2872                         printk(KERN_NOTICE "SAK: killed process %d"
2873                             " (%s): fd#%d opened to the tty\n",
2874                                     task_pid_nr(p), p->comm, i - 1);
2875                         force_sig(SIGKILL, p);
2876                 }
2877                 task_unlock(p);
2878         } while_each_thread(g, p);
2879         read_unlock(&tasklist_lock);
2880 #endif
2881 }
2882
2883 static void do_SAK_work(struct work_struct *work)
2884 {
2885         struct tty_struct *tty =
2886                 container_of(work, struct tty_struct, SAK_work);
2887         __do_SAK(tty);
2888 }
2889
2890 /*
2891  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2892  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2893  * the values which we write to it will be identical to the values which it
2894  * already has. --akpm
2895  */
2896 void do_SAK(struct tty_struct *tty)
2897 {
2898         if (!tty)
2899                 return;
2900         schedule_work(&tty->SAK_work);
2901 }
2902
2903 EXPORT_SYMBOL(do_SAK);
2904
2905 static int dev_match_devt(struct device *dev, const void *data)
2906 {
2907         const dev_t *devt = data;
2908         return dev->devt == *devt;
2909 }
2910
2911 /* Must put_device() after it's unused! */
2912 static struct device *tty_get_device(struct tty_struct *tty)
2913 {
2914         dev_t devt = tty_devnum(tty);
2915         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2916 }
2917
2918
2919 /**
2920  *      initialize_tty_struct
2921  *      @tty: tty to initialize
2922  *
2923  *      This subroutine initializes a tty structure that has been newly
2924  *      allocated.
2925  *
2926  *      Locking: none - tty in question must not be exposed at this point
2927  */
2928
2929 void initialize_tty_struct(struct tty_struct *tty,
2930                 struct tty_driver *driver, int idx)
2931 {
2932         memset(tty, 0, sizeof(struct tty_struct));
2933         kref_init(&tty->kref);
2934         tty->magic = TTY_MAGIC;
2935         tty_ldisc_init(tty);
2936         tty->session = NULL;
2937         tty->pgrp = NULL;
2938         mutex_init(&tty->legacy_mutex);
2939         mutex_init(&tty->termios_mutex);
2940         mutex_init(&tty->ldisc_mutex);
2941         init_waitqueue_head(&tty->write_wait);
2942         init_waitqueue_head(&tty->read_wait);
2943         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2944         mutex_init(&tty->atomic_write_lock);
2945         spin_lock_init(&tty->ctrl_lock);
2946         INIT_LIST_HEAD(&tty->tty_files);
2947         INIT_WORK(&tty->SAK_work, do_SAK_work);
2948
2949         tty->driver = driver;
2950         tty->ops = driver->ops;
2951         tty->index = idx;
2952         tty_line_name(driver, idx, tty->name);
2953         tty->dev = tty_get_device(tty);
2954 }
2955
2956 /**
2957  *      deinitialize_tty_struct
2958  *      @tty: tty to deinitialize
2959  *
2960  *      This subroutine deinitializes a tty structure that has been newly
2961  *      allocated but tty_release cannot be called on that yet.
2962  *
2963  *      Locking: none - tty in question must not be exposed at this point
2964  */
2965 void deinitialize_tty_struct(struct tty_struct *tty)
2966 {
2967         tty_ldisc_deinit(tty);
2968 }
2969
2970 /**
2971  *      tty_put_char    -       write one character to a tty
2972  *      @tty: tty
2973  *      @ch: character
2974  *
2975  *      Write one byte to the tty using the provided put_char method
2976  *      if present. Returns the number of characters successfully output.
2977  *
2978  *      Note: the specific put_char operation in the driver layer may go
2979  *      away soon. Don't call it directly, use this method
2980  */
2981
2982 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2983 {
2984         if (tty->ops->put_char)
2985                 return tty->ops->put_char(tty, ch);
2986         return tty->ops->write(tty, &ch, 1);
2987 }
2988 EXPORT_SYMBOL_GPL(tty_put_char);
2989
2990 struct class *tty_class;
2991
2992 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2993                 unsigned int index, unsigned int count)
2994 {
2995         /* init here, since reused cdevs cause crashes */
2996         cdev_init(&driver->cdevs[index], &tty_fops);
2997         driver->cdevs[index].owner = driver->owner;
2998         return cdev_add(&driver->cdevs[index], dev, count);
2999 }
3000
3001 /**
3002  *      tty_register_device - register a tty device
3003  *      @driver: the tty driver that describes the tty device
3004  *      @index: the index in the tty driver for this tty device
3005  *      @device: a struct device that is associated with this tty device.
3006  *              This field is optional, if there is no known struct device
3007  *              for this tty device it can be set to NULL safely.
3008  *
3009  *      Returns a pointer to the struct device for this tty device
3010  *      (or ERR_PTR(-EFOO) on error).
3011  *
3012  *      This call is required to be made to register an individual tty device
3013  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3014  *      that bit is not set, this function should not be called by a tty
3015  *      driver.
3016  *
3017  *      Locking: ??
3018  */
3019
3020 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3021                                    struct device *device)
3022 {
3023         return tty_register_device_attr(driver, index, device, NULL, NULL);
3024 }
3025 EXPORT_SYMBOL(tty_register_device);
3026
3027 static void tty_device_create_release(struct device *dev)
3028 {
3029         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3030         kfree(dev);
3031 }
3032
3033 /**
3034  *      tty_register_device_attr - register a tty device
3035  *      @driver: the tty driver that describes the tty device
3036  *      @index: the index in the tty driver for this tty device
3037  *      @device: a struct device that is associated with this tty device.
3038  *              This field is optional, if there is no known struct device
3039  *              for this tty device it can be set to NULL safely.
3040  *      @drvdata: Driver data to be set to device.
3041  *      @attr_grp: Attribute group to be set on device.
3042  *
3043  *      Returns a pointer to the struct device for this tty device
3044  *      (or ERR_PTR(-EFOO) on error).
3045  *
3046  *      This call is required to be made to register an individual tty device
3047  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3048  *      that bit is not set, this function should not be called by a tty
3049  *      driver.
3050  *
3051  *      Locking: ??
3052  */
3053 struct device *tty_register_device_attr(struct tty_driver *driver,
3054                                    unsigned index, struct device *device,
3055                                    void *drvdata,
3056                                    const struct attribute_group **attr_grp)
3057 {
3058         char name[64];
3059         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3060         struct device *dev = NULL;
3061         int retval = -ENODEV;
3062         bool cdev = false;
3063
3064         if (index >= driver->num) {
3065                 printk(KERN_ERR "Attempt to register invalid tty line number "
3066                        " (%d).\n", index);
3067                 return ERR_PTR(-EINVAL);
3068         }
3069
3070         if (driver->type == TTY_DRIVER_TYPE_PTY)
3071                 pty_line_name(driver, index, name);
3072         else
3073                 tty_line_name(driver, index, name);
3074
3075         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3076                 retval = tty_cdev_add(driver, devt, index, 1);
3077                 if (retval)
3078                         goto error;
3079                 cdev = true;
3080         }
3081
3082         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3083         if (!dev) {
3084                 retval = -ENOMEM;
3085                 goto error;
3086         }
3087
3088         dev->devt = devt;
3089         dev->class = tty_class;
3090         dev->parent = device;
3091         dev->release = tty_device_create_release;
3092         dev_set_name(dev, "%s", name);
3093         dev->groups = attr_grp;
3094         dev_set_drvdata(dev, drvdata);
3095
3096         retval = device_register(dev);
3097         if (retval)
3098                 goto error;
3099
3100         return dev;
3101
3102 error:
3103         put_device(dev);
3104         if (cdev)
3105                 cdev_del(&driver->cdevs[index]);
3106         return ERR_PTR(retval);
3107 }
3108 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3109
3110 /**
3111  *      tty_unregister_device - unregister a tty device
3112  *      @driver: the tty driver that describes the tty device
3113  *      @index: the index in the tty driver for this tty device
3114  *
3115  *      If a tty device is registered with a call to tty_register_device() then
3116  *      this function must be called when the tty device is gone.
3117  *
3118  *      Locking: ??
3119  */
3120
3121 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3122 {
3123         device_destroy(tty_class,
3124                 MKDEV(driver->major, driver->minor_start) + index);
3125         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3126                 cdev_del(&driver->cdevs[index]);
3127 }
3128 EXPORT_SYMBOL(tty_unregister_device);
3129
3130 /**
3131  * __tty_alloc_driver -- allocate tty driver
3132  * @lines: count of lines this driver can handle at most
3133  * @owner: module which is repsonsible for this driver
3134  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3135  *
3136  * This should not be called directly, some of the provided macros should be
3137  * used instead. Use IS_ERR and friends on @retval.
3138  */
3139 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3140                 unsigned long flags)
3141 {
3142         struct tty_driver *driver;
3143         unsigned int cdevs = 1;
3144         int err;
3145
3146         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3147                 return ERR_PTR(-EINVAL);
3148
3149         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3150         if (!driver)
3151                 return ERR_PTR(-ENOMEM);
3152
3153         kref_init(&driver->kref);
3154         driver->magic = TTY_DRIVER_MAGIC;
3155         driver->num = lines;
3156         driver->owner = owner;
3157         driver->flags = flags;
3158
3159         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3160                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3161                                 GFP_KERNEL);
3162                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3163                                 GFP_KERNEL);
3164                 if (!driver->ttys || !driver->termios) {
3165                         err = -ENOMEM;
3166                         goto err_free_all;
3167                 }
3168         }
3169
3170         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3171                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3172                                 GFP_KERNEL);
3173                 if (!driver->ports) {
3174                         err = -ENOMEM;
3175                         goto err_free_all;
3176                 }
3177                 cdevs = lines;
3178         }
3179
3180         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3181         if (!driver->cdevs) {
3182                 err = -ENOMEM;
3183                 goto err_free_all;
3184         }
3185
3186         return driver;
3187 err_free_all:
3188         kfree(driver->ports);
3189         kfree(driver->ttys);
3190         kfree(driver->termios);
3191         kfree(driver);
3192         return ERR_PTR(err);
3193 }
3194 EXPORT_SYMBOL(__tty_alloc_driver);
3195
3196 static void destruct_tty_driver(struct kref *kref)
3197 {
3198         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3199         int i;
3200         struct ktermios *tp;
3201
3202         if (driver->flags & TTY_DRIVER_INSTALLED) {
3203                 /*
3204                  * Free the termios and termios_locked structures because
3205                  * we don't want to get memory leaks when modular tty
3206                  * drivers are removed from the kernel.
3207                  */
3208                 for (i = 0; i < driver->num; i++) {
3209                         tp = driver->termios[i];
3210                         if (tp) {
3211                                 driver->termios[i] = NULL;
3212                                 kfree(tp);
3213                         }
3214                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3215                                 tty_unregister_device(driver, i);
3216                 }
3217                 proc_tty_unregister_driver(driver);
3218                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3219                         cdev_del(&driver->cdevs[0]);
3220         }
3221         kfree(driver->cdevs);
3222         kfree(driver->ports);
3223         kfree(driver->termios);
3224         kfree(driver->ttys);
3225         kfree(driver);
3226 }
3227
3228 void tty_driver_kref_put(struct tty_driver *driver)
3229 {
3230         kref_put(&driver->kref, destruct_tty_driver);
3231 }
3232 EXPORT_SYMBOL(tty_driver_kref_put);
3233
3234 void tty_set_operations(struct tty_driver *driver,
3235                         const struct tty_operations *op)
3236 {
3237         driver->ops = op;
3238 };
3239 EXPORT_SYMBOL(tty_set_operations);
3240
3241 void put_tty_driver(struct tty_driver *d)
3242 {
3243         tty_driver_kref_put(d);
3244 }
3245 EXPORT_SYMBOL(put_tty_driver);
3246
3247 /*
3248  * Called by a tty driver to register itself.
3249  */
3250 int tty_register_driver(struct tty_driver *driver)
3251 {
3252         int error;
3253         int i;
3254         dev_t dev;
3255         struct device *d;
3256
3257         if (!driver->major) {
3258                 error = alloc_chrdev_region(&dev, driver->minor_start,
3259                                                 driver->num, driver->name);
3260                 if (!error) {
3261                         driver->major = MAJOR(dev);
3262                         driver->minor_start = MINOR(dev);
3263                 }
3264         } else {
3265                 dev = MKDEV(driver->major, driver->minor_start);
3266                 error = register_chrdev_region(dev, driver->num, driver->name);
3267         }
3268         if (error < 0)
3269                 goto err;
3270
3271         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3272                 error = tty_cdev_add(driver, dev, 0, driver->num);
3273                 if (error)
3274                         goto err_unreg_char;
3275         }
3276
3277         mutex_lock(&tty_mutex);
3278         list_add(&driver->tty_drivers, &tty_drivers);
3279         mutex_unlock(&tty_mutex);
3280
3281         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3282                 for (i = 0; i < driver->num; i++) {
3283                         d = tty_register_device(driver, i, NULL);
3284                         if (IS_ERR(d)) {
3285                                 error = PTR_ERR(d);
3286                                 goto err_unreg_devs;
3287                         }
3288                 }
3289         }
3290         proc_tty_register_driver(driver);
3291         driver->flags |= TTY_DRIVER_INSTALLED;
3292         return 0;
3293
3294 err_unreg_devs:
3295         for (i--; i >= 0; i--)
3296                 tty_unregister_device(driver, i);
3297
3298         mutex_lock(&tty_mutex);
3299         list_del(&driver->tty_drivers);
3300         mutex_unlock(&tty_mutex);
3301
3302 err_unreg_char:
3303         unregister_chrdev_region(dev, driver->num);
3304 err:
3305         return error;
3306 }
3307 EXPORT_SYMBOL(tty_register_driver);
3308
3309 /*
3310  * Called by a tty driver to unregister itself.
3311  */
3312 int tty_unregister_driver(struct tty_driver *driver)
3313 {
3314 #if 0
3315         /* FIXME */
3316         if (driver->refcount)
3317                 return -EBUSY;
3318 #endif
3319         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3320                                 driver->num);
3321         mutex_lock(&tty_mutex);
3322         list_del(&driver->tty_drivers);
3323         mutex_unlock(&tty_mutex);
3324         return 0;
3325 }
3326
3327 EXPORT_SYMBOL(tty_unregister_driver);
3328
3329 dev_t tty_devnum(struct tty_struct *tty)
3330 {
3331         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3332 }
3333 EXPORT_SYMBOL(tty_devnum);
3334
3335 void proc_clear_tty(struct task_struct *p)
3336 {
3337         unsigned long flags;
3338         struct tty_struct *tty;
3339         spin_lock_irqsave(&p->sighand->siglock, flags);
3340         tty = p->signal->tty;
3341         p->signal->tty = NULL;
3342         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3343         tty_kref_put(tty);
3344 }
3345
3346 /* Called under the sighand lock */
3347
3348 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3349 {
3350         if (tty) {
3351                 unsigned long flags;
3352                 /* We should not have a session or pgrp to put here but.... */
3353                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3354                 put_pid(tty->session);
3355                 put_pid(tty->pgrp);
3356                 tty->pgrp = get_pid(task_pgrp(tsk));
3357                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3358                 tty->session = get_pid(task_session(tsk));
3359                 if (tsk->signal->tty) {
3360                         printk(KERN_DEBUG "tty not NULL!!\n");
3361                         tty_kref_put(tsk->signal->tty);
3362                 }
3363         }
3364         put_pid(tsk->signal->tty_old_pgrp);
3365         tsk->signal->tty = tty_kref_get(tty);
3366         tsk->signal->tty_old_pgrp = NULL;
3367 }
3368
3369 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3370 {
3371         spin_lock_irq(&tsk->sighand->siglock);
3372         __proc_set_tty(tsk, tty);
3373         spin_unlock_irq(&tsk->sighand->siglock);
3374 }
3375
3376 struct tty_struct *get_current_tty(void)
3377 {
3378         struct tty_struct *tty;
3379         unsigned long flags;
3380
3381         spin_lock_irqsave(&current->sighand->siglock, flags);
3382         tty = tty_kref_get(current->signal->tty);
3383         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3384         return tty;
3385 }
3386 EXPORT_SYMBOL_GPL(get_current_tty);
3387
3388 void tty_default_fops(struct file_operations *fops)
3389 {
3390         *fops = tty_fops;
3391 }
3392
3393 /*
3394  * Initialize the console device. This is called *early*, so
3395  * we can't necessarily depend on lots of kernel help here.
3396  * Just do some early initializations, and do the complex setup
3397  * later.
3398  */
3399 void __init console_init(void)
3400 {
3401         initcall_t *call;
3402
3403         /* Setup the default TTY line discipline. */
3404         tty_ldisc_begin();
3405
3406         /*
3407          * set up the console device so that later boot sequences can
3408          * inform about problems etc..
3409          */
3410         call = __con_initcall_start;
3411         while (call < __con_initcall_end) {
3412                 (*call)();
3413                 call++;
3414         }
3415 }
3416
3417 static char *tty_devnode(struct device *dev, umode_t *mode)
3418 {
3419         if (!mode)
3420                 return NULL;
3421         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3422             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3423                 *mode = 0666;
3424         return NULL;
3425 }
3426
3427 static int __init tty_class_init(void)
3428 {
3429         tty_class = class_create(THIS_MODULE, "tty");
3430         if (IS_ERR(tty_class))
3431                 return PTR_ERR(tty_class);
3432         tty_class->devnode = tty_devnode;
3433         return 0;
3434 }
3435
3436 postcore_initcall(tty_class_init);
3437
3438 /* 3/2004 jmc: why do these devices exist? */
3439 static struct cdev tty_cdev, console_cdev;
3440
3441 static ssize_t show_cons_active(struct device *dev,
3442                                 struct device_attribute *attr, char *buf)
3443 {
3444         struct console *cs[16];
3445         int i = 0;
3446         struct console *c;
3447         ssize_t count = 0;
3448
3449         console_lock();
3450         for_each_console(c) {
3451                 if (!c->device)
3452                         continue;
3453                 if (!c->write)
3454                         continue;
3455                 if ((c->flags & CON_ENABLED) == 0)
3456                         continue;
3457                 cs[i++] = c;
3458                 if (i >= ARRAY_SIZE(cs))
3459                         break;
3460         }
3461         while (i--)
3462                 count += sprintf(buf + count, "%s%d%c",
3463                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3464         console_unlock();
3465
3466         return count;
3467 }
3468 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3469
3470 static struct device *consdev;
3471
3472 void console_sysfs_notify(void)
3473 {
3474         if (consdev)
3475                 sysfs_notify(&consdev->kobj, NULL, "active");
3476 }
3477
3478 /*
3479  * Ok, now we can initialize the rest of the tty devices and can count
3480  * on memory allocations, interrupts etc..
3481  */
3482 int __init tty_init(void)
3483 {
3484         cdev_init(&tty_cdev, &tty_fops);
3485         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3486             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3487                 panic("Couldn't register /dev/tty driver\n");
3488         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3489
3490         cdev_init(&console_cdev, &console_fops);
3491         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3492             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3493                 panic("Couldn't register /dev/console driver\n");
3494         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3495                               "console");
3496         if (IS_ERR(consdev))
3497                 consdev = NULL;
3498         else
3499                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3500
3501 #ifdef CONFIG_VT
3502         vty_init(&console_fops);
3503 #endif
3504         return 0;
3505 }
3506