]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/core/hcd.c
2c56252b9ff8e1f3bd6a0487761830d96507cbb7
[karo-tx-linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/usb.h>
46 #include <linux/usb/hcd.h>
47 #include <linux/usb/phy.h>
48
49 #include "usb.h"
50
51
52 /*-------------------------------------------------------------------------*/
53
54 /*
55  * USB Host Controller Driver framework
56  *
57  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
58  * HCD-specific behaviors/bugs.
59  *
60  * This does error checks, tracks devices and urbs, and delegates to a
61  * "hc_driver" only for code (and data) that really needs to know about
62  * hardware differences.  That includes root hub registers, i/o queues,
63  * and so on ... but as little else as possible.
64  *
65  * Shared code includes most of the "root hub" code (these are emulated,
66  * though each HC's hardware works differently) and PCI glue, plus request
67  * tracking overhead.  The HCD code should only block on spinlocks or on
68  * hardware handshaking; blocking on software events (such as other kernel
69  * threads releasing resources, or completing actions) is all generic.
70  *
71  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
72  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
73  * only by the hub driver ... and that neither should be seen or used by
74  * usb client device drivers.
75  *
76  * Contributors of ideas or unattributed patches include: David Brownell,
77  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
78  *
79  * HISTORY:
80  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
81  *              associated cleanup.  "usb_hcd" still != "usb_bus".
82  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
83  */
84
85 /*-------------------------------------------------------------------------*/
86
87 /* Keep track of which host controller drivers are loaded */
88 unsigned long usb_hcds_loaded;
89 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
90
91 /* host controllers we manage */
92 LIST_HEAD (usb_bus_list);
93 EXPORT_SYMBOL_GPL (usb_bus_list);
94
95 /* used when allocating bus numbers */
96 #define USB_MAXBUS              64
97 static DECLARE_BITMAP(busmap, USB_MAXBUS);
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
152 static const u8 usb25_rh_dev_descriptor[18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* usb 2.0 root hub device descriptor */
173 static const u8 usb2_rh_dev_descriptor[18] = {
174         0x12,       /*  __u8  bLength; */
175         0x01,       /*  __u8  bDescriptorType; Device */
176         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
177
178         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
179         0x00,       /*  __u8  bDeviceSubClass; */
180         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
181         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
182
183         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
184         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
185         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
186
187         0x03,       /*  __u8  iManufacturer; */
188         0x02,       /*  __u8  iProduct; */
189         0x01,       /*  __u8  iSerialNumber; */
190         0x01        /*  __u8  bNumConfigurations; */
191 };
192
193 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
194
195 /* usb 1.1 root hub device descriptor */
196 static const u8 usb11_rh_dev_descriptor[18] = {
197         0x12,       /*  __u8  bLength; */
198         0x01,       /*  __u8  bDescriptorType; Device */
199         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
200
201         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
202         0x00,       /*  __u8  bDeviceSubClass; */
203         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
204         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
205
206         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
207         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
208         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
209
210         0x03,       /*  __u8  iManufacturer; */
211         0x02,       /*  __u8  iProduct; */
212         0x01,       /*  __u8  iSerialNumber; */
213         0x01        /*  __u8  bNumConfigurations; */
214 };
215
216
217 /*-------------------------------------------------------------------------*/
218
219 /* Configuration descriptors for our root hubs */
220
221 static const u8 fs_rh_config_descriptor[] = {
222
223         /* one configuration */
224         0x09,       /*  __u8  bLength; */
225         0x02,       /*  __u8  bDescriptorType; Configuration */
226         0x19, 0x00, /*  __le16 wTotalLength; */
227         0x01,       /*  __u8  bNumInterfaces; (1) */
228         0x01,       /*  __u8  bConfigurationValue; */
229         0x00,       /*  __u8  iConfiguration; */
230         0xc0,       /*  __u8  bmAttributes;
231                                  Bit 7: must be set,
232                                      6: Self-powered,
233                                      5: Remote wakeup,
234                                      4..0: resvd */
235         0x00,       /*  __u8  MaxPower; */
236
237         /* USB 1.1:
238          * USB 2.0, single TT organization (mandatory):
239          *      one interface, protocol 0
240          *
241          * USB 2.0, multiple TT organization (optional):
242          *      two interfaces, protocols 1 (like single TT)
243          *      and 2 (multiple TT mode) ... config is
244          *      sometimes settable
245          *      NOT IMPLEMENTED
246          */
247
248         /* one interface */
249         0x09,       /*  __u8  if_bLength; */
250         0x04,       /*  __u8  if_bDescriptorType; Interface */
251         0x00,       /*  __u8  if_bInterfaceNumber; */
252         0x00,       /*  __u8  if_bAlternateSetting; */
253         0x01,       /*  __u8  if_bNumEndpoints; */
254         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
255         0x00,       /*  __u8  if_bInterfaceSubClass; */
256         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
257         0x00,       /*  __u8  if_iInterface; */
258
259         /* one endpoint (status change endpoint) */
260         0x07,       /*  __u8  ep_bLength; */
261         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
262         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
263         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
264         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
265         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
266 };
267
268 static const u8 hs_rh_config_descriptor[] = {
269
270         /* one configuration */
271         0x09,       /*  __u8  bLength; */
272         0x02,       /*  __u8  bDescriptorType; Configuration */
273         0x19, 0x00, /*  __le16 wTotalLength; */
274         0x01,       /*  __u8  bNumInterfaces; (1) */
275         0x01,       /*  __u8  bConfigurationValue; */
276         0x00,       /*  __u8  iConfiguration; */
277         0xc0,       /*  __u8  bmAttributes;
278                                  Bit 7: must be set,
279                                      6: Self-powered,
280                                      5: Remote wakeup,
281                                      4..0: resvd */
282         0x00,       /*  __u8  MaxPower; */
283
284         /* USB 1.1:
285          * USB 2.0, single TT organization (mandatory):
286          *      one interface, protocol 0
287          *
288          * USB 2.0, multiple TT organization (optional):
289          *      two interfaces, protocols 1 (like single TT)
290          *      and 2 (multiple TT mode) ... config is
291          *      sometimes settable
292          *      NOT IMPLEMENTED
293          */
294
295         /* one interface */
296         0x09,       /*  __u8  if_bLength; */
297         0x04,       /*  __u8  if_bDescriptorType; Interface */
298         0x00,       /*  __u8  if_bInterfaceNumber; */
299         0x00,       /*  __u8  if_bAlternateSetting; */
300         0x01,       /*  __u8  if_bNumEndpoints; */
301         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
302         0x00,       /*  __u8  if_bInterfaceSubClass; */
303         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
304         0x00,       /*  __u8  if_iInterface; */
305
306         /* one endpoint (status change endpoint) */
307         0x07,       /*  __u8  ep_bLength; */
308         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
309         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
310         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
311                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
312                      * see hub.c:hub_configure() for details. */
313         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
314         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
315 };
316
317 static const u8 ss_rh_config_descriptor[] = {
318         /* one configuration */
319         0x09,       /*  __u8  bLength; */
320         0x02,       /*  __u8  bDescriptorType; Configuration */
321         0x1f, 0x00, /*  __le16 wTotalLength; */
322         0x01,       /*  __u8  bNumInterfaces; (1) */
323         0x01,       /*  __u8  bConfigurationValue; */
324         0x00,       /*  __u8  iConfiguration; */
325         0xc0,       /*  __u8  bmAttributes;
326                                  Bit 7: must be set,
327                                      6: Self-powered,
328                                      5: Remote wakeup,
329                                      4..0: resvd */
330         0x00,       /*  __u8  MaxPower; */
331
332         /* one interface */
333         0x09,       /*  __u8  if_bLength; */
334         0x04,       /*  __u8  if_bDescriptorType; Interface */
335         0x00,       /*  __u8  if_bInterfaceNumber; */
336         0x00,       /*  __u8  if_bAlternateSetting; */
337         0x01,       /*  __u8  if_bNumEndpoints; */
338         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
339         0x00,       /*  __u8  if_bInterfaceSubClass; */
340         0x00,       /*  __u8  if_bInterfaceProtocol; */
341         0x00,       /*  __u8  if_iInterface; */
342
343         /* one endpoint (status change endpoint) */
344         0x07,       /*  __u8  ep_bLength; */
345         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
346         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
347         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
348                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
349                      * see hub.c:hub_configure() for details. */
350         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
351         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
352
353         /* one SuperSpeed endpoint companion descriptor */
354         0x06,        /* __u8 ss_bLength */
355         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
356         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
357         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
358         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
359 };
360
361 /* authorized_default behaviour:
362  * -1 is authorized for all devices except wireless (old behaviour)
363  * 0 is unauthorized for all devices
364  * 1 is authorized for all devices
365  */
366 static int authorized_default = -1;
367 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
368 MODULE_PARM_DESC(authorized_default,
369                 "Default USB device authorization: 0 is not authorized, 1 is "
370                 "authorized, -1 is authorized except for wireless USB (default, "
371                 "old behaviour");
372 /*-------------------------------------------------------------------------*/
373
374 /**
375  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
376  * @s: Null-terminated ASCII (actually ISO-8859-1) string
377  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
378  * @len: Length (in bytes; may be odd) of descriptor buffer.
379  *
380  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
381  * whichever is less.
382  *
383  * Note:
384  * USB String descriptors can contain at most 126 characters; input
385  * strings longer than that are truncated.
386  */
387 static unsigned
388 ascii2desc(char const *s, u8 *buf, unsigned len)
389 {
390         unsigned n, t = 2 + 2*strlen(s);
391
392         if (t > 254)
393                 t = 254;        /* Longest possible UTF string descriptor */
394         if (len > t)
395                 len = t;
396
397         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
398
399         n = len;
400         while (n--) {
401                 *buf++ = t;
402                 if (!n--)
403                         break;
404                 *buf++ = t >> 8;
405                 t = (unsigned char)*s++;
406         }
407         return len;
408 }
409
410 /**
411  * rh_string() - provides string descriptors for root hub
412  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
413  * @hcd: the host controller for this root hub
414  * @data: buffer for output packet
415  * @len: length of the provided buffer
416  *
417  * Produces either a manufacturer, product or serial number string for the
418  * virtual root hub device.
419  *
420  * Return: The number of bytes filled in: the length of the descriptor or
421  * of the provided buffer, whichever is less.
422  */
423 static unsigned
424 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
425 {
426         char buf[100];
427         char const *s;
428         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
429
430         /* language ids */
431         switch (id) {
432         case 0:
433                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
434                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
435                 if (len > 4)
436                         len = 4;
437                 memcpy(data, langids, len);
438                 return len;
439         case 1:
440                 /* Serial number */
441                 s = hcd->self.bus_name;
442                 break;
443         case 2:
444                 /* Product name */
445                 s = hcd->product_desc;
446                 break;
447         case 3:
448                 /* Manufacturer */
449                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
450                         init_utsname()->release, hcd->driver->description);
451                 s = buf;
452                 break;
453         default:
454                 /* Can't happen; caller guarantees it */
455                 return 0;
456         }
457
458         return ascii2desc(s, data, len);
459 }
460
461
462 /* Root hub control transfers execute synchronously */
463 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
464 {
465         struct usb_ctrlrequest *cmd;
466         u16             typeReq, wValue, wIndex, wLength;
467         u8              *ubuf = urb->transfer_buffer;
468         unsigned        len = 0;
469         int             status;
470         u8              patch_wakeup = 0;
471         u8              patch_protocol = 0;
472         u16             tbuf_size;
473         u8              *tbuf = NULL;
474         const u8        *bufp;
475
476         might_sleep();
477
478         spin_lock_irq(&hcd_root_hub_lock);
479         status = usb_hcd_link_urb_to_ep(hcd, urb);
480         spin_unlock_irq(&hcd_root_hub_lock);
481         if (status)
482                 return status;
483         urb->hcpriv = hcd;      /* Indicate it's queued */
484
485         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
486         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
487         wValue   = le16_to_cpu (cmd->wValue);
488         wIndex   = le16_to_cpu (cmd->wIndex);
489         wLength  = le16_to_cpu (cmd->wLength);
490
491         if (wLength > urb->transfer_buffer_length)
492                 goto error;
493
494         /*
495          * tbuf should be at least as big as the
496          * USB hub descriptor.
497          */
498         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
499         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
500         if (!tbuf)
501                 return -ENOMEM;
502
503         bufp = tbuf;
504
505
506         urb->actual_length = 0;
507         switch (typeReq) {
508
509         /* DEVICE REQUESTS */
510
511         /* The root hub's remote wakeup enable bit is implemented using
512          * driver model wakeup flags.  If this system supports wakeup
513          * through USB, userspace may change the default "allow wakeup"
514          * policy through sysfs or these calls.
515          *
516          * Most root hubs support wakeup from downstream devices, for
517          * runtime power management (disabling USB clocks and reducing
518          * VBUS power usage).  However, not all of them do so; silicon,
519          * board, and BIOS bugs here are not uncommon, so these can't
520          * be treated quite like external hubs.
521          *
522          * Likewise, not all root hubs will pass wakeup events upstream,
523          * to wake up the whole system.  So don't assume root hub and
524          * controller capabilities are identical.
525          */
526
527         case DeviceRequest | USB_REQ_GET_STATUS:
528                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
529                                         << USB_DEVICE_REMOTE_WAKEUP)
530                                 | (1 << USB_DEVICE_SELF_POWERED);
531                 tbuf[1] = 0;
532                 len = 2;
533                 break;
534         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
535                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
536                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
537                 else
538                         goto error;
539                 break;
540         case DeviceOutRequest | USB_REQ_SET_FEATURE:
541                 if (device_can_wakeup(&hcd->self.root_hub->dev)
542                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
543                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
544                 else
545                         goto error;
546                 break;
547         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
548                 tbuf[0] = 1;
549                 len = 1;
550                         /* FALLTHROUGH */
551         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
552                 break;
553         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
554                 switch (wValue & 0xff00) {
555                 case USB_DT_DEVICE << 8:
556                         switch (hcd->speed) {
557                         case HCD_USB3:
558                                 bufp = usb3_rh_dev_descriptor;
559                                 break;
560                         case HCD_USB25:
561                                 bufp = usb25_rh_dev_descriptor;
562                                 break;
563                         case HCD_USB2:
564                                 bufp = usb2_rh_dev_descriptor;
565                                 break;
566                         case HCD_USB11:
567                                 bufp = usb11_rh_dev_descriptor;
568                                 break;
569                         default:
570                                 goto error;
571                         }
572                         len = 18;
573                         if (hcd->has_tt)
574                                 patch_protocol = 1;
575                         break;
576                 case USB_DT_CONFIG << 8:
577                         switch (hcd->speed) {
578                         case HCD_USB3:
579                                 bufp = ss_rh_config_descriptor;
580                                 len = sizeof ss_rh_config_descriptor;
581                                 break;
582                         case HCD_USB25:
583                         case HCD_USB2:
584                                 bufp = hs_rh_config_descriptor;
585                                 len = sizeof hs_rh_config_descriptor;
586                                 break;
587                         case HCD_USB11:
588                                 bufp = fs_rh_config_descriptor;
589                                 len = sizeof fs_rh_config_descriptor;
590                                 break;
591                         default:
592                                 goto error;
593                         }
594                         if (device_can_wakeup(&hcd->self.root_hub->dev))
595                                 patch_wakeup = 1;
596                         break;
597                 case USB_DT_STRING << 8:
598                         if ((wValue & 0xff) < 4)
599                                 urb->actual_length = rh_string(wValue & 0xff,
600                                                 hcd, ubuf, wLength);
601                         else /* unsupported IDs --> "protocol stall" */
602                                 goto error;
603                         break;
604                 case USB_DT_BOS << 8:
605                         goto nongeneric;
606                 default:
607                         goto error;
608                 }
609                 break;
610         case DeviceRequest | USB_REQ_GET_INTERFACE:
611                 tbuf[0] = 0;
612                 len = 1;
613                         /* FALLTHROUGH */
614         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
615                 break;
616         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
617                 /* wValue == urb->dev->devaddr */
618                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
619                         wValue);
620                 break;
621
622         /* INTERFACE REQUESTS (no defined feature/status flags) */
623
624         /* ENDPOINT REQUESTS */
625
626         case EndpointRequest | USB_REQ_GET_STATUS:
627                 /* ENDPOINT_HALT flag */
628                 tbuf[0] = 0;
629                 tbuf[1] = 0;
630                 len = 2;
631                         /* FALLTHROUGH */
632         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
633         case EndpointOutRequest | USB_REQ_SET_FEATURE:
634                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
635                 break;
636
637         /* CLASS REQUESTS (and errors) */
638
639         default:
640 nongeneric:
641                 /* non-generic request */
642                 switch (typeReq) {
643                 case GetHubStatus:
644                 case GetPortStatus:
645                         len = 4;
646                         break;
647                 case GetHubDescriptor:
648                         len = sizeof (struct usb_hub_descriptor);
649                         break;
650                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
651                         /* len is returned by hub_control */
652                         break;
653                 }
654                 status = hcd->driver->hub_control (hcd,
655                         typeReq, wValue, wIndex,
656                         tbuf, wLength);
657
658                 if (typeReq == GetHubDescriptor)
659                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
660                                 (struct usb_hub_descriptor *)tbuf);
661                 break;
662 error:
663                 /* "protocol stall" on error */
664                 status = -EPIPE;
665         }
666
667         if (status < 0) {
668                 len = 0;
669                 if (status != -EPIPE) {
670                         dev_dbg (hcd->self.controller,
671                                 "CTRL: TypeReq=0x%x val=0x%x "
672                                 "idx=0x%x len=%d ==> %d\n",
673                                 typeReq, wValue, wIndex,
674                                 wLength, status);
675                 }
676         } else if (status > 0) {
677                 /* hub_control may return the length of data copied. */
678                 len = status;
679                 status = 0;
680         }
681         if (len) {
682                 if (urb->transfer_buffer_length < len)
683                         len = urb->transfer_buffer_length;
684                 urb->actual_length = len;
685                 /* always USB_DIR_IN, toward host */
686                 memcpy (ubuf, bufp, len);
687
688                 /* report whether RH hardware supports remote wakeup */
689                 if (patch_wakeup &&
690                                 len > offsetof (struct usb_config_descriptor,
691                                                 bmAttributes))
692                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
693                                 |= USB_CONFIG_ATT_WAKEUP;
694
695                 /* report whether RH hardware has an integrated TT */
696                 if (patch_protocol &&
697                                 len > offsetof(struct usb_device_descriptor,
698                                                 bDeviceProtocol))
699                         ((struct usb_device_descriptor *) ubuf)->
700                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
701         }
702
703         kfree(tbuf);
704
705         /* any errors get returned through the urb completion */
706         spin_lock_irq(&hcd_root_hub_lock);
707         usb_hcd_unlink_urb_from_ep(hcd, urb);
708         usb_hcd_giveback_urb(hcd, urb, status);
709         spin_unlock_irq(&hcd_root_hub_lock);
710         return 0;
711 }
712
713 /*-------------------------------------------------------------------------*/
714
715 /*
716  * Root Hub interrupt transfers are polled using a timer if the
717  * driver requests it; otherwise the driver is responsible for
718  * calling usb_hcd_poll_rh_status() when an event occurs.
719  *
720  * Completions are called in_interrupt(), but they may or may not
721  * be in_irq().
722  */
723 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
724 {
725         struct urb      *urb;
726         int             length;
727         unsigned long   flags;
728         char            buffer[6];      /* Any root hubs with > 31 ports? */
729
730         if (unlikely(!hcd->rh_pollable))
731                 return;
732         if (!hcd->uses_new_polling && !hcd->status_urb)
733                 return;
734
735         length = hcd->driver->hub_status_data(hcd, buffer);
736         if (length > 0) {
737
738                 /* try to complete the status urb */
739                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
740                 urb = hcd->status_urb;
741                 if (urb) {
742                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
743                         hcd->status_urb = NULL;
744                         urb->actual_length = length;
745                         memcpy(urb->transfer_buffer, buffer, length);
746
747                         usb_hcd_unlink_urb_from_ep(hcd, urb);
748                         usb_hcd_giveback_urb(hcd, urb, 0);
749                 } else {
750                         length = 0;
751                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
752                 }
753                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
754         }
755
756         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
757          * exceed that limit if HZ is 100. The math is more clunky than
758          * maybe expected, this is to make sure that all timers for USB devices
759          * fire at the same time to give the CPU a break in between */
760         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
761                         (length == 0 && hcd->status_urb != NULL))
762                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
763 }
764 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
765
766 /* timer callback */
767 static void rh_timer_func (unsigned long _hcd)
768 {
769         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
770 }
771
772 /*-------------------------------------------------------------------------*/
773
774 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
775 {
776         int             retval;
777         unsigned long   flags;
778         unsigned        len = 1 + (urb->dev->maxchild / 8);
779
780         spin_lock_irqsave (&hcd_root_hub_lock, flags);
781         if (hcd->status_urb || urb->transfer_buffer_length < len) {
782                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
783                 retval = -EINVAL;
784                 goto done;
785         }
786
787         retval = usb_hcd_link_urb_to_ep(hcd, urb);
788         if (retval)
789                 goto done;
790
791         hcd->status_urb = urb;
792         urb->hcpriv = hcd;      /* indicate it's queued */
793         if (!hcd->uses_new_polling)
794                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795
796         /* If a status change has already occurred, report it ASAP */
797         else if (HCD_POLL_PENDING(hcd))
798                 mod_timer(&hcd->rh_timer, jiffies);
799         retval = 0;
800  done:
801         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
802         return retval;
803 }
804
805 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
806 {
807         if (usb_endpoint_xfer_int(&urb->ep->desc))
808                 return rh_queue_status (hcd, urb);
809         if (usb_endpoint_xfer_control(&urb->ep->desc))
810                 return rh_call_control (hcd, urb);
811         return -EINVAL;
812 }
813
814 /*-------------------------------------------------------------------------*/
815
816 /* Unlinks of root-hub control URBs are legal, but they don't do anything
817  * since these URBs always execute synchronously.
818  */
819 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
820 {
821         unsigned long   flags;
822         int             rc;
823
824         spin_lock_irqsave(&hcd_root_hub_lock, flags);
825         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
826         if (rc)
827                 goto done;
828
829         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
830                 ;       /* Do nothing */
831
832         } else {                                /* Status URB */
833                 if (!hcd->uses_new_polling)
834                         del_timer (&hcd->rh_timer);
835                 if (urb == hcd->status_urb) {
836                         hcd->status_urb = NULL;
837                         usb_hcd_unlink_urb_from_ep(hcd, urb);
838                         usb_hcd_giveback_urb(hcd, urb, status);
839                 }
840         }
841  done:
842         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
843         return rc;
844 }
845
846
847
848 /*
849  * Show & store the current value of authorized_default
850  */
851 static ssize_t authorized_default_show(struct device *dev,
852                                        struct device_attribute *attr, char *buf)
853 {
854         struct usb_device *rh_usb_dev = to_usb_device(dev);
855         struct usb_bus *usb_bus = rh_usb_dev->bus;
856         struct usb_hcd *usb_hcd;
857
858         usb_hcd = bus_to_hcd(usb_bus);
859         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
860 }
861
862 static ssize_t authorized_default_store(struct device *dev,
863                                         struct device_attribute *attr,
864                                         const char *buf, size_t size)
865 {
866         ssize_t result;
867         unsigned val;
868         struct usb_device *rh_usb_dev = to_usb_device(dev);
869         struct usb_bus *usb_bus = rh_usb_dev->bus;
870         struct usb_hcd *usb_hcd;
871
872         usb_hcd = bus_to_hcd(usb_bus);
873         result = sscanf(buf, "%u\n", &val);
874         if (result == 1) {
875                 usb_hcd->authorized_default = val ? 1 : 0;
876                 result = size;
877         } else {
878                 result = -EINVAL;
879         }
880         return result;
881 }
882 static DEVICE_ATTR_RW(authorized_default);
883
884 /* Group all the USB bus attributes */
885 static struct attribute *usb_bus_attrs[] = {
886                 &dev_attr_authorized_default.attr,
887                 NULL,
888 };
889
890 static struct attribute_group usb_bus_attr_group = {
891         .name = NULL,   /* we want them in the same directory */
892         .attrs = usb_bus_attrs,
893 };
894
895
896
897 /*-------------------------------------------------------------------------*/
898
899 /**
900  * usb_bus_init - shared initialization code
901  * @bus: the bus structure being initialized
902  *
903  * This code is used to initialize a usb_bus structure, memory for which is
904  * separately managed.
905  */
906 static void usb_bus_init (struct usb_bus *bus)
907 {
908         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
909
910         bus->devnum_next = 1;
911
912         bus->root_hub = NULL;
913         bus->busnum = -1;
914         bus->bandwidth_allocated = 0;
915         bus->bandwidth_int_reqs  = 0;
916         bus->bandwidth_isoc_reqs = 0;
917         mutex_init(&bus->usb_address0_mutex);
918
919         INIT_LIST_HEAD (&bus->bus_list);
920 }
921
922 /*-------------------------------------------------------------------------*/
923
924 /**
925  * usb_register_bus - registers the USB host controller with the usb core
926  * @bus: pointer to the bus to register
927  * Context: !in_interrupt()
928  *
929  * Assigns a bus number, and links the controller into usbcore data
930  * structures so that it can be seen by scanning the bus list.
931  *
932  * Return: 0 if successful. A negative error code otherwise.
933  */
934 static int usb_register_bus(struct usb_bus *bus)
935 {
936         int result = -E2BIG;
937         int busnum;
938
939         mutex_lock(&usb_bus_list_lock);
940         busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
941         if (busnum >= USB_MAXBUS) {
942                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
943                 goto error_find_busnum;
944         }
945         set_bit(busnum, busmap);
946         bus->busnum = busnum;
947
948         /* Add it to the local list of buses */
949         list_add (&bus->bus_list, &usb_bus_list);
950         mutex_unlock(&usb_bus_list_lock);
951
952         usb_notify_add_bus(bus);
953
954         dev_info (bus->controller, "new USB bus registered, assigned bus "
955                   "number %d\n", bus->busnum);
956         return 0;
957
958 error_find_busnum:
959         mutex_unlock(&usb_bus_list_lock);
960         return result;
961 }
962
963 /**
964  * usb_deregister_bus - deregisters the USB host controller
965  * @bus: pointer to the bus to deregister
966  * Context: !in_interrupt()
967  *
968  * Recycles the bus number, and unlinks the controller from usbcore data
969  * structures so that it won't be seen by scanning the bus list.
970  */
971 static void usb_deregister_bus (struct usb_bus *bus)
972 {
973         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
974
975         /*
976          * NOTE: make sure that all the devices are removed by the
977          * controller code, as well as having it call this when cleaning
978          * itself up
979          */
980         mutex_lock(&usb_bus_list_lock);
981         list_del (&bus->bus_list);
982         mutex_unlock(&usb_bus_list_lock);
983
984         usb_notify_remove_bus(bus);
985
986         clear_bit(bus->busnum, busmap);
987 }
988
989 /**
990  * register_root_hub - called by usb_add_hcd() to register a root hub
991  * @hcd: host controller for this root hub
992  *
993  * This function registers the root hub with the USB subsystem.  It sets up
994  * the device properly in the device tree and then calls usb_new_device()
995  * to register the usb device.  It also assigns the root hub's USB address
996  * (always 1).
997  *
998  * Return: 0 if successful. A negative error code otherwise.
999  */
1000 static int register_root_hub(struct usb_hcd *hcd)
1001 {
1002         struct device *parent_dev = hcd->self.controller;
1003         struct usb_device *usb_dev = hcd->self.root_hub;
1004         const int devnum = 1;
1005         int retval;
1006
1007         usb_dev->devnum = devnum;
1008         usb_dev->bus->devnum_next = devnum + 1;
1009         memset (&usb_dev->bus->devmap.devicemap, 0,
1010                         sizeof usb_dev->bus->devmap.devicemap);
1011         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1012         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1013
1014         mutex_lock(&usb_bus_list_lock);
1015
1016         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1017         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1018         if (retval != sizeof usb_dev->descriptor) {
1019                 mutex_unlock(&usb_bus_list_lock);
1020                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1021                                 dev_name(&usb_dev->dev), retval);
1022                 return (retval < 0) ? retval : -EMSGSIZE;
1023         }
1024         if (usb_dev->speed == USB_SPEED_SUPER) {
1025                 retval = usb_get_bos_descriptor(usb_dev);
1026                 if (retval < 0) {
1027                         mutex_unlock(&usb_bus_list_lock);
1028                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1029                                         dev_name(&usb_dev->dev), retval);
1030                         return retval;
1031                 }
1032         }
1033
1034         retval = usb_new_device (usb_dev);
1035         if (retval) {
1036                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1037                                 dev_name(&usb_dev->dev), retval);
1038         } else {
1039                 spin_lock_irq (&hcd_root_hub_lock);
1040                 hcd->rh_registered = 1;
1041                 spin_unlock_irq (&hcd_root_hub_lock);
1042
1043                 /* Did the HC die before the root hub was registered? */
1044                 if (HCD_DEAD(hcd))
1045                         usb_hc_died (hcd);      /* This time clean up */
1046         }
1047         mutex_unlock(&usb_bus_list_lock);
1048
1049         return retval;
1050 }
1051
1052 /*
1053  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1054  * @bus: the bus which the root hub belongs to
1055  * @portnum: the port which is being resumed
1056  *
1057  * HCDs should call this function when they know that a resume signal is
1058  * being sent to a root-hub port.  The root hub will be prevented from
1059  * going into autosuspend until usb_hcd_end_port_resume() is called.
1060  *
1061  * The bus's private lock must be held by the caller.
1062  */
1063 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1064 {
1065         unsigned bit = 1 << portnum;
1066
1067         if (!(bus->resuming_ports & bit)) {
1068                 bus->resuming_ports |= bit;
1069                 pm_runtime_get_noresume(&bus->root_hub->dev);
1070         }
1071 }
1072 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1073
1074 /*
1075  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1076  * @bus: the bus which the root hub belongs to
1077  * @portnum: the port which is being resumed
1078  *
1079  * HCDs should call this function when they know that a resume signal has
1080  * stopped being sent to a root-hub port.  The root hub will be allowed to
1081  * autosuspend again.
1082  *
1083  * The bus's private lock must be held by the caller.
1084  */
1085 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1086 {
1087         unsigned bit = 1 << portnum;
1088
1089         if (bus->resuming_ports & bit) {
1090                 bus->resuming_ports &= ~bit;
1091                 pm_runtime_put_noidle(&bus->root_hub->dev);
1092         }
1093 }
1094 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1095
1096 /*-------------------------------------------------------------------------*/
1097
1098 /**
1099  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1100  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1101  * @is_input: true iff the transaction sends data to the host
1102  * @isoc: true for isochronous transactions, false for interrupt ones
1103  * @bytecount: how many bytes in the transaction.
1104  *
1105  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1106  *
1107  * Note:
1108  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1109  * scheduled in software, this function is only used for such scheduling.
1110  */
1111 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1112 {
1113         unsigned long   tmp;
1114
1115         switch (speed) {
1116         case USB_SPEED_LOW:     /* INTR only */
1117                 if (is_input) {
1118                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1119                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1120                 } else {
1121                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123                 }
1124         case USB_SPEED_FULL:    /* ISOC or INTR */
1125                 if (isoc) {
1126                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1127                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1128                 } else {
1129                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130                         return 9107L + BW_HOST_DELAY + tmp;
1131                 }
1132         case USB_SPEED_HIGH:    /* ISOC or INTR */
1133                 /* FIXME adjust for input vs output */
1134                 if (isoc)
1135                         tmp = HS_NSECS_ISO (bytecount);
1136                 else
1137                         tmp = HS_NSECS (bytecount);
1138                 return tmp;
1139         default:
1140                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1141                 return -1;
1142         }
1143 }
1144 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1145
1146
1147 /*-------------------------------------------------------------------------*/
1148
1149 /*
1150  * Generic HC operations.
1151  */
1152
1153 /*-------------------------------------------------------------------------*/
1154
1155 /**
1156  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1157  * @hcd: host controller to which @urb was submitted
1158  * @urb: URB being submitted
1159  *
1160  * Host controller drivers should call this routine in their enqueue()
1161  * method.  The HCD's private spinlock must be held and interrupts must
1162  * be disabled.  The actions carried out here are required for URB
1163  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1164  *
1165  * Return: 0 for no error, otherwise a negative error code (in which case
1166  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1167  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1168  * the private spinlock and returning.
1169  */
1170 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1171 {
1172         int             rc = 0;
1173
1174         spin_lock(&hcd_urb_list_lock);
1175
1176         /* Check that the URB isn't being killed */
1177         if (unlikely(atomic_read(&urb->reject))) {
1178                 rc = -EPERM;
1179                 goto done;
1180         }
1181
1182         if (unlikely(!urb->ep->enabled)) {
1183                 rc = -ENOENT;
1184                 goto done;
1185         }
1186
1187         if (unlikely(!urb->dev->can_submit)) {
1188                 rc = -EHOSTUNREACH;
1189                 goto done;
1190         }
1191
1192         /*
1193          * Check the host controller's state and add the URB to the
1194          * endpoint's queue.
1195          */
1196         if (HCD_RH_RUNNING(hcd)) {
1197                 urb->unlinked = 0;
1198                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1199         } else {
1200                 rc = -ESHUTDOWN;
1201                 goto done;
1202         }
1203  done:
1204         spin_unlock(&hcd_urb_list_lock);
1205         return rc;
1206 }
1207 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1208
1209 /**
1210  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1211  * @hcd: host controller to which @urb was submitted
1212  * @urb: URB being checked for unlinkability
1213  * @status: error code to store in @urb if the unlink succeeds
1214  *
1215  * Host controller drivers should call this routine in their dequeue()
1216  * method.  The HCD's private spinlock must be held and interrupts must
1217  * be disabled.  The actions carried out here are required for making
1218  * sure than an unlink is valid.
1219  *
1220  * Return: 0 for no error, otherwise a negative error code (in which case
1221  * the dequeue() method must fail).  The possible error codes are:
1222  *
1223  *      -EIDRM: @urb was not submitted or has already completed.
1224  *              The completion function may not have been called yet.
1225  *
1226  *      -EBUSY: @urb has already been unlinked.
1227  */
1228 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1229                 int status)
1230 {
1231         struct list_head        *tmp;
1232
1233         /* insist the urb is still queued */
1234         list_for_each(tmp, &urb->ep->urb_list) {
1235                 if (tmp == &urb->urb_list)
1236                         break;
1237         }
1238         if (tmp != &urb->urb_list)
1239                 return -EIDRM;
1240
1241         /* Any status except -EINPROGRESS means something already started to
1242          * unlink this URB from the hardware.  So there's no more work to do.
1243          */
1244         if (urb->unlinked)
1245                 return -EBUSY;
1246         urb->unlinked = status;
1247         return 0;
1248 }
1249 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1250
1251 /**
1252  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1253  * @hcd: host controller to which @urb was submitted
1254  * @urb: URB being unlinked
1255  *
1256  * Host controller drivers should call this routine before calling
1257  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1258  * interrupts must be disabled.  The actions carried out here are required
1259  * for URB completion.
1260  */
1261 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1262 {
1263         /* clear all state linking urb to this dev (and hcd) */
1264         spin_lock(&hcd_urb_list_lock);
1265         list_del_init(&urb->urb_list);
1266         spin_unlock(&hcd_urb_list_lock);
1267 }
1268 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1269
1270 /*
1271  * Some usb host controllers can only perform dma using a small SRAM area.
1272  * The usb core itself is however optimized for host controllers that can dma
1273  * using regular system memory - like pci devices doing bus mastering.
1274  *
1275  * To support host controllers with limited dma capabilities we provide dma
1276  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1277  * For this to work properly the host controller code must first use the
1278  * function dma_declare_coherent_memory() to point out which memory area
1279  * that should be used for dma allocations.
1280  *
1281  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1282  * dma using dma_alloc_coherent() which in turn allocates from the memory
1283  * area pointed out with dma_declare_coherent_memory().
1284  *
1285  * So, to summarize...
1286  *
1287  * - We need "local" memory, canonical example being
1288  *   a small SRAM on a discrete controller being the
1289  *   only memory that the controller can read ...
1290  *   (a) "normal" kernel memory is no good, and
1291  *   (b) there's not enough to share
1292  *
1293  * - The only *portable* hook for such stuff in the
1294  *   DMA framework is dma_declare_coherent_memory()
1295  *
1296  * - So we use that, even though the primary requirement
1297  *   is that the memory be "local" (hence addressable
1298  *   by that device), not "coherent".
1299  *
1300  */
1301
1302 static int hcd_alloc_coherent(struct usb_bus *bus,
1303                               gfp_t mem_flags, dma_addr_t *dma_handle,
1304                               void **vaddr_handle, size_t size,
1305                               enum dma_data_direction dir)
1306 {
1307         unsigned char *vaddr;
1308
1309         if (*vaddr_handle == NULL) {
1310                 WARN_ON_ONCE(1);
1311                 return -EFAULT;
1312         }
1313
1314         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1315                                  mem_flags, dma_handle);
1316         if (!vaddr)
1317                 return -ENOMEM;
1318
1319         /*
1320          * Store the virtual address of the buffer at the end
1321          * of the allocated dma buffer. The size of the buffer
1322          * may be uneven so use unaligned functions instead
1323          * of just rounding up. It makes sense to optimize for
1324          * memory footprint over access speed since the amount
1325          * of memory available for dma may be limited.
1326          */
1327         put_unaligned((unsigned long)*vaddr_handle,
1328                       (unsigned long *)(vaddr + size));
1329
1330         if (dir == DMA_TO_DEVICE)
1331                 memcpy(vaddr, *vaddr_handle, size);
1332
1333         *vaddr_handle = vaddr;
1334         return 0;
1335 }
1336
1337 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1338                               void **vaddr_handle, size_t size,
1339                               enum dma_data_direction dir)
1340 {
1341         unsigned char *vaddr = *vaddr_handle;
1342
1343         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1344
1345         if (dir == DMA_FROM_DEVICE)
1346                 memcpy(vaddr, *vaddr_handle, size);
1347
1348         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1349
1350         *vaddr_handle = vaddr;
1351         *dma_handle = 0;
1352 }
1353
1354 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1355 {
1356         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1357                 dma_unmap_single(hcd->self.controller,
1358                                 urb->setup_dma,
1359                                 sizeof(struct usb_ctrlrequest),
1360                                 DMA_TO_DEVICE);
1361         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1362                 hcd_free_coherent(urb->dev->bus,
1363                                 &urb->setup_dma,
1364                                 (void **) &urb->setup_packet,
1365                                 sizeof(struct usb_ctrlrequest),
1366                                 DMA_TO_DEVICE);
1367
1368         /* Make it safe to call this routine more than once */
1369         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1370 }
1371 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1372
1373 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1374 {
1375         if (hcd->driver->unmap_urb_for_dma)
1376                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1377         else
1378                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1379 }
1380
1381 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1382 {
1383         enum dma_data_direction dir;
1384
1385         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1386
1387         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388         if (urb->transfer_flags & URB_DMA_MAP_SG)
1389                 dma_unmap_sg(hcd->self.controller,
1390                                 urb->sg,
1391                                 urb->num_sgs,
1392                                 dir);
1393         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1394                 dma_unmap_page(hcd->self.controller,
1395                                 urb->transfer_dma,
1396                                 urb->transfer_buffer_length,
1397                                 dir);
1398         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1399                 dma_unmap_single(hcd->self.controller,
1400                                 urb->transfer_dma,
1401                                 urb->transfer_buffer_length,
1402                                 dir);
1403         else if (urb->transfer_flags & URB_MAP_LOCAL)
1404                 hcd_free_coherent(urb->dev->bus,
1405                                 &urb->transfer_dma,
1406                                 &urb->transfer_buffer,
1407                                 urb->transfer_buffer_length,
1408                                 dir);
1409
1410         /* Make it safe to call this routine more than once */
1411         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1412                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1413 }
1414 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1415
1416 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1417                            gfp_t mem_flags)
1418 {
1419         if (hcd->driver->map_urb_for_dma)
1420                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1421         else
1422                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1423 }
1424
1425 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1426                             gfp_t mem_flags)
1427 {
1428         enum dma_data_direction dir;
1429         int ret = 0;
1430
1431         /* Map the URB's buffers for DMA access.
1432          * Lower level HCD code should use *_dma exclusively,
1433          * unless it uses pio or talks to another transport,
1434          * or uses the provided scatter gather list for bulk.
1435          */
1436
1437         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1438                 if (hcd->self.uses_pio_for_control)
1439                         return ret;
1440                 if (hcd->self.uses_dma) {
1441                         urb->setup_dma = dma_map_single(
1442                                         hcd->self.controller,
1443                                         urb->setup_packet,
1444                                         sizeof(struct usb_ctrlrequest),
1445                                         DMA_TO_DEVICE);
1446                         if (dma_mapping_error(hcd->self.controller,
1447                                                 urb->setup_dma))
1448                                 return -EAGAIN;
1449                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1450                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1451                         ret = hcd_alloc_coherent(
1452                                         urb->dev->bus, mem_flags,
1453                                         &urb->setup_dma,
1454                                         (void **)&urb->setup_packet,
1455                                         sizeof(struct usb_ctrlrequest),
1456                                         DMA_TO_DEVICE);
1457                         if (ret)
1458                                 return ret;
1459                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1460                 }
1461         }
1462
1463         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464         if (urb->transfer_buffer_length != 0
1465             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1466                 if (hcd->self.uses_dma) {
1467                         if (urb->num_sgs) {
1468                                 int n;
1469
1470                                 /* We don't support sg for isoc transfers ! */
1471                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1472                                         WARN_ON(1);
1473                                         return -EINVAL;
1474                                 }
1475
1476                                 n = dma_map_sg(
1477                                                 hcd->self.controller,
1478                                                 urb->sg,
1479                                                 urb->num_sgs,
1480                                                 dir);
1481                                 if (n <= 0)
1482                                         ret = -EAGAIN;
1483                                 else
1484                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1485                                 urb->num_mapped_sgs = n;
1486                                 if (n != urb->num_sgs)
1487                                         urb->transfer_flags |=
1488                                                         URB_DMA_SG_COMBINED;
1489                         } else if (urb->sg) {
1490                                 struct scatterlist *sg = urb->sg;
1491                                 urb->transfer_dma = dma_map_page(
1492                                                 hcd->self.controller,
1493                                                 sg_page(sg),
1494                                                 sg->offset,
1495                                                 urb->transfer_buffer_length,
1496                                                 dir);
1497                                 if (dma_mapping_error(hcd->self.controller,
1498                                                 urb->transfer_dma))
1499                                         ret = -EAGAIN;
1500                                 else
1501                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1502                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1503                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1504                                 ret = -EAGAIN;
1505                         } else {
1506                                 urb->transfer_dma = dma_map_single(
1507                                                 hcd->self.controller,
1508                                                 urb->transfer_buffer,
1509                                                 urb->transfer_buffer_length,
1510                                                 dir);
1511                                 if (dma_mapping_error(hcd->self.controller,
1512                                                 urb->transfer_dma))
1513                                         ret = -EAGAIN;
1514                                 else
1515                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516                         }
1517                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518                         ret = hcd_alloc_coherent(
1519                                         urb->dev->bus, mem_flags,
1520                                         &urb->transfer_dma,
1521                                         &urb->transfer_buffer,
1522                                         urb->transfer_buffer_length,
1523                                         dir);
1524                         if (ret == 0)
1525                                 urb->transfer_flags |= URB_MAP_LOCAL;
1526                 }
1527                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528                                 URB_SETUP_MAP_LOCAL)))
1529                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1530         }
1531         return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535 /*-------------------------------------------------------------------------*/
1536
1537 /* may be called in any context with a valid urb->dev usecount
1538  * caller surrenders "ownership" of urb
1539  * expects usb_submit_urb() to have sanity checked and conditioned all
1540  * inputs in the urb
1541  */
1542 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543 {
1544         int                     status;
1545         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1546
1547         /* increment urb's reference count as part of giving it to the HCD
1548          * (which will control it).  HCD guarantees that it either returns
1549          * an error or calls giveback(), but not both.
1550          */
1551         usb_get_urb(urb);
1552         atomic_inc(&urb->use_count);
1553         atomic_inc(&urb->dev->urbnum);
1554         usbmon_urb_submit(&hcd->self, urb);
1555
1556         /* NOTE requirements on root-hub callers (usbfs and the hub
1557          * driver, for now):  URBs' urb->transfer_buffer must be
1558          * valid and usb_buffer_{sync,unmap}() not be needed, since
1559          * they could clobber root hub response data.  Also, control
1560          * URBs must be submitted in process context with interrupts
1561          * enabled.
1562          */
1563
1564         if (is_root_hub(urb->dev)) {
1565                 status = rh_urb_enqueue(hcd, urb);
1566         } else {
1567                 status = map_urb_for_dma(hcd, urb, mem_flags);
1568                 if (likely(status == 0)) {
1569                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570                         if (unlikely(status))
1571                                 unmap_urb_for_dma(hcd, urb);
1572                 }
1573         }
1574
1575         if (unlikely(status)) {
1576                 usbmon_urb_submit_error(&hcd->self, urb, status);
1577                 urb->hcpriv = NULL;
1578                 INIT_LIST_HEAD(&urb->urb_list);
1579                 atomic_dec(&urb->use_count);
1580                 atomic_dec(&urb->dev->urbnum);
1581                 if (atomic_read(&urb->reject))
1582                         wake_up(&usb_kill_urb_queue);
1583                 usb_put_urb(urb);
1584         }
1585         return status;
1586 }
1587
1588 /*-------------------------------------------------------------------------*/
1589
1590 /* this makes the hcd giveback() the urb more quickly, by kicking it
1591  * off hardware queues (which may take a while) and returning it as
1592  * soon as practical.  we've already set up the urb's return status,
1593  * but we can't know if the callback completed already.
1594  */
1595 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596 {
1597         int             value;
1598
1599         if (is_root_hub(urb->dev))
1600                 value = usb_rh_urb_dequeue(hcd, urb, status);
1601         else {
1602
1603                 /* The only reason an HCD might fail this call is if
1604                  * it has not yet fully queued the urb to begin with.
1605                  * Such failures should be harmless. */
1606                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1607         }
1608         return value;
1609 }
1610
1611 /*
1612  * called in any context
1613  *
1614  * caller guarantees urb won't be recycled till both unlink()
1615  * and the urb's completion function return
1616  */
1617 int usb_hcd_unlink_urb (struct urb *urb, int status)
1618 {
1619         struct usb_hcd          *hcd;
1620         int                     retval = -EIDRM;
1621         unsigned long           flags;
1622
1623         /* Prevent the device and bus from going away while
1624          * the unlink is carried out.  If they are already gone
1625          * then urb->use_count must be 0, since disconnected
1626          * devices can't have any active URBs.
1627          */
1628         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629         if (atomic_read(&urb->use_count) > 0) {
1630                 retval = 0;
1631                 usb_get_dev(urb->dev);
1632         }
1633         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634         if (retval == 0) {
1635                 hcd = bus_to_hcd(urb->dev->bus);
1636                 retval = unlink1(hcd, urb, status);
1637                 usb_put_dev(urb->dev);
1638         }
1639
1640         if (retval == 0)
1641                 retval = -EINPROGRESS;
1642         else if (retval != -EIDRM && retval != -EBUSY)
1643                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644                                 urb, retval);
1645         return retval;
1646 }
1647
1648 /*-------------------------------------------------------------------------*/
1649
1650 static void __usb_hcd_giveback_urb(struct urb *urb)
1651 {
1652         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653         struct usb_anchor *anchor = urb->anchor;
1654         int status = urb->unlinked;
1655         unsigned long flags;
1656
1657         urb->hcpriv = NULL;
1658         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659             urb->actual_length < urb->transfer_buffer_length &&
1660             !status))
1661                 status = -EREMOTEIO;
1662
1663         unmap_urb_for_dma(hcd, urb);
1664         usbmon_urb_complete(&hcd->self, urb, status);
1665         usb_anchor_suspend_wakeups(anchor);
1666         usb_unanchor_urb(urb);
1667         if (likely(status == 0))
1668                 usb_led_activity(USB_LED_EVENT_HOST);
1669
1670         /* pass ownership to the completion handler */
1671         urb->status = status;
1672
1673         /*
1674          * We disable local IRQs here avoid possible deadlock because
1675          * drivers may call spin_lock() to hold lock which might be
1676          * acquired in one hard interrupt handler.
1677          *
1678          * The local_irq_save()/local_irq_restore() around complete()
1679          * will be removed if current USB drivers have been cleaned up
1680          * and no one may trigger the above deadlock situation when
1681          * running complete() in tasklet.
1682          */
1683         local_irq_save(flags);
1684         urb->complete(urb);
1685         local_irq_restore(flags);
1686
1687         usb_anchor_resume_wakeups(anchor);
1688         atomic_dec(&urb->use_count);
1689         if (unlikely(atomic_read(&urb->reject)))
1690                 wake_up(&usb_kill_urb_queue);
1691         usb_put_urb(urb);
1692 }
1693
1694 static void usb_giveback_urb_bh(unsigned long param)
1695 {
1696         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1697         struct list_head local_list;
1698
1699         spin_lock_irq(&bh->lock);
1700         bh->running = true;
1701  restart:
1702         list_replace_init(&bh->head, &local_list);
1703         spin_unlock_irq(&bh->lock);
1704
1705         while (!list_empty(&local_list)) {
1706                 struct urb *urb;
1707
1708                 urb = list_entry(local_list.next, struct urb, urb_list);
1709                 list_del_init(&urb->urb_list);
1710                 bh->completing_ep = urb->ep;
1711                 __usb_hcd_giveback_urb(urb);
1712                 bh->completing_ep = NULL;
1713         }
1714
1715         /* check if there are new URBs to giveback */
1716         spin_lock_irq(&bh->lock);
1717         if (!list_empty(&bh->head))
1718                 goto restart;
1719         bh->running = false;
1720         spin_unlock_irq(&bh->lock);
1721 }
1722
1723 /**
1724  * usb_hcd_giveback_urb - return URB from HCD to device driver
1725  * @hcd: host controller returning the URB
1726  * @urb: urb being returned to the USB device driver.
1727  * @status: completion status code for the URB.
1728  * Context: in_interrupt()
1729  *
1730  * This hands the URB from HCD to its USB device driver, using its
1731  * completion function.  The HCD has freed all per-urb resources
1732  * (and is done using urb->hcpriv).  It also released all HCD locks;
1733  * the device driver won't cause problems if it frees, modifies,
1734  * or resubmits this URB.
1735  *
1736  * If @urb was unlinked, the value of @status will be overridden by
1737  * @urb->unlinked.  Erroneous short transfers are detected in case
1738  * the HCD hasn't checked for them.
1739  */
1740 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1741 {
1742         struct giveback_urb_bh *bh;
1743         bool running, high_prio_bh;
1744
1745         /* pass status to tasklet via unlinked */
1746         if (likely(!urb->unlinked))
1747                 urb->unlinked = status;
1748
1749         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1750                 __usb_hcd_giveback_urb(urb);
1751                 return;
1752         }
1753
1754         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1755                 bh = &hcd->high_prio_bh;
1756                 high_prio_bh = true;
1757         } else {
1758                 bh = &hcd->low_prio_bh;
1759                 high_prio_bh = false;
1760         }
1761
1762         spin_lock(&bh->lock);
1763         list_add_tail(&urb->urb_list, &bh->head);
1764         running = bh->running;
1765         spin_unlock(&bh->lock);
1766
1767         if (running)
1768                 ;
1769         else if (high_prio_bh)
1770                 tasklet_hi_schedule(&bh->bh);
1771         else
1772                 tasklet_schedule(&bh->bh);
1773 }
1774 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1775
1776 /*-------------------------------------------------------------------------*/
1777
1778 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1779  * queue to drain completely.  The caller must first insure that no more
1780  * URBs can be submitted for this endpoint.
1781  */
1782 void usb_hcd_flush_endpoint(struct usb_device *udev,
1783                 struct usb_host_endpoint *ep)
1784 {
1785         struct usb_hcd          *hcd;
1786         struct urb              *urb;
1787
1788         if (!ep)
1789                 return;
1790         might_sleep();
1791         hcd = bus_to_hcd(udev->bus);
1792
1793         /* No more submits can occur */
1794         spin_lock_irq(&hcd_urb_list_lock);
1795 rescan:
1796         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1797                 int     is_in;
1798
1799                 if (urb->unlinked)
1800                         continue;
1801                 usb_get_urb (urb);
1802                 is_in = usb_urb_dir_in(urb);
1803                 spin_unlock(&hcd_urb_list_lock);
1804
1805                 /* kick hcd */
1806                 unlink1(hcd, urb, -ESHUTDOWN);
1807                 dev_dbg (hcd->self.controller,
1808                         "shutdown urb %p ep%d%s%s\n",
1809                         urb, usb_endpoint_num(&ep->desc),
1810                         is_in ? "in" : "out",
1811                         ({      char *s;
1812
1813                                  switch (usb_endpoint_type(&ep->desc)) {
1814                                  case USB_ENDPOINT_XFER_CONTROL:
1815                                         s = ""; break;
1816                                  case USB_ENDPOINT_XFER_BULK:
1817                                         s = "-bulk"; break;
1818                                  case USB_ENDPOINT_XFER_INT:
1819                                         s = "-intr"; break;
1820                                  default:
1821                                         s = "-iso"; break;
1822                                 };
1823                                 s;
1824                         }));
1825                 usb_put_urb (urb);
1826
1827                 /* list contents may have changed */
1828                 spin_lock(&hcd_urb_list_lock);
1829                 goto rescan;
1830         }
1831         spin_unlock_irq(&hcd_urb_list_lock);
1832
1833         /* Wait until the endpoint queue is completely empty */
1834         while (!list_empty (&ep->urb_list)) {
1835                 spin_lock_irq(&hcd_urb_list_lock);
1836
1837                 /* The list may have changed while we acquired the spinlock */
1838                 urb = NULL;
1839                 if (!list_empty (&ep->urb_list)) {
1840                         urb = list_entry (ep->urb_list.prev, struct urb,
1841                                         urb_list);
1842                         usb_get_urb (urb);
1843                 }
1844                 spin_unlock_irq(&hcd_urb_list_lock);
1845
1846                 if (urb) {
1847                         usb_kill_urb (urb);
1848                         usb_put_urb (urb);
1849                 }
1850         }
1851 }
1852
1853 /**
1854  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1855  *                              the bus bandwidth
1856  * @udev: target &usb_device
1857  * @new_config: new configuration to install
1858  * @cur_alt: the current alternate interface setting
1859  * @new_alt: alternate interface setting that is being installed
1860  *
1861  * To change configurations, pass in the new configuration in new_config,
1862  * and pass NULL for cur_alt and new_alt.
1863  *
1864  * To reset a device's configuration (put the device in the ADDRESSED state),
1865  * pass in NULL for new_config, cur_alt, and new_alt.
1866  *
1867  * To change alternate interface settings, pass in NULL for new_config,
1868  * pass in the current alternate interface setting in cur_alt,
1869  * and pass in the new alternate interface setting in new_alt.
1870  *
1871  * Return: An error if the requested bandwidth change exceeds the
1872  * bus bandwidth or host controller internal resources.
1873  */
1874 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1875                 struct usb_host_config *new_config,
1876                 struct usb_host_interface *cur_alt,
1877                 struct usb_host_interface *new_alt)
1878 {
1879         int num_intfs, i, j;
1880         struct usb_host_interface *alt = NULL;
1881         int ret = 0;
1882         struct usb_hcd *hcd;
1883         struct usb_host_endpoint *ep;
1884
1885         hcd = bus_to_hcd(udev->bus);
1886         if (!hcd->driver->check_bandwidth)
1887                 return 0;
1888
1889         /* Configuration is being removed - set configuration 0 */
1890         if (!new_config && !cur_alt) {
1891                 for (i = 1; i < 16; ++i) {
1892                         ep = udev->ep_out[i];
1893                         if (ep)
1894                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1895                         ep = udev->ep_in[i];
1896                         if (ep)
1897                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1898                 }
1899                 hcd->driver->check_bandwidth(hcd, udev);
1900                 return 0;
1901         }
1902         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1903          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1904          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1905          * ok to exclude it.
1906          */
1907         if (new_config) {
1908                 num_intfs = new_config->desc.bNumInterfaces;
1909                 /* Remove endpoints (except endpoint 0, which is always on the
1910                  * schedule) from the old config from the schedule
1911                  */
1912                 for (i = 1; i < 16; ++i) {
1913                         ep = udev->ep_out[i];
1914                         if (ep) {
1915                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1916                                 if (ret < 0)
1917                                         goto reset;
1918                         }
1919                         ep = udev->ep_in[i];
1920                         if (ep) {
1921                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1922                                 if (ret < 0)
1923                                         goto reset;
1924                         }
1925                 }
1926                 for (i = 0; i < num_intfs; ++i) {
1927                         struct usb_host_interface *first_alt;
1928                         int iface_num;
1929
1930                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1931                         iface_num = first_alt->desc.bInterfaceNumber;
1932                         /* Set up endpoints for alternate interface setting 0 */
1933                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1934                         if (!alt)
1935                                 /* No alt setting 0? Pick the first setting. */
1936                                 alt = first_alt;
1937
1938                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1939                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1940                                 if (ret < 0)
1941                                         goto reset;
1942                         }
1943                 }
1944         }
1945         if (cur_alt && new_alt) {
1946                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1947                                 cur_alt->desc.bInterfaceNumber);
1948
1949                 if (!iface)
1950                         return -EINVAL;
1951                 if (iface->resetting_device) {
1952                         /*
1953                          * The USB core just reset the device, so the xHCI host
1954                          * and the device will think alt setting 0 is installed.
1955                          * However, the USB core will pass in the alternate
1956                          * setting installed before the reset as cur_alt.  Dig
1957                          * out the alternate setting 0 structure, or the first
1958                          * alternate setting if a broken device doesn't have alt
1959                          * setting 0.
1960                          */
1961                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1962                         if (!cur_alt)
1963                                 cur_alt = &iface->altsetting[0];
1964                 }
1965
1966                 /* Drop all the endpoints in the current alt setting */
1967                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1968                         ret = hcd->driver->drop_endpoint(hcd, udev,
1969                                         &cur_alt->endpoint[i]);
1970                         if (ret < 0)
1971                                 goto reset;
1972                 }
1973                 /* Add all the endpoints in the new alt setting */
1974                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1975                         ret = hcd->driver->add_endpoint(hcd, udev,
1976                                         &new_alt->endpoint[i]);
1977                         if (ret < 0)
1978                                 goto reset;
1979                 }
1980         }
1981         ret = hcd->driver->check_bandwidth(hcd, udev);
1982 reset:
1983         if (ret < 0)
1984                 hcd->driver->reset_bandwidth(hcd, udev);
1985         return ret;
1986 }
1987
1988 /* Disables the endpoint: synchronizes with the hcd to make sure all
1989  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1990  * have been called previously.  Use for set_configuration, set_interface,
1991  * driver removal, physical disconnect.
1992  *
1993  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1994  * type, maxpacket size, toggle, halt status, and scheduling.
1995  */
1996 void usb_hcd_disable_endpoint(struct usb_device *udev,
1997                 struct usb_host_endpoint *ep)
1998 {
1999         struct usb_hcd          *hcd;
2000
2001         might_sleep();
2002         hcd = bus_to_hcd(udev->bus);
2003         if (hcd->driver->endpoint_disable)
2004                 hcd->driver->endpoint_disable(hcd, ep);
2005 }
2006
2007 /**
2008  * usb_hcd_reset_endpoint - reset host endpoint state
2009  * @udev: USB device.
2010  * @ep:   the endpoint to reset.
2011  *
2012  * Resets any host endpoint state such as the toggle bit, sequence
2013  * number and current window.
2014  */
2015 void usb_hcd_reset_endpoint(struct usb_device *udev,
2016                             struct usb_host_endpoint *ep)
2017 {
2018         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2019
2020         if (hcd->driver->endpoint_reset)
2021                 hcd->driver->endpoint_reset(hcd, ep);
2022         else {
2023                 int epnum = usb_endpoint_num(&ep->desc);
2024                 int is_out = usb_endpoint_dir_out(&ep->desc);
2025                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2026
2027                 usb_settoggle(udev, epnum, is_out, 0);
2028                 if (is_control)
2029                         usb_settoggle(udev, epnum, !is_out, 0);
2030         }
2031 }
2032
2033 /**
2034  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2035  * @interface:          alternate setting that includes all endpoints.
2036  * @eps:                array of endpoints that need streams.
2037  * @num_eps:            number of endpoints in the array.
2038  * @num_streams:        number of streams to allocate.
2039  * @mem_flags:          flags hcd should use to allocate memory.
2040  *
2041  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2042  * Drivers may queue multiple transfers to different stream IDs, which may
2043  * complete in a different order than they were queued.
2044  *
2045  * Return: On success, the number of allocated streams. On failure, a negative
2046  * error code.
2047  */
2048 int usb_alloc_streams(struct usb_interface *interface,
2049                 struct usb_host_endpoint **eps, unsigned int num_eps,
2050                 unsigned int num_streams, gfp_t mem_flags)
2051 {
2052         struct usb_hcd *hcd;
2053         struct usb_device *dev;
2054         int i, ret;
2055
2056         dev = interface_to_usbdev(interface);
2057         hcd = bus_to_hcd(dev->bus);
2058         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2059                 return -EINVAL;
2060         if (dev->speed != USB_SPEED_SUPER)
2061                 return -EINVAL;
2062
2063         for (i = 0; i < num_eps; i++) {
2064                 /* Streams only apply to bulk endpoints. */
2065                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2066                         return -EINVAL;
2067                 /* Re-alloc is not allowed */
2068                 if (eps[i]->streams)
2069                         return -EINVAL;
2070         }
2071
2072         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2073                         num_streams, mem_flags);
2074         if (ret < 0)
2075                 return ret;
2076
2077         for (i = 0; i < num_eps; i++)
2078                 eps[i]->streams = ret;
2079
2080         return ret;
2081 }
2082 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2083
2084 /**
2085  * usb_free_streams - free bulk endpoint stream IDs.
2086  * @interface:  alternate setting that includes all endpoints.
2087  * @eps:        array of endpoints to remove streams from.
2088  * @num_eps:    number of endpoints in the array.
2089  * @mem_flags:  flags hcd should use to allocate memory.
2090  *
2091  * Reverts a group of bulk endpoints back to not using stream IDs.
2092  * Can fail if we are given bad arguments, or HCD is broken.
2093  *
2094  * Return: 0 on success. On failure, a negative error code.
2095  */
2096 int usb_free_streams(struct usb_interface *interface,
2097                 struct usb_host_endpoint **eps, unsigned int num_eps,
2098                 gfp_t mem_flags)
2099 {
2100         struct usb_hcd *hcd;
2101         struct usb_device *dev;
2102         int i, ret;
2103
2104         dev = interface_to_usbdev(interface);
2105         hcd = bus_to_hcd(dev->bus);
2106         if (dev->speed != USB_SPEED_SUPER)
2107                 return -EINVAL;
2108
2109         /* Double-free is not allowed */
2110         for (i = 0; i < num_eps; i++)
2111                 if (!eps[i] || !eps[i]->streams)
2112                         return -EINVAL;
2113
2114         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2115         if (ret < 0)
2116                 return ret;
2117
2118         for (i = 0; i < num_eps; i++)
2119                 eps[i]->streams = 0;
2120
2121         return ret;
2122 }
2123 EXPORT_SYMBOL_GPL(usb_free_streams);
2124
2125 /* Protect against drivers that try to unlink URBs after the device
2126  * is gone, by waiting until all unlinks for @udev are finished.
2127  * Since we don't currently track URBs by device, simply wait until
2128  * nothing is running in the locked region of usb_hcd_unlink_urb().
2129  */
2130 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2131 {
2132         spin_lock_irq(&hcd_urb_unlink_lock);
2133         spin_unlock_irq(&hcd_urb_unlink_lock);
2134 }
2135
2136 /*-------------------------------------------------------------------------*/
2137
2138 /* called in any context */
2139 int usb_hcd_get_frame_number (struct usb_device *udev)
2140 {
2141         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2142
2143         if (!HCD_RH_RUNNING(hcd))
2144                 return -ESHUTDOWN;
2145         return hcd->driver->get_frame_number (hcd);
2146 }
2147
2148 /*-------------------------------------------------------------------------*/
2149
2150 #ifdef  CONFIG_PM
2151
2152 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2153 {
2154         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2155         int             status;
2156         int             old_state = hcd->state;
2157
2158         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2159                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2160                         rhdev->do_remote_wakeup);
2161         if (HCD_DEAD(hcd)) {
2162                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2163                 return 0;
2164         }
2165
2166         if (!hcd->driver->bus_suspend) {
2167                 status = -ENOENT;
2168         } else {
2169                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2170                 hcd->state = HC_STATE_QUIESCING;
2171                 status = hcd->driver->bus_suspend(hcd);
2172         }
2173         if (status == 0) {
2174                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2175                 hcd->state = HC_STATE_SUSPENDED;
2176
2177                 /* Did we race with a root-hub wakeup event? */
2178                 if (rhdev->do_remote_wakeup) {
2179                         char    buffer[6];
2180
2181                         status = hcd->driver->hub_status_data(hcd, buffer);
2182                         if (status != 0) {
2183                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2184                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2185                                 status = -EBUSY;
2186                         }
2187                 }
2188         } else {
2189                 spin_lock_irq(&hcd_root_hub_lock);
2190                 if (!HCD_DEAD(hcd)) {
2191                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2192                         hcd->state = old_state;
2193                 }
2194                 spin_unlock_irq(&hcd_root_hub_lock);
2195                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2196                                 "suspend", status);
2197         }
2198         return status;
2199 }
2200
2201 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2202 {
2203         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2204         int             status;
2205         int             old_state = hcd->state;
2206
2207         dev_dbg(&rhdev->dev, "usb %sresume\n",
2208                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2209         if (HCD_DEAD(hcd)) {
2210                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2211                 return 0;
2212         }
2213         if (!hcd->driver->bus_resume)
2214                 return -ENOENT;
2215         if (HCD_RH_RUNNING(hcd))
2216                 return 0;
2217
2218         hcd->state = HC_STATE_RESUMING;
2219         status = hcd->driver->bus_resume(hcd);
2220         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2221         if (status == 0) {
2222                 struct usb_device *udev;
2223                 int port1;
2224
2225                 spin_lock_irq(&hcd_root_hub_lock);
2226                 if (!HCD_DEAD(hcd)) {
2227                         usb_set_device_state(rhdev, rhdev->actconfig
2228                                         ? USB_STATE_CONFIGURED
2229                                         : USB_STATE_ADDRESS);
2230                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2231                         hcd->state = HC_STATE_RUNNING;
2232                 }
2233                 spin_unlock_irq(&hcd_root_hub_lock);
2234
2235                 /*
2236                  * Check whether any of the enabled ports on the root hub are
2237                  * unsuspended.  If they are then a TRSMRCY delay is needed
2238                  * (this is what the USB-2 spec calls a "global resume").
2239                  * Otherwise we can skip the delay.
2240                  */
2241                 usb_hub_for_each_child(rhdev, port1, udev) {
2242                         if (udev->state != USB_STATE_NOTATTACHED &&
2243                                         !udev->port_is_suspended) {
2244                                 usleep_range(10000, 11000);     /* TRSMRCY */
2245                                 break;
2246                         }
2247                 }
2248         } else {
2249                 hcd->state = old_state;
2250                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2251                                 "resume", status);
2252                 if (status != -ESHUTDOWN)
2253                         usb_hc_died(hcd);
2254         }
2255         return status;
2256 }
2257
2258 #endif  /* CONFIG_PM */
2259
2260 #ifdef  CONFIG_PM_RUNTIME
2261
2262 /* Workqueue routine for root-hub remote wakeup */
2263 static void hcd_resume_work(struct work_struct *work)
2264 {
2265         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2266         struct usb_device *udev = hcd->self.root_hub;
2267
2268         usb_remote_wakeup(udev);
2269 }
2270
2271 /**
2272  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2273  * @hcd: host controller for this root hub
2274  *
2275  * The USB host controller calls this function when its root hub is
2276  * suspended (with the remote wakeup feature enabled) and a remote
2277  * wakeup request is received.  The routine submits a workqueue request
2278  * to resume the root hub (that is, manage its downstream ports again).
2279  */
2280 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2281 {
2282         unsigned long flags;
2283
2284         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2285         if (hcd->rh_registered) {
2286                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287                 queue_work(pm_wq, &hcd->wakeup_work);
2288         }
2289         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290 }
2291 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292
2293 #endif  /* CONFIG_PM_RUNTIME */
2294
2295 /*-------------------------------------------------------------------------*/
2296
2297 #ifdef  CONFIG_USB_OTG
2298
2299 /**
2300  * usb_bus_start_enum - start immediate enumeration (for OTG)
2301  * @bus: the bus (must use hcd framework)
2302  * @port_num: 1-based number of port; usually bus->otg_port
2303  * Context: in_interrupt()
2304  *
2305  * Starts enumeration, with an immediate reset followed later by
2306  * hub_wq identifying and possibly configuring the device.
2307  * This is needed by OTG controller drivers, where it helps meet
2308  * HNP protocol timing requirements for starting a port reset.
2309  *
2310  * Return: 0 if successful.
2311  */
2312 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313 {
2314         struct usb_hcd          *hcd;
2315         int                     status = -EOPNOTSUPP;
2316
2317         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318          * boards with root hubs hooked up to internal devices (instead of
2319          * just the OTG port) may need more attention to resetting...
2320          */
2321         hcd = container_of (bus, struct usb_hcd, self);
2322         if (port_num && hcd->driver->start_port_reset)
2323                 status = hcd->driver->start_port_reset(hcd, port_num);
2324
2325         /* allocate hub_wq shortly after (first) root port reset finishes;
2326          * it may issue others, until at least 50 msecs have passed.
2327          */
2328         if (status == 0)
2329                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330         return status;
2331 }
2332 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333
2334 #endif
2335
2336 /*-------------------------------------------------------------------------*/
2337
2338 /**
2339  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340  * @irq: the IRQ being raised
2341  * @__hcd: pointer to the HCD whose IRQ is being signaled
2342  *
2343  * If the controller isn't HALTed, calls the driver's irq handler.
2344  * Checks whether the controller is now dead.
2345  *
2346  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347  */
2348 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349 {
2350         struct usb_hcd          *hcd = __hcd;
2351         irqreturn_t             rc;
2352
2353         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354                 rc = IRQ_NONE;
2355         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356                 rc = IRQ_NONE;
2357         else
2358                 rc = IRQ_HANDLED;
2359
2360         return rc;
2361 }
2362 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363
2364 /*-------------------------------------------------------------------------*/
2365
2366 /**
2367  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2368  * @hcd: pointer to the HCD representing the controller
2369  *
2370  * This is called by bus glue to report a USB host controller that died
2371  * while operations may still have been pending.  It's called automatically
2372  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2373  *
2374  * Only call this function with the primary HCD.
2375  */
2376 void usb_hc_died (struct usb_hcd *hcd)
2377 {
2378         unsigned long flags;
2379
2380         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2381
2382         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2383         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2384         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2385         if (hcd->rh_registered) {
2386                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388                 /* make hub_wq clean up old urbs and devices */
2389                 usb_set_device_state (hcd->self.root_hub,
2390                                 USB_STATE_NOTATTACHED);
2391                 usb_kick_hub_wq(hcd->self.root_hub);
2392         }
2393         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2394                 hcd = hcd->shared_hcd;
2395                 if (hcd->rh_registered) {
2396                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2397
2398                         /* make hub_wq clean up old urbs and devices */
2399                         usb_set_device_state(hcd->self.root_hub,
2400                                         USB_STATE_NOTATTACHED);
2401                         usb_kick_hub_wq(hcd->self.root_hub);
2402                 }
2403         }
2404         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2405         /* Make sure that the other roothub is also deallocated. */
2406 }
2407 EXPORT_SYMBOL_GPL (usb_hc_died);
2408
2409 /*-------------------------------------------------------------------------*/
2410
2411 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2412 {
2413
2414         spin_lock_init(&bh->lock);
2415         INIT_LIST_HEAD(&bh->head);
2416         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2417 }
2418
2419 /**
2420  * usb_create_shared_hcd - create and initialize an HCD structure
2421  * @driver: HC driver that will use this hcd
2422  * @dev: device for this HC, stored in hcd->self.controller
2423  * @bus_name: value to store in hcd->self.bus_name
2424  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2425  *              PCI device.  Only allocate certain resources for the primary HCD
2426  * Context: !in_interrupt()
2427  *
2428  * Allocate a struct usb_hcd, with extra space at the end for the
2429  * HC driver's private data.  Initialize the generic members of the
2430  * hcd structure.
2431  *
2432  * Return: On success, a pointer to the created and initialized HCD structure.
2433  * On failure (e.g. if memory is unavailable), %NULL.
2434  */
2435 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2436                 struct device *dev, const char *bus_name,
2437                 struct usb_hcd *primary_hcd)
2438 {
2439         struct usb_hcd *hcd;
2440
2441         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2442         if (!hcd) {
2443                 dev_dbg (dev, "hcd alloc failed\n");
2444                 return NULL;
2445         }
2446         if (primary_hcd == NULL) {
2447                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2448                                 GFP_KERNEL);
2449                 if (!hcd->bandwidth_mutex) {
2450                         kfree(hcd);
2451                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2452                         return NULL;
2453                 }
2454                 mutex_init(hcd->bandwidth_mutex);
2455                 dev_set_drvdata(dev, hcd);
2456         } else {
2457                 mutex_lock(&usb_port_peer_mutex);
2458                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2459                 hcd->primary_hcd = primary_hcd;
2460                 primary_hcd->primary_hcd = primary_hcd;
2461                 hcd->shared_hcd = primary_hcd;
2462                 primary_hcd->shared_hcd = hcd;
2463                 mutex_unlock(&usb_port_peer_mutex);
2464         }
2465
2466         kref_init(&hcd->kref);
2467
2468         usb_bus_init(&hcd->self);
2469         hcd->self.controller = dev;
2470         hcd->self.bus_name = bus_name;
2471         hcd->self.uses_dma = (dev->dma_mask != NULL);
2472
2473         init_timer(&hcd->rh_timer);
2474         hcd->rh_timer.function = rh_timer_func;
2475         hcd->rh_timer.data = (unsigned long) hcd;
2476 #ifdef CONFIG_PM_RUNTIME
2477         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2478 #endif
2479
2480         hcd->driver = driver;
2481         hcd->speed = driver->flags & HCD_MASK;
2482         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2483                         "USB Host Controller";
2484         return hcd;
2485 }
2486 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2487
2488 /**
2489  * usb_create_hcd - create and initialize an HCD structure
2490  * @driver: HC driver that will use this hcd
2491  * @dev: device for this HC, stored in hcd->self.controller
2492  * @bus_name: value to store in hcd->self.bus_name
2493  * Context: !in_interrupt()
2494  *
2495  * Allocate a struct usb_hcd, with extra space at the end for the
2496  * HC driver's private data.  Initialize the generic members of the
2497  * hcd structure.
2498  *
2499  * Return: On success, a pointer to the created and initialized HCD
2500  * structure. On failure (e.g. if memory is unavailable), %NULL.
2501  */
2502 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2503                 struct device *dev, const char *bus_name)
2504 {
2505         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2506 }
2507 EXPORT_SYMBOL_GPL(usb_create_hcd);
2508
2509 /*
2510  * Roothubs that share one PCI device must also share the bandwidth mutex.
2511  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2512  * deallocated.
2513  *
2514  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2515  * freed.  When hcd_release() is called for either hcd in a peer set
2516  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2517  * block new peering attempts
2518  */
2519 static void hcd_release(struct kref *kref)
2520 {
2521         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2522
2523         mutex_lock(&usb_port_peer_mutex);
2524         if (usb_hcd_is_primary_hcd(hcd))
2525                 kfree(hcd->bandwidth_mutex);
2526         if (hcd->shared_hcd) {
2527                 struct usb_hcd *peer = hcd->shared_hcd;
2528
2529                 peer->shared_hcd = NULL;
2530                 if (peer->primary_hcd == hcd)
2531                         peer->primary_hcd = NULL;
2532         }
2533         mutex_unlock(&usb_port_peer_mutex);
2534         kfree(hcd);
2535 }
2536
2537 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2538 {
2539         if (hcd)
2540                 kref_get (&hcd->kref);
2541         return hcd;
2542 }
2543 EXPORT_SYMBOL_GPL(usb_get_hcd);
2544
2545 void usb_put_hcd (struct usb_hcd *hcd)
2546 {
2547         if (hcd)
2548                 kref_put (&hcd->kref, hcd_release);
2549 }
2550 EXPORT_SYMBOL_GPL(usb_put_hcd);
2551
2552 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2553 {
2554         if (!hcd->primary_hcd)
2555                 return 1;
2556         return hcd == hcd->primary_hcd;
2557 }
2558 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2559
2560 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2561 {
2562         if (!hcd->driver->find_raw_port_number)
2563                 return port1;
2564
2565         return hcd->driver->find_raw_port_number(hcd, port1);
2566 }
2567
2568 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2569                 unsigned int irqnum, unsigned long irqflags)
2570 {
2571         int retval;
2572
2573         if (hcd->driver->irq) {
2574
2575                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2576                                 hcd->driver->description, hcd->self.busnum);
2577                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2578                                 hcd->irq_descr, hcd);
2579                 if (retval != 0) {
2580                         dev_err(hcd->self.controller,
2581                                         "request interrupt %d failed\n",
2582                                         irqnum);
2583                         return retval;
2584                 }
2585                 hcd->irq = irqnum;
2586                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2587                                 (hcd->driver->flags & HCD_MEMORY) ?
2588                                         "io mem" : "io base",
2589                                         (unsigned long long)hcd->rsrc_start);
2590         } else {
2591                 hcd->irq = 0;
2592                 if (hcd->rsrc_start)
2593                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2594                                         (hcd->driver->flags & HCD_MEMORY) ?
2595                                         "io mem" : "io base",
2596                                         (unsigned long long)hcd->rsrc_start);
2597         }
2598         return 0;
2599 }
2600
2601 /*
2602  * Before we free this root hub, flush in-flight peering attempts
2603  * and disable peer lookups
2604  */
2605 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2606 {
2607         struct usb_device *rhdev;
2608
2609         mutex_lock(&usb_port_peer_mutex);
2610         rhdev = hcd->self.root_hub;
2611         hcd->self.root_hub = NULL;
2612         mutex_unlock(&usb_port_peer_mutex);
2613         usb_put_dev(rhdev);
2614 }
2615
2616 /**
2617  * usb_add_hcd - finish generic HCD structure initialization and register
2618  * @hcd: the usb_hcd structure to initialize
2619  * @irqnum: Interrupt line to allocate
2620  * @irqflags: Interrupt type flags
2621  *
2622  * Finish the remaining parts of generic HCD initialization: allocate the
2623  * buffers of consistent memory, register the bus, request the IRQ line,
2624  * and call the driver's reset() and start() routines.
2625  */
2626 int usb_add_hcd(struct usb_hcd *hcd,
2627                 unsigned int irqnum, unsigned long irqflags)
2628 {
2629         int retval;
2630         struct usb_device *rhdev;
2631
2632         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2633                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2634
2635                 if (IS_ERR(phy)) {
2636                         retval = PTR_ERR(phy);
2637                         if (retval == -EPROBE_DEFER)
2638                                 return retval;
2639                 } else {
2640                         retval = usb_phy_init(phy);
2641                         if (retval) {
2642                                 usb_put_phy(phy);
2643                                 return retval;
2644                         }
2645                         hcd->usb_phy = phy;
2646                         hcd->remove_phy = 1;
2647                 }
2648         }
2649
2650         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2651
2652         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2653         if (authorized_default < 0 || authorized_default > 1)
2654                 hcd->authorized_default = hcd->wireless ? 0 : 1;
2655         else
2656                 hcd->authorized_default = authorized_default;
2657         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2658
2659         /* HC is in reset state, but accessible.  Now do the one-time init,
2660          * bottom up so that hcds can customize the root hubs before hub_wq
2661          * starts talking to them.  (Note, bus id is assigned early too.)
2662          */
2663         if ((retval = hcd_buffer_create(hcd)) != 0) {
2664                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2665                 goto err_remove_phy;
2666         }
2667
2668         if ((retval = usb_register_bus(&hcd->self)) < 0)
2669                 goto err_register_bus;
2670
2671         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2672                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2673                 retval = -ENOMEM;
2674                 goto err_allocate_root_hub;
2675         }
2676         mutex_lock(&usb_port_peer_mutex);
2677         hcd->self.root_hub = rhdev;
2678         mutex_unlock(&usb_port_peer_mutex);
2679
2680         switch (hcd->speed) {
2681         case HCD_USB11:
2682                 rhdev->speed = USB_SPEED_FULL;
2683                 break;
2684         case HCD_USB2:
2685                 rhdev->speed = USB_SPEED_HIGH;
2686                 break;
2687         case HCD_USB25:
2688                 rhdev->speed = USB_SPEED_WIRELESS;
2689                 break;
2690         case HCD_USB3:
2691                 rhdev->speed = USB_SPEED_SUPER;
2692                 break;
2693         default:
2694                 retval = -EINVAL;
2695                 goto err_set_rh_speed;
2696         }
2697
2698         /* wakeup flag init defaults to "everything works" for root hubs,
2699          * but drivers can override it in reset() if needed, along with
2700          * recording the overall controller's system wakeup capability.
2701          */
2702         device_set_wakeup_capable(&rhdev->dev, 1);
2703
2704         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2705          * registered.  But since the controller can die at any time,
2706          * let's initialize the flag before touching the hardware.
2707          */
2708         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2709
2710         /* "reset" is misnamed; its role is now one-time init. the controller
2711          * should already have been reset (and boot firmware kicked off etc).
2712          */
2713         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2714                 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2715                 goto err_hcd_driver_setup;
2716         }
2717         hcd->rh_pollable = 1;
2718
2719         /* NOTE: root hub and controller capabilities may not be the same */
2720         if (device_can_wakeup(hcd->self.controller)
2721                         && device_can_wakeup(&hcd->self.root_hub->dev))
2722                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2723
2724         /* initialize tasklets */
2725         init_giveback_urb_bh(&hcd->high_prio_bh);
2726         init_giveback_urb_bh(&hcd->low_prio_bh);
2727
2728         /* enable irqs just before we start the controller,
2729          * if the BIOS provides legacy PCI irqs.
2730          */
2731         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2732                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2733                 if (retval)
2734                         goto err_request_irq;
2735         }
2736
2737         hcd->state = HC_STATE_RUNNING;
2738         retval = hcd->driver->start(hcd);
2739         if (retval < 0) {
2740                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2741                 goto err_hcd_driver_start;
2742         }
2743
2744         /* starting here, usbcore will pay attention to this root hub */
2745         if ((retval = register_root_hub(hcd)) != 0)
2746                 goto err_register_root_hub;
2747
2748         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2749         if (retval < 0) {
2750                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2751                        retval);
2752                 goto error_create_attr_group;
2753         }
2754         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2755                 usb_hcd_poll_rh_status(hcd);
2756
2757         return retval;
2758
2759 error_create_attr_group:
2760         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2761         if (HC_IS_RUNNING(hcd->state))
2762                 hcd->state = HC_STATE_QUIESCING;
2763         spin_lock_irq(&hcd_root_hub_lock);
2764         hcd->rh_registered = 0;
2765         spin_unlock_irq(&hcd_root_hub_lock);
2766
2767 #ifdef CONFIG_PM_RUNTIME
2768         cancel_work_sync(&hcd->wakeup_work);
2769 #endif
2770         mutex_lock(&usb_bus_list_lock);
2771         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2772         mutex_unlock(&usb_bus_list_lock);
2773 err_register_root_hub:
2774         hcd->rh_pollable = 0;
2775         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2776         del_timer_sync(&hcd->rh_timer);
2777         hcd->driver->stop(hcd);
2778         hcd->state = HC_STATE_HALT;
2779         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2780         del_timer_sync(&hcd->rh_timer);
2781 err_hcd_driver_start:
2782         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2783                 free_irq(irqnum, hcd);
2784 err_request_irq:
2785 err_hcd_driver_setup:
2786 err_set_rh_speed:
2787         usb_put_invalidate_rhdev(hcd);
2788 err_allocate_root_hub:
2789         usb_deregister_bus(&hcd->self);
2790 err_register_bus:
2791         hcd_buffer_destroy(hcd);
2792 err_remove_phy:
2793         if (hcd->remove_phy && hcd->usb_phy) {
2794                 usb_phy_shutdown(hcd->usb_phy);
2795                 usb_put_phy(hcd->usb_phy);
2796                 hcd->usb_phy = NULL;
2797         }
2798         return retval;
2799 }
2800 EXPORT_SYMBOL_GPL(usb_add_hcd);
2801
2802 /**
2803  * usb_remove_hcd - shutdown processing for generic HCDs
2804  * @hcd: the usb_hcd structure to remove
2805  * Context: !in_interrupt()
2806  *
2807  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2808  * invoking the HCD's stop() method.
2809  */
2810 void usb_remove_hcd(struct usb_hcd *hcd)
2811 {
2812         struct usb_device *rhdev = hcd->self.root_hub;
2813
2814         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2815
2816         usb_get_dev(rhdev);
2817         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2818
2819         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2820         if (HC_IS_RUNNING (hcd->state))
2821                 hcd->state = HC_STATE_QUIESCING;
2822
2823         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2824         spin_lock_irq (&hcd_root_hub_lock);
2825         hcd->rh_registered = 0;
2826         spin_unlock_irq (&hcd_root_hub_lock);
2827
2828 #ifdef CONFIG_PM_RUNTIME
2829         cancel_work_sync(&hcd->wakeup_work);
2830 #endif
2831
2832         mutex_lock(&usb_bus_list_lock);
2833         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2834         mutex_unlock(&usb_bus_list_lock);
2835
2836         /*
2837          * tasklet_kill() isn't needed here because:
2838          * - driver's disconnect() called from usb_disconnect() should
2839          *   make sure its URBs are completed during the disconnect()
2840          *   callback
2841          *
2842          * - it is too late to run complete() here since driver may have
2843          *   been removed already now
2844          */
2845
2846         /* Prevent any more root-hub status calls from the timer.
2847          * The HCD might still restart the timer (if a port status change
2848          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2849          * the hub_status_data() callback.
2850          */
2851         hcd->rh_pollable = 0;
2852         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2853         del_timer_sync(&hcd->rh_timer);
2854
2855         hcd->driver->stop(hcd);
2856         hcd->state = HC_STATE_HALT;
2857
2858         /* In case the HCD restarted the timer, stop it again. */
2859         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2860         del_timer_sync(&hcd->rh_timer);
2861
2862         if (usb_hcd_is_primary_hcd(hcd)) {
2863                 if (hcd->irq > 0)
2864                         free_irq(hcd->irq, hcd);
2865         }
2866
2867         usb_deregister_bus(&hcd->self);
2868         hcd_buffer_destroy(hcd);
2869         if (hcd->remove_phy && hcd->usb_phy) {
2870                 usb_phy_shutdown(hcd->usb_phy);
2871                 usb_put_phy(hcd->usb_phy);
2872                 hcd->usb_phy = NULL;
2873         }
2874
2875         usb_put_invalidate_rhdev(hcd);
2876 }
2877 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2878
2879 void
2880 usb_hcd_platform_shutdown(struct platform_device *dev)
2881 {
2882         struct usb_hcd *hcd = platform_get_drvdata(dev);
2883
2884         if (hcd->driver->shutdown)
2885                 hcd->driver->shutdown(hcd);
2886 }
2887 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2888
2889 /*-------------------------------------------------------------------------*/
2890
2891 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2892
2893 struct usb_mon_operations *mon_ops;
2894
2895 /*
2896  * The registration is unlocked.
2897  * We do it this way because we do not want to lock in hot paths.
2898  *
2899  * Notice that the code is minimally error-proof. Because usbmon needs
2900  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2901  */
2902
2903 int usb_mon_register (struct usb_mon_operations *ops)
2904 {
2905
2906         if (mon_ops)
2907                 return -EBUSY;
2908
2909         mon_ops = ops;
2910         mb();
2911         return 0;
2912 }
2913 EXPORT_SYMBOL_GPL (usb_mon_register);
2914
2915 void usb_mon_deregister (void)
2916 {
2917
2918         if (mon_ops == NULL) {
2919                 printk(KERN_ERR "USB: monitor was not registered\n");
2920                 return;
2921         }
2922         mon_ops = NULL;
2923         mb();
2924 }
2925 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2926
2927 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */